US7112198B2 - Radio-frequency heating balloon catheter - Google Patents

Radio-frequency heating balloon catheter Download PDF

Info

Publication number
US7112198B2
US7112198B2 US10/747,301 US74730103A US7112198B2 US 7112198 B2 US7112198 B2 US 7112198B2 US 74730103 A US74730103 A US 74730103A US 7112198 B2 US7112198 B2 US 7112198B2
Authority
US
United States
Prior art keywords
balloon
radio
guide shaft
frequency heating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/747,301
Other versions
US20040172110A1 (en
Inventor
Shutaro Satake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electel Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20040172110A1 publication Critical patent/US20040172110A1/en
Application granted granted Critical
Publication of US7112198B2 publication Critical patent/US7112198B2/en
Assigned to JAPAN ELECTEL INC. reassignment JAPAN ELECTEL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATAKE, SHUTARO
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00369Heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1435Spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1472Probes or electrodes therefor for use with liquid electrolyte, e.g. virtual electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • the present invention relates to a radio-frequency heating balloon catheter and, more particularly, to a radio-frequency balloon catheter for the radio-frequency heating treatment of cardiovascular diseases. More specifically, the present invention relates to a radio-frequency heating balloon catheter provided with a balloon to be brought into close contact with a target lesion for radio-frequency heating for the treatment of cardiac arrhythmia.
  • a known method of electrically coagulating a source of arrhythmia uses a catheter provided with a metal tip of 4 mm in size, which serves as an electrode, brings the metal tip into contact with the source of arrhythmia and supplies a radio-frequency current to the metal tip.
  • this method is effective when the source is a local, one like a source of WPW syndrome or paroxysmal tachycardia, the method is not so effective when the source is an extensive one like a source of atrial fibrillation, atrial flutter or ventricular tachycardia due to organic heart diseases.
  • Another method of isolating a wide target part heats the target part electrically by radio-frequency heating using an inflatable balloon.
  • Methods of treating lesions caused by arteriosclerosis as well as sources of arrhythmia proposed in, for example, Jpn. Pat. Nos. 2538375, 2510428 and 2574119 to the applicant of the present invention patent application treat a lesion by bringing an inflatable balloon internally provided with a radio-frequency electrode into contact with tissues, and creating a radio-frequency electric field to heat tissues in contact with the balloon.
  • the interior of the atrium needs to be cauterized linearly to treat atrial flutter or atrial fibrillation.
  • the superior pulmonary veins and the inferior pulmonary veins connected to the left atrium are separated and those four pulmonary veins open individually into the left atrium as shown in FIG. 9 or 10 .
  • the edges of the four ostia i.e., the superior right, the superior left, the inferior right and the inferior left opening, of the pulmonary veins must individually be cauterized.
  • a ablation for individually cauterizing the edges of the four ostia of the pulmonary veins takes much time. Since the thin wall of the pulmonary vein is liable to contract and, consequently, the stenosis of the pulmonary vein is liable to occur when the periphery of the pulmonary vein is cauterized.
  • the inventors of the present invention have found that the superior and the inferior pulmonary vein are not separately connected to the atrium, the superior and the inferior pulmonary vein join together and form an atrial vestibule before the atrium, and the atrial vestibule opens into the atrial body.
  • the left superior pulmonary vein 101 and the left inferior pulmonary vein 102 join at the left atrial vestibule 103
  • the right superior pulmonary vein 105 and the right inferior pulmonary vein 106 join at the right atrial vestibule.
  • the two pulmonary veins i.e., the superior and the inferior pulmonary vein, join at the atrial vestibule before the atrial body, do not open individually into the atrial body, and the atrial vestibule opens into the atrial body.
  • the present invention has been made on the basis of the foregoing knowledge acquired by the inventors of the present invention.
  • a radio-frequency heating balloon catheter comprises: a catheter tube including an outer tube and an inner tube slidably extended through the outer tube.
  • An inflatable balloon is connected to the extremity of the outer tube and a part near the extremity of the inner tube, and is capable of coming into contact with a target lesion when inflated.
  • a radio-frequency electrode serving as a counter to a surface electrode attached to the surface of a subject's body and is placed in the wall of the balloon or inside the balloon to supply radio-frequency power between the surface electrode and the radio-frequency electrode.
  • a temperature sensor capable of measuring temperature inside the balloon, a guide shaft projecting from the extremity of the inner tube and is capable of holding the balloon on the target lesion, and a guide wire extended through the catheter tube and the guide shaft.
  • the guide shaft may be capable of holding the balloon on the target lesion.
  • the guide shaft may be formed of a nonconductive material having a low heat conductivity.
  • the guide shaft and the inner tube may be formed integrally and coaxially of the same material.
  • the balloon may be formed of a heat-resistant, antithrombotic, elastic material, and may be formed in a shape such that the balloon is able to come into contact with an atrial vestibule at the junction between the superio and the inferior pulmonary vein when inflated.
  • the guide shaft may have a length such that a side surface of the guide shaft is able to come into contact with the superior or the inferior pulmonary vein with the inflated balloon in contact with the atrial vestibule.
  • the shape of the balloon capable of coming into contact with the atrial vestibule when inflated is determined on the basis of data obtained by scanning the atrial vestibule by three-dimensional CT before executing a ablation.
  • the guide shaft may have a length longer than that of the balloon.
  • the guide shaft may have a length between 1 and 10 cm.
  • a free end part of the inner tube or the guide shaft may be provided with side holes to suck blood in the pulmonary vein.
  • the back end of the guide wire may be able to be grounded.
  • the radio-frequency heating balloon catheter may further comprise a temperature-distribution uniforming means for making uniform temperature distribution in a liquid contained in the balloon.
  • the radio-frequency heating balloon catheter may further comprise a cooling means for cooling the radio-frequency electrode.
  • the atrial vestibule where the superior and the inferior pulmonary vein join can be cauterized instead of individually cauterizing the edges of the ostia of the superior and the inferior pulmonary vein to form a block line by linearly cauterizing the interior of the atrium to treat atrial flutter or atrial fibrillation. Consequently, the edges of the four pulmonary vein ostia do not need to be individually cauterized, the number of parts to be cauterized is reduced and thereby time necessary for the ablation can be reduced.
  • the wall of the atrial vestibule as compared with the walls of the pulmonary veins, is considerably thick, the atrial vestibule does not contract easily when cauterized, and hence the stenosis of the atrial vestibule does not occur easily.
  • the modification of the posterior wall of the left atrium in cauterizing the atrial vestibule enhances the suppressive effect on the maintenance of atrial fibrillation because the maintenance of atrial fibrillation requires the substrate of the posterior wall of the atrium with considerable area, and the ablation of the atrial vestibule reduces the substrate of the back wall of the atrium.
  • the balloon in contact with the target lesion must be kept in a coaxial state to cauterize a necessary and sufficient region including the target lesion.
  • a balloon catheter is used for cauterizing the atrial vestibule, a balloon is brought into close contact with a target lesion, a guide wire is projected from the extremity of an inner tube so that the tip of the guide wire comes into contact with the inner surface of the wall of the pulmonary vein to support the balloon by the guide wire, the balloon is held in close contact with the atrial vestibule, and the balloon is held in a coaxial state by keeping the guide wire in contact with the inner surface of the wall of the pulmonary vein.
  • the size of the atrial vestibule is large and hence the balloon must be considerably large and the radio-frequency power must be increased accordingly.
  • the guide wire extending through the balloon is heated by a high-temperature liquid contained in the balloon by thermal conduction.
  • the guide wire is heated at an excessively high temperature by radio-frequency heating due to electromagnetic coupling and thereby the inner surface of the wall of the pulmonary vein is cauterized. Since high radio-frequency power must be supplied, the radio-frequency electrode is heated at an excessively high temperature, and temperature is distributed unevenly in the balloon and non-uniform cauterization results.
  • the radio-frequency heating balloon catheter of the present invention is capable of safely cauterizing the atrial vestibule where the pulmonary veins joins with the balloon held in a coaxial state.
  • FIG. 1 is a view of a part of a radio-frequency heating balloon catheter in a first embodiment according to the present invention
  • FIG. 2 is a view of the radio-frequency heating balloon catheter shown in FIG. 1 in a state where a balloon is in contact with an open part of an atrial vestibule and a side surface of a guide shaft is in contact with a part, near the open end of a pulmonary vein, of the inner surface of the wall of the pulmonary vein;
  • FIG. 3 a view of a part of a radio-frequency heating balloon catheter in a second embodiment according to the present invention
  • FIG. 4 a view of another part of the radio-frequency heating balloon catheter in the second embodiment to be connected to the right end of the part shown in FIG. 3 ;
  • FIG. 5 is a view of assistance in explaining the use of a balloon catheter as a balloon for electrical isolation in a pulmonary vein for the treatment of atrial fibrillation;
  • FIG. 6 is a view of a part of a radio-frequency heating balloon catheter in a third embodiment according to the present invention.
  • FIG. 7 is a view of assistance in explaining bringing a balloon into contact with an atrial vestibule formed by joining two pulmonary veins before the atrium;
  • FIG. 8 is a view of an atrial vestibule at the junction between the superio and the inferior pulmonary vein before the atrial body found the inventors of the present invention.
  • FIG. 9 is a view showing a balloon included in a conventional balloon catheter in contact with the open end of a single pulmonary vein.
  • FIG. 10 is a view of assistance in explaining a formerly believed idea that the superior pulmonary veins and the inferior pulmonary veins connected to the right and the left atrium are separated and those four pulmonary veins open individually into the right and the left atrium.
  • the basic construction of a radio-frequency heating balloon catheter 1 in a first embodiment according to the present invention will be described with reference to FIG. 1 .
  • the radio-frequency heating balloon catheter 1 will be described as applied to the treatment of a lesion in the left atrial vestibule 103 .
  • the radio-frequency heating balloon catheter 1 is applicable to the treatment of a lesion in the right atrial vestibule.
  • the radio-frequency heating balloon catheter 1 comprises a catheter tube 4 including an outer tube 2 and an inner tube 3 slidable relative to the outer tube 2 , an inflatable balloon 6 of a shape capable of coming into contact with a target lesion 100 in the left atrial vestibule 103 when inflated, a radio-frequency electrode 8 disposed inside the balloon 6 , a lead wire 10 electrically connected to the radio-frequency electrode 8 , a thermocouple 12 placed in the balloon 6 to sense temperature in the balloon 6 , a guide shaft 5 extending from a front end part 3 a of the inner tube 3 and capable of holding the balloon 6 on the target lesion 100 , and a guide wire 16 extended through the catheter tube 4 and the guide shaft 5 to guide the catheter tube 4 and the guide shaft 5 to the target lesion 100 .
  • the guide shaft 5 is formed of a nonconductive material having a low thermal conductivity, such as a resin, to avoid the danger of excessively heating and electrifying the inner surface of the left superior pulmonary vein 101 when the guide shaft 5 touches the inner surface of the left superior pulmonary vein 101 .
  • the inner tube 3 is 1 mm in outside diameter and the guide shaft 5 is 2 mm in outside diameter.
  • the inner tube and the guide shaft 5 may be formed of the same material or of different materials, respectively.
  • the inner tube 3 and the guide shaft 5 may integrally be formed in a coaxial arrangement or may be formed separately.
  • the balloon 6 is formed in a size such that the inflated balloon 6 can come into contact with the open end of a left atrial vestibule 103 where the left superior pulmonary vein 101 and the left inferior pulmonary vein 102 join together.
  • the diameter of the balloon 6 as inflated must be large to cauterize the target lesion 100 in the left atrial vestibule 103 having an open end greater than those of the pulmonary veins 101 and 102 .
  • the diameters of the conventional balloon are in the range of 10 to 15 mm
  • the diameter of the balloon 6 is, for example, in the range of 20 to 40 mm.
  • the length of the balloon 6 is, for example, in the range of 20 to 30 mm.
  • the balloon 6 is formed of a heat-resistant, antithrombotic, elastic resin.
  • the balloon 6 shown in FIG. 1 has the shape of a basket or an onion when inflated.
  • a balloon 6 is designed specially for a subject by the following procedure.
  • the subject's atrial vestibule is scanned by a three-dimensional CT scanner prior to an ablation procedure.
  • the shape and size of the balloon 6 are determined specially for the subject on the basis of information provided by the three-dimensional CT (computor tomography) scanner so that the balloon 6 as inflated can be in close contact with the subject's atrial vestibule.
  • the guide shaft 5 has a length such that the side surface 5 a of the guide shaft 5 is able to be in contact with the inner surface of the wall of the left superior pulmonary vein 101 or the left inferior pulmonary vein 102 with the inflated balloon 6 in contact with the opening of the left atrial vestibule 103 .
  • the guide shaft 5 has a length longer than that of the balloon 6 .
  • the length of the guide shaft 5 is between 2 and 10 cm.
  • the front end part 3 a of the inner tube 3 , or the guide shaft 5 is provided with side holes 7 through which pulmonary venous blood is sucked.
  • the side holes 7 are used also for discharging physiological saline water into the left superior pulmonary vein 101 .
  • the back end of the guide wire 16 can be connected to a ground.
  • the back end is an end of the guide wire 16 opposite the front end of the same projecting from the guide shaft 5 , and on the side of the inlet of the outer tube 2 .
  • the guide wire 16 is an insulated steel wire surrounded by an insulating material.
  • the steel wire provides the guide wire 16 with rigidity, and the insulating material electrically insulates the steel wire.
  • a back end part of the steel wire projecting from the back end of the guide wire 16 can be connected to the ground.
  • a front end part of, for example, 1 cm in length projecting from the guide shaft 5 is formed only of the insulating material.
  • the front end part of the guide wire 16 projecting from the guide shaft 5 is formed of only the insulating material, the danger of excessively heating the wall of, for example, the left superior pulmonary vein 101 when the front end part of the guide wire 16 comes into contact with the inner surface of the wall of the left superior pulmonary vein 101 can surely be prevented even if the effect of grounding the back end part of the steel wire of the guide wire 16 is unsatisfactory.
  • the lead wire 10 is wound helically.
  • One end of the lead wire 10 is electrically connected to a radio-frequency power generator 40 .
  • Radio-frequency power generated by the radio-frequency power generator 40 is supplied through the lead wire 10 to the radio-frequency electrode 8 .
  • the balloon 6 has a large diameter to cauterize a target lesion 100 in the left atrial vestibule 103 having the opening greater than those of the pulmonary veins 101 and 102 . Therefore, the radio-frequency power generator 40 needs to generate high radio-frequency power to heat the target lesion 100 at a desired temperature.
  • the radio-frequency power of 13.56 MHz generated by the radio-frequency power generator 40 is supplied between the radio-frequency electrode 8 and a counter electrode 53 attached to the surface of the subject's body, and the diameter of the balloon 6 is about 2.5 cm, the radio-frequency power is in the range of 200 to 400 W.
  • the radio-frequency power is supplied between the radio-frequency electrode 8 and the counter electrode 53 , tissues 18 in contact with the balloon 6 are cauterized by capacitive heating accompanied by radio-frequency dielectric heating.
  • Pulmonary venous blood is sucked through the side holes 7 formed in the front end part 3 a of the inner tube 3 or the guide shaft 5 , and physiological saline water is discharged through the side holes 7 to cool the radio-frequency electrode 8 wound round the inner tube 3 .
  • temperature distribution inside the balloon 6 is made uniform. Consequently, the target lesion 100 in contact with the balloon 6 can uniformly be heated for cauterization.
  • the temperature of the liquid contained in the balloon 6 is sensed by the thermocouple 12 placed inside the inner tube 3 .
  • the thermocouple 12 is extended through the inner tube 3 and is connected to a thermometer 42 disposed outside the catheter tube 4 .
  • the thermometer 42 indicates the measured temperature of the liquid contained in the balloon 6 .
  • the radio-frequency power generator 40 is controlled so as to adjust the measured temperature of the liquid contained in the balloon 6 to a desired temperature.
  • the radio-frequency heating balloon catheter 1 in the first embodiment is provided with the guide shaft 5 extending from the front end part 3 a of the inner tube 3 , and the balloon 6 can be held on the target lesion 100 by placing the side surface 5 a of the guide shaft 5 in contact with the inner surface of the wall of, for example, the left superior pulmonary vein 101 .
  • the inner surface of the wall of the left superior pulmonary vein 101 is never cauterized even if high radio-frequency power is supplied to cauterize the target lesion 100 in the left atrial vestibule 103 , while it is possible that the inner surface of the wall of the left superior pulmonary vein 101 is cauterized when the balloon 6 is held on the target lesion 100 only by the guide wire 16 .
  • the target lesion 100 in the left atrial vestibule 103 can safely be cauterized with the balloon 6 held in a coaxial state.
  • the block line can be formed by cauterizing the atrial vestibule 103 instead of individually cauterizing the openings of the superior pulmonary vein 101 and the inferior pulmonary vein 102 .
  • the four openings of the left superior pulmonary vein 101 , the left inferior pulmonary vein 102 , the right superior pulmonary vein 105 and the right inferior pulmonary vein 106 do not need to be individually cauterized.
  • the number of parts to be cauterized can be reduced, for example, from four to two, and thereby time necessary for the ablation can be reduced.
  • the wall of the atrial vestibule 103 is considerably thick, the atrial vestibule 103 does not contract easily when cauterized and hence the stenosis of the atrial vestibule 103 does not occur easily.
  • the cauterization of the posterior wall of the atrium in cauterizing the atrial vestibule 103 enhances the effect on the suppression of atrial fibrillation because the maintenance of atrial fibrillation requires an area in the posterior wall of the atrium not smaller than a certain fixed area and the cauterization of the atrial vestibule 103 reduces the area of the posterior wall of the atrium.
  • the guide wire 16 can be connected to the ground, the radio-frequency heating of the guide wire 16 can be prevented, and the excessive heating and electrification of the wall of, for example, the left superior pulmonary vein 101 can be prevented.
  • the radio-frequency electrode 8 wound round the inner tube 3 can be cooled by sucking pulmonary venous blood through the side holes 7 formed in the front end part 3 a of the inner tube 3 or the guide shaft 5 , and discharging physiological saline water through the side holes 7 .
  • Temperature distribution in the balloon 6 can be made uniform by stirring the liquid contained in the balloon 6 by a stirring mechanism 14 , which will be described later.
  • the target lesion 100 of a diameter in the range of, for example, 3 to 5 cm in contact with the balloon 6 can uniformly be cauterized.
  • a radio-frequency heating balloon catheter 1 in a second embodiment according to the present invention for heating pulmonary veins will be described with reference to FIGS. 3 and 4 .
  • the radio-frequency heating balloon catheter 1 in the second embodiment is provided with a temperature-distribution uniforming means for making uniform the temperature distribution in a liquid contained in a balloon 6 .
  • a conventional radio-frequency heating balloon catheter an electrode placed in a balloon heats a liquid contained in the balloon ununiformly and thermal convection of the liquid occurs in the balloon. Consequently, the temperature distribution in the balloon unavoidably, becomes irregular and hence tissues in contact with the balloon cannot uniformly be heated.
  • the radio-frequency heating balloon catheter 1 in the second embodiment is provided with a stirring mechanism 14 to stir the liquid contained in the balloon 6 so that the liquid contained in the balloon 6 may uniformly be heated so that tissues in contact with the balloon 6 can be hated as uniformly as possible by radio-frequency heating.
  • the stirring mechanism 14 is very effective in making the temperature distribution in the balloon 6 uniform.
  • the radio-frequency heating balloon catheter 1 comprises a catheter tube 4 including an outer tube 2 and an inner tube 3 slidable relative to the outer tube 2 , an inflatable balloon 6 connected to the extremity of the outer tube 2 and a part near the extremity of the inner tube 3 , and capable of coming into contact with a target lesion 100 when inflated, a radio-frequency electrode 8 disposed inside the balloon 6 , a lead wire 10 electrically connected to the radio-frequency electrode 8 , a thermocouple 12 placed in the balloon 6 to sense temperature in the balloon 6 , a guide shaft 5 extending from a front end part 3 a of the inner tube 3 and capable of holding the balloon 6 on the target lesion 100 , a guide wire 16 extended through the catheter tube 4 and the guide shaft 5 to guide the catheter tube 4 and the guide shaft 5 to the target lesion 100 , and a stirring mechanism 14
  • a front sleeve 20 is mounted on a front part, extending in the balloon 6 , of the inner tube 3 so as to be turnable about the axis of the catheter tube 4 .
  • a back sleeve 21 is mounted on a front end part of the outer tube 2 so as to be turnable about the axis of the catheter tube 4 .
  • the radio-frequency electrode 8 consists of a plurality of parallel splines 8 a extended between the front sleeve 20 and the back sleeve 21 .
  • the straight splines 8 a can be curved along the inner surface of the balloon 6 as shown in FIG. 3 when the inner tube 3 is slid relative to the outer tube 2 to inflate the balloon 6 .
  • a base sleeve 23 is disposed near the back end of the outer tube 2 so as to be turnable about the axis of the catheter tube 4 .
  • a ring 24 is formed at the front end of the base sleeve 23 , and a ring electrode 25 is attached to a part, near the back end, of the base sleeve 23 .
  • a driven gear 26 is mounted on a part, between the ring 24 and the ring electrode 25 , of the base sleeve 23 .
  • a pantographic terminal 29 is disposed near the ring electrode 25 so as to be kept in contact with the ring electrode 25 when the ring electrode 25 rotates.
  • An external thread 31 is formed in a back end part of the outer tube 2 .
  • a flange 32 provided with an internal thread is screwed on the threaded back end part of the outer tube 2 so as to press O rings 27 against the back end of the outer tube 2 .
  • the O rings 27 are mounted loosely on the base sleeve 23 to permit the rotation of the base sleeve 23 and to prevent the leakage of a liquid through the gap between the inner surface of the outer tube 2 and the outer surface of the base sleeve 23 .
  • the inner tube 3 extends through the front sleeve 20 , the back sleeve 21 and the base sleeve 23 .
  • An external thread 33 is formed in a back end part of base sleeve 23 , and a flange 34 is screwed on the external thread 33 so as to press an O ring against the back end of the base sleeve 23 .
  • the O ring 28 seals the gap between the outer surface of the inner tube 3 and the inner surface of the base sleeve 23 to prevent the leakage of a liquid.
  • the lead wire 10 is wound helically round the inner tube 3 .
  • the lead wire 10 has one end connected to the back sleeve 21 , and the other end connected to the ring 24 of the base sleeve 23 and the ring electrode 25 .
  • the terminal 29 in contact with the ring electrode 25 is connected electrically to a radio-frequency power generator 40 .
  • the radio-frequency power generator 40 supplies radio-frequency power through the lead wire 10 to the radio-frequency electrode 8 .
  • the radio-frequency power generator 40 supplies radio-frequency power of, for example, 13.56 MHz between the radio-frequency electrode 8 and a counter electrode 53 .
  • the radio-frequency power is in the range of 200 to 400 W when the diameter of the balloon 6 is about 2.5 cm.
  • a reduction gear 35 including gears 36 and 37 , and a motor 38 is disposed near the driven gear 26 .
  • the motor 38 drives the driven gear 26 at a reduced rotating speed through the reduction gear 35 including the gears 36 and 37 .
  • the motor 38 may be controlled such that the output shaft of the motor 38 rotates in a single direction or may be controlled such that the output shaft rotates alternately in clockwise and counterclockwise directions for two full turns in each direction.
  • the lead wire 10 is formed of a material having a moderate rigidity.
  • the motor drives the base sleeve 23 for rotation through the driven gear 26 , the rotative force of the motor 38 is transmitted to the lead wire 10 connected to the ring 24 . Consequently, the back sleeve 21 and the front sleeve 20 are turned to turn the radio-frequency electrode 8 .
  • the motor 38 turns the helical lead wire 10 by a predetermined number of full turns in a direction opposite the winding direction of the helical lead wire 10 .
  • the lead wire 10 turns of itself in the opposite direction to restore its original shape.
  • the radio-frequency electrode 8 can be turned alternately in a clockwise direction and a counterclockwise direction by repetitively turning on and off the motor 38 .
  • the radio-frequency electrode 8 can alternately be turned clockwise and counterclockwise by using a straight lead wire 10 formed of an elastic material instead of the helical lead wire 10 .
  • the stirring mechanism 14 i.e., a temperature-distribution uniforming means, for turning the radio-frequency electrode 8 comprises the front sleeve 20 , the back sleeve 21 , the base sleeve 23 and the motor 38 .
  • the lead wire 10 transmits both the rotative force of the motor 38 and the radio-frequency power generated by the radio-frequency power generator 40 to the radio-frequency electrode 8 .
  • a branch tube 51 branches from a part, near the back end of the outer tube 2 .
  • the branch tube 51 is provided with a two-way valve to be used as an air bleed valve and a contrast medium injecting valve.
  • the balloon 6 is evacuated through the air bleed valve of the branch pipe 51 , and then a liquid, such as physiological saline water, for inflating the balloon 6 is supplied through the contrast medium injecting valve into the balloon 6 .
  • the inner tube 3 has two lumens. One of the two lumens is used for containing the guide wire 16 and supplying a liquid medicine, and the other is used for containing a lead wire for transmitting information provided by the thermocouple 12 , i.e., a temperature sensor.
  • thermocouple 12 placed in the inner tube 3 senses the temperature of the liquid contained in the balloon 6 .
  • the thermocouple 12 is extended through the inner tube 3 and is connected to a thermometer 42 disposed outside the catheter tube 4 .
  • the thermometer 42 indicates the measured temperature of the liquid contained in the balloon 6 .
  • the balloon 6 is formed of a heat-resistant, antithrombotic, elastic resin.
  • the balloon 6 shown in FIG. 3 has the shape of a basket or an onion when inflated.
  • the radio-frequency electrode 8 consists of the several to several tens straight splines 8 a extended between the front sleeve 20 and the back sleeve 21 .
  • the straight splines 8 a can be curved by sliding the outer tube 2 and the inner tube 3 relative to each other to decrease the distance between the front sleeve 20 and the back sleeve 21 to form the radio-frequency electrode 8 in the shape of a basket or an onion.
  • the change of the straight splines 8 a between a straight shape and a curved shape can be ensured by forming the straight splines 8 a of a shape memory alloy.
  • Front and left end parts of the splines 8 a are coated with a resin to prevent the excessive radio-frequency heating of the front and the back end parts of the splines 8 a.
  • Capacitive type radio-frequency heat can be generated between the radio-frequency electrode 8 and a counter electrode 53 ( FIG. 5 ) attached to the surface of a subject's body when the radio-frequency power generator 40 generates radio-frequency power of, for example, 13.56 MHz.
  • the basket-shaped radio-frequency electrode 8 is connected to the ring electrode 25 on the base sleeve 23 by the helical lead wire 10 , and the pantographic terminal 29 connected to the radio-frequency power generator 40 is kept in contact with the ring electrode 25 to supply radio-frequency power to the radio-frequency electrode 8 .
  • An electric field created by the turning radio-frequency electrode 8 is more uniform than that created by the fixed radio-frequency electrode 8 .
  • the output rotating speed of the motor 38 is reduced by the reduction gear 35 and the lowered output rotating speed of the reduction gear 35 is transmitted through the driven gear 26 to the base sleeve 23 .
  • the rotation of the base sleeve 23 is transmitted to the back sleeve 21 by the lead wire 10 to turn the splines 8 a in the balloon 6 .
  • the liquid filling up the balloon 6 is stirred by the turning splines 8 a , so that irregular temperature distribution in the balloon 6 due to heat transfer by convection can be prevented and temperature is distributed uniformly in the balloon 6 .
  • the temperature of the liquid in a central part of the balloon 6 that of the liquid around the wall of the balloon 6 and that of tissues 18 in contact with the balloon 6 can be made substantially equal by thus stirring the liquid contained in the balloon 6 .
  • the temperature of the liquid in the central part of the balloon 6 is measured and is indicated by the thermometer 42 , and the temperature indicated by the thermometer 42 can be considered to be the accurate temperature of the target lesion 100 in contact with the balloon 6 .
  • the turning basket-shaped radio-frequency electrode 8 creates a high radio-frequency electric field, and stirs liquid contained in the balloon 6 to make uniform temperature distribution in the liquid contained in the balloon 6 .
  • the temperature of the target lesion 100 in contact with the balloon 6 can accurately be estimated.
  • FIG. 5 is a view of assistance in explaining an operation for the ablation of a target lesion 100 in the open end of the left atrial vestibule 103 .
  • An air-bleeding operation including injecting physiological saline water through the branch tube 51 of the outer tube 2 into the balloon 6 and discharging the physiological saline water from the balloon 6 through the branch tube 51 is repeated several cycles to bleed air from the balloon 6 .
  • the balloon 6 is deflated and the inner tube 3 is slid to a limit position. Since the distance between the front sleeve 20 and the back sleeve 21 increases when the balloon catheter 1 is thus inserted in the left atrial vestibule 103 , the splines 8 a are extended straight and the balloon 6 is deflated in the smallest diameter. The thus deflated balloon 6 is inserted in the left atrial vestibule 103 .
  • the position of the balloon catheter 1 is adjusted to locate the balloon 6 near the target lesion 100 , a contrast medium and physiological saline water are injected through the branch tube 51 into the balloon 6 , and the inner tube 3 is pulled to inflate the balloon 6 . Consequently, the distance between the front sleeve 20 and the back sleeve 21 decreases, and the splines 8 a are curved to form a basket-shaped radio-frequency electrode 8 in the balloon 6 .
  • the fine adjustment of the position of the balloon catheter 1 is performed to bring the balloon 6 into contact with the target lesion 100 .
  • the motor 38 is actuated to transmit the rotative force of the motor 38 through the reduction gear 35 at lowered rotating speed to the base sleeve 23 .
  • the rotation of the base sleeve 23 is transmitted by the spiral lead wire extended through the catheter tube 4 to the back sleeve 21 connected to the front end of the inner tube 3 . Consequently, the basket-shaped radio-frequency electrode 8 is turned in the balloon 6 to stir the liquids contained in the balloon 6 .
  • radio-frequency power of, for example, 13.56 MHz generated by the radio-frequency power generator 40 is supplied between a counter electrode 53 attached to the surface of a subject's body and the ring electrode 25 connected to the basket-shaped radio-frequency electrode 8 of the balloon catheter 1 .
  • the radio-frequency power is supplied through the terminal 29 in contact with the rotating ring electrode 25 .
  • the annular target lesion 100 in the opening of the left atrial vestibule 103 can uniformly be ablated, the left superior pulmonary vein 101 and the left inferior pulmonary vein 102 are electrically ablated to treat safely the atrial fibrillation originating from the pulmonary veins.
  • the balloon catheter 1 in this embodiment is very useful to heat the liquid contained in the balloon 6 uniformly when the balloon 6 has a size suitable for treating the opening of the left atrial vestibule 103 , and high radio-frequency power needs to be supplied to the balloon 6 having a large volume.
  • a balloon catheter 1 in a third embodiment according to the present invention will be described with reference to FIG. 6 .
  • the balloon catheter 1 is provided with a stirring mechanism 80 for stirring a liquid contained in a balloon 6 to make temperature distribution in the balloon 6 uniform.
  • the stirring mechanism 80 includes a connecting pipe 82 communicating with a passage 83 defined by an outer tube 2 and an inner tube 3 , and a vibration-generating device 81 , such as a vibration-generating pump, capable of vibrating the liquid filling up the connecting pipe 82 and the passage 83 .
  • the connecting pipe 82 branches from the outer tube 2 .
  • the liquid fills up the connecting pipe 82 , the passage 83 and the balloon 6 .
  • vibrations of, for example, 1 Hz generated by the vibration-generating device 81 is applied to the liquid, an oscillatory wave 86 propagates through the liquid filling up the connecting pipe 82 and the passage 83 . Consequently, random swirling currents 85 are generated in the liquid contained in the balloon 6 and there by temperature distribution in the liquid contained in the balloon 6 is made uniform.
  • an atheroma formed in tissues 68 can be heated at an optimum temperature.
  • the vibration-generating device 81 may be a diaphragm pump having a vibrating diaphragm in contact with the liquid filling up the connecting pipe 82 .
  • the oscillatory wave 86 generated by the vibration-generating device 81 is able to generate satisfactory swirling currents in the liquid contained in the balloon 6 by forming the balloon 6 of a material having a proper elasticity.
  • the means for making the temperature distribution uniform may be a circulating device for circulating the liquid through the balloon 6 to make uniform temperature distribution in the liquid contained in the balloon 6 .
  • the balloon can be held in contact with the target lesion in the atrial vestibule at the joint of the pulmonary veins by placing the side surface of the guide shaft extending from the extremity of the inner tube in contact with the inner surface of the pulmonary vein without excessively heating the inner surface of the pulmonary vein, the edges of the open ends of the four pulmonary veins do not need to be cauterized individually, and the atrial vestibule can be cauterized with the balloon held in a coaxial state.

Abstract

A radio-frequency heating balloon catheter is capable of cauterizing a target lesion in an atrial vestibule. The radio-frequency heating balloon catheter has a catheter tube including an outer tube and an inner tube slidably extended through the outer tube. An inflatable balloon is connected to an extremity of the outer tube and a part near an extremity of the inner tube, and is capable of coming into contact with a target lesion when inflated. A radio-frequency electrode serves as a counter to a surface electrode attached to a surface of a subject's body and is placed in a wall of the balloon or inside the balloon to supply radio-frequency power between the surface electrode and the radio-frequency electrode. A temperature sensor senses temperature inside the balloon, a guide shaft projects from the extremity of the inner tube and is capable of holding the balloon on the target lesion, and a guide wire extends through the catheter tube and the guide shaft.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radio-frequency heating balloon catheter and, more particularly, to a radio-frequency balloon catheter for the radio-frequency heating treatment of cardiovascular diseases. More specifically, the present invention relates to a radio-frequency heating balloon catheter provided with a balloon to be brought into close contact with a target lesion for radio-frequency heating for the treatment of cardiac arrhythmia.
2. Description of the Related Art
A known method of electrically coagulating a source of arrhythmia (catheter ablation) uses a catheter provided with a metal tip of 4 mm in size, which serves as an electrode, brings the metal tip into contact with the source of arrhythmia and supplies a radio-frequency current to the metal tip. Although this method is effective when the source is a local, one like a source of WPW syndrome or paroxysmal tachycardia, the method is not so effective when the source is an extensive one like a source of atrial fibrillation, atrial flutter or ventricular tachycardia due to organic heart diseases.
Another method of isolating a wide target part heats the target part electrically by radio-frequency heating using an inflatable balloon. Methods of treating lesions caused by arteriosclerosis as well as sources of arrhythmia proposed in, for example, Jpn. Pat. Nos. 2538375, 2510428 and 2574119 to the applicant of the present invention patent application treat a lesion by bringing an inflatable balloon internally provided with a radio-frequency electrode into contact with tissues, and creating a radio-frequency electric field to heat tissues in contact with the balloon.
The interior of the atrium needs to be cauterized linearly to treat atrial flutter or atrial fibrillation.
It has hitherto been believed that the superior pulmonary veins and the inferior pulmonary veins connected to the left atrium are separated and those four pulmonary veins open individually into the left atrium as shown in FIG. 9 or 10. In forming a block line by linearly cauterizing the interior of the atrium to treat atrial flutter or atrial fibrillation, the edges of the four ostia, i.e., the superior right, the superior left, the inferior right and the inferior left opening, of the pulmonary veins must individually be cauterized. A ablation for individually cauterizing the edges of the four ostia of the pulmonary veins takes much time. Since the thin wall of the pulmonary vein is liable to contract and, consequently, the stenosis of the pulmonary vein is liable to occur when the periphery of the pulmonary vein is cauterized.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a radio-frequency heating balloon catheter capable of making the individual cauterization of the edges of the four pulmonary vein openings unnecessary and of capable of cauterizing a wide range of the atrial vestibule where the pulmonary veins join together with a balloon kept in a coaxial state.
Recently, the inventors of the present invention have found that the superior and the inferior pulmonary vein are not separately connected to the atrium, the superior and the inferior pulmonary vein join together and form an atrial vestibule before the atrium, and the atrial vestibule opens into the atrial body. The left superior pulmonary vein 101 and the left inferior pulmonary vein 102 join at the left atrial vestibule 103, and the right superior pulmonary vein 105 and the right inferior pulmonary vein 106 join at the right atrial vestibule.
According to the findings of the inventors of the present invention, the two pulmonary veins, i.e., the superior and the inferior pulmonary vein, join at the atrial vestibule before the atrial body, do not open individually into the atrial body, and the atrial vestibule opens into the atrial body.
The present invention has been made on the basis of the foregoing knowledge acquired by the inventors of the present invention.
According to the present invention, a radio-frequency heating balloon catheter comprises: a catheter tube including an outer tube and an inner tube slidably extended through the outer tube. An inflatable balloon is connected to the extremity of the outer tube and a part near the extremity of the inner tube, and is capable of coming into contact with a target lesion when inflated. A radio-frequency electrode serving as a counter to a surface electrode attached to the surface of a subject's body and is placed in the wall of the balloon or inside the balloon to supply radio-frequency power between the surface electrode and the radio-frequency electrode. A temperature sensor capable of measuring temperature inside the balloon, a guide shaft projecting from the extremity of the inner tube and is capable of holding the balloon on the target lesion, and a guide wire extended through the catheter tube and the guide shaft.
In the radio-frequency heating balloon catheter, the guide shaft may be capable of holding the balloon on the target lesion.
In the radio-frequency heating balloon catheter, the guide shaft may be formed of a nonconductive material having a low heat conductivity.
In the radio-frequency heating balloon catheter, the guide shaft and the inner tube may be formed integrally and coaxially of the same material.
In the radio-frequency heating balloon catheter, the balloon may be formed of a heat-resistant, antithrombotic, elastic material, and may be formed in a shape such that the balloon is able to come into contact with an atrial vestibule at the junction between the superio and the inferior pulmonary vein when inflated.
In the radio-frequency heating balloon catheter, the guide shaft may have a length such that a side surface of the guide shaft is able to come into contact with the superior or the inferior pulmonary vein with the inflated balloon in contact with the atrial vestibule.
In the radio-frequency heating balloon catheter, the shape of the balloon capable of coming into contact with the atrial vestibule when inflated is determined on the basis of data obtained by scanning the atrial vestibule by three-dimensional CT before executing a ablation.
In the radio-frequency heating balloon catheter, the guide shaft may have a length longer than that of the balloon.
In the radio-frequency heating balloon catheter, the guide shaft may have a length between 1 and 10 cm.
In the radio-frequency heating balloon catheter, a free end part of the inner tube or the guide shaft may be provided with side holes to suck blood in the pulmonary vein.
In the radio-frequency heating balloon catheter, the back end of the guide wire may be able to be grounded.
The radio-frequency heating balloon catheter may further comprise a temperature-distribution uniforming means for making uniform temperature distribution in a liquid contained in the balloon.
The radio-frequency heating balloon catheter may further comprise a cooling means for cooling the radio-frequency electrode.
According to the present invention, the atrial vestibule where the superior and the inferior pulmonary vein join can be cauterized instead of individually cauterizing the edges of the ostia of the superior and the inferior pulmonary vein to form a block line by linearly cauterizing the interior of the atrium to treat atrial flutter or atrial fibrillation. Consequently, the edges of the four pulmonary vein ostia do not need to be individually cauterized, the number of parts to be cauterized is reduced and thereby time necessary for the ablation can be reduced.
Since the wall of the atrial vestibule, as compared with the walls of the pulmonary veins, is considerably thick, the atrial vestibule does not contract easily when cauterized, and hence the stenosis of the atrial vestibule does not occur easily.
The modification of the posterior wall of the left atrium in cauterizing the atrial vestibule enhances the suppressive effect on the maintenance of atrial fibrillation because the maintenance of atrial fibrillation requires the substrate of the posterior wall of the atrium with considerable area, and the ablation of the atrial vestibule reduces the substrate of the back wall of the atrium.
Generally, the balloon in contact with the target lesion must be kept in a coaxial state to cauterize a necessary and sufficient region including the target lesion. When a conventional balloon catheter is used for cauterizing the atrial vestibule, a balloon is brought into close contact with a target lesion, a guide wire is projected from the extremity of an inner tube so that the tip of the guide wire comes into contact with the inner surface of the wall of the pulmonary vein to support the balloon by the guide wire, the balloon is held in close contact with the atrial vestibule, and the balloon is held in a coaxial state by keeping the guide wire in contact with the inner surface of the wall of the pulmonary vein. The size of the atrial vestibule, as compared with the size of the pulmonary vein opening, is large and hence the balloon must be considerably large and the radio-frequency power must be increased accordingly. The following problems arise when the conventional balloon catheter is used for cauterizing the atrial vestibule. The guide wire extending through the balloon is heated by a high-temperature liquid contained in the balloon by thermal conduction. The guide wire is heated at an excessively high temperature by radio-frequency heating due to electromagnetic coupling and thereby the inner surface of the wall of the pulmonary vein is cauterized. Since high radio-frequency power must be supplied, the radio-frequency electrode is heated at an excessively high temperature, and temperature is distributed unevenly in the balloon and non-uniform cauterization results.
The radio-frequency heating balloon catheter of the present invention is capable of safely cauterizing the atrial vestibule where the pulmonary veins joins with the balloon held in a coaxial state.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will become more apparent from the following description taken in connection with the accompanying drawings, in which:
FIG. 1 is a view of a part of a radio-frequency heating balloon catheter in a first embodiment according to the present invention;
FIG. 2 is a view of the radio-frequency heating balloon catheter shown in FIG. 1 in a state where a balloon is in contact with an open part of an atrial vestibule and a side surface of a guide shaft is in contact with a part, near the open end of a pulmonary vein, of the inner surface of the wall of the pulmonary vein;
FIG. 3 a view of a part of a radio-frequency heating balloon catheter in a second embodiment according to the present invention;
FIG. 4 a view of another part of the radio-frequency heating balloon catheter in the second embodiment to be connected to the right end of the part shown in FIG. 3;
FIG. 5 is a view of assistance in explaining the use of a balloon catheter as a balloon for electrical isolation in a pulmonary vein for the treatment of atrial fibrillation;
FIG. 6 is a view of a part of a radio-frequency heating balloon catheter in a third embodiment according to the present invention;
FIG. 7 is a view of assistance in explaining bringing a balloon into contact with an atrial vestibule formed by joining two pulmonary veins before the atrium;
FIG. 8 is a view of an atrial vestibule at the junction between the superio and the inferior pulmonary vein before the atrial body found the inventors of the present invention;
FIG. 9 is a view showing a balloon included in a conventional balloon catheter in contact with the open end of a single pulmonary vein; and
FIG. 10 is a view of assistance in explaining a formerly believed idea that the superior pulmonary veins and the inferior pulmonary veins connected to the right and the left atrium are separated and those four pulmonary veins open individually into the right and the left atrium.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The basic construction of a radio-frequency heating balloon catheter 1 in a first embodiment according to the present invention will be described with reference to FIG. 1. The radio-frequency heating balloon catheter 1 will be described as applied to the treatment of a lesion in the left atrial vestibule 103. Naturally, the radio-frequency heating balloon catheter 1 is applicable to the treatment of a lesion in the right atrial vestibule.
Referring to FIG. 1, the radio-frequency heating balloon catheter 1 comprises a catheter tube 4 including an outer tube 2 and an inner tube 3 slidable relative to the outer tube 2, an inflatable balloon 6 of a shape capable of coming into contact with a target lesion 100 in the left atrial vestibule 103 when inflated, a radio-frequency electrode 8 disposed inside the balloon 6, a lead wire 10 electrically connected to the radio-frequency electrode 8, a thermocouple 12 placed in the balloon 6 to sense temperature in the balloon 6, a guide shaft 5 extending from a front end part 3 a of the inner tube 3 and capable of holding the balloon 6 on the target lesion 100, and a guide wire 16 extended through the catheter tube 4 and the guide shaft 5 to guide the catheter tube 4 and the guide shaft 5 to the target lesion 100.
The guide shaft 5 is formed of a nonconductive material having a low thermal conductivity, such as a resin, to avoid the danger of excessively heating and electrifying the inner surface of the left superior pulmonary vein 101 when the guide shaft 5 touches the inner surface of the left superior pulmonary vein 101. For example, the inner tube 3 is 1 mm in outside diameter and the guide shaft 5 is 2 mm in outside diameter. The inner tube and the guide shaft 5 may be formed of the same material or of different materials, respectively. The inner tube 3 and the guide shaft 5 may integrally be formed in a coaxial arrangement or may be formed separately.
The balloon 6 is formed in a size such that the inflated balloon 6 can come into contact with the open end of a left atrial vestibule 103 where the left superior pulmonary vein 101 and the left inferior pulmonary vein 102 join together. The diameter of the balloon 6 as inflated must be large to cauterize the target lesion 100 in the left atrial vestibule 103 having an open end greater than those of the pulmonary veins 101 and 102. Whereas the diameters of the conventional balloon are in the range of 10 to 15 mm, the diameter of the balloon 6 is, for example, in the range of 20 to 40 mm. The length of the balloon 6 is, for example, in the range of 20 to 30 mm. The balloon 6 is formed of a heat-resistant, antithrombotic, elastic resin. The balloon 6 shown in FIG. 1 has the shape of a basket or an onion when inflated.
Preferably, a balloon 6 is designed specially for a subject by the following procedure. The subject's atrial vestibule is scanned by a three-dimensional CT scanner prior to an ablation procedure. The shape and size of the balloon 6 are determined specially for the subject on the basis of information provided by the three-dimensional CT (computor tomography) scanner so that the balloon 6 as inflated can be in close contact with the subject's atrial vestibule.
As shown in FIG. 2, the guide shaft 5 has a length such that the side surface 5 a of the guide shaft 5 is able to be in contact with the inner surface of the wall of the left superior pulmonary vein 101 or the left inferior pulmonary vein 102 with the inflated balloon 6 in contact with the opening of the left atrial vestibule 103. The guide shaft 5 has a length longer than that of the balloon 6. For example, the length of the guide shaft 5 is between 2 and 10 cm.
The front end part 3 a of the inner tube 3, or the guide shaft 5 is provided with side holes 7 through which pulmonary venous blood is sucked. The side holes 7 are used also for discharging physiological saline water into the left superior pulmonary vein 101.
The back end of the guide wire 16 can be connected to a ground. The back end is an end of the guide wire 16 opposite the front end of the same projecting from the guide shaft 5, and on the side of the inlet of the outer tube 2. The guide wire 16 is an insulated steel wire surrounded by an insulating material. The steel wire provides the guide wire 16 with rigidity, and the insulating material electrically insulates the steel wire. A back end part of the steel wire projecting from the back end of the guide wire 16 can be connected to the ground. A front end part of, for example, 1 cm in length projecting from the guide shaft 5 is formed only of the insulating material.
There is the possibility that Joul heat is generated in the steel wire of the guide wire 16 by a radio-frequency current. In the radio-frequency heating balloon catheter 1 in this embodiment having the large balloon 6 and using high power of radio-frequency power, it is possible that the guide wire 16 is heated at a high temperature. A radio-frequency current induced in the guide wire 16 can be discharged to the ground by connecting the back end part of the steel wire projecting from the back end of the guide wire 16 to the ground to prevent the radio-frequency heating of the guide wire 16. Thus, even if the front end part of the guide wire 16 should come into contact with the inner surface of the wall of, for example, the left superior pulmonary vein 101, there is no danger of excessively heating the wall of the left superior pulmonary vein 101. Since the front end part of the guide wire 16 projecting from the guide shaft 5 is formed of only the insulating material, the danger of excessively heating the wall of, for example, the left superior pulmonary vein 101 when the front end part of the guide wire 16 comes into contact with the inner surface of the wall of the left superior pulmonary vein 101 can surely be prevented even if the effect of grounding the back end part of the steel wire of the guide wire 16 is unsatisfactory.
As shown in FIG. 5, the lead wire 10 is wound helically. One end of the lead wire 10 is electrically connected to a radio-frequency power generator 40. Radio-frequency power generated by the radio-frequency power generator 40 is supplied through the lead wire 10 to the radio-frequency electrode 8. The balloon 6 has a large diameter to cauterize a target lesion 100 in the left atrial vestibule 103 having the opening greater than those of the pulmonary veins 101 and 102. Therefore, the radio-frequency power generator 40 needs to generate high radio-frequency power to heat the target lesion 100 at a desired temperature. For example, when the radio-frequency power of 13.56 MHz generated by the radio-frequency power generator 40 is supplied between the radio-frequency electrode 8 and a counter electrode 53 attached to the surface of the subject's body, and the diameter of the balloon 6 is about 2.5 cm, the radio-frequency power is in the range of 200 to 400 W. When the radio-frequency power is supplied between the radio-frequency electrode 8 and the counter electrode 53, tissues 18 in contact with the balloon 6 are cauterized by capacitive heating accompanied by radio-frequency dielectric heating. Pulmonary venous blood is sucked through the side holes 7 formed in the front end part 3 a of the inner tube 3 or the guide shaft 5, and physiological saline water is discharged through the side holes 7 to cool the radio-frequency electrode 8 wound round the inner tube 3. Thus, temperature distribution inside the balloon 6 is made uniform. Consequently, the target lesion 100 in contact with the balloon 6 can uniformly be heated for cauterization.
The temperature of the liquid contained in the balloon 6 is sensed by the thermocouple 12 placed inside the inner tube 3. The thermocouple 12 is extended through the inner tube 3 and is connected to a thermometer 42 disposed outside the catheter tube 4. The thermometer 42 indicates the measured temperature of the liquid contained in the balloon 6. The radio-frequency power generator 40 is controlled so as to adjust the measured temperature of the liquid contained in the balloon 6 to a desired temperature.
The radio-frequency heating balloon catheter 1 in the first embodiment is provided with the guide shaft 5 extending from the front end part 3 a of the inner tube 3, and the balloon 6 can be held on the target lesion 100 by placing the side surface 5 a of the guide shaft 5 in contact with the inner surface of the wall of, for example, the left superior pulmonary vein 101. Thus, the inner surface of the wall of the left superior pulmonary vein 101 is never cauterized even if high radio-frequency power is supplied to cauterize the target lesion 100 in the left atrial vestibule 103, while it is possible that the inner surface of the wall of the left superior pulmonary vein 101 is cauterized when the balloon 6 is held on the target lesion 100 only by the guide wire 16. Thus, the target lesion 100 in the left atrial vestibule 103 can safely be cauterized with the balloon 6 held in a coaxial state.
When the interior of the atrium needs to be cauterized linearly to form a block line for the treatment of atrial flutter or atrial fibrillation, the block line can be formed by cauterizing the atrial vestibule 103 instead of individually cauterizing the openings of the superior pulmonary vein 101 and the inferior pulmonary vein 102. Thus, the four openings of the left superior pulmonary vein 101, the left inferior pulmonary vein 102, the right superior pulmonary vein 105 and the right inferior pulmonary vein 106 do not need to be individually cauterized. The number of parts to be cauterized can be reduced, for example, from four to two, and thereby time necessary for the ablation can be reduced.
Since the wall of the atrial vestibule 103, as compared with the walls of the pulmonary vein, is considerably thick, the atrial vestibule 103 does not contract easily when cauterized and hence the stenosis of the atrial vestibule 103 does not occur easily.
The cauterization of the posterior wall of the atrium in cauterizing the atrial vestibule 103 enhances the effect on the suppression of atrial fibrillation because the maintenance of atrial fibrillation requires an area in the posterior wall of the atrium not smaller than a certain fixed area and the cauterization of the atrial vestibule 103 reduces the area of the posterior wall of the atrium.
Since the guide wire 16 can be connected to the ground, the radio-frequency heating of the guide wire 16 can be prevented, and the excessive heating and electrification of the wall of, for example, the left superior pulmonary vein 101 can be prevented.
The radio-frequency electrode 8 wound round the inner tube 3 can be cooled by sucking pulmonary venous blood through the side holes 7 formed in the front end part 3 a of the inner tube 3 or the guide shaft 5, and discharging physiological saline water through the side holes 7. Temperature distribution in the balloon 6 can be made uniform by stirring the liquid contained in the balloon 6 by a stirring mechanism 14, which will be described later. Thus, the target lesion 100 of a diameter in the range of, for example, 3 to 5 cm in contact with the balloon 6 can uniformly be cauterized.
A radio-frequency heating balloon catheter 1 in a second embodiment according to the present invention for heating pulmonary veins will be described with reference to FIGS. 3 and 4. The radio-frequency heating balloon catheter 1 in the second embodiment is provided with a temperature-distribution uniforming means for making uniform the temperature distribution in a liquid contained in a balloon 6.
In a conventional radio-frequency heating balloon catheter, an electrode placed in a balloon heats a liquid contained in the balloon ununiformly and thermal convection of the liquid occurs in the balloon. Consequently, the temperature distribution in the balloon unavoidably, becomes irregular and hence tissues in contact with the balloon cannot uniformly be heated. The radio-frequency heating balloon catheter 1 in the second embodiment is provided with a stirring mechanism 14 to stir the liquid contained in the balloon 6 so that the liquid contained in the balloon 6 may uniformly be heated so that tissues in contact with the balloon 6 can be hated as uniformly as possible by radio-frequency heating. As mentioned above, since high radio-frequency power is supplied to the balloon to cauterize the open ends of the pulmonary veins 103 and 106, the temperature distribution in the balloon 6 tends to be un-uniform. Therefore, the stirring mechanism 14 is very effective in making the temperature distribution in the balloon 6 uniform.
Referring to FIGS. 3 and 4, in which the right end B of a view shown in FIG. 4 is joined to the left end A of a view shown in FIG. 3, the radio-frequency heating balloon catheter 1 comprises a catheter tube 4 including an outer tube 2 and an inner tube 3 slidable relative to the outer tube 2, an inflatable balloon 6 connected to the extremity of the outer tube 2 and a part near the extremity of the inner tube 3, and capable of coming into contact with a target lesion 100 when inflated, a radio-frequency electrode 8 disposed inside the balloon 6, a lead wire 10 electrically connected to the radio-frequency electrode 8, a thermocouple 12 placed in the balloon 6 to sense temperature in the balloon 6, a guide shaft 5 extending from a front end part 3 a of the inner tube 3 and capable of holding the balloon 6 on the target lesion 100, a guide wire 16 extended through the catheter tube 4 and the guide shaft 5 to guide the catheter tube 4 and the guide shaft 5 to the target lesion 100, and a stirring mechanism 14 to make uniform the temperature distribution in the liquid contained in the balloon 6.
A front sleeve 20 is mounted on a front part, extending in the balloon 6, of the inner tube 3 so as to be turnable about the axis of the catheter tube 4. A back sleeve 21 is mounted on a front end part of the outer tube 2 so as to be turnable about the axis of the catheter tube 4.
The radio-frequency electrode 8 consists of a plurality of parallel splines 8 a extended between the front sleeve 20 and the back sleeve 21. The straight splines 8 a can be curved along the inner surface of the balloon 6 as shown in FIG. 3 when the inner tube 3 is slid relative to the outer tube 2 to inflate the balloon 6.
A base sleeve 23 is disposed near the back end of the outer tube 2 so as to be turnable about the axis of the catheter tube 4. A ring 24 is formed at the front end of the base sleeve 23, and a ring electrode 25 is attached to a part, near the back end, of the base sleeve 23. A driven gear 26 is mounted on a part, between the ring 24 and the ring electrode 25, of the base sleeve 23. A pantographic terminal 29 is disposed near the ring electrode 25 so as to be kept in contact with the ring electrode 25 when the ring electrode 25 rotates.
An external thread 31 is formed in a back end part of the outer tube 2. A flange 32 provided with an internal thread is screwed on the threaded back end part of the outer tube 2 so as to press O rings 27 against the back end of the outer tube 2. The O rings 27 are mounted loosely on the base sleeve 23 to permit the rotation of the base sleeve 23 and to prevent the leakage of a liquid through the gap between the inner surface of the outer tube 2 and the outer surface of the base sleeve 23. Thus, the leakage of a liquid through the gap between the base sleeve 23 and the outer tube 2, and the gap between the base sleeve 23 and the inner tube 3 can be sealed.
The inner tube 3 extends through the front sleeve 20, the back sleeve 21 and the base sleeve 23. An external thread 33 is formed in a back end part of base sleeve 23, and a flange 34 is screwed on the external thread 33 so as to press an O ring against the back end of the base sleeve 23. The O ring 28 seals the gap between the outer surface of the inner tube 3 and the inner surface of the base sleeve 23 to prevent the leakage of a liquid.
The lead wire 10 is wound helically round the inner tube 3. The lead wire 10 has one end connected to the back sleeve 21, and the other end connected to the ring 24 of the base sleeve 23 and the ring electrode 25. The terminal 29 in contact with the ring electrode 25 is connected electrically to a radio-frequency power generator 40. The radio-frequency power generator 40 supplies radio-frequency power through the lead wire 10 to the radio-frequency electrode 8.
The radio-frequency power generator 40 supplies radio-frequency power of, for example, 13.56 MHz between the radio-frequency electrode 8 and a counter electrode 53. For example, the radio-frequency power is in the range of 200 to 400 W when the diameter of the balloon 6 is about 2.5 cm.
A reduction gear 35 including gears 36 and 37, and a motor 38 is disposed near the driven gear 26. The motor 38 drives the driven gear 26 at a reduced rotating speed through the reduction gear 35 including the gears 36 and 37. The motor 38 may be controlled such that the output shaft of the motor 38 rotates in a single direction or may be controlled such that the output shaft rotates alternately in clockwise and counterclockwise directions for two full turns in each direction.
The lead wire 10 is formed of a material having a moderate rigidity. When the motor drives the base sleeve 23 for rotation through the driven gear 26, the rotative force of the motor 38 is transmitted to the lead wire 10 connected to the ring 24. Consequently, the back sleeve 21 and the front sleeve 20 are turned to turn the radio-frequency electrode 8.
The motor 38 turns the helical lead wire 10 by a predetermined number of full turns in a direction opposite the winding direction of the helical lead wire 10. When the driving force of the motor 38 is removed after thus turning the lead wire 10, the lead wire 10 turns of itself in the opposite direction to restore its original shape. Thus, the radio-frequency electrode 8 can be turned alternately in a clockwise direction and a counterclockwise direction by repetitively turning on and off the motor 38.
If the motor 38 is controlled so that its output shaft turns alternately, for example, two full turns in a clockwise direction and two full turns in a counterclockwise direction, the radio-frequency electrode 8 can alternately be turned clockwise and counterclockwise by using a straight lead wire 10 formed of an elastic material instead of the helical lead wire 10.
The stirring mechanism 14, i.e., a temperature-distribution uniforming means, for turning the radio-frequency electrode 8 comprises the front sleeve 20, the back sleeve 21, the base sleeve 23 and the motor 38.
As mentioned above, the lead wire 10 transmits both the rotative force of the motor 38 and the radio-frequency power generated by the radio-frequency power generator 40 to the radio-frequency electrode 8.
A branch tube 51 branches from a part, near the back end of the outer tube 2. The branch tube 51 is provided with a two-way valve to be used as an air bleed valve and a contrast medium injecting valve. The balloon 6 is evacuated through the air bleed valve of the branch pipe 51, and then a liquid, such as physiological saline water, for inflating the balloon 6 is supplied through the contrast medium injecting valve into the balloon 6.
The inner tube 3 has two lumens. One of the two lumens is used for containing the guide wire 16 and supplying a liquid medicine, and the other is used for containing a lead wire for transmitting information provided by the thermocouple 12, i.e., a temperature sensor.
The thermocouple 12 placed in the inner tube 3 senses the temperature of the liquid contained in the balloon 6. The thermocouple 12 is extended through the inner tube 3 and is connected to a thermometer 42 disposed outside the catheter tube 4. The thermometer 42 indicates the measured temperature of the liquid contained in the balloon 6.
The balloon 6 is formed of a heat-resistant, antithrombotic, elastic resin. The balloon 6 shown in FIG. 3 has the shape of a basket or an onion when inflated.
The radio-frequency electrode 8 consists of the several to several tens straight splines 8 a extended between the front sleeve 20 and the back sleeve 21. The straight splines 8 a can be curved by sliding the outer tube 2 and the inner tube 3 relative to each other to decrease the distance between the front sleeve 20 and the back sleeve 21 to form the radio-frequency electrode 8 in the shape of a basket or an onion. The change of the straight splines 8 a between a straight shape and a curved shape can be ensured by forming the straight splines 8 a of a shape memory alloy.
Front and left end parts of the splines 8 a are coated with a resin to prevent the excessive radio-frequency heating of the front and the back end parts of the splines 8 a.
Capacitive type radio-frequency heat can be generated between the radio-frequency electrode 8 and a counter electrode 53 (FIG. 5) attached to the surface of a subject's body when the radio-frequency power generator 40 generates radio-frequency power of, for example, 13.56 MHz.
The basket-shaped radio-frequency electrode 8 is connected to the ring electrode 25 on the base sleeve 23 by the helical lead wire 10, and the pantographic terminal 29 connected to the radio-frequency power generator 40 is kept in contact with the ring electrode 25 to supply radio-frequency power to the radio-frequency electrode 8. An electric field created by the turning radio-frequency electrode 8 is more uniform than that created by the fixed radio-frequency electrode 8.
The output rotating speed of the motor 38 is reduced by the reduction gear 35 and the lowered output rotating speed of the reduction gear 35 is transmitted through the driven gear 26 to the base sleeve 23. The rotation of the base sleeve 23 is transmitted to the back sleeve 21 by the lead wire 10 to turn the splines 8 a in the balloon 6. The liquid filling up the balloon 6 is stirred by the turning splines 8 a, so that irregular temperature distribution in the balloon 6 due to heat transfer by convection can be prevented and temperature is distributed uniformly in the balloon 6. The temperature of the liquid in a central part of the balloon 6, that of the liquid around the wall of the balloon 6 and that of tissues 18 in contact with the balloon 6 can be made substantially equal by thus stirring the liquid contained in the balloon 6. The temperature of the liquid in the central part of the balloon 6 is measured and is indicated by the thermometer 42, and the temperature indicated by the thermometer 42 can be considered to be the accurate temperature of the target lesion 100 in contact with the balloon 6.
Thus, the turning basket-shaped radio-frequency electrode 8 creates a high radio-frequency electric field, and stirs liquid contained in the balloon 6 to make uniform temperature distribution in the liquid contained in the balloon 6. Thus, the temperature of the target lesion 100 in contact with the balloon 6 can accurately be estimated.
Explanation will be made of the operation of the radio-frequency heating balloon catheter 1 used as a balloon catheter for electrical ablation for the treatment of atrial fibrillation in a pulmonary vein.
FIG. 5 is a view of assistance in explaining an operation for the ablation of a target lesion 100 in the open end of the left atrial vestibule 103.
An air-bleeding operation including injecting physiological saline water through the branch tube 51 of the outer tube 2 into the balloon 6 and discharging the physiological saline water from the balloon 6 through the branch tube 51 is repeated several cycles to bleed air from the balloon 6.
To insert the balloon catheter 1 in the left atrial vestibule 103, the balloon 6 is deflated and the inner tube 3 is slid to a limit position. Since the distance between the front sleeve 20 and the back sleeve 21 increases when the balloon catheter 1 is thus inserted in the left atrial vestibule 103, the splines 8 a are extended straight and the balloon 6 is deflated in the smallest diameter. The thus deflated balloon 6 is inserted in the left atrial vestibule 103. The position of the balloon catheter 1 is adjusted to locate the balloon 6 near the target lesion 100, a contrast medium and physiological saline water are injected through the branch tube 51 into the balloon 6, and the inner tube 3 is pulled to inflate the balloon 6. Consequently, the distance between the front sleeve 20 and the back sleeve 21 decreases, and the splines 8 a are curved to form a basket-shaped radio-frequency electrode 8 in the balloon 6. The fine adjustment of the position of the balloon catheter 1 is performed to bring the balloon 6 into contact with the target lesion 100.
Then, the motor 38 is actuated to transmit the rotative force of the motor 38 through the reduction gear 35 at lowered rotating speed to the base sleeve 23. The rotation of the base sleeve 23 is transmitted by the spiral lead wire extended through the catheter tube 4 to the back sleeve 21 connected to the front end of the inner tube 3. Consequently, the basket-shaped radio-frequency electrode 8 is turned in the balloon 6 to stir the liquids contained in the balloon 6.
Then, radio-frequency power of, for example, 13.56 MHz generated by the radio-frequency power generator 40 is supplied between a counter electrode 53 attached to the surface of a subject's body and the ring electrode 25 connected to the basket-shaped radio-frequency electrode 8 of the balloon catheter 1. The radio-frequency power is supplied through the terminal 29 in contact with the rotating ring electrode 25.
When a radio-frequency current flows through the basket-shaped radio-frequency electrode 8 turning in the balloon 6, capacitive heating accompanied by radio-frequency dielectric heating occurs for the radio-frequency heating of the balloon 6 and tissues 18 in contact with the balloon 6. The temperature of upper parts of the balloon 6 is higher than that of lower parts of the balloon 6 if thermal convection occurs in the balloon 6. Since the liquid contained in the balloon 6 is stirred by the basket-shaped radio-frequency electrode 8, temperature is distributed uniformly in the liquid.
If a fixed electrode is placed in the balloon 6, temperature is distributed ununiformly in the balloon 6 depending on the position of the fixed electrode. Since the radio-frequency electrode 8 turns in the balloon 6, a uniform radio-frequency electric field is created around the radio-frequency electrode 8. Consequently, the target lesion 100 in contact with the balloon 6 can uniformly be heated by radio-frequency heating as well as the interior of the balloon.
Although there is the possibility that the liquid around the sleeves 20 and 21 on which the splines 8 a converge is heated excessively, such excessive heating of the liquid can be prevented by forming the sleeves 20 and 21 of a material having a low dielectric constant, such as a resin or a ceramic material, by coating pats of the splines 8 a with a resin or by circulating cooling water through the inner tube 3.
Thus, the annular target lesion 100 in the opening of the left atrial vestibule 103 can uniformly be ablated, the left superior pulmonary vein 101 and the left inferior pulmonary vein 102 are electrically ablated to treat safely the atrial fibrillation originating from the pulmonary veins. The balloon catheter 1 in this embodiment is very useful to heat the liquid contained in the balloon 6 uniformly when the balloon 6 has a size suitable for treating the opening of the left atrial vestibule 103, and high radio-frequency power needs to be supplied to the balloon 6 having a large volume.
A balloon catheter 1 in a third embodiment according to the present invention will be described with reference to FIG. 6. The balloon catheter 1 is provided with a stirring mechanism 80 for stirring a liquid contained in a balloon 6 to make temperature distribution in the balloon 6 uniform.
The stirring mechanism 80 includes a connecting pipe 82 communicating with a passage 83 defined by an outer tube 2 and an inner tube 3, and a vibration-generating device 81, such as a vibration-generating pump, capable of vibrating the liquid filling up the connecting pipe 82 and the passage 83. The connecting pipe 82 branches from the outer tube 2. The liquid fills up the connecting pipe 82, the passage 83 and the balloon 6. When vibrations of, for example, 1 Hz generated by the vibration-generating device 81 is applied to the liquid, an oscillatory wave 86 propagates through the liquid filling up the connecting pipe 82 and the passage 83. Consequently, random swirling currents 85 are generated in the liquid contained in the balloon 6 and there by temperature distribution in the liquid contained in the balloon 6 is made uniform. Thus, an atheroma formed in tissues 68 can be heated at an optimum temperature.
The vibration-generating device 81 may be a diaphragm pump having a vibrating diaphragm in contact with the liquid filling up the connecting pipe 82.
The oscillatory wave 86 generated by the vibration-generating device 81 is able to generate satisfactory swirling currents in the liquid contained in the balloon 6 by forming the balloon 6 of a material having a proper elasticity.
Although the stirring devices 14 and 80 are described by way of example as means for making the temperature distribution uniform, the means for making the temperature distribution uniform may be a circulating device for circulating the liquid through the balloon 6 to make uniform temperature distribution in the liquid contained in the balloon 6.
As apparent from the foregoing description, according to the present invention, the balloon can be held in contact with the target lesion in the atrial vestibule at the joint of the pulmonary veins by placing the side surface of the guide shaft extending from the extremity of the inner tube in contact with the inner surface of the pulmonary vein without excessively heating the inner surface of the pulmonary vein, the edges of the open ends of the four pulmonary veins do not need to be cauterized individually, and the atrial vestibule can be cauterized with the balloon held in a coaxial state.
Although the invention has been described in its preferred embodiments with a certain degree of particularity, obviously many changes and variations are possible therein. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein without departing from the scope and spirit thereof.

Claims (14)

1. A radio-frequency heating balloon catheter comprising:
a catheter tube including an outer tube and an inner tube extending slidably through said outer tube;
an inflatable balloon that is connected to an extremity of said outer tube and a part near an extremity of said inner tube and that is capable of coming into contact with a target lesion when inflated;
a radio-frequency electrode serving as a counter to a surface electrode to be attached to a surface of a patient's body, said radio-frequency electrode being placed in a wall of said balloon or inside said balloon to supply radio-frequency power between said surface electrode and said radio-frequency electrode;
a temperature sensor capable of sensing temperature inside said balloon;
a guide shaft projecting from the extremity of said inner tube, said guide shaft being capable of holding said balloon on a target lesion; and
a guide wire extending through said catheter tube and said guide shaft;
wherein said guide shaft has a length such that a side surface of said guide shaft is able to contact an inner surface of a wall of a vein when said inflated balloon is in contact with a target lesion.
2. The radio-frequency heating balloon catheter of claim 1, wherein said guide shaft is formed of a nonconductive material having a low heat conductivity.
3. The radio-frequency heating balloon catheter of claim 2, wherein said guide shaft and said inner tube are formed integrally and coaxially of the same material.
4. The radio-frequency heating balloon catheter of claim 1, wherein said balloon is formed of a heat-resistant, antithrombotic, elastic material, and is formed in a shape such that said balloon is able to come into contact with an atrial vestibule at the junction between the superior and inferior pulmonary veins when inflated.
5. The radio-frequency heating balloon catheter of claim 4, wherein said guide shaft has a length such that the side surface of said guide shaft is able to come into contact with the superior or the inferior pulmonary vein when said inflated balloon is in contact with the atrial vestibule.
6. The radio-frequency heating balloon catheter of claim 4, wherein said balloon has a shape determined on the basis of data obtained by scanning the atrial vestibule by three-dimensional CT before executing ablation.
7. The radio-frequency heating balloon catheter of claim 1, wherein said guide shaft has a length longer than that of said balloon.
8. The radio-frequency heating balloon catheter of claim 1, wherein said guide shaft has a length between 1 and 10 cm.
9. The radio-frequency heating balloon catheter of claim 1, wherein a free end part of said inner tube or said guide shaft has side holes for suctioning blood in the pulmonary vein.
10. The radio-frequency heating balloon catheter of claim 1, wherein a back end of said guide wire is grounded.
11. The radio-frequency heating balloon catheter of claim 1, further comprising a temperature-distribution uniforming means for making uniform the temperature distribution in a liquid contained in said balloon.
12. The radio-frequency heating balloon catheter of claim 1, further comprising a cooling means for cooling said radio-frequency electrode.
13. The radio-frequency heating balloon catheter of claim 1, wherein the length of said guide shaft is such that when said inflated balloon is in contact with a target lesion of an atrial vestibule, a side surface of said guide shaft is in contact with an inner surface of a pulmonary vein.
14. The radio-frequency heating balloon catheter of claim 13, wherein said guide shaft is formed of a nonconductive material having a low heat conductivity.
US10/747,301 2003-01-24 2003-12-30 Radio-frequency heating balloon catheter Active 2024-12-04 US7112198B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-016504 2003-01-24
JP2003016504A JP4067976B2 (en) 2003-01-24 2003-01-24 High frequency heating balloon catheter

Publications (2)

Publication Number Publication Date
US20040172110A1 US20040172110A1 (en) 2004-09-02
US7112198B2 true US7112198B2 (en) 2006-09-26

Family

ID=32652825

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/747,301 Active 2024-12-04 US7112198B2 (en) 2003-01-24 2003-12-30 Radio-frequency heating balloon catheter

Country Status (3)

Country Link
US (1) US7112198B2 (en)
EP (1) EP1442719A1 (en)
JP (1) JP4067976B2 (en)

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070083192A1 (en) * 2005-10-07 2007-04-12 Eric Welch Apparatus and method for ablation of targeted tissue
US20080172050A1 (en) * 2007-01-12 2008-07-17 Japan Electel Inc. Radiofrequency thermal balloon catheter system
WO2008153357A2 (en) * 2007-06-15 2008-12-18 Chung-Ang University Industry-Academy Cooperation Foundation Bipolar electrode type guide wire and catheter system
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US20120283713A1 (en) * 2011-05-02 2012-11-08 Teresa Ann Mihalik Compliant sleeves coupled with wire structures for cryoablation
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8945015B2 (en) 2012-01-31 2015-02-03 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9125668B2 (en) 2011-09-14 2015-09-08 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9241687B2 (en) 2011-06-01 2016-01-26 Boston Scientific Scimed Inc. Ablation probe with ultrasonic imaging capabilities
US9241761B2 (en) 2011-12-28 2016-01-26 Koninklijke Philips N.V. Ablation probe with ultrasonic imaging capability
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9370329B2 (en) 2012-09-18 2016-06-21 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US9393072B2 (en) 2009-06-30 2016-07-19 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9463064B2 (en) 2011-09-14 2016-10-11 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9486280B2 (en) 2013-03-13 2016-11-08 Boston Scientific Scimed, Inc. Steerable ablation device with linear ionically conductive balloon
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US9757191B2 (en) 2012-01-10 2017-09-12 Boston Scientific Scimed, Inc. Electrophysiology system and methods
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9919144B2 (en) 2011-04-08 2018-03-20 Medtronic Adrian Luxembourg S.a.r.l. Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US9999461B2 (en) 2011-12-09 2018-06-19 Metavention, Inc. Therapeutic denervation of nerves surrounding a hepatic vessel
WO2018129133A1 (en) 2017-01-06 2018-07-12 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10588682B2 (en) 2011-04-25 2020-03-17 Medtronic Ardian Luxembourg S.A.R.L. Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US10603105B2 (en) 2014-10-24 2020-03-31 Boston Scientific Scimed Inc Medical devices with a flexible electrode assembly coupled to an ablation tip
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10842557B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US10842549B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US10912609B2 (en) 2017-01-06 2021-02-09 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11020175B2 (en) 2008-10-06 2021-06-01 Santa Anna Tech Llc Methods of ablating tissue using time-limited treatment periods
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US11779430B2 (en) 2008-10-06 2023-10-10 Santa Anna Tech Llc Vapor based ablation system for treating uterine bleeding
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11813014B2 (en) 2008-10-06 2023-11-14 Santa Anna Tech Llc Methods and systems for directed tissue ablation

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607231B2 (en) * 2001-09-28 2005-01-05 有限会社日本エレクテル High frequency heating balloon catheter
JP2003111848A (en) * 2001-10-05 2003-04-15 Nihon Medix Heated balloon catheter device and its heating method
US7742795B2 (en) 2005-03-28 2010-06-22 Minnow Medical, Inc. Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US7201918B2 (en) * 2004-11-16 2007-04-10 Microvention, Inc. Compositions, systems and methods for treatment of defects in blood vessels
US20070156209A1 (en) * 2005-01-14 2007-07-05 Co-Repair, Inc. System for the treatment of heart tissue
US8226637B2 (en) 2005-11-01 2012-07-24 Japan Electel, Inc. Balloon catheter system
US8052731B2 (en) * 2006-06-02 2011-11-08 Cardiac Pacemakers, Inc. Medical electrical lead with expandable fixation features
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
EP3025636B1 (en) * 2007-05-11 2017-11-01 Intuitive Surgical Operations, Inc. Visual electrode ablation systems
US9339331B2 (en) 2008-12-29 2016-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Non-contact electrode basket catheters with irrigation
JP5615508B2 (en) * 2009-03-31 2014-10-29 東レ株式会社 Agitation method and ablation catheter system with balloon
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US8560086B2 (en) 2010-12-02 2013-10-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode assemblies and methods of construction therefor
US9561072B2 (en) 2012-03-27 2017-02-07 Lutronic Corporation Electrode for high-frequency surgery and high-frequency surgery device
US10575894B2 (en) 2012-03-27 2020-03-03 Lutronic Corporation Electrode for high-frequency surgery, high-frequency surgery device, and method for controlling same
US9192426B2 (en) * 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
TWI598071B (en) * 2013-03-28 2017-09-11 東麗股份有限公司 Ablation catheter with balloon, and ablation catheter system with balloon
EP3174592B1 (en) 2014-07-28 2022-08-31 Smart Medical Systems Ltd. Controlled furling balloon assembly
US20200038672A1 (en) * 2015-12-16 2020-02-06 Japan Electel Inc. Radiofrequency balloon catheter system
CN109758662B (en) * 2019-03-12 2023-11-03 中国人民解放军陆军军医大学第二附属医院 Saccule catheter with side hole
US11771488B2 (en) 2019-10-21 2023-10-03 Biosense Webster (Israel) Ltd. Ablation of lesions of low-medium depths using ultrahigh radiofrequency (RF) power for ultrashort durations
TW202203842A (en) * 2020-03-31 2022-02-01 日商東麗股份有限公司 Balloon catheter and balloon catheter system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015741A1 (en) * 1994-11-21 1996-05-30 Wallsten Medical S.A. Device for carrying out hyperthermia in a body cavity
US20020029062A1 (en) 2000-09-07 2002-03-07 Shutaro Satake Balloon catheter for pulmonary vein isolation
WO2002019934A1 (en) 2000-09-08 2002-03-14 Atrionx, Inc. Medical device with sensor cooperating with expandable member
US20020165535A1 (en) * 2000-05-16 2002-11-07 Lesh Michael D. Deflectable tip catheter with guidewire tracking mechanism
EP1297795A1 (en) 2001-09-28 2003-04-02 Shutaro Satake Radiofrequency thermal balloon catheter
WO2004017850A1 (en) 2002-08-20 2004-03-04 Toray Industries,Inc. Catheter for treating irregular heart pulse
US20040147915A1 (en) * 2001-10-05 2004-07-29 Kazunari Hasebe Heating balloon-tip catherter and its heating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015741A1 (en) * 1994-11-21 1996-05-30 Wallsten Medical S.A. Device for carrying out hyperthermia in a body cavity
US20020165535A1 (en) * 2000-05-16 2002-11-07 Lesh Michael D. Deflectable tip catheter with guidewire tracking mechanism
US20020029062A1 (en) 2000-09-07 2002-03-07 Shutaro Satake Balloon catheter for pulmonary vein isolation
WO2002019934A1 (en) 2000-09-08 2002-03-14 Atrionx, Inc. Medical device with sensor cooperating with expandable member
EP1297795A1 (en) 2001-09-28 2003-04-02 Shutaro Satake Radiofrequency thermal balloon catheter
US20040147915A1 (en) * 2001-10-05 2004-07-29 Kazunari Hasebe Heating balloon-tip catherter and its heating method
WO2004017850A1 (en) 2002-08-20 2004-03-04 Toray Industries,Inc. Catheter for treating irregular heart pulse

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376311B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US10420606B2 (en) 2002-04-08 2019-09-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US10105180B2 (en) 2002-04-08 2018-10-23 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US9827041B2 (en) 2002-04-08 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatuses for renal denervation
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9339618B2 (en) 2003-05-13 2016-05-17 Holaira, Inc. Method and apparatus for controlling narrowing of at least one airway
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US10953170B2 (en) 2003-05-13 2021-03-23 Nuvaira, Inc. Apparatus for treating asthma using neurotoxin
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US20070083192A1 (en) * 2005-10-07 2007-04-12 Eric Welch Apparatus and method for ablation of targeted tissue
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US20080172050A1 (en) * 2007-01-12 2008-07-17 Japan Electel Inc. Radiofrequency thermal balloon catheter system
WO2008153357A2 (en) * 2007-06-15 2008-12-18 Chung-Ang University Industry-Academy Cooperation Foundation Bipolar electrode type guide wire and catheter system
WO2008153357A3 (en) * 2007-06-15 2009-02-05 Univ Chung Ang Ind Bipolar electrode type guide wire and catheter system
US20100191151A1 (en) * 2007-06-15 2010-07-29 Taewoong Medical Co., Ltd. Bipolar electrode type guide wire and catheter system
US9125643B2 (en) 2008-02-15 2015-09-08 Holaira, Inc. System and method for bronchial dilation
US8489192B1 (en) 2008-02-15 2013-07-16 Holaira, Inc. System and method for bronchial dilation
US11058879B2 (en) 2008-02-15 2021-07-13 Nuvaira, Inc. System and method for bronchial dilation
US8731672B2 (en) 2008-02-15 2014-05-20 Holaira, Inc. System and method for bronchial dilation
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8961507B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8821489B2 (en) 2008-05-09 2014-09-02 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US10149714B2 (en) 2008-05-09 2018-12-11 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8226638B2 (en) 2008-05-09 2012-07-24 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US11937868B2 (en) 2008-05-09 2024-03-26 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961508B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9668809B2 (en) 2008-05-09 2017-06-06 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8808280B2 (en) 2008-05-09 2014-08-19 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US11779430B2 (en) 2008-10-06 2023-10-10 Santa Anna Tech Llc Vapor based ablation system for treating uterine bleeding
US11589920B2 (en) 2008-10-06 2023-02-28 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply an ablative zone to tissue
US11020175B2 (en) 2008-10-06 2021-06-01 Santa Anna Tech Llc Methods of ablating tissue using time-limited treatment periods
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US10842548B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element
US11813014B2 (en) 2008-10-06 2023-11-14 Santa Anna Tech Llc Methods and systems for directed tissue ablation
US10842549B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US10842557B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US9393072B2 (en) 2009-06-30 2016-07-19 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9017324B2 (en) 2009-10-27 2015-04-28 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8932289B2 (en) 2009-10-27 2015-01-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8777943B2 (en) 2009-10-27 2014-07-15 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9931162B2 (en) 2009-10-27 2018-04-03 Nuvaira, Inc. Delivery devices with coolable energy emitting assemblies
US9675412B2 (en) 2009-10-27 2017-06-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US10610283B2 (en) 2009-11-11 2020-04-07 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9649154B2 (en) 2009-11-11 2017-05-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US11389233B2 (en) 2009-11-11 2022-07-19 Nuvaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US11712283B2 (en) 2009-11-11 2023-08-01 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9919144B2 (en) 2011-04-08 2018-03-20 Medtronic Adrian Luxembourg S.a.r.l. Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
US10588682B2 (en) 2011-04-25 2020-03-17 Medtronic Ardian Luxembourg S.A.R.L. Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US20120283713A1 (en) * 2011-05-02 2012-11-08 Teresa Ann Mihalik Compliant sleeves coupled with wire structures for cryoablation
US9241687B2 (en) 2011-06-01 2016-01-26 Boston Scientific Scimed Inc. Ablation probe with ultrasonic imaging capabilities
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
US9463064B2 (en) 2011-09-14 2016-10-11 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9125668B2 (en) 2011-09-14 2015-09-08 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US10543034B2 (en) 2011-12-09 2020-01-28 Metavention, Inc. Modulation of nerves innervating the liver
US9999461B2 (en) 2011-12-09 2018-06-19 Metavention, Inc. Therapeutic denervation of nerves surrounding a hepatic vessel
US10617460B2 (en) 2011-12-09 2020-04-14 Metavention, Inc. Neuromodulation for metabolic conditions or syndromes
US10070911B2 (en) 2011-12-09 2018-09-11 Metavention, Inc. Neuromodulation methods to alter glucose levels
US10856926B2 (en) 2011-12-09 2020-12-08 Metavention, Inc. Neuromodulation for metabolic conditions or syndromes
US10064674B2 (en) 2011-12-09 2018-09-04 Metavention, Inc. Methods of modulating nerves of the hepatic plexus
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9402684B2 (en) 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9241761B2 (en) 2011-12-28 2016-01-26 Koninklijke Philips N.V. Ablation probe with ultrasonic imaging capability
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9757191B2 (en) 2012-01-10 2017-09-12 Boston Scientific Scimed, Inc. Electrophysiology system and methods
US10420605B2 (en) 2012-01-31 2019-09-24 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging
US8945015B2 (en) 2012-01-31 2015-02-03 Koninklijke Philips N.V. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US9370329B2 (en) 2012-09-18 2016-06-21 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9486280B2 (en) 2013-03-13 2016-11-08 Boston Scientific Scimed, Inc. Steerable ablation device with linear ionically conductive balloon
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US11589768B2 (en) 2014-10-13 2023-02-28 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
US10603105B2 (en) 2014-10-24 2020-03-31 Boston Scientific Scimed Inc Medical devices with a flexible electrode assembly coupled to an ablation tip
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
WO2018129133A1 (en) 2017-01-06 2018-07-12 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US10912609B2 (en) 2017-01-06 2021-02-09 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US11737820B2 (en) 2017-01-06 2023-08-29 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11864809B2 (en) 2018-06-01 2024-01-09 Santa Anna Tech Llc Vapor-based ablation treatment methods with improved treatment volume vapor management

Also Published As

Publication number Publication date
EP1442719A1 (en) 2004-08-04
JP4067976B2 (en) 2008-03-26
JP2004223080A (en) 2004-08-12
US20040172110A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US7112198B2 (en) Radio-frequency heating balloon catheter
US6952615B2 (en) Radiofrequency thermal balloon catheter
US8226637B2 (en) Balloon catheter system
US6491710B2 (en) Balloon catheter for pulmonary vein isolation
JP4377225B2 (en) System and method for mapping and ablation of biological tissue in an internal region of the heart
US5151100A (en) Heating catheters
US6620159B2 (en) Conductive expandable electrode body and method of manufacturing the same
US6524308B1 (en) Electrode arrangement for electrothermal treatment of human or animal bodies
US6063078A (en) Method and apparatus for tissue ablation
US5571088A (en) Ablation catheters
JP2016116863A (en) Balloon for ablation around pulmonary veins
JP2017136356A (en) Ablating and sensing electrodes
TWI526229B (en) Agitating method and ablation catheter system with balloon
EP0537274A4 (en) Expandable tip hemostatic probes and the like
JP2004503290A (en) Surgical ablation probe forming a peripheral region
US11813019B2 (en) Catheter ultrasound transducer container
JP2024045716A (en) Temperature-controlled pulsed RF ablation
JP6570813B2 (en) Adaptive electrodes for bipolar ablation
JP2004073570A (en) Balloon catheter for electrical separation of pulmonary vein
AU2003200619B2 (en) Radiofrequency thermal balloon catheter
RU2244523C2 (en) Radiofrequency thermic balloon catheter
JP2004305251A (en) Balloon catheter for electrical pulmonary vein isolation
KR100488673B1 (en) Radiofrequency thermal balloon catheter
TW584552B (en) Radiofrequency thermal balloon catheter
BR0300738B1 (en) RADIO FREQUENCY BALLOON CATHETER

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: JAPAN ELECTEL INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SATAKE, SHUTARO;REEL/FRAME:039803/0454

Effective date: 20160915

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553)

Year of fee payment: 12