US7160788B2 - Methods of forming integrated circuits - Google Patents

Methods of forming integrated circuits Download PDF

Info

Publication number
US7160788B2
US7160788B2 US10/925,079 US92507904A US7160788B2 US 7160788 B2 US7160788 B2 US 7160788B2 US 92507904 A US92507904 A US 92507904A US 7160788 B2 US7160788 B2 US 7160788B2
Authority
US
United States
Prior art keywords
buried
region
trench
forming
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/925,079
Other versions
US20060040466A1 (en
Inventor
Gurtej S. Sandhu
Chandra Mouli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US10/925,079 priority Critical patent/US7160788B2/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOULI, CHANDRA, SANDHU, GURTEJ S.
Priority to US11/255,613 priority patent/US7276752B2/en
Publication of US20060040466A1 publication Critical patent/US20060040466A1/en
Application granted granted Critical
Publication of US7160788B2 publication Critical patent/US7160788B2/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26533Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically inactive species in silicon to make buried insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Definitions

  • This invention relates to methods of forming integrated circuits, and to DRAM circuitry memory cells.
  • Dynamic random access memory circuitry is comprised of a plurality of individual memory cells. Individual cells comprise an access transistor, a capacitor and conductive access to a bit line. One source/drain region of the access transistor electrically connects with the capacitor, with the other source/drain of the access transistor electrically connecting with the bit line. Once set, the storage node of the capacitor is not able to maintain charge due to current leakage through the source/drain region to which it is connected to substrate material therebelow. Such requires charge refreshing of a charged memory cell to maintain its desired memory state. The time between the capacitor recharging is known as “refresh time” or “retention time”. One adverse phenomenon is known as “variable retention time”. Such results in the refresh time for individual DRAM capacitors varying over time, sometimes increasing and sometimes decreasing.
  • One manner of doing so is to provide a metal interface between the capacitor storage node and the conductively doped semiconductive material. Such contacts significantly improve electrical connection between source/drains and capacitor storage nodes. However, such also tend to significantly increase leakage current to the underlying substrate material.
  • One known manner of reducing such leakage current is to provide an insulative layer beneath the active area within which the source/drain regions and channel regions are formed.
  • a method of forming an integrated circuit includes forming a trench isolation mask over a semiconductor substrate.
  • the trench isolation mask defines an active area region and a trench isolation region.
  • Ion implanting is conducted into semiconductive material of the substrate to form a buried region within active area of the semiconductor substrate.
  • the buried region has a first edge received proximate an edge of the trench isolation region.
  • etching is conducted into semiconductive material of the semiconductor substrate to form an isolation trench.
  • insulative material is formed within the buried region and insulative material is deposited to within the isolation trench. The insulative material received within the isolation trench joins with the insulative material formed within the buried region.
  • a method of forming an integrated circuit includes forming an isolation trench within semiconductive material of a semiconductor substrate.
  • a buried void is formed to extend laterally from an edge of the isolation trench to within the semiconductive material.
  • Insulative material is deposited to within the isolation trench including into the buried void effective to fill at least the buried void.
  • a DRAM circuit memory cell includes a substrate comprising semiconductive material.
  • a bit line is received over the substrate.
  • a capacitor is received over the substrate, with the capacitor comprising a storage electrode and a cell electrode.
  • a field effect transistor comprising a word line is received over the substrate.
  • the field effect transistor comprises one source/drain region in electrical connection with the capacitor storage electrode and another source/drain region in electrical connection with the bit line.
  • the substrate comprises an insulative layer received beneath the another source/drain region, with the another source/drain region comprising conductive metal which extends from the insulative layer to the bit line.
  • the substrate comprises an insulative layer received beneath the another source/drain region, with the another source/drain region comprising conductive metal which extends from the insulative layer to the bit line.
  • FIG. 1 is a diagrammatic sectional view of a substrate fragment in process in accordance with an aspect of the invention.
  • FIG. 2 is a view of the FIG. 1 substrate fragment at a processing step subsequent to that depicted by FIG. 1 .
  • FIG. 3 is a view of the FIG. 2 substrate fragment at a processing step subsequent to that depicted by FIG. 2 .
  • FIG. 4 is a view of the FIG. 3 substrate fragment at a processing step subsequent to that depicted by FIG. 3 .
  • FIG. 5 is a view of the FIG. 4 substrate fragment at a processing step subsequent to that depicted by FIG. 4 .
  • FIG. 6 is a view of the FIG. 5 substrate fragment at a processing step subsequent to that depicted by FIG. 5 .
  • FIG. 7 is a view of the FIG. 6 substrate fragment at a processing step subsequent to that depicted by FIG. 6 .
  • FIG. 8 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
  • FIG. 9 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
  • FIG. 10 is a view of the FIG. 9 substrate fragment at a processing step subsequent to that depicted by FIG. 9 .
  • FIG. 11 is a view of the FIG. 10 substrate fragment at a processing step subsequent to that depicted by FIG. 10 .
  • FIG. 12 is a view of the FIG. 11 substrate fragment at a processing step subsequent to that depicted by FIG. 11 .
  • FIG. 13 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
  • FIG. 14 is a view of the FIG. 13 substrate fragment at a processing step subsequent to that depicted by FIG. 13 .
  • FIG. 15 is a view of the FIG. 14 substrate fragment at a processing step subsequent to that depicted by FIG. 14 .
  • FIG. 16 is a view of the FIG. 15 substrate fragment at a processing step subsequent to that depicted by FIG. 15 .
  • FIG. 17 is a view of the FIG. 16 substrate fragment at a processing step subsequent to that depicted by FIG. 16 .
  • FIG. 18 is a view of the FIG. 17 substrate fragment at a processing step subsequent to that depicted by FIG. 17 .
  • FIG. 19 is a view of the FIG. 18 substrate fragment at a processing step subsequent to that depicted by FIG. 18 .
  • FIG. 20 is a view of the FIG. 19 substrate fragment at a processing step subsequent to that depicted by FIG. 19 .
  • FIG. 21 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
  • a substrate fragment is indicated generally with reference numeral 10 and comprises a semiconductor substrate 12 comprising semiconductive material 13 .
  • semiconductor substrate or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials).
  • substrate refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
  • semiconductor substrate 12 comprises silicon, for example bulk monocrystalline silicon. The invention was principally motivated in connection with leakage current issues manifesting in bulk integrated circuit fabrication, although semiconductor-on-insulator substrates are also contemplated.
  • a trench isolation mask 14 is formed over semiconductor substrate 12 . Such generally defines an active area region 16 and a trench isolation region 18 .
  • the depicted trench isolation mask 14 comprises a pad oxide layer 20 and an overlying silicon nitride layer 22 .
  • an ion implant mask 24 has been formed over trench isolation mask 14 .
  • Ion implanting has been conducted into semiconductive material 13 of semiconductor substrate 12 to form a buried region 26 within active area 16 of semiconductor substrate 12 . Buried regions 27 and 28 are also formed as shown.
  • both ion implant mask 24 and trench isolation mask 14 are used during the depicted ion implanting, for example as indicated by the vertically downward-directed arrows.
  • the invention also contemplates utilizing only one or neither of the depicted masks 24 and 14 , as will be apparent in the continuing discussion.
  • Trench isolation region 18 can be considered as comprising an edge 15 .
  • Buried region 26 has a first edge 30 which is received proximate trench isolation region edge 15 , and in the depicted preferred embodiment, is essentially coincident therewith.
  • buried region 26 has a peak implant concentration which is spaced at least 100 Angstroms from an upper surface 32 of semiconductive material 13 of semiconductor substrate 12 , and, more preferably, spaced from 200 Angstroms to 600 Angstroms from such upper surface.
  • the ion implanting is with a material that is inert to chemical reaction with semiconductive material 13 of substrate 12 .
  • example preferred materials include conductivity enhancing or modifying dopants, for example B, P, or As, including mixtures thereof.
  • the ion implanting is of a material that is void of having any conductivity enhancing effect relative to semiconductive material 13 .
  • an exemplary material comprises oxygen atoms or molecules, for example, which may or may not, due to the implant, form silicon dioxide if material 13 comprises silicon.
  • n-type dopants such as P and/or As may be implanted into p-type silicon substrates.
  • an exemplary implant dose is from 1 ⁇ 10 11 to 1 ⁇ 10 16 atoms or ions/cm 2 , with an edge of an implant region comprising that laterally outermost location where implant material concentration becomes 1 ⁇ 10 17 to 1 ⁇ 10 22 atoms or ions/cm 3 and greater.
  • the implanting forms buried region 26 to constitute a damage region enabling anodic etching substantially selectively relative to surrounding substrate material 13 .
  • the damage region might form porous silicon, which can be oxidized substantially selectively relative to surrounding substrate material 13 , or selectively anodically etched.
  • FIG. 3 semiconductive material 13 of semiconductor substrate 12 has been etched into to form an isolation trench 34 at least using trench isolation mask 14 .
  • the FIG. 2 depicted buried implant region 28 has been etched through in the exemplary FIG. 3 embodiment.
  • FIGS. 4 and 5 depict one exemplary preferred method of such processing.
  • material of buried region 26 has been etched from the substrate through trench isolation region edge 15 effective to form a buried void 36 extending laterally through trench isolation region edge 15 into active area 16 .
  • preferred techniques for doing so are wet etching and anodic etching.
  • an example wet etching chemistry comprises an aqueous HF solution.
  • exemplary techniques for anodic etching include those employed in fully isolated porous oxided silicon (FIPOS) technologies.
  • an example electrolytic chemical anodizing solution is a 1:1 dilution of a 49 weight percent HF solution in de-ionized water, for example, by controlling the potential at less than about 0.1 Volt so as to form pores preferentially in n+ silicon relative to surrounding p+ and/or p ⁇ silicon, with the bath being at an exemplary temperature range from 10° C. to 50° C. and at room ambient pressure, and etches such porous material.
  • insulative material 38 has been deposited to within isolation trench 34 , with at least some of such insulative material 38 also depositing to within buried void 36 .
  • a preferred technique is by high density plasma deposition of silicon dioxide, although the fabrication of any insulative material is contemplated. Such provides one example of forming insulative material within buried region 26 and depositing insulative material to within isolation trench 34 , with insulative material received within the isolation trench joining with insulative material formed within the buried region.
  • the insulative materials within what was void 36 and that within trench 34 might, of course, be the same or different, as well as being formed at the same or different times.
  • the ion implanting as referred to above might comprise oxygen atoms which, upon implanting and/or in combination with a subsequent anneal, form an oxide material of buried region 26 .
  • buried region 26 might be removed to at least some degree and substituted with insulative material separately deposited or formed from the removal.
  • region 26 might be formed to comprise an insulative material such as oxide during deposition or by a dedicated oxidizing step where oxygen atoms are either present or provided within region 26 .
  • at least some of the insulative material formed within buried region 26 is of the same composition as insulative material 38 deposited within isolation trench 34 .
  • the invention contemplates forming insulative oxide within buried void 36 , for example by a deposition technique or a thermal growth technique. Such oxide might remain or be removed prior to the deposition of trench filling oxide 38 .
  • an exemplary reason for oxidizing internal portions of void 36 followed by subsequent removal of the oxide so formed might be to round the internal corners of void 36 .
  • the formed oxide might be removed as being less desirable than the oxide 38 deposited by, for example, high density plasma deposition.
  • a field effect transistor 40 has been formed within active area 16 . Such comprises a channel region 42 comprising semiconductive material 13 of active area 16 . In the depicted preferred embodiment, no part of buried region 26 is received beneath channel region 42 .
  • Field effect transistor 40 comprises a gate 44 which, by way of example only, is depicted as comprising an insulative layer 45 received over a metal or metal silicide layer 46 , which is received over a conductively doped polysilicon layer 47 , which is received over a gate dielectric layer 48 . Insulative sidewall spacers 49 and 50 are formed as part of gate construction 44 , and source/drain regions 51 and 52 are formed on opposing sides of channel region 42 .
  • a dielectric layer 54 has been deposited over the substrate, with an exemplary material being borophosphosilicate glass (BPSG).
  • An opening 56 has been formed therein to insulative material 38 of buried region 26 .
  • Such has been filled with conductive metal, with such electrically conductive metal thereby in the depicted preferred embodiment extending from contacting insulative material 38 of buried region 26 to outwardly of upper surface 32 of semiconductive material 13 .
  • a “metal” is one or a combination of an elemental form metal, an alloy of elemental form metals, or one or more metal compounds, including mixtures thereof.
  • FIG. 8 depicts the trench etching of substrate fragment 10 a as having occurred relative to trench isolation mask 14 prior to the fabrication of a buried ion implant region. Accordingly, one or more buried ion implant regions could be formed subsequent to the processing depicted by FIG. 8 , and processing otherwise conducted subsequent thereto as described above, or otherwise.
  • the above processing also depicts forming the field effect transistor gate 44 after forming the insulative material within buried region 26 , and after depositing insulative material 38 to within isolation trench 34 .
  • the invention also contemplates forming a field effect transistor gate prior to forming even the trench isolation mask wherein the trench isolation mask is subsequently formed over the gate, for example as described in connection with FIGS. 9–12 .
  • substrate fragment 10 b depicts a field effect transistor gate 44 b fabricated prior to the formation of an isolation trench.
  • a trench isolation mask 14 b has been formed over semiconductor substrate 12 , including over gate 44 b.
  • an isolation trench 34 has been etched into semiconductive material 13 of semiconductor substrate 12 using trench isolation mask 14 b.
  • trench isolation mask 14 b has been removed from over semiconductor substrate 12 , and ion implanting has been conducted to form buried ion implant regions 26 and 27 . Accordingly in such exemplary preferred embodiment, such ion implanting has been conducted after the etching to form isolation trench 34 and, as well, trench isolation mask 14 b has been removed from substrate 12 prior to such ion implanting. Accordingly, and by way of example only, the FIGS. 9–12 processing depicts an exemplary embodiment whereby ion implanting to form the recited buried region has occurred without using any portion of the trench isolation mask as a mask during such ion implanting. Further, FIGS.
  • 9–12 provide an example whereby buried region 26 is formed essentially self-aligned between the edge of the trench and the edge of the gate construction. Further by way of example only, other portions of the substrate (including for example isolation trench 34 ) may be protected by a mask during this ion implanting step.
  • the invention contemplates a method of forming an integrated circuit (which may or may not include DRAM circuitry) which includes forming an isolation trench within semiconductive material of a semiconductor substrate.
  • trench 34 in the above-described embodiments is an example of such a trench formed within semiconductive material 13 of a semiconductor substrate 12 .
  • a buried void is formed to extend laterally from an edge of the isolation trench to within the semiconductive material.
  • buried void 36 in the above-described embodiments is but one example.
  • Insulative material is deposited to within the isolation trench, including into the buried void effective to fill at least the buried void.
  • material 38 is one such exemplary material and depositing. Other attributes as described above are preferably also utilized.
  • FIG. 13 depicts a substrate fragment 60 comprising a semiconductor substrate 62 comprising semiconductive material 63 .
  • a trench isolation mask 64 is formed over semiconductor substrate 62 . Preferred attributes of such materials are otherwise as described above in connection with the first described embodiment.
  • Trench isolation mask 64 defines an active area 65 received intermediate first and second trench isolation regions 66 and 67 , respectively, and trench isolation region edges 71 and 73 .
  • ion implanting has been conducted into semiconductive material 63 of substrate 62 to form first and second buried regions 68 and 70 , respectively, within active area 65 of semiconductor substrate 62 using trench isolation mask 64 .
  • an ion implant mask 72 has also been formed over trench isolation mask 64 , with both ion implant mask 72 and trench isolation mask 64 being used during the ion implanting. Preferred attributes of such implanting are otherwise as described above in connection with the first described embodiments.
  • First buried region 68 has a first edge 74 received proximate edge 71 of first trench isolation region 66 , and a second edge 76 opposing first buried region first edge 74 .
  • Second buried region 70 has a first edge 78 received proximate edge 73 of second trench isolation region 67 , and a second edge 80 opposing second buried region first edge 78 . Second edges 76 and 80 of first and second buried regions 68 and 70 , respectively, are spaced from one another within active area 65 .
  • trench isolation mask 64 has been used as a mask while etching into semiconductive material 63 of semiconductor substrate 62 to form isolation trenches 82 and 84 .
  • buried region material has been etched from first and second buried regions 68 and 70 through first edges 74 , 78 and first and second trench isolation region edges 71 , 73 , respectively, effective to form a first buried void 86 extending laterally from first trench isolation region 66 edge 71 into active area 65 , and a second buried void 88 extending laterally from second trench isolation region 67 edge 73 into active area 65 .
  • Exemplary processing for such etching is preferably conducted as described above.
  • insulative material 90 has been deposited to within first and second isolation trenches 82 , 84 , including into first and second buried voids 86 , 88 effective to fill at least first and second buried voids 86 and 88 .
  • processing could otherwise be conducted as described above to form insulative material within the respective buried regions.
  • Such processing also, by way of example only, depicts and describes trench etching being conducted to form multiple isolation trenches, and wherein the buried region comprises a second edge opposite the first stated edge, with the second edge being spaced from a next adjacent of the isolation trenches.
  • field effect transistor gate constructions 94 and 96 as well as source/drain regions 97 , 98 and 99 , have been fabricated.
  • a planarized insulative dielectric layer 100 for example BPSG, has been formed thereover.
  • openings 102 , 104 and 106 have been formed within insulative layer 100 . Openings 102 and 106 have been formed to insulative material 90 received within regions 68 and 70 , while an opening 104 has been formed to an outer surface of a shared source/drain region received between gate constructions 94 and 96 . Conductive metal 108 has been formed within each of openings 102 , 104 and 106 .
  • FIG. 19 substrate has been processed in the depicted embodiment to form a pair of DRAM memory cells, particularly buried digit line DRAM memory cells.
  • Dashed outline 110 diagrammatically depicts a digit line which would be in electrical connection with conductive metal 108 in opening 104 , and which would include an extension or otherwise be received out of plane of the page upon which FIG. 20 lies.
  • Another insulative dielectric layer 112 has been formed over dielectric layer 100 and bit line 110 .
  • Capacitor storage node openings 114 have been formed therein.
  • Conductive capacitor storage electrodes 116 have been formed within openings 114 .
  • a capacitor dielectric layer 118 has been deposited thereover, as well as a conductive capacitor cell electrode 120 deposited over capacitor dielectric layer 118 .
  • DRAM circuitry in the depicted example comprised of two memory cells.
  • One memory cell is comprised of the field effect transistor comprising word line/gate construction 94 , the capacitor overlying conductive metal 108 within opening 102 , and bit line 110 .
  • a second memory cell is comprised of field effect transistor gate/word line 96 , the capacitor overlying conductive material 108 within opening 106 , and bit line 110 .
  • FIG. 21 an alternate embodiment substrate fragment 60 c is depicted in FIG. 21 .
  • Like numerals to the embodiment of FIGS. 13–20 have been utilized where appropriate, with differences being indicated with the suffix “c” or with different numerals.
  • conductive metal 108 c received within opening 104 has been fabricated to extend to a buried insulative layer/region 130 .
  • a DRAM circuit memory cell comprises a substrate comprising semiconductive material, for example substrate 62 comprising material 63 .
  • the substrate comprises bulk monocrystalline silicon.
  • a bit line is formed over the substrate, for example bit line 110 formed over substrate 62 .
  • a capacitor is formed over the substrate, with the capacitor comprising a storage electrode and a cell electrode.
  • the capacitor storage electrode for example material 116 , is void of conductively doped semiconductive material, although conductively doped semiconductive material for electrode 116 is also contemplated.
  • a field effect transistor comprising a word line is received over the substrate, for example gate transistor/word line 94 associated with the left illustrated capacitor.
  • the field effect transistor comprises one source/drain region in electrical connection with the capacitor storage electrode (i.e., source/drain region 97 ) and another source/drain region in electrical connection with the bit line (i.e., source/drain region 98 ).
  • the substrate comprises an insulative layer received beneath the one source/drain region (i.e., material 90 within region 68 ).
  • the insulative layer comprises silicon dioxide.
  • the insulator layer is not received beneath the channel region (i.e., material 90 within void 86 is not received beneath the conductive portion of gate construction 94 , and thereby, not beneath the channel region of the field effect transistor of the memory cell). In one implementation, the insulator layer does not extend to beneath the another source/drain region (i.e., insulative material 90 within region 68 does not extend to beneath the another source/drain region 98 in FIG. 20 ).
  • the one source/drain region comprises conductive metal which extends from the insulative layer to the capacitor storage electrode.
  • source/drain region 97 is comprised of conductive metal 108 which extends from insulative layer 90 / 68 to capacitor storage electrode 116 lying thereover.
  • the conductive metal comprises a mixture of a) a metal compound, and b) elemental form metal or an alloy of elemental metals.
  • a preferred example is metal silicide constituting the source/drain region within semiconductive material 63 , and elemental form tungsten lying thereover and extending to the capacitor storage electrode.
  • the invention contemplates a DRAM circuit memory cell wherein the another source/drain region comprises conductive metal which extends from the insulative layer to the bit line.
  • FIG. 21 depicts such an another source/drain region 98 c comprising conductive metal material 108 c which extends from an insulative layer 130 received beneath source/drain region 98 c to bit line 110 .
  • Other attributes are preferably as described just above.
  • the invention also contemplates a combination of the another source/drain region comprising conductive metal which extends from an insulative layer thereunder to the bit line, with the one source/drain region comprising conductive metal extending from an insulative layer thereunder to the capacitor storage electrode, also for example as shown in FIG. 21 .

Abstract

This invention includes methods of forming integrated circuits, and includes DRAM circuitry memory cells. In one implementation, a method of forming an integrated circuit includes forming a trench isolation mask over a semiconductor substrate. The trench isolation mask defines an active area region and a trench isolation region. An ion implantation is conducted into semiconductive material of the substrate to form a buried region within active area of the substrate. The buried region has a first edge received proximate an edge of the trench isolation region. Using the trench isolation mask, etching is conducted into semiconductive material of the substrate to form an isolation trench. After the ion implantation and after forming the isolation trench, insulative material is formed within the buried region and insulative material is deposited to within the isolation trench. The insulative material received within the isolation trench joins with the insulative material formed within the buried region.

Description

TECHNICAL FIELD
This invention relates to methods of forming integrated circuits, and to DRAM circuitry memory cells.
BACKGROUND OF THE INVENTION
Dynamic random access memory circuitry (DRAM) is comprised of a plurality of individual memory cells. Individual cells comprise an access transistor, a capacitor and conductive access to a bit line. One source/drain region of the access transistor electrically connects with the capacitor, with the other source/drain of the access transistor electrically connecting with the bit line. Once set, the storage node of the capacitor is not able to maintain charge due to current leakage through the source/drain region to which it is connected to substrate material therebelow. Such requires charge refreshing of a charged memory cell to maintain its desired memory state. The time between the capacitor recharging is known as “refresh time” or “retention time”. One adverse phenomenon is known as “variable retention time”. Such results in the refresh time for individual DRAM capacitors varying over time, sometimes increasing and sometimes decreasing.
It is desirable to create good electrical connection between the storage node electrode of the capacitor and the source/drain region which is typically formed of conductively doped semiconductive material. One manner of doing so is to provide a metal interface between the capacitor storage node and the conductively doped semiconductive material. Such contacts significantly improve electrical connection between source/drains and capacitor storage nodes. However, such also tend to significantly increase leakage current to the underlying substrate material. One known manner of reducing such leakage current is to provide an insulative layer beneath the active area within which the source/drain regions and channel regions are formed.
While the invention was motivated in addressing the above identified issues, it is in no way so limited. The invention is only limited by the accompanying claims as literally worded, without interpretative or other limiting reference to the specification, and in accordance with the doctrine of equivalents.
SUMMARY
This invention comprises methods of forming integrated circuits, and comprises DRAM circuitry memory cells. In one implementation, a method of forming an integrated circuit includes forming a trench isolation mask over a semiconductor substrate. The trench isolation mask defines an active area region and a trench isolation region. Ion implanting is conducted into semiconductive material of the substrate to form a buried region within active area of the semiconductor substrate. The buried region has a first edge received proximate an edge of the trench isolation region. Using the trench isolation mask, etching is conducted into semiconductive material of the semiconductor substrate to form an isolation trench. After the ion implanting and after forming the isolation trench, insulative material is formed within the buried region and insulative material is deposited to within the isolation trench. The insulative material received within the isolation trench joins with the insulative material formed within the buried region.
In one implementation, a method of forming an integrated circuit includes forming an isolation trench within semiconductive material of a semiconductor substrate. A buried void is formed to extend laterally from an edge of the isolation trench to within the semiconductive material. Insulative material is deposited to within the isolation trench including into the buried void effective to fill at least the buried void.
In one implementation, a DRAM circuit memory cell includes a substrate comprising semiconductive material. A bit line is received over the substrate. A capacitor is received over the substrate, with the capacitor comprising a storage electrode and a cell electrode. A field effect transistor comprising a word line is received over the substrate. The field effect transistor comprises one source/drain region in electrical connection with the capacitor storage electrode and another source/drain region in electrical connection with the bit line. In one aspect, the substrate comprises an insulative layer received beneath the another source/drain region, with the another source/drain region comprising conductive metal which extends from the insulative layer to the bit line. In one aspect, the substrate comprises an insulative layer received beneath the another source/drain region, with the another source/drain region comprising conductive metal which extends from the insulative layer to the bit line.
Other aspects and implementations are contemplated.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 1 is a diagrammatic sectional view of a substrate fragment in process in accordance with an aspect of the invention.
FIG. 2 is a view of the FIG. 1 substrate fragment at a processing step subsequent to that depicted by FIG. 1.
FIG. 3 is a view of the FIG. 2 substrate fragment at a processing step subsequent to that depicted by FIG. 2.
FIG. 4 is a view of the FIG. 3 substrate fragment at a processing step subsequent to that depicted by FIG. 3.
FIG. 5 is a view of the FIG. 4 substrate fragment at a processing step subsequent to that depicted by FIG. 4.
FIG. 6 is a view of the FIG. 5 substrate fragment at a processing step subsequent to that depicted by FIG. 5.
FIG. 7 is a view of the FIG. 6 substrate fragment at a processing step subsequent to that depicted by FIG. 6.
FIG. 8 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
FIG. 9 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
FIG. 10 is a view of the FIG. 9 substrate fragment at a processing step subsequent to that depicted by FIG. 9.
FIG. 11 is a view of the FIG. 10 substrate fragment at a processing step subsequent to that depicted by FIG. 10.
FIG. 12 is a view of the FIG. 11 substrate fragment at a processing step subsequent to that depicted by FIG. 11.
FIG. 13 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
FIG. 14 is a view of the FIG. 13 substrate fragment at a processing step subsequent to that depicted by FIG. 13.
FIG. 15 is a view of the FIG. 14 substrate fragment at a processing step subsequent to that depicted by FIG. 14.
FIG. 16 is a view of the FIG. 15 substrate fragment at a processing step subsequent to that depicted by FIG. 15.
FIG. 17 is a view of the FIG. 16 substrate fragment at a processing step subsequent to that depicted by FIG. 16.
FIG. 18 is a view of the FIG. 17 substrate fragment at a processing step subsequent to that depicted by FIG. 17.
FIG. 19 is a view of the FIG. 18 substrate fragment at a processing step subsequent to that depicted by FIG. 18.
FIG. 20 is a view of the FIG. 19 substrate fragment at a processing step subsequent to that depicted by FIG. 19.
FIG. 21 is a diagrammatic sectional view of another substrate fragment in process in accordance with an aspect of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
Some preferred aspects of methods of forming an integrated circuit are described initially with reference to FIGS. 1–7. Referring initially to FIG. 1, a substrate fragment is indicated generally with reference numeral 10 and comprises a semiconductor substrate 12 comprising semiconductive material 13. In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. In one preferred embodiment, semiconductor substrate 12 comprises silicon, for example bulk monocrystalline silicon. The invention was principally motivated in connection with leakage current issues manifesting in bulk integrated circuit fabrication, although semiconductor-on-insulator substrates are also contemplated.
A trench isolation mask 14 is formed over semiconductor substrate 12. Such generally defines an active area region 16 and a trench isolation region 18. By way of example only, the depicted trench isolation mask 14 comprises a pad oxide layer 20 and an overlying silicon nitride layer 22.
Referring to FIG. 2, an ion implant mask 24 has been formed over trench isolation mask 14. Ion implanting has been conducted into semiconductive material 13 of semiconductor substrate 12 to form a buried region 26 within active area 16 of semiconductor substrate 12. Buried regions 27 and 28 are also formed as shown. In the depicted exemplary embodiment, both ion implant mask 24 and trench isolation mask 14 are used during the depicted ion implanting, for example as indicated by the vertically downward-directed arrows. However, the invention also contemplates utilizing only one or neither of the depicted masks 24 and 14, as will be apparent in the continuing discussion.
Trench isolation region 18 can be considered as comprising an edge 15. Buried region 26 has a first edge 30 which is received proximate trench isolation region edge 15, and in the depicted preferred embodiment, is essentially coincident therewith. In one preferred embodiment, buried region 26 has a peak implant concentration which is spaced at least 100 Angstroms from an upper surface 32 of semiconductive material 13 of semiconductor substrate 12, and, more preferably, spaced from 200 Angstroms to 600 Angstroms from such upper surface. In one preferred implementation, the ion implanting is with a material that is inert to chemical reaction with semiconductive material 13 of substrate 12. By way of example only, example preferred materials include conductivity enhancing or modifying dopants, for example B, P, or As, including mixtures thereof. Further and regardless, in one preferred embodiment, the ion implanting is of a material that is void of having any conductivity enhancing effect relative to semiconductive material 13. In one exemplary such preferred embodiment, an exemplary material comprises oxygen atoms or molecules, for example, which may or may not, due to the implant, form silicon dioxide if material 13 comprises silicon. Yet in another specific preferred implementation, n-type dopants such as P and/or As may be implanted into p-type silicon substrates.
Regardless, and by way of example only, an exemplary implant dose is from 1×1011 to 1×1016 atoms or ions/cm2, with an edge of an implant region comprising that laterally outermost location where implant material concentration becomes 1×1017 to 1×1022 atoms or ions/cm3 and greater. In one implementation, the implanting forms buried region 26 to constitute a damage region enabling anodic etching substantially selectively relative to surrounding substrate material 13. For example, and by way of example only, where material 13 comprises silicon, the damage region might form porous silicon, which can be oxidized substantially selectively relative to surrounding substrate material 13, or selectively anodically etched.
Referring to FIG. 3, semiconductive material 13 of semiconductor substrate 12 has been etched into to form an isolation trench 34 at least using trench isolation mask 14. The FIG. 2 depicted buried implant region 28 has been etched through in the exemplary FIG. 3 embodiment.
After the ion implanting and after forming the isolation trench, insulative material is formed within the buried region and insulative material is deposited to within the isolation trench. The insulative material received within the isolation trench joins with the insulative material formed within the buried region. By way of example only, FIGS. 4 and 5 depict one exemplary preferred method of such processing. Referring to FIG. 4, material of buried region 26 has been etched from the substrate through trench isolation region edge 15 effective to form a buried void 36 extending laterally through trench isolation region edge 15 into active area 16. By way of example only, preferred techniques for doing so are wet etching and anodic etching.
For example for wet etching an implanted region comprising oxygen and/or oxide formation therefrom and where material 13 comprises bulk monocrystalline silicon, an example wet etching chemistry comprises an aqueous HF solution. Further for example where n-type dopants such as P and/or As have been implanted into p-type silicon material, exemplary techniques for anodic etching include those employed in fully isolated porous oxided silicon (FIPOS) technologies. Specifically where material 13 comprises bulk monocrystalline silicon, an example electrolytic chemical anodizing solution is a 1:1 dilution of a 49 weight percent HF solution in de-ionized water, for example, by controlling the potential at less than about 0.1 Volt so as to form pores preferentially in n+ silicon relative to surrounding p+ and/or p− silicon, with the bath being at an exemplary temperature range from 10° C. to 50° C. and at room ambient pressure, and etches such porous material.
Referring to FIG. 5, masks 14 and 24 have been removed, and insulative material 38 has been deposited to within isolation trench 34, with at least some of such insulative material 38 also depositing to within buried void 36. A preferred technique is by high density plasma deposition of silicon dioxide, although the fabrication of any insulative material is contemplated. Such provides one example of forming insulative material within buried region 26 and depositing insulative material to within isolation trench 34, with insulative material received within the isolation trench joining with insulative material formed within the buried region. The insulative materials within what was void 36 and that within trench 34 might, of course, be the same or different, as well as being formed at the same or different times. For example in one implementation, the ion implanting as referred to above might comprise oxygen atoms which, upon implanting and/or in combination with a subsequent anneal, form an oxide material of buried region 26. Alternately by way of example as shown, buried region 26 might be removed to at least some degree and substituted with insulative material separately deposited or formed from the removal. Alternately by way of example only, region 26 might be formed to comprise an insulative material such as oxide during deposition or by a dedicated oxidizing step where oxygen atoms are either present or provided within region 26. In one exemplary preferred embodiment, at least some of the insulative material formed within buried region 26 is of the same composition as insulative material 38 deposited within isolation trench 34.
In one exemplary embodiment, the invention contemplates forming insulative oxide within buried void 36, for example by a deposition technique or a thermal growth technique. Such oxide might remain or be removed prior to the deposition of trench filling oxide 38. By way of example only, an exemplary reason for oxidizing internal portions of void 36 followed by subsequent removal of the oxide so formed might be to round the internal corners of void 36. In such instance, the formed oxide might be removed as being less desirable than the oxide 38 deposited by, for example, high density plasma deposition.
Referring to FIG. 6, a field effect transistor 40 has been formed within active area 16. Such comprises a channel region 42 comprising semiconductive material 13 of active area 16. In the depicted preferred embodiment, no part of buried region 26 is received beneath channel region 42. Field effect transistor 40 comprises a gate 44 which, by way of example only, is depicted as comprising an insulative layer 45 received over a metal or metal silicide layer 46, which is received over a conductively doped polysilicon layer 47, which is received over a gate dielectric layer 48. Insulative sidewall spacers 49 and 50 are formed as part of gate construction 44, and source/ drain regions 51 and 52 are formed on opposing sides of channel region 42.
Referring to FIG. 7, a dielectric layer 54 has been deposited over the substrate, with an exemplary material being borophosphosilicate glass (BPSG). An opening 56 has been formed therein to insulative material 38 of buried region 26. Such has been filled with conductive metal, with such electrically conductive metal thereby in the depicted preferred embodiment extending from contacting insulative material 38 of buried region 26 to outwardly of upper surface 32 of semiconductive material 13. In the context of this document, a “metal” is one or a combination of an elemental form metal, an alloy of elemental form metals, or one or more metal compounds, including mixtures thereof.
The above exemplary processing depicts the ion implanting as being conducted before the etching to form the isolation trench. The invention also, of course, contemplates conducting the ion implanting after the etching to form the isolation trench, for example as depicted in FIG. 8 with respect to a substrate fragment 10 a. Like numerals from the first described embodiment are utilized where appropriate, with differences being indicated with the suffix “a”. FIG. 8 depicts the trench etching of substrate fragment 10 a as having occurred relative to trench isolation mask 14 prior to the fabrication of a buried ion implant region. Accordingly, one or more buried ion implant regions could be formed subsequent to the processing depicted by FIG. 8, and processing otherwise conducted subsequent thereto as described above, or otherwise.
The above processing also depicts forming the field effect transistor gate 44 after forming the insulative material within buried region 26, and after depositing insulative material 38 to within isolation trench 34. However, the invention also contemplates forming a field effect transistor gate prior to forming even the trench isolation mask wherein the trench isolation mask is subsequently formed over the gate, for example as described in connection with FIGS. 9–12. Such depicts an alternate embodiment semiconductor substrate fragment 10 b. Like numerals from the first described embodiment are utilized where appropriate, with differences being indicated with the suffix “b” or with different numerals. Referring initially to FIG. 9, substrate fragment 10 b depicts a field effect transistor gate 44 b fabricated prior to the formation of an isolation trench.
Referring to FIG. 10, a trench isolation mask 14 b has been formed over semiconductor substrate 12, including over gate 44 b.
Referring to FIG. 11, an isolation trench 34 has been etched into semiconductive material 13 of semiconductor substrate 12 using trench isolation mask 14 b.
Referring to FIG. 12, trench isolation mask 14 b has been removed from over semiconductor substrate 12, and ion implanting has been conducted to form buried ion implant regions 26 and 27. Accordingly in such exemplary preferred embodiment, such ion implanting has been conducted after the etching to form isolation trench 34 and, as well, trench isolation mask 14 b has been removed from substrate 12 prior to such ion implanting. Accordingly, and by way of example only, the FIGS. 9–12 processing depicts an exemplary embodiment whereby ion implanting to form the recited buried region has occurred without using any portion of the trench isolation mask as a mask during such ion implanting. Further, FIGS. 9–12 provide an example whereby buried region 26 is formed essentially self-aligned between the edge of the trench and the edge of the gate construction. Further by way of example only, other portions of the substrate (including for example isolation trench 34) may be protected by a mask during this ion implanting step.
In one aspect, the invention contemplates a method of forming an integrated circuit (which may or may not include DRAM circuitry) which includes forming an isolation trench within semiconductive material of a semiconductor substrate. By way of example only, trench 34 in the above-described embodiments is an example of such a trench formed within semiconductive material 13 of a semiconductor substrate 12. A buried void is formed to extend laterally from an edge of the isolation trench to within the semiconductive material. By way of example only, buried void 36 in the above-described embodiments is but one example. Insulative material is deposited to within the isolation trench, including into the buried void effective to fill at least the buried void. By way of example only, material 38 is one such exemplary material and depositing. Other attributes as described above are preferably also utilized.
Aspects of the invention contemplate methods of forming an integrated circuit comprising DRAM circuitry, although any integrated circuit is contemplated. By way of example only, additional aspects of the invention are described with reference to FIGS. 13–21, which also, in one implementation, contemplate the fabrication of DRAM circuitry. FIG. 13 depicts a substrate fragment 60 comprising a semiconductor substrate 62 comprising semiconductive material 63. A trench isolation mask 64 is formed over semiconductor substrate 62. Preferred attributes of such materials are otherwise as described above in connection with the first described embodiment. Trench isolation mask 64 defines an active area 65 received intermediate first and second trench isolation regions 66 and 67, respectively, and trench isolation region edges 71 and 73.
Referring to FIG. 14, ion implanting has been conducted into semiconductive material 63 of substrate 62 to form first and second buried regions 68 and 70, respectively, within active area 65 of semiconductor substrate 62 using trench isolation mask 64. In the depicted preferred embodiment, an ion implant mask 72 has also been formed over trench isolation mask 64, with both ion implant mask 72 and trench isolation mask 64 being used during the ion implanting. Preferred attributes of such implanting are otherwise as described above in connection with the first described embodiments. First buried region 68 has a first edge 74 received proximate edge 71 of first trench isolation region 66, and a second edge 76 opposing first buried region first edge 74. Second buried region 70 has a first edge 78 received proximate edge 73 of second trench isolation region 67, and a second edge 80 opposing second buried region first edge 78. Second edges 76 and 80 of first and second buried regions 68 and 70, respectively, are spaced from one another within active area 65.
Referring to FIG. 15, after the ion implanting, trench isolation mask 64 has been used as a mask while etching into semiconductive material 63 of semiconductor substrate 62 to form isolation trenches 82 and 84.
Referring to FIG. 16, buried region material has been etched from first and second buried regions 68 and 70 through first edges 74, 78 and first and second trench isolation region edges 71, 73, respectively, effective to form a first buried void 86 extending laterally from first trench isolation region 66 edge 71 into active area 65, and a second buried void 88 extending laterally from second trench isolation region 67 edge 73 into active area 65. Exemplary processing for such etching is preferably conducted as described above.
Referring to FIG. 17, insulative material 90 has been deposited to within first and second isolation trenches 82, 84, including into first and second buried voids 86, 88 effective to fill at least first and second buried voids 86 and 88. Of course, processing could otherwise be conducted as described above to form insulative material within the respective buried regions. Such processing also, by way of example only, depicts and describes trench etching being conducted to form multiple isolation trenches, and wherein the buried region comprises a second edge opposite the first stated edge, with the second edge being spaced from a next adjacent of the isolation trenches.
Referring to FIG. 18, field effect transistor gate constructions 94 and 96, as well as source/ drain regions 97, 98 and 99, have been fabricated. A planarized insulative dielectric layer 100, for example BPSG, has been formed thereover.
Referring to FIG. 19, openings 102, 104 and 106 have been formed within insulative layer 100. Openings 102 and 106 have been formed to insulative material 90 received within regions 68 and 70, while an opening 104 has been formed to an outer surface of a shared source/drain region received between gate constructions 94 and 96. Conductive metal 108 has been formed within each of openings 102, 104 and 106.
Referring to FIG. 20, the FIG. 19 substrate has been processed in the depicted embodiment to form a pair of DRAM memory cells, particularly buried digit line DRAM memory cells. Dashed outline 110 diagrammatically depicts a digit line which would be in electrical connection with conductive metal 108 in opening 104, and which would include an extension or otherwise be received out of plane of the page upon which FIG. 20 lies. Another insulative dielectric layer 112 has been formed over dielectric layer 100 and bit line 110. Capacitor storage node openings 114 have been formed therein. Conductive capacitor storage electrodes 116 have been formed within openings 114. A capacitor dielectric layer 118 has been deposited thereover, as well as a conductive capacitor cell electrode 120 deposited over capacitor dielectric layer 118.
By way of example only, such depicts DRAM circuitry in the depicted example comprised of two memory cells. One memory cell is comprised of the field effect transistor comprising word line/gate construction 94, the capacitor overlying conductive metal 108 within opening 102, and bit line 110. A second memory cell is comprised of field effect transistor gate/word line 96, the capacitor overlying conductive material 108 within opening 106, and bit line 110.
By way of example only, an alternate embodiment substrate fragment 60 c is depicted in FIG. 21. Like numerals to the embodiment of FIGS. 13–20 have been utilized where appropriate, with differences being indicated with the suffix “c” or with different numerals. In FIG. 21, conductive metal 108 c received within opening 104 has been fabricated to extend to a buried insulative layer/region 130.
The invention contemplates a DRAM circuit memory cell independent of the method of fabrication and accordingly, independent of the above-described preferred embodiment methods for fabricating a DRAM circuit memory cell. In one exemplary embodiment, a DRAM circuit memory cell comprises a substrate comprising semiconductive material, for example substrate 62 comprising material 63. In one preferred embodiment, the substrate comprises bulk monocrystalline silicon. A bit line is formed over the substrate, for example bit line 110 formed over substrate 62. A capacitor is formed over the substrate, with the capacitor comprising a storage electrode and a cell electrode. By way of example only, either of the capacitors depicted in FIG. 20 are exemplary such capacitors. In one preferred embodiment, the capacitor storage electrode, for example material 116, is void of conductively doped semiconductive material, although conductively doped semiconductive material for electrode 116 is also contemplated.
A field effect transistor comprising a word line is received over the substrate, for example gate transistor/word line 94 associated with the left illustrated capacitor. The field effect transistor comprises one source/drain region in electrical connection with the capacitor storage electrode (i.e., source/drain region 97) and another source/drain region in electrical connection with the bit line (i.e., source/drain region 98). The substrate comprises an insulative layer received beneath the one source/drain region (i.e., material 90 within region 68). In one exemplary preferred embodiment, the insulative layer comprises silicon dioxide. In one exemplary preferred embodiment, the insulator layer is not received beneath the channel region (i.e., material 90 within void 86 is not received beneath the conductive portion of gate construction 94, and thereby, not beneath the channel region of the field effect transistor of the memory cell). In one implementation, the insulator layer does not extend to beneath the another source/drain region (i.e., insulative material 90 within region 68 does not extend to beneath the another source/drain region 98 in FIG. 20).
The one source/drain region comprises conductive metal which extends from the insulative layer to the capacitor storage electrode. For example in the FIG. 20 embodiment, source/drain region 97 is comprised of conductive metal 108 which extends from insulative layer 90/68 to capacitor storage electrode 116 lying thereover. In one preferred embodiment, the conductive metal comprises a mixture of a) a metal compound, and b) elemental form metal or an alloy of elemental metals. By way of example only, a preferred example is metal silicide constituting the source/drain region within semiconductive material 63, and elemental form tungsten lying thereover and extending to the capacitor storage electrode.
In one implementation, and independent of whether the one source/drain region comprises conductive metal extended from the insulative layer to the capacitor storage electrode, the invention contemplates a DRAM circuit memory cell wherein the another source/drain region comprises conductive metal which extends from the insulative layer to the bit line. For example and by way of example only, FIG. 21 depicts such an another source/drain region 98 c comprising conductive metal material 108 c which extends from an insulative layer 130 received beneath source/drain region 98 c to bit line 110. Other attributes are preferably as described just above. Of course, the invention also contemplates a combination of the another source/drain region comprising conductive metal which extends from an insulative layer thereunder to the bit line, with the one source/drain region comprising conductive metal extending from an insulative layer thereunder to the capacitor storage electrode, also for example as shown in FIG. 21.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims (49)

1. A method of forming an integrated circuit comprising a field effect transistor having a gate, comprising:
forming a trench isolation mask over a semiconductor substrate, the trench isolation mask defining an active area region and a trench isolation region;
ion implanting into semiconductive material of the substrate to form a buried region within active area of the semiconductor substrate, the buried region having a first edge received proximate an edge of the trench isolation region, the gate being formed prior to forming the trench isolation mask and the trench isolation mask being formed over the gate;
using the trench isolation mask, etching into semiconductive material of the semiconductor substrate to form an isolation trench; and
after the ion implanting and after forming the isolation trench, forming insulative material within the buried region and depositing insulative material to within the isolation trench, the insulative material received within the isolation trench joining with the insulative material formed within the buried region.
2. The method of claim 1 wherein the semiconductor substrate comprises bulk monocrystalline silicon, and the ion implanting is to within bulk monocrystalline silicon material.
3. The method of claim 1 wherein the ion implanting is with a material that is inert to chemical reaction with said semiconductive material of the substrate.
4. The method of claim 3 wherein the material comprises a conductivity enhancing material.
5. The method of claim 1 wherein the ion implanting comprises ion implanting oxygen.
6. The method of claim 1 wherein the ion implanting is of a material that is void of having any conductivity enhancing effect relative to said semiconductive material.
7. The method of claim 1 wherein the semiconductive material comprises p-type silicon, and the ion implanting comprises ion implanting n-type material.
8. The method of claim 1 wherein the buried region has a peak implant concentration spaced at least 100 Angstroms from an upper surface of said semiconductive material of the semiconductor substrate.
9. The method of claim 8 wherein the buried region has a peak implant concentration spaced from 200 Angstroms to 600 Angstroms from the semiconductive material upper surface.
10. The method of claim 1 wherein said etching is conducted to form multiple isolation trenches, the buried region comprising a second edge opposite the first edge, the second edge being spaced from a next adjacent of the isolation trenches.
11. The method of claim 1 wherein the ion implanting is conducted after the etching.
12. The method of claim 1 wherein the ion implanting is conducted before the etching.
13. The method of claim 1 wherein at least some of the insulative material formed within the buried region is of the same composition as the insulative material deposited within the isolation trench.
14. The method of claim 13 wherein forming the insulative material within the buried region comprises:
etching buried region material from the substrate through the trench isolation region edge effective to form a buried void extending laterally from the trench isolation region edge into the active area; and
said depositing also depositing said at least some insulative material to within the buried void.
15. The method of claim 14 wherein the etching of buried region material comprises anodic etching.
16. The method of claim 14 wherein the etching of buried region material comprises wet etching.
17. The method of claim 1 comprising forming a field effect transistor within the active area, the field effect transistor comprising a channel region comprising semiconductive material of the active area.
18. The method of claim 17 wherein no part of the buried region is received beneath said channel region.
19. The method of claim 17 comprising fabricating DRAM circuitry.
20. The method of claim 17 wherein the field effect transistor comprises a gate which is formed after forming the insulative material within the buried region and after depositing the insulative material within the isolation trench.
21. The method of claim 1 wherein the semiconductive material comprises silicon, the forming of insulative material within the buried region comprising:
the ion implanting comprising ion implanting oxygen and forming silicon dioxide therefrom.
22. A method of forming an integrated circuit, comprising:
forming a trench isolation mask over a semiconductor substrate, the trench isolation mask defining an active area region and a trench isolation region;
ion implanting into semiconductive material of the substrate to form a buried region within active area of the semiconductor substrate, the buried region having a first edge received proximate an edae of the trench isolation region;
using the trench isolation mask, etching into semiconductive material of the semiconductor substrate to form an isolation trench;
after the ion implanting and after forming the isolation trench, forming insulative material within the buried region and depositing insulative material to within the isolation trench, the insulative material received within the isolation trench joining with the insulative material formed within the buried region; and
wherein forming the insulative material within the buried region comprises:
etching buried region material from the substrate through the trench isolation region edge effective to form a buried void extending laterally from the trench isolation region edge into the active area;
forming insulative oxide within the buried void;
removing at least some of the insulative oxide from the buried void; and
conducting said depositing after said removing, said depositing also depositing said at least some insulative material to within the buried void.
23. A method of forming an integrated circuit, comprising:
forming a trench isolation mask over a semiconductor substrate, the trench isolation mask defining an active area region and a trench isolation region;
ion implanting into semiconductive material of the substrate to form a buried region within active area of the semiconductor substrate, the buried region having a first edae received proximate an edae of the trench isolation region;
using the trench isolation mask, etching into semiconductive material of the semiconductor substrate to form an isolation trench;
after the ion implanting and after forming the isolation trench, forming insulative material within the buried region and depositing insulative material to within the isolation trench, the insulative material received within the isolation trench ioining with the insulative material formed within the buried region; and
forming a field effect transistor within the active area, the field effect transistor comprising a channel region comprising semiconductive material of the active area, the field effect transistor comprising a source/drain region comprising conductive metal, the conductive metal extending from contacting the insulative material of the buried region to outwardly of the upper surface of said semiconductive material.
24. The method of claim 23 wherein no part of the buried region is received beneath said channel region.
25. A method of forming an integrated circuit, comprising:
forming an isolation trench within semiconductive material of a semiconductor substrate;
forming a buried void extending laterally from an edge of the isolation trench to within the semiconductive material;
depositing insulative material to within the isolation trench including into the buried void effective to fill at least the buried void; and
forming a field effect transistor comprising a channel region comprising the semiconductive material, the field effect transistor comprising a source/drain region comprising conductive metal, the conductive metal extending from contacting insulative material within the buried void to outwardly of the upper surface of said semiconductive material.
26. The method of claim 25 wherein no part of the buried void is formed beneath said channel region.
27. A method of forming an integrated circuit, comprising:
forming a trench isolation mask over a semiconductor substrate, the trench isolation mask defining an active area received intermediate first and second trench isolation regions;
using the trench isolation mask, ion implanting into semiconductive material of the substrate to form first and second buried regions within the active area of the semiconductor substrate, the first buried region having a first edge received proximate an edge of the first trench isolation region and a second edge opposing the first buried region first edge, the second buried region having a first edge received proximate an edge of the second trench isolation region and a second edge opposing the second buried region first edge, the second edges of the first and second buried regions being spaced from one another within the active area;
after the ion implanting, using the trench isolation mask while etching into semiconductive material of the semiconductor substrate to form isolation trenches;
after forming the isolation trenches, etching buried region material from the first and second buried regions through the first edges of the first and second trench isolation region edges effective to form a first buried void extending laterally from the first trench isolation region edge into the active area and a second buried void extending laterally from the second trench isolation region edge into the active area;
depositing insulative material to within the first and second isolation trenches including the first and second buried voids effective to fill at least the first and second buried voids; and
forming insulative oxide within the first and second buried voids and etching at least some of said insulative oxide from the first and second buried voids prior to said depositing.
28. The method of claim 27 wherein the semiconductor substrate comprises bulk monocrystalline silicon, and the ion implanting is to within bulk monocrystalline silicon material.
29. The method of claim 27 wherein the ion implanting is with a material that is inert to chemical reaction with said semiconductive material of the substrate.
30. The method of claim 29 wherein the material comprises a conductivity enhancing material.
31. The method of claim 27 wherein the ion implanting comprises ion implanting oxygen.
32. The method of claim 27 wherein the ion implanting is of a material that is void of having any conductivity enhancing effect relative to said semiconductive material.
33. The method of claim 27 wherein the semiconductive material comprises p-type silicon, and the ion implanting comprises ion implanting n-type material.
34. The method of claim 27 wherein the first and second buried regions have a respective peak implant concentration spaced at least 100 Angstroms from an upper surface of said semiconductive material of the semiconductor substrate.
35. The method of claim 34 wherein the first and second buried regions have a respective peak implant concentration spaced from 200 Angstroms to 600 Angstroms from the semiconductive material upper surface.
36. The method of claim 27 comprising forming an ion implant mask over the trench isolation mask, and using both the ion implant mask and the trench isolation mask during the ion implanting.
37. The method of claim 27 wherein the etching of buried region material comprises anodic etching.
38. The method of claim 27 wherein the etching of buried region material comprises anodic etching with HF.
39. The method of claim 27 wherein the etching of buried region material comprises wet etching.
40. The method of claim 27 wherein the depositing is effective to fill the isolation trench and the first and second buried voids.
41. The method of claim 27 comprising fabricating DRAM circuitry.
42. A method of forming an integrated circuit, comprising:
forming an isolation trench within semiconductive material of a semiconductor substrate;
forming a buried void extending laterally from an edge of the isolation trench to within the semiconductive material;
forming insulative oxide within the buried void;
removing at least some of the insulative oxide from the buried void; and
after said removing, depositing insulative material to within the isolation trench including into the buried void effective to fill at least the buried void.
43. The method of claim 42 wherein forming the insulative oxide comprises depositing insulative oxide.
44. The method of claim 42 wherein forming the insulative oxide comprises thermally growing insulative oxide.
45. The method of claim 42 wherein said forming the insulative oxide and said removing is effective to round internal corners of the buried void.
46. The method of claim 42 wherein the buried void is formed to have an upper surface spaced at least 100 Angstroms from an upper surface of said semiconductive material of the semiconductor substrate.
47. The method of claim 46 wherein the buried void is formed to have an upper surface spaced from 200 Angstroms to 600 Angstroms from the semiconductive material upper surface.
48. The method of claim 42 comprising forming a field effect transistor comprising a channel region comprising the semiconductive material.
49. The method of claim 42 wherein the field effect transistor comprises a source/drain region comprising conductive metal, the conductive metal extending from contacting insulative material within the buried void to outwardly of the upper surface of said semiconductive material.
US10/925,079 2004-08-23 2004-08-23 Methods of forming integrated circuits Active US7160788B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/925,079 US7160788B2 (en) 2004-08-23 2004-08-23 Methods of forming integrated circuits
US11/255,613 US7276752B2 (en) 2004-08-23 2005-10-21 Methods of forming integrated circuits, and DRAM circuitry memory cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/925,079 US7160788B2 (en) 2004-08-23 2004-08-23 Methods of forming integrated circuits

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/255,613 Division US7276752B2 (en) 2004-08-23 2005-10-21 Methods of forming integrated circuits, and DRAM circuitry memory cells

Publications (2)

Publication Number Publication Date
US20060040466A1 US20060040466A1 (en) 2006-02-23
US7160788B2 true US7160788B2 (en) 2007-01-09

Family

ID=35910140

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/925,079 Active US7160788B2 (en) 2004-08-23 2004-08-23 Methods of forming integrated circuits
US11/255,613 Active 2024-12-11 US7276752B2 (en) 2004-08-23 2005-10-21 Methods of forming integrated circuits, and DRAM circuitry memory cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/255,613 Active 2024-12-11 US7276752B2 (en) 2004-08-23 2005-10-21 Methods of forming integrated circuits, and DRAM circuitry memory cells

Country Status (1)

Country Link
US (2) US7160788B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287780A1 (en) * 2003-09-04 2005-12-29 Micron Technology, Inc. Semiconductor constructions
US20060014344A1 (en) * 2004-07-19 2006-01-19 Manning H M Methods of forming semiconductor structures and capacitor devices
US20060148190A1 (en) * 2004-08-30 2006-07-06 Busch Brett W Methods of forming a plurality of capacitors
US20060211211A1 (en) * 2005-03-18 2006-09-21 Sandhu Gurtej S Methods of forming pluralities of capacitors
US20060246678A1 (en) * 2004-08-27 2006-11-02 Manning H M Methods of forming a plurality of capacitors
US20060256597A1 (en) * 2005-05-13 2006-11-16 Stmicroelectronics S.R.L Method and relative circuit for generating a control voltage of a synchronous rectifier
US20060261440A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of forming a plurality of capacitors, and integrated circuitry comprising a pair of capacitors
US20060263968A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of forming pluralities of capacitors
US20070093022A1 (en) * 2004-12-06 2007-04-26 Cem Basceri Integrated circuitry
US20070105303A1 (en) * 2004-08-27 2007-05-10 Busch Brett W Methods of forming a plurality of circuit components and methods of forming a plurality of structures suspended elevationally above a substrate
US20070134872A1 (en) * 2005-08-02 2007-06-14 Sandhu Gurtej S Methods of forming pluralities of capacitors
US20080012070A1 (en) * 2005-07-08 2008-01-17 Werner Juengling Apparatus for a self-aligned recessed access device (rad) transistor gate
US20080090416A1 (en) * 2006-10-11 2008-04-17 Micro Technology, Inc. Methods of etching polysilicon and methods of forming pluralities of capacitors
US20080206950A1 (en) * 2007-02-26 2008-08-28 Micron Technology, Inc. Methods of forming a plurality of capacitors
US7557013B2 (en) 2006-04-10 2009-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20090176011A1 (en) * 2008-01-08 2009-07-09 Mark Kiehlbauch Capacitor Forming Methods
US20090239343A1 (en) * 2006-07-17 2009-09-24 Fernando Gonzalez Methods Of Forming Lines Of Capacitorless One Transistor DRAM Cells, Methods Of Patterning Substrates, And Methods Of Forming Two Conductive Lines
US20100009512A1 (en) * 2008-07-09 2010-01-14 Fred Fishburn Methods of forming a plurality of capacitors
US7649316B2 (en) 2007-07-13 2010-01-19 Micron Technology, Inc. Assemblies for plasma-enhanced treatment of substrates
US7655968B2 (en) 2003-09-04 2010-02-02 Micron Technology, Inc. Semiconductor devices
US7682924B2 (en) 2007-08-13 2010-03-23 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20110012182A1 (en) * 2004-09-01 2011-01-20 Micron Technology Inc. Semiconductor Constructions and Transistors, and Methods of Forming Semiconductor Constructions and Transistors
US20110086476A1 (en) * 2005-08-30 2011-04-14 Micron Technology, Inc. Methods of Forming Field Effect Transistors on Substrates
US20110124168A1 (en) * 2006-02-02 2011-05-26 Micron Technology, Inc. Methods of Forming Field Effect Transistors, Methods of Forming Field Effect Transistor Gates, Methods of Forming Integrated Circuitry Comprising a Transistor Gate Array and Circuitry Peripheral to the Gate Array, and Methods of Forming Integrated Circuitry Comprising a Transistor Gate Array Including First Gates and Second Grounded Isolation Gates
US8274777B2 (en) 2008-04-08 2012-09-25 Micron Technology, Inc. High aspect ratio openings
US8394699B2 (en) 2006-08-21 2013-03-12 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US8446762B2 (en) 2006-09-07 2013-05-21 Micron Technology, Inc. Methods of making a semiconductor memory device
US8518788B2 (en) 2010-08-11 2013-08-27 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8652926B1 (en) 2012-07-26 2014-02-18 Micron Technology, Inc. Methods of forming capacitors
US8741781B2 (en) 2012-06-21 2014-06-03 Micron Technology, Inc. Methods of forming semiconductor constructions
US8946043B2 (en) 2011-12-21 2015-02-03 Micron Technology, Inc. Methods of forming capacitors
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999300B2 (en) * 2009-01-28 2011-08-16 Globalfoundries Singapore Pte. Ltd. Memory cell structure and method for fabrication thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221708B1 (en) 1999-07-23 2001-04-24 Micron Technology, Inc. Field effect transistor assemblies, integrated circuitry, and methods of forming field effect transistors and integrated circuitry
US6468852B1 (en) 2001-08-03 2002-10-22 Micron Technology, Inc. Methods of forming field effect transistors; methods of forming DRAM circuitry
US6958516B2 (en) * 2004-01-08 2005-10-25 International Business Machines Corporation Discriminative SOI with oxide holes underneath DC source/drain

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940006682B1 (en) * 1991-10-17 1994-07-25 삼성전자 주식회사 Method of fabricating a semiconductor memory device
JP4428500B2 (en) * 2001-07-13 2010-03-10 富士通マイクロエレクトロニクス株式会社 Capacitor element and manufacturing method thereof
US6468862B1 (en) * 2001-11-20 2002-10-22 Vanguard International Semiconductor Corp. High capacitive-coupling ratio of stacked-gate flash memory having high mechanical strength floating gate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221708B1 (en) 1999-07-23 2001-04-24 Micron Technology, Inc. Field effect transistor assemblies, integrated circuitry, and methods of forming field effect transistors and integrated circuitry
US6468852B1 (en) 2001-08-03 2002-10-22 Micron Technology, Inc. Methods of forming field effect transistors; methods of forming DRAM circuitry
US6958516B2 (en) * 2004-01-08 2005-10-25 International Business Machines Corporation Discriminative SOI with oxide holes underneath DC source/drain

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
George et al., Microstructural investigations of light-emitting porous Si layers, 60 Appl. Phys. Lett. 19, pp. 2359-23615 (May 11, 1992).
Pagonis et al., Implantation masking technology for selective porous silicon formation, 197 Phys. Stat. Sol. (a) 1, pp. 241-245 (2003).
Seidel et al., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, II. Influence of Dopants, 137 J. Electrochem. Soc. 11, pp. 3626-3632 (Nov. 1990).
Smith et al., Porous silicon formation mechanisms, 71 J. Appl. Phys. 8, pp. R1-R22 (Apr. 15, 1992).

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287780A1 (en) * 2003-09-04 2005-12-29 Micron Technology, Inc. Semiconductor constructions
US7420238B2 (en) 2003-09-04 2008-09-02 Micron Technology, Inc. Semiconductor constructions
US20060063345A1 (en) * 2003-09-04 2006-03-23 Manning H M Methods of forming plurality of capacitor devices
US7449391B2 (en) 2003-09-04 2008-11-11 Micron Technology, Inc. Methods of forming plurality of capacitor devices
US20100117196A1 (en) * 2003-09-04 2010-05-13 Manning Homer M Support For Vertically-Oriented Capacitors During The Formation of a Semiconductor Device
US8786001B2 (en) 2003-09-04 2014-07-22 Round Rock Research, Llc Semiconductor devices
US7271051B2 (en) 2003-09-04 2007-09-18 Micron Technology, Inc. Methods of forming a plurality of capacitor devices
US7655968B2 (en) 2003-09-04 2010-02-02 Micron Technology, Inc. Semiconductor devices
US20060249798A1 (en) * 2004-07-19 2006-11-09 Manning H M Methods of forming capacitors
US7585741B2 (en) 2004-07-19 2009-09-08 Micron Technology, Inc. Methods of forming capacitors
US8164132B2 (en) 2004-07-19 2012-04-24 Round Rock Research, Llc Methods of forming integrated circuit devices
US7915136B2 (en) 2004-07-19 2011-03-29 Round Rock Research, Llc Methods of forming integrated circuit devices
US20060014344A1 (en) * 2004-07-19 2006-01-19 Manning H M Methods of forming semiconductor structures and capacitor devices
US7387939B2 (en) 2004-07-19 2008-06-17 Micron Technology, Inc. Methods of forming semiconductor structures and capacitor devices
US7439152B2 (en) 2004-08-27 2008-10-21 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20060246678A1 (en) * 2004-08-27 2006-11-02 Manning H M Methods of forming a plurality of capacitors
US20070173030A1 (en) * 2004-08-27 2007-07-26 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20070105303A1 (en) * 2004-08-27 2007-05-10 Busch Brett W Methods of forming a plurality of circuit components and methods of forming a plurality of structures suspended elevationally above a substrate
US7534694B2 (en) 2004-08-27 2009-05-19 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20070161202A1 (en) * 2004-08-27 2007-07-12 Manning H M Methods of forming a plurality of capacitors
US7445991B2 (en) 2004-08-27 2008-11-04 Micron Technology, Inc. Methods of forming a plurality of capacitors
US7393743B2 (en) 2004-08-27 2008-07-01 Micron Technology, Inc. Methods of forming a plurality of capacitors
US7413952B2 (en) 2004-08-27 2008-08-19 Micron Technology, Inc. Methods of forming a plurality of circuit components and methods of forming a plurality of structures suspended elevationally above a substrate
US20060148190A1 (en) * 2004-08-30 2006-07-06 Busch Brett W Methods of forming a plurality of capacitors
US7445990B2 (en) 2004-08-30 2008-11-04 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8120101B2 (en) 2004-09-01 2012-02-21 Micron Technology, Inc. Semiconductor constructions and transistors, and methods of forming semiconductor constructions and transistors
US20110012182A1 (en) * 2004-09-01 2011-01-20 Micron Technology Inc. Semiconductor Constructions and Transistors, and Methods of Forming Semiconductor Constructions and Transistors
US8207563B2 (en) 2004-12-06 2012-06-26 Round Rock Research, Llc Integrated circuitry
US20070093022A1 (en) * 2004-12-06 2007-04-26 Cem Basceri Integrated circuitry
US7557015B2 (en) 2005-03-18 2009-07-07 Micron Technology, Inc. Methods of forming pluralities of capacitors
US20090209080A1 (en) * 2005-03-18 2009-08-20 Sandhu Gurtej S Methods of Forming Pluralities of Capacitors
US7919386B2 (en) 2005-03-18 2011-04-05 Micron Technology, Inc. Methods of forming pluralities of capacitors
US20060211211A1 (en) * 2005-03-18 2006-09-21 Sandhu Gurtej S Methods of forming pluralities of capacitors
US20060256597A1 (en) * 2005-05-13 2006-11-16 Stmicroelectronics S.R.L Method and relative circuit for generating a control voltage of a synchronous rectifier
US7544563B2 (en) 2005-05-18 2009-06-09 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20070196978A1 (en) * 2005-05-18 2007-08-23 Manning H M Integrated circuitry comprising a pair of adjacent capacitors
US20060263968A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of forming pluralities of capacitors
US7825451B2 (en) 2005-05-18 2010-11-02 Micron Technology, Inc. Array of capacitors with electrically insulative rings
US7858486B2 (en) 2005-05-18 2010-12-28 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20060261440A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of forming a plurality of capacitors, and integrated circuitry comprising a pair of capacitors
US7517753B2 (en) * 2005-05-18 2009-04-14 Micron Technology, Inc. Methods of forming pluralities of capacitors
US20100261331A1 (en) * 2005-05-18 2010-10-14 Manning H Montgomery Methods Of Forming A Plurality Of Capacitors
US8399920B2 (en) 2005-07-08 2013-03-19 Werner Juengling Semiconductor device comprising a transistor gate having multiple vertically oriented sidewalls
US8916912B2 (en) 2005-07-08 2014-12-23 Micron Technology, Inc. Semiconductor device comprising a transistor gate having multiple vertically oriented sidewalls
US9536971B2 (en) 2005-07-08 2017-01-03 Micron Technology, Inc. Semiconductor device comprising a transistor gate having multiple vertically oriented sidewalls
US20080012070A1 (en) * 2005-07-08 2008-01-17 Werner Juengling Apparatus for a self-aligned recessed access device (rad) transistor gate
US7393741B2 (en) 2005-08-02 2008-07-01 Micron Technology, Inc. Methods of forming pluralities of capacitors
US20070134872A1 (en) * 2005-08-02 2007-06-14 Sandhu Gurtej S Methods of forming pluralities of capacitors
US8877589B2 (en) 2005-08-30 2014-11-04 Micron Technology, Inc. Methods of forming field effect transistors on substrates
US20110086476A1 (en) * 2005-08-30 2011-04-14 Micron Technology, Inc. Methods of Forming Field Effect Transistors on Substrates
US8426273B2 (en) 2005-08-30 2013-04-23 Micron Technology, Inc. Methods of forming field effect transistors on substrates
US8389363B2 (en) 2006-02-02 2013-03-05 Micron Technology, Inc. Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US20110124168A1 (en) * 2006-02-02 2011-05-26 Micron Technology, Inc. Methods of Forming Field Effect Transistors, Methods of Forming Field Effect Transistor Gates, Methods of Forming Integrated Circuitry Comprising a Transistor Gate Array and Circuitry Peripheral to the Gate Array, and Methods of Forming Integrated Circuitry Comprising a Transistor Gate Array Including First Gates and Second Grounded Isolation Gates
US7557013B2 (en) 2006-04-10 2009-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
US9129847B2 (en) 2006-07-17 2015-09-08 Micron Technology, Inc. Transistor structures and integrated circuitry comprising an array of transistor structures
US8551823B2 (en) 2006-07-17 2013-10-08 Micron Technology, Inc. Methods of forming lines of capacitorless one transistor DRAM cells, methods of patterning substrates, and methods of forming two conductive lines
US20090239343A1 (en) * 2006-07-17 2009-09-24 Fernando Gonzalez Methods Of Forming Lines Of Capacitorless One Transistor DRAM Cells, Methods Of Patterning Substrates, And Methods Of Forming Two Conductive Lines
US8394699B2 (en) 2006-08-21 2013-03-12 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US8446762B2 (en) 2006-09-07 2013-05-21 Micron Technology, Inc. Methods of making a semiconductor memory device
US7902081B2 (en) 2006-10-11 2011-03-08 Micron Technology, Inc. Methods of etching polysilicon and methods of forming pluralities of capacitors
US20080090416A1 (en) * 2006-10-11 2008-04-17 Micro Technology, Inc. Methods of etching polysilicon and methods of forming pluralities of capacitors
US20080206950A1 (en) * 2007-02-26 2008-08-28 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8263457B2 (en) 2007-02-26 2012-09-11 Micron Technology, Inc. Methods of forming a plurality of capacitors
US7785962B2 (en) 2007-02-26 2010-08-31 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8129240B2 (en) 2007-02-26 2012-03-06 Micron Technology, Inc. Methods of forming a plurality of capacitors
US20100311219A1 (en) * 2007-02-26 2010-12-09 Micron Technology, Inc. Methods of Forming a Plurality of Capacitors
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US8674602B2 (en) 2007-07-13 2014-03-18 Micron Technology, Inc. Plasma-generating structures and display devices
US8274221B2 (en) 2007-07-13 2012-09-25 Micron Technology, Inc. Plasma-generating structures, display devices, and methods of forming plasma-generating structures
US8033884B2 (en) 2007-07-13 2011-10-11 Micron Technology, Inc. Methods of forming plasma-generating structures; methods of plasma-assisted etching, and methods of plasma-assisted deposition
US20100102031A1 (en) * 2007-07-13 2010-04-29 Micron Technology, Inc. Methods Of Forming Plasma-Generating Structures; Methods Of Plasma-Assisted Etching, And Methods Of Plasma-Assisted Deposition
US7649316B2 (en) 2007-07-13 2010-01-19 Micron Technology, Inc. Assemblies for plasma-enhanced treatment of substrates
US20100151653A1 (en) * 2007-08-13 2010-06-17 Micron Technology, Inc. Methods Of Forming A Plurality Of Capacitors
US7682924B2 (en) 2007-08-13 2010-03-23 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8450164B2 (en) 2007-08-13 2013-05-28 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8734656B2 (en) 2008-01-08 2014-05-27 Micron Technology, Inc. Capacitor forming methods
US9224798B2 (en) 2008-01-08 2015-12-29 Micron Technology, Inc. Capacitor forming methods
US8388851B2 (en) 2008-01-08 2013-03-05 Micron Technology, Inc. Capacitor forming methods
US20090176011A1 (en) * 2008-01-08 2009-07-09 Mark Kiehlbauch Capacitor Forming Methods
US8274777B2 (en) 2008-04-08 2012-09-25 Micron Technology, Inc. High aspect ratio openings
US9595387B2 (en) 2008-04-08 2017-03-14 Micron Technology, Inc. High aspect ratio openings
US8760841B2 (en) 2008-04-08 2014-06-24 Micron Technology, Inc. High aspect ratio openings
US20100009512A1 (en) * 2008-07-09 2010-01-14 Fred Fishburn Methods of forming a plurality of capacitors
US20100266962A1 (en) * 2008-07-09 2010-10-21 Micron Technology, Inc. Methods Of Forming A Plurality Of Capacitors
US7759193B2 (en) 2008-07-09 2010-07-20 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8163613B2 (en) 2008-07-09 2012-04-24 Micron Technology, Inc. Methods of forming a plurality of capacitors
US9076757B2 (en) 2010-08-11 2015-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8518788B2 (en) 2010-08-11 2013-08-27 Micron Technology, Inc. Methods of forming a plurality of capacitors
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US8946043B2 (en) 2011-12-21 2015-02-03 Micron Technology, Inc. Methods of forming capacitors
US9460998B2 (en) 2012-06-21 2016-10-04 Micron Technology, Inc. Semiconductor constructions and methods of forming semiconductor constructions
US8741781B2 (en) 2012-06-21 2014-06-03 Micron Technology, Inc. Methods of forming semiconductor constructions
US9196673B2 (en) 2012-07-26 2015-11-24 Micron Technology, Inc. Methods of forming capacitors
US8652926B1 (en) 2012-07-26 2014-02-18 Micron Technology, Inc. Methods of forming capacitors

Also Published As

Publication number Publication date
US7276752B2 (en) 2007-10-02
US20060040455A1 (en) 2006-02-23
US20060040466A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
US7160788B2 (en) Methods of forming integrated circuits
US7858508B2 (en) Semiconductor device and method of manufacturing the same
US8294205B2 (en) Semiconductor device and method of forming semiconductor device
US7465633B2 (en) Methods of forming field effect transistors and capacitor-free dynamic random access memory cells
JP2001210801A (en) Semiconductor integrated circuit device and manufacturing method therefor
JP2005536893A (en) Semiconductor structure
KR101062862B1 (en) Method for manufacturing semiconductor device with side junction
US20050164448A1 (en) Method for manufacturing a semiconductor device
US5457065A (en) method of manufacturing a new DRAM capacitor structure having increased capacitance
US5780336A (en) Methods of forming integrated circuit memory devices having improved storage electrode contact regions therein
US7023039B2 (en) Capacitor structures with dual-sided electrode
JP2006203129A (en) Semiconductor storage device and manufacturing method thereof
JP3730882B2 (en) Method of manufacturing a dynamic random access memory device
KR100399162B1 (en) Semiconductor device with stack electrode formed using HSG growth
KR20090121475A (en) Vertical semiconductor device and method of manufacturing the same
KR20020005387A (en) Semiconductor device manufacturing mathod and semiconductor device
KR20040008449A (en) Method for forming a DRAM cell
KR100671633B1 (en) Semiconductor device and method for manufacturing the same
US20230189502A1 (en) Semiconductor device having word line embedded in gate trench
KR0168342B1 (en) Storage electrode fabrication method having hemispherical grain
US7652323B2 (en) Semiconductor device having step gates and method of manufacturing the same
JP3792431B2 (en) Semiconductor device and manufacturing method thereof
KR20010078577A (en) Dynamic random access memory cell forming method
JP2001053274A (en) Manufacture of semiconductor integrated circuit device
JPS62219661A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANDHU, GURTEJ S.;MOULI, CHANDRA;REEL/FRAME:015736/0513;SIGNING DATES FROM 20040817 TO 20040818

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731