US6400944B1 - System and method for handling incoming calls to an optimized mobile station within a satellite network - Google Patents

System and method for handling incoming calls to an optimized mobile station within a satellite network Download PDF

Info

Publication number
US6400944B1
US6400944B1 US09/219,183 US21918398A US6400944B1 US 6400944 B1 US6400944 B1 US 6400944B1 US 21918398 A US21918398 A US 21918398A US 6400944 B1 US6400944 B1 US 6400944B1
Authority
US
United States
Prior art keywords
mobile station
location register
home location
optimized
indication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/219,183
Other versions
US20020068563A1 (en
Inventor
Vladimir Alperovich
Eric Valentine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson Inc
Original Assignee
Ericsson Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Inc filed Critical Ericsson Inc
Priority to US09/219,183 priority Critical patent/US6400944B1/en
Assigned to ERICSSON INC. reassignment ERICSSON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALPEROVICH, VLADIMIR, VALENTINE, ERIC
Application granted granted Critical
Publication of US6400944B1 publication Critical patent/US6400944B1/en
Publication of US20020068563A1 publication Critical patent/US20020068563A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18556Arrangements for managing station mobility, i.e. for station registration or localisation using a location database
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • H04B7/1856Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations for call routing

Definitions

  • the present invention relates generally to telecommunications systems and methods for making and receiving calls within a satellite network, and specifically to handling incoming calls to an optimized mobile station within a satellite network.
  • GSM Global System for Mobile Communication
  • a GSM Public Land Mobile Network such as cellular network 10 , which in turn is composed of a plurality of areas 12 , each with a Mobile Services Center (MSC) 14 and an integrated Visitor Location Register (VLR) 16 therein.
  • the MSC/VLR areas 12 include a plurality of Location Areas (LA) 18 , which are defined as that part of a given MSC/VLR area 12 in which a mobile station (MS) 20 may move freely without having to send update location information to the MSC/VLR area 12 that controls the LA 18 .
  • Each Location Area 12 is divided into a number of cells 22 .
  • Mobile Station (MS) 20 is the physical equipment, e.g., a car phone or other portable phone, used by mobile subscribers to communicate with the cellular network 10 , each other, and users outside the subscribed network, both wireline and wireless.
  • the MSC 14 is in communication with at least one Base Station Controller (BSC) 23 , which, in turn, is in contact with at least one Base Transceiver Station (BTS) 24 .
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • the BTS is the physical equipment, illustrated for simplicity as a radio tower, that provides radio coverage to the geographical part of the cell 22 for which it is responsible. It should be understood that the BSC 23 may be connected to several base transceiver stations 24 , and may be implemented as a stand-alone node or integrated with the MSC 14 . In either event, the BSC 23 and BTS 24 components, as a whole, are generally referred to as a Base Station System (BSS) 25 .
  • BSS Base Station System
  • the PLMN Service Area or cellular network 10 includes a Home Location Register (HLR) 26 , which is a database maintaining all subscriber information, e.g., user profiles, current location information, International Mobile Subscriber Identity (IMSI) numbers, and other administrative information.
  • HLR Home Location Register
  • the HLR 26 may be co-located with a given MSC 14 , integrated with the MSC 14 , or alternatively can service multiple MSCs 14 , the latter of which is illustrated in FIG. 1 .
  • the VLR 16 is a database containing information about all of the Mobile Stations 20 currently located within the MSC/VLR area 12 . If a MS 20 roams into a new MSC/VLR area 12 , the VLR 16 connected to that MSC 14 will request data about that Mobile Station 20 from the HLR database 26 (simultaneously informing the HLR 26 about the current location of the MS 20 ). Accordingly, if the user of the MS 20 then wants to make a call, the local VLR 16 will have the requisite identification information without having to reinterrogate the HLR 26 . In the aforedescribed manner, the VLR and HLR databases 16 and 26 , respectively, contain various subscriber information associated with a given MS 20 .
  • the aforementioned system 10 is a terrestrially-based system.
  • the terrestrially-based systems there are a number of satellite systems, which work together with the terrestrially-based systems to provide cellular telecommunications to a wider network of subscribers. This is due to the fact that the high altitude of the satellite makes the satellite visible (from a radio perspective) from a wider area on the earth. The higher the satellite, the larger the area that the satellite can communicate with.
  • a system of geostationary satellites 200 in orbit are used to provide communication between Mobile Stations (MS) 20 and a satellite-adapted Base Station System (SBSS) 220 , which is connected to an integrated Mobile Switching Center/Visitor Location Register (MSC/VLR) 240 .
  • the MS 20 communicates via one of the satellites 200 using a radio air interface, for instance, based on the Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA).
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • the satellite 200 in turn communicates with one or more SBSSs 220 , which consist of equipment for communicating with the satellites 200 and through the satellites 200 to the MS's 20 .
  • the antennae and satellite tracking part of the system is the Radio Frequency Terminal (RFT) subsystem 230 , which also provides for the connection of the communication path to the satellite 200 .
  • RFT Radio Frequency Terminal
  • the coverage area for a satellite 200 can be (and usually is) very large.
  • This area can be served by a number of MSC/VLRs 240 which are connected to Public Switched Telephone Networks (PSTNs) (wireline networks), PLMNs (cellular networks) and each other.
  • PSTNs Public Switched Telephone Networks
  • PLMNs cellular networks
  • the terrestrial interconnections (trunk circuits) to these MSC/VLRs 240 are expensive to install and maintain, especially in comparison to handling the traffic over the satellite 200 .
  • the terrestrial trunk circuits are leased or owned by the operator, and in some cases, may need to be installed when the satellite network 205 is commissioned. Since the distances within the area served by the satellite(s) 200 are typically very large, the costs for these circuits can be enormous. In particular, the costs can be considerable if the circuits must cross remote areas or oceans.
  • calls can be optimized using satellite resources by moving a mobile subscribers registration from a serving MSC/VLR 240 a to an optimal MSC/VLR 240 b.
  • This can be accomplished by sending the Called Party Number (CPN) using, for example, an Unstructured Supplementary Services Data (USSD) string, to a Call Optimization Server (COS) 250 via the serving SBSS 220 a and the serving MSC/VLR 240 a.
  • CPN Called Party Number
  • USSD Unstructured Supplementary Services Data
  • COS Call Optimization Server
  • the COS 250 performs an analysis on the CPN to determine the optimal MSC/VLR 240 b, e.g., the MSC/VLR 240 b with either the closest connection to the called subscriber 260 or the MSC/VLR 240 b with the least expensive link to the called subscriber 260 . Thereafter, the address of the optimal MSC/VLR 240 b is returned to the MS 20 , which can then register with the indicated MSC/VLR 240 b. Once the registration is complete, the MS 20 can send a SETUP message to the new MSC/VLR 240 b via the new SBSS 220 b, and the call can be completed.
  • the optimal MSC/VLR 240 b e.g., the MSC/VLR 240 b with either the closest connection to the called subscriber 260 or the MSC/VLR 240 b with the least expensive link to the called subscriber 260 .
  • the address of the optimal MSC/VLR 240 b is returned to the MS
  • the optimal MSC/VLR 240 b which implies that after the initial call has been optimized, all new incoming calls will be routed to that optimal MSC/VLR 240 b.
  • that optimal MSC/VLR 240 b may not be optimal for the new incoming calls. For example, a call that may be a local call prior to the optimization may become a long distance call if the called subscriber is moved (re-registered) to an MSC/VLR 240 b that has to be reached via a long distance (most likely international) network.
  • the present invention is directed to telecommunications systems and methods for reducing sub-optimal routing of new incoming calls to an MS that has been re-registered at an optimal MSC/VLR for an optimized call.
  • the HLR stores an optimization indication indicating that the MS has been re-registered.
  • the HLR can forward the incoming call to a local voice mail box associated with the MS.
  • the HLR can store an unavailable indication along with the optimization indication while the MS is registered at the optimal MSC/VLR. The unavailable indication instructs the HLR to send an unavailable message to the calling party.
  • the MS can be notified that an incoming call was received during the optimized call.
  • either of the above alternatives will avoid setting up a long distance leg to the remote optimal MSC/VLR.
  • Yet another alternative is to be more selective regarding which calls are to be accepted while the subscriber is re-registered at the optimal MSC/VLR.
  • the HLR can store a screening list containing B-numbers of calling party's that are allowed to proceed even if higher charges are applied.
  • Still a further alternative is to provide a special announcement to the calling party indicating that the MS has been re-registered and that higher charges may apply. The calling party may override the announcement and proceed with the call setup understanding that additional charges may apply to either calling or called party.
  • FIG. 1 is a block diagram of a conventional terrestrially-based wireless telecommunications system
  • FIG. 2 is a block diagram illustrating aspects of a sample conventional satellite-based telecommunications system
  • FIG. 3 illustrates the conventional optimization of a call using satellite resources
  • FIG. 4 illustrates the conventional optimization of a call from a mobile station to a fixed subscriber
  • FIG. 5 illustrates the storage of an optimization indication in a home location register associated with an optimized mobile station in accordance with preferred embodiments of the present invention
  • FIG. 6 illustrates one alternative to sub-optimal routing of incoming calls to an optimized mobile station in accordance with embodiments of the present invention
  • FIG. 7 illustrates another alternative to sub-optimal routing of incoming calls to an optimized mobile station in accordance with embodiments of the present invention
  • FIG. 8 illustrates a screening list of calling party's that are allowed to proceed with calls to an optimized mobile station even though sub-optimal routing may occur in accordance with embodiments of the present invention.
  • FIG. 9 illustrates an announcement allowing a calling party to decide whether or not to proceed with a call to an optimized mobile station even though sub-optimal routing may occur in accordance with embodiments of the present invention.
  • FIG. 4 of the drawings A sample optimization process is shown in FIG. 4 of the drawings. Optimization of a call from a Mobile Station (MS) 20 to a called subscriber 260 within the Public Switched Telephone Network (PSTN) 280 (wireline network) can be accomplished by moving the calling MS's 20 registration to an optimal MSC/VLR 240 b closest to the PSTN 280 of the called subscriber 260 .
  • MS Mobile Station
  • PSTN Public Switched Telephone Network
  • the MS 20 initiates a call to the called subscriber 260 by inputting a Called Party Number (CPN) associated with the called subscriber 260 and transmitting the CPN in an ACCESS REQUEST message on the Random Access Channel (RACH) to a Mobile Switching Center/Visitor Location Register (MSC/VLR) 240 a serving a first network operator 270 via a satellite 200 and a serving Satellite-Adapted Base Station System (SBSS) 220 a.
  • CPN Called Party Number
  • RACH Random Access Channel
  • MSC/VLR Mobile Switching Center/Visitor Location Register
  • SBSS Satellite-Adapted Base Station System
  • the serving MSC/VLR 240 a analyzes the CPN and determines that the CPN is not a number registered within the serving MSC/VLR 240 a. Thereafter, the serving MSC/VLR 240 a sends the CPN, using, for example, an Unstructured Supplementary Services Data (USSD) string, to a Call Optimization Server (COS) 250 or optimization node, which can be co-located with the serving MSC/VLR 240 a.
  • COS 250 could instead be co-located with a Home Location Register (HLR) 290 , within the SBSS 220 a or within an external node (not shown), such as a node within the Intelligent Network.
  • the protocol to the external node could be based on an Intelligent Network (IN), Mobile Application Part (MAP) or other protocol.
  • the COS 250 performs an analysis on the CPN to determine the destination end office (not shown) of the CPN. Thereafter, the COS 250 determines the optimal MSC/VLR 240 b, e.g., the MSC/VLR 240 b within the area 205 visible to the satellite 200 that has the closest connection to the PSTN 280 or the least expensive link to the PSTN 280 , and returns the address for this optimal MSC/VLR 240 b to the MS 20 via the satellite 200 , the serving MSC/VLR 240 a and the serving SBSS 220 a.
  • the optimal MSC/VLR 240 b e.g., the MSC/VLR 240 b within the area 205 visible to the satellite 200 that has the closest connection to the PSTN 280 or the least expensive link to the PSTN 280 .
  • the MS 20 attempts to register with the indicated optimal MSC/VLR 240 b serving a second network operator 275 by sending a Location Update request to the optimal MSC/VLR 240 b for the purpose of bypassing as much of the terrestrial network as possible.
  • the Location Update request can be sent by the serving SBSS 220 a to the optimal MSC/VLR 240 b instead of being sent by the calling MS 20 .
  • the optimal MSC/VLR 240 b could serve another area within the same network 270 as the serving MSC/VLR 240 a, instead of being located within another network 275 .
  • the optimization occurs when the MS 20 sends a SETUP message to the new optimal MSC/VLR 240 b via the satellite 200 and the new optimal SBSS 220 b, as is understood in the art.
  • the call can then be completed normally using minimal terrestrial circuits and existing satellite resources.
  • the MS 20 is re-registered in the original serving MSC/VLR 240 a. This re-registration is necessary for a number of commercial, regulatory and technical reasons.
  • the optimal MSC/VLR 240 b for the optimized PSTN call may not be the optimal MSC/VLR for the new incoming call.
  • the optimal MSC/VLR 240 a for the new incoming call would be the original MSC/VLR 240 a. Since the MS 20 has been re-registered to the PSTN optimal MSC/VLR 240 b, a long-distance leg must be established to the optimal MSC/VLR 240 b to complete the call. This long-distance leg can be expensive for both the calling and called parties.
  • sub-optimal routing of new incoming calls to the MS 20 after that MS 20 has been re-registered to an optimal MSC/VLR 240 b can occur during the time that the MS 20 is registered with that optimal MSC/VLR 240 b.
  • the HLR 290 associated with the MS 20 a stores an address 294 for the optimal MSC/VLR 240 b in a subscriber record 295 associated with the MS 20 a along with an optimization indication 298 that the MS 20 a has been re-registered to a remote optimal MSC/VLR 240 b.
  • the MSC/VLR 240 a serving the calling MS 20 b which, in this case, is also a Gateway MSC/VLR 240 a, but is referred to as MSC/VLR 240 a, sends a routing request 225 to the HLR 290 for routing information for the called MS 20 a.
  • the HLR 290 accesses the subscriber record 295 associated with the called MS 20 a and determines that the called MS 20 a has been re-registered to the remote optimal MSC/VLR 240 a based upon the optimization indication 298 stored in the subscriber record 295 .
  • the new incoming call can be forwarded to a local voice mail box 288 of a local voice mail system 285 associated with the called MS 20 a.
  • the HLR 290 can access the subscriber record 295 , which stores routing information 215 for the voice mail box 288 of the called MS 20 a, and provide this routing information 215 to the requesting MSC/VLR 240 a. Thereafter, the MSC/VLR 240 a can forward the incoming call to the called MS's 20 a voice mail box 288 using the routing information 215 .
  • the called MS 20 a when the optimized call is completed and the called MS 20 a is re-registered back with the original MSC/VLR 240 a, the called MS 20 a will receive notification that an incoming call was received during the optimized call. For example, if the calling party leaves a voice mail message, the called MS 20 a can receive notification from the voice mail system 285 that a voice mail message was received and stored in the voice mail box 288 . The called MS 20 a can then access the voice mail box 288 and retrieve the voice mail message, as is understood in the art.
  • the called MS 20 a can receive notification from notification logic 291 within the HLR 290 that an incoming call was received, and preferably, if the called MS 20 a subscribes to a caller ID service, the B-number of the calling party can be provided to the called MS 20 a.
  • the HLR 290 in order to prevent sub-optimal routing of the new incoming call, when the HLR 290 stores the optimization indication 298 in the subscriber record 295 associated with the optimized MS 20 a, the HLR 290 can also store an unavailable indication 299 . Therefore, when the HLR 290 receives the routing request 225 from the MSC/VLR 240 a serving the calling MS 20 b and determines that the called MS 20 a has been re-registered at the remote optimal MSC/VLR 240 b based upon the optimization indication 298 , the HLR 290 can also determine that the called MS 20 a is not reachable based upon the unavailable indication 299 .
  • the HLR 290 will return an unavailable message 255 triggering the MSC/VLR 240 a to provide an indication to the calling MS 20 b that the called MS 20 a is not reachable, such as a busy signal.
  • the called MS 20 a will preferably be notified by the notification logic 291 within the HLR 290 about the incoming calls received during the optimized call, e.g., the B-numbers of the calling party's can be transmitted from the HLR 290 to the called MS 20 a.
  • the mobile subscriber associated with the called MS 20 a can store a screening list 296 within the called MS subscriber record 295 within the HLR 290 to select which incoming calls should be allowed to proceed when the called MS 20 a is optimized even if higher charges are applied.
  • the screening list 296 contains a list of B-numbers 297 associated with the calling party's that are allowed to be connected to the called MS 20 a when the called MS 20 a has been re-registered to an optimal MSC/VLR 240 b.
  • the HLR 290 when a routing request 225 is received by the HLR 290 pursuant to an incoming call to the called MS 20 a, the HLR 290 first determines that the called MS 20 a has been re-registered to the optimal MSC/VLR 240 b based upon the optimization indication 298 . Thereafter, if the subscriber record 295 associated with the called MS 20 a has a screening list 296 stored therein, comparison logic 292 within the HLR 290 compares a B-number 227 of the calling MS 20 b, which is sent to the HLR 290 in the routing request 225 from the MSC/VLR 240 a serving the calling MS 20 b, with the list of B-numbers 297 within the screening list 296 .
  • the HLR 290 returns routing information for the optimal MSC/VLR 240 b, e.g., the address 294 for the optimal MSC/VLR 240 b, to the requesting MSC/VLR 240 a.
  • the requesting MSC/VLR 240 a can attempt to complete the call to the called MS 20 by routing the call to the optimal MSC/VLR 240 b using the address 294 for the optimal MSC/VLR 240 b provided by the HLR 290 . However, if the B-number 227 of the calling MS 20 b does not match any one of the B-numbers 297 within the screening list 296 , the HLR 290 proceeds with one of the alternatives discussed above and shown in FIGS. 6 and 7.
  • the HLR 290 can order the playing of a special announcement 245 by the MSC/VLR 240 a to the calling MS 20 b indicating that additional charges may apply.
  • the calling MS 20 b may override the announcement 245 and proceed with the call setup understanding that additional charges may apply to either the calling MS 20 b or called MS 20 a or abandon the call.
  • the call setup will continue from the MSC/VLR 240 a to the optimal MSC/VLR 240 b.
  • the calling MS 20 b sends an abandon message 235 back to the MSC/VLR 240 a, which can forward the abandon message 235 to the HLR 290 , the HLR 290 can proceed with one of the alternatives discussed above and shown in FIGS. 6 and 7.
  • the announcement 245 can alternatively be provided only when the B-number 227 associated with the calling MS 20 b matches any one of the B-numbers 297 within the screening list 296 shown in FIG. 8 of the drawings.

Abstract

A telecommunications system and method is disclosed for preventing sub-optimal routing of new incoming calls to a mobile station (MS) that has been re-registered at a remote optimal Mobile Switching Center/Visitor Location Register (MSC/VLR) for an optimized call. When the MS is re-registered at the remote optimal MSC/VLR, the Home Location Register (HLR) associated with the MS stores an optimization indication indicating that the MS has been re-registered to the optimal MSC/VLR. Thereafter, when an incoming call to the MS is received during the time that the MS is re-registered, the HLR can handle the call based upon the optimization indication. For example, the HLR can forward the incoming call to a local voice mail box associated with the MS.

Description

BACKGROUND OF THE PRESENT INVENTION FIELD OF THE INVENTION
The present invention relates generally to telecommunications systems and methods for making and receiving calls within a satellite network, and specifically to handling incoming calls to an optimized mobile station within a satellite network.
BACKGROUND AND OBJECTS OF THE PRESENT INVENTION
Cellular telecommunications is one of the fastest growing and most demanding telecommunications applications. Today it represents a large and continuously increasing percentage of all new telephone subscriptions around the world. A standardization group, European Telecommunications Standards Institute (ETSI), was established in 1982 to formulate the specifications for the Global System for Mobile Communication (GSM) digital mobile cellular radio system.
With reference now to FIG. 1 of the drawings, there is illustrated a GSM Public Land Mobile Network (PLMN), such as cellular network 10, which in turn is composed of a plurality of areas 12, each with a Mobile Services Center (MSC) 14 and an integrated Visitor Location Register (VLR) 16 therein. The MSC/VLR areas 12, in turn, include a plurality of Location Areas (LA) 18, which are defined as that part of a given MSC/VLR area 12 in which a mobile station (MS) 20 may move freely without having to send update location information to the MSC/VLR area 12 that controls the LA 18. Each Location Area 12 is divided into a number of cells 22. Mobile Station (MS) 20 is the physical equipment, e.g., a car phone or other portable phone, used by mobile subscribers to communicate with the cellular network 10, each other, and users outside the subscribed network, both wireline and wireless.
The MSC 14 is in communication with at least one Base Station Controller (BSC) 23, which, in turn, is in contact with at least one Base Transceiver Station (BTS) 24. The BTS is the physical equipment, illustrated for simplicity as a radio tower, that provides radio coverage to the geographical part of the cell 22 for which it is responsible. It should be understood that the BSC 23 may be connected to several base transceiver stations 24, and may be implemented as a stand-alone node or integrated with the MSC 14. In either event, the BSC 23 and BTS 24 components, as a whole, are generally referred to as a Base Station System (BSS) 25.
With further reference to FIG. 1, the PLMN Service Area or cellular network 10 includes a Home Location Register (HLR) 26, which is a database maintaining all subscriber information, e.g., user profiles, current location information, International Mobile Subscriber Identity (IMSI) numbers, and other administrative information. The HLR 26 may be co-located with a given MSC 14, integrated with the MSC 14, or alternatively can service multiple MSCs 14, the latter of which is illustrated in FIG. 1.
The VLR 16 is a database containing information about all of the Mobile Stations 20 currently located within the MSC/VLR area 12. If a MS 20 roams into a new MSC/VLR area 12, the VLR 16 connected to that MSC 14 will request data about that Mobile Station 20 from the HLR database 26 (simultaneously informing the HLR 26 about the current location of the MS 20). Accordingly, if the user of the MS 20 then wants to make a call, the local VLR 16 will have the requisite identification information without having to reinterrogate the HLR 26. In the aforedescribed manner, the VLR and HLR databases 16 and 26, respectively, contain various subscriber information associated with a given MS 20.
It should be understood that the aforementioned system 10, illustrated in FIG. 1, is a terrestrially-based system. In addition to the terrestrially-based systems, there are a number of satellite systems, which work together with the terrestrially-based systems to provide cellular telecommunications to a wider network of subscribers. This is due to the fact that the high altitude of the satellite makes the satellite visible (from a radio perspective) from a wider area on the earth. The higher the satellite, the larger the area that the satellite can communicate with.
Within a satellite-based network 205, as shown in FIG. 2 of the drawings, a system of geostationary satellites 200 in orbit (one of which is shown) are used to provide communication between Mobile Stations (MS) 20 and a satellite-adapted Base Station System (SBSS) 220, which is connected to an integrated Mobile Switching Center/Visitor Location Register (MSC/VLR) 240. The MS 20 communicates via one of the satellites 200 using a radio air interface, for instance, based on the Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA). The satellite 200 in turn communicates with one or more SBSSs 220, which consist of equipment for communicating with the satellites 200 and through the satellites 200 to the MS's 20. The antennae and satellite tracking part of the system is the Radio Frequency Terminal (RFT) subsystem 230, which also provides for the connection of the communication path to the satellite 200.
In such satellite networks 205 using geostationary satellites 200, the coverage area for a satellite 200 can be (and usually is) very large. This area can be served by a number of MSC/VLRs 240 which are connected to Public Switched Telephone Networks (PSTNs) (wireline networks), PLMNs (cellular networks) and each other. The terrestrial interconnections (trunk circuits) to these MSC/VLRs 240 are expensive to install and maintain, especially in comparison to handling the traffic over the satellite 200. Currently, the terrestrial trunk circuits are leased or owned by the operator, and in some cases, may need to be installed when the satellite network 205 is commissioned. Since the distances within the area served by the satellite(s) 200 are typically very large, the costs for these circuits can be enormous. In particular, the costs can be considerable if the circuits must cross remote areas or oceans.
Thus, as shown in FIG. 3 of the drawings, calls can be optimized using satellite resources by moving a mobile subscribers registration from a serving MSC/VLR 240 a to an optimal MSC/VLR 240 b. This can be accomplished by sending the Called Party Number (CPN) using, for example, an Unstructured Supplementary Services Data (USSD) string, to a Call Optimization Server (COS) 250 via the serving SBSS 220 a and the serving MSC/VLR 240 a. The COS 250 performs an analysis on the CPN to determine the optimal MSC/VLR 240 b, e.g., the MSC/VLR 240 b with either the closest connection to the called subscriber 260 or the MSC/VLR 240 b with the least expensive link to the called subscriber 260. Thereafter, the address of the optimal MSC/VLR 240 b is returned to the MS 20, which can then register with the indicated MSC/VLR 240 b. Once the registration is complete, the MS 20 can send a SETUP message to the new MSC/VLR 240 b via the new SBSS 220 b, and the call can be completed.
Once the initial call has been optimized, it is handled by the optimal MSC/VLR 240 b, which implies that after the initial call has been optimized, all new incoming calls will be routed to that optimal MSC/VLR 240 b. However, that optimal MSC/VLR 240 b may not be optimal for the new incoming calls. For example, a call that may be a local call prior to the optimization may become a long distance call if the called subscriber is moved (re-registered) to an MSC/VLR 240 b that has to be reached via a long distance (most likely international) network.
It is, therefore, an object of the present invention to reduce sub-optimal routing of new incoming calls to a mobile station within a satellite network.
SUMMARY OF THE INVENTION
The present invention is directed to telecommunications systems and methods for reducing sub-optimal routing of new incoming calls to an MS that has been re-registered at an optimal MSC/VLR for an optimized call. When the MS is re-registered at the remote optimal MSC/VLR, the HLR stores an optimization indication indicating that the MS has been re-registered. Thereafter, when an incoming call to the MS is received during the time that the MS is re-registered, the HLR can forward the incoming call to a local voice mail box associated with the MS. Alternatively, the HLR can store an unavailable indication along with the optimization indication while the MS is registered at the optimal MSC/VLR. The unavailable indication instructs the HLR to send an unavailable message to the calling party. In either case, once the MS registers back with the originating MSC/VLR, the MS can be notified that an incoming call was received during the optimized call. Advantageously, either of the above alternatives will avoid setting up a long distance leg to the remote optimal MSC/VLR.
Yet another alternative is to be more selective regarding which calls are to be accepted while the subscriber is re-registered at the optimal MSC/VLR. The HLR can store a screening list containing B-numbers of calling party's that are allowed to proceed even if higher charges are applied. Still a further alternative is to provide a special announcement to the calling party indicating that the MS has been re-registered and that higher charges may apply. The calling party may override the announcement and proceed with the call setup understanding that additional charges may apply to either calling or called party.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed invention will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:
FIG. 1 is a block diagram of a conventional terrestrially-based wireless telecommunications system;
FIG. 2 is a block diagram illustrating aspects of a sample conventional satellite-based telecommunications system;
FIG. 3 illustrates the conventional optimization of a call using satellite resources;
FIG. 4 illustrates the conventional optimization of a call from a mobile station to a fixed subscriber;
FIG. 5 illustrates the storage of an optimization indication in a home location register associated with an optimized mobile station in accordance with preferred embodiments of the present invention;
FIG. 6 illustrates one alternative to sub-optimal routing of incoming calls to an optimized mobile station in accordance with embodiments of the present invention;
FIG. 7 illustrates another alternative to sub-optimal routing of incoming calls to an optimized mobile station in accordance with embodiments of the present invention;
FIG. 8 illustrates a screening list of calling party's that are allowed to proceed with calls to an optimized mobile station even though sub-optimal routing may occur in accordance with embodiments of the present invention; and
FIG. 9 illustrates an announcement allowing a calling party to decide whether or not to proceed with a call to an optimized mobile station even though sub-optimal routing may occur in accordance with embodiments of the present invention.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS
The numerous innovative teachings of the present application will be described with particular reference to the presently preferred exemplary embodiments. However, it should be understood that this class of embodiments provides only a few examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily delimit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others.
A sample optimization process is shown in FIG. 4 of the drawings. Optimization of a call from a Mobile Station (MS) 20 to a called subscriber 260 within the Public Switched Telephone Network (PSTN) 280 (wireline network) can be accomplished by moving the calling MS's 20 registration to an optimal MSC/VLR 240 b closest to the PSTN 280 of the called subscriber 260. The MS 20 initiates a call to the called subscriber 260 by inputting a Called Party Number (CPN) associated with the called subscriber 260 and transmitting the CPN in an ACCESS REQUEST message on the Random Access Channel (RACH) to a Mobile Switching Center/Visitor Location Register (MSC/VLR) 240 a serving a first network operator 270 via a satellite 200 and a serving Satellite-Adapted Base Station System (SBSS) 220 a.
The serving MSC/VLR 240 a analyzes the CPN and determines that the CPN is not a number registered within the serving MSC/VLR 240 a. Thereafter, the serving MSC/VLR 240 a sends the CPN, using, for example, an Unstructured Supplementary Services Data (USSD) string, to a Call Optimization Server (COS) 250 or optimization node, which can be co-located with the serving MSC/VLR 240 a. Alternatively, it should be noted that the COS 250 could instead be co-located with a Home Location Register (HLR) 290, within the SBSS 220 a or within an external node (not shown), such as a node within the Intelligent Network. The protocol to the external node could be based on an Intelligent Network (IN), Mobile Application Part (MAP) or other protocol.
The COS 250 performs an analysis on the CPN to determine the destination end office (not shown) of the CPN. Thereafter, the COS 250 determines the optimal MSC/VLR 240 b, e.g., the MSC/VLR 240 b within the area 205 visible to the satellite 200 that has the closest connection to the PSTN 280 or the least expensive link to the PSTN 280, and returns the address for this optimal MSC/VLR 240 b to the MS 20 via the satellite 200, the serving MSC/VLR 240 a and the serving SBSS 220 a. The MS 20 attempts to register with the indicated optimal MSC/VLR 240 b serving a second network operator 275 by sending a Location Update request to the optimal MSC/VLR 240 b for the purpose of bypassing as much of the terrestrial network as possible. Alternatively, the Location Update request can be sent by the serving SBSS 220 a to the optimal MSC/VLR 240 b instead of being sent by the calling MS 20. It should be understood that the optimal MSC/VLR 240 b could serve another area within the same network 270 as the serving MSC/VLR 240 a, instead of being located within another network 275.
The optimization occurs when the MS 20 sends a SETUP message to the new optimal MSC/VLR 240 b via the satellite 200 and the new optimal SBSS 220 b, as is understood in the art. The call can then be completed normally using minimal terrestrial circuits and existing satellite resources. When the call is finished, the MS 20 is re-registered in the original serving MSC/VLR 240 a. This re-registration is necessary for a number of commercial, regulatory and technical reasons.
However, when another new incoming call is placed to the optimized MS 20 during the optimized call, the optimal MSC/VLR 240 b for the optimized PSTN call may not be the optimal MSC/VLR for the new incoming call. For example, if the new incoming call is initiated by another MS (not shown) served by the original MSC/VLR 240 a, the optimal MSC/VLR 240 a for the new incoming call would be the original MSC/VLR 240 a. Since the MS 20 has been re-registered to the PSTN optimal MSC/VLR 240 b, a long-distance leg must be established to the optimal MSC/VLR 240 b to complete the call. This long-distance leg can be expensive for both the calling and called parties. Thus, sub-optimal routing of new incoming calls to the MS 20 after that MS 20 has been re-registered to an optimal MSC/VLR 240 b can occur during the time that the MS 20 is registered with that optimal MSC/VLR 240 b.
With reference now to FIG. 5 of the drawings, in accordance with preferred embodiments of the present invention, when the MS 20 a is re-registered with the optimal MSC/VLR 240 b for the optimized PSTN call, the HLR 290 associated with the MS 20 a stores an address 294 for the optimal MSC/VLR 240 b in a subscriber record 295 associated with the MS 20 a along with an optimization indication 298 that the MS 20 a has been re-registered to a remote optimal MSC/VLR 240 b.
Thereafter, when a calling party, shown in FIG. 5 as a calling MS 20 b, places a call to the optimized MS 20, the MSC/VLR 240 a serving the calling MS 20 b, which, in this case, is also a Gateway MSC/VLR 240 a, but is referred to as MSC/VLR 240 a, sends a routing request 225 to the HLR 290 for routing information for the called MS 20 a. The HLR 290 accesses the subscriber record 295 associated with the called MS 20 a and determines that the called MS 20 a has been re-registered to the remote optimal MSC/VLR 240 a based upon the optimization indication 298 stored in the subscriber record 295.
In one embodiment of the present invention, with reference now to FIG. 6 of the drawings, in order to prevent sub-optimal routing of the new incoming call, the new incoming call can be forwarded to a local voice mail box 288 of a local voice mail system 285 associated with the called MS 20 a. The HLR 290 can access the subscriber record 295, which stores routing information 215 for the voice mail box 288 of the called MS 20 a, and provide this routing information 215 to the requesting MSC/VLR 240 a. Thereafter, the MSC/VLR 240 a can forward the incoming call to the called MS's 20 a voice mail box 288 using the routing information 215.
In preferred embodiments, when the optimized call is completed and the called MS 20 a is re-registered back with the original MSC/VLR 240 a, the called MS 20 a will receive notification that an incoming call was received during the optimized call. For example, if the calling party leaves a voice mail message, the called MS 20 a can receive notification from the voice mail system 285 that a voice mail message was received and stored in the voice mail box 288. The called MS 20 a can then access the voice mail box 288 and retrieve the voice mail message, as is understood in the art. Alternatively, if no voice mail message has been left, the called MS 20 a can receive notification from notification logic 291 within the HLR 290 that an incoming call was received, and preferably, if the called MS 20 a subscribes to a caller ID service, the B-number of the calling party can be provided to the called MS 20 a.
In an alternative embodiment of the present invention, with reference now to FIG. 7 of the drawings, in order to prevent sub-optimal routing of the new incoming call, when the HLR 290 stores the optimization indication 298 in the subscriber record 295 associated with the optimized MS 20 a, the HLR 290 can also store an unavailable indication 299. Therefore, when the HLR 290 receives the routing request 225 from the MSC/VLR 240 a serving the calling MS 20 b and determines that the called MS 20 a has been re-registered at the remote optimal MSC/VLR 240 b based upon the optimization indication 298, the HLR 290 can also determine that the called MS 20 a is not reachable based upon the unavailable indication 299. In this situation, the HLR 290 will return an unavailable message 255 triggering the MSC/VLR 240 a to provide an indication to the calling MS 20 b that the called MS 20 a is not reachable, such as a busy signal. As soon as the called MS 20 a is registered back at the local MSC/VLR 240 a, the called MS 20 a will preferably be notified by the notification logic 291 within the HLR 290 about the incoming calls received during the optimized call, e.g., the B-numbers of the calling party's can be transmitted from the HLR 290 to the called MS 20 a.
In a further alternative embodiment, with reference now to FIG. 8 of the drawings, the mobile subscriber associated with the called MS 20 a can store a screening list 296 within the called MS subscriber record 295 within the HLR 290 to select which incoming calls should be allowed to proceed when the called MS 20 a is optimized even if higher charges are applied. The screening list 296 contains a list of B-numbers 297 associated with the calling party's that are allowed to be connected to the called MS 20 a when the called MS 20 a has been re-registered to an optimal MSC/VLR 240 b.
Thus, when a routing request 225 is received by the HLR 290 pursuant to an incoming call to the called MS 20 a, the HLR 290 first determines that the called MS 20 a has been re-registered to the optimal MSC/VLR 240 b based upon the optimization indication 298. Thereafter, if the subscriber record 295 associated with the called MS 20 a has a screening list 296 stored therein, comparison logic 292 within the HLR 290 compares a B-number 227 of the calling MS 20 b, which is sent to the HLR 290 in the routing request 225 from the MSC/VLR 240 a serving the calling MS 20 b, with the list of B-numbers 297 within the screening list 296. If the B-number 227 of the calling MS 20 b matches any one of the B-numbers 297 within the screening list 296, the HLR 290 returns routing information for the optimal MSC/VLR 240 b, e.g., the address 294 for the optimal MSC/VLR 240 b, to the requesting MSC/VLR 240 a.
The requesting MSC/VLR 240 a can attempt to complete the call to the called MS 20 by routing the call to the optimal MSC/VLR 240 b using the address 294 for the optimal MSC/VLR 240 b provided by the HLR 290. However, if the B-number 227 of the calling MS 20 b does not match any one of the B-numbers 297 within the screening list 296, the HLR 290 proceeds with one of the alternatives discussed above and shown in FIGS. 6 and 7.
Alternatively, as shown in FIG. 9 of the drawings, while providing the address 294 for the optimal MSC/VLR 240 b to the requesting MSC/VLR 240 a, the HLR 290 can order the playing of a special announcement 245 by the MSC/VLR 240 a to the calling MS 20 b indicating that additional charges may apply. The calling MS 20 b may override the announcement 245 and proceed with the call setup understanding that additional charges may apply to either the calling MS 20 b or called MS 20 a or abandon the call.
If the calling MS 20 b sends an override message 265 back to the MSC/VLR 240 a, e.g., by depressing a certain key on the MS 20 b or verbally overriding the announcement 245, the call setup will continue from the MSC/VLR 240 a to the optimal MSC/VLR 240 b. However, if the calling MS 20 b sends an abandon message 235 back to the MSC/VLR 240 a, which can forward the abandon message 235 to the HLR 290, the HLR 290 can proceed with one of the alternatives discussed above and shown in FIGS. 6 and 7. It should be noted that the announcement 245 can alternatively be provided only when the B-number 227 associated with the calling MS 20 b matches any one of the B-numbers 297 within the screening list 296 shown in FIG. 8 of the drawings.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a wide range of applications. Accordingly, the scope of patented subject matter should not be limited to any of the specific exemplary teachings discussed, but is instead defined by the following claims.

Claims (17)

What is claimed is:
1. A home location register for handling an incoming call to an optimized mobile station within a satellite network, said satellite network having a satellite covering a satellite coverage area, said satellite coverage area having a plurality of mobile switching centers therein, each of said mobile switching centers serving a specific mobile switching center area covering only a portion of said satellite area, said home location register comprising:
a memory for storing an optimization indication associated with said optimized mobile station, said optimization indication indicating that said mobile station is registered with an optimal mobile switching center for an optimized call when said optimization indication is set, said optimized mobile station being located within said satellite coverage area, but outside of said mobile switching center area served by said optimal mobile switching center, said memory further storing an unavailable indication associated with said optimized mobile station, said unavailable indication being set when said optimization indication is set;
means for receiving a routing request associated with said incoming call; and
means for selectively providing either routing information in response to said routing request or an unavailable message when said unavailable indication is set.
2. The home location register of claim 1, wherein said means for selectively providing routing information further provides routing information for a voice mail box associated with said optimized mobile station within a voice mail system when said optimization indication is set.
3. The home location register of claim 1, wherein said memory is a subscriber record associated with said optimized mobile station, said unavailable indication being stored within said subscriber record.
4. The home location register of claim 1, further comprising:
notification logic for notifying said optimized mobile station that said incoming call was received when said optimization indication is no longer set.
5. The home location register of claim 1, further comprising:
a screening list associated with said optimized mobile station containing at least one stored B-number; and
comparison logic for comparing a received B-number within said routing request with said at least one stored B-number within said screening list when said optimization indication is set, and for instructing said home location register to provide routing information for said optimal mobile switching center when said received B-number matches any one of said at least one stored B-number within said screening list.
6. The home location register of claim 5, wherein said means for selectively providing routing information further provides routing information for a voice mail box associated with said optimized mobile station within a voice mail system when said optimization indication is set and said received B-number does not match any one of said at least one B-number within said screening list.
7. The home location register of claim 5, further comprising:
an unavailable indication associated with said optimized mobile station, said unavailable indication being set when said optimization indication is set, said home location register providing an unavailable message when said unavailable indication is set and said received B-number does not match any one of said at least one B-number within said screening list.
8. A method for handling an incoming call to an optimized mobile station within a satellite network, said satellite network having a satellite covering a satellite coverage area, said satellite coverage area having a plurality of mobile switching centers therein, each of said mobile switching centers serving a specific mobile switching center area covering only a portion of said satellite area, said method comprising the steps of:
setting, by a home location register, an optimization indication associated with said optimized mobile station when said optimized mobile station is registered with an optimal mobile switching center for an optimized call, said optimized mobile station being located within said satellite coverage area, but outside of said mobile switching center area served by said optimal mobile switching center;
setting, by said home location register, an unavailable indication associated with said optimized mobile station when said optimization indication is set;
receiving, by said home location register, a routing request associated with said incoming call to said optimized mobile station; and
selectively providing, by said home location register, either routing information or an unavailable message when said unavailable indication is set to a source of said incoming call.
9. The method of claim 8, wherein said step of selectively providing further comprises the step of:
providing, by said home location register, routing information for a voice mail box associated with said optimized mobile station within a voice mail system.
10. The method of claim 8, further comprising the steps of:
removing said optimization indication when said optimized mobile station is no longer registered with said optimal mobile switching center; and
notifying said optimized mobile station that said incoming call was received when said optimization indication is no longer set.
11. The method of claim 8, wherein said step of selectively providing further comprises the steps of:
comparing a received B-number within said routing request with at least one stored B-number within a screening list associated with said optimized mobile station and stored within said home location register when said optimization indication is set; and
providing, by said home location register, routing information for said optimal mobile switching center when said received B-number matches any one of said at least one stored B-number within said screening list.
12. The method of claim 11, wherein said step of selectively providing further comprises the step of:
providing, by said home location register, routing information for a voice mail box associated with said optimized mobile station within a voice mail system when said optimization indication is set and said received B-number does not match any one of said at least one stored B-number within said screening list.
13. The method of claim 11, wherein said step of selectively providing further comprises the steps of:
setting an unavailable indication associated with said optimized mobile station within said home location register when said optimization indication is set; and
providing, by said home location register, an unavailable message when said unavailable indication is set and said received B-number does not match any one of said at least one stored B-number within said screening list.
14. The method of claim 8, wherein said step of selectively providing further comprises the step of:
providing, by said home location register, routing information for said optimal mobile switching center; and
triggering, by said home location register the providing of an announcement indicating that said optimized mobile station is registered with said optimal mobile switching center when said optimization indication is set.
15. The method of claim 14, wherein said step of selectively providing further comprises the steps of:
receiving, in response to said announcement, an override message; and
connecting said incoming call to said optimal mobile switching center.
16. The method of claim 14, wherein said step of selectively providing further comprises the step of:
receiving, by said home location register, in response to said announcement, an abandon message; and
providing, by said home location register, routing information for a voice mail box associated with said optimized mobile station within a voice mail system when said optimization indication is set.
17. The method of claim 14, wherein said step of selectively providing further comprises the steps of:
receiving, by said home location register, in response to said announcement, an abandon message;
setting an unavailable indication associated with said optimized mobile station within said home location register when said optimization indication is set; and
providing, by said home location register, an unavailable message when said unavailable indication is set.
US09/219,183 1998-12-22 1998-12-22 System and method for handling incoming calls to an optimized mobile station within a satellite network Expired - Lifetime US6400944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/219,183 US6400944B1 (en) 1998-12-22 1998-12-22 System and method for handling incoming calls to an optimized mobile station within a satellite network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/219,183 US6400944B1 (en) 1998-12-22 1998-12-22 System and method for handling incoming calls to an optimized mobile station within a satellite network

Publications (2)

Publication Number Publication Date
US6400944B1 true US6400944B1 (en) 2002-06-04
US20020068563A1 US20020068563A1 (en) 2002-06-06

Family

ID=22818218

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/219,183 Expired - Lifetime US6400944B1 (en) 1998-12-22 1998-12-22 System and method for handling incoming calls to an optimized mobile station within a satellite network

Country Status (1)

Country Link
US (1) US6400944B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203892A1 (en) * 2002-12-10 2004-10-14 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US20040203891A1 (en) * 2002-12-10 2004-10-14 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US20080014933A1 (en) * 2006-07-17 2008-01-17 Montz Mark A Call routing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547719B1 (en) * 2002-09-10 2006-01-31 삼성전자주식회사 Private mobile communication system and method that can provide information on the status of a public network call of a mobile communication terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064882A (en) * 1997-12-23 2000-05-16 Ericsson Inc. System and method for satellite call optimization
US6067452A (en) * 1996-05-28 2000-05-23 Comsat Corporation Technique for least cost routing for mobile satellite systems employing a GSM network infrastructure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067452A (en) * 1996-05-28 2000-05-23 Comsat Corporation Technique for least cost routing for mobile satellite systems employing a GSM network infrastructure
US6064882A (en) * 1997-12-23 2000-05-16 Ericsson Inc. System and method for satellite call optimization

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203892A1 (en) * 2002-12-10 2004-10-14 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US20040203891A1 (en) * 2002-12-10 2004-10-14 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US7136658B2 (en) 2002-12-10 2006-11-14 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US20060264222A1 (en) * 2002-12-10 2006-11-23 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US7274941B2 (en) 2002-12-10 2007-09-25 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US7308275B2 (en) 2002-12-10 2007-12-11 International Business Machines Corporation High-rate proximity detection with the ability to provide notification
US7428418B2 (en) 2002-12-10 2008-09-23 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US20080261621A1 (en) * 2002-12-10 2008-10-23 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US9014722B2 (en) 2002-12-10 2015-04-21 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
US20080014933A1 (en) * 2006-07-17 2008-01-17 Montz Mark A Call routing

Also Published As

Publication number Publication date
US20020068563A1 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
US5978678A (en) Cellular telephone network routing method and apparatus for internationally roaming mobile stations
US6101393A (en) Selective acceptance of short message service (SMS) messages in a cellular telephone network
US6240069B1 (en) System and method for location-based group services
AU719005B2 (en) Providing service area dependent subscriber data within a mobile telecommunications network
EP1062826B1 (en) System and method for routing positioning requests based on mobile switching center address
US6556831B1 (en) Telecommunication system
US20080160997A1 (en) International Automatic Roaming Service Method
US6219546B1 (en) System and method of reallocating satellite gateways in a radio telecommunications network
WO1999027716A1 (en) Regulatory database within the intelligent network
WO2000030396A1 (en) System/method to provide efficient positioning request signaling & indication of mobile station availability for location services
CA2266019A1 (en) Optimized routing of calls to roaming subscribers within a telecommunications network
WO1996034503A1 (en) Dual mode mobile telecommunications system
US6253079B1 (en) System and method for optimization of calls based upon available satellite resources
US6064882A (en) System and method for satellite call optimization
WO2000007403A1 (en) System and method for long distance bypass for terminating mobile calls
US6567668B1 (en) Locator barring for satellite-based networks
US6018660A (en) System and method for invoking barring features in a satellite network
WO2000013454A1 (en) System and method for call completion to a roamer without routing through the home network
EP1135954A1 (en) Optimized routing of mobile calls within a telecommunications network
US6301466B1 (en) System and method for optimization of call forwarding on busy for an optimized mobile station within a satellite network
US6400944B1 (en) System and method for handling incoming calls to an optimized mobile station within a satellite network
US6449478B1 (en) System and method for modification of satellite hop counter to reflect orbit type
US6356751B1 (en) System and method for bridging an emergency call with an optimized satellite call
US6249676B1 (en) System and method for call optimization between mobile terminals in a satellite network
US6314288B1 (en) Error management in a messaging/telephony location interworking service

Legal Events

Date Code Title Description
AS Assignment

Owner name: ERICSSON INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALPEROVICH, VLADIMIR;VALENTINE, ERIC;REEL/FRAME:009676/0529

Effective date: 19981221

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12