US6440787B1 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
US6440787B1
US6440787B1 US09/598,465 US59846500A US6440787B1 US 6440787 B1 US6440787 B1 US 6440787B1 US 59846500 A US59846500 A US 59846500A US 6440787 B1 US6440787 B1 US 6440787B1
Authority
US
United States
Prior art keywords
forming
conductivity type
insulating film
film
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/598,465
Inventor
Yasuki Yoshihisa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI DENKI KABUSHIKI KAISHA reassignment MITSUBISHI DENKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHIHISA, YASUKI
Application granted granted Critical
Publication of US6440787B1 publication Critical patent/US6440787B1/en
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITSUBISHI DENKI KABUSHIKI KAISHA
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Definitions

  • the present invention relates to a manufacturing method of a semiconductor device.
  • the present invention relates to a manufacturing method of a semiconductor device having a self-aligned high-performance bipolar transistor and a dual gate high-performance CMOS transistor on the same substrate.
  • a conventional BiCMOS semiconductor device having a bipolar transistor and a CMOS transistor on the same substrate has an advantage that high operation speed and high load driving ability of the bipolar transistor and a high integration density and lower power consumption of the MOS transistors can be realized simultaneously.
  • CMOS transistors complementary metal-oxide-semiconductors
  • FIGS. 15A-15D to FIGS. 18A-18C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
  • field oxide films 101 are formed by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed.
  • an insulating film 153 to become gate oxide films of MOS transistors is formed.
  • a doped polysilicon film 156 to become the gates of the MOS transistors is deposited on the insulating film 153 and an insulating film 157 of TEOS or the like is deposited on the doped polysilicon film 156 .
  • the gates of the MOS transistors are formed by using a resist pattern 158 . As shown in FIG.
  • LDD layers 159 and 160 of the MOS transistors are formed.
  • frames 161 are formed on the side faces of the gates of the MOS transistors by depositing an insulating film of TEOS or the like and dry-etching it.
  • source/drain layers 162 and 163 of the MOS transistors are formed by injection.
  • the MOS transistor forming region is protected by depositing an insulating film 164 of TEOS or the like.
  • a polysilicon film 165 is deposited and an impurity BF 2 106 ( 170 ) is implanted into the polysilicon film 165 over its entire area.
  • an insulating film 166 of TEOS or the like is deposited on the entire surface.
  • a base lead-out electrode is formed by etching the polysilicon film 165 and the insulating film 166 . Then, after an oxide film 109 is formed by oxidation, an external base layer 110 is formed by diffusing the impurity in the polysilicon film 165 into the semiconductor film 100 .
  • an intrinsic base layer 110 a is formed by implanting an impurity BF 2 . Then, a frame is formed on the side face of the base lead-out electrode by depositing an insulating film 167 of TEOS or the like and etching it as shown in FIG. 17 C.
  • a polysilicon film 169 to become an emitter lead-out electrode of an NPN transistor is deposited and an impurity 168 of As or the like is implanted over the entire area.
  • an emitter lead-out electrode 172 of the NPN transistor is formed by dry etching.
  • an interlayer insulating film 171 such as a TEOS/BPSG/TEOS film is deposited and its surface is planarized by subjecting it to reflow.
  • an emitter layer 173 is formed by diffusing the impurity into the semiconductor substrate 100 from the emitter lead-out electrode 172 .
  • interconnections 174 etc. are formed as shown in FIG. 18 C.
  • the MOS region is protected by depositing the insulating film 164 , whereby damage that would otherwise occur in later forming the NPN transistor is prevented and thereby the characteristics of the MOS transistors are prevented from being deteriorated.
  • the above-described conventional BiCMOS semiconductor device having the bipolar transistor and the CMOS transistor on the same substrate has a problem that the measure to prevent deterioration in transistor characteristics makes the process complex and increases the number of manufacturing steps.
  • the gate electrodes of both of the NMOS transistor and the PMOS transistor are given N-type conductivity and the PMOS transistor is made a buried channel type. This results in problems that the leak current of the PMOS transistor increases and the threshold voltage Vth is difficult to control.
  • the present invention has been made to solve the above problems in the art, and an object of the invention is therefore to provide a manufacturing method of a semiconductor device and which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks.
  • a manufacturing method of a semiconductor device which forms bipolar transistors and MOS transistors on the same semiconductor substrate, comprising the steps of a first insulating film forming of forming separated first insulating films on a major surface of the semiconductor substrate; a second insulating film forming of forming a second insulating film on the semiconductor substrate and the first insulating films; a second insulating film removing of removing a portion, on the semiconductor substrate, of the second insulating film in a region where to form a base of a first conductivity type bipolar transistor; forming a first polysilicon film on a second-insulating-film-removed portion of the semiconductor substrate and a remaining portion of the second insulating film, implanting a first conductivity type impurity of a first concentration into the first polysilicon film, and forming a third insulating film on the first polysilicon film; a first forming of forming, at the same time, an external base lead-out electrode
  • FIGS. 1A-1D show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 2A-2D show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 3A-3C show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 4A-4D show a process of a manufacturing method according to embodiments 1 or 2 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 5A-5C show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 6A-6D show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 7A-7C show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIG. 8 shows a process of a manufacturing method according to embodiment 4 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIG. 9 shows a process of a manufacturing method according to embodiment 5 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIG. 10 shows a process of a manufacturing method according to embodiment 6 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 11A-11D show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 12A-12D show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 13A-13C show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 14A-14C show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • FIGS. 15A-15D show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
  • FIGS. 16A-16C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
  • FIGS. 17A-17D show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
  • FIGS. 18A-18C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
  • FIGS. 1A-1D to FIG. 7A-7C show a process of a manufacturing method according to a embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • field oxide films (first insulating films) 101 are formed separately by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed.
  • an insulating film (second insulating film) 103 to become a gate oxide film of a PMOS transistor (first conductivity type MOS transistor) is formed on the semiconductor substrate 100 and the field oxide films 101 (second insulating film forming step).
  • a region where to form the base of an NPN bipolar transistor (first conductivity type bipolar transistor) is formed as an opening of a resist pattern 104 and the insulating film 103 is removed there (second insulating film removing step).
  • a polysilicon film (first polysilicon film) 105 to become a base lead-out electrode of the NPN bipolar transistor and the gate of the PMOS transistor is deposited.
  • an impurity (first conductivity type impurity of a first concentration) 106 of B or the like is implanted into the polysilicon film 105 over the entire area.
  • an insulating film (third insulating film) of TEOS or the like is deposited.
  • prescribed regions of the stacked film of the polysilicon film 105 and the insulating film 107 are defined by a resist pattern 108 .
  • an external base lead-out electrode 105 a of the NPN bipolar transistor and a gate 105 b of the PMOS transistor are formed at the same time by dry etching or the like (first forming step).
  • an oxide film (fourth insulating film) 109 is formed by oxidation and an external base layer 110 is formed by introducing the impurity 106 into the semiconductor substrate 100 from the external base lead-out electrode 105 a of the NPN bipolar transistor.
  • the link base later 112 of an intrinsic base of the NPN bipolar transistor is formed by implanting an impurity (first conductivity type impurity of a second concentration) 121 of BF 2 or the like into the semiconductor substrate 100 in this region. Then, as shown in FIG.
  • link base layer 112 of the intrinsic base of the NPN bipolar transistor, the LDD layers 114 c of the PMOS transistor, and the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor by the same impurity implantation with the same mask.
  • an insulating film (fifth insulating film) 115 of TEOS or the like is deposited over the entire area.
  • the insulating film 115 is, for example, dry-etched, whereby frames 105 a and 105 b are formed on the side face of the external base lead-out electrode 105 a of the NPN bipolar transistor and the side face of the gate of the PMOS transistor, respectively (frame forming step).
  • an impurity (first conductivity type impurity of a fourth concentration) 121 of BF 2 of the like is implanted, whereby the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor are finally formed and the source and drain of the PMOS transistor are formed (third forming step).
  • an insulating film (sixth insulating film) 119 to become a gate oxide film of an NMOS transistor is formed (sixth insulating film forming step).
  • the intrinsic base layer 110 a of the NPN bipolar transistor is formed by implanting an impurity (first conductivity type impurity of a fifth concentration) 121 of BF 2 or the like.
  • an impurity first conductivity type impurity of a fifth concentration
  • FIG. 5B a portion of the insulating film 119 above the intrinsic base region is removed by etching and thereby the major surface of the semiconductor substrate 100 is exposed there (semiconductor substrate exposing step). As shown in FIG.
  • a polysilicon film (second polysilicon film) 122 to become an emitter lead-out electrode of the NPN bipolar transistor and the gate of the NMOS transistor is deposited and an impurity (second conductivity type impurity of a first concentration) 123 of As or the like is implanted into the polysilicon film 122 over the entire area.
  • an insulating film (seventh insulating film) 124 of TEOS or the like is deposited over the entire area. Then, after prescribed regions of the stacked film of the insulating film 124 and the polysilicon film 122 is defined by a resist pattern 125 , as shown in FIG. 6B an emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of the NMOS transistor (second conductivity type MOS transistor) are formed at the same time by dry etching or the like (fourth forming). As shown in FIG.
  • LDD layers 127 of the NMOS transistor are formed by implanting an impurity (second conductivity type impurity of a second concentration) 135 of P or the like (second conductivity type MOS transistor LDD layer forming step).
  • an insulating film (eighth insulating film) 128 of TEOS or the like is deposited.
  • a frame 128 a is formed on the side face of the gate of the NMOS transistor by dry etching. Then, after a region where to form the NMOS transistor is defined by a resist pattern 129 , source and drain layers 130 of the NMOS transistor are formed by implanting an impurity (second conductivity type of a third concentration) 123 of As or the like (second conductivity type MOS transistor source and drain layers forming step). As shown in FIG. 7B, an interlayer insulating film 131 such as a TEOS/BPSG/TEOS film is deposited and its surface is planarized by subjecting it to reflow. Further, an emitter layer 132 is formed by diffusing the impurity 121 into the semiconductor substrate 100 from the emitter lead-out electrode 122 a . Finally, interconnections 133 etc. are formed as shown in FIG. 7 C.
  • the base lead-out electrode 105 a of the NPN bipolar transistor and the gate 105 b of the PMOS transistor can be formed at the same time by using the same material (polysilicon film 105 ), and the emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of the NMOS transistor can be formed at the same time by using the same material (polysilicon film 122 ). Therefore, a surface channel PMOS transistor can be obtained while an increase in the number of manufacturing steps is prevented. As a result, the leak current of the PMOS transistor can be reduced and the threshold voltage Vth can be controlled easily.
  • FIGS. 4C and 4D show part of a process of a manufacturing method according to a embodiment 2 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • the steps of the embodiment 2 shown by FIGS. 1A-4A and 5 A- 7 C are the same as those of the embodiment 1 and hence will not be described.
  • the impurity 121 of BF 2 or the like is implanted, whereby the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor and the source and drain of the PMOS transistor are formed.
  • an opening 107 is formed in the insulating film 107 in a region defined by a resist pattern 118 and a portion of the polysilicon film 105 is exposed in the opening 107 a .
  • a capacitor is formed in which the polysilicon film 105 , the polysilicon film 122 , and the insulating film 119 serve as a bottom electrode, a top electrode, and a dielectric material, respectively.
  • a high-performance capacitor having only a small parasitic capacitance can be formed only by adding one mask without increasing an electrode forming step.
  • FIGS. 1B and 3A show part of a process of a manufacturing method according to a embodiment 3 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • the steps of the embodiment 3 shown by the figures other than FIGS. 1B and 3A are the same as those of the embodiment 1 and hence will not be described.
  • the thickness of the insulating film 103 (second insulating film) shown in FIG. 1B is set different from that of the insulating film 119 (sixth insulating film) shown FIG. 3 A.
  • a BiCMOS semiconductor device can be manufactured in which the PMOS transistor and the NMOS transistor have different gate breakdown voltages.
  • a BiCMOS semiconductor device can be manufactured in which the PMOS transistor and the NMOS transistor have different gate breakdown voltages.
  • FIGS. 4A and 8 show part of a process of a manufacturing method according to a embodiment 4 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • the steps of the embodiment 4 shown by the figures other than FIGS. 4A and 8 are the same as those of the embodiment 1 and hence will not be described.
  • Polysilicon films 134 a and 134 b (third polysilicon film) shown in FIG. 8 are used instead of the insulating film 115 shown in FIG. 4 A.
  • LDD frames can be formed on a side face 134 a of the external base lead-out electrode 105 a of the NPN bipolar transistor and a side face 134 b of the gate 105 b of the PMOS transistor. Satisfactory results are obtained by making the polysilicon films 134 a and 134 b different in material from the insulating film 115 .
  • an NPN bipolar transistor having smaller dispersion can be manufactured.
  • FIG. 9 shows part of a process of a manufacturing method according to a embodiment 5 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • the steps of the embodiment 5 shown by the figures other than FIG. 9 are the same as those of the embodiment 1 and hence the explanation will be omitted.
  • the emitter and collector of the horizontal PNP bipolar transistor are formed by diffusing the p-type impurity into the semiconductor substrate 100 from the external base lead-out electrode 105 a of the PNP bipolar transistor. In this case, limitations on the interval between interconnections are eliminated and hence the device area can be reduced.
  • the emitter and collector of the horizontal PNP bipolar transistor are formed by diffusing the p-type impurity into the semiconductor substrate 100 from the base lead-out electrode 105 a of the PNP bipolar transistor, limitations on the interval between interconnections are eliminated and hence the device area can be reduced.
  • FIG. 10 shows part of a process of a manufacturing method according to a embodiment 6 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • the steps of the embodiment 6 shown by the figures other than FIG. 10 are the same as those of the embodiment 1 and hence will not be described.
  • the base of the horizontal PNP bipolar transistor is formed in the step of the embodiment 1 shown by FIG. 2H (the gate of the PMOS transistor is formed) or 3 K.
  • the device area can be made smaller than in a conventional horizontal PNP bipolar transistor in which the base width is defined by a field oxide film.
  • FIGS. 11A-11D to 14 A- 14 C show a process of a manufacturing method according to a embodiment 7 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
  • field oxide films 101 are formed by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed. Then, as shown in FIG. 11B, an insulating film 103 to become a gate oxide film of a PMOS transistor is formed on the semiconductor substrate 100 and the field oxide films 101 . Subsequently, a polysilicon film 145 (fourth polysilicon film) is deposited.
  • FIGS. 11C to 12 C that are executed after the deposition of the polysilicon film 145 are the same as the steps of the embodiment 1 shown by FIGS. 1C to 4 D and hence will not be described.
  • an insulating film 119 to become a gate oxide film of the NMOS transistor is formed.
  • a polysilicon film 146 (fifth polysilicon film) is deposited.
  • FIGS. 13A to 14 B The steps shown by FIGS. 13A to 14 B that are executed after the deposition of the polysilicon film 146 are the same as the steps of the embodiment 1 shown by FIGS. 5A to 7 B and hence will not be described.
  • interconnections 133 etc. are formed as shown in FIG. 14 C.
  • the gate oxide films can be protected from damage that would otherwise occur in forming the NPN bipolar transistor, whereby MOS transistors that are free of deterioration in transistor characteristics can be formed.
  • the invention can provide a manufacturing method of a semiconductor device which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks.
  • the manufacturing method may further comprise, prior to the step of sixth insulating film forming, defining a predetermined region of the stacked film of the third insulating film and the first polysilicon film by photolithography, and exposing the first polysilicon film by etching the third insulating film there.
  • the manufacturing method may further comprise the steps of, after the step of second forming: forming a third polysilicon film on the existing films; and forming frames on the side face of the external base lead-out electrode of the first conductivity type bipolar transistor and the side face of the gate of the first conductivity type MOS transistor by etching the third polysilicon film.
  • the emitter and the collector of the second conductivity type bipolar transistor may be formed by introducing the first conductivity type impurity of a first concentration into the semiconductor substrate from the external base lead-out electrode of the second conductivity type bipolar transistor.
  • a base of the second conductivity bipolar transistor may be formed in the same steps from the step of first forming to the step of second forming for forming the gate of the first conductivity type MOS transistor.
  • the manufacturing method may further comprise, after the step of second insulating film forming, a step of forming a fourth polysilicon film on the second insulating film, and removing the second insulating film by etching the fourth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
  • the manufacturing method may further comprise, after the step of sixth insulating film forming, a step of forming a fifth polysilicon film on the sixth insulating film, and removing the sixth insulating film by etching the fifth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
  • the second insulating film and the sixth insulating film may be different from each other in film thickness.

Abstract

A manufacturing method of a semiconductor device which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks. A base lead-out electrode 105 a of an NPN bipolar transistor and the gate 105 b of a PMOS transistor can be formed at the same time by using the same material (a polysilicon film 105), and an emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of an NMOS transistor are formed at the same time by using the same material (a polysilicon film 122). Therefore, a surface channel PMOS transistor can be obtained while an increase in the number of manufacturing steps is prevented. As a result, the leak current of the PMOS transistor can be reduced and the threshold voltage Vth can be controlled easily.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a manufacturing method of a semiconductor device. In particular, the present invention relates to a manufacturing method of a semiconductor device having a self-aligned high-performance bipolar transistor and a dual gate high-performance CMOS transistor on the same substrate.
2. Description of Related Art
A conventional BiCMOS semiconductor device having a bipolar transistor and a CMOS transistor on the same substrate has an advantage that high operation speed and high load driving ability of the bipolar transistor and a high integration density and lower power consumption of the MOS transistors can be realized simultaneously. However, to form a high-performance bipolar transistor and high-performance MOS transistors on the same substrate, there are problems that the number of manufacturing steps and the number of masks increase.
FIGS. 15A-15D to FIGS. 18A-18C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
As shown in FIG. 15A, field oxide films 101 are formed by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed. Then, as shown in FIG. 15B, an insulating film 153 to become gate oxide films of MOS transistors is formed. As shown in FIG. 15C, a doped polysilicon film 156 to become the gates of the MOS transistors is deposited on the insulating film 153 and an insulating film 157 of TEOS or the like is deposited on the doped polysilicon film 156. Then, the gates of the MOS transistors are formed by using a resist pattern 158. As shown in FIG. 15D, LDD layers 159 and 160 of the MOS transistors are formed. Then, frames 161 are formed on the side faces of the gates of the MOS transistors by depositing an insulating film of TEOS or the like and dry-etching it. Then, source/ drain layers 162 and 163 of the MOS transistors are formed by injection.
As shown in FIG. 16A, the MOS transistor forming region is protected by depositing an insulating film 164 of TEOS or the like. As shown in FIG. 16B, a polysilicon film 165 is deposited and an impurity BF2 106 (170) is implanted into the polysilicon film 165 over its entire area. Subsequently, as shown in FIG. 16C, an insulating film 166 of TEOS or the like is deposited on the entire surface.
As shown in FIG. 17A, after performing photolithography, a base lead-out electrode is formed by etching the polysilicon film 165 and the insulating film 166. Then, after an oxide film 109 is formed by oxidation, an external base layer 110 is formed by diffusing the impurity in the polysilicon film 165 into the semiconductor film 100. As shown in FIG. 17B, an intrinsic base layer 110 a is formed by implanting an impurity BF2. Then, a frame is formed on the side face of the base lead-out electrode by depositing an insulating film 167 of TEOS or the like and etching it as shown in FIG. 17C. As shown in FIG. 17D, a polysilicon film 169 to become an emitter lead-out electrode of an NPN transistor is deposited and an impurity 168 of As or the like is implanted over the entire area.
As shown in FIG. 18A, after a desired region is defined by photolithography, an emitter lead-out electrode 172 of the NPN transistor is formed by dry etching. As shown in FIG. 18B, an interlayer insulating film 171 such as a TEOS/BPSG/TEOS film is deposited and its surface is planarized by subjecting it to reflow. Further, an emitter layer 173 is formed by diffusing the impurity into the semiconductor substrate 100 from the emitter lead-out electrode 172. Finally, interconnections 174 etc. are formed as shown in FIG. 18C.
As described above, the MOS region is protected by depositing the insulating film 164, whereby damage that would otherwise occur in later forming the NPN transistor is prevented and thereby the characteristics of the MOS transistors are prevented from being deteriorated.
The above-described conventional BiCMOS semiconductor device having the bipolar transistor and the CMOS transistor on the same substrate has a problem that the measure to prevent deterioration in transistor characteristics makes the process complex and increases the number of manufacturing steps. To decrease the number of manufacturing steps even by a small number, the gate electrodes of both of the NMOS transistor and the PMOS transistor are given N-type conductivity and the PMOS transistor is made a buried channel type. This results in problems that the leak current of the PMOS transistor increases and the threshold voltage Vth is difficult to control.
SUMMARY OF THE INVENTION
The present invention has been made to solve the above problems in the art, and an object of the invention is therefore to provide a manufacturing method of a semiconductor device and which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks.
According to an aspect of the present invention, there is provided a manufacturing method of a semiconductor device which forms bipolar transistors and MOS transistors on the same semiconductor substrate, comprising the steps of a first insulating film forming of forming separated first insulating films on a major surface of the semiconductor substrate; a second insulating film forming of forming a second insulating film on the semiconductor substrate and the first insulating films; a second insulating film removing of removing a portion, on the semiconductor substrate, of the second insulating film in a region where to form a base of a first conductivity type bipolar transistor; forming a first polysilicon film on a second-insulating-film-removed portion of the semiconductor substrate and a remaining portion of the second insulating film, implanting a first conductivity type impurity of a first concentration into the first polysilicon film, and forming a third insulating film on the first polysilicon film; a first forming of forming, at the same time, an external base lead-out electrode and a gate of a first conductivity type MOS transistor on the semiconductor substrate by etching a stacked film of the first polysilicon film and the third insulating film in predetermined regions; forming a fourth insulating film in the etched, predetermined regions of the stacked film, and, at the same time, forming an external base layer by introducing the first conductivity type impurity of a first concentration into the semiconductor substrate from the external base lead-out electrode of the first conductivity type bipolar transistor; defining, by photolithography, a region where to form an external base lead-out electrode of the first conductivity type bipolar transistor, and forming the link base layer of the first conductivity type bipolar transistor by implanting the first conductivity impurity of a second concentration into the semiconductor substrate in the defined region; a second forming of defining, by photolithography, a first conductivity type MOS transistor forming region where to form the first conductivity type MOS transistor and a second conductivity type bipolar transistor forming region where to form an emitter and a collector of a second conductivity type bipolar transistor, and forming LDD layers in the first conductivity type MOS transistor forming region and an emitter layer and a collector layer in the second conductivity type bipolar transistor forming region by implanting the first conductivity type impurity of a third concentration into the semiconductor substrate in the first conductivity type MOS transistor forming region and the second conductivity type bipolar transistor forming region; forming a fifth insulating film on the films existing after execution of the step of second forming; a frame forming of forming frames on a side face of the external base lead-out electrode of the first conductivity type bipolar transistor and a side face of the gate of the first conductivity type MOS transistor by etching the fifth insulating film; a third forming of defining, by photolithography, a second conductivity type bipolar transistor intrinsic base forming region where to form an intrinsic base of the second conductivity type bipolar transistor and a first conductivity type MOS transistor forming region where to form the first conductivity type MOS transistor, and implanting the first conductivity type impurity of a fourth concentration into the semiconductor substrate in the second conductivity type bipolar transistor intrinsic base forming region and the first conductivity type MOS transistor forming region, to form the emitter layer and the collector layer in the second conductivity type bipolar transistor intrinsic base forming region and to form a source and a drain in the first conductivity type MOS transistor forming region; a sixth insulating film forming of forming a sixth insulating film on predetermined films existing after execution of the step of third forming; defining, by photolithography, a region where to form an external base lead-out electrode of the first conductivity type bipolar transistor, and forming the intrinsic base layer of the first conductivity type bipolar transistor by implanting the first conductivity type impurity of a fifth concentration into the semiconductor substrate in the defined region; a semiconductor substrate exposing of etching the sixth insulating film in the region where to form the external base lead-out electrode of the first conductivity type bipolar transistor, to expose the major surface of the semiconductor substrate there; forming a second polysilicon film on the films existing after execution of the step of semiconductor substrate exposing, implanting a second conductivity type impurity of a first concentration into the second polysilicon film, and forming a seventh insulating film on the second polysilicon film; a fourth forming of forming an emitter lead-out electrode of the first conductivity type bipolar transistor and a gate of a second conductivity type MOS transistor at the same time by etching a stacked film of the seventh insulating film and the second polysilicon film in predetermined regions; a second conductivity type MOS transistor LDD layer forming of defining, by photolithography, a region where to form the second conductivity type MOS transistor, and forming LDD layers of the second conductivity type MOS transistor by implanting the second conductivity type impurity of a second concentration into the semiconductor substrate in the defined region; forming an eighth insulating film on the films existing after execution of the step of second conductivity type MOS transistor LDD layer forming, and forming a frame on a side face of the gate of the second conductivity type MOS transistor by etching the eighth insulating film; a second conductivity type MOS transistor source and drain layers forming of defining, by photolithography, a region where to form the second conductivity type MOS transistor, and forming a source layer and a drain layer of the second conductivity type MOS transistor by implanting the second conductivity type impurity of a third concentration in the semiconductor substrate in the defined region; and forming an interlayer insulating film on the films existing after execution of the step of second conductivity type MOS transistor source and drain layers forming, and forming an emitter layer by diffusing the first conductivity type impurity into the semiconductor substrate from the emitter lead-out electrode of the first conductivity type bipolar transistor.
The above and other objects, effects, features and advantages of the present invention will become more apparent from the following description of the embodiments thereof taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A-1D show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 2A-2D show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 3A-3C show a process of a manufacturing method according to embodiments 1 or 3 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 4A-4D show a process of a manufacturing method according to embodiments 1 or 2 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 5A-5C show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 6A-6D show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 7A-7C show a process of a manufacturing method according to embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIG. 8 shows a process of a manufacturing method according to embodiment 4 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIG. 9 shows a process of a manufacturing method according to embodiment 5 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIG. 10 shows a process of a manufacturing method according to embodiment 6 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 11A-11D show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 12A-12D show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 13A-13C show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 14A-14C show a process of a manufacturing method according to embodiment 7 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
FIGS. 15A-15D show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
FIGS. 16A-16C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
FIGS. 17A-17D show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
FIGS. 18A-18C show a process of a conventional manufacturing method of a BiCMOS semiconductor device having a self-aligned high-performance bipolar transistor and a CMOS transistor on the same substrate.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention will be described below with reference to the accompanying drawings. It is noted that the same reference symbols in the drawings denote the same or corresponding components.
Embodiment 1
FIGS. 1A-1D to FIG. 7A-7C show a process of a manufacturing method according to a embodiment 1 of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
As shown in FIG. 1A, field oxide films (first insulating films) 101 are formed separately by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed. Then, as shown in FIG. 1B, an insulating film (second insulating film) 103 to become a gate oxide film of a PMOS transistor (first conductivity type MOS transistor) is formed on the semiconductor substrate 100 and the field oxide films 101 (second insulating film forming step). As shown in FIG. 1C, a region where to form the base of an NPN bipolar transistor (first conductivity type bipolar transistor) is formed as an opening of a resist pattern 104 and the insulating film 103 is removed there (second insulating film removing step). As shown in FIG. 1D, a polysilicon film (first polysilicon film) 105 to become a base lead-out electrode of the NPN bipolar transistor and the gate of the PMOS transistor is deposited.
As shown in FIG. 2A, an impurity (first conductivity type impurity of a first concentration) 106 of B or the like is implanted into the polysilicon film 105 over the entire area. As shown in FIG. 2B, an insulating film (third insulating film) of TEOS or the like is deposited. As shown in FIG. 2C, prescribed regions of the stacked film of the polysilicon film 105 and the insulating film 107 are defined by a resist pattern 108. As shown in FIG. 2D, an external base lead-out electrode 105 a of the NPN bipolar transistor and a gate 105 b of the PMOS transistor are formed at the same time by dry etching or the like (first forming step).
As shown in FIG. 3A, an oxide film (fourth insulating film) 109 is formed by oxidation and an external base layer 110 is formed by introducing the impurity 106 into the semiconductor substrate 100 from the external base lead-out electrode 105 a of the NPN bipolar transistor. As shown in FIG. 3B, after a region where to form the external base lead-out electrode 105 a of the NPN bipolar transistor is defined by a resist pattern 111, the link base later 112 of an intrinsic base of the NPN bipolar transistor is formed by implanting an impurity (first conductivity type impurity of a second concentration) 121 of BF2 or the like into the semiconductor substrate 100 in this region. Then, as shown in FIG. 3C, after a region where to form the PMOS transistor (first conductivity type MOS transistor forming region) and a region where to form the emitter and the collector of a PNP bipolar transistor (second conductivity type bipolar transistor forming region) are defined by a resist pattern 113, an impurity of BF2 or the like (first conductivity type impurity of a third concentration) 121 is introduced into these regions, whereby 114 c are formed in the region where to form the PMOS transistor and an emitter layer 114 a and a collector layer 114 b are formed in the region where to form the PNP bipolar transistor (second forming step). It is possible to form the link base layer 112 of the intrinsic base of the NPN bipolar transistor, the LDD layers 114 c of the PMOS transistor, and the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor by the same impurity implantation with the same mask.
As shown in FIG. 4A, an insulating film (fifth insulating film) 115 of TEOS or the like is deposited over the entire area. As shown in FIG. 4B, the insulating film 115 is, for example, dry-etched, whereby frames 105 a and 105 b are formed on the side face of the external base lead-out electrode 105 a of the NPN bipolar transistor and the side face of the gate of the PMOS transistor, respectively (frame forming step). Then, after a region where to form an intrinsic base of the PNP bipolar transistor (second conductivity type bipolar transistor intrinsic base forming region) and a region where to form the PMOS transistor (first conductivity type MOS transistor forming region) are defined by a resist pattern 116, an impurity (first conductivity type impurity of a fourth concentration) 121 of BF2 of the like is implanted, whereby the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor are finally formed and the source and drain of the PMOS transistor are formed (third forming step). As shown in FIG. 4D, an insulating film (sixth insulating film) 119 to become a gate oxide film of an NMOS transistor is formed (sixth insulating film forming step).
As shown in FIG. 5A, after a region where to form an external base lead-out electrode 105 a of the NPN bipolar transistor is defined by a resist pattern 120, the intrinsic base layer 110 a of the NPN bipolar transistor is formed by implanting an impurity (first conductivity type impurity of a fifth concentration) 121 of BF2 or the like. Subsequently, as shown in FIG. 5B, a portion of the insulating film 119 above the intrinsic base region is removed by etching and thereby the major surface of the semiconductor substrate 100 is exposed there (semiconductor substrate exposing step). As shown in FIG. 5C, a polysilicon film (second polysilicon film) 122 to become an emitter lead-out electrode of the NPN bipolar transistor and the gate of the NMOS transistor is deposited and an impurity (second conductivity type impurity of a first concentration) 123 of As or the like is implanted into the polysilicon film 122 over the entire area.
As shown in FIG. 6A, an insulating film (seventh insulating film) 124 of TEOS or the like is deposited over the entire area. Then, after prescribed regions of the stacked film of the insulating film 124 and the polysilicon film 122 is defined by a resist pattern 125, as shown in FIG. 6B an emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of the NMOS transistor (second conductivity type MOS transistor) are formed at the same time by dry etching or the like (fourth forming). As shown in FIG. 6C, after a region where to form the NMOS transistor is defined by a resist pattern 126, LDD layers 127 of the NMOS transistor are formed by implanting an impurity (second conductivity type impurity of a second concentration) 135 of P or the like (second conductivity type MOS transistor LDD layer forming step). As shown in FIG. 6D, an insulating film (eighth insulating film) 128 of TEOS or the like is deposited.
As shown in FIG. 7A, a frame 128 a is formed on the side face of the gate of the NMOS transistor by dry etching. Then, after a region where to form the NMOS transistor is defined by a resist pattern 129, source and drain layers 130 of the NMOS transistor are formed by implanting an impurity (second conductivity type of a third concentration) 123 of As or the like (second conductivity type MOS transistor source and drain layers forming step). As shown in FIG. 7B, an interlayer insulating film 131 such as a TEOS/BPSG/TEOS film is deposited and its surface is planarized by subjecting it to reflow. Further, an emitter layer 132 is formed by diffusing the impurity 121 into the semiconductor substrate 100 from the emitter lead-out electrode 122 a. Finally, interconnections 133 etc. are formed as shown in FIG. 7C.
As described above, according to the embodiment 1, the base lead-out electrode 105 a of the NPN bipolar transistor and the gate 105 b of the PMOS transistor can be formed at the same time by using the same material (polysilicon film 105), and the emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of the NMOS transistor can be formed at the same time by using the same material (polysilicon film 122). Therefore, a surface channel PMOS transistor can be obtained while an increase in the number of manufacturing steps is prevented. As a result, the leak current of the PMOS transistor can be reduced and the threshold voltage Vth can be controlled easily.
Embodiment 2
FIGS. 4C and 4D show part of a process of a manufacturing method according to a embodiment 2 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate. The steps of the embodiment 2 shown by FIGS. 1A-4A and 5A-7C are the same as those of the embodiment 1 and hence will not be described.
As shown in FIG. 4B, after the resist pattern 116 is formed, the impurity 121 of BF2 or the like is implanted, whereby the emitter layer 114 a and the collector layer 114 b of the horizontal PNP bipolar transistor and the source and drain of the PMOS transistor are formed. Subsequently, as shown in FIG. 4C, an opening 107 is formed in the insulating film 107 in a region defined by a resist pattern 118 and a portion of the polysilicon film 105 is exposed in the opening 107 a. As a result, as shown in FIG. 7C, a capacitor is formed in which the polysilicon film 105, the polysilicon film 122, and the insulating film 119 serve as a bottom electrode, a top electrode, and a dielectric material, respectively.
As described above, according to the embodiment 2, a high-performance capacitor having only a small parasitic capacitance can be formed only by adding one mask without increasing an electrode forming step.
Embodiment 3
FIGS. 1B and 3A show part of a process of a manufacturing method according to a embodiment 3 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate. The steps of the embodiment 3 shown by the figures other than FIGS. 1B and 3A are the same as those of the embodiment 1 and hence will not be described.
The thickness of the insulating film 103 (second insulating film) shown in FIG. 1B is set different from that of the insulating film 119 (sixth insulating film) shown FIG. 3A. As a result, a BiCMOS semiconductor device can be manufactured in which the PMOS transistor and the NMOS transistor have different gate breakdown voltages.
As described above, according to the embodiment 3, since the thickness of the insulating film 103 is set different from that of the insulating film 119, a BiCMOS semiconductor device can be manufactured in which the PMOS transistor and the NMOS transistor have different gate breakdown voltages.
Embodiment 4
FIGS. 4A and 8 show part of a process of a manufacturing method according to a embodiment 4 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate. The steps of the embodiment 4 shown by the figures other than FIGS. 4A and 8 are the same as those of the embodiment 1 and hence will not be described.
Polysilicon films 134 a and 134 b (third polysilicon film) shown in FIG. 8 are used instead of the insulating film 115 shown in FIG. 4A. In this case, LDD frames can be formed on a side face 134 a of the external base lead-out electrode 105 a of the NPN bipolar transistor and a side face 134 b of the gate 105 b of the PMOS transistor. Satisfactory results are obtained by making the polysilicon films 134 a and 134 b different in material from the insulating film 115.
As described above, according to the embodiment 4, by using the polysilicon films 134 a and 134 b to form the side face 134 a of the base lead-out electrode 105 a of the NPN bipolar transistor and the side face 134 b of the gate 105 b of the PMOS transistor, an NPN bipolar transistor having smaller dispersion can be manufactured.
Embodiment 5
FIG. 9 shows part of a process of a manufacturing method according to a embodiment 5 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate. The steps of the embodiment 5 shown by the figures other than FIG. 9 are the same as those of the embodiment 1 and hence the explanation will be omitted.
As shown in FIG. 9, the emitter and collector of the horizontal PNP bipolar transistor are formed by diffusing the p-type impurity into the semiconductor substrate 100 from the external base lead-out electrode 105 a of the PNP bipolar transistor. In this case, limitations on the interval between interconnections are eliminated and hence the device area can be reduced.
As described above, according to the embodiment 5, since the emitter and collector of the horizontal PNP bipolar transistor are formed by diffusing the p-type impurity into the semiconductor substrate 100 from the base lead-out electrode 105 a of the PNP bipolar transistor, limitations on the interval between interconnections are eliminated and hence the device area can be reduced.
Embodiment 6
FIG. 10 shows part of a process of a manufacturing method according to a embodiment 6 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate. The steps of the embodiment 6 shown by the figures other than FIG. 10 are the same as those of the embodiment 1 and hence will not be described.
As shown in FIG. 10, the base of the horizontal PNP bipolar transistor is formed in the step of the embodiment 1 shown by FIG. 2H (the gate of the PMOS transistor is formed) or 3K.
As described above, according to the embodiment 6, by defining the base width of the horizontal PNP bipolar transistor by the PMOS transistor, the device area can be made smaller than in a conventional horizontal PNP bipolar transistor in which the base width is defined by a field oxide film.
Embodiment 7
FIGS. 11A-11D to 14A-14C show a process of a manufacturing method according to a embodiment 7 of the invention of a BiCMOS semiconductor device having self-aligned high-performance bipolar transistors and a CMOS transistor on the same substrate.
As shown in FIG. 11A, field oxide films 101 are formed by a LOCOS method or the like on a semiconductor substrate 100 having buried layers and well layers 102 a and 102 b are formed. Then, as shown in FIG. 11B, an insulating film 103 to become a gate oxide film of a PMOS transistor is formed on the semiconductor substrate 100 and the field oxide films 101. Subsequently, a polysilicon film 145 (fourth polysilicon film) is deposited.
The steps shown by FIGS. 11C to 12C that are executed after the deposition of the polysilicon film 145 are the same as the steps of the embodiment 1 shown by FIGS. 1C to 4D and hence will not be described.
As shown in FIG. 12D, an insulating film 119 to become a gate oxide film of the NMOS transistor is formed. Subsequently, a polysilicon film 146 (fifth polysilicon film) is deposited.
The steps shown by FIGS. 13A to 14B that are executed after the deposition of the polysilicon film 146 are the same as the steps of the embodiment 1 shown by FIGS. 5A to 7B and hence will not be described.
Finally, interconnections 133 etc. are formed as shown in FIG. 14C.
As described above, according to the embodiment 7, by depositing the polysilicon films on the gate oxide films of the PMOS transistor and the NMOS transistor, the gate oxide films can be protected from damage that would otherwise occur in forming the NPN bipolar transistor, whereby MOS transistors that are free of deterioration in transistor characteristics can be formed.
As described above, by forming the base lead-out electrode 105 a of the NPN bipolar transistor and the gate 105 b of the PMOS transistor at the same time by using the same material (polysilicon film 105), and forming the emitter lead-out electrode 122 a of the NPN bipolar transistor and the gate 122 b of the NMOS transistor can be formed at the same time by using the same material (polysilicon film 122), the invention can provide a manufacturing method of a semiconductor device which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks.
Here, the manufacturing method may further comprise, prior to the step of sixth insulating film forming, defining a predetermined region of the stacked film of the third insulating film and the first polysilicon film by photolithography, and exposing the first polysilicon film by etching the third insulating film there.
Here, the manufacturing method may further comprise the steps of, after the step of second forming: forming a third polysilicon film on the existing films; and forming frames on the side face of the external base lead-out electrode of the first conductivity type bipolar transistor and the side face of the gate of the first conductivity type MOS transistor by etching the third polysilicon film.
In the manufacturing method, the emitter and the collector of the second conductivity type bipolar transistor may be formed by introducing the first conductivity type impurity of a first concentration into the semiconductor substrate from the external base lead-out electrode of the second conductivity type bipolar transistor.
In the manufacturing method, a base of the second conductivity bipolar transistor may be formed in the same steps from the step of first forming to the step of second forming for forming the gate of the first conductivity type MOS transistor.
Here, the manufacturing method may further comprise, after the step of second insulating film forming, a step of forming a fourth polysilicon film on the second insulating film, and removing the second insulating film by etching the fourth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
Here, the manufacturing method may further comprise, after the step of sixth insulating film forming, a step of forming a fifth polysilicon film on the sixth insulating film, and removing the sixth insulating film by etching the fifth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
In the manufacturing method, the second insulating film and the sixth insulating film may be different from each other in film thickness.
The present invention has been described in detail with respect to various embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and it is the invention, therefore, in the appended claims to cover all such changes and modifications as fall within the true spirit of the invention.
The entire disclosure of Japanese Patent Application No. 2000-11708 filed on Jan. 20, 2000 including specification, claims, drawings and summary are incorporated herein by reference in its entirety.

Claims (14)

What is claimed is:
1. A manufacturing method of a semiconductor device which forms bipolar transistors and MOS transistors on the same semiconductor substrate, comprising the steps of:
a first insulating film forming of forming separated first insulating films on a major surface of the semiconductor substrate;
a second insulating film forming of forming a second insulating film on the semiconductor substrate and the first insulating films;
a second insulating film removing of removing a portion, on the semiconductor substrate, of the second insulating film in a region where to form a base of a first conductivity type bipolar transistor;
forming a first polysilicon film on a second-insulating-film-removed portion of the semiconductor substrate and a remaining portion of the second insulating film, implanting a first conductivity type impurity of a first concentration into the first polysilicon film, and forming a third insulating film on the first polysilicon film;
a first forming of forming, at the same time, an external base lead-out electrode and a gate of a first conductivity type MOS transistor on the semiconductor substrate by etching a stacked film of the first polysilicon film and the third insulating film in predetermined regions;
forming a fourth insulating film in the etched, predetermined regions of the stacked film, and, at the same time, forming an external base layer by introducing the first conductivity type impurity of a first concentration into the semiconductor substrate from the external base lead-out electrode of the first conductivity type bipolar transistor;
defining, by photolithography, a region where to form an external base lead-out electrode of the first conductivity type bipolar transistor, and forming the link base layer of the first conductivity type bipolar transistor by implanting the first conductivity impurity of a second concentration into the semiconductor substrate in the defined region;
a second forming of defining, by photolithography, a first conductivity type MOS transistor forming region where to form the first conductivity type MOS transistor and a second conductivity type bipolar transistor forming region where to form an emitter and a collector of a second conductivity type bipolar transistor, and forming LDD layers in the first conductivity type MOS transistor forming region and an emitter layer and a collector layer in the second conductivity type bipolar transistor forming region by implanting the first conductivity type impurity of a third concentration into the semiconductor substrate in the first conductivity type MOS transistor forming region and the second conductivity type bipolar transistor forming region;
forming a fifth insulating film on the films existing after execution of said step of second forming;
a frame forming of forming frames on a side face of the external base lead-out electrode of the first conductivity type bipolar transistor and a side face of the gate of the first conductivity type MOS transistor by etching the fifth insulating film;
a third forming of defining, by photolithography, a second conductivity type bipolar transistor intrinsic base forming region where to form an intrinsic base of the second conductivity type bipolar transistor and a first conductivity type MOS transistor forming region where to form the first conductivity type MOS transistor, and implanting the first conductivity type impurity of a fourth concentration into the semiconductor substrate in the second conductivity type bipolar transistor intrinsic base forming region and the first conductivity type MOS transistor forming region, to form the emitter layer and the collector layer in the second conductivity type bipolar transistor intrinsic base forming region and to form a source and a drain in the first conductivity type MOS transistor forming region;
a sixth insulating film forming of forming a sixth insulating film on predetermined films existing after execution of said step of third forming;
defining, by photolithography, a region where to form an external base lead-out electrode of the first conductivity type bipolar transistor, and forming the intrinsic base layer of the first conductivity type bipolar transistor by implanting the first conductivity type impurity of a fifth concentration into the semiconductor substrate in the defined region;
a semiconductor substrate exposing of etching the sixth insulating film in the region where to form the external base lead-out electrode of the first conductivity type bipolar transistor, to expose the major surface of the semiconductor substrate there;
forming a second polysilicon film on the films existing after execution of said step of semiconductor substrate exposing, implanting a second conductivity type impurity of a first concentration into the second polysilicon film, and forming a seventh insulating film on the second polysilicon film;
a fourth forming of forming an emitter lead-out electrode of the first conductivity type bipolar transistor and a gate of a second conductivity type MOS transistor at the same time by etching a stacked film of the seventh insulating film and the second polysilicon film in predetermined regions;
a second conductivity type MOS transistor LDD layer forming of defining, by photolithography, a region where to form the second conductivity type MOS transistor, and forming LDD layers of the second conductivity type MOS transistor by implanting the second conductivity type impurity of a second concentration into the semiconductor substrate in the defined region;
forming an eighth insulating film on the films existing after execution of said step of second conductivity type MOS transistor LDD layer forming, and forming a frame on a side face of the gate of the second conductivity type MOS transistor by etching the eighth insulating film;
a second conductivity type MOS transistor source and drain layers forming of defining, by photolithography, a region where to form the second conductivity type MOS transistor, and forming a source layer and a drain layer of the second conductivity type MOS transistor by implanting the second conductivity type impurity of a third concentration in the semiconductor substrate in the defined region; and
forming an interlayer insulating film on the films existing after execution of said step of second conductivity type MOS transistor source and drain layers forming, and forming an emitter layer by diffusing the first conductivity type impurity into the semiconductor substrate from the emitter lead-out electrode of the first conductivity type bipolar transistor.
2. The manufacturing method according to claim 1, further comprising, prior to said step of sixth insulating film forming, defining a predetermined region of the stacked film of the third insulating film and the first polysilicon film by photolithography, and exposing the first polysilicon film by etching the third insulating film there.
3. The manufacturing method according to claim 2, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
4. The manufacturing method according to claim 1, further comprising the steps of, after said step of second forming:
forming a third polysilicon film on the existing films; and
forming frames on the side face of the external base lead-out electrode of the first conductivity type bipolar transistor and the side face of the gate of the first conductivity type MOS transistor by etching the third polysilicon film.
5. The manufacturing method according to claim 4, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
6. The manufacturing method according to claim 1, wherein the emitter and the collector of the second conductivity type bipolar transistor are formed by introducing the first conductivity type impurity of a first concentration into the semiconductor substrate from the external base lead-out electrode of the second conductivity type bipolar transistor.
7. The manufacturing method according to claim 6, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
8. The manufacturing method according to claim 1, wherein a base of the second conductivity bipolar transistor is formed in the same steps from said step of first forming to said step of second forming for forming the gate of the first conductivity type MOS transistor.
9. The manufacturing method according to claim 8, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
10. The manufacturing method according to claim 1, further comprising, after said step of second insulating film forming, a step of forming a fourth polysilicon film on the second insulating film, and removing the second insulating film by etching the fourth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
11. The manufacturing method according to claim 10, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
12. The manufacturing method according to claim 1, further comprising, after said step of sixth insulating film forming, a step of forming a fifth polysilicon film on the sixth insulating film, and removing the sixth insulating film by etching the fifth polysilicon film on the region where to form the base of the first conductivity type bipolar transistor.
13. The manufacturing method according to claim 12, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
14. The manufacturing method according to claim 1, wherein the second insulating film and the sixth insulating film are different from each other in film thickness.
US09/598,465 2000-01-20 2000-06-22 Manufacturing method of semiconductor device Expired - Fee Related US6440787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-011708 2000-01-20
JP2000011708A JP2001203288A (en) 2000-01-20 2000-01-20 Method for producing semiconductor device

Publications (1)

Publication Number Publication Date
US6440787B1 true US6440787B1 (en) 2002-08-27

Family

ID=18539536

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/598,465 Expired - Fee Related US6440787B1 (en) 2000-01-20 2000-06-22 Manufacturing method of semiconductor device

Country Status (2)

Country Link
US (1) US6440787B1 (en)
JP (1) JP2001203288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015162A3 (en) * 2001-08-07 2003-10-30 Infineon Technologies Ag Method for the parallel production of an mos transistor and a bipolar transistor
US20050035412A1 (en) * 2002-02-13 2005-02-17 Infineon Technologies Ag; Semiconductor fabrication process, lateral PNP transistor, and integrated circuit
US20100317165A1 (en) * 2004-12-17 2010-12-16 Je-Don Kim High-gain bipolar junction transistor compatible with complementary metal-oxide-semiconductor (cmos) process and method for fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469439B2 (en) * 2009-11-20 2014-04-16 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132234A (en) * 1991-02-25 1992-07-21 Samsung Electronics Co., Ltd. Method of producing a bipolar CMOS device
US5192992A (en) * 1991-06-27 1993-03-09 Samsung Electronics Co., Ltd. Bicmos device and manufacturing method thereof
US5354699A (en) * 1987-05-13 1994-10-11 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354699A (en) * 1987-05-13 1994-10-11 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device
US5132234A (en) * 1991-02-25 1992-07-21 Samsung Electronics Co., Ltd. Method of producing a bipolar CMOS device
US5192992A (en) * 1991-06-27 1993-03-09 Samsung Electronics Co., Ltd. Bicmos device and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015162A3 (en) * 2001-08-07 2003-10-30 Infineon Technologies Ag Method for the parallel production of an mos transistor and a bipolar transistor
US20040185632A1 (en) * 2001-08-07 2004-09-23 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
US20040185611A1 (en) * 2001-08-07 2004-09-23 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
US7005337B2 (en) 2001-08-07 2006-02-28 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
US7018884B2 (en) 2001-08-07 2006-03-28 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
US20050035412A1 (en) * 2002-02-13 2005-02-17 Infineon Technologies Ag; Semiconductor fabrication process, lateral PNP transistor, and integrated circuit
US7217609B2 (en) * 2002-02-13 2007-05-15 Infineon Technologies Ag Semiconductor fabrication process, lateral PNP transistor, and integrated circuit
US20100317165A1 (en) * 2004-12-17 2010-12-16 Je-Don Kim High-gain bipolar junction transistor compatible with complementary metal-oxide-semiconductor (cmos) process and method for fabricating the same
US8603873B2 (en) * 2004-12-17 2013-12-10 Samsung Electronics Co., Ltd. High-gain bipolar junction transistor compatible with complementary metal-oxide-semiconductor (CMOS) process and method for fabricating the same

Also Published As

Publication number Publication date
JP2001203288A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
EP0749165B1 (en) Thin film transistor in insulated semiconductor substrate and manufacturing method thereof
US5468666A (en) Using a change in doping of poly gate to permit placing both high voltage and low voltage transistors on the same chip
US7309633B2 (en) Semiconductor device including MOS field effect transistor having offset spacers or gate sidewall films on either side of gate electrode and method of manufacturing the same
KR101413651B1 (en) Semiconductor device having transistor and method for manufacturing the same
US5397715A (en) MOS transistor having increased gate-drain capacitance
US6693325B1 (en) Semiconductor device having silicon on insulator and fabricating method therefor
US20050184361A1 (en) Vertical bipolar transistor and method of manufacturing the same
JP2001156290A (en) Semiconductor device
US8232157B2 (en) Semiconductor device and method of manufacturing the same
JP2836515B2 (en) Method for manufacturing semiconductor device
US6440787B1 (en) Manufacturing method of semiconductor device
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JPH09162301A (en) Semiconductor device and manufacture thereof
US6440832B1 (en) Hybrid MOS and schottky gate technology
KR20050010152A (en) Low voltage transistor in semiconductor device and method of manufacturing the same
KR100253353B1 (en) Method of fabricating mos transistor
US20020038896A1 (en) Semiconductor device including a depletion type lateral mosfet and method of forming the same
JPH0341773A (en) Semiconductor device and manufacture thereof
KR19990003214A (en) Manufacturing Method of Asymmetric CMOS Transistor
US7300835B2 (en) Manufacturing method of semiconductor device
KR100379534B1 (en) Method for Fabrication Semiconductor Device
JPH0677420A (en) Semiconductor device and manufacture thereof
JPH06196642A (en) Semiconductor device and manufacture thereof
JPH0722620A (en) Manufacture of mos field-effect transistor
KR20010054509A (en) Method of fabricating semiconductor devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YOSHIHISA, YASUKI;REEL/FRAME:010898/0497

Effective date: 20000108

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:025980/0219

Effective date: 20110307

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140827