US5860938A - Medical pressure sensing guide wire - Google Patents

Medical pressure sensing guide wire Download PDF

Info

Publication number
US5860938A
US5860938A US08/707,829 US70782996A US5860938A US 5860938 A US5860938 A US 5860938A US 70782996 A US70782996 A US 70782996A US 5860938 A US5860938 A US 5860938A
Authority
US
United States
Prior art keywords
pressure
compliance
lumen
body portion
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/707,829
Inventor
Daniel M. Lafontaine
Dnyanesh Talpade
Roger N. Hastings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/614,774 external-priority patent/US5964714A/en
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Assigned to SCIMED LIFE SYSTEMS, INC. reassignment SCIMED LIFE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASTINGS, ROGER N., LAFONTAINE, DANIEL M., PRATHER, RICHARD R., TALPADE, DNYANESH
Priority to US08/707,829 priority Critical patent/US5860938A/en
Priority to PCT/US1997/004814 priority patent/WO1997032518A1/en
Priority to AT97916212T priority patent/ATE253322T1/en
Priority to EP97916212A priority patent/EP0836410B1/en
Priority to DE69725949T priority patent/DE69725949T2/en
Publication of US5860938A publication Critical patent/US5860938A/en
Application granted granted Critical
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • A61B5/02158Measuring pressure in heart or blood vessels by means inserted into the body provided with two or more sensor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Definitions

  • the present invention generally relates to a pressure sensor, and more particularly, a guide wire capable of measuring fluid pressure at various places within the human vasculature.
  • Pressure measurements made before, after, or during a therapeutic or diagnostic procedure can be important methods of analyzing any body conduit.
  • pressure measurement may be used to continuously monitor a patient's condition, to determine the patency of a specific artery or vessel, to assess the severity of a lesion or stenosis, or to asses the results of a therapeutic procedure such as angioplasty, atherectomy, or stenting.
  • Pressure measurements may be of two types, phasic or flat line.
  • the flat line pressure is the average of pressure changes over time.
  • the phasic pressure is a wave form. While the average pressure is of interest, physicians can readily identify a true physiologic wave form, with frequency content from DC up to about 30 Hz, and compare it to expected norms, thereby making phasic pressure measurement a highly valuable diagnostic tool.
  • Percutaneous coronary angioplasty is a specific procedure in which pressure measurement may be a valuable tool for lesion assessment and therapy assessment.
  • the catheter which is used to measure pressure must be small enough so that the catheter itself does not interfere with measurement. In the epicardial coronary arteries, this requires catheters which are a fraction of a millimeter in diameter. It is also preferred to make the pressure measurement from a catheter which is already being used in a procedure, rather than exchanging for a pressure measuring catheter.
  • Model PXMK099 from the Edwards Critical Care division of Baxter Health Care in Irvine, Calif. consists of a pressure transducer with a six inch connecting pressure tube connected to a user supplied fluid filled tube.
  • the output signal is totally damped and only a flat line average pressure is displayed. This damping is due to the relatively high compliance of the Baxter system and the relatively large volume of water contained therein.
  • Tremulis discloses a small diameter fluid filled line which can be used as a guide wire.
  • blood pressure signals from this device may be extremely damped, giving only an average pressure value.
  • a medical pressure sensing device with the reduced cost attributes of a fluid line, a small enough diameter to be used as a guide wire or to be used in small vessels, and sufficiently responsive to provide a phasic pressure signal.
  • Another embodiment of the medical pressure sensing device is tube which is about 1-4 meter long and has an inner diameter of less than about 0.0013 m. There is less than about 1 cc of fluid within the tube which transfers pressure changes from the distal end of the tube to a proximal pressure proximal pressure transducer. The total compliance of the system is less than about 4 ⁇ 10 -14 m 5 /Nt. There may also be less than 0.004 cc of air trapped within the tube and the transducer.
  • the connector described in the previous embodiments may be a separate piece which may be connected to a medical fluid line.
  • medical fluid lines include guide wires, catheters, needles, etc.
  • the connector may further include a flush port and a stop cock.
  • the total compliance of the connector and the pressure transducer may be less than 4 ⁇ 10 -14 m 5 /Nt.
  • the pressure transducer may be a light source aligned to direct light through the pressure sensing device coupled with a photodetector which is aligned to detect light directed through the fluid line.
  • the light source may be a laser diode and it may be infrared light.
  • the embodiments of the medical pressure sensing device described above may be inserted into a vessel and advanced to a position where the pressure is desired to be measured.
  • the phasic pressure may then be measured or an average may be computed to provide a pressure measurement.
  • a catheter may then be advanced over the medical pressure sensing device and therapeutic procedures may be conducted.
  • the phasic pressure can be monitored during therapeutic procedures or before and after to determine efficacy of the procedures.
  • the pressure sensing device may also be moved within the vessel to determine the change in pressure measurement across a specific section of the body lumen.
  • FIG. 2 depicts a side view of a second embodiment of the invention.
  • a coronary guide wire is an ideal device for measuring pressure. It is the first catheter placed into the artery, and the last to be removed. In addition, since coronary guide wires are typically 0.014 inches in diameter, they are also sufficiently smaller than the arteries being treated. Unfortunately, prior art devices described above are too expensive or do not provide adequate signal fidelity. For this reason it is desirable to have a high fidelity fluid line connecting the distal and proximal ends of a guide wire, with a pressure sensor located outside the body where there is ample space to determine pressures at lower cost.
  • Fluid filled lines have been thoroughly studied and modeled in the past.
  • a fluid line and pressure transducer system are modeled as a simple harmonic oscillator with the mass of fluid in the line, fluid resistance provided by the viscosity of the fluid assuming laminar flow, and restoring force provided by the system compliance.
  • the frequency response of the pressure transducer is then given as a fraction of its dc value by the expression ##EQU3##
  • the natural frequency f 0 can be expressed by the equation ##EQU4##
  • the total system compliance C equals the sum of the compliance of each of the components in the system, ##EQU5## in MKS units, where C f equals the compliance of the fluid, any materials that come in contact with the fluid, and any air in the system and C t equals the compliance of the transducer and any connecting apparatus.
  • the system damping coefficient may be expressed by the equation ##EQU6##
  • fluid lines which are used to measure patient arterial or venous blood pressure during surgery typically have diameters of a few millimeters or larger and a natural frequency on the order of 30 Hz. Since the natural frequency is proportional to diameter and inversely proportional to the square root of compliance, a guide wire fluid line with a diameter equal to a fraction of a millimeter must have a dramatically reduced system compliance to maintain a 30 Hz or larger bandwidth. Similarly, the damping coefficient depends on the inverse cube of the fluid column diameter with larger diameter conventional lines under damped ( ⁇ 1). To prevent over damping in small guide wire fluid lines, the compliance of the system must also be dramatically reduced.
  • the total fluid volume of the system should be minimized (less than about 0.1 cc) to transmit good phasic signals. This is because water in a fluid line and connector has a very small but not negligible compliance which is proportional to the total volume of water in the system.
  • Distal tube 20 may be any medical grade super elastic material and preferably is Nitinol with an Austinite finish temperature of 10° C. ⁇ 10 as supplied by Raychem Corp. of California or the Nitinol Device Corp of California.
  • the outside diameter of distal tube 20 may be about 0.0136 inches, the inside diameter may be about 0.0075 inches, and the length may be about 12 inches.
  • Near the distal end of distal tube 20 are holes 23. There may be as few as one hole 23 but preferably there are about 6 holes 23 arranged in a helical pattern around distal tube 20 and spaced along an axial length of 0.020-0.040 inches.
  • Holes 23 may be electron discharge milled into distal tube 20 and electro-etched to remove any burrs. The exterior of the distal end of distal tube 20 may be further electro-etched to increase the flexibility of distal tube 20.
  • distal tube 20 may be made of a polymer/wire composite (not shown) as disclosed in WO 93/20881 to Pray et al., which is herein incorporated by reference. There may be one or more wires arranged in one of a variety of different patterns such as helix. This alternative distal tube 20 may be more flexible than a Nitinol distal tube 20 while maintaining a minimally compliant fluid path and the performance characteristics of a coronary guide wire.
  • proximal hypotube 25 is bonded to the proximal end of distal tube 20.
  • Proximal hypotube 25 may be press fit into distal tube 20, soldered to distal tube 20, or bonded in the method previously described.
  • the joint between proximal hypotube 25 and distal tube 20 may be a stepped joint. However, to reduce the likelihood of breakage an angled joint as shown in FIG. 1 is preferred.
  • Proximal hypotube 25 may be made of any medical grade alloy and is preferably made of 304V stainless steel which may be heat treated for resilience and plug drawn for smoothness.
  • the inside diameter of proximal hypotube 25 may be about 0.0075 inches, the outside diameter about 0.0136 inches, and the length about 60 inches.
  • Flushing connector 15 may be bonded to the proximal end of proximal hypotube 25 or flushing connector 15 may be adapted to be releasably connected to any physiological fluid line. Flushing connector 15 may have a flushing port 27 and a stop cock 30. Integrally formed with or bonded to flushing connector 15 is pressure transducer 33. Pressure transducer 33 may be a commercially available solid state pressure transducer such as Model #109 available from Lucas Nova Corporation, in Freemont, Calif. Alternatively a custom pressure transducer may be manufactured by modifying the Model #109 from Lucas Nova Corporation which reduces the RTV glue used to bond the sensor to the substrate. The pressure transducer 33 may have electrical leads suitable for connection to standard monitoring systems.
  • FIG. 2 depicts a second embodiment of the invention with body section 10 the same as previously described for the embodiment of FIG. 1.
  • An optically clear view tube 37 is bonded to the proximal portion of proximal hypotube 25.
  • View tube 37 may be made of glass, polyimide, a fused silica capillary as sold by Polymicro Technologies of Phoenix, Ariz., or any other optically clear minimally compliant material.
  • Optical connector 35 may be bonded or releasably attached to the exterior of the proximal end of proximal hypotube 25 or may be adapted to be releasably connected to any physiological fluid line.
  • Optical connector 35 houses a light source 40 which is aligned to shine through view tube 37.
  • Light source 40 may be a light bulb with a lens or a laser diode but preferably is a light emitting diode. Light source 40 may produce a variety of wavelengths of light and will preferably produce infrared light. Optical connector 35 may also house a photodetector 43 aligned to receive light from light source 40 that has passed through view tube 37.
  • Air column 45 is trapped by pressure communicating fluid 48.
  • Pressure communicating fluid 48 may be any fluid which is bio-compatible, opaque to light from light source 40, minimally evaporative, and non-corrosive, examples of which may include ferrofluids, cotton seed oil, vegetable oil, saline, and water.
  • the guide wire of this embodiment may be prepped prior to packaging. Specifically an air column 45 needs to be put in place in the proximal end of view tube 37, the pressure communicating fluid 48 loaded into view tube 37, and a temporary seal (not shown) placed around holes 23. The interface between the air column 45 and the pressure communicating fluid 48 must be aligned so as to cause a shadow between light source 40 and photodetector 43.
  • both of the embodiments described herein may be prepped by the manufacturer prior to packaging or by the user just prior to the procedure.
  • the common technique of a positive prep may be used. This technique involves flushing fluid from the proximal end the guide wire, out of the distal end of the guide wire and thereby flushing any air from the system.
  • a negative prep may also be used by creating negative pressure at the proximal end of the guide wire, as by a syringe, and drawing any air from the system while filling the guide wire with a fluid.
  • the guide wire may be used in the same way as a conventional guide wire. That is, the wire is inserted into the vasculature and advanced to a desired treatment site.
  • the guide wire may be used to sense phasic pressure. Pressure may be sensed at different locations. For instance pressure can be measured on either side of a lesion. If a therapeutic procedure is desired, another device, like an angioplasty balloon catheter, may be advanced over the wire. Pressure may also be measured at different times such as during, before, or after a procedure.

Abstract

A guide wire that is capable of sensing the phasic pressure at the distal end of the guide wire. The guide wire has a central lumen which provides a non-compliant fluid path from the distal end of the guide wire to a pressure transducer at the proximal end of the guide wire.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation in part of U.S. patent application, Ser. No. 08/614,774 filed on Mar. 7, 1996 and entitled PRESSURE SENSING GUIDE WIRE.
FIELD OF THE INVENTION
The present invention generally relates to a pressure sensor, and more particularly, a guide wire capable of measuring fluid pressure at various places within the human vasculature. Those skilled in the art will recognize the benefits of applying the present invention to similar fields not discussed herein.
BACKGROUND OF THE INVENTION
Pressure measurements made before, after, or during a therapeutic or diagnostic procedure can be important methods of analyzing any body conduit. In blood vessels, pressure measurement may be used to continuously monitor a patient's condition, to determine the patency of a specific artery or vessel, to assess the severity of a lesion or stenosis, or to asses the results of a therapeutic procedure such as angioplasty, atherectomy, or stenting. Pressure measurements may be of two types, phasic or flat line. The flat line pressure is the average of pressure changes over time. The phasic pressure is a wave form. While the average pressure is of interest, physicians can readily identify a true physiologic wave form, with frequency content from DC up to about 30 Hz, and compare it to expected norms, thereby making phasic pressure measurement a highly valuable diagnostic tool.
Percutaneous coronary angioplasty is a specific procedure in which pressure measurement may be a valuable tool for lesion assessment and therapy assessment. The catheter which is used to measure pressure must be small enough so that the catheter itself does not interfere with measurement. In the epicardial coronary arteries, this requires catheters which are a fraction of a millimeter in diameter. It is also preferred to make the pressure measurement from a catheter which is already being used in a procedure, rather than exchanging for a pressure measuring catheter.
Prior art devices disclosed by Hastings, et al. in U.S. Pat. No. 5,450,853, Wise, et al. in U.S. Pat. No. 5,113,868, and Little in U.S. Pat. No. 5,313,957 have integrated micro-sensors into the distal end of a guide wire with an electrical or optical interconnect extending to the proximal end of the wire (approximately 1.8 meters). Since the wire is only 0.014 inches in outer diameter, it is very difficult to integrate the sensor and interconnect into the guide wire without altering the mechanical performance of the wire. The wire must torque, push, and steer sufficiently well to navigate the tortuous coronary vasculature. Wires with integrated distal sensors which accomplish this feat are inherently expensive to produce.
Prior art fluid lines which provide a phasic pressure signal are typically underdamped and have a diameter much larger than a guide wire. As an example, Model PXMK099 from the Edwards Critical Care division of Baxter Health Care in Irvine, Calif. consists of a pressure transducer with a six inch connecting pressure tube connected to a user supplied fluid filled tube. When the Baxter system is connected to a 0.014 inch hollow guide wire, the output signal is totally damped and only a flat line average pressure is displayed. This damping is due to the relatively high compliance of the Baxter system and the relatively large volume of water contained therein. To determine the minimum tube diameter which can transmit a phasic blood pressure signal through the Baxter system, 1.8 m long polyimide tubes of varying diameters ranging from 0.012-0.057 inches were connected via a Touey-Borst style connector to the Baxter system. Experiments on this system found an average system compliance of ##EQU1## and that the natural frequency was greater than or equal to 30 Hz in lines with diameters greater than 0.053" (0.0013 m). The lines with diameters less than 0.020 inches were over-damped and the lines with diameters larger than 0.020 inches were under-damped. Clearly prior art fluid lines which provide adequate frequency response are much larger than guide wires and still are not critically damped.
Another prior art device is disclosed by Tremulis in U.S. Pat. No. 4,953,553. Tremulis discloses a small diameter fluid filled line which can be used as a guide wire. However, blood pressure signals from this device may be extremely damped, giving only an average pressure value.
Therefore, it would be advantageous to provide a medical pressure sensing device with the reduced cost attributes of a fluid line, a small enough diameter to be used as a guide wire or to be used in small vessels, and sufficiently responsive to provide a phasic pressure signal.
SUMMARY OF THE INVENTION
The present invention overcomes the deficiencies of the prior art by providing a medical pressure sensing device which may be used as a guide wire, is inexpensive, and responsive enough to measure a phasic pressure signal. A first embodiment of the invention has a tube with an interior diameter of less than 0.0013 m. A pressure transducer is connected to the tube and is in fluid communication with the interior of the tube. Fluid pressure changes at the distal end of the tube are communicated to the pressure transducer at the proximal end of the tube. The system compliance is sufficiently low to measure a phasic signal. In particular the system compliance ##EQU2## where the interior diameter D is less than 0.0013 meters, L is the length of the tube, ρ is the density of the fluid, η is the viscosity of the fluid, f0 is the natural frequency of the system, and ξ is the damping coefficient of the system.
Another embodiment of the medical pressure sensing device is tube which is about 1-4 meter long and has an inner diameter of less than about 0.0013 m. There is less than about 1 cc of fluid within the tube which transfers pressure changes from the distal end of the tube to a proximal pressure proximal pressure transducer. The total compliance of the system is less than about 4×10-14 m5 /Nt. There may also be less than 0.004 cc of air trapped within the tube and the transducer.
The connector described in the previous embodiments may be a separate piece which may be connected to a medical fluid line. Examples of medical fluid lines include guide wires, catheters, needles, etc. The connector may further include a flush port and a stop cock. The total compliance of the connector and the pressure transducer may be less than 4×10-14 m5 /Nt. Alternatively, the pressure transducer may be a light source aligned to direct light through the pressure sensing device coupled with a photodetector which is aligned to detect light directed through the fluid line. The light source may be a laser diode and it may be infrared light.
In use, the embodiments of the medical pressure sensing device described above may be inserted into a vessel and advanced to a position where the pressure is desired to be measured. The phasic pressure may then be measured or an average may be computed to provide a pressure measurement. A catheter may then be advanced over the medical pressure sensing device and therapeutic procedures may be conducted. The phasic pressure can be monitored during therapeutic procedures or before and after to determine efficacy of the procedures. The pressure sensing device may also be moved within the vessel to determine the change in pressure measurement across a specific section of the body lumen.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts a side view of an embodiment of the invention.
FIG. 2 depicts a side view of a second embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The following detailed description should be read with reference to the drawings in which like elements in different drawing are numbered identically. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention.
Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements. All other elements employ that which is known to those skilled in the field of the invention. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that may also be used.
A coronary guide wire is an ideal device for measuring pressure. It is the first catheter placed into the artery, and the last to be removed. In addition, since coronary guide wires are typically 0.014 inches in diameter, they are also sufficiently smaller than the arteries being treated. Unfortunately, prior art devices described above are too expensive or do not provide adequate signal fidelity. For this reason it is desirable to have a high fidelity fluid line connecting the distal and proximal ends of a guide wire, with a pressure sensor located outside the body where there is ample space to determine pressures at lower cost.
Fluid filled lines have been thoroughly studied and modeled in the past. A fluid line and pressure transducer system are modeled as a simple harmonic oscillator with the mass of fluid in the line, fluid resistance provided by the viscosity of the fluid assuming laminar flow, and restoring force provided by the system compliance. The frequency response of the pressure transducer is then given as a fraction of its dc value by the expression ##EQU3## The natural frequency f0 can be expressed by the equation ##EQU4## The total system compliance C equals the sum of the compliance of each of the components in the system, ##EQU5## in MKS units, where Cf equals the compliance of the fluid, any materials that come in contact with the fluid, and any air in the system and Ct equals the compliance of the transducer and any connecting apparatus. The system damping coefficient may be expressed by the equation ##EQU6##
______________________________________
Symbol   Variable         Units
______________________________________
L        tube length      meters
ξ     system damping coefficient
                          NA
ƒ.sub.0
         natural frequency
                          HZ
ρ    density of the liquid
                          kg per cubic meter
A.sub.0  amplitude when ƒ = 0.
                          MKS
A        signal amplitude MKS
ƒ
         frequency        HZ
C        system compliance
                          meters.sup.5  per Newton
                          (m.sup.3 /Nt/m.sup.2)
η    fluid viscosity  NtS/m.sup.2
______________________________________
Commercially available fluid lines which are used to measure patient arterial or venous blood pressure during surgery typically have diameters of a few millimeters or larger and a natural frequency on the order of 30 Hz. Since the natural frequency is proportional to diameter and inversely proportional to the square root of compliance, a guide wire fluid line with a diameter equal to a fraction of a millimeter must have a dramatically reduced system compliance to maintain a 30 Hz or larger bandwidth. Similarly, the damping coefficient depends on the inverse cube of the fluid column diameter with larger diameter conventional lines under damped (ξ<1). To prevent over damping in small guide wire fluid lines, the compliance of the system must also be dramatically reduced.
Experimental work has confirmed the theoretical work which suggests that the compliance of a hollow 0.014 inch guide wire and a proximal pressure transducing apparatus are crucial to the frequency response of the phasic pressure wave. Any soft plastic or rubber materials present, even in small quantities anywhere in the system, can dampen the signal. Wherever possible, minimally compliant materials may then be used. Small amounts of air trapped in the system can also dampen the signal. To achieve adequate bandwidth and a damping coefficient less than unity, the amount of entrapped air should be less than 0.007 mm3. In addition, typical commercially available pressure transducers contain compliant adhesives and gels, which also dampen the signal. If necessary custom pressure transducers may be manufactured. Finally, it has been determined that the total fluid volume of the system should be minimized (less than about 0.1 cc) to transmit good phasic signals. This is because water in a fluid line and connector has a very small but not negligible compliance which is proportional to the total volume of water in the system.
Refer now to FIG. 1 which depicts a body portion 10. A spring tip 13, as is commonly known in the art, is attached to the distal end of body portion 10. Spring tip 13 may have a safety ribbon 17 and may be about 1-4 cm long and is preferably about 3 cm long. Distal tube 20 may be formed of a super elastic material. The proximal end of safety ribbon 17 may be press fit into distal tube 20, soldered to distal tube 20, or preferably distal tube 20 is chilled into its Martensite phase and then ribbon 17 fit into place. When distal tube 20 is allowed to return to ambient temperature a compressive bond is formed.
Distal tube 20 maybe be any medical grade super elastic material and preferably is Nitinol with an Austinite finish temperature of 10° C.±10 as supplied by Raychem Corp. of California or the Nitinol Device Corp of California. The outside diameter of distal tube 20 may be about 0.0136 inches, the inside diameter may be about 0.0075 inches, and the length may be about 12 inches. Near the distal end of distal tube 20 are holes 23. There may be as few as one hole 23 but preferably there are about 6 holes 23 arranged in a helical pattern around distal tube 20 and spaced along an axial length of 0.020-0.040 inches. While no more than one hole 23 is required to provide a phasic pressure signal, several holes 23 ensure that the vessel wall or other material does not plug distal tube 20. Holes 23 may be electron discharge milled into distal tube 20 and electro-etched to remove any burrs. The exterior of the distal end of distal tube 20 may be further electro-etched to increase the flexibility of distal tube 20.
Alternatively, distal tube 20 may be made of a polymer/wire composite (not shown) as disclosed in WO 93/20881 to Pray et al., which is herein incorporated by reference. There may be one or more wires arranged in one of a variety of different patterns such as helix. This alternative distal tube 20 may be more flexible than a Nitinol distal tube 20 while maintaining a minimally compliant fluid path and the performance characteristics of a coronary guide wire.
The distal end of proximal hypotube 25 is bonded to the proximal end of distal tube 20. Proximal hypotube 25 may be press fit into distal tube 20, soldered to distal tube 20, or bonded in the method previously described. The joint between proximal hypotube 25 and distal tube 20 may be a stepped joint. However, to reduce the likelihood of breakage an angled joint as shown in FIG. 1 is preferred. Proximal hypotube 25 may be made of any medical grade alloy and is preferably made of 304V stainless steel which may be heat treated for resilience and plug drawn for smoothness. The inside diameter of proximal hypotube 25 may be about 0.0075 inches, the outside diameter about 0.0136 inches, and the length about 60 inches.
Flushing connector 15 may be bonded to the proximal end of proximal hypotube 25 or flushing connector 15 may be adapted to be releasably connected to any physiological fluid line. Flushing connector 15 may have a flushing port 27 and a stop cock 30. Integrally formed with or bonded to flushing connector 15 is pressure transducer 33. Pressure transducer 33 may be a commercially available solid state pressure transducer such as Model #109 available from Lucas Nova Corporation, in Freemont, Calif. Alternatively a custom pressure transducer may be manufactured by modifying the Model #109 from Lucas Nova Corporation which reduces the RTV glue used to bond the sensor to the substrate. The pressure transducer 33 may have electrical leads suitable for connection to standard monitoring systems.
FIG. 2 depicts a second embodiment of the invention with body section 10 the same as previously described for the embodiment of FIG. 1. An optically clear view tube 37 is bonded to the proximal portion of proximal hypotube 25. View tube 37 may be made of glass, polyimide, a fused silica capillary as sold by Polymicro Technologies of Phoenix, Ariz., or any other optically clear minimally compliant material. Optical connector 35 may be bonded or releasably attached to the exterior of the proximal end of proximal hypotube 25 or may be adapted to be releasably connected to any physiological fluid line. Optical connector 35 houses a light source 40 which is aligned to shine through view tube 37. Light source 40 may be a light bulb with a lens or a laser diode but preferably is a light emitting diode. Light source 40 may produce a variety of wavelengths of light and will preferably produce infrared light. Optical connector 35 may also house a photodetector 43 aligned to receive light from light source 40 that has passed through view tube 37.
Within the proximal end of view tube 37 is an air column 45. Air column 45 is trapped by pressure communicating fluid 48. Pressure communicating fluid 48 may be any fluid which is bio-compatible, opaque to light from light source 40, minimally evaporative, and non-corrosive, examples of which may include ferrofluids, cotton seed oil, vegetable oil, saline, and water. The guide wire of this embodiment may be prepped prior to packaging. Specifically an air column 45 needs to be put in place in the proximal end of view tube 37, the pressure communicating fluid 48 loaded into view tube 37, and a temporary seal (not shown) placed around holes 23. The interface between the air column 45 and the pressure communicating fluid 48 must be aligned so as to cause a shadow between light source 40 and photodetector 43. Changes in fluid pressure at the distal end of the guide wire will cause the interface to move and the change in light detected by the photodetector can be interpreted as pressure changes. Preferably an air column which is about 0.01 inches long in a tube of 0.008 inches inside diameter is desired to give a compliance of about 8×10-17 m5 /Nt and corresponds to a natural frequency of about 100 Hz and a damping coefficient of near unity. Further, the guide wire may be connected to a view tube 37 which has an outside diameter which is smaller than the inside diameter of the guide wire thereby allowing linear movement of the fluid column for a given change in distal pressure.
In use both of the embodiments described herein may be prepped by the manufacturer prior to packaging or by the user just prior to the procedure. When prepped by the user, the common technique of a positive prep may be used. This technique involves flushing fluid from the proximal end the guide wire, out of the distal end of the guide wire and thereby flushing any air from the system. A negative prep may also be used by creating negative pressure at the proximal end of the guide wire, as by a syringe, and drawing any air from the system while filling the guide wire with a fluid. Once prepped, the guide wire may be used in the same way as a conventional guide wire. That is, the wire is inserted into the vasculature and advanced to a desired treatment site. Once at the treatment site the guide wire, unlike common coronary guide wires, may be used to sense phasic pressure. Pressure may be sensed at different locations. For instance pressure can be measured on either side of a lesion. If a therapeutic procedure is desired, another device, like an angioplasty balloon catheter, may be advanced over the wire. Pressure may also be measured at different times such as during, before, or after a procedure.
While the specification describes the preferred designs, materials, methods of manufacture and methods of use, those skilled in the art will appreciate the scope and spirit of the invention with reference to the appended claims.

Claims (13)

We claim:
1. A medical pressure sensor comprising:
a body portion having a proximal end, a distal end, and a lumen extending therethrough for communicating pressure from the distal end of the body portion to the proximal end of the body portion, the body portion having a compliance Cf which includes the compliance of the body portion and any fluid therein; and
a transducer positioned near the proximal end of the body portion and in fluid communication with the lumen, the transducer having a compliance Ct, where the system compliance C=Cf +Ct, and the system compliance ##EQU7## where the diameter D is less than about 0.0013 meters,
the natural frequency f0 less than about 30 Hz,
π is a constant equal to 22/7,
ρ is the density of the fluid in kilograms per cubic meter,
η is the fluid viscosity in newton seconds per square meter,
L is the length of the lumen in meters, and
the system damping coefficient ξ is less than about 3.0.
2. A pressure sensing device having a total compliance, the device comprising:
an elongate body having length of about 1-4 meters, a pressure communicating lumen extending therethrough, an inner diameter of less than about 0.0013 meters, and a proximal end; and
a transducer attached to the proximal end of the elongate body and in fluid communication with the lumen, the total compliance of the pressure sensing device less than about 4×10-14 m5 /Nt.
3. The pressure sensing device of claim 2 wherein the total compliance of the device includes the compliance of a volume of liquid disposed thereon, the volume of liquid being less than about one cubic centimeter.
4. The pressure sensing device of claim 2 wherein the total compliance of the device includes the compliance of a volume of entrapped air disposed thereon, the volume of entrapped air being less than about 0.004 cubic centimeters.
5. A method of sensing a phasic pressure signal within a body lumen comprising:
providing an elongate body having a proximal end, a distal end, a pressure communicating lumen therethrough, a fluid within the pressure communicating lumen, a transducer attached to the proximal end of the elongate body and in fluid communication with the pressure communicating lumen, and a system compliance of less than about 4×10-14 m5 /Nt, the pressure communicating lumen having a diameter of less than about 0.0013 meters;
inserting the distal end of the elongate body into the body lumen;
advancing the elongate body to a position within the body lumen; and
sensing the phasic pressure signal at that position within the body lumen.
6. The method of sensing a phasic pressure signal within a body lumen of claim 5 further comprising:
providing a catheter having a lumen therethrough; and
advancing the catheter over the elongate body after the elongate body has been advanced to the position within the body lumen.
7. The method of sensing a phasic pressure signal within a body lumen of claim 6 further comprising:
conducting a therapeutic procedure with the catheter after the catheter has been advanced to the position within the body; and
sensing the phasic pressure signal before, during or after the therapeutic procedure has been conducted.
8. The method of sensing a phasic pressure signal within a body lumen of claim 7 further comprising:
sensing the phasic pressure signal before and after the therapeutic procedure.
9. A connector suitable for removeably connecting to a medical pressure sensing instrument, the connector comprising:
a body portion having an interior and a port suitable for providing fluid communication between the medical pressure sensing instrument and the interior of the body portion, the body portion having a compliance; and
a pressure transducer attached to the body portion and in fluid communication with the interior of the body, the pressure transducer having a compliance, wherein the sum of the compliance of the body portion and the compliance of the pressure transducer is less than 4×10-14 m5 /Nt.
10. The connector of claim 9 further comprising:
a flush port in fluid communication with the interior of the body portion; and
stop cock positioned such that fluid communication between the interior of the body portion and the flush port may be blocked.
11. The connector of claim 9 wherein the pressure transducer comprises a solid state pressure transducer.
12. The connector of claim 9 wherein the pressure transducer comprises:
a light source attached to the body portion and aligned to shine through the medical pressure sensing instrument; and
a photodetector attached to the body portion and positioned to detect light shined through the medical sensing instrument.
13. The connector of claim 12 wherein the light source comprises a light emitting diode.
US08/707,829 1996-03-07 1996-09-06 Medical pressure sensing guide wire Expired - Lifetime US5860938A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/707,829 US5860938A (en) 1996-03-07 1996-09-06 Medical pressure sensing guide wire
DE69725949T DE69725949T2 (en) 1996-03-07 1997-03-06 PRESSURE MEASURING CATHETERS
EP97916212A EP0836410B1 (en) 1996-03-07 1997-03-06 Pressure sensing guide wire
AT97916212T ATE253322T1 (en) 1996-03-07 1997-03-06 PRESSURE MEASUREMENT CATHETER
PCT/US1997/004814 WO1997032518A1 (en) 1996-03-07 1997-03-06 Pressure sensing guide wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/614,774 US5964714A (en) 1996-03-07 1996-03-07 Pressure sensing guide wire
US08/707,829 US5860938A (en) 1996-03-07 1996-09-06 Medical pressure sensing guide wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/614,774 Continuation-In-Part US5964714A (en) 1996-03-07 1996-03-07 Pressure sensing guide wire

Publications (1)

Publication Number Publication Date
US5860938A true US5860938A (en) 1999-01-19

Family

ID=27087325

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/707,829 Expired - Lifetime US5860938A (en) 1996-03-07 1996-09-06 Medical pressure sensing guide wire

Country Status (5)

Country Link
US (1) US5860938A (en)
EP (1) EP0836410B1 (en)
AT (1) ATE253322T1 (en)
DE (1) DE69725949T2 (en)
WO (1) WO1997032518A1 (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
WO2002084336A2 (en) * 2001-04-16 2002-10-24 Zevex, Inc. Optical pressure monitoring system
US20030040723A1 (en) * 2001-08-21 2003-02-27 Hart Colin P. Pressure transducer protection valve
US20030114777A1 (en) * 2001-12-18 2003-06-19 Scimed Life Systems, Inc. Super elastic guidewire with shape retention tip
WO2003053506A2 (en) * 2001-12-19 2003-07-03 Scimed Life Systems, Inc. Extension system for pressure-sensing guidewires
WO2003053237A2 (en) 2001-12-20 2003-07-03 Scimed Life Systems, Inc. Pressure-sensing guidewire and sheath
US20030136417A1 (en) * 2002-01-22 2003-07-24 Michael Fonseca Implantable wireless sensor
US6645159B1 (en) 1999-11-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Wire joint and method
US6652508B2 (en) 2001-11-09 2003-11-25 Scimed Life Systems, Inc. Intravascular microcatheter having hypotube proximal shaft with transition
US6746422B1 (en) 2000-08-23 2004-06-08 Norborn Medical, Inc. Steerable support system with external ribs/slots that taper
US20050015014A1 (en) * 2002-01-22 2005-01-20 Michael Fonseca Implantable wireless sensor for pressure measurement within the heart
WO2005011788A1 (en) * 2003-07-31 2005-02-10 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US20050113853A1 (en) * 2000-04-06 2005-05-26 Norborn Medical, Inc. Guidewire for crossing occlusions or stenoses
US20050143770A1 (en) * 2003-07-31 2005-06-30 Carter Matthew P. Distal wire stop
US20050182395A1 (en) * 2002-04-19 2005-08-18 Scimed Life Systems, Inc. Cryo balloon
US20050187482A1 (en) * 2003-09-16 2005-08-25 O'brien David Implantable wireless sensor
US20050197597A1 (en) * 2004-03-05 2005-09-08 Medtronic Vascular, Inc. Guidewire with hollow distal section
US20060030864A1 (en) * 2003-07-31 2006-02-09 Wilson-Cook Medical Inc. Catheter with splittable wall shaft and peel tool
US20060052700A1 (en) * 2004-09-08 2006-03-09 Radi Medical Systems Ab Pressure measurement system
US20060074442A1 (en) * 2000-04-06 2006-04-06 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
US7025734B1 (en) 2001-09-28 2006-04-11 Advanced Cardiovascular Systmes, Inc. Guidewire with chemical sensing capabilities
US20060174712A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US20060200031A1 (en) * 2005-03-03 2006-09-07 Jason White Apparatus and method for sensor deployment and fixation
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
US20060283007A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20060287602A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Implantable wireless sensor for in vivo pressure measurement
US7245117B1 (en) 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor
US20070225615A1 (en) * 2006-03-22 2007-09-27 Revascular Therapeutics Inc. Guidewire controller system
US20070247138A1 (en) * 2004-11-01 2007-10-25 Miller Donald J Communicating with an implanted wireless sensor
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
US7381198B2 (en) 2000-08-23 2008-06-03 Revascular Therapeutics, Inc. Steerable distal support system
US20080140101A1 (en) * 2006-12-07 2008-06-12 Revascular Therapeutic, Inc. Apparatus for crossing occlusions or stenoses
US20080221601A1 (en) * 1998-02-25 2008-09-11 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses having a shapeable distal end
US20090005754A1 (en) * 2007-06-29 2009-01-01 Wilson-Cook Medical Inc. Distal wire stop having adjustable handle
US7488338B2 (en) 2001-12-27 2009-02-10 Boston Scientific Scimed, Inc. Catheter having an improved torque transmitting shaft
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US20100049062A1 (en) * 2007-04-11 2010-02-25 Elcam Medical Agricultural Cooperative Association System and method for accurate placement of a catheter tip in a patient
US20100058583A1 (en) * 2005-06-21 2010-03-11 Florent Cros Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20100125276A1 (en) * 2008-11-14 2010-05-20 Revascular Therapeutics, Inc. Method and system for reversibly controlled drilling of luminal occlusions
US20100130938A1 (en) * 2008-11-26 2010-05-27 Revascular Therapeutics, Inc. Delivery and exchange catheter for storing guidewire
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US20110152706A1 (en) * 2008-05-15 2011-06-23 Inspire Medical Systems, Inc. Method and apparatus for sensing respiratory pressure in an implantable stimulation system
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8021307B2 (en) 2005-03-03 2011-09-20 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8486020B2 (en) 2010-08-11 2013-07-16 Zevex, Inc. Pressure sensor and method of use
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8752436B2 (en) 2010-10-01 2014-06-17 Zevex, Inc. Pressure sensor seal and method of use
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US8938299B2 (en) 2008-11-19 2015-01-20 Inspire Medical Systems, Inc. System for treating sleep disordered breathing
US8983572B2 (en) 2010-10-29 2015-03-17 Inspire Medical Systems, Inc. System and method for patient selection in treating sleep disordered breathing
US9004886B2 (en) 2010-10-01 2015-04-14 Zevex, Inc. Pressure monitoring system for infusion pumps
US20150157443A1 (en) * 2004-03-25 2015-06-11 David L. Hauser Method of Treating Occlusion in a Blood Vessel
JP2016027874A (en) * 2009-09-30 2016-02-25 シュヴェイガー・メディカ・アーゲー Guide wire
WO2017144128A1 (en) 2016-02-26 2017-08-31 Cavis Technologies Ab Pressure catheter and guide wire assembly
US9956377B2 (en) 2002-09-20 2018-05-01 Angiodynamics, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US10080872B2 (en) 2014-11-04 2018-09-25 Abbott Cardiovascular Systems Inc. System and method for FFR guidewire recovery
US10279112B2 (en) 2012-09-24 2019-05-07 Angiodynamics, Inc. Power injector device and method of use
US11369739B2 (en) 2013-01-21 2022-06-28 Medline Industries, Lp Method to provide injection system parameters for injecting fluid into patient
US11554005B2 (en) 2018-08-13 2023-01-17 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11648028B2 (en) 2012-11-20 2023-05-16 Inari Medical, Inc. Methods and apparatus for treating embolism
US11697011B2 (en) 2017-09-06 2023-07-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11806033B2 (en) 2017-01-10 2023-11-07 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US11849963B2 (en) 2018-01-26 2023-12-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11864779B2 (en) 2019-10-16 2024-01-09 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11918243B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033366A (en) * 1997-10-14 2000-03-07 Data Sciences International, Inc. Pressure measurement device
WO2000012003A1 (en) * 1998-08-26 2000-03-09 Becton, Dickinson And Company Air coupled pressure tip cannula for by-pass surgery
EP1088568B1 (en) 1999-09-09 2005-08-24 Schneider (Europe) GmbH Guiding aid for a medical instrument
JP6850368B2 (en) * 2018-01-26 2021-03-31 朝日インテック株式会社 catheter
JP7265527B2 (en) * 2018-03-29 2023-04-26 テルモ株式会社 catheter assembly
US20240065560A1 (en) * 2022-08-23 2024-02-29 Honeywell International Inc. Lumen design within intravenous tube to transmit blood pressure wave for invasive blood pressure monitoring

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724274A (en) * 1971-02-11 1973-04-03 Millar Instruments Pressure transducers and method of physiological pressure transducers
US3811427A (en) * 1971-09-09 1974-05-21 Siemens Ag Pressure receiver
US4545389A (en) * 1982-07-14 1985-10-08 Gould Inc. Disposable physiological pressure sensing system
US4554927A (en) * 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
US4846191A (en) * 1988-05-27 1989-07-11 Data Sciences, Inc. Device for chronic measurement of internal body pressure
US4909796A (en) * 1985-01-11 1990-03-20 Mitsuyuki Hagio Medical guiding microtubes
US4928693A (en) * 1989-03-13 1990-05-29 Schneider (Usa), Inc. Pressure monitor catheter
US4953553A (en) * 1989-05-11 1990-09-04 Advanced Cardiovascular Systems, Inc. Pressure monitoring guidewire with a flexible distal portion
US4964409A (en) * 1989-05-11 1990-10-23 Advanced Cardiovascular Systems, Inc. Flexible hollow guiding member with means for fluid communication therethrough
US5050606A (en) * 1987-09-30 1991-09-24 Advanced Cardiovascular Systems, Inc. Method for measuring pressure within a patient's coronary artery
US5063936A (en) * 1990-03-23 1991-11-12 Nihon Kohden Corporation Internal pressure measuring device using catheter with multiple lumens
US5065769A (en) * 1988-11-23 1991-11-19 Boston Scientific Corporation Small diameter guidewires of multi-filar, cross-wound coils
US5184627A (en) * 1991-01-18 1993-02-09 Boston Scientific Corporation Infusion guidewire including proximal stiffening sheath
US5211636A (en) * 1990-10-31 1993-05-18 Lake Region Manufacturing Co., Inc. Steerable infusion guide wire
US5280789A (en) * 1992-01-31 1994-01-25 Potts Richard A Apparatus and method for measuring fluid pressure in a medical patient
US5282478A (en) * 1991-08-21 1994-02-01 Baxter International, Inc. Guidewire extension system with coil connectors
US5322508A (en) * 1993-04-08 1994-06-21 Cordis Corporation Guidewire fluid delivery system and method of use
US5450853A (en) * 1993-10-22 1995-09-19 Scimed Life Systems, Inc. Pressure sensor
US5476450A (en) * 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
EP0419277B1 (en) * 1989-09-22 1996-05-29 Cardiometrics, Inc. Guide wire for use in measuring a characteristic of liquid flow in a vessel
US5569197A (en) * 1994-12-21 1996-10-29 Schneider (Usa) Inc Drug delivery guidewire
US5573007A (en) * 1994-08-08 1996-11-12 Innerspace, Inc. Gas column pressure monitoring catheters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172203B (en) * 1985-03-14 1988-11-09 Univ Manchester A urethral catheter
US4901731A (en) * 1988-04-27 1990-02-20 Millar Instruments, Inc. Single sensor pressure differential device
US5108369A (en) * 1990-03-15 1992-04-28 Diagnostic Devices Group, Limited Dual-diameter multifunction catheter
US5423323A (en) * 1993-08-30 1995-06-13 Rocky Mountain Research, Inc. System for calculating compliance and cardiac hemodynamic parameters
BE1009291A6 (en) * 1995-04-14 1997-01-07 Billiet Erik Device for measuring blood flow by means of a swan-ganz catheter.

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724274A (en) * 1971-02-11 1973-04-03 Millar Instruments Pressure transducers and method of physiological pressure transducers
US3811427A (en) * 1971-09-09 1974-05-21 Siemens Ag Pressure receiver
US4545389A (en) * 1982-07-14 1985-10-08 Gould Inc. Disposable physiological pressure sensing system
US4554927A (en) * 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
US4909796A (en) * 1985-01-11 1990-03-20 Mitsuyuki Hagio Medical guiding microtubes
US5050606A (en) * 1987-09-30 1991-09-24 Advanced Cardiovascular Systems, Inc. Method for measuring pressure within a patient's coronary artery
US4846191A (en) * 1988-05-27 1989-07-11 Data Sciences, Inc. Device for chronic measurement of internal body pressure
US5065769A (en) * 1988-11-23 1991-11-19 Boston Scientific Corporation Small diameter guidewires of multi-filar, cross-wound coils
US4928693A (en) * 1989-03-13 1990-05-29 Schneider (Usa), Inc. Pressure monitor catheter
US4953553A (en) * 1989-05-11 1990-09-04 Advanced Cardiovascular Systems, Inc. Pressure monitoring guidewire with a flexible distal portion
US4964409A (en) * 1989-05-11 1990-10-23 Advanced Cardiovascular Systems, Inc. Flexible hollow guiding member with means for fluid communication therethrough
EP0419277B1 (en) * 1989-09-22 1996-05-29 Cardiometrics, Inc. Guide wire for use in measuring a characteristic of liquid flow in a vessel
US5063936A (en) * 1990-03-23 1991-11-12 Nihon Kohden Corporation Internal pressure measuring device using catheter with multiple lumens
US5211636A (en) * 1990-10-31 1993-05-18 Lake Region Manufacturing Co., Inc. Steerable infusion guide wire
US5184627A (en) * 1991-01-18 1993-02-09 Boston Scientific Corporation Infusion guidewire including proximal stiffening sheath
US5282478A (en) * 1991-08-21 1994-02-01 Baxter International, Inc. Guidewire extension system with coil connectors
US5280789A (en) * 1992-01-31 1994-01-25 Potts Richard A Apparatus and method for measuring fluid pressure in a medical patient
US5322508A (en) * 1993-04-08 1994-06-21 Cordis Corporation Guidewire fluid delivery system and method of use
US5450853A (en) * 1993-10-22 1995-09-19 Scimed Life Systems, Inc. Pressure sensor
US5476450A (en) * 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
US5573007A (en) * 1994-08-08 1996-11-12 Innerspace, Inc. Gas column pressure monitoring catheters
US5569197A (en) * 1994-12-21 1996-10-29 Schneider (Usa) Inc Drug delivery guidewire

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Measuring Principles of Arterial Waves, Wilmer W. Nichols and Michael F. O Rourke, McDonald s Blood Flow in Arteries, Theorectical, Experimental and Clinical Principles, 3 4rd Edition, pp. 143 162. *
Measuring Principles of Arterial Waves, Wilmer W. Nichols and Michael F. O'Rourke, McDonald's Blood Flow in Arteries, Theorectical, Experimental and Clinical Principles, 34rd Edition, pp. 143-162.
New Product Bulletin, Medi tech, Cragg Convertible Wire, Mar. 1989. *
New Product Bulletin, Medi-tech, Cragg Convertible Wire, Mar. 1989.
Pressure Measurement, Charles R. Lamber, M.D., Ph.D., Carl J. Pepine, M.D. and Wilmer W. Nichols, Ph.D, Diagnostic and Therapeutic Cardiac Catheterization, pp. 283 297. *
Pressure Measurement, Charles R. Lamber, M.D., Ph.D., Carl J. Pepine, M.D. and Wilmer W. Nichols, Ph.D, Diagnostic and Therapeutic Cardiac Catheterization, pp. 283-297.
Products for Regional Thrombolysis, Medi tech, Katzeen Infusion Wire, Mewissen Infusion Catheter, Cragg Convertible Wire, Jul. 1992. *
Products for Regional Thrombolysis, Medi-tech, Katzeen Infusion Wire, Mewissen Infusion Catheter, Cragg Convertible Wire, Jul. 1992.
The Sos Open Ended Guidewire from USCI, Applications & Case Studies, C.R. Bard, Inc., Nov. 1985. *

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9254143B2 (en) 1998-02-25 2016-02-09 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses having a shapeable distal end
US20080221601A1 (en) * 1998-02-25 2008-09-11 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses having a shapeable distal end
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US20020138009A1 (en) * 1998-09-24 2002-09-26 Data Sciences International, Inc. Implantable sensor with wireless communication
US7425200B2 (en) 1998-09-24 2008-09-16 Transoma Medical, Inc. Implantable sensor with wireless communication
US20050159789A1 (en) * 1998-09-24 2005-07-21 Transoma Medical, Inc. Implantable sensor with wireless communication
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US7481774B2 (en) 1999-03-05 2009-01-27 Transoma Medical, Inc. Catheter with physiological sensor
US6659959B2 (en) 1999-03-05 2003-12-09 Transoma Medical, Inc. Catheter with physiological sensor
US20030195428A1 (en) * 1999-03-05 2003-10-16 Data Sciences International, Inc. Catheter with physiological sensor
US6645159B1 (en) 1999-11-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Wire joint and method
US20040039310A1 (en) * 1999-11-30 2004-02-26 Burkett David H. Wire joint and method
US20060074442A1 (en) * 2000-04-06 2006-04-06 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
US8353922B2 (en) 2000-04-06 2013-01-15 Revascular Therapeutics, Inc Guidewire for crossing occlusions or stenoses
US20100049169A1 (en) * 2000-04-06 2010-02-25 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
US8043314B2 (en) 2000-04-06 2011-10-25 Revascular Therapeutics Inc. Guidewire for crossing occlusions or stenoses
US20050113853A1 (en) * 2000-04-06 2005-05-26 Norborn Medical, Inc. Guidewire for crossing occlusions or stenoses
US8496680B2 (en) 2000-04-06 2013-07-30 Revascular Therapeutics Inc. Guidewire for crossing occlusions or stenoses
US9113955B2 (en) 2000-04-06 2015-08-25 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
US20050228418A1 (en) * 2000-04-06 2005-10-13 Revascular Therapeutics Inc. Guidewire for crossing occlusions or stenoses
US8747332B2 (en) 2000-04-06 2014-06-10 Revascular Therapeutics Inc. Guidewire for crossing occlusions or stenoses
US8043312B2 (en) 2000-04-06 2011-10-25 Revascular Therapeutics Inc. Guidewire for crossing occlusions or stenoses
US7628763B2 (en) 2000-04-06 2009-12-08 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
US6746422B1 (en) 2000-08-23 2004-06-08 Norborn Medical, Inc. Steerable support system with external ribs/slots that taper
US7381198B2 (en) 2000-08-23 2008-06-03 Revascular Therapeutics, Inc. Steerable distal support system
US20050178206A1 (en) * 2001-04-16 2005-08-18 Zevex, Inc. Optical pressure monitoring system
WO2002084336A3 (en) * 2001-04-16 2003-03-20 Zevex Inc Optical pressure monitoring system
WO2002084336A2 (en) * 2001-04-16 2002-10-24 Zevex, Inc. Optical pressure monitoring system
US7921718B2 (en) 2001-04-16 2011-04-12 Zevex, Inc. Optical pressure monitoring system
US6907788B2 (en) 2001-04-16 2005-06-21 Zevex, Inc. Optical pressure monitoring system
US7121143B2 (en) 2001-04-16 2006-10-17 Zevex, Inc. Optical pressure monitoring system
US20030070486A1 (en) * 2001-04-16 2003-04-17 Malmstrom James A. Optical pressure monitoring system
US20050205142A1 (en) * 2001-08-21 2005-09-22 Boston Scientific Scimed, Inc. Pressure transducer protection valve
US6986742B2 (en) 2001-08-21 2006-01-17 Boston Scientific Scimed, Inc. Pressure transducer protection valve
US20030040723A1 (en) * 2001-08-21 2003-02-27 Hart Colin P. Pressure transducer protection valve
US6896002B2 (en) 2001-08-21 2005-05-24 Scimed Life Systems, Inc Pressure transducer protection valve
US7842012B2 (en) 2001-09-28 2010-11-30 Advanced Cardiovascular Systems, Inc. Guidewire with chemical sensing capabilities
US7025734B1 (en) 2001-09-28 2006-04-11 Advanced Cardiovascular Systmes, Inc. Guidewire with chemical sensing capabilities
US20060129041A1 (en) * 2001-09-28 2006-06-15 Ellis Jeffrey T Guidewire with chemical sensing capabilities
US6652508B2 (en) 2001-11-09 2003-11-25 Scimed Life Systems, Inc. Intravascular microcatheter having hypotube proximal shaft with transition
US20100159117A1 (en) * 2001-12-18 2010-06-24 Boston Scientific Scimed, Inc. Super Elastic Guidewire With Shape Retention Tip
US7670302B2 (en) 2001-12-18 2010-03-02 Boston Scientific Scimed, Inc. Super elastic guidewire with shape retention tip
US20030114777A1 (en) * 2001-12-18 2003-06-19 Scimed Life Systems, Inc. Super elastic guidewire with shape retention tip
WO2003053506A3 (en) * 2001-12-19 2007-11-01 Scimed Life Systems Inc Extension system for pressure-sensing guidewires
WO2003053506A2 (en) * 2001-12-19 2003-07-03 Scimed Life Systems, Inc. Extension system for pressure-sensing guidewires
US6685653B2 (en) 2001-12-19 2004-02-03 Scimed Life Systems, Inc. Extension system for pressure-sensing guidewires
WO2003053237A2 (en) 2001-12-20 2003-07-03 Scimed Life Systems, Inc. Pressure-sensing guidewire and sheath
US8231647B2 (en) 2001-12-27 2012-07-31 Boston Scientific Scimed, Inc. Catheter having an improved torque transmitting shaft
US20090118759A1 (en) * 2001-12-27 2009-05-07 Boston Scientific Scimed, Inc. Catheter Having an Improved Torque Transmitting Shaft
US7488338B2 (en) 2001-12-27 2009-02-10 Boston Scientific Scimed, Inc. Catheter having an improved torque transmitting shaft
US20050015014A1 (en) * 2002-01-22 2005-01-20 Michael Fonseca Implantable wireless sensor for pressure measurement within the heart
US7699059B2 (en) 2002-01-22 2010-04-20 Cardiomems, Inc. Implantable wireless sensor
US20030136417A1 (en) * 2002-01-22 2003-07-24 Michael Fonseca Implantable wireless sensor
US7481771B2 (en) 2002-01-22 2009-01-27 Cardiomems, Inc. Implantable wireless sensor for pressure measurement within the heart
US7189227B2 (en) 2002-04-19 2007-03-13 Boston Scientific Scimed, Inc. Cryo balloon
US20050182395A1 (en) * 2002-04-19 2005-08-18 Scimed Life Systems, Inc. Cryo balloon
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
US9956377B2 (en) 2002-09-20 2018-05-01 Angiodynamics, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US20050059990A1 (en) * 2003-07-31 2005-03-17 Ayala Juan Carlos System and method for introducing multiple medical devices
US8211087B2 (en) 2003-07-31 2012-07-03 Cook Medical Technologies Llc Distal wire stop
US20050059890A1 (en) * 2003-07-31 2005-03-17 Wislon-Cook Medical Inc. System and method for introducing multiple medical devices
US20110087234A1 (en) * 2003-07-31 2011-04-14 Wilson-Cook Medical Inc. System and method for introducing multiple medical devices
WO2005011788A1 (en) * 2003-07-31 2005-02-10 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US7967830B2 (en) 2003-07-31 2011-06-28 Cook Medical Technologies Llc System and method for introducing multiple medical devices
US8206320B2 (en) 2003-07-31 2012-06-26 Cook Medical Technologies Llc System and method for introducing multiple medical devices
US20050143770A1 (en) * 2003-07-31 2005-06-30 Carter Matthew P. Distal wire stop
US8512389B2 (en) 2003-07-31 2013-08-20 Cook Medical Technologies, LLC System and method for introducing multiple medical devices
JP2007500554A (en) * 2003-07-31 2007-01-18 ウィルソン−クック・メディカル・インコーポレーテッド System and method for introducing multiple medical devices
US20050070794A1 (en) * 2003-07-31 2005-03-31 Deal Stephen E. System for introducing multiple medical devices
US20060030864A1 (en) * 2003-07-31 2006-02-09 Wilson-Cook Medical Inc. Catheter with splittable wall shaft and peel tool
US20050070821A1 (en) * 2003-07-31 2005-03-31 Deal Stephen E. System and method for introducing a prosthesis
US8591563B2 (en) 2003-07-31 2013-11-26 Cook Medical Technologies Llc Catheter with splittable wall shaft and peel tool
US20060235310A1 (en) * 2003-09-16 2006-10-19 O'brien David Method of manufacturing an implantable wireless sensor
US9265428B2 (en) 2003-09-16 2016-02-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux Ii”) Implantable wireless sensor
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US20050187482A1 (en) * 2003-09-16 2005-08-25 O'brien David Implantable wireless sensor
US7574792B2 (en) 2003-09-16 2009-08-18 Cardiomems, Inc. Method of manufacturing an implantable wireless sensor
US20050197597A1 (en) * 2004-03-05 2005-09-08 Medtronic Vascular, Inc. Guidewire with hollow distal section
US11832838B2 (en) 2004-03-25 2023-12-05 Inari Medical, Inc. Method for treating vascular occlusion
US10695159B2 (en) 2004-03-25 2020-06-30 David L. Hauser Method of removing a thrombus from a large vein
US11529158B2 (en) 2004-03-25 2022-12-20 Inari Medical, Inc. Method for treating vascular occlusion
US10799331B2 (en) 2004-03-25 2020-10-13 David L Hauser System for removing a thrombus from a blood vessel
US11925369B2 (en) 2004-03-25 2024-03-12 Inari Medical, Inc. Method for treating vascular occlusion
US20150157443A1 (en) * 2004-03-25 2015-06-11 David L. Hauser Method of Treating Occlusion in a Blood Vessel
US11832837B2 (en) 2004-03-25 2023-12-05 Inari Medical, Inc. Method for treating vascular occlusion
US10016266B2 (en) 2004-03-25 2018-07-10 David L. Hauser Method of removing a thrombus from a blood vessel
US11839393B2 (en) 2004-03-25 2023-12-12 Inari Medical, Inc. Method for treating vascular occlusion
US9848975B2 (en) * 2004-03-25 2017-12-26 David L. Hauser Method of removing a thrombus from a blood vessel
US20060052700A1 (en) * 2004-09-08 2006-03-09 Radi Medical Systems Ab Pressure measurement system
US7550978B2 (en) 2004-11-01 2009-06-23 Cardiomems, Inc. Communicating with an implanted wireless sensor
US7839153B2 (en) 2004-11-01 2010-11-23 Cardiomems, Inc. Communicating with an implanted wireless sensor
US20070247138A1 (en) * 2004-11-01 2007-10-25 Miller Donald J Communicating with an implanted wireless sensor
US7245117B1 (en) 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor
US20090224773A1 (en) * 2004-11-01 2009-09-10 Cardiomems, Inc. Communicating With an Implanted Wireless Sensor
US7932732B2 (en) 2004-11-01 2011-04-26 Cardiomems, Inc. Preventing a false lock in a phase lock loop
US20090224837A1 (en) * 2004-11-01 2009-09-10 Cardiomems, Inc. Preventing a False Lock in a Phase Lock Loop
US7466120B2 (en) 2004-11-01 2008-12-16 Cardiomems, Inc. Communicating with an implanted wireless sensor
US8237451B2 (en) 2004-11-01 2012-08-07 Cardiomems, Inc. Communicating with an implanted wireless sensor
US7662653B2 (en) 2005-02-10 2010-02-16 Cardiomems, Inc. Method of manufacturing a hermetic chamber with electrical feedthroughs
US20060174712A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
US7647836B2 (en) 2005-02-10 2010-01-19 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US7854172B2 (en) 2005-02-10 2010-12-21 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US20090145623A1 (en) * 2005-02-10 2009-06-11 O'brien David Hermetic Chamber with Electrical Feedthroughs
US20060177956A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Method of manufacturing a hermetic chamber with electrical feedthroughs
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8118749B2 (en) 2005-03-03 2012-02-21 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US8021307B2 (en) 2005-03-03 2011-09-20 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US20060200031A1 (en) * 2005-03-03 2006-09-07 Jason White Apparatus and method for sensor deployment and fixation
US20060283007A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US11103146B2 (en) 2005-06-21 2021-08-31 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) Wireless sensor for measuring pressure
US11179048B2 (en) 2005-06-21 2021-11-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) System for deploying an implant assembly in a vessel
US20060287602A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Implantable wireless sensor for in vivo pressure measurement
US7621036B2 (en) 2005-06-21 2009-11-24 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20100058583A1 (en) * 2005-06-21 2010-03-11 Florent Cros Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US9078563B2 (en) 2005-06-21 2015-07-14 St. Jude Medical Luxembourg Holdings II S.à.r.l. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20060287700A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method and apparatus for delivering an implantable wireless sensor for in vivo pressure measurement
US11890082B2 (en) 2005-06-21 2024-02-06 Tc1 Llc System and method for calculating a lumen pressure utilizing sensor calibration parameters
US11103147B2 (en) 2005-06-21 2021-08-31 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) Method and system for determining a lumen pressure
US11684276B2 (en) 2005-06-21 2023-06-27 Tc1, Llc Implantable wireless pressure sensor
US20070225615A1 (en) * 2006-03-22 2007-09-27 Revascular Therapeutics Inc. Guidewire controller system
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US20080140101A1 (en) * 2006-12-07 2008-06-12 Revascular Therapeutic, Inc. Apparatus for crossing occlusions or stenoses
US8715195B2 (en) 2007-04-11 2014-05-06 Elcam Medical Agricultural Cooperative System and method for accurate placement of a catheter tip in a patient
US20100049062A1 (en) * 2007-04-11 2010-02-25 Elcam Medical Agricultural Cooperative Association System and method for accurate placement of a catheter tip in a patient
US8292872B2 (en) 2007-06-29 2012-10-23 Cook Medical Technologies Llc Distal wire stop having adjustable handle
US20090005754A1 (en) * 2007-06-29 2009-01-01 Wilson-Cook Medical Inc. Distal wire stop having adjustable handle
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US10932682B2 (en) 2008-05-15 2021-03-02 Inspire Medical Systems, Inc. Method and apparatus for sensing respiratory pressure in an implantable stimulation system
US20110152706A1 (en) * 2008-05-15 2011-06-23 Inspire Medical Systems, Inc. Method and apparatus for sensing respiratory pressure in an implantable stimulation system
US9820770B2 (en) 2008-11-14 2017-11-21 Boston Scientific Scimed, Inc. Method and system for reversibly controlled drilling of luminal occlusions
US20100125276A1 (en) * 2008-11-14 2010-05-20 Revascular Therapeutics, Inc. Method and system for reversibly controlled drilling of luminal occlusions
US8657821B2 (en) 2008-11-14 2014-02-25 Revascular Therapeutics Inc. Method and system for reversibly controlled drilling of luminal occlusions
US8938299B2 (en) 2008-11-19 2015-01-20 Inspire Medical Systems, Inc. System for treating sleep disordered breathing
US10888267B2 (en) 2008-11-19 2021-01-12 Inspire Medical Systems, Inc. Method of treating sleep disordered breathing
US8801691B2 (en) 2008-11-26 2014-08-12 Revascular Therapeutics, Inc. Delivery and exchange catheter for storing guidewire
US20100130938A1 (en) * 2008-11-26 2010-05-27 Revascular Therapeutics, Inc. Delivery and exchange catheter for storing guidewire
US8162891B2 (en) 2008-11-26 2012-04-24 Revascular Therapeutics, Inc. Delivery and exchange catheter for storing guidewire
EP2783722B1 (en) * 2009-09-30 2019-01-16 SIS Medical AG Guidewire
JP2016027874A (en) * 2009-09-30 2016-02-25 シュヴェイガー・メディカ・アーゲー Guide wire
US8486020B2 (en) 2010-08-11 2013-07-16 Zevex, Inc. Pressure sensor and method of use
US8752436B2 (en) 2010-10-01 2014-06-17 Zevex, Inc. Pressure sensor seal and method of use
US9004886B2 (en) 2010-10-01 2015-04-14 Zevex, Inc. Pressure monitoring system for infusion pumps
US8983572B2 (en) 2010-10-29 2015-03-17 Inspire Medical Systems, Inc. System and method for patient selection in treating sleep disordered breathing
US10279112B2 (en) 2012-09-24 2019-05-07 Angiodynamics, Inc. Power injector device and method of use
US11648028B2 (en) 2012-11-20 2023-05-16 Inari Medical, Inc. Methods and apparatus for treating embolism
US11369739B2 (en) 2013-01-21 2022-06-28 Medline Industries, Lp Method to provide injection system parameters for injecting fluid into patient
US10080872B2 (en) 2014-11-04 2018-09-25 Abbott Cardiovascular Systems Inc. System and method for FFR guidewire recovery
US11918244B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11918243B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11471060B2 (en) 2016-02-26 2022-10-18 Cavis Technologies Ab Pressure catheter and guide wire assembly
WO2017144128A1 (en) 2016-02-26 2017-08-31 Cavis Technologies Ab Pressure catheter and guide wire assembly
US11806033B2 (en) 2017-01-10 2023-11-07 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US11697011B2 (en) 2017-09-06 2023-07-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11697012B2 (en) 2017-09-06 2023-07-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11865291B2 (en) 2017-09-06 2024-01-09 Inari Medical, Inc. Hemostasis valves and methods of use
US11844921B2 (en) 2017-09-06 2023-12-19 Inari Medical, Inc. Hemostasis valves and methods of use
US11849963B2 (en) 2018-01-26 2023-12-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11559382B2 (en) 2018-08-13 2023-01-24 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11833023B2 (en) 2018-08-13 2023-12-05 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11890180B2 (en) 2018-08-13 2024-02-06 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11744691B2 (en) 2018-08-13 2023-09-05 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11642209B2 (en) 2018-08-13 2023-05-09 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11554005B2 (en) 2018-08-13 2023-01-17 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11864779B2 (en) 2019-10-16 2024-01-09 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions

Also Published As

Publication number Publication date
DE69725949D1 (en) 2003-12-11
EP0836410A1 (en) 1998-04-22
DE69725949T2 (en) 2004-09-02
EP0836410B1 (en) 2003-11-05
ATE253322T1 (en) 2003-11-15
WO1997032518A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
US5860938A (en) Medical pressure sensing guide wire
CN106470600B (en) Hybrid intravascular pressure measurement devices and related systems and methods
US5964714A (en) Pressure sensing guide wire
US4248234A (en) Catheter with variable flexural modulus and method of using same
EP1408827B1 (en) Intra-aortic balloon catheter having a dual sensor pressure sensing system
JP2602938B2 (en) Assembly and pressure sensor for engaging an elongated, flexible and operable guidewire
EP1419796B1 (en) Intra-aortic balloon catheter having a fiberoptic sensor
US5108369A (en) Dual-diameter multifunction catheter
US7481774B2 (en) Catheter with physiological sensor
US4920967A (en) Doppler tip wire guide
JP2869534B2 (en) Guide for mechanical guidance of catheters in cardiac and vascular examinations
US5144955A (en) Doppler velocity measuring medical unit
KR920000467B1 (en) Angioplasty catheter
US4741345A (en) Continuous flow tissue pressure measurement
US4991590A (en) Fiber optic intravascular blood pressure transducer
US6024693A (en) Intra-aortic balloon catheter
EP2874538A1 (en) Fiber optic sensor assembly for sensor delivery device
WO1997017888A1 (en) Guide catheter with sensing element
Hamel et al. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies
WO2013062464A1 (en) Medical system, and a method in relation to the medical system
CN219614694U (en) Guide wire of interventional touch sensor
Sheahan et al. The fast flush test: evaluation in radial artery catheter-manometer systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAFONTAINE, DANIEL M.;TALPADE, DNYANESH;HASTINGS, ROGER N.;AND OTHERS;REEL/FRAME:008151/0304

Effective date: 19960906

STCF Information on status: patent grant

Free format text: PATENTED CASE

RR Request for reexamination filed

Effective date: 19990506

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

FPAY Fee payment

Year of fee payment: 12