US5962572A - Oriented gel and oriented gel articles - Google Patents

Oriented gel and oriented gel articles Download PDF

Info

Publication number
US5962572A
US5962572A US08/581,125 US58112595A US5962572A US 5962572 A US5962572 A US 5962572A US 58112595 A US58112595 A US 58112595A US 5962572 A US5962572 A US 5962572A
Authority
US
United States
Prior art keywords
styrene
ethylene
poly
propylene
gels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/581,125
Inventor
John Y. Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Elastomerics Inc
Original Assignee
Applied Elastomerics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1994/004278 external-priority patent/WO1995013851A1/en
Priority claimed from PCT/US1994/007314 external-priority patent/WO1996000118A1/en
Priority claimed from US08288690 external-priority patent/US5633286B1/en
Priority to US08/581,125 priority Critical patent/US5962572A/en
Application filed by Applied Elastomerics Inc filed Critical Applied Elastomerics Inc
Priority to US08/612,586 priority patent/US6552109B1/en
Assigned to APPLIED ELASTOMERICS, INC. reassignment APPLIED ELASTOMERICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, JOHN Y.
Priority to US08/719,817 priority patent/US6148830A/en
Priority to US08/863,794 priority patent/US6117176A/en
Priority to US08/909,487 priority patent/US6050871A/en
Priority to US09/230,940 priority patent/US6161555A/en
Priority to US08/954,424 priority patent/US6333374B1/en
Priority to US08/984,459 priority patent/US6324703B1/en
Priority to US09/130,545 priority patent/US6627275B1/en
Priority to US09/274,498 priority patent/US6420475B1/en
Publication of US5962572A publication Critical patent/US5962572A/en
Application granted granted Critical
Priority to US09/721,213 priority patent/US6867253B1/en
Priority to US10/199,364 priority patent/US6794440B2/en
Priority to US10/199,363 priority patent/US7108873B2/en
Priority to US10/199,361 priority patent/US7134236B2/en
Priority to US10/273,828 priority patent/US6909220B2/en
Priority to US10/299,073 priority patent/US20030083422A1/en
Priority to US10/334,542 priority patent/US7159259B2/en
Priority to US10/420,492 priority patent/US7344568B2/en
Priority to US10/420,491 priority patent/US7093599B2/en
Priority to US10/420,488 priority patent/US7134929B2/en
Priority to US10/420,487 priority patent/US7193002B2/en
Priority to US10/420,493 priority patent/US7067583B2/en
Priority to US10/420,489 priority patent/US7222380B2/en
Priority to US10/420,490 priority patent/US7105607B2/en
Priority to US10/613,567 priority patent/US7093316B2/en
Priority to US10/675,509 priority patent/US7234560B2/en
Priority to US10/746,196 priority patent/US7290367B2/en
Priority to US10/912,464 priority patent/US7226484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/18Throwing or slinging toys, e.g. flying disc toys
    • A63H33/185Aerial toy rotating automatically when descending under gravity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to useful gelatinous compositions and articles.
  • Thermoplastic elastomer oriented gels are unknown.
  • the invention comprises a thermoplastic, heat formable and heat reversible, optically birefringent, oriented, gelatinous elastomer composition and articles formed from (a) 100 parts by weight of one or more high viscosity triblock copolymer; (b) from about 300 to about 1,600 parts by weight of a plasticizing oil; said composition characterized by a gel rigidity of from about 20 to about 800 gram Bloom; said triblock copolymer is a linear, multi-arm, branched, or star shaped copolymer of the general configuration poly(styrene-ethylene-butylene-styrene), poly(styrene-ethylene-propylene-styrene), poly(styrene-ethylene-propylene)n, poly(styrene-ethylene-butylene)n, poly(styrene-ethylene-ethylene-propylene-styrene) or a mixture thereof and in combination with or without a selected amount of at least one polymer or
  • FIG. 1 Representative sectional view of oriented gel, composite and oriented gel articles.
  • FIG. 2a Representative sectional view of MGM composite.
  • FIG. 2b Representative sectional view of GMG composite.
  • FIG. 2c Representative sectional view of MGMGMGM composite.
  • FIGS. 3a through 3n Representative various sectional views of combinations of G and M composites.
  • FIGS. 4a through 4x Representative various sectional views of combinations of G and M composites.
  • the invention is to provide oriented gels with improved high strength alignment properties as evidenced by optical techniques such as viewing oriented gel in plane-polarized light.
  • Oriented gels exhibit birefringence in the relaxed unextended state.
  • Oriented gels with improved strength are suitable for use as dental floss since they do not break as easily as un-oriented gels of the same rigidity.
  • Oriented gels may be formed in combination with various substrates such as described below. In past situations where in order to obtain stronger gel strength, gels with higher rigidities and lower plasticizer content must be used, it is now possible to make a oriented gel with the same plasticizer content having a higher useful gel strength.
  • the subscript 1, 2, 3, 4, etc., are different and is represented by n which is a positive number, when n is a subscript of M, n may be the same or different material and when n is a subscript of G, n can be the same or different rigidity, oriented or non-oriented gel or the same or different gel material composition.
  • the material (M) suitable for forming composite articles with the gelatinous elastomer compositions can include foam, plastic, fabric, metal, concrete, wood, wire screen, refractory material, glass, synthetic resin, synthetic fibers, and the like. Sandwiches of gel/material (i.e. FIG. 2a: gel-material-gel or FIG.
  • vibration isolators can be use under research microscopes, office equipment, tables, and the like to remove background vibrations.
  • the oriented gel compositions of the invention can be casted unto various substrates, such as open cell materials, metals, ceramics, glasses, and plastics, etc.; the molten gel composition is deformed as it is being cooled.
  • open-cell plastics include: polyamides, polyimides, polyesters, polyisocyanurates, polyisocyanates, polyurethanes, polylvinyl alcohol), etc.
  • Open-celled Plastic (sponges) suitable for use with the compositions of the invention are described in "Expanded Plastics and Related Products", Chemical Technology Review No. 221, Noyes Data Corp., 1983, and "Applied Polymer Science", Organic Coatings and Plastic Chemistry, 1975. These publications are incorporated herein by reference.
  • Triblock copolymer gels especially suitable for use in forming the oriented gels of the invention include: SEBS gels; examples include: (a) Kraton G 1651, G 1654X gels; (b) Kraton G 4600 gels; (c) Kraton G 4609 gels; other less suitable SEBS oil gels: examples include: (d) Tuftec H 1051 gels; (e) Tuftec H 1041 gels; (f) Tuftec H 1052 gels, (g) Kruaray 4055 (styrene-ethylene-ethylene-propylenestyrene) block polymer gels.
  • SEBS gels examples include: (a) Kraton G 1651, G 1654X gels; (b) Kraton G 4600 gels; (c) Kraton G 4609 gels; other less suitable SEBS oil gels: examples include: (d) Tuftec H 1051 gels; (e) Tuftec H 1041 gels; (f) Tuftec H 1052 gels,
  • Gels made from blends (polyblends) of (a)-(f) with other polymers and copolymers include: SEBS-SBS gels; SEBS-SIS gels; SEBS-(SEP) gels; SEBS-(SB)n gels; SEBS-(SEB)n gels; SEBS-(SEP)n gels; SEBS-(SI)n gels; SEBS-(SI) multiarm gels; SEBS-branched copolymers gels; SEBS-star shaped copolymer gels; gels made from blends of (a)-(f) with other homopolymers include: SEBS/polystrene gels; SEBS/polybutylene gels; SEBS/polyethylene gels; SEBS/polypropoylene gels.
  • thermoplastic elastomers in blends suitable for making gels include SEP/SEBS oil gels, SEP/SEPS oil gels, SEP/SEPS/SEB oil gels, SEPS/SEBS/SEP oil gels, SEB/SEBS, EB-EP/SEBS, SEBS/EB, SEBS/EP, SEPS/SEB, etc.
  • the subscript n following a polymer represented by (SEB)n, (SEP)n, and the like denotes a number.
  • SEEPS made from hydrogenated styrene isoprene/butadiene block copolymer or more specifically made from hydrogenated styrene block polymer with 2-methyl-1,3-butadiene and 1,3-butadiene.
  • the most preferred oriented gels forming the invention comprise a high viscosity triblock copolymers which have the more general configuration A-B-A wherein each A is a glassy polymer end block segment of polystyrene; and B is a elastomeric polymer center block segment of poly(ethylene-butylene), poly(ethylene-propylene), or poly(ethylene-ethylene-propylene).
  • the poly(ethylene-butylene) or poly(ethylene-propylene) and polystyrene portions are incompatible and form a two-phase system consisting of sub-micron domains of glassy A interconnected by flexible B chains. These domains serve to crosslink and reinforce the structure.
  • the especially suitable gels can be prepared by melt blending an admixture comprising: (A) 100 parts by weight of a high viscosity triblock copolymer of the general configurations poly(styrene-ethylene-butylene-styrene) or poly(styrene-ethylene-propylene-styrene) (herein referred to as "SEBS" or "SEPS”) where said triblock copolymer is characterized as having a Brookfield Viscosity of a 20 weight percent solids solution of said triblock copolymer in toluene at 25° C. of about 1,800 cps and higher. (B) from about 200 to about 1,300 parts by weight of an plasticizing oil.
  • A 100 parts by weight of a high viscosity triblock copolymer of the general configurations poly(styrene-ethylene-butylene-styrene) or poly(styrene-ethylene-propylene-styrene)
  • SEBS poly
  • Brookfield Viscosity values of (A) can range from about 1,800 cps to about 30,000 cps or higher.
  • the proportion of hydrocarbon plasticizing oil in (B) is more preferably from about 250 to about 1,200 parts per 100 parts of the triblock copolymer.
  • the high viscosity triblock copolymer of the invention can have a broad range of styrene end block to ethylene and butylene center block ratio of approximately about 20:80 or less to about 40:60 or higher.
  • high viscosity triblock copolymers that can be utilized to achieve one or more of the novel properties of the present invention are styrene-ethylene-butylene-styrene block copolymers (SEBS) available from Shell Chemical Company and Pecten Chemical Company (divisions of Shell Oil Company) under trade designations Kraton G 1651, Kraton G 1654X, Kraton G 4600, Kraton G 4609 and the like.
  • SEBS polymers can also be utilized in the present invention provided such SEBS polymers exhibits the required high viscosity.
  • SEBS polymers include (high viscosity) Kraton G 1855X which has a Specific Gravity of 0.92, Brookfield Viscosity of a 25 weight percent solids solution in toluene at 25° C. of about 40,000 cps or about 8,000 to about 20,000 cps at a 20 weight percent solids solution in toluene at 25° C.
  • the styrene to ethylene and butylene weight ratios for these Shell designated polymers can have a low range of 20:80 or less.
  • the typical ratio values for Kraton G 1651, 4600, and 4609 are approximately about 33:67 and for Kraton G 1855X approximately about 27:73, Kraton G 1654X (a lower molecular weight version of Kraton G 1651 with somewhat lower physical properties such as lower solution and melt viscosity) is approximately about 31:69, these ratios can vary broadly from the typical product specification values.
  • the styrene to ethylene and butylene weight ratio of SEBS useful in forming the bodies 2 can range from lower than about 20:80 to above about 40:60. More specifically, the values can be 19:81, 20:80, 21:79. 22:78. 23:77, 24:76, 25:75, 26:74, 27:73, 28:72, 29:71, 30:70, 31:69, 32:68, 33:67, 34:66, 35:65, 36:64, 37:63, 38:62, 39:61, 40:60, 41:59, 42:58, 43:57, 44:65, 45:55, 46:54, 47:53, 48:52, 49:51, 50:50, 51:49 and etc.
  • Shell Technical Bulletin SC:1393-92 gives solution viscosity as measured with a Brookfield model RVT viscometer at 25° C. for Kraton G 1654X at 10% weight in toluene of approximately 400 cps and at 15% weight in toluene of approximately 5,600 cps.
  • the styrene end block to ethylene and butylene center block ratio of the triblock copolymers of the invention is about 20:80 to about 40:60, less broadly about 31:69 to about 40:60, preferably about 32:68 to about 38:62, more preferably about 32:68 to about 36:64, particularly more preferably about 32:68 to about 34:66, especially more preferably about 33:67 to about 36:64, and most preferably about 33:67.
  • triblock copolymers such as Kraton G 1654X having ratios of 31:69 or higher can be used and do exhibit some very similar physical properties in many respects to Kraton G 1651 while Kraton G 1654X with ratios below 31:69 may also be use, but they are less preferred due to their decrease in the desirable properties of the final gel.
  • Various triblock copolymers of the gels forming the humdingers of the invention can be blended so as to produce a blend of varying ratios of triblock copolymers as desired.
  • moderate high viscosity SEEPS-triblock copolymers examples include Kuraray's 4055 which exhibits a solution viscosity at 10 weight %, 30° C. of 59 and a styrene content by weight of about 30%.
  • Examples of representative commercially oils include Amoco® polybutenes, hydrogenated polybutenes and polybutenes with epoxide functionality at one end of the polybutene polymer:
  • Example of such polybutenes include: L-14 (320 Mn), L-50 (420 Mn), L-100 (460 Mn), H-15 (560 Mn), H-25 (610 Mn), H-35 (660 Mn), H-50 (750 Mn), H-100 (920 Mn), H-300 (1290 Mn), L-14E (27-37 cst @ 100° F. Viscosity), H-300E (635-690 cst @ 210° F.
  • Example of various commercially available oils include: ARCO Prime (55, 70, 90, 200, 350, 400 and the like), Duraprime and Tufflo oils (6006, 6016, 6016M, 6026, 6036, 6056, 6206, etc) , other white mineral oils include: Bayol, Bernol, American, Blandol, Drakeol, Ervol, Gloria, Kaydol, Litetek, Lyondell (Duraprime 55, 70, 90, 200, 350, 400, etc), Marcol, Parol, Peneteck, Primol, Protol, Sontex, and the like.
  • plasticizing oils with average molecular weights less than about 200 and greater than about 700 may also be used (e.g. H-300 (1290 Mn)).
  • polystyrene-butadiene-styrene block copolymers examples include (SBS) styrene-butadiene-styrene block copolymers, (SIS) styrene-isoprene-styrene block copolymers, (low styrene content SEBS) styrene-ethylene-butylene-styrene block copolymers, (SEP) styrene-ethylene-propylene block copolymers, (SEPS) styrene-ethylene-propylene-styrene block copolymers, (SB)n styrene-butadiend and (SEB)n, (SEBS)n, (SEP)n, (SI)n styrene-isoprene multi-arm, branched, and star shaped copolymers and the like. Still, other homopolyrene-butadiene-styren
  • Gels having gel rigidities of from less than about 20 gram Bloom to about 800 gram Bloom and higher are especially advantageous and suitable for forming the oriented gels of the invention, typically 200 gram Bloom to about 700 gram Bloom.
  • gel rigidity in gram Bloom is determined by the gram weight required to depress a gel a distance of 4 mm with a piston having a cross-sectional area of 1 square centimeter at 23° C.
  • Gels less suitable and less advantageous for use in the present invention include oil gels as described in PCT Publications WO88/00603; WO9/305113; and WO91/05014.
  • Plasticizers particularly preferred for use in practicing the present invention are will known in the art, they include rubber processing oils such as paraffinic and naphthenic petroleum oils, highly refined aromatic-free paraffinic and naphthenic food and technical grade white petroleum mineral oils, and synthetic liquid oligomers of polybutene, polypropene, polyterpene, etc.
  • the synthetic series process oils are high viscosity oligomers which are permanently fluid liquid nonolefins, isoparaffins or paraffins of moderate to high molecular weight.
  • the orented gels can also contain useful amounts of conventionally employed additives such as stabilizers, antioxidants, antiblocking agents, colorants, fragrances, flame retardants, other polymers in minor amounts and the like to an extend not affecting or substantially decreasing the desired properties of the present invention.
  • additives such as stabilizers, antioxidants, antiblocking agents, colorants, fragrances, flame retardants, other polymers in minor amounts and the like to an extend not affecting or substantially decreasing the desired properties of the present invention.
  • Additives useful in the gel of the present invention include: tetrakis methylene 3,-(3'5'-di-tertbutyl-4"-hydroxyphenyl) propionate! methane, octadecyl 3-(3",55"-di-tert-butyl-4"-hydroxyphenyl) propionate, distearylpentaerythritol-diproprionate, thiodiethylene bis-(3,5-ter-butyl-4-hydroxy) hydrocinnamate, (1,3,5-trimethyl-2,4,6-tris 3,5-di-tert-butyl-4-hydroxybenzyl!
  • benzene 4,4"-methylenebis(2,6-di-tert-butylphenol), steraric acid, oleic acid, stearamide, behenamide, oleamide, erucamide, N,N"-ethylenebisstearamide, N,N"-ethylenebisoleamide, sterryl erucamide, erucyl erucamide, oleyl palmitamide, stearyl stearamide, erucyl stearamide, calcium sterate, other metal sterates, waxes (e.g. polyethylene, polypropylene, microcrystalline, carnauba, paraffin, montan, candelilla, beeswax, ozokerite, ceresine, and the like).
  • waxes e.g. polyethylene, polypropylene, microcrystalline, carnauba, paraffin, montan, candelilla, beeswax, ozokerite, ceresine, and the like).
  • the gel can also contain metallic pigments (aluminum and brass flakes), TiO2, mica, fluorescent dyes and pigments, phosphorescent pigments, aluminatrihydrate, antimony oxide, iron oxides (Fe3O4, --Fe2O3, etc.), iron cobalt oxides, chromium dioxide, iron, barium ferrite, strontium ferrite and other magnetic particle materials, molybdenum, silicone fluids, lake pigments, aluminates, ceramic pigments, ironblues, ultramarines, phthalocynines, azo pigments, carbon blacks, silicon dioxide, silica, clay, feldspar, glass microspheres, barium ferrite, wollastonite and the like.
  • the gels of the the invention may be made non-adhearing, non-sticking, non-tacky by incorporating an advantage amount of stearic acid (octadecanoic acid) and metal stearates (e.g., calcium stearate, magnesium sterate, zinc stearate, etc.).
  • stearic acid octadecanoic acid
  • metal stearates e.g., calcium stearate, magnesium sterate, zinc stearate, etc.
  • An advantage of making non-sticking, non-tacky gels is the use of waxes, steraric acid and waxes, metal sterate and waxes, metal sterate and steraric acid.
  • the amount of steraric acid is also important.
  • the ratio of 200 grams steraric acid to 2,000 gram of SEBS (a ratio of 0.1) will result in spotted tack reduction on the surface of the gel.
  • a ratio of 250 to 2,000 will result in spotted crystallized regions on the surface of the gel or spotted tack reduction.
  • a ratio of 300 to 2,000 will result in complete tack reduction with large crystallized regions on the surface of the gel.
  • the oriented compositions of the present invention are prepared by blending together the components including other additives as desired at about 23° C. to about 100° C. forming a paste like mixture and further heating said mixture uniformly to about 150° C. to about 200° C. until a homogeneous molten blend is obtained.
  • Lower and higher temperatures can also be utilized depending on the viscosity of the oils and amount of SEBS used.
  • These components blend easily in the melt and a heated vessel equipped with a stirrer is all that is required.
  • small batches can be easily blended in a test tube using a glass stirring rod for mixing. While conventional large vessels with pressure and/or vacuum means can be utilized in forming large batches of the instant compositions in amounts of about 40 lbs or less to 10,000 lbs or more.
  • inert gases can be employed for removing the composition from a closed vessel at the end of mixing and a partial vacuum can be applied to remove any entrapped bubbles.
  • Stirring rates utilized for large batches can range from about less than about 10 rpm to about 40 rpm or higher.
  • the oriented gelatinous elastomer composition of the invention is excellent for forming the gelatinous elastomer articles of the invention.
  • the gelatinous elastomer articles can be formed by blending, injection molding, extruding and other conventional methods. For example, Shapes having various crossection can be extruded; and as the hot extradate is emerging from the extrusion die, the extrudate can be stretched, pulled, twisted or in various manner stressed as it is rapidly placed in contact with cooling air or cool water bath.
  • the composition can also be remelted in any suitable hot melt applicator and extruted or spun into threads, bands, or other shapes.
  • the basis of this invention resides in the fact that a high viscosity poly(styrene-ethylene-butylene-styrene) triblock copolymer having styrene end block to ethylene and butylene center block ratio preferably within the contemplated range of from about 20:80 to about 40:60, more preferably from between about 31:69 to about 40:60 when blended in the melt with an appropriate amount of plasticizing oil makes possible the attainment of gelatinous elastomer compositions having a desirable combination of physical and mechanical properties, notably high elongation at break of at least 1,600%, ultimate tensile strength of about at least 8 ⁇ 10 5 dyne/cm 2 , low elongation set at break of substantially not greater than about 2%, tear resistance of at least 5 ⁇ 10 5 dyne/cm 2 substantially about 100% snap back when extended
  • the gelatinous composition of the present invention exhibit one or more of the following properties. These are: (1) tensile strength of about 8 ⁇ 10 5 dyne/cm 2 to about 10 7 dyne/cm 2 ; (2) elongation of about 1,600% to about 3,000% and higher; (3) elasticity modulus of about 10 4 dyne/cm 2 to about 10 6 dyne/cm 2 ; (4) shear modulus of about 10 4 dyne/cm 2 to about 10 6 dyne/cm as measured with a 1, 2, and 3 kilogram load at 23° C.; (5) gel rigidity of about 20 gram Bloom or lower to about 800 gram Bloom as measured by the gram weight required to depress a gel a distance of 4 mm with a piston having a cross-sectional area of 1 square cm at 23° C.; (6) tear propagation resistance of at least about 5 ⁇ 10 5 dyne/cm 2 ; (7) and substantially 100% snap back recovery when
  • the oriented gelatinous elastomer articles of the instant compositions have various additional important advantages in that they do not crack, creep, tear, crack, or rupture in flextural, tension, compression, or other deforming conditions of normal use; but rather the moulded articles made from the instant composition possess the intrinsic properties of elastic memory enabling the articles to recover and retain its original moulded shape after many extreme deformation cycles as compared to prior art triblock copolymer oil-extended compositions. In applications where low rigidity, high elongation, good compression set and excellent tensile strength are important, the instant compositions would be preferred.
  • the gelatinous elastomer compositions of the present invention are useful in low frequency vibration applications, such as viscoelastic layers in constrainedlayer damping of mechanical structures and goods, as viscoelastic layers used in laminates for isolation of acoustical and mechanical noise, as antivibration elastic support for transporting shock sensitive loads, as vibration isolators for an optical table, as viscoelastic layers used in wrappings, enclosures and linings to control sound, as compositions for use in shock and dielectric encapsulation of optical, electrical, and electronic components.
  • the compositions are also useful as dental floss (FIGS. 3l, 4i, 4n, 4q, 4t, 4w, 4x), exercise elastic stretch bands.
  • the molten gelatinous elastomer composition will adhere sufficiently to certain plastics (e.g. acrylic, ethylene copolymers, nylon, polybutylene, polycarbonate, polystyrene, polyester, polyethylene, polypropylene, styrene copolymers, and the like) provided the temperature of the molten gelatinous elastomer composition is sufficient high to fuse or nearly fuse with the plastic. In order to obtain sufficient adhesion to glass, ceramics, or certain metals, sufficient temperature is also required (e.g. above 250° F.).
  • plastics e.g. acrylic, ethylene copolymers, nylon, polybutylene, polycarbonate, polystyrene, polyester, polyethylene, polypropylene, styrene copolymers, and the like.
  • sufficient temperature is also required (e.g. above 250° F.).
  • resins which can aid in adhesion to materials may be added in minor amounts to the gelatinous elastomer composition
  • these resins include: polymerized mixed olefins (Super Sta-tac, Betaprene Nevtac, Escorez, Hercotac, Wingtack, Piccotac), polyterpene (Zonarez, Nirez, Piccolyte, Sylvatac), glycerol ester of rosin (Foral), pentaerythritol ester of rosin (Pentalyn), saturated alicyclic hydrocarbon (Arkon P), coumarone indene (Cumar LX), hydrocarbon (Picco 6000, Regalrez), mixed olefin (Wingtack), alkylated aromatic hydrocarbon (Nevchem), Polyalphamethylstyrene/vinyl toluene copolymer (Piccotex), polystyrene (Kr
  • a high viscosity poly(styrene-ethylenecopolymer butylene-styrene) triblock copolymer (Shell Kraton G 1651) having a styrene end block to ethylene and butylene center block ratio of about 33:67 with 0.1 parts by weight of a stabilizer (Irrganox 1010) was melt blended with various quantities of a naphthenic oil (ARCO Tufflo 6024). Samples having the dimensions of 5 cm ⁇ 5 cm ⁇ 3 cm were cut and measured for gel rigidity on a modified Bloom gelometer as determined by the gram weight required to depress the gel a distance of 4 mm with a piston having a cross-sectional area of 1 cm 2 . The average gel rigidity values with respect to various oil concentrations are set forth in Table I below.
  • Example I was repeated except about 980 parts oil was used and the gel rigidity found to about 101 gram Bloom.
  • Other properties measured were: tensile strength at break about 4.4 ⁇ 10 6 dyne/cm2, elongation at break about 2,4470%, elasticity modulus about 3.5 ⁇ 10 4 dyne/cm2, and shear modulus about 3.7 ⁇ 10 4 dyne/cm2.
  • the tensile strength, elongation, elasticity modulus were measured with cross-head separation speed of 25 cm/minute at room temperature.
  • the shear modulus was measured with a 1, 2, and 3 kilogram load at room temperature.
  • Example I was repeated except about 520 parts of a polybutene (Amoco Indopol H-300) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
  • a polybutene Amoco Indopol H-300
  • Example I was repeated except about 520 parts of a polypropene (Amoco C-60) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
  • a polypropene Amoco C-60
  • Example I was repeated except about 520 parts of a polyterpene (Hercules Piccolyte S10) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
  • a polyterpene Hercules Piccolyte S10
  • Example I was repeated except about 360 parts of a combined mixture of: 72 parts of a paraffinic oil (ARCO prime 200), 72 pars of a naphthenic oil (ARCO Tufflo 6014), 72 parts of a polybutene oligomer (Amoco Indopol H-200), 72 parts of a polypropene oligomer (Amoco Polypropene C-60), and 72 parts of a polyterpene oligomer (Hercules Piccolyte S10) was used and the gel rigidity found to be about substantially unchanged with respect to the use of naphthenic oil alone.
  • ARCO prime 200 a paraffinic oil
  • ARCO Tufflo 6014 ARCO Tufflo 6014
  • a polybutene oligomer Amoco Indopol H-200
  • 72 parts of a polypropene oligomer Amoco Polypropene C-60
  • 72 parts of a polyterpene oligomer Hercules Piccolyte S10 was
  • Example II was repeated except 933 parts oil with 147 parts by weight of a high viscosity poly(styrene-ethylene- butylene-styrene) triblock copolymer containing 47 parts of a naphthenic process oil (Shell Kraton G 4609) having a styrene to ethylene and butylene ratio of about 33:67 was used and the physical properties were found to be about substantially unchanged with respect to the components used in Example II.
  • a naphthenic process oil Shell Kraton G 4609 having a styrene to ethylene and butylene ratio of about 33:67
  • Example I was repeated except about 400 parts of oil was used and the properties measured were: tear propagation about 1.4 ⁇ 10 6 dyne/cm 2 , no crack growth in 180° bend under 50 gram load for 5,000 hours at room temperature, tensile strength about 4 ⁇ 10 6 dyne/cm2, elongation at break about 1,700%, tensile set about 0% at 1,200% elongation, compression set about 0% when tested under 5,000 gram load for 24 hours, and 100% snap back recovery after extension to 1,200%.
  • Example I was repeated except a high viscosity poly(styrene-ethylene-propylene-styrene) is used and the gel rigidity found to be about substantially unchanged.
  • Examples I-IX are repeated and the gels are extruded and rapidly stretched up to 800% elongation by hand in a cooled water bath.
  • the resulting gels show birefrigence and greater strength than corresponding unstretched gels.

Abstract

Oriented gels aliened by controlled stretching during the gel's transition from a heated, extremely viscous, non melting, non flowing state and the cooled solid gel state produces strong gels which are found to have greater tensile strength than gels of the same rigidity which have not been stretched to a selected degree during its heating and cooling histories. Gels which are selectively stretched during its (non melt flowing) heated state and rapidly cooled by flowing air, cold liquid bath or in contact with a cool surface exhibit optical birefringence when viewed under plane-polarized light.

Description

REFERENCE TO RELATED APPLICATIONS AND PATENTS
This application is a continuation-in-part of the following applications: Ser. No. 288,690, filed Aug. 11, 1994, (now U.S. Pat. No. 5,633,286), which is a C-I-P of PCT/US94/07314 filed Jun. 27, 1994 (now U.S. Ser. No. 08/256,235 filed Jun. 27, 1994) which is a C-I-P of PCT/US94/04278, filed Apr. 19, 1994 (now U.S. Ser. No. 08/211,781 filed Apr. 19, 1994). The subject matter contained in the related applications and patents are specifically incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to useful gelatinous compositions and articles.
BACKGROUND OF THE INVENTION
Thermoplastic elastomer oriented gels are unknown.
SUMMARY OF THE INVENTION
The invention comprises a thermoplastic, heat formable and heat reversible, optically birefringent, oriented, gelatinous elastomer composition and articles formed from (a) 100 parts by weight of one or more high viscosity triblock copolymer; (b) from about 300 to about 1,600 parts by weight of a plasticizing oil; said composition characterized by a gel rigidity of from about 20 to about 800 gram Bloom; said triblock copolymer is a linear, multi-arm, branched, or star shaped copolymer of the general configuration poly(styrene-ethylene-butylene-styrene), poly(styrene-ethylene-propylene-styrene), poly(styrene-ethylene-propylene)n, poly(styrene-ethylene-butylene)n, poly(styrene-ethylene-ethylene-propylene-styrene) or a mixture thereof and in combination with or without a selected amount of at least one polymer or copolymer selected from the group consisting of poly(styrene-butadiene-styrene) (SBS), poly(styrene-butadiene) (SB), poly(styrene-isoprene-styrene) (SIS), poly(styrene-isoprene)n (SI)n, poly(styrene-ethylene-propylene)n (SEP)n, low viscosity poly(styrene-ethylene-propylene-styrene) (SEPS), low viscosity poly(styrene-ethylene-butylene-styrene) (SEBS), poly(styrene-ethylene-butylene)n (SEB)n, polystyrene, polybutylene, poly(ethylene-propylene) (EP), poly(ethylene-butylene) (EB), polypropylene, or polyethylene, wherein said selected copolymer is a linear, branched, multiarm, or star shaped copolymer and n is an integer. The term multiarm means multiple arm or more than one arm. For example, one arm is not a multi-arm, while two arm, three arm, four arm, five arm and the like ar all considered multi-arm.
The various aspects and advantages of the invention will become apparent to those skilled in the art upon consideration of the accompanying disclosure and the drawings.
DESCRIPTION OF THE DRAWINGS
FIG. 1. Representative sectional view of oriented gel, composite and oriented gel articles.
FIG. 2a. Representative sectional view of MGM composite.
FIG. 2b. Representative sectional view of GMG composite.
FIG. 2c. Representative sectional view of MGMGMGM composite.
FIGS. 3a through 3n. Representative various sectional views of combinations of G and M composites.
FIGS. 4a through 4x. Representative various sectional views of combinations of G and M composites.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention is to provide oriented gels with improved high strength alignment properties as evidenced by optical techniques such as viewing oriented gel in plane-polarized light. Oriented gels exhibit birefringence in the relaxed unextended state. Oriented gels with improved strength are suitable for use as dental floss since they do not break as easily as un-oriented gels of the same rigidity.
Oriented gels aliened by controlled stretching during the gel's transition from a heated, extremely viscous, non melting, non flowing state and the cooled solid gel state produces strong gels which are found to have greater tensile strength than gels of the same rigidity which have not been stretched to a selected degree during its heating and cooling histories. Gels which are selectively stretched during its (non melt flowing) heated state and rapidly cooled by forced air, cool liquid bath or in contact with a cool surface exhibit optical birefringence when viewed under plane-polarized light. The degree of stretching during the gels cooling history from the heated state can vary. Stretching of at least about 50% to more than about 1000% are of advantage to produce birefringence and stronger gels. Birefrigence is not observed in relaxed gels which do not undergo stretching during its heating and cooling histories. Slight to very strong birefringence are observed in relaxed gels which are stretched during its heating and cooling histories. It is evident that stressing the gel during its cooling history as it cools from the heated state produce unexpected stronger oriented gels. We therefore consider oriented gels to be a new and novel composition physically different from the less stronger gels formed without stressing during the gels cooling history and which do not show birefrigence in the relaxed state. Oriented gels may be formed in combination with various substrates such as described below. In past situations where in order to obtain stronger gel strength, gels with higher rigidities and lower plasticizer content must be used, it is now possible to make a oriented gel with the same plasticizer content having a higher useful gel strength.
Other materials (FIG. 1, FIGS. 2a-2d, FIG. 3a, and FIGS. 4a-4x) can be utilized to form composite oriented gel articles include: GMG , MGM , MG1G2M, M1M2G1G2, M2M1G1G2, G1MG1G2, MG1G2, G1G2 M, G2 G1M, GM1M2 G, G1M1G2 M2 M1, M1GM2GM3GM4, etc, where G=gel and M=material. The subscript 1, 2, 3, 4, etc., are different and is represented by n which is a positive number, when n is a subscript of M, n may be the same or different material and when n is a subscript of G, n can be the same or different rigidity, oriented or non-oriented gel or the same or different gel material composition. The material (M) suitable for forming composite articles with the gelatinous elastomer compositions can include foam, plastic, fabric, metal, concrete, wood, wire screen, refractory material, glass, synthetic resin, synthetic fibers, and the like. Sandwiches of gel/material (i.e. FIG. 2a: gel-material-gel or FIG. 2b: material-gel-material, etc.) ideal for use as shock absorbers, acoustical isolators, vibration dampers, vibration isolators, and wrappers. For example the vibration isolators can be use under research microscopes, office equipment, tables, and the like to remove background vibrations.
The oriented gel compositions of the invention can be casted unto various substrates, such as open cell materials, metals, ceramics, glasses, and plastics, etc.; the molten gel composition is deformed as it is being cooled. Useful open-cell plastics include: polyamides, polyimides, polyesters, polyisocyanurates, polyisocyanates, polyurethanes, polylvinyl alcohol), etc. Open-celled Plastic (sponges) suitable for use with the compositions of the invention are described in "Expanded Plastics and Related Products", Chemical Technology Review No. 221, Noyes Data Corp., 1983, and "Applied Polymer Science", Organic Coatings and Plastic Chemistry, 1975. These publications are incorporated herein by reference.
Triblock copolymer gels especially suitable for use in forming the oriented gels of the invention include: SEBS gels; examples include: (a) Kraton G 1651, G 1654X gels; (b) Kraton G 4600 gels; (c) Kraton G 4609 gels; other less suitable SEBS oil gels: examples include: (d) Tuftec H 1051 gels; (e) Tuftec H 1041 gels; (f) Tuftec H 1052 gels, (g) Kruaray 4055 (styrene-ethylene-ethylene-propylenestyrene) block polymer gels. Gels made from blends (polyblends) of (a)-(f) with other polymers and copolymers include: SEBS-SBS gels; SEBS-SIS gels; SEBS-(SEP) gels; SEBS-(SB)n gels; SEBS-(SEB)n gels; SEBS-(SEP)n gels; SEBS-(SI)n gels; SEBS-(SI) multiarm gels; SEBS-branched copolymers gels; SEBS-star shaped copolymer gels; gels made from blends of (a)-(f) with other homopolymers include: SEBS/polystrene gels; SEBS/polybutylene gels; SEBS/polyethylene gels; SEBS/polypropoylene gels. Other suitable thermoplastic elastomers in blends suitable for making gels include SEP/SEBS oil gels, SEP/SEPS oil gels, SEP/SEPS/SEB oil gels, SEPS/SEBS/SEP oil gels, SEB/SEBS, EB-EP/SEBS, SEBS/EB, SEBS/EP, SEPS/SEB, etc. the subscript n following a polymer represented by (SEB)n, (SEP)n, and the like denotes a number. When n =1, the polymers denotes (SEB) or (SEP), when n =2, the polymer denotes (SEBS) and (SEPS), and when n =3, the polymer denotes a star shaped polymer or multiarm polymer having three arms (SEP)3 and (SEP)3 and the like.
The following commercial elastomers can be formed with oil and in combination with other polymers into suitable gels for use in making the gels of the invention: Shell Kratons D1101, D1102, D1107, D1111, D1112, D1113X, D1114X, D1116, D1117, D1118X, D1122X, D1125X, D1133X, D1135X, D1184, D1188X, D1300X, D1320X, D4122, D4141, D4158, D4240, G1650, G1652, G1657, G1701X, G1702X, G1726X, G1750X, G1765X, FG1901X, FG1921X, D2103, D2109, D2122X, D3202, D3204, D3226, D5298, D5999X, D7340, G1654X, G2701, G2703, G2705, G1706, G2721X, G7155, G7430, G7450, G7523X, G7528X, G7680, G7705, G7702X, G7720, G7722X, G7820, G7821X, G7827, G7890X, G7940; Kuraray's EP/SEPS or SEP/SEB/SEPS Nos. 1001, 2002, 2003, 3023, 2043, 2063, 2005, 2006, 2050, 103, 2104, 2105, and 4055 SEEPS made from hydrogenated styrene isoprene/butadiene block copolymer or more specifically made from hydrogenated styrene block polymer with 2-methyl-1,3-butadiene and 1,3-butadiene.
The most preferred oriented gels forming the invention comprise a high viscosity triblock copolymers which have the more general configuration A-B-A wherein each A is a glassy polymer end block segment of polystyrene; and B is a elastomeric polymer center block segment of poly(ethylene-butylene), poly(ethylene-propylene), or poly(ethylene-ethylene-propylene). The poly(ethylene-butylene) or poly(ethylene-propylene) and polystyrene portions are incompatible and form a two-phase system consisting of sub-micron domains of glassy A interconnected by flexible B chains. These domains serve to crosslink and reinforce the structure. This physical elastomeric network structure is reversible, and,heating the polymer above the softening point of polystyrene temporarily disrupt the structure, which can be restored by lowering the temperature. Most recent reviews of triblock copolymers are found in the "ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERING", Volume 2 and 5, 1987-1988; "Thermoplastic Elastomers", MODERN PLASTIC ENCYCLOPEDIA, 1989; and Walker, B. M., Ed,. et al., HANDBOOK OF THERMOPLASTIC ELASTOMERS, Van Nostrand Reinhold Co., 2nd Edition, 1988. There publications are incorporated herein by reference).
The especially suitable gels can be prepared by melt blending an admixture comprising: (A) 100 parts by weight of a high viscosity triblock copolymer of the general configurations poly(styrene-ethylene-butylene-styrene) or poly(styrene-ethylene-propylene-styrene) (herein referred to as "SEBS" or "SEPS") where said triblock copolymer is characterized as having a Brookfield Viscosity of a 20 weight percent solids solution of said triblock copolymer in toluene at 25° C. of about 1,800 cps and higher. (B) from about 200 to about 1,300 parts by weight of an plasticizing oil.
Less typically, the Brookfield Viscosity values of (A) can range from about 1,800 cps to about 30,000 cps or higher. The proportion of hydrocarbon plasticizing oil in (B) is more preferably from about 250 to about 1,200 parts per 100 parts of the triblock copolymer.
The high viscosity triblock copolymer of the invention can have a broad range of styrene end block to ethylene and butylene center block ratio of approximately about 20:80 or less to about 40:60 or higher. Examples of high viscosity triblock copolymers that can be utilized to achieve one or more of the novel properties of the present invention are styrene-ethylene-butylene-styrene block copolymers (SEBS) available from Shell Chemical Company and Pecten Chemical Company (divisions of Shell Oil Company) under trade designations Kraton G 1651, Kraton G 1654X, Kraton G 4600, Kraton G 4609 and the like. Other grades of (SEBS) polymers can also be utilized in the present invention provided such SEBS polymers exhibits the required high viscosity. Such SEBS polymers include (high viscosity) Kraton G 1855X which has a Specific Gravity of 0.92, Brookfield Viscosity of a 25 weight percent solids solution in toluene at 25° C. of about 40,000 cps or about 8,000 to about 20,000 cps at a 20 weight percent solids solution in toluene at 25° C.
The styrene to ethylene and butylene weight ratios for these Shell designated polymers can have a low range of 20:80 or less. Although the typical ratio values for Kraton G 1651, 4600, and 4609 are approximately about 33:67 and for Kraton G 1855X approximately about 27:73, Kraton G 1654X (a lower molecular weight version of Kraton G 1651 with somewhat lower physical properties such as lower solution and melt viscosity) is approximately about 31:69, these ratios can vary broadly from the typical product specification values.
The styrene to ethylene and butylene weight ratio of SEBS useful in forming the bodies 2 can range from lower than about 20:80 to above about 40:60. More specifically, the values can be 19:81, 20:80, 21:79. 22:78. 23:77, 24:76, 25:75, 26:74, 27:73, 28:72, 29:71, 30:70, 31:69, 32:68, 33:67, 34:66, 35:65, 36:64, 37:63, 38:62, 39:61, 40:60, 41:59, 42:58, 43:57, 44:65, 45:55, 46:54, 47:53, 48:52, 49:51, 50:50, 51:49 and etc. Other ratio values of less than 19:81 or higher than 51:49 are also possible. Shell Technical Bulletin SC:1393-92 gives solution viscosity as measured with a Brookfield model RVT viscometer at 25° C. for Kraton G 1654X at 10% weight in toluene of approximately 400 cps and at 15% weight in toluene of approximately 5,600 cps. Broadly, the styrene end block to ethylene and butylene center block ratio of the triblock copolymers of the invention is about 20:80 to about 40:60, less broadly about 31:69 to about 40:60, preferably about 32:68 to about 38:62, more preferably about 32:68 to about 36:64, particularly more preferably about 32:68 to about 34:66, especially more preferably about 33:67 to about 36:64, and most preferably about 33:67. In accordance with the present invention, triblock copolymers such as Kraton G 1654X having ratios of 31:69 or higher can be used and do exhibit some very similar physical properties in many respects to Kraton G 1651 while Kraton G 1654X with ratios below 31:69 may also be use, but they are less preferred due to their decrease in the desirable properties of the final gel. Various triblock copolymers of the gels forming the humdingers of the invention can be blended so as to produce a blend of varying ratios of triblock copolymers as desired.
Examples of moderate high viscosity SEEPS-triblock copolymers includes Kuraray's 4055 which exhibits a solution viscosity at 10 weight %, 30° C. of 59 and a styrene content by weight of about 30%.
Examples of representative commercially oils include Amoco® polybutenes, hydrogenated polybutenes and polybutenes with epoxide functionality at one end of the polybutene polymer: Example of such polybutenes include: L-14 (320 Mn), L-50 (420 Mn), L-100 (460 Mn), H-15 (560 Mn), H-25 (610 Mn), H-35 (660 Mn), H-50 (750 Mn), H-100 (920 Mn), H-300 (1290 Mn), L-14E (27-37 cst @ 100° F. Viscosity), H-300E (635-690 cst @ 210° F. Viscosity), Actipol E6 (365 Mn), E16 (973 Mn), E23 (1433 Mn) and the like. Example of various commercially available oils include: ARCO Prime (55, 70, 90, 200, 350, 400 and the like), Duraprime and Tufflo oils (6006, 6016, 6016M, 6026, 6036, 6056, 6206, etc) , other white mineral oils include: Bayol, Bernol, American, Blandol, Drakeol, Ervol, Gloria, Kaydol, Litetek, Lyondell (Duraprime 55, 70, 90, 200, 350, 400, etc), Marcol, Parol, Peneteck, Primol, Protol, Sontex, and the like.
Generally, plasticizing oils with average molecular weights less than about 200 and greater than about 700 may also be used (e.g. H-300 (1290 Mn)).
Other polymers and copolymers (in major or minor amounts) can be melt blended with the SEBS as mentioned above without substantially decreasing the desired properties. Such polymers include (SBS) styrene-butadiene-styrene block copolymers, (SIS) styrene-isoprene-styrene block copolymers, (low styrene content SEBS) styrene-ethylene-butylene-styrene block copolymers, (SEP) styrene-ethylene-propylene block copolymers, (SEPS) styrene-ethylene-propylene-styrene block copolymers, (SB)n styrene-butadiend and (SEB)n, (SEBS)n, (SEP)n, (SI)n styrene-isoprene multi-arm, branched, and star shaped copolymers and the like. Still, other homopolymers can be utilized in minor amounts; these include: polystyrene, polybutylene, polyethylene, polypropoylene and the like.
Gels having gel rigidities of from less than about 20 gram Bloom to about 800 gram Bloom and higher are especially advantageous and suitable for forming the oriented gels of the invention, typically 200 gram Bloom to about 700 gram Bloom.
As used herein, the term "gel rigidity" in gram Bloom is determined by the gram weight required to depress a gel a distance of 4 mm with a piston having a cross-sectional area of 1 square centimeter at 23° C.
Gels less suitable and less advantageous for use in the present invention include oil gels as described in PCT Publications WO88/00603; WO9/305113; and WO91/05014.
Plasticizers particularly preferred for use in practicing the present invention are will known in the art, they include rubber processing oils such as paraffinic and naphthenic petroleum oils, highly refined aromatic-free paraffinic and naphthenic food and technical grade white petroleum mineral oils, and synthetic liquid oligomers of polybutene, polypropene, polyterpene, etc. The synthetic series process oils are high viscosity oligomers which are permanently fluid liquid nonolefins, isoparaffins or paraffins of moderate to high molecular weight.
The orented gels can also contain useful amounts of conventionally employed additives such as stabilizers, antioxidants, antiblocking agents, colorants, fragrances, flame retardants, other polymers in minor amounts and the like to an extend not affecting or substantially decreasing the desired properties of the present invention.
Additives useful in the gel of the present invention include: tetrakis methylene 3,-(3'5'-di-tertbutyl-4"-hydroxyphenyl) propionate! methane, octadecyl 3-(3",55"-di-tert-butyl-4"-hydroxyphenyl) propionate, distearylpentaerythritol-diproprionate, thiodiethylene bis-(3,5-ter-butyl-4-hydroxy) hydrocinnamate, (1,3,5-trimethyl-2,4,6-tris 3,5-di-tert-butyl-4-hydroxybenzyl! benzene), 4,4"-methylenebis(2,6-di-tert-butylphenol), steraric acid, oleic acid, stearamide, behenamide, oleamide, erucamide, N,N"-ethylenebisstearamide, N,N"-ethylenebisoleamide, sterryl erucamide, erucyl erucamide, oleyl palmitamide, stearyl stearamide, erucyl stearamide, calcium sterate, other metal sterates, waxes (e.g. polyethylene, polypropylene, microcrystalline, carnauba, paraffin, montan, candelilla, beeswax, ozokerite, ceresine, and the like). The gel can also contain metallic pigments (aluminum and brass flakes), TiO2, mica, fluorescent dyes and pigments, phosphorescent pigments, aluminatrihydrate, antimony oxide, iron oxides (Fe3O4, --Fe2O3, etc.), iron cobalt oxides, chromium dioxide, iron, barium ferrite, strontium ferrite and other magnetic particle materials, molybdenum, silicone fluids, lake pigments, aluminates, ceramic pigments, ironblues, ultramarines, phthalocynines, azo pigments, carbon blacks, silicon dioxide, silica, clay, feldspar, glass microspheres, barium ferrite, wollastonite and the like. The report of the committee on Magnetic Materials, Publication NMAB-426, National Academy Press (1985) is incorporated herein by reference.
The gels of the the invention may be made non-adhearing, non-sticking, non-tacky by incorporating an advantage amount of stearic acid (octadecanoic acid) and metal stearates (e.g., calcium stearate, magnesium sterate, zinc stearate, etc.).
An advantage of making non-sticking, non-tacky gels is the use of waxes, steraric acid and waxes, metal sterate and waxes, metal sterate and steraric acid. The use of steraric acid alone do not reduce tack. The amount of steraric acid is also important. The ratio of 200 grams steraric acid to 2,000 gram of SEBS (a ratio of 0.1) will result in spotted tack reduction on the surface of the gel. A ratio of 250 to 2,000 will result in spotted crystallized regions on the surface of the gel or spotted tack reduction. A ratio of 300 to 2,000 will result in complete tack reduction with large crystallized regions on the surface of the gel. When microcrystalline waxes are incorporated together with steraric acid, the crystallization of steraric acid completely disappears from the surface of the gel. For example excellent result is achieved with 200 grams of steraric acid, 150 grams of microcrystalline wax and 2,000 grams of SEBS. The same excellent is achieved when SEBS is adjusted to 3,000 grams, 4,000 grams, etc. The same result is achieved with SEPS.
The oriented compositions of the present invention are prepared by blending together the components including other additives as desired at about 23° C. to about 100° C. forming a paste like mixture and further heating said mixture uniformly to about 150° C. to about 200° C. until a homogeneous molten blend is obtained. Lower and higher temperatures can also be utilized depending on the viscosity of the oils and amount of SEBS used. These components blend easily in the melt and a heated vessel equipped with a stirrer is all that is required. As an example, small batches can be easily blended in a test tube using a glass stirring rod for mixing. While conventional large vessels with pressure and/or vacuum means can be utilized in forming large batches of the instant compositions in amounts of about 40 lbs or less to 10,000 lbs or more. For example, in a large vessel, inert gases can be employed for removing the composition from a closed vessel at the end of mixing and a partial vacuum can be applied to remove any entrapped bubbles. Stirring rates utilized for large batches can range from about less than about 10 rpm to about 40 rpm or higher.
While preferred components and formulation ranges have been disclosed herein. persons of skill in the art can extend these ranges using appropriate material according to the principles discussed herein. All such variations and deviations which rely on the teachings through which the present invention has advanced the art: are considered to be within the spirit and scope of the present invention.
The oriented gelatinous elastomer composition of the invention is excellent for forming the gelatinous elastomer articles of the invention. The gelatinous elastomer articles can be formed by blending, injection molding, extruding and other conventional methods. For example, Shapes having various crossection can be extruded; and as the hot extradate is emerging from the extrusion die, the extrudate can be stretched, pulled, twisted or in various manner stressed as it is rapidly placed in contact with cooling air or cool water bath.
The composition can also be remelted in any suitable hot melt applicator and extruted or spun into threads, bands, or other shapes. The basis of this invention resides in the fact that a high viscosity poly(styrene-ethylene-butylene-styrene) triblock copolymer having styrene end block to ethylene and butylene center block ratio preferably within the contemplated range of from about 20:80 to about 40:60, more preferably from between about 31:69 to about 40:60 when blended in the melt with an appropriate amount of plasticizing oil makes possible the attainment of gelatinous elastomer compositions having a desirable combination of physical and mechanical properties, notably high elongation at break of at least 1,600%, ultimate tensile strength of about at least 8×105 dyne/cm2, low elongation set at break of substantially not greater than about 2%, tear resistance of at least 5×105 dyne/cm2 substantially about 100% snap back when extended to 1,200% elongation, and a gel rigidity of substantially not greater than about 700 gram Bloom. It should be noted that when the ratio falls below 31:69, various properties such as elongation, tensile strength, tear resistance and the like can decrease while retaining other desired properties, such as gel rigidity, flexibility, elastic memory.
More specifically, the gelatinous composition of the present invention exhibit one or more of the following properties. These are: (1) tensile strength of about 8×105 dyne/cm2 to about 107 dyne/cm2 ; (2) elongation of about 1,600% to about 3,000% and higher; (3) elasticity modulus of about 104 dyne/cm2 to about 106 dyne/cm2 ; (4) shear modulus of about 104 dyne/cm2 to about 106 dyne/cm as measured with a 1, 2, and 3 kilogram load at 23° C.; (5) gel rigidity of about 20 gram Bloom or lower to about 800 gram Bloom as measured by the gram weight required to depress a gel a distance of 4 mm with a piston having a cross-sectional area of 1 square cm at 23° C.; (6) tear propagation resistance of at least about 5×105 dyne/cm2 ; (7) and substantially 100% snap back recovery when extended at a crosshead separation speed of 25 cm/minute to 1,200% at 23° C. Properties (1), (2), (3), and (6) above are measured at a crosshead separation speed of 25 cm/minute at 23° C.
The oriented gelatinous elastomer articles of the instant compositions have various additional important advantages in that they do not crack, creep, tear, crack, or rupture in flextural, tension, compression, or other deforming conditions of normal use; but rather the moulded articles made from the instant composition possess the intrinsic properties of elastic memory enabling the articles to recover and retain its original moulded shape after many extreme deformation cycles as compared to prior art triblock copolymer oil-extended compositions. In applications where low rigidity, high elongation, good compression set and excellent tensile strength are important, the instant compositions would be preferred.
The gelatinous elastomer compositions of the present invention are useful in low frequency vibration applications, such as viscoelastic layers in constrainedlayer damping of mechanical structures and goods, as viscoelastic layers used in laminates for isolation of acoustical and mechanical noise, as antivibration elastic support for transporting shock sensitive loads, as vibration isolators for an optical table, as viscoelastic layers used in wrappings, enclosures and linings to control sound, as compositions for use in shock and dielectric encapsulation of optical, electrical, and electronic components. The compositions are also useful as dental floss (FIGS. 3l, 4i, 4n, 4q, 4t, 4w, 4x), exercise elastic stretch bands.
Generally the molten gelatinous elastomer composition will adhere sufficiently to certain plastics (e.g. acrylic, ethylene copolymers, nylon, polybutylene, polycarbonate, polystyrene, polyester, polyethylene, polypropylene, styrene copolymers, and the like) provided the temperature of the molten gelatinous elastomer composition is sufficient high to fuse or nearly fuse with the plastic. In order to obtain sufficient adhesion to glass, ceramics, or certain metals, sufficient temperature is also required (e.g. above 250° F.). Commercial resins which can aid in adhesion to materials (plastics, glass, and metals) may be added in minor amounts to the gelatinous elastomer composition, these resins include: polymerized mixed olefins (Super Sta-tac, Betaprene Nevtac, Escorez, Hercotac, Wingtack, Piccotac), polyterpene (Zonarez, Nirez, Piccolyte, Sylvatac), glycerol ester of rosin (Foral), pentaerythritol ester of rosin (Pentalyn), saturated alicyclic hydrocarbon (Arkon P), coumarone indene (Cumar LX), hydrocarbon (Picco 6000, Regalrez), mixed olefin (Wingtack), alkylated aromatic hydrocarbon (Nevchem), Polyalphamethylstyrene/vinyl toluene copolymer (Piccotex), polystyrene (Kristalex, Piccolastic), special resin (LX-1035), and the like
The invention is further illustrated by means of the following illustrative embodiments, which are given for purpose of illustration only and are not meant to limit the invention to the particular components and amounts disclosed.
EXAMPLE I
One hundred parts by weight of a high viscosity poly(styrene-ethylenecopolymer butylene-styrene) triblock copolymer (Shell Kraton G 1651) having a styrene end block to ethylene and butylene center block ratio of about 33:67 with 0.1 parts by weight of a stabilizer (Irrganox 1010) was melt blended with various quantities of a naphthenic oil (ARCO Tufflo 6024). Samples having the dimensions of 5 cm×5 cm×3 cm were cut and measured for gel rigidity on a modified Bloom gelometer as determined by the gram weight required to depress the gel a distance of 4 mm with a piston having a cross-sectional area of 1 cm2. The average gel rigidity values with respect to various oil concentrations are set forth in Table I below.
              TABLE I
______________________________________
Oil per 100 parts of
                Gel Rigidity,
Triblock copolymer
                gram Bloom
______________________________________
360             500
463             348
520             280
615             240
635             220
710             172
838             135
1,587           54
______________________________________
EXAMPLE II
Example I was repeated except about 980 parts oil was used and the gel rigidity found to about 101 gram Bloom. Other properties measured were: tensile strength at break about 4.4×106 dyne/cm2, elongation at break about 2,4470%, elasticity modulus about 3.5×104 dyne/cm2, and shear modulus about 3.7×104 dyne/cm2. The tensile strength, elongation, elasticity modulus were measured with cross-head separation speed of 25 cm/minute at room temperature. The shear modulus was measured with a 1, 2, and 3 kilogram load at room temperature.
EXAMPLE III
Example I was repeated except about 520 parts of a polybutene (Amoco Indopol H-300) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
EXAMPLE IV
Example I was repeated except about 520 parts of a polypropene (Amoco C-60) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
EXAMPLE V
Example I was repeated except about 520 parts of a polyterpene (Hercules Piccolyte S10) was used and the gel rigidity found to be about substantially unchanged with respect to use of naphthenic oil alone.
EXAMPLE VI
Example I was repeated except about 360 parts of a combined mixture of: 72 parts of a paraffinic oil (ARCO prime 200), 72 pars of a naphthenic oil (ARCO Tufflo 6014), 72 parts of a polybutene oligomer (Amoco Indopol H-200), 72 parts of a polypropene oligomer (Amoco Polypropene C-60), and 72 parts of a polyterpene oligomer (Hercules Piccolyte S10) was used and the gel rigidity found to be about substantially unchanged with respect to the use of naphthenic oil alone.
EXAMPLE VII
Example II was repeated except 933 parts oil with 147 parts by weight of a high viscosity poly(styrene-ethylene- butylene-styrene) triblock copolymer containing 47 parts of a naphthenic process oil (Shell Kraton G 4609) having a styrene to ethylene and butylene ratio of about 33:67 was used and the physical properties were found to be about substantially unchanged with respect to the components used in Example II.
EXAMPLE VIII
Example I was repeated except about 400 parts of oil was used and the properties measured were: tear propagation about 1.4×106 dyne/cm2, no crack growth in 180° bend under 50 gram load for 5,000 hours at room temperature, tensile strength about 4×106 dyne/cm2, elongation at break about 1,700%, tensile set about 0% at 1,200% elongation, compression set about 0% when tested under 5,000 gram load for 24 hours, and 100% snap back recovery after extension to 1,200%.
EXAMPLE IX
Example I was repeated except a high viscosity poly(styrene-ethylene-propylene-styrene) is used and the gel rigidity found to be about substantially unchanged.
EXAMPLE X
Examples I-IX are repeated and the gels are extruded and rapidly stretched up to 800% elongation by hand in a cooled water bath. The resulting gels show birefrigence and greater strength than corresponding unstretched gels.
While certain features of this invention have been described in detail with respect to various embodiments thereof, it will, of course, be apparent that other modifications can be made within the spirit and scope of this invention, and it is not intended to limit the invention to the exact details shown above except insofar as they are defined in the following claims.

Claims (8)

What I claim is:
1. A composition comprising: an optically birefringent, oriented gel formed from (a) 100 parts by weight of one or more high viscosity linear, multi-arm, branched, or star shaped block copolymers; (b) from about 300 to about 1,600 parts by weight of a plasticizing oil; said composition exhibits birefringence when view under crossed polarizers.
2. A composition of claim 1, wherein said gel is made from one or more block copolymers of the general configuration poly(styrene-ethylene-butylene-styrene), poly(styrene-ethylene-propylene-styrene), poly(styrene-ethylene-ethylene-propylene-styrene), poly(styrene-ethylene-propylene)n, poly(styrene-ethylene-butylene)n, or a mixture thereof and with or without a selected amount of at least one polymer or copolymer selected from the group consisting of poly(styrene-butadiene-styrene), poly(styrene-butadiene), poly(styrene-isoprene-styrene), poly(styrene-isoprene), poly(styrene-ethylene-propylene), low viscosity poly(styrene-ethylene-propylene-styrene), low viscosity poly(styrene-ethylene-butylene-styrene), poly(styrene-ethylene-butylene), polystyrene, polybutylene, poly(ethylene-propylene), poly(ethylene-butylene), polypropylene, or polyethylene, wherein said selected copolymer is a linear, branched, multiarm, or star shaped copolymer.
3. A composition of claim 1, wherein said composition is made from one or more block copolymers of poly(styrene-ethylene-butylene-styrene), poly(styrene-ethylene-propylene-styrene), poly(styrene-ethylene-ethylene-propylene-styrene), poly(styrene-butadiene-styrene), poly(styrene-isoprene-styrene), poly(styrene-ethylene-propylene)n, poly(styrene-ethylene-butylene)n, a hydrogenated styrene isoprene/butadiene block copolymer, a hydrogenated styrene block polymer with 2-methyl-1,3-butadiene and 1,3-butadiene in combination with or without a polymer or copolymer of polystyrene, polybutylene, polypropylene, or polyethylene, and said gel is characterized by a gel rigidity of from about 20 to about 800 gram Bloom.
4. A composition of claim 1, wherein said block copolymer is a hydrogenated styrene isoprene/butadiene block copolymer or a hydrogenated styrene block polymer with 2-methyl-1,3-butadiene and 1,3-butadiene.
5. A composition of claim 1, wherein said block copolymer is a hydrogenated styrene isoprene/butadiene block copolymer having a general configuration poly(styrene-ethylene-butylene/ethylene-propylene-styrene).
6. A composition of claim 1, wherein said block copolymer is a hydrogenated styrene block polymer with 2-methyl-1,3-butadiene and 1,3-butadiene having a general configuration poly(styrene-ethylene-ethylene-propylene-styrene).
7. A composition comprising: an optically birefringent, oriented gel formed from (a) 100 parts by weight of one or more multiarm poly(styrene-ethylene-butylene)n, poly(styrene-ethylene-propylene)n block copolymer or a mixture thereof, n being a number 2 or greater; (b) from about 300 to about 1,600 parts by weight of a plasticizing oil; said composition exhibits birefringence when view under crossed polarizers.
8. A composition comprising: an optically birefringent, oriented gel formed from (a) 100 parts by weight of a linear poly(styrene-ethylene-ethylene-propylene-styrene) block copolymer; (b) from about 300 to about 1,600 parts by weight of a plasticizing oil; said composition exhibits birefringence when view under crossed polarizers.
US08/581,125 1990-05-21 1995-12-29 Oriented gel and oriented gel articles Expired - Fee Related US5962572A (en)

Priority Applications (28)

Application Number Priority Date Filing Date Title
US08/581,125 US5962572A (en) 1994-04-19 1995-12-29 Oriented gel and oriented gel articles
US08/612,586 US6552109B1 (en) 1994-04-19 1996-03-08 Gelatinous elastomer compositions and articles
US08/719,817 US6148830A (en) 1994-04-19 1996-09-30 Tear resistant, multiblock copolymer gels and articles
US08/863,794 US6117176A (en) 1993-11-15 1997-05-27 Elastic-crystal gel
US08/909,487 US6050871A (en) 1994-04-19 1997-08-12 Crystal gel airfoils with improved tear resistance and gel airfoils with profiles capable of exhibiting time delay recovery from deformation
US09/230,940 US6161555A (en) 1994-04-19 1997-09-30 Crystal gels useful as dental floss with improved high tear, high tensile, and resistance to high stress rupture properties
US08/954,424 US6333374B1 (en) 1990-05-21 1997-10-20 Fluffy, strong, solid elastic gels, articles and method of making same
US08/984,459 US6324703B1 (en) 1994-04-19 1997-12-03 Strong, soft, tear resistant insulating compositions and composites for extreme cold weather use
US09/130,545 US6627275B1 (en) 1994-04-19 1998-08-08 Tear resistant elastic crystal gels suitable for inflatable restraint cushions and other uses
US09/274,498 US6420475B1 (en) 1994-04-19 1999-03-28 Tear resistant elastic crystal gels gel composites and their uses
US09/721,213 US6867253B1 (en) 1994-04-19 2000-11-21 Tear resistant, crystalline midblock copolymer gels and articles
US10/199,361 US7134236B2 (en) 1994-04-19 2002-07-20 Gelatinous elastomer compositions and articles for use as fishing bait
US10/199,364 US6794440B2 (en) 1994-04-19 2002-07-20 Tear resistant gelatinous elastomer compositions and articles for use as fishing bait
US10/199,363 US7108873B2 (en) 1994-04-19 2002-07-20 Gelatinous food elastomer compositions and articles
US10/273,828 US6909220B2 (en) 1994-04-19 2002-10-17 High strain tear resistant gels and gel composites for use as artificial muscle actuators
US10/299,073 US20030083422A1 (en) 1994-04-19 2002-11-18 Gelatinous elastomer compositions and articles
US10/334,542 US7159259B2 (en) 1994-04-19 2002-12-31 Gelatinous elastomer compositions and articles
US10/420,490 US7105607B2 (en) 1994-04-19 2003-04-21 Tear resistant gels, composites, and articles
US10/420,492 US7344568B2 (en) 1994-04-19 2003-04-21 Tear resistant gels, composites, and liner articles
US10/420,493 US7067583B2 (en) 1994-04-19 2003-04-21 Tear resistant adherent gels, composites, and articles
US10/420,487 US7193002B2 (en) 1992-08-24 2003-04-21 Adherent gels, composites, and articles
US10/420,488 US7134929B2 (en) 1994-04-19 2003-04-21 Tear resistant gels, composites, and diving apparel articles
US10/420,489 US7222380B2 (en) 1994-04-19 2003-04-21 Tear resistant gels, composites, and cushion articles
US10/420,491 US7093599B2 (en) 1994-04-19 2003-04-21 Gels, composites, and health care articles
US10/613,567 US7093316B2 (en) 1994-04-19 2003-07-02 Gels for force gauging
US10/675,509 US7234560B2 (en) 1994-04-19 2003-09-30 Inflatable restraint cushions and other uses
US10/746,196 US7290367B2 (en) 1994-04-19 2003-12-25 Tear resistant gel articles for various uses
US10/912,464 US7226484B2 (en) 1994-04-19 2004-08-04 Tear resistant gels and articles for every uses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/US1994/004278 WO1995013851A1 (en) 1993-11-15 1994-04-19 Humdinger, string spinning toy
PCT/US1994/007314 WO1996000118A1 (en) 1990-05-21 1994-06-27 Novel ultra-soft, ultra-elastic gel airfoils
US08288690 US5633286B1 (en) 1977-03-17 1994-08-11 Gelatinous elastomer articles
US08/581,125 US5962572A (en) 1994-04-19 1995-12-29 Oriented gel and oriented gel articles

Related Parent Applications (9)

Application Number Title Priority Date Filing Date
US08/152,734 Continuation-In-Part US5624294A (en) 1977-03-17 1993-11-15 Humdinger, gel spinner
PCT/US1994/004278 Continuation-In-Part WO1995013851A1 (en) 1977-03-17 1994-04-19 Humdinger, string spinning toy
US08/256,235 Continuation-In-Part US5868597A (en) 1990-05-21 1994-06-27 Ultra-soft, ultra-elastic gel airfoils
PCT/US1994/007314 Continuation-In-Part WO1996000118A1 (en) 1977-03-17 1994-06-27 Novel ultra-soft, ultra-elastic gel airfoils
US08288690 Continuation-In-Part US5633286B1 (en) 1977-03-17 1994-08-11 Gelatinous elastomer articles
US58118895A Continuation-In-Part 1990-05-21 1995-12-29
US08/581,191 Continuation-In-Part US5760117A (en) 1990-05-21 1995-12-29 Gelatinous composition and articles
US08/863,794 Continuation-In-Part US6117176A (en) 1990-05-21 1997-05-27 Elastic-crystal gel
US09/130,545 Continuation-In-Part US6627275B1 (en) 1992-08-24 1998-08-08 Tear resistant elastic crystal gels suitable for inflatable restraint cushions and other uses

Related Child Applications (16)

Application Number Title Priority Date Filing Date
US58118895A Continuation-In-Part 1990-05-21 1995-12-29
US08/581,191 Continuation-In-Part US5760117A (en) 1990-05-21 1995-12-29 Gelatinous composition and articles
US08/612,586 Continuation-In-Part US6552109B1 (en) 1990-05-21 1996-03-08 Gelatinous elastomer compositions and articles
US66534396A Continuation-In-Part 1990-05-21 1996-06-17
US08/719,817 Continuation-In-Part US6148830A (en) 1990-05-21 1996-09-30 Tear resistant, multiblock copolymer gels and articles
US08/863,794 Continuation-In-Part US6117176A (en) 1990-05-21 1997-05-27 Elastic-crystal gel
US08/909,487 Continuation-In-Part US6050871A (en) 1990-05-21 1997-08-12 Crystal gel airfoils with improved tear resistance and gel airfoils with profiles capable of exhibiting time delay recovery from deformation
US09/230,940 Continuation-In-Part US6161555A (en) 1994-04-19 1997-09-30 Crystal gels useful as dental floss with improved high tear, high tensile, and resistance to high stress rupture properties
PCT/US1997/017534 Continuation-In-Part WO1998014133A1 (en) 1990-05-21 1997-09-30 Novel crystal gels useful as dental floss with improved high tear, high tensile, and resistance to high stress rupture properties
US08/984,459 Continuation-In-Part US6324703B1 (en) 1992-08-24 1997-12-03 Strong, soft, tear resistant insulating compositions and composites for extreme cold weather use
US09/130,545 Continuation-In-Part US6627275B1 (en) 1992-08-24 1998-08-08 Tear resistant elastic crystal gels suitable for inflatable restraint cushions and other uses
US09/274,498 Continuation-In-Part US6420475B1 (en) 1992-08-24 1999-03-28 Tear resistant elastic crystal gels gel composites and their uses
US28580999A Continuation-In-Part 1992-08-24 1999-04-01
US41288699A Continuation-In-Part 1992-08-24 1999-10-05
US10/420,490 Continuation-In-Part US7105607B2 (en) 1994-04-19 2003-04-21 Tear resistant gels, composites, and articles
US10/420,493 Continuation-In-Part US7067583B2 (en) 1994-04-19 2003-04-21 Tear resistant adherent gels, composites, and articles

Publications (1)

Publication Number Publication Date
US5962572A true US5962572A (en) 1999-10-05

Family

ID=27377638

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/581,125 Expired - Fee Related US5962572A (en) 1990-05-21 1995-12-29 Oriented gel and oriented gel articles

Country Status (1)

Country Link
US (1) US5962572A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359064B1 (en) 2000-09-08 2002-03-19 Bridgestone Corporation Compound of polyester and polyalkylene grafted comb polymer
US6369166B1 (en) 1998-06-12 2002-04-09 Bridgestone Corporation Application of disubstituted ethylene-maleimide copolymers in rubber compounds
US6413458B1 (en) 1996-02-14 2002-07-02 Edizone, Lc Process for forming gelatinous elastomer materials
US20020145066A1 (en) * 2001-01-22 2002-10-10 Michael Schweigert Coated monofilament tape bobbins and methods for winding
US6545077B2 (en) 2000-08-23 2003-04-08 International Tape Partners, Llc Monofilament dental tapes with substantive coatings
US6575176B1 (en) 2001-08-23 2003-06-10 International Tape Partners, Llc Monofilament dental tapes with soft abrasive coatings
US6590705B1 (en) * 1996-02-29 2003-07-08 3M Innovative Properties Company Optical film with co-continuous phases
US6591844B2 (en) 2001-01-22 2003-07-15 Peri-Deat Limited Elastomeric monofilament dental tapes
US6599988B2 (en) 1997-12-22 2003-07-29 Bridgestone Corporation Centipede polymers and preparation and application in rubber compositions
US6604534B2 (en) 2000-08-23 2003-08-12 International Tape Partners, Llc Physical improvements in coated monofilament dental tapes
US6609527B2 (en) 2001-01-22 2003-08-26 International Tape Partners, Llc Non-crystalline saliva-soluble coatings for elastomeric monofilament dental tapes
US20030168077A1 (en) * 2002-02-11 2003-09-11 Brown Dale G. Coated micromesh dental devices overcoated with imbedded particulate
US20030178044A1 (en) * 2002-02-11 2003-09-25 Brown Dale G. Micromesh interproximal devices
US20030200983A1 (en) * 2001-08-23 2003-10-30 Brown Dale G. Particulate coated monofilament devices
US20030232177A1 (en) * 2002-02-11 2003-12-18 Edizone, Lc Jelly pen holder
US20030235453A1 (en) * 2002-02-11 2003-12-25 Pearce Tony M. Jelly pens
US20040015185A1 (en) * 2000-10-19 2004-01-22 Ewers Richard C. Surgical access apparatus and method
US6865759B2 (en) 1996-02-14 2005-03-15 Edizone, Inc. Cushions with non-intersecting-columnar elastomeric members exhibiting compression instability
US20050080339A1 (en) * 1998-12-24 2005-04-14 Vivant Medical, Inc. Biopsy cavity marking device
US20050164596A1 (en) * 2004-01-28 2005-07-28 Pamela Saha Deformable photoelastic device
US20050173836A1 (en) * 2004-02-07 2005-08-11 Pearce Tony M. Screed mold method
US20050175551A1 (en) * 2002-10-24 2005-08-11 Heng Cai Silicon modified polyamide material useful for oral care
US20060194925A1 (en) * 2005-02-02 2006-08-31 Pearce Tony M Gel with wide distribution of Mw in mid-block
US20060243297A1 (en) * 2005-04-29 2006-11-02 Brown Dale G Coated monofilament oriented HDPE dental tapes
US20060283477A1 (en) * 2005-06-16 2006-12-21 Bryan Oronsky Interdental cleaning article with functional messages
US20070085232A1 (en) * 2005-10-14 2007-04-19 Applied Medical Resources Corporation Method of making a hand access laparoscopic device
US20070154431A1 (en) * 2004-01-30 2007-07-05 Mitsui Chemicals, Inc. Novel polymers and uses thereof
US7476447B2 (en) 2002-12-31 2009-01-13 Kimberly-Clark Worldwide, Inc. Elastomeric materials
US20090017216A1 (en) * 2007-05-08 2009-01-15 Frank Hoefflin Resin blends with wide temperature range damping
US7650887B2 (en) 2002-06-05 2010-01-26 Applied Medical Resources Corporation Wound retractor
US7678462B2 (en) 1999-06-10 2010-03-16 Honeywell International, Inc. Spin-on-glass anti-reflective coatings for photolithography
US7717114B1 (en) 2004-10-11 2010-05-18 Alps South, LLC Mask seal interface
WO2011057095A1 (en) 2009-11-05 2011-05-12 Colgate-Palmolive Company Elastomeric dental floss
US7951076B2 (en) 2003-02-25 2011-05-31 Applied Medical Resources Corporation Surgical access system
US8109873B2 (en) 2007-05-11 2012-02-07 Applied Medical Resources Corporation Surgical retractor with gel pad
US8157835B2 (en) 2001-08-14 2012-04-17 Applied Medical Resouces Corporation Access sealing apparatus and method
WO2012060843A1 (en) 2010-11-05 2012-05-10 Colgate-Palmolive Company Elastomeric dental floss
US8187177B2 (en) 2003-09-17 2012-05-29 Applied Medical Resources Corporation Surgical instrument access device
US8226552B2 (en) 2007-05-11 2012-07-24 Applied Medical Resources Corporation Surgical retractor
US8262568B2 (en) 2008-10-13 2012-09-11 Applied Medical Resources Corporation Single port access system
US8343047B2 (en) 2008-01-22 2013-01-01 Applied Medical Resources Corporation Surgical instrument access device
US8344088B2 (en) 2001-11-15 2013-01-01 Honeywell International Inc. Spin-on anti-reflective coatings for photolithography
US8388526B2 (en) 2001-10-20 2013-03-05 Applied Medical Resources Corporation Wound retraction apparatus and method
US8513361B2 (en) 2007-12-28 2013-08-20 Bridgestone Corporation Interpolymers containing isobutylene and diene mer units
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8642246B2 (en) 2007-02-26 2014-02-04 Honeywell International Inc. Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof
US8703034B2 (en) 2001-08-14 2014-04-22 Applied Medical Resources Corporation Method of making a tack-free gel
US8758236B2 (en) 2011-05-10 2014-06-24 Applied Medical Resources Corporation Wound retractor
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US8992806B2 (en) 2003-11-18 2015-03-31 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof
US9056975B2 (en) 2011-02-14 2015-06-16 Kuraray America, Inc. Elastomeric formulations useful in films and sheets
US9069133B2 (en) 1999-06-10 2015-06-30 Honeywell International Inc. Anti-reflective coating for photolithography and methods of preparation thereof
US9289115B2 (en) 2010-10-01 2016-03-22 Applied Medical Resources Corporation Natural orifice surgery system
US9289200B2 (en) 2010-10-01 2016-03-22 Applied Medical Resources Corporation Natural orifice surgery system
US9492570B2 (en) 1998-12-24 2016-11-15 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9642608B2 (en) 2014-07-18 2017-05-09 Applied Medical Resources Corporation Gels having permanent tack free coatings and method of manufacture
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9717522B2 (en) 2009-08-31 2017-08-01 Applied Medical Resources Corporation Multi-functional surgical access system
US9949730B2 (en) 2014-11-25 2018-04-24 Applied Medical Resources Corporation Circumferential wound retraction with support and guidance structures
US10172641B2 (en) 2014-08-15 2019-01-08 Applied Medical Resources Corporation Natural orifice surgery system
US10368908B2 (en) 2015-09-15 2019-08-06 Applied Medical Resources Corporation Surgical robotic access system
US10539813B2 (en) 2004-01-28 2020-01-21 Pamela Saha Deformable photoelastic device
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US10575840B2 (en) 2015-10-07 2020-03-03 Applied Medical Resources Corporation Wound retractor with multi-segment outer ring
US10674896B2 (en) 2016-09-12 2020-06-09 Applied Medical Resources Corporation Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments
US11471142B2 (en) 2013-03-15 2022-10-18 Applied Medical Resources Corporation Mechanical gel surgical access device

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594945A (en) * 1969-04-14 1971-07-27 Howard R Turney Flying toy
GB1268431A (en) * 1968-01-29 1972-03-29 Minnesota Mining & Mfg Stable elastomeric block polymer gels
US3660849A (en) * 1970-07-13 1972-05-09 Minnesota Mining & Mfg Deep submergence diving suit and insulative material therefor
US3676387A (en) * 1970-12-21 1972-07-11 Minnesota Mining & Mfg Stable elastomeric polymer-oil combinations
US3821149A (en) * 1973-09-28 1974-06-28 Exxon Research Engineering Co Plasticized thermoplastic semicrystalline block copolymers
US3827999A (en) * 1973-11-09 1974-08-06 Shell Oil Co Stable elastomeric polymer-oil compositions
US3860013A (en) * 1971-07-06 1975-01-14 Henry P Czapor Dental strip
US4136699A (en) * 1975-06-27 1979-01-30 H. B. Fuller Company Absorbent article with adhesive strip
US4151057A (en) * 1978-08-14 1979-04-24 Shell Oil Company High temperature adhesive made by exposure to radiation
US4176240A (en) * 1978-05-30 1979-11-27 Bell Telephone Laboratories, Incorporated Filled electrical cable
US4259540A (en) * 1978-05-30 1981-03-31 Bell Telephone Laboratories, Incorporated Filled cables
US4351913A (en) * 1981-02-19 1982-09-28 Siecor Corporation Filling materials for electrical and light waveguide communications cables
US4361508A (en) * 1980-10-20 1982-11-30 Arco Polymers, Inc. Cable filler compositions comprising a mixture of (a) styrene block copolymer, (b) crystalline polypropylene copolymer and (c) mineral oil
US4369284A (en) * 1977-03-17 1983-01-18 Applied Elastomerics, Incorporated Thermoplastic elastomer gelatinous compositions
US4389461A (en) * 1982-03-08 1983-06-21 Shell Oil Company Pipeline pig
US4432607A (en) * 1981-10-27 1984-02-21 Bell Telephone Laboratories, Incorporated Hot melt coated optical fiber
US4492428A (en) * 1981-10-27 1985-01-08 At&T Bell Laboratories Coated optical fiber
US4497538A (en) * 1983-08-10 1985-02-05 Siecor Corporation Filled transmission cable
US4509821A (en) * 1981-09-10 1985-04-09 Sun Tech, Inc. Filling material for electric cable
US4600261A (en) * 1982-10-12 1986-07-15 Raychem Corporation Apparatus and method for protection of electrical contacts
US4610738A (en) * 1985-01-04 1986-09-09 Raychem Corporation Encapsulating a splice with a gel-filled case
US4618213A (en) * 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
US4643924A (en) * 1985-03-25 1987-02-17 Raychem Corporation Protective article comprising an elastic gel
US4662692A (en) * 1985-05-02 1987-05-05 Raychem Corp. Sealing member
US4678664A (en) * 1982-09-30 1987-07-07 Basf Corporation Mineral oil gels
US4680233A (en) * 1985-05-02 1987-07-14 Raychem Corporation Sealing material
US4690831A (en) * 1983-06-23 1987-09-01 Raychem Corp. Protective article
US4692369A (en) * 1984-12-11 1987-09-08 Japan Gore-Tex, Inc. Water-vapor-permeable, waterproof, highly elastic films
US4709982A (en) * 1984-11-27 1987-12-01 Bicc Public Limited Company Gelled oil filling compounds
US4716183A (en) * 1985-11-22 1987-12-29 Raychem Corp. Styrene-diene block copolymer compositions
US4721832A (en) * 1985-05-02 1988-01-26 Raychem Corporation Electrical connection sealing device
WO1988000603A2 (en) * 1986-07-18 1988-01-28 Raychem Limited Gels comprising block copolymers
US4737128A (en) * 1986-12-11 1988-04-12 Parker Brothers Division Of Kenner Parker Toys Inc. Flexible unitary circular air foil
US4764535A (en) * 1984-08-06 1988-08-16 Q'so, Inc. Thermally applied sealants and process
US4798853A (en) * 1984-12-28 1989-01-17 Shell Oil Company Kraton G thermoplastic elastomer gel filling composition for cables
US4801346A (en) * 1986-07-30 1989-01-31 The Kendall Company Protective coatings
US4822834A (en) * 1988-04-19 1989-04-18 The United States Of America As Represented By The Secretary Of The Air Force Vibration damping composition suitable for outer space temperature variations
US4833193A (en) * 1987-08-14 1989-05-23 Sieverding David L Novel pressure sensitive adhesives
US4842931A (en) * 1988-07-19 1989-06-27 Zook Gerald P Affixable padding material using gelatinous viscoelastic polymer
US4865905A (en) * 1983-06-23 1989-09-12 Raychem Corporation Article for protection of a substrate
US4864725A (en) * 1982-10-12 1989-09-12 Raychem Corporation Electrical connector and method of splicing wires
US4880878A (en) * 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
US4880676A (en) * 1988-04-05 1989-11-14 Raychem Corporation Cable sealing apparatus
US4883431A (en) * 1986-09-26 1989-11-28 Raychem Corporation Gel-filled cap member
US4888070A (en) * 1987-12-01 1989-12-19 Raychem Corporation Environmental sealing of a substrate
US4889171A (en) * 1987-07-22 1989-12-26 Minimo Ruben M Foldable weather canopy for motor vehicles
US4889403A (en) * 1987-11-02 1989-12-26 Raychem Corp. Distribution optical fiber tap
US4900877A (en) * 1987-01-13 1990-02-13 Raychem Corporation Shielding and sealing gaskets
US4909756A (en) * 1985-01-04 1990-03-20 Raychem Corp. Splice case
WO1990005166A1 (en) * 1988-11-09 1990-05-17 Raychem Limited Gels
US4929211A (en) * 1988-12-02 1990-05-29 Softspot, Inc. Hand held tactile toy
US4942270A (en) * 1987-07-13 1990-07-17 Raychem Corporation Cable sealing apparatus comprising heat resistant gel compositions
US4944363A (en) * 1990-02-06 1990-07-31 Cap Toys, Inc. Toy ball
US4944973A (en) * 1983-12-12 1990-07-31 Raychem Corporation Wraparound article
US4968747A (en) * 1990-03-30 1990-11-06 Arco Chemical Technology, Inc. Compatibilized blends of crystalline propylene polymers and styrenic copolymers
US4983008A (en) * 1986-08-22 1991-01-08 Raychem Corporation Strained distributed optical fiber communication system
WO1991005014A1 (en) * 1989-10-05 1991-04-18 Raychem Limited Gels
US5026054A (en) * 1990-02-06 1991-06-25 Cap Toys, Inc. Toy
US5059748A (en) * 1990-04-26 1991-10-22 Raychem Corporation Cable splice enclosure
US5068138A (en) * 1989-08-16 1991-11-26 Shell Oil Company Elastomeric film
US5085597A (en) * 1985-08-20 1992-02-04 Raychem Corporation Corrosion protection apparatus
US5088734A (en) * 1990-07-09 1992-02-18 Glava Gary L Attenuating handle for recreational and work implements
US5098421A (en) * 1989-10-16 1992-03-24 Zook Gerald P Viscoelastic gel foot padding and medicating device
US5126182A (en) * 1989-10-17 1992-06-30 Malden Mills Industries, Inc. Drapable, water vapor permeable, wind and water resistant composite fabric and method of manufacturing same
US5149736A (en) * 1987-07-13 1992-09-22 Raychem Corporation Heat resistant gel compositions
US5153254A (en) * 1977-03-17 1992-10-06 Applied Elastomerics, Inc. Reusable lint remover
US5159022A (en) * 1986-02-20 1992-10-27 Asahi Kasei Kogyo Kabushiki Kaisha Crystalline block copolymer and process for producing the same
US5167649A (en) * 1988-08-22 1992-12-01 Zook Gerald P Drug delivery system for the removal of dermal lesions
US5173573A (en) * 1991-03-15 1992-12-22 Raychem Corporation Hermaphroditic gel closure
US5177143A (en) * 1984-08-31 1993-01-05 Raychem Corporation Method of making heat stable polymeric gelloid composition
US5181914A (en) * 1988-08-22 1993-01-26 Zook Gerald P Medicating device for nails and adjacent tissue
US5191752A (en) * 1992-05-04 1993-03-09 Murphy Robert J Elastomeric gel saddle
WO1993005113A1 (en) * 1991-09-06 1993-03-18 Raychem Limited Gels
US5221534A (en) * 1989-04-26 1993-06-22 Pennzoil Products Company Health and beauty aid compositions
US5239723A (en) * 1977-03-17 1993-08-31 Applied Elastomerics, Inc. Gelatinous elastomer swabs
US5262468A (en) * 1977-03-17 1993-11-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions
WO1993023472A1 (en) * 1992-05-13 1993-11-25 Raychem Limited Gels
US5313019A (en) * 1988-11-09 1994-05-17 N.V. Raychem S.A. Closure assembly
US5324222A (en) * 1977-03-17 1994-06-28 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic airfoils
US5330452A (en) * 1993-06-01 1994-07-19 Zook Gerald P Topical medicating device
US5334646A (en) * 1977-03-17 1994-08-02 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous articles
US5336708A (en) * 1977-03-17 1994-08-09 Applied Elastomerics, Inc. Gelatinous elastomer articles
US5459193A (en) * 1993-10-12 1995-10-17 H. B. Fuller Licensing & Financing, Inc. Polystyrene-ethylene/butylene-polystyrene hot melt adhesive
US5475890A (en) * 1977-03-17 1995-12-19 Applied Elastomerics, Inc. Gelatinous elastomer swabs
US5479952A (en) * 1994-01-06 1996-01-02 Polteco, Inc. Dental floss of ultra-high modulus line material with enhanced mechanical properties
US5559165A (en) * 1995-08-08 1996-09-24 National Starch And Chemical Investment Holding Corporation Hot melt adhesives for bonding to sensitive areas of the human body
US5606149A (en) * 1993-10-18 1997-02-25 Raychem Corporation Closure for high voltage cable connections having an insulating gel to form gel to gel interface with other insulating gel
US5624294A (en) * 1977-03-17 1997-04-29 Applied Elastomerics, Inc. Humdinger, gel spinner
US5626657A (en) * 1993-06-22 1997-05-06 Teksource, Lc Composite microsphere and lubricant mixture
US5633286A (en) * 1977-03-17 1997-05-27 Applied Elastomerics, Inc. Gelatinous elastomer articles
US5655947A (en) * 1977-03-17 1997-08-12 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic gel airfoils

Patent Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1268431A (en) * 1968-01-29 1972-03-29 Minnesota Mining & Mfg Stable elastomeric block polymer gels
US3594945A (en) * 1969-04-14 1971-07-27 Howard R Turney Flying toy
US3660849A (en) * 1970-07-13 1972-05-09 Minnesota Mining & Mfg Deep submergence diving suit and insulative material therefor
US3676387A (en) * 1970-12-21 1972-07-11 Minnesota Mining & Mfg Stable elastomeric polymer-oil combinations
US3860013A (en) * 1971-07-06 1975-01-14 Henry P Czapor Dental strip
US3821149A (en) * 1973-09-28 1974-06-28 Exxon Research Engineering Co Plasticized thermoplastic semicrystalline block copolymers
US3827999A (en) * 1973-11-09 1974-08-06 Shell Oil Co Stable elastomeric polymer-oil compositions
US4136699A (en) * 1975-06-27 1979-01-30 H. B. Fuller Company Absorbent article with adhesive strip
US5153254A (en) * 1977-03-17 1992-10-06 Applied Elastomerics, Inc. Reusable lint remover
US5324222A (en) * 1977-03-17 1994-06-28 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic airfoils
US5334646B1 (en) * 1977-03-17 1998-09-08 Applied Elastomerics Inc Thermoplastic elastomer gelatinous articles
US5655947A (en) * 1977-03-17 1997-08-12 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic gel airfoils
US5633286A (en) * 1977-03-17 1997-05-27 Applied Elastomerics, Inc. Gelatinous elastomer articles
US4369284A (en) * 1977-03-17 1983-01-18 Applied Elastomerics, Incorporated Thermoplastic elastomer gelatinous compositions
US5633286B1 (en) * 1977-03-17 2000-10-10 Applied Elastomerics Inc Gelatinous elastomer articles
US5239723A (en) * 1977-03-17 1993-08-31 Applied Elastomerics, Inc. Gelatinous elastomer swabs
US5262468A (en) * 1977-03-17 1993-11-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions
US5624294A (en) * 1977-03-17 1997-04-29 Applied Elastomerics, Inc. Humdinger, gel spinner
US5475890A (en) * 1977-03-17 1995-12-19 Applied Elastomerics, Inc. Gelatinous elastomer swabs
US5334646A (en) * 1977-03-17 1994-08-02 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous articles
US5336708A (en) * 1977-03-17 1994-08-09 Applied Elastomerics, Inc. Gelatinous elastomer articles
US4618213A (en) * 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
US4176240A (en) * 1978-05-30 1979-11-27 Bell Telephone Laboratories, Incorporated Filled electrical cable
US4259540A (en) * 1978-05-30 1981-03-31 Bell Telephone Laboratories, Incorporated Filled cables
US4151057A (en) * 1978-08-14 1979-04-24 Shell Oil Company High temperature adhesive made by exposure to radiation
US4361508A (en) * 1980-10-20 1982-11-30 Arco Polymers, Inc. Cable filler compositions comprising a mixture of (a) styrene block copolymer, (b) crystalline polypropylene copolymer and (c) mineral oil
US4351913A (en) * 1981-02-19 1982-09-28 Siecor Corporation Filling materials for electrical and light waveguide communications cables
US4509821A (en) * 1981-09-10 1985-04-09 Sun Tech, Inc. Filling material for electric cable
US4492428A (en) * 1981-10-27 1985-01-08 At&T Bell Laboratories Coated optical fiber
US4432607A (en) * 1981-10-27 1984-02-21 Bell Telephone Laboratories, Incorporated Hot melt coated optical fiber
US4389461A (en) * 1982-03-08 1983-06-21 Shell Oil Company Pipeline pig
US4678664A (en) * 1982-09-30 1987-07-07 Basf Corporation Mineral oil gels
US4864725A (en) * 1982-10-12 1989-09-12 Raychem Corporation Electrical connector and method of splicing wires
US4600261A (en) * 1982-10-12 1986-07-15 Raychem Corporation Apparatus and method for protection of electrical contacts
US4690831A (en) * 1983-06-23 1987-09-01 Raychem Corp. Protective article
US4865905A (en) * 1983-06-23 1989-09-12 Raychem Corporation Article for protection of a substrate
US4497538A (en) * 1983-08-10 1985-02-05 Siecor Corporation Filled transmission cable
US4944973A (en) * 1983-12-12 1990-07-31 Raychem Corporation Wraparound article
US4764535A (en) * 1984-08-06 1988-08-16 Q'so, Inc. Thermally applied sealants and process
US5177143A (en) * 1984-08-31 1993-01-05 Raychem Corporation Method of making heat stable polymeric gelloid composition
US4709982A (en) * 1984-11-27 1987-12-01 Bicc Public Limited Company Gelled oil filling compounds
US4692369A (en) * 1984-12-11 1987-09-08 Japan Gore-Tex, Inc. Water-vapor-permeable, waterproof, highly elastic films
US4798853A (en) * 1984-12-28 1989-01-17 Shell Oil Company Kraton G thermoplastic elastomer gel filling composition for cables
US4610738A (en) * 1985-01-04 1986-09-09 Raychem Corporation Encapsulating a splice with a gel-filled case
US4909756A (en) * 1985-01-04 1990-03-20 Raychem Corp. Splice case
US4643924A (en) * 1985-03-25 1987-02-17 Raychem Corporation Protective article comprising an elastic gel
US4721832A (en) * 1985-05-02 1988-01-26 Raychem Corporation Electrical connection sealing device
US4662692A (en) * 1985-05-02 1987-05-05 Raychem Corp. Sealing member
US4680233A (en) * 1985-05-02 1987-07-14 Raychem Corporation Sealing material
US5085597A (en) * 1985-08-20 1992-02-04 Raychem Corporation Corrosion protection apparatus
US4716183A (en) * 1985-11-22 1987-12-29 Raychem Corp. Styrene-diene block copolymer compositions
US5159022A (en) * 1986-02-20 1992-10-27 Asahi Kasei Kogyo Kabushiki Kaisha Crystalline block copolymer and process for producing the same
WO1988000603A2 (en) * 1986-07-18 1988-01-28 Raychem Limited Gels comprising block copolymers
US4801346A (en) * 1986-07-30 1989-01-31 The Kendall Company Protective coatings
US4983008A (en) * 1986-08-22 1991-01-08 Raychem Corporation Strained distributed optical fiber communication system
US4883431A (en) * 1986-09-26 1989-11-28 Raychem Corporation Gel-filled cap member
US4737128A (en) * 1986-12-11 1988-04-12 Parker Brothers Division Of Kenner Parker Toys Inc. Flexible unitary circular air foil
US4900877A (en) * 1987-01-13 1990-02-13 Raychem Corporation Shielding and sealing gaskets
US4942270A (en) * 1987-07-13 1990-07-17 Raychem Corporation Cable sealing apparatus comprising heat resistant gel compositions
US5149736A (en) * 1987-07-13 1992-09-22 Raychem Corporation Heat resistant gel compositions
US4889171A (en) * 1987-07-22 1989-12-26 Minimo Ruben M Foldable weather canopy for motor vehicles
US4833193A (en) * 1987-08-14 1989-05-23 Sieverding David L Novel pressure sensitive adhesives
US4889403A (en) * 1987-11-02 1989-12-26 Raychem Corp. Distribution optical fiber tap
US4888070A (en) * 1987-12-01 1989-12-19 Raychem Corporation Environmental sealing of a substrate
US4880878A (en) * 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
US4880676A (en) * 1988-04-05 1989-11-14 Raychem Corporation Cable sealing apparatus
US4822834A (en) * 1988-04-19 1989-04-18 The United States Of America As Represented By The Secretary Of The Air Force Vibration damping composition suitable for outer space temperature variations
US4842931A (en) * 1988-07-19 1989-06-27 Zook Gerald P Affixable padding material using gelatinous viscoelastic polymer
US5181914A (en) * 1988-08-22 1993-01-26 Zook Gerald P Medicating device for nails and adjacent tissue
US5167649A (en) * 1988-08-22 1992-12-01 Zook Gerald P Drug delivery system for the removal of dermal lesions
US5313019A (en) * 1988-11-09 1994-05-17 N.V. Raychem S.A. Closure assembly
WO1990005166A1 (en) * 1988-11-09 1990-05-17 Raychem Limited Gels
US4929211A (en) * 1988-12-02 1990-05-29 Softspot, Inc. Hand held tactile toy
US5221534A (en) * 1989-04-26 1993-06-22 Pennzoil Products Company Health and beauty aid compositions
US5068138A (en) * 1989-08-16 1991-11-26 Shell Oil Company Elastomeric film
WO1991005014A1 (en) * 1989-10-05 1991-04-18 Raychem Limited Gels
US5098421A (en) * 1989-10-16 1992-03-24 Zook Gerald P Viscoelastic gel foot padding and medicating device
US5126182A (en) * 1989-10-17 1992-06-30 Malden Mills Industries, Inc. Drapable, water vapor permeable, wind and water resistant composite fabric and method of manufacturing same
US4944363A (en) * 1990-02-06 1990-07-31 Cap Toys, Inc. Toy ball
US5026054A (en) * 1990-02-06 1991-06-25 Cap Toys, Inc. Toy
US4968747A (en) * 1990-03-30 1990-11-06 Arco Chemical Technology, Inc. Compatibilized blends of crystalline propylene polymers and styrenic copolymers
US5059748A (en) * 1990-04-26 1991-10-22 Raychem Corporation Cable splice enclosure
US5088734A (en) * 1990-07-09 1992-02-18 Glava Gary L Attenuating handle for recreational and work implements
US5173573A (en) * 1991-03-15 1992-12-22 Raychem Corporation Hermaphroditic gel closure
WO1993005113A1 (en) * 1991-09-06 1993-03-18 Raychem Limited Gels
US5191752A (en) * 1992-05-04 1993-03-09 Murphy Robert J Elastomeric gel saddle
US5618882A (en) * 1992-05-13 1997-04-08 Raychem Limited Gels containing SEPS block polymers
WO1993023472A1 (en) * 1992-05-13 1993-11-25 Raychem Limited Gels
US5330452A (en) * 1993-06-01 1994-07-19 Zook Gerald P Topical medicating device
US5626657A (en) * 1993-06-22 1997-05-06 Teksource, Lc Composite microsphere and lubricant mixture
US5459193A (en) * 1993-10-12 1995-10-17 H. B. Fuller Licensing & Financing, Inc. Polystyrene-ethylene/butylene-polystyrene hot melt adhesive
US5606149A (en) * 1993-10-18 1997-02-25 Raychem Corporation Closure for high voltage cable connections having an insulating gel to form gel to gel interface with other insulating gel
US5479952A (en) * 1994-01-06 1996-01-02 Polteco, Inc. Dental floss of ultra-high modulus line material with enhanced mechanical properties
US5559165A (en) * 1995-08-08 1996-09-24 National Starch And Chemical Investment Holding Corporation Hot melt adhesives for bonding to sensitive areas of the human body

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Properties of Oriented Block coploymers", A. Skoulios, Journal of Polymer Science: Polymer Symnposium 58, 369-379 (1977).
"Styrene-Diene Triblock Copolymers: Orientation Conditions and Mechanical Properties of The Oriented Materials" A. Weill and R. Pixa, Journal of Polymer Science Polymer Symposium 58, 381-394 (1977).
Blends And Thermoplastic Interpenetrating Polymer Networks of Polypropytlene And Polystyrene Block Poly (Ethylene Stat Butylene) Block Polytstyrene Triblock Copolymer. 1: Morphology and Structure Related Properties , Ohlesson, et al., Polymer Engineering and Science, Feb. 1996, vol. 36, No. 4. *
Blends And Thermoplastic Interpenetrating Polymer Networks of Polypropytlene And Polystyrene-Block-Poly (Ethylene-Stat-Butylene)-Block-Polytstyrene Triblock Copolymer. 1: Morphology and Structure-Related Properties, Ohlesson, et al., Polymer Engineering and Science, Feb. 1996, vol. 36, No. 4.
Kraton Polymers, May 1997, Shell Chemical Company. *
Melt Miscibility In Blends of Polypropylene,Polystryenhe Block Poly(Ethylene Sat Butylene) Block Polystyrene, and Processing Oil from Melting Point Depression , Ohlesson et al., Polymer Engineering and Science, 1996, vol. 36, No. 11. *
Melt Miscibility In Blends of Polypropylene,Polystryenhe-Block-Poly(Ethylene-Sat-Butylene)-Block-Polystyrene, and Processing Oil from Melting Point Depression, Ohlesson et al., Polymer Engineering and Science, 1996, vol. 36, No. 11.
Migration And Blooming Of Waxes To The Surface of Rubber Vulcanizates , Nah, et al., J. Polymer Science: Polymer Physics Ed., vol. 18, 511 521 (1980). *
Migration And Blooming Of Waxes To The Surface of Rubber Vulcanizates, Nah, et al., J. Polymer Science: Polymer Physics Ed., vol. 18, 511-521 (1980).
Properties of Oriented Block coploymers , A. Skoulios, Journal of Polymer Science: Polymer Symnposium 58, 369 379 (1977). *
SC: 1102 89 Shell Chemical Technical Bulletin Kraton Thermoplastic Rubber in oil gels , Apr. 1989. *
SC: 1102-89 Shell Chemical Technical Bulletin"Kraton® Thermoplastic Rubber in oil gels", Apr. 1989.
Septon trade literature, Kuraray Co., Ltd. 1995.8 (4,000) 15 pages. *
Septon, High Performance Thermoplastic Rubber, Kurraray Co., Ltd., 1995. *
Shell Chemical Co., Data Sheets: EKP 207 (093094 02) and L 1203 (SC:2384 950. *
Shell Chemical Co., Data Sheets: EKP-207 (093094-02) and L-1203 (SC:2384-950.
Silipos manual, 1994. *
Styrene Diene Triblock Copolymers: Orientation Conditions and Mechanical Properties of The Oriented Materials A. Weill and R. Pixa, Journal of Polymer Science Polymer Symposium 58, 381 394 (1977). *
Tuftec trade literature, Asani Chemical Co., Ltd., Synthetic Rubber Division, English and Japanese 14 pages. *

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030096899A1 (en) * 1996-02-14 2003-05-22 Pearce Tony M. Cushioning devices, gelatinous elastomer materials, and devices made therefrom
US6865759B2 (en) 1996-02-14 2005-03-15 Edizone, Inc. Cushions with non-intersecting-columnar elastomeric members exhibiting compression instability
US6413458B1 (en) 1996-02-14 2002-07-02 Edizone, Lc Process for forming gelatinous elastomer materials
US7060213B2 (en) 1996-02-14 2006-06-13 Edizone, Lc Cushioning devices, gelatinous elastomer materials, and devices made therefrom
US6590705B1 (en) * 1996-02-29 2003-07-08 3M Innovative Properties Company Optical film with co-continuous phases
US6599988B2 (en) 1997-12-22 2003-07-29 Bridgestone Corporation Centipede polymers and preparation and application in rubber compositions
US6369166B1 (en) 1998-06-12 2002-04-09 Bridgestone Corporation Application of disubstituted ethylene-maleimide copolymers in rubber compounds
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9986974B2 (en) * 1998-12-24 2018-06-05 Devicor Medical Products, Inc. Biopsy cavity marking device
US9492570B2 (en) 1998-12-24 2016-11-15 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US20050080339A1 (en) * 1998-12-24 2005-04-14 Vivant Medical, Inc. Biopsy cavity marking device
US9069133B2 (en) 1999-06-10 2015-06-30 Honeywell International Inc. Anti-reflective coating for photolithography and methods of preparation thereof
US7678462B2 (en) 1999-06-10 2010-03-16 Honeywell International, Inc. Spin-on-glass anti-reflective coatings for photolithography
US6545077B2 (en) 2000-08-23 2003-04-08 International Tape Partners, Llc Monofilament dental tapes with substantive coatings
US6604534B2 (en) 2000-08-23 2003-08-12 International Tape Partners, Llc Physical improvements in coated monofilament dental tapes
US20030225196A1 (en) * 2000-08-23 2003-12-04 International Tape Partners, Llc Monofilament dental tapes with substantive coatings
US6916880B2 (en) 2000-08-23 2005-07-12 International Tape Partners, Llc Monofilament dental tapes with substantive coatings
US6359064B1 (en) 2000-09-08 2002-03-19 Bridgestone Corporation Compound of polyester and polyalkylene grafted comb polymer
US8016755B2 (en) 2000-10-19 2011-09-13 Applied Medical Resources Corporation Surgical access apparatus and method
US8911366B2 (en) 2000-10-19 2014-12-16 Applied Medical Resources Corporation Surgical access apparatus and method
US8496581B2 (en) 2000-10-19 2013-07-30 Applied Medical Resources Corporation Surgical access apparatus and method
US20040015185A1 (en) * 2000-10-19 2004-01-22 Ewers Richard C. Surgical access apparatus and method
US8672839B2 (en) 2000-10-19 2014-03-18 Applied Medical Resource Corporation Surgical access apparatus and method
US7473221B2 (en) * 2000-10-19 2009-01-06 Applied Medical Resources Corporation Surgical access apparatus and method
US8070676B2 (en) 2000-10-19 2011-12-06 Applied Medical Resources Corporation Surgical access apparatus and method
US7481765B2 (en) * 2000-10-19 2009-01-27 Applied Medical Resources Corporation Surgical access apparatus and method
US8105234B2 (en) 2000-10-19 2012-01-31 Applied Medical Resources Corporation Surgical access apparatus and method
US20040094181A1 (en) * 2001-01-22 2004-05-20 Brown Dale G. Non-crystalline saliva-soluble coatings for elastomeric monofilament dental tapes
US6609527B2 (en) 2001-01-22 2003-08-26 International Tape Partners, Llc Non-crystalline saliva-soluble coatings for elastomeric monofilament dental tapes
US6907889B2 (en) 2001-01-22 2005-06-21 International Tape Partners, Llc Non-crystalline saliva-soluble coatings for elastomeric monofilament dental tapes
US6591844B2 (en) 2001-01-22 2003-07-15 Peri-Deat Limited Elastomeric monofilament dental tapes
US6884309B2 (en) 2001-01-22 2005-04-26 International Tape Partners Llc Coated monofilament tape bobbins and methods for winding
US20050226820A1 (en) * 2001-01-22 2005-10-13 Brown Dale G Non-crystalline saliva-soluble coatings for elastomeric monofilament dental tapes
US20020145066A1 (en) * 2001-01-22 2002-10-10 Michael Schweigert Coated monofilament tape bobbins and methods for winding
US20050199334A1 (en) * 2001-01-22 2005-09-15 Michael Schweigert Coated monofilament tape bobbins and methods for winding
US8703034B2 (en) 2001-08-14 2014-04-22 Applied Medical Resources Corporation Method of making a tack-free gel
US8870904B2 (en) 2001-08-14 2014-10-28 Applied Medical Resources Corporation Access sealing apparatus and method
US8157835B2 (en) 2001-08-14 2012-04-17 Applied Medical Resouces Corporation Access sealing apparatus and method
US9878140B2 (en) 2001-08-14 2018-01-30 Applied Medical Resources Corporation Access sealing apparatus and method
US9669153B2 (en) 2001-08-14 2017-06-06 Applied Medical Resources Corporation Method of manufacturing a tack-free gel for a surgical device
US6575176B1 (en) 2001-08-23 2003-06-10 International Tape Partners, Llc Monofilament dental tapes with soft abrasive coatings
US20030200983A1 (en) * 2001-08-23 2003-10-30 Brown Dale G. Particulate coated monofilament devices
US7017591B2 (en) 2001-08-23 2006-03-28 International Tape Partners Llc Particulate coated monofilament devices
US8388526B2 (en) 2001-10-20 2013-03-05 Applied Medical Resources Corporation Wound retraction apparatus and method
US8344088B2 (en) 2001-11-15 2013-01-01 Honeywell International Inc. Spin-on anti-reflective coatings for photolithography
US6835015B2 (en) 2002-02-11 2004-12-28 Edizone, Lc Jelly pens
US20030235662A1 (en) * 2002-02-11 2003-12-25 Edizone, Lc Color changing balls and toys
US20030235453A1 (en) * 2002-02-11 2003-12-25 Pearce Tony M. Jelly pens
US20030236313A1 (en) * 2002-02-11 2003-12-25 Edizone, Lc Methods for making foamed elastomer gels
US20040048018A1 (en) * 2002-02-11 2004-03-11 Pearce Tony M. Firm balls and toys with slow rebound characteristics
US7138079B2 (en) 2002-02-11 2006-11-21 Edizone, Lc Methods for making foamed elastomer gels
US20030234462A1 (en) * 2002-02-11 2003-12-25 Edizone, Lc Method for making gel including salt reduction step
US20030232177A1 (en) * 2002-02-11 2003-12-18 Edizone, Lc Jelly pen holder
US7101247B2 (en) * 2002-02-11 2006-09-05 Edizone, Lc Jelly blocks and jelly letters
US20030178044A1 (en) * 2002-02-11 2003-09-25 Brown Dale G. Micromesh interproximal devices
US6905431B2 (en) 2002-02-11 2005-06-14 Edizone, Lc Color changing balls and toys
US20030168077A1 (en) * 2002-02-11 2003-09-11 Brown Dale G. Coated micromesh dental devices overcoated with imbedded particulate
US7025986B2 (en) 2002-02-11 2006-04-11 International Tape Partners Llc Micromesh interproximal devices
US7650887B2 (en) 2002-06-05 2010-01-26 Applied Medical Resources Corporation Wound retractor
US8235054B2 (en) 2002-06-05 2012-08-07 Applied Medical Resources Corporation Wound retractor
US7913697B2 (en) 2002-06-05 2011-03-29 Applied Medical Resources Corporation Wound retractor
US8973583B2 (en) 2002-06-05 2015-03-10 Applied Medical Resources Corporation Wound retractor
US10507017B2 (en) 2002-06-05 2019-12-17 Applied Medical Resources Corporation Wound retractor
US9561024B2 (en) 2002-06-05 2017-02-07 Applied Medical Resources Corporation Wound retractor
US20050175551A1 (en) * 2002-10-24 2005-08-11 Heng Cai Silicon modified polyamide material useful for oral care
US7476447B2 (en) 2002-12-31 2009-01-13 Kimberly-Clark Worldwide, Inc. Elastomeric materials
US9295459B2 (en) 2003-02-25 2016-03-29 Applied Medical Resources Corporation Surgical access system
US8932214B2 (en) 2003-02-25 2015-01-13 Applied Medical Resources Corporation Surgical access system
US7951076B2 (en) 2003-02-25 2011-05-31 Applied Medical Resources Corporation Surgical access system
US8187177B2 (en) 2003-09-17 2012-05-29 Applied Medical Resources Corporation Surgical instrument access device
US8357086B2 (en) 2003-09-17 2013-01-22 Applied Medical Resources Corporation Surgical instrument access device
US8992806B2 (en) 2003-11-18 2015-03-31 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof
US7477389B2 (en) 2004-01-28 2009-01-13 Pamela Saha Deformable photoelastic device
US10539813B2 (en) 2004-01-28 2020-01-21 Pamela Saha Deformable photoelastic device
US20050164596A1 (en) * 2004-01-28 2005-07-28 Pamela Saha Deformable photoelastic device
US7977429B2 (en) * 2004-01-30 2011-07-12 Mitsui Chemicals, Inc. Polymers and uses thereof
US20070154431A1 (en) * 2004-01-30 2007-07-05 Mitsui Chemicals, Inc. Novel polymers and uses thereof
US20050173836A1 (en) * 2004-02-07 2005-08-11 Pearce Tony M. Screed mold method
US7666341B2 (en) 2004-02-07 2010-02-23 Tnt Holdings, Llc Screed mold method
US7717114B1 (en) 2004-10-11 2010-05-18 Alps South, LLC Mask seal interface
US7964664B2 (en) 2005-02-02 2011-06-21 Edizone, Llc Gel with wide distribution of Mw in mid-block
US20060194925A1 (en) * 2005-02-02 2006-08-31 Pearce Tony M Gel with wide distribution of Mw in mid-block
US20060243297A1 (en) * 2005-04-29 2006-11-02 Brown Dale G Coated monofilament oriented HDPE dental tapes
US20060283477A1 (en) * 2005-06-16 2006-12-21 Bryan Oronsky Interdental cleaning article with functional messages
US20070149859A1 (en) * 2005-10-14 2007-06-28 Applied Medical Resources Corporation Split hoop wound retractor
US9101354B2 (en) 2005-10-14 2015-08-11 Applied Medical Resources Corporation Wound retractor with gel cap
US8313431B2 (en) 2005-10-14 2012-11-20 Applied Medical Resources Corporation Split hoop wound retractor
US20070085232A1 (en) * 2005-10-14 2007-04-19 Applied Medical Resources Corporation Method of making a hand access laparoscopic device
US9649102B2 (en) 2005-10-14 2017-05-16 Applied Medical Resources Corporation Wound retractor with split hoops
US7815567B2 (en) 2005-10-14 2010-10-19 Applied Medical Resources, Corporation Split hoop wound retractor
US7883461B2 (en) 2005-10-14 2011-02-08 Applied Medical Resources Wound retractor with gel cap
US8647265B2 (en) 2005-10-14 2014-02-11 Applied Medical Resources Corporation Hand access laparoscopic device
US7704207B2 (en) 2005-10-14 2010-04-27 Applied Medical Resources Corporation Circular surgical retractor
US7892172B2 (en) 2005-10-14 2011-02-22 Applied Medical Resources Corporation Circular surgical retractor
US8267858B2 (en) 2005-10-14 2012-09-18 Applied Medical Resources Corporation Wound retractor with gel cap
US9474519B2 (en) 2005-10-14 2016-10-25 Applied Medical Resources Corporation Hand access laparoscopic device
US7727146B2 (en) 2005-10-14 2010-06-01 Applied Medical Resources Wound retractor with gel cap
US8414487B2 (en) 2005-10-14 2013-04-09 Applied Medical Resources Corporation Circular surgical retractor
US7749415B2 (en) 2005-10-14 2010-07-06 Applied Medical Resources Corporation Method of making a hand access laparoscopic device
US8308639B2 (en) 2005-10-14 2012-11-13 Applied Medical Resources Corporation Split hoop wound retractor with gel pad
US9017254B2 (en) 2005-10-14 2015-04-28 Applied Medical Resources Corporation Hand access laparoscopic device
US7909760B2 (en) 2005-10-14 2011-03-22 Applied Medical Resources Corporation Split hoop wound retractor with gel pad
US8642246B2 (en) 2007-02-26 2014-02-04 Honeywell International Inc. Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof
US20090017216A1 (en) * 2007-05-08 2009-01-15 Frank Hoefflin Resin blends with wide temperature range damping
US8226552B2 (en) 2007-05-11 2012-07-24 Applied Medical Resources Corporation Surgical retractor
US8109873B2 (en) 2007-05-11 2012-02-07 Applied Medical Resources Corporation Surgical retractor with gel pad
US8961410B2 (en) 2007-05-11 2015-02-24 Applied Medical Resources Corporation Surgical retractor with gel pad
US8513361B2 (en) 2007-12-28 2013-08-20 Bridgestone Corporation Interpolymers containing isobutylene and diene mer units
US9428619B2 (en) 2007-12-28 2016-08-30 Bridgestone Corporation Interpolymers containing isobutylene and diene mer units
US8343047B2 (en) 2008-01-22 2013-01-01 Applied Medical Resources Corporation Surgical instrument access device
US8894571B2 (en) 2008-10-13 2014-11-25 Applied Medical Resources Corporation Single port access system
US8262568B2 (en) 2008-10-13 2012-09-11 Applied Medical Resources Corporation Single port access system
US8721537B2 (en) 2008-10-13 2014-05-13 Applied Medical Resources Corporation Single port access system
US8480575B2 (en) 2008-10-13 2013-07-09 Applied Medical Resources Corporation Single port access system
US8784985B2 (en) 2009-06-10 2014-07-22 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US11510695B2 (en) 2009-08-31 2022-11-29 Applied Medical Resources Corporation Multifunctional surgical access system
US9743954B2 (en) 2009-08-31 2017-08-29 Applied Medical Resources Corporation Multifunctional surgical access system
US9717522B2 (en) 2009-08-31 2017-08-01 Applied Medical Resources Corporation Multi-functional surgical access system
WO2011057095A1 (en) 2009-11-05 2011-05-12 Colgate-Palmolive Company Elastomeric dental floss
US8863762B2 (en) 2009-11-05 2014-10-21 Colgate-Palmolive Company Elastomeric dental floss
US9872702B2 (en) 2010-10-01 2018-01-23 Applied Medical Resources Corporation Natural orifice surgery system
US10376282B2 (en) 2010-10-01 2019-08-13 Applied Medical Resources Corporation Natural orifice surgery system
US10271875B2 (en) 2010-10-01 2019-04-30 Applied Medical Resources Corporation Natural orifice surgery system
US9289200B2 (en) 2010-10-01 2016-03-22 Applied Medical Resources Corporation Natural orifice surgery system
US9289115B2 (en) 2010-10-01 2016-03-22 Applied Medical Resources Corporation Natural orifice surgery system
US11123102B2 (en) 2010-10-01 2021-09-21 Applied Medical Resources Corporation Natural orifice surgery system
WO2012060843A1 (en) 2010-11-05 2012-05-10 Colgate-Palmolive Company Elastomeric dental floss
US8967161B2 (en) 2010-11-05 2015-03-03 Colgate-Palmolive Company Elastomeric dental floss
US9631084B2 (en) 2011-02-14 2017-04-25 Kuraray America, Inc. Elastomeric formulations useful in films and sheets
US9056975B2 (en) 2011-02-14 2015-06-16 Kuraray America, Inc. Elastomeric formulations useful in films and sheets
US9307975B2 (en) 2011-05-10 2016-04-12 Applied Medical Resources Corporation Wound retractor
US8758236B2 (en) 2011-05-10 2014-06-24 Applied Medical Resources Corporation Wound retractor
US9192366B2 (en) 2011-05-10 2015-11-24 Applied Medical Resources Corporation Wound retractor
US9241697B2 (en) 2011-05-10 2016-01-26 Applied Medical Resources Corporation Wound retractor
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US11471142B2 (en) 2013-03-15 2022-10-18 Applied Medical Resources Corporation Mechanical gel surgical access device
US9642608B2 (en) 2014-07-18 2017-05-09 Applied Medical Resources Corporation Gels having permanent tack free coatings and method of manufacture
US11583316B2 (en) 2014-08-15 2023-02-21 Applied Medical Resources Corporation Natural orifice surgery system
US10952768B2 (en) 2014-08-15 2021-03-23 Applied Medical Resources Corporation Natural orifice surgery system
US10172641B2 (en) 2014-08-15 2019-01-08 Applied Medical Resources Corporation Natural orifice surgery system
US9949730B2 (en) 2014-11-25 2018-04-24 Applied Medical Resources Corporation Circumferential wound retraction with support and guidance structures
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US11382658B2 (en) 2015-09-15 2022-07-12 Applied Medical Resources Corporation Surgical robotic access system
US10368908B2 (en) 2015-09-15 2019-08-06 Applied Medical Resources Corporation Surgical robotic access system
US11883068B2 (en) 2015-09-15 2024-01-30 Applied Medical Resources Corporation Surgical robotic access system
US10575840B2 (en) 2015-10-07 2020-03-03 Applied Medical Resources Corporation Wound retractor with multi-segment outer ring
US11602338B2 (en) 2015-10-07 2023-03-14 Applied Medical Resources Corporation Wound retractor with multi-segment outer ring
US10674896B2 (en) 2016-09-12 2020-06-09 Applied Medical Resources Corporation Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments
US11627867B2 (en) 2016-09-12 2023-04-18 Applied Medical Resources Corporation Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments

Similar Documents

Publication Publication Date Title
US5962572A (en) Oriented gel and oriented gel articles
US5760117A (en) Gelatinous composition and articles
US5633286A (en) Gelatinous elastomer articles
US6333374B1 (en) Fluffy, strong, solid elastic gels, articles and method of making same
US6552109B1 (en) Gelatinous elastomer compositions and articles
US5239723A (en) Gelatinous elastomer swabs
US5475890A (en) Gelatinous elastomer swabs
US5336708A (en) Gelatinous elastomer articles
US6148830A (en) Tear resistant, multiblock copolymer gels and articles
US6161555A (en) Crystal gels useful as dental floss with improved high tear, high tensile, and resistance to high stress rupture properties
US5884639A (en) Crystal gels with improved properties
US6117176A (en) Elastic-crystal gel
US5262468A (en) Thermoplastic elastomer gelatinous compositions
US6050871A (en) Crystal gel airfoils with improved tear resistance and gel airfoils with profiles capable of exhibiting time delay recovery from deformation
US5334646A (en) Thermoplastic elastomer gelatinous articles
US4369284A (en) Thermoplastic elastomer gelatinous compositions
US5508334A (en) Thermoplastic elastomer gelatinous compositions and articles
US6420475B1 (en) Tear resistant elastic crystal gels gel composites and their uses
US4618213A (en) Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
EP0861285B1 (en) A polymeric composition in pellet form
US4892903A (en) Elastomeric fibers, structures fashioned therefrom and elastomeric films
US5093422A (en) Low stress relaxation extrudable elastomeric composition
US6627275B1 (en) Tear resistant elastic crystal gels suitable for inflatable restraint cushions and other uses
US5994450A (en) Gelatinous elastomer and methods of making and using the same and articles made therefrom
US7344568B2 (en) Tear resistant gels, composites, and liner articles

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED ELASTOMERICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, JOHN Y.;REEL/FRAME:008779/0298

Effective date: 19960404

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20071005