US6183491B1 - Embolic coil deployment system with improved embolic coil - Google Patents

Embolic coil deployment system with improved embolic coil Download PDF

Info

Publication number
US6183491B1
US6183491B1 US09/256,161 US25616199A US6183491B1 US 6183491 B1 US6183491 B1 US 6183491B1 US 25616199 A US25616199 A US 25616199A US 6183491 B1 US6183491 B1 US 6183491B1
Authority
US
United States
Prior art keywords
coil
catheter
embolic
durometer
embolic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/256,161
Inventor
Robert Lulo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Codman and Shurtleff Inc
Original Assignee
Cordis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordis Corp filed Critical Cordis Corp
Priority to US09/256,161 priority Critical patent/US6183491B1/en
Assigned to CORDIS CORPORATION reassignment CORDIS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LULO, ROBERT
Assigned to CORDIS NEUROVASCULAR, INC. reassignment CORDIS NEUROVASCULAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CORIDS CORPORATION
Application granted granted Critical
Publication of US6183491B1 publication Critical patent/US6183491B1/en
Assigned to CODMAN & SHURTLEFF, INC. reassignment CODMAN & SHURTLEFF, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: CORDIS NEUROVASCULAR, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12154Coils or wires having stretch limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00539Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12081Details concerning the detachment of the occluding device from the introduction device detachable by inflation

Definitions

  • the present invention relates to a medical device for placing an embolic coil at a preselected location within a vessel of the human body, and more particularly, relates to a catheter having a distal tip for retaining the embolic coil in order to transport the coil to a preselected position within the vessel and a control mechanism for releasing the embolic coil at the preselected position.
  • Coils which are placed in vessels may take the form of helically wound coils, or alternatively, may be random wound coils, coils wound within other coils or many other such coil configurations. Examples of various coil configurations are disclosed in U.S. Pat. No. 5,334,210, entitled, “Vascular Occlusion Assembly; U.S. Pat. No. 5,382,259, entitled, “Vasoocclusion Coil With Attached Tubular Woven Or Braided Fibrous Coverings.” Embolic coils are generally formed of a radiopaque metallic materials, such as platinum, gold, tungsten or alloys of these metals. Often times several coils are placed at a given location in order to occlude the flow of blood through the vessel by promoting thrombus formation at the particular location.
  • embolic coils have been placed within the distal end of the catheter and when the distal end of the catheter is properly positioned the coil may then be pushed out of the end of the catheter with, for example a guidewire, to release the coil at the desired location.
  • This procedure of placement of the embolic coil is conducted under fluoroscopic visualization such that the movement of the coil through the vasculature of the body may be monitored and the coil may be placed in the desired location.
  • Another coil positioning system utilizes a catheter having a socket at the distal end of the catheter for retaining a ball which is bonded to the proximal end of the coil.
  • the ball which is larger in diameter than the outside diameter of the coil, is placed in a socket within the lumen at the distal end of the catheter and the catheter is then moved into a vessel in order to place the coil at a desired position.
  • a pusher wire with a piston at the end thereof is pushed distally from the proximal end of the catheter to thereby push the ball out of the socket in order to thereby release the coil at the desired position.
  • Another method for placing an embolic coil is that of utilizing a heat releasable adhesive bond for retaining the coil at the distal end of the catheter.
  • One such system uses laser energy which is transmitted through a fiber optic cable in order to apply heat to the adhesive bond in order to release the coil from the end of the catheter.
  • Such a method is disclosed in U.S. Pat. No. 5,108,407, entitled, “Method And Apparatus For Placement Of An Embolic Coil.”
  • Such a system also suffers from the problem of having a separate element which extends throughout the length of the catheter with the resulting stiffness of the catheter.
  • Still another method for placing an embolic coil is disclosed in co-pending U.S. patent application Ser. No. 09/177,848, entitled “Embolic Coil Hydraulic Deployment System,” filed on Oct. 21, 1998 and assigned to the same assignee as the present patent application.
  • This patent application discloses the use of fluid pressure which is applied to the distal tip of the catheter for expanding the lumen in order to release the embolic coil.
  • the present invention is directed toward a vascular occlusive coil deployment system for use in placing an embolic coil at a preselected site within a vessel which includes an elongated, flexible catheter having a distal tip for retaining the coil so that the coil may be moved to the preselected position within the vessel.
  • the catheter has a lumen which extends therethrough the length of the catheter and also includes a distal end which is formed of a material having a durometer such that when a fluid pressure of about 90 to 450 pounds per square inch (psi) is applied to the interior of the catheter, the walls of the distal tip expand outwardly, or radially, to thereby increase the lumen of the distal tip of the catheter.
  • the proximal end of the embolic coil is placed into the lumen of the distal tip of the catheter and is retained by the distal tip of the catheter.
  • a hydraulic injector such as a syringe, is coupled to the proximal end of the catheter for applying a fluid pressure to the interior of the catheter.
  • fluid pressure is then applied to the interior of the catheter by the hydraulic injector to thereby cause the walls of the distal tip to expand outwardly to thereby release the coil for placement in the vessel.
  • the proximal portion of the coil is modified in a manner so as to “lock” adjacent turns of the coil together to thereby prevent such stretching or unwinding.
  • the coil preferably takes the form of a tightly wound helical coil having a proximal end, a distal end and a lumen extending therethrough.
  • the coil includes a seal plug which is disposed in fluid-tight engagement within the coil lumen at the proximal end of the coil.
  • the coil includes a support wire which extends along the central axis of the coil lumen for a length substantially less than the length of the coil and in which one end of the support wire is fixedly attached to the seal plug and the other end of the support wire is fixedly attached to at least one of the turns of the coil at a point substantially remote from the distal end of the coil.
  • the flexible catheter is comprised of a proximal section and a relatively short distal section.
  • the proximal section is formed of a material which is sufficiently flexible to be passed through the vasculature of the human body and is of a durometer which essentially resists outward expansion when a fluid pressure on the order of about 90 to 450 psi is applied to the interior of the catheter.
  • the distal section of the catheter is formed of a material which is also sufficiently flexible to be passed through the vasculature of the body, yet is of a durometer which is significantly lower than the durometer of the proximal section and exhibits the property of expanding outwardly, or radially, when such a fluid pressure is applied to the interior of the catheter to thereby permit the release of the embolic coil.
  • the distal section of the catheter has a durometer in a range of between about 25 D and 55 D.
  • the embolic coil is comprised of a helical coil having a proximal end, a distal end, and a lumen extending therethrough.
  • a seal plug is disposed within the lumen of the proximal end of the coil in fluid-tight engagement.
  • the proximal end of the coil is disposed in a fluid-tight engagement within the lumen of the distal section of the catheter and is retained by the lumen of the catheter for subsequent release.
  • the hydraulic injector for applying a fluid pressure to the interior of the catheter takes the form of a syringe which is coupled to the proximal end of the catheter for, upon movement of the piston, creating a fluid pressure which is applied to the interior of the catheter to thereby cause the release of the embolic coil.
  • the embolic coil may take the form of other types of implantable devices, such as a vascular filter.
  • a method for placing an embolic coil with a selected site within a vessel of the body comprising the steps of advancing a catheter through the vasculature of the body to place an embolic coil which is retained within the lumen of the distal tip of the catheter to a preselected site, applying a fluid pressure to the interior of the catheter to thereby cause the distal tip of the catheter to expand radially outwardly to release the embolic coil at the preselected site, and withdrawing the catheter from the vasculature system.
  • the proximal portion of the coil is prevented from stretching or unwinding to thereby prevent the premature release of the coil from the catheter deployment system.
  • FIG. 1 is an enlarged, partially sectioned view of the hydraulic vascular occlusive coil deployment system of the present invention
  • FIG. 2 is an enlarged partially sectioned view showing the distal end of the coil deployment system prior to deployment of the coil;
  • FIGS. 3 and 4 illustrate the sequential steps in the radial expansion of the distal tip of the coil deployment system as the embolic coil is released;
  • FIG. 5 illustrates the distal tip of the coil deployment system after release of the embolic coil
  • FIG. 6 is a partially sectioned view showing the coil retaining structure of the present invention.
  • FIG. 1 generally illustrates the vascular occlusive coil deployment system 100 which is comprised of a hydraulic injector or syringe 102 , coupled to the proximal end of a catheter 104 .
  • An embolic coil 106 is disposed within the lumen of the distal end 108 of the catheter. The proximal end of the coil 106 is tightly held within the lumen of the distal section 108 of the catheter 104 until the deployment system is activated for release of the coil.
  • the syringe 102 includes a threaded piston 110 which is controlled by a handle 112 for infusing fluid into the interior of the catheter 104 .
  • the catheter 104 includes a winged hub 114 which aids in the insertion of the is catheter into the vascular system of the body.
  • FIG. 2 illustrates in more detail the distal end of the catheter 104 .
  • the catheter 104 includes a proximal section 116 and the distal section 108 .
  • the proximal section 118 of the embolic coil 106 is disposed within the distal section 108 of the catheter and is tightly held within the lumen 120 of this distal section 108 prior to release of the coil.
  • FIG. 2 illustrates the vascular occlusive coil deployment system prior to activation of the piston of the syringe and prior to release of the coil.
  • the embolic coil 106 may take various forms and configurations and may even take the form of a randomly wound coil, however, with the helical wound coil as illustrated in FIG. 2, the coil is provided with a weld bead or seal plug 122 which is disposed in a lumen 123 which lumen extends throughout the length of the coil 106 .
  • the seal plug 122 serves to prevent the flow of fluid through the lumen of the coil 106 so that when the coil 106 is placed in fluid-tight engagement with the lumen 120 the coil serves to provide a fluid-tight seal at the distal end of the catheter 104 .
  • a liquid silicone material 130 a is injected into the space surrounding the support wire 130 to fill the proximal portion of the lumen of the coil. The silicone material is then cured to seal the proximal end of the coil to prevent fluid leakage through the turns of the coil. The cured remains flexible with the result that the proximal end of the coil remains flexible.
  • the proximal section 116 and the distal section 108 of the catheter 104 are formed of materials having different durometers.
  • the proximal section 116 is preferably formed of Pebax material having a durometer in a range of about 62 D to 75 D.
  • the proximal section is sufficiently flexible to transverse the vasculature of the human body, but is sufficiently rigid such that when a fluid pressure of approximately 90 to 450 psi is applied to the interior of this section of the catheter there is very little, if any, radial expansion of the walls of this section.
  • the distal section 108 of the catheter is preferably formed of polymer material with a relatively low durometer which, exhibits the characteristic that when a fluid pressure of approximately 90 to 450 psi is applied to the interior of the catheter the walls of the distal section 108 expand radially, somewhat similar to the action of a balloon inflating, to thereby release the proximal end 118 of the coil 106 .
  • the distal section 108 is preferably formed from a block copolymer such as Pebax having a durometer of between 25 D and 55 D with a durometer of 40 D being the preferred durometer.
  • FIGS. 3 and 4 generally illustrate the coil release mechanism in action for the vascular occlusive catheter deployment system. More particularly, as shown in FIG. 3, when a hydraulic pressure is applied to the interior 124 of the catheter 104 the relatively low durometer distal section 108 of the catheter begins to expand radially, much as a balloon expands during the process of inflation. As the distal section 108 continues to expand radially there comes a point as illustrated in FIG. 4 in which the coil 106 becomes disengaged from the lumen of the distal section 108 and the coil is then released from the catheter and is deployed at that location within the vessel.
  • the catheter may then be withdrawn leaving the coil positioned at the desired site.
  • the vaso-occlusion or embolic coil 106 is formed by winding a platinum alloy wire into a tightly wound helical configuration.
  • the diameter of the wire is generally in the range of about 0.0015 inches to 0.008 inches.
  • the outside diameter of the coil 106 is preferably in a range of about 0.006 inches to 0.055 inches. While the particular embolic coil 106 illustrated in FIG. 6 is shown as being a straight coil it should be appreciated that embolic coils take the form of various configurations and may take the form of a helix, a random shape configuration or even a coil within a coil configuration.
  • the first several turns on the proximal end of the embolic coil 106 are retained or held by the distal tip of the catheter as the coil is moved in position. Often times it is necessary to move a coil to a certain position within the vasculature and then to withdraw the coil back to a more proximal position within the vasculature. During the movement of a coil through the vasculature, particularly when the coil is withdrawn to a more proximal position within the vasculature, it is possible to stretch or unwind the turns of the coil. If the turns of the coil which are held by the distal tip of the deployment catheter are stretched or unwound the result is that the outside diameter of the coil decreases with the result that the coil may be prematurely released from the deployment system.
  • a platinum support wire 130 is welded to the proximal sealing plug 122 .
  • the other end of the platinum support wire 130 is bonded by welding to one of the turns of the coil at a position relatively close to the proximal end of the catheter.
  • the embolic coil is of a length in a range of about 1.5 centimeters to 30 centimeters.
  • the length of the support wire is of a length in the range of about 0.5 millimeters to about 4 millimeters and the diameter of the support wire is between about 0.0007 and 0.002 inches.
  • the proximal sealing plug may take the form of a welded bead which is formed at the end of the support wire 130 .
  • the support wire may be attached to the weld bead and to the turns of the coil by soldering, welding, or by the use of an adhesive.
  • the support wire could be formed of various different materials including polymers or composites.
  • a liquid silicone material 130 a is injected into the space surrounding the support wire 130 to fill the proximal portion of the lumen of the coil. The silicone material is then cured to seal the proximal end of the coil to prevent fluid leakage through the turns of the coil.
  • the catheter may be activated by applying a hydraulic pressure to the interior of the catheter to thereby cause the catheter to release the coil and deposit the coil very accurately at the desired location.

Abstract

A medical device for placing an embolic coil at a preselected location within a vessel comprising a positioning catheter having a distal tip for retaining the embolic coil which when pressurized with a fluid expands outwardly to release the coil at the preselected position and including an embolic coil having a relatively flexible proximal portion which resists stretching.

Description

This application claims benefit to provisional application 60/077455 filed Mar. 10, 1998.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a medical device for placing an embolic coil at a preselected location within a vessel of the human body, and more particularly, relates to a catheter having a distal tip for retaining the embolic coil in order to transport the coil to a preselected position within the vessel and a control mechanism for releasing the embolic coil at the preselected position.
2. Description of the Prior Art
For many years flexible catheters have been used to place various devices-within the vessels of the human body. Such devices include dilatation balloons, radiopaque fluids, liquid medications and various types of occlusion devices such as balloons and embolic coils. Examples of such catheter devices are disclosed in U.S. Pat. No. 5,108,407, entitled “Method And Apparatus For Placement Of An Embolic Coil”; U.S. Pat. No. 5,122,136, entitled, “Endovascular Electrolytically Detachable Guidewire Tip For The Electroformation Of Thrombus In Arteries, Veins, Aneurysms, Vascular Malformations And Arteriovenous Fistulas.” These patents disclose devices for delivering embolic coils to preselected position within vessel of the human body in order to treat aneurysms or alternatively to occlude the blood vessel at the particular location.
Coils which are placed in vessels may take the form of helically wound coils, or alternatively, may be random wound coils, coils wound within other coils or many other such coil configurations. Examples of various coil configurations are disclosed in U.S. Pat. No. 5,334,210, entitled, “Vascular Occlusion Assembly; U.S. Pat. No. 5,382,259, entitled, “Vasoocclusion Coil With Attached Tubular Woven Or Braided Fibrous Coverings.” Embolic coils are generally formed of a radiopaque metallic materials, such as platinum, gold, tungsten or alloys of these metals. Often times several coils are placed at a given location in order to occlude the flow of blood through the vessel by promoting thrombus formation at the particular location.
In the past, the proximal end of embolic coils have been placed within the distal end of the catheter and when the distal end of the catheter is properly positioned the coil may then be pushed out of the end of the catheter with, for example a guidewire, to release the coil at the desired location. This procedure of placement of the embolic coil is conducted under fluoroscopic visualization such that the movement of the coil through the vasculature of the body may be monitored and the coil may be placed in the desired location. With these placements systems there is very little control over the exact placement of the coil since the coil may be ejected to a position some distance beyond the end of the catheter. As is apparent, with these latter systems, when the coil has been released from the catheter it is difficult, if not impossible, to retrieve the coil or to reposition the coil.
Numerous procedures have been developed to enable more accurate positioning of coils within a vessel. Still another such procedure involves the use of a glue or solder for attaching the embolic coil to a guidewire which, is in turn, placed within a flexible catheter for positioning the coil within the vessel at a preselected position. Once the coil is at the desired position, the coil is restrained by the catheter and the guidewire is pulled from the proximal end of the catheter to thereby cause the coil to be detached from the guidewire and released from the catheter system. Such a coil positioning system is disclosed in U.S. Pat. No. 5,263,964, entitled, “Coaxial Traction Detachment Apparatus And Method.”
Another coil positioning system utilizes a catheter having a socket at the distal end of the catheter for retaining a ball which is bonded to the proximal end of the coil. The ball, which is larger in diameter than the outside diameter of the coil, is placed in a socket within the lumen at the distal end of the catheter and the catheter is then moved into a vessel in order to place the coil at a desired position. Once the position is reached, a pusher wire with a piston at the end thereof is pushed distally from the proximal end of the catheter to thereby push the ball out of the socket in order to thereby release the coil at the desired position. Such a system is disclosed in U.S. Pat. No. 5,350,397, entitled, “Axially Detachable Embolic Coil Assembly.” One problem with this type of coil placement system which utilizes a pusher wire which extends through the entire length of the catheter and which is sufficiently stiff to push an attachment ball out of engagement with the socket at the distal end of the catheter is that the pusher wire inherently causes the catheter to be too stiff with the result that it is very difficult to guide the catheter through the vasculature of the body.
Another method for placing an embolic coil is that of utilizing a heat releasable adhesive bond for retaining the coil at the distal end of the catheter. One such system uses laser energy which is transmitted through a fiber optic cable in order to apply heat to the adhesive bond in order to release the coil from the end of the catheter. Such a method is disclosed in U.S. Pat. No. 5,108,407, entitled, “Method And Apparatus For Placement Of An Embolic Coil.” Such a system also suffers from the problem of having a separate element which extends throughout the length of the catheter with the resulting stiffness of the catheter.
Still another method for placing an embolic coil is disclosed in co-pending U.S. patent application Ser. No. 09/177,848, entitled “Embolic Coil Hydraulic Deployment System,” filed on Oct. 21, 1998 and assigned to the same assignee as the present patent application. This patent application discloses the use of fluid pressure which is applied to the distal tip of the catheter for expanding the lumen in order to release the embolic coil.
Various embolic coil designs have been proposed for use with coil deployment systems such as the stretch resistant vaso-occlusive coil disclosed in U.S. Pat. No. 5,853,418, entitled “Stretch Resistant Vaso-occlusive Coils,” which discloses a helically wound coil having a polymeric stretch resisting member extending through the lumen of the coil and fixedly attached to both the distal end and the proximal end of the coil. While the stretch resisting member prevents the coil from being stretched during use, this member which extends throughout the length of the coil tends to significantly reduce the flexibility of the coil. This reduced flexibility may present problems because in order to place vaso-occlusive coils into a desired location and have the coil property employ it is very important that the coil be very flexible.
SUMMARY OF THE INVENTION
The present invention is directed toward a vascular occlusive coil deployment system for use in placing an embolic coil at a preselected site within a vessel which includes an elongated, flexible catheter having a distal tip for retaining the coil so that the coil may be moved to the preselected position within the vessel. The catheter has a lumen which extends therethrough the length of the catheter and also includes a distal end which is formed of a material having a durometer such that when a fluid pressure of about 90 to 450 pounds per square inch (psi) is applied to the interior of the catheter, the walls of the distal tip expand outwardly, or radially, to thereby increase the lumen of the distal tip of the catheter. The proximal end of the embolic coil is placed into the lumen of the distal tip of the catheter and is retained by the distal tip of the catheter. A hydraulic injector, such as a syringe, is coupled to the proximal end of the catheter for applying a fluid pressure to the interior of the catheter. When the coil is placed at a desired position within a vessel, fluid pressure is then applied to the interior of the catheter by the hydraulic injector to thereby cause the walls of the distal tip to expand outwardly to thereby release the coil for placement in the vessel.
In order to prevent the proximal portion of the coil, which is held by the distal tip of the catheter, from stretching and unwinding, to thereby cause a premature release of the coil, the proximal portion of the coil is modified in a manner so as to “lock” adjacent turns of the coil together to thereby prevent such stretching or unwinding. The coil preferably takes the form of a tightly wound helical coil having a proximal end, a distal end and a lumen extending therethrough. The coil includes a seal plug which is disposed in fluid-tight engagement within the coil lumen at the proximal end of the coil. In addition, the coil includes a support wire which extends along the central axis of the coil lumen for a length substantially less than the length of the coil and in which one end of the support wire is fixedly attached to the seal plug and the other end of the support wire is fixedly attached to at least one of the turns of the coil at a point substantially remote from the distal end of the coil. With this design, all of the turns of the coil between the proximal end of the coil and the point on the coil where the support wire is attached are tightly secured to each other thereby preventing this proximal portion of the coil from stretching or unwinding while still being very flexible.
In accordance with another aspect of the present invention, the flexible catheter is comprised of a proximal section and a relatively short distal section. The proximal section is formed of a material which is sufficiently flexible to be passed through the vasculature of the human body and is of a durometer which essentially resists outward expansion when a fluid pressure on the order of about 90 to 450 psi is applied to the interior of the catheter. The distal section of the catheter is formed of a material which is also sufficiently flexible to be passed through the vasculature of the body, yet is of a durometer which is significantly lower than the durometer of the proximal section and exhibits the property of expanding outwardly, or radially, when such a fluid pressure is applied to the interior of the catheter to thereby permit the release of the embolic coil.
In accordance with still another aspect of the present invention, the distal section of the catheter has a durometer in a range of between about 25 D and 55 D.
In still another aspect of the present invention, the embolic coil is comprised of a helical coil having a proximal end, a distal end, and a lumen extending therethrough. A seal plug is disposed within the lumen of the proximal end of the coil in fluid-tight engagement. The proximal end of the coil is disposed in a fluid-tight engagement within the lumen of the distal section of the catheter and is retained by the lumen of the catheter for subsequent release.
In another aspect of the present invention, the hydraulic injector for applying a fluid pressure to the interior of the catheter takes the form of a syringe which is coupled to the proximal end of the catheter for, upon movement of the piston, creating a fluid pressure which is applied to the interior of the catheter to thereby cause the release of the embolic coil.
In accordance with another aspect of the present invention, the embolic coil may take the form of other types of implantable devices, such as a vascular filter.
In another aspect of the present invention, there is provided a method for placing an embolic coil with a selected site within a vessel of the body comprising the steps of advancing a catheter through the vasculature of the body to place an embolic coil which is retained within the lumen of the distal tip of the catheter to a preselected site, applying a fluid pressure to the interior of the catheter to thereby cause the distal tip of the catheter to expand radially outwardly to release the embolic coil at the preselected site, and withdrawing the catheter from the vasculature system.
With the coil design of the present invention the proximal portion of the coil is prevented from stretching or unwinding to thereby prevent the premature release of the coil from the catheter deployment system.
These aspects of the invention and the advantages thereof will be more clearly understood from the following description and drawings of a preferred embodiment of the present invention:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an enlarged, partially sectioned view of the hydraulic vascular occlusive coil deployment system of the present invention;
FIG. 2 is an enlarged partially sectioned view showing the distal end of the coil deployment system prior to deployment of the coil;
FIGS. 3 and 4 illustrate the sequential steps in the radial expansion of the distal tip of the coil deployment system as the embolic coil is released;
FIG. 5 illustrates the distal tip of the coil deployment system after release of the embolic coil; and,
FIG. 6 is a partially sectioned view showing the coil retaining structure of the present invention.
DESCRIPTION OF A PREFERRED EMBODIMENT
FIG. 1 generally illustrates the vascular occlusive coil deployment system 100 which is comprised of a hydraulic injector or syringe 102, coupled to the proximal end of a catheter 104. An embolic coil 106 is disposed within the lumen of the distal end 108 of the catheter. The proximal end of the coil 106 is tightly held within the lumen of the distal section 108 of the catheter 104 until the deployment system is activated for release of the coil. As may be seen, the syringe 102 includes a threaded piston 110 which is controlled by a handle 112 for infusing fluid into the interior of the catheter 104. Also as illustrated, the catheter 104 includes a winged hub 114 which aids in the insertion of the is catheter into the vascular system of the body.
FIG. 2 illustrates in more detail the distal end of the catheter 104. The catheter 104 includes a proximal section 116 and the distal section 108. The proximal section 118 of the embolic coil 106 is disposed within the distal section 108 of the catheter and is tightly held within the lumen 120 of this distal section 108 prior to release of the coil. As may be appreciated, FIG. 2 illustrates the vascular occlusive coil deployment system prior to activation of the piston of the syringe and prior to release of the coil.
The embolic coil 106 may take various forms and configurations and may even take the form of a randomly wound coil, however, with the helical wound coil as illustrated in FIG. 2, the coil is provided with a weld bead or seal plug 122 which is disposed in a lumen 123 which lumen extends throughout the length of the coil 106. The seal plug 122 serves to prevent the flow of fluid through the lumen of the coil 106 so that when the coil 106 is placed in fluid-tight engagement with the lumen 120 the coil serves to provide a fluid-tight seal at the distal end of the catheter 104. A liquid silicone material 130 a is injected into the space surrounding the support wire 130 to fill the proximal portion of the lumen of the coil. The silicone material is then cured to seal the proximal end of the coil to prevent fluid leakage through the turns of the coil. The cured remains flexible with the result that the proximal end of the coil remains flexible.
Preferably, the proximal section 116 and the distal section 108 of the catheter 104 are formed of materials having different durometers. The proximal section 116 is preferably formed of Pebax material having a durometer in a range of about 62 D to 75 D. The proximal section is sufficiently flexible to transverse the vasculature of the human body, but is sufficiently rigid such that when a fluid pressure of approximately 90 to 450 psi is applied to the interior of this section of the catheter there is very little, if any, radial expansion of the walls of this section. On the other hand, the distal section 108 of the catheter is preferably formed of polymer material with a relatively low durometer which, exhibits the characteristic that when a fluid pressure of approximately 90 to 450 psi is applied to the interior of the catheter the walls of the distal section 108 expand radially, somewhat similar to the action of a balloon inflating, to thereby release the proximal end 118 of the coil 106. As may be appreciated, there are numerous materials which could be used to fabricate the proximal section 116 and distal section 108 of the catheter 104, however, the distal section 108 is preferably formed from a block copolymer such as Pebax having a durometer of between 25 D and 55 D with a durometer of 40 D being the preferred durometer.
FIGS. 3 and 4 generally illustrate the coil release mechanism in action for the vascular occlusive catheter deployment system. More particularly, as shown in FIG. 3, when a hydraulic pressure is applied to the interior 124 of the catheter 104 the relatively low durometer distal section 108 of the catheter begins to expand radially, much as a balloon expands during the process of inflation. As the distal section 108 continues to expand radially there comes a point as illustrated in FIG. 4 in which the coil 106 becomes disengaged from the lumen of the distal section 108 and the coil is then released from the catheter and is deployed at that location within the vessel.
As illustrated in FIG. 5, when the coil 106 has been released from the catheter 104 the catheter may then be withdrawn leaving the coil positioned at the desired site.
As illustrated in FIG. 6, the vaso-occlusion or embolic coil 106 is formed by winding a platinum alloy wire into a tightly wound helical configuration. The diameter of the wire is generally in the range of about 0.0015 inches to 0.008 inches. The outside diameter of the coil 106 is preferably in a range of about 0.006 inches to 0.055 inches. While the particular embolic coil 106 illustrated in FIG. 6 is shown as being a straight coil it should be appreciated that embolic coils take the form of various configurations and may take the form of a helix, a random shape configuration or even a coil within a coil configuration.
With the embodiment of the coil deployment system disclosed in this application it may be noted that the first several turns on the proximal end of the embolic coil 106 are retained or held by the distal tip of the catheter as the coil is moved in position. Often times it is necessary to move a coil to a certain position within the vasculature and then to withdraw the coil back to a more proximal position within the vasculature. During the movement of a coil through the vasculature, particularly when the coil is withdrawn to a more proximal position within the vasculature, it is possible to stretch or unwind the turns of the coil. If the turns of the coil which are held by the distal tip of the deployment catheter are stretched or unwound the result is that the outside diameter of the coil decreases with the result that the coil may be prematurely released from the deployment system.
In order to prevent the proximal portion of the coil 106 from stretching or unwinding, a platinum support wire 130 is welded to the proximal sealing plug 122. The other end of the platinum support wire 130 is bonded by welding to one of the turns of the coil at a position relatively close to the proximal end of the catheter. Preferably, the embolic coil is of a length in a range of about 1.5 centimeters to 30 centimeters. The length of the support wire is of a length in the range of about 0.5 millimeters to about 4 millimeters and the diameter of the support wire is between about 0.0007 and 0.002 inches. With this arrangement, the overall flexibility of the embolic coil 106 is maintained while providing a means for preventing the stretching or unwinding of the gripped portion of the coil. As may be appreciated, the proximal sealing plug may take the form of a welded bead which is formed at the end of the support wire 130. Also, the support wire may be attached to the weld bead and to the turns of the coil by soldering, welding, or by the use of an adhesive. The support wire could be formed of various different materials including polymers or composites. A liquid silicone material 130 a is injected into the space surrounding the support wire 130 to fill the proximal portion of the lumen of the coil. The silicone material is then cured to seal the proximal end of the coil to prevent fluid leakage through the turns of the coil.
With the vascular occlusive coil deployment system of the present invention it is possible to place an embolic coil very precisely at a desired location within a vessel. Once the coil has been placed in that location by use of the catheter, the catheter may be activated by applying a hydraulic pressure to the interior of the catheter to thereby cause the catheter to release the coil and deposit the coil very accurately at the desired location.
As is apparent, there are numerous modifications of the preferred embodiment described above which will be readily apparent to one skilled in the art, such as many variations and modifications of the coil including numerous coil winding configurations, or alternatively other types of implant devices, such as a vascular filter. Also, there are obviously variations of the syringe arrangement for applying a fluid pressure to the interior of the catheter, including many other fluid pressure generating systems for increasing the pressure within the interior of a catheter in order to cause the distal section of the catheter to expand. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.

Claims (17)

That which is claimed is:
1. A vaso-occlusive coil deployment system for use in placing a coil at a preselected site within a vessel comprising:
an elongated flexible catheter having a lumen extending therethrough and having a proximal section and a distal section, said distal section of the catheter being formed of a material having a durometer which exhibits the characteristic that when a fluid pressure is applied to the interior of the catheter the walls of the distal section of the catheter expand outwardly;
a syringe coupled to the proximal section of the catheter for applying a fluid pressure to the interior of the catheter to thereby cause the distal section of the catheter to expand outwardly; and,
an embolic coil being disposed in fluid-tight engagement within the lumen of the distal section of the catheter, said coil comprising a tightly wound helical coil having a proximal end, a distal end and an embolic coil lumen extending therethrough, a seal plug is disposed in fluid-tight engagement within the embolic coil lumen at the proximal end of the embolic coil, a support wire extends along the central axis of the embolic coil lumen for a length substantially less than the length of the coil, one end of said support wire being fixedly attached to the seal plug and the other end of the support wire being fixedly attached to the embolic coil at a point on an embolic coil lumen wall at a position substantially remote from the distal end of the embolic coil.
2. A vaso-occlusive coil deployment system as defined in claim 1, wherein the length of the embolic coil is in a range of about 1.5 to 30 centimeters and the length of the support wire is in a range of about 0.5 to 4 millimeters.
3. A vaso-occlusive coil deployment system as defined in Claim 1, wherein said proximal section of said catheter is formed of a material which is sufficiently flexible to be passed through the vasculature of the body and is formed of a material which exhibits the characteristic of having substantially no radial expansion when a fluid pressure of about 90 to 450 psi is applied to the interior of the catheter, the distal tip is formed of a material which is also sufficiently flexible to be passed through the vasculature of the body and is of a durometer which is substantially lower than the durometer of the proximal section.
4. A vaso-occlusive coil deployment system as defined in claim 3, wherein the distal tip of the catheter is formed of a polymer having a durometer in a range of between about 25 D and 55 D.
5. A vaso-occlusive coil deployment system as defined in claim 3, wherein the distal tip of the catheter has a durometer of about 40 D.
6. A vaso-occlusive coil deployment system as defined in claim 4, wherein said proximal section of said catheter is formed of a polymer having a durometer in a range of 62 D to 75 D.
7. A vaso-occlusive coil deployment system for use in placing a coil at a preselected site within a vessel comprising:
an elongated flexible catheter having a lumen extending therethrough and having a proximal section and a distal section, said distal section of the catheter being formed of a material having a durometer which exhibits the characteristic that when a fluid pressure of about 90 to 450 psi applied to the interior of the catheter the walls of the distal section of the catheter expand outwardly;
a piston coupled to the proximal section of the catheter for applying a fluid pressure to the interior of the catheter to thereby cause the distal section of the catheter to expand outwardly to thereby release the embolic coil; and,
an embolic the embolic coil being disposed in fluid-tight engagement within the lumen of the distal section of the catheter, said coil comprising a tightly wound helical coil having a proximal end, a distal end and an embolic coil lumen extending therethrough, a seal plug is disposed in fluid-tight engagement within the embolic coil lumen at the proximal end of the embolic coil, a support wire extends along the central axis of the embolic coil lumen for a length substantially less than the length of the embolic coil, one end of said support wire being fixedly attached to the seal plug and the other end of the support wire being fixedly attached to the coil at a point on the lumen wall at a position substantially remote from the distal end of the coil.
8. A vaso-occlusive coil deployment system as defined in claim 7, wherein the length of the embolic coil is in a range of about 1.5 to 30 centimeters and the length of the support wire is in a range of about 0.5 to 4 millimeters.
9. A vaso-occlusive coil deployment system as defined in claim 8, wherein said proximal section of said catheter is formed of a material which is sufficiently flexible to be passed through the vasculature of the body and is formed of a material which exhibits the characteristic of having substantially no radial expansion when a fluid pressure of about 90 to 450 psi is applied to the interior of the catheter, a distal tip is formed of a material which is also sufficiently flexible to be passed through the vasculature of the body and is of a durometer which is substantially lower than the durometer of the proximal section.
10. A vaso-occlusive coil deployment system as defined in claim 9, wherein the distal tip of the catheter is formed of a polymer having a durometer in a range of between about 25 D and 55 D.
11. A vaso-occlusive coil deployment system as defined in claim 9, wherein the distal tip of the catheter has a durometer of about 40D.
12. A vaso-occlusive coil deployment system as defined in claim 10, wherein said proximal section of said catheter is formed of a polymer having a durometer in a range of about 62 D to 75 D.
13. A vaso-occlusive coil deployment system for use in placing a coil at a preselected site within a vessel comprising:
an elongated flexible catheter having a lumen extending therethrough and having a proximal section and a distal section, said distal section of the catheter being formed of a material having a durometer which exhibits the characteristic that when a fluid pressure of about 90 to 450 psi applied to the interior of the catheter the walls of the distal section of the catheter expand outwardly;
a fluid pressure generating device coupled to the proximal section of the catheter for applying a fluid pressure to the interior of the catheter to thereby cause the distal section of the catheter to expand outwardly; and,
an embolic coil being disposed in fluid-tight engagement within the lumen of the distal section of the catheter, said coil comprising a tightly wound helical coil having a proximal end, a distal end and an embolic coil lumen extending therethrough, a seal plug is disposed in fluid-tight engagement within the embolic coil lumen at the proximal end of the embolic coil, a support wire extends along the central axis of the embolic coil lumen for a length substantially less than the length of the embolic coil, one end of said support wire being fixedly attached to the seal plug and the other end of the support wire being fixedly attached to the coil at a point on an embolic coil lumen wall at a position substantially remote from the distal end of the embolic coil.
14. A vaso-occlusive coil deployment system as defined in claim 13, wherein the length of the embolic coil is in a range of about 1.5 to 30 centimeters and the length of the support wire is in a range of about 0.5 to 4 millimeters.
15. A vaso-occlusive coil deployment system as defined in claim 14, wherein said proximal section of said catheter is formed of a material which is sufficiently flexible to be passed through the vasculature of the body and is formed of a material which exhibits the characteristic of having substantially no radial expansion when a fluid pressure of about 90 to 450 psi is applied to the interior of the catheter, a distal tip is formed of a material which is also sufficiently flexible to be passed through the vasculature of the body and is of a durometer which is substantially lower than the durometer of the proximal section.
16. A vaso-occlusive coil deployment system as defined in claim 15, wherein the distal tip of the catheter is formed of a polymer having a durometer in a range of between about 25 D and 55 D.
17. A vaso-occlusive coil deployment system as defined in claim 15, wherein the distal tip of the catheter has a durometer of about 40 D.
US09/256,161 1998-03-10 1999-02-22 Embolic coil deployment system with improved embolic coil Expired - Lifetime US6183491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/256,161 US6183491B1 (en) 1998-03-10 1999-02-22 Embolic coil deployment system with improved embolic coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7745598P 1998-03-10 1998-03-10
US09/256,161 US6183491B1 (en) 1998-03-10 1999-02-22 Embolic coil deployment system with improved embolic coil

Publications (1)

Publication Number Publication Date
US6183491B1 true US6183491B1 (en) 2001-02-06

Family

ID=22138157

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/256,161 Expired - Lifetime US6183491B1 (en) 1998-03-10 1999-02-22 Embolic coil deployment system with improved embolic coil

Country Status (5)

Country Link
US (1) US6183491B1 (en)
EP (1) EP0941704B1 (en)
JP (1) JP3930189B2 (en)
CA (1) CA2264988C (en)
DE (1) DE69931209T2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361547B1 (en) * 1998-03-10 2002-03-26 Cordis Corporation Embolic coil hydraulic deployment system
US20020121472A1 (en) * 2001-03-01 2002-09-05 Joseph Garner Intravascular filter retrieval device having an actuatable dilator tip
US20020151915A1 (en) * 1998-03-10 2002-10-17 Grant Hieshima Small diameter embolic coil hydraulic deployment system
EP1266630A1 (en) * 2001-06-14 2002-12-18 Cordis Neurovascular, Inc. Aneurysm embolization device and deployment system
US20030004525A1 (en) * 2001-06-28 2003-01-02 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US6544275B1 (en) * 2000-08-11 2003-04-08 Scimed Life Systems, Inc. Vaso-occlusive coils with selectively flattened areas
US6544225B1 (en) * 2000-02-29 2003-04-08 Cordis Neurovascular, Inc. Embolic coil hydraulic deployment system with purge mechanism
WO2002054943A3 (en) * 2001-01-10 2003-04-24 Cordis Neurovascular Inc Embolic coil introducer system
US20030093087A1 (en) * 2001-11-15 2003-05-15 Jones Donald K. Embolic coil retrieval system
US20030093097A1 (en) * 2001-11-15 2003-05-15 Ernesto Avellanet Aneurysm embolic device with an occlusive member
US20030093108A1 (en) * 2001-11-15 2003-05-15 Ernesto Avellanet Aneurysm neck cover for sealing an aneurysm
US20030093094A1 (en) * 2001-11-15 2003-05-15 Roberto Diaz Small diameter deployment system with improved headpiece
US6572628B2 (en) 2001-06-28 2003-06-03 Cordis Neurovascular, Inc. Method and apparatus for placing a medical agent into a vessel of the body
US20030204170A1 (en) * 2002-04-26 2003-10-30 Witham Richard N. Noninvasive medical instrument
EP1400209A1 (en) 2002-09-20 2004-03-24 Cordis Neurovascular, Inc. Detachable introducer for a medical device deployment system
EP1400208A1 (en) * 2002-09-20 2004-03-24 Cordis Neurovascular, Inc. Introducer for a medical device deployment system
US20040068289A1 (en) * 2001-09-18 2004-04-08 Eric Cheng Method for placing a medical agent into a vessel of the body
US6849081B2 (en) * 1994-12-22 2005-02-01 Scimed Life Systems, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20060116714A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Coupling and release devices and methods for their assembly and use
US20060241682A1 (en) * 2003-12-08 2006-10-26 Kurz Daniel R Intravascular device push wire delivery system
US20060247677A1 (en) * 2003-10-08 2006-11-02 Eric Cheng Method for placing a medical agent into a vessel of the body
US20080086163A1 (en) * 2006-10-10 2008-04-10 Jones Donald K Embolic coil having stretch resistant member with an attached end and an end with movement freedom
US20080103479A1 (en) * 2001-06-11 2008-05-01 Eric Cheng Delivery system using balloon catheter with side opening and method
US20080228215A1 (en) * 2007-03-13 2008-09-18 Micro Therapeutics, Inc. Implant including a coil and a stretch-resistant member
US20080281350A1 (en) * 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
US20090054905A1 (en) * 2007-05-22 2009-02-26 Wilson-Cook Medical Inc. Embolization coil delivery systems and methods
US20090143786A1 (en) * 2007-12-03 2009-06-04 Boston Scientific Scimed, Inc. Implantable device with electrolytically detachable junction having multiple fine wires and method of introduction
US20100030200A1 (en) * 2006-04-17 2010-02-04 Micro Therapeutics, Inc. System and method for mechanically positioning intravascular implants
US20100082056A1 (en) * 2008-04-04 2010-04-01 Akshay Mavani Implantable fistula closure device
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20100249828A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatement
US20110184530A1 (en) * 2004-05-17 2011-07-28 Biomerix Corporation High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
EP2397081A2 (en) 2010-06-16 2011-12-21 Codman & Shurtleff, Inc. Occlusive device with stretch resistant member and anchor filament
EP2505150A1 (en) 2011-03-31 2012-10-03 Codman & Shurtleff, Inc. Occlusive device with porous structure and stretch resistant member
WO2014055547A1 (en) * 2012-10-01 2014-04-10 Qmax, Llc Helical balloon catheter
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8801747B2 (en) 2007-03-13 2014-08-12 Covidien Lp Implant, a mandrel, and a method of forming an implant
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9050095B2 (en) 2004-09-22 2015-06-09 Covidien Lp Medical implant
US9131941B2 (en) 2011-06-17 2015-09-15 Curaseal Inc. Fistula treatment devices and methods
WO2015160972A1 (en) * 2014-04-15 2015-10-22 Qmax, Llc Helical balloon catheter
US9198665B2 (en) 2004-09-22 2015-12-01 Covidien Lp Micro-spiral implantation device
US9211116B2 (en) 2011-06-16 2015-12-15 Curaseal Inc. Fistula treatment devices and related methods
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9662120B2 (en) 2013-08-23 2017-05-30 Cook Medical Technologies Llc Detachable treatment device delivery system utilizing compression at attachment zone
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183491B1 (en) * 1998-03-10 2001-02-06 Cordis Corporation Embolic coil deployment system with improved embolic coil
US6689141B2 (en) 2000-10-18 2004-02-10 Microvention, Inc. Mechanism for the deployment of endovascular implants
US8192676B2 (en) 2004-02-12 2012-06-05 Valspar Sourcing, Inc. Container having barrier properties and method of manufacturing the same
US7789915B2 (en) 2005-08-31 2010-09-07 Vance Products Incorporated Stent for implantation
US7550012B2 (en) 2005-08-31 2009-06-23 Cook Ireland Limited Stent for implantation
AU2008345596B2 (en) 2007-12-21 2013-09-05 Microvention, Inc. A system and method of detecting implant detachment
CA2710146C (en) 2007-12-21 2017-03-28 Microvention, Inc. System and method for locating detachment zone of a detachable implant
US9498356B2 (en) 2012-12-19 2016-11-22 Cook Medical Technologies, LLC Flexible stent and delivery system
US9763814B2 (en) 2014-10-24 2017-09-19 Cook Medical Technologies Llc Elongate medical device

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853070A (en) 1955-10-05 1958-09-23 Julliard Maurice Syringes
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3353718A (en) 1966-05-24 1967-11-21 Fischer & Porter Co Syringe, column or the like
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4743230A (en) 1985-09-05 1988-05-10 Advanced Cardiovascular Systems, Inc. Inflating and deflating device for balloon dilatation catheters
US4832692A (en) 1986-10-14 1989-05-23 Cordis Corporation Inflation syringe assembly for percutaneous transluminal angioplasty
US4919121A (en) 1989-02-06 1990-04-24 Schneider (Usa) Inc., A Pfizer Company Inflation device for angioplasty catheter
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5137514A (en) 1990-11-01 1992-08-11 Accumed Systems, Inc. Inflation syringe assembly for percutaneous transluminal angioplasty
US5167624A (en) 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5168757A (en) 1990-05-15 1992-12-08 Ryder International Corporation Fluid displacement and pressurizing device
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5336183A (en) 1993-09-28 1994-08-09 Imagyn Medical, Inc. Inflator
US5342304A (en) 1990-03-16 1994-08-30 Advanced Cardiovascular Systems, Inc. Inflation device for dilatation catheters
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5382259A (en) 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5417708A (en) * 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5443478A (en) 1992-09-02 1995-08-22 Board Of Regents, The University Of Texas System Multi-element intravascular occlusion device
US5470317A (en) 1994-08-02 1995-11-28 Design Standards Corporation Swivel barrel assembly for inflation syringe
EP0717969A2 (en) 1994-12-22 1996-06-26 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5578074A (en) 1994-12-22 1996-11-26 Target Therapeutics, Inc. Implant delivery method and assembly
US5582619A (en) 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5603698A (en) * 1993-04-13 1997-02-18 Boston Scientific Corporation Prosthesis delivery system
US5609608A (en) 1995-10-27 1997-03-11 Regents Of The University Of California Miniature plastic gripper and fabrication method
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5639277A (en) * 1995-04-28 1997-06-17 Target Therapeutics, Inc. Embolic coils with offset helical and twisted helical shapes
US5647847A (en) 1994-09-16 1997-07-15 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
WO1998002100A1 (en) 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor
US5853418A (en) 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
EP0941700A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Hydraulically detachable embolic coil assembly
EP0941703A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Hydraulically detachable embolic coil assembly
EP0941704A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Detachable embolic coil assembly
US6063100A (en) * 1998-03-10 2000-05-16 Cordis Corporation Embolic coil deployment system with improved embolic coil

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853070A (en) 1955-10-05 1958-09-23 Julliard Maurice Syringes
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3353718A (en) 1966-05-24 1967-11-21 Fischer & Porter Co Syringe, column or the like
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4743230A (en) 1985-09-05 1988-05-10 Advanced Cardiovascular Systems, Inc. Inflating and deflating device for balloon dilatation catheters
US4832692A (en) 1986-10-14 1989-05-23 Cordis Corporation Inflation syringe assembly for percutaneous transluminal angioplasty
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4919121A (en) 1989-02-06 1990-04-24 Schneider (Usa) Inc., A Pfizer Company Inflation device for angioplasty catheter
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5342304A (en) 1990-03-16 1994-08-30 Advanced Cardiovascular Systems, Inc. Inflation device for dilatation catheters
US5168757A (en) 1990-05-15 1992-12-08 Ryder International Corporation Fluid displacement and pressurizing device
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5137514A (en) 1990-11-01 1992-08-11 Accumed Systems, Inc. Inflation syringe assembly for percutaneous transluminal angioplasty
US5167624A (en) 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5443478A (en) 1992-09-02 1995-08-22 Board Of Regents, The University Of Texas System Multi-element intravascular occlusion device
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5382259A (en) 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5603698A (en) * 1993-04-13 1997-02-18 Boston Scientific Corporation Prosthesis delivery system
US5336183A (en) 1993-09-28 1994-08-09 Imagyn Medical, Inc. Inflator
US5417708A (en) * 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5470317A (en) 1994-08-02 1995-11-28 Design Standards Corporation Swivel barrel assembly for inflation syringe
US5647847A (en) 1994-09-16 1997-07-15 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
EP0717969A2 (en) 1994-12-22 1996-06-26 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5578074A (en) 1994-12-22 1996-11-26 Target Therapeutics, Inc. Implant delivery method and assembly
US5639277A (en) * 1995-04-28 1997-06-17 Target Therapeutics, Inc. Embolic coils with offset helical and twisted helical shapes
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5853418A (en) 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5582619A (en) 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5609608A (en) 1995-10-27 1997-03-11 Regents Of The University Of California Miniature plastic gripper and fabrication method
WO1998002100A1 (en) 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor
EP0941700A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Hydraulically detachable embolic coil assembly
EP0941703A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Hydraulically detachable embolic coil assembly
EP0941704A1 (en) * 1998-03-10 1999-09-15 Cordis Corporation Detachable embolic coil assembly
US6063100A (en) * 1998-03-10 2000-05-16 Cordis Corporation Embolic coil deployment system with improved embolic coil
US6068644A (en) * 1998-03-10 2000-05-30 Cordis Corporation Embolic coil hydraulic deployment system having improved catheter

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Brochure entitled, "Basix25(TM) Inflation Device," by Merit Medical Systems, Inc.
Brochure entitled, "Detachable Coil System," by Cook.
Brochure entitled, "Guglielmi Detachable Coils," by Boston Scientific.
Brochure entitled, "Monarch AP(R) Inflation Device," by Merit Medical Systems, Inc.
Brochure entitled, "Basix25™ Inflation Device," by Merit Medical Systems, Inc.
Brochure entitled, "Monarch AP® Inflation Device," by Merit Medical Systems, Inc.
Label of B. Braun Inflation Device Kit by B. Braun Medical Inc.
Label of IDC-18 Interlocking Detachable Coil by Target Therapeutics, Inc.

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849081B2 (en) * 1994-12-22 2005-02-01 Scimed Life Systems, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US20050154417A1 (en) * 1994-12-22 2005-07-14 Scimed Life Systems, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US20050131454A1 (en) * 1998-03-10 2005-06-16 Grant Hieshima Embolic coil hydraulic deployment system
US7556631B2 (en) 1998-03-10 2009-07-07 Cordis Neurovascular, Inc. Small diameter embolic coil hydraulic deployment system
US6958068B2 (en) 1998-03-10 2005-10-25 Cordis Corporation Embolic coil hydraulic deployment system
US20050131455A1 (en) * 1998-03-10 2005-06-16 Grant Hieshima Small diameter embolic coil hydraulic deployment system
US6994711B2 (en) 1998-03-10 2006-02-07 Cordis Corporation Small diameter embolic coil hydraulic deployment system
US20020151915A1 (en) * 1998-03-10 2002-10-17 Grant Hieshima Small diameter embolic coil hydraulic deployment system
US7758588B2 (en) 1998-03-10 2010-07-20 Codman & Shurtleff, Inc. Embolic coil hydraulic deployment system
US6361547B1 (en) * 1998-03-10 2002-03-26 Cordis Corporation Embolic coil hydraulic deployment system
US6544225B1 (en) * 2000-02-29 2003-04-08 Cordis Neurovascular, Inc. Embolic coil hydraulic deployment system with purge mechanism
US6544275B1 (en) * 2000-08-11 2003-04-08 Scimed Life Systems, Inc. Vaso-occlusive coils with selectively flattened areas
US20050234505A1 (en) * 2001-01-10 2005-10-20 Roberto Diaz Embolic coil introducer system
US7018394B2 (en) 2001-01-10 2006-03-28 Cordis Neurovascular, Inc. Embolic coil introducer system
WO2002054943A3 (en) * 2001-01-10 2003-04-24 Cordis Neurovascular Inc Embolic coil introducer system
US7753931B2 (en) 2001-01-10 2010-07-13 Codman & Shurtleff, Inc. Embolic coil introducer system
US20040087964A1 (en) * 2001-01-10 2004-05-06 Roberto Diaz Embolic coil introducer system
US8034074B2 (en) 2001-03-01 2011-10-11 Boston Scientific Scimed, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US20020121472A1 (en) * 2001-03-01 2002-09-05 Joseph Garner Intravascular filter retrieval device having an actuatable dilator tip
US20070106324A1 (en) * 2001-03-01 2007-05-10 Scimed Life Systems, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US7226464B2 (en) * 2001-03-01 2007-06-05 Scimed Life Systems, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US20080103479A1 (en) * 2001-06-11 2008-05-01 Eric Cheng Delivery system using balloon catheter with side opening and method
US6692510B2 (en) 2001-06-14 2004-02-17 Cordis Neurovascular, Inc. Aneurysm embolization device and deployment system
EP1266630A1 (en) * 2001-06-14 2002-12-18 Cordis Neurovascular, Inc. Aneurysm embolization device and deployment system
US7070609B2 (en) 2001-06-14 2006-07-04 Cordis Neurovascular, Inc. Aneurysm embolization device and deployment system
US20040138697A1 (en) * 2001-06-14 2004-07-15 Stephen West Aneurysm embolization device and deployment system
US20060206143A1 (en) * 2001-06-14 2006-09-14 Stephen West Aneurysm embolization device and development system
US20030004525A1 (en) * 2001-06-28 2003-01-02 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20050261729A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20050261732A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20050261731A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20050261730A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US6964671B2 (en) 2001-06-28 2005-11-15 Cordis Neurovascular, Inc. Method and apparatus for placing a medical agent into a vessel of the body
US6572628B2 (en) 2001-06-28 2003-06-03 Cordis Neurovascular, Inc. Method and apparatus for placing a medical agent into a vessel of the body
US20050261728A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20050261733A1 (en) * 2001-06-28 2005-11-24 Eric Cheng Method and apparatus for placing a medical agent into a vessel of the body
US20040068289A1 (en) * 2001-09-18 2004-04-08 Eric Cheng Method for placing a medical agent into a vessel of the body
US7108708B2 (en) 2001-09-18 2006-09-19 Cordis Neurovascular, Inc. Method for placing a medical agent into a vessel of the body
US20080221610A1 (en) * 2001-11-15 2008-09-11 Roberto Diaz Small diameter deployment system with improved headpiece
US8142471B2 (en) 2001-11-15 2012-03-27 Codman & Shurtleff, Inc. Small diameter deployment system with improved headpiece
US20030093097A1 (en) * 2001-11-15 2003-05-15 Ernesto Avellanet Aneurysm embolic device with an occlusive member
US20040236348A1 (en) * 2001-11-15 2004-11-25 Roberto Diaz Small diameter deployment system with improved headpiece
US20060095051A1 (en) * 2001-11-15 2006-05-04 Jones Donald K Embolic coil retrieval system
US20030093108A1 (en) * 2001-11-15 2003-05-15 Ernesto Avellanet Aneurysm neck cover for sealing an aneurysm
US20030093087A1 (en) * 2001-11-15 2003-05-15 Jones Donald K. Embolic coil retrieval system
US20060135987A1 (en) * 2001-11-15 2006-06-22 Jones Donald K Embolic coil retrieval system
US6811561B2 (en) 2001-11-15 2004-11-02 Cordis Neurovascular, Inc. Small diameter deployment system with improved headpiece
US7083632B2 (en) 2001-11-15 2006-08-01 Cordis Neurovascular, Inc. Aneurysm embolic device with an occlusive member
US20030093094A1 (en) * 2001-11-15 2003-05-15 Roberto Diaz Small diameter deployment system with improved headpiece
EP1312314A1 (en) 2001-11-15 2003-05-21 Cordis Neurovascular, Inc. Vascular retrieval system eg for embolic coils
EP1316293A2 (en) 2001-11-15 2003-06-04 Cordis Neurovascular, Inc. Aneurysm embolic device with an occlusive member
US6989020B2 (en) 2001-11-15 2006-01-24 Cordis Neurovascular, Inc. Embolic coil retrieval system
US7270674B2 (en) 2001-11-15 2007-09-18 Cordis Neutrovascular, Inc. Embolic coil retrieval system
US7195636B2 (en) 2001-11-15 2007-03-27 Cordis Neurovascular, Inc. Aneurysm neck cover for sealing an aneurysm
US7264628B2 (en) 2001-11-15 2007-09-04 Cordis Neurovascular, Inc. Embolic coil retrieval system
US7048728B2 (en) * 2002-04-26 2006-05-23 Witham Richard N Noninvasive medical instrument
US20030204170A1 (en) * 2002-04-26 2003-10-30 Witham Richard N. Noninvasive medical instrument
US8133252B2 (en) 2002-09-20 2012-03-13 Codman & Shurtleff, Inc. Reattachable introducer for a medical device deployment system
US7208003B2 (en) 2002-09-20 2007-04-24 Cordis Neurovascular, Inc. Reattachable introducer for a medical device deployment system
EP1400209A1 (en) 2002-09-20 2004-03-24 Cordis Neurovascular, Inc. Detachable introducer for a medical device deployment system
US20040059371A1 (en) * 2002-09-20 2004-03-25 Healy Stephen R. Detachable introducer for a medical device deployment system
US7819889B2 (en) 2002-09-20 2010-10-26 Codman & Shurtleff, Inc. Detachable introducer for a medical device deployment system
US20060212067A1 (en) * 2002-09-20 2006-09-21 Champ Davis Reattachable introducer for a medical device deployment system
EP1400208A1 (en) * 2002-09-20 2004-03-24 Cordis Neurovascular, Inc. Introducer for a medical device deployment system
US8313506B2 (en) 2002-09-20 2012-11-20 Codman & Shutleff, Inc. Reattachable introducer for a medical device deployment system
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US8182544B2 (en) 2003-10-08 2012-05-22 Codman & Shurtleff, Inc. Method for placing a medical agent into a vessel of the body
US20060247677A1 (en) * 2003-10-08 2006-11-02 Eric Cheng Method for placing a medical agent into a vessel of the body
US20060241682A1 (en) * 2003-12-08 2006-10-26 Kurz Daniel R Intravascular device push wire delivery system
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US20110184530A1 (en) * 2004-05-17 2011-07-28 Biomerix Corporation High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
US9050095B2 (en) 2004-09-22 2015-06-09 Covidien Lp Medical implant
US9198665B2 (en) 2004-09-22 2015-12-01 Covidien Lp Micro-spiral implantation device
US20060116714A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Coupling and release devices and methods for their assembly and use
US8864790B2 (en) 2006-04-17 2014-10-21 Covidien Lp System and method for mechanically positioning intravascular implants
US20100030200A1 (en) * 2006-04-17 2010-02-04 Micro Therapeutics, Inc. System and method for mechanically positioning intravascular implants
US8795320B2 (en) 2006-04-17 2014-08-05 Covidien Lp System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8795321B2 (en) 2006-04-17 2014-08-05 Covidien Lp System and method for mechanically positioning intravascular implants
US8777978B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US20080086163A1 (en) * 2006-10-10 2008-04-10 Jones Donald K Embolic coil having stretch resistant member with an attached end and an end with movement freedom
US7927348B2 (en) * 2006-10-10 2011-04-19 Codman & Shurtleff, Inc. Stretch resistant coil device
US7883526B2 (en) * 2006-10-10 2011-02-08 Codman & Shurtleff, Inc. Embolic coil having stretch resistant member with an attached end and an end with movement freedom
US20080086217A1 (en) * 2006-10-10 2008-04-10 Jones Donald K Stretch resistant coil device
EP1911405A1 (en) 2006-10-10 2008-04-16 Cordis Development Corporation Stretch resistant coil device
US20080281350A1 (en) * 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
US8328860B2 (en) 2007-03-13 2012-12-11 Covidien Lp Implant including a coil and a stretch-resistant member
US8801747B2 (en) 2007-03-13 2014-08-12 Covidien Lp Implant, a mandrel, and a method of forming an implant
US9289215B2 (en) 2007-03-13 2016-03-22 Covidien Lp Implant including a coil and a stretch-resistant member
US20080228215A1 (en) * 2007-03-13 2008-09-18 Micro Therapeutics, Inc. Implant including a coil and a stretch-resistant member
US20090054905A1 (en) * 2007-05-22 2009-02-26 Wilson-Cook Medical Inc. Embolization coil delivery systems and methods
US8328841B2 (en) * 2007-05-22 2012-12-11 Cook Medical Technologies Llc Embolization coil delivery systems and methods
US20090143786A1 (en) * 2007-12-03 2009-06-04 Boston Scientific Scimed, Inc. Implantable device with electrolytically detachable junction having multiple fine wires and method of introduction
US20100082056A1 (en) * 2008-04-04 2010-04-01 Akshay Mavani Implantable fistula closure device
US8177809B2 (en) 2008-09-04 2012-05-15 Curaseal Inc. Inflatable device for enteric fistula treatment
US9993235B2 (en) 2008-09-04 2018-06-12 Curaseal Inc. Enteric fistula treatment devices
US8377094B2 (en) 2008-09-04 2013-02-19 Curaseal Inc. Enteric fistula treatment devices
US20100249828A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatement
US8221451B2 (en) 2008-09-04 2012-07-17 Curaseal Inc. Inflatable device for enteric fistula treatment
US20100249827A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatment
US8206416B2 (en) 2008-09-04 2012-06-26 Curaseal Inc. Inflatable device for enteric fistula treatment
US9220506B2 (en) 2010-06-16 2015-12-29 DePuy Synthes Products, Inc. Occlusive device with stretch resistant member and anchor filament
EP2397081A2 (en) 2010-06-16 2011-12-21 Codman & Shurtleff, Inc. Occlusive device with stretch resistant member and anchor filament
EP2965695A1 (en) 2010-06-16 2016-01-13 Codman & Shurtleff, Inc. Occlusive device with stretch resistant member and anchor filament
EP3443914A1 (en) 2010-06-16 2019-02-20 Codman & Shurtleff, Inc. Method of manufacturing an occlusive device with stretch resistant member and anchor filament
EP2505150A1 (en) 2011-03-31 2012-10-03 Codman & Shurtleff, Inc. Occlusive device with porous structure and stretch resistant member
US9211116B2 (en) 2011-06-16 2015-12-15 Curaseal Inc. Fistula treatment devices and related methods
US9131941B2 (en) 2011-06-17 2015-09-15 Curaseal Inc. Fistula treatment devices and methods
US10335155B2 (en) 2011-11-30 2019-07-02 Covidien Lp Positioning and detaching implants
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US10893868B2 (en) 2012-01-20 2021-01-19 Covidien Lp Aneurysm treatment coils
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US20140249506A1 (en) * 2012-10-01 2014-09-04 Qmax, Llc Helical balloon catheter
US10286184B2 (en) * 2012-10-01 2019-05-14 Qmax, Llc Helical balloon catheter
WO2014055547A1 (en) * 2012-10-01 2014-04-10 Qmax, Llc Helical balloon catheter
US11324923B2 (en) 2012-10-01 2022-05-10 Qmax, Llc Helical balloon catheter
US9662120B2 (en) 2013-08-23 2017-05-30 Cook Medical Technologies Llc Detachable treatment device delivery system utilizing compression at attachment zone
US20180344989A1 (en) * 2014-04-15 2018-12-06 Qmax, Llc Helical balloon catheter
WO2015160972A1 (en) * 2014-04-15 2015-10-22 Qmax, Llc Helical balloon catheter
US10751515B2 (en) * 2014-04-15 2020-08-25 Qmax, Llc Helical balloon catheter
US11707607B2 (en) 2014-04-15 2023-07-25 Qmax, Llc Helical balloon catheter
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices

Also Published As

Publication number Publication date
CA2264988A1 (en) 1999-09-10
DE69931209D1 (en) 2006-06-14
EP0941704B1 (en) 2006-05-10
CA2264988C (en) 2009-02-24
JPH11313829A (en) 1999-11-16
JP3930189B2 (en) 2007-06-13
DE69931209T2 (en) 2007-03-08
EP0941704A1 (en) 1999-09-15

Similar Documents

Publication Publication Date Title
US6183491B1 (en) Embolic coil deployment system with improved embolic coil
US6063100A (en) Embolic coil deployment system with improved embolic coil
US6361547B1 (en) Embolic coil hydraulic deployment system
US7556631B2 (en) Small diameter embolic coil hydraulic deployment system
US6179857B1 (en) Stretch resistant embolic coil with variable stiffness
US6514264B1 (en) Embolic coil hydraulic deployment system with purge mechanism
US7708755B2 (en) Stretch resistant embolic coil delivery system with combined mechanical and pressure release mechanism
EP1621148B1 (en) Embolic device deployment system with filament release
US7819892B2 (en) Embolic coil delivery system with spring wire release mechanism
US8142471B2 (en) Small diameter deployment system with improved headpiece
US20060276833A1 (en) Stretch resistant embolic coil delivery system with spring assisted release mechanism
US20060276830A1 (en) Stretch resistant embolic coil delivery system with mechanical release mechanism
EP0941701B1 (en) Stretch resistant embolic coil with variable stiffness

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORDIS CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LULO, ROBERT;REEL/FRAME:009797/0609

Effective date: 19990219

AS Assignment

Owner name: CORDIS NEUROVASCULAR, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORIDS CORPORATION;REEL/FRAME:011122/0887

Effective date: 20000821

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CODMAN & SHURTLEFF, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:CORDIS NEUROVASCULAR, INC.;REEL/FRAME:023032/0233

Effective date: 20081216

Owner name: CODMAN & SHURTLEFF, INC.,MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:CORDIS NEUROVASCULAR, INC.;REEL/FRAME:023032/0233

Effective date: 20081216

FPAY Fee payment

Year of fee payment: 12