US8587156B2 - Device for transporting energy by partial influence through a dielectric medium - Google Patents

Device for transporting energy by partial influence through a dielectric medium Download PDF

Info

Publication number
US8587156B2
US8587156B2 US13/535,866 US201213535866A US8587156B2 US 8587156 B2 US8587156 B2 US 8587156B2 US 201213535866 A US201213535866 A US 201213535866A US 8587156 B2 US8587156 B2 US 8587156B2
Authority
US
United States
Prior art keywords
energy
electrode
active electrode
producer
producer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/535,866
Other versions
US20120267959A1 (en
Inventor
Patrick Camurati
Henri Bondar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to US13/535,866 priority Critical patent/US8587156B2/en
Publication of US20120267959A1 publication Critical patent/US20120267959A1/en
Application granted granted Critical
Publication of US8587156B2 publication Critical patent/US8587156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling

Definitions

  • the invention relates to the topic of electrical energy transport.
  • the first two actions are not self-propagating, the third, which corresponds to the propagation of energy at the speed of light, is associated with transverse waves (longitudinal waves are not compatible with Maxwell's equations).
  • the applications of the action of forces at a distance may exhibit a mechanical macroscopic character when the charges are bound to matter, or a macroscopic character that is only electrical when the charges are free in an immobile solid material.
  • Electromagnetic waves are the specific case in which energy is propagated by oscillations, in quadrature, in both these forms of energy.
  • the applications of influence and induction are numerous and varied.
  • the mechanical applications of influence we can cite, notably, the electroscope and charge projectors (paints, inks, dust), used in machines such as paint sprayers, photocopiers, air purifiers.
  • the mechanical applications of induction are very widespread.
  • the invention that we will describe is based on the possibility of transporting electrical energy over a short distance, through a vacuum or any dielectric insulating material, by influence.
  • induction and electromagnetic waves do not contribute to the principle in use and cannot therefore be present except as part of attached devices or losses.
  • the devices according to the invention bring into play types of multiple capacitive coupling between multiple conductors which have historically been designated according to the expression “conductors under partial influence”. This type of regime is quite different from the usual idea we have of standard devices known as “total influence” devices, it therefore seems necessary to us to get back to the basics of electrostatics which allow us to define them more precisely.
  • the capacitance obtained can be called the “intrinsic capacitance” of the conductor because, after a fashion, it measures the coupling, by influence, between the electrode and the surrounding dielectric medium. The value obtained for typical gases is very close to the one obtained in a vacuum.
  • displacement current therefore replaces the physical current at the conductor/dielectric boundary. This remains valid for a vacuum, which is therefore also crossed in the vicinity of a conductor by a displacement current.
  • the displacement current density which is usually very low, can be increased by using intense electrical fields and high frequencies. Nevertheless, contrary to a widespread mistaken idea, displacement currents are not always associated with electromagnetic waves (otherwise we would have to consider that waves cross capacitors operating in an alternating regime).
  • the invention relates to remote energy transmission without solid contact through a dielectric medium, it does not relate to the transmission of electromagnetic energy in the form of radiation but, in fact, to the field of electrical energy transport.
  • Influence electrostatic induction
  • the mechanical forces that can be obtained by influence between two remote charges are very weak compared to those that we know are produced between two magnets.
  • Significant energy transport cannot be achieved for partial-influence devices except in the case where high-voltage, high-frequency generators are used.
  • Our invention distinguishes itself from Tesla's work and patents by the fact that energy is transmitted over short distances, preferentially on a longitudinal axis (parallel to the electric field) and without requiring the use of a connection to ground.
  • Our invention distinguishes itself from S. and C. Avramenko's patent by the fact that energy is transmitted over short distances without wires or waves and by the fact that generators and loads are of the same nature.
  • Our invention is distinct from any type of grouping of capacitors, even asymmetrical ones, due to the fact that the simplest embodiment of the invention cannot in any case be reduced to such a type of assembly.
  • FIG. 1 shows a first embodiment of the present invention
  • FIG. 2 represents different possible situations for the internal composition of the H.T.H.F. load
  • FIG. 3 illustrates further embodiments of the invention
  • FIG. 4 illustrates the case in which a set of four internally-switched electrodes (not shown in the figure) are used so that a mobile consumer device remains powered, independently of its angular position in space;
  • FIG. 5 illustrates an embodiment for the distribution of energy using a single producing device towards several consumer devices over short distances
  • FIG. 6 illustrates an embodiment that is possible for the distribution of energy over medium or great distances.
  • the device according to the invention proposes a method of transporting electrical energy over a relatively short distance through a dielectric medium without using electric wires or requiring the slightest form of physical contact (such as, for example, the use of grounding).
  • the invention allows energy to be transported between two remote points, in a vacuum.
  • the technique that is used is based on the use of the Coulomb interaction, which is also called: electrical influence.
  • the device according to the invention finds itself within the context of partial influence, a context in which some conductors must be considered either as isolated and in interaction with the surrounding dielectric medium (optionally, in a vacuum) or as in interaction with multiple remote conductors, which are sometimes far away and undefined.
  • the intrinsic capacitance of the isolated conductor is the important physical property that sets the order of magnitude of the performances obtained.
  • the mathematical tool that is adapted to handle the case of multiple conductors in interactions is the matrix description.
  • physicists also use the expression “near field” (as opposed to “distant field”) which is easier to handle.
  • each element (a traditional capacitor) can be considered to be entirely distinct from the others whereas, in the invention, there are multiple couplings between the electrodes.
  • the device according to the invention calls upon intense electrical fields that exhibit swift temporal variations to use, in the dielectric media outside the conductors, the Maxwell displacement current which is usually extremely weak. These same fields are associated with potentials and impedances which can be very high depending on the size of the devices produced.
  • the frequencies implemented which shall henceforth be called high frequencies (H.F.) are much higher than those customarily used for the transport of electrical energy but in spite of everything remain rather low so that electromagnetic radiation will be negligible. This is the result when the size of a device represents only a small portion of the wavelength in the exterior medium surrounding this latter, or by judicious use of forms (shapes) and phase differences applied to different electrodes.
  • H.T.H.F. generators high-voltage, high-frequency generators (hereinafter referred to as H.T.H.F. generators).
  • H.T.H.F. will be associated with H.T.H.F. loads.
  • Alternating voltages are either purely sinusoidal or consist of multiple frequencies and go from to several hundred volts for applications at very low powers or within the scope of devices of very small sizes (micrometric distances), up to several MV (millions of volts) for high-power or large-size applications.
  • H.T.H.F. generators and loads that function under high voltage and low intensities usually exhibit high impedances.
  • the devices according to the invention consist of at least two distinct parts:
  • An energy-producing device consisting of at least one H.T.H.F. generator and multiple electrodes, electrically connected to the generator(s), whose role is to charge the surrounding medium, optionally a vacuum, with electrical energy.
  • An energy-consuming device consisting of at least one H.T.H.F. load and, optionally, electrodes electrically connected to this/these load(s).
  • the electrodes and connecting wires are defined in the context of the invention as conducting media that have spatial extensions and shapes that are well defined. Mathematically, they correspond to surfaces or volumes that are practically equipotential.
  • the electrodes and connecting wires customarily consist of conductive metals, but can consist optionally partially or totally of conductive liquids or ionized gases, perhaps contained inside solid dielectric materials.
  • the H.T.H.F. generator according to the invention are obtained in many different ways, for example, from an alternating low voltage applied to the primary of an induction transformer that provides a high voltage to the secondary and which is capable of operating at relatively high frequencies, but also optionally using piezoelectrical transformers or any other technology that gives the same results.
  • the H.T.H.F. loads are devices that are similar to those of H.T.H.F. generators; optionally, to supply power to a low-voltage device they use the same technologies as the generators when they are reversible.
  • connection obtained in the context of devices according to the invention is simultaneously bidirectional and verifies the action/reaction principle.
  • the H.T.H.F. generators (as also, optionally, the H.T.H.F. loads) are connected by conductive wires to two types of electrodes placed, preferably, at short distances from the generators, in order to prevent radiative losses.
  • the abovementioned electrodes have different properties and functions depending on their size.
  • a large electrode powered by the same alternating current as a small one, is subject to lower voltages and thus generates weaker electric fields in its environment; we shall name this type of electrode a “passive electrode” or “reservoir electrode”.
  • the largest reservoir that we have, optionally, available to us is the Earth itself.
  • the smaller electrodes are associated with larger fields and are called: “active electrodes”: we call the ones that create the field “generator electrodes”, and the ones that are subjected to it are called “electromotive electrodes”.
  • the electrodes are, in turn, electromotive and generative, depending on the direction in which the energy is being transported.
  • FIG. 1 shows one possible production/consumption association.
  • An H.T.H.F. generator ( 1 ) is connected on one side to a large-size passive electrode ( 2 a ) ( FIG. 1 a ) or to ground (reservoir electrode) ( FIG. 1 b ) and on the other side to a smaller, active electrode ( 3 ) (generator electrode) which produces an intense field zone where the energy is concentrated ( 4 ).
  • the high-impedance load ( 5 ) is connected on one side to a small electrode ( 6 ) (electromotive electrode) placed in the zone where the field is intense, and on the other side to another electrode, preferably a larger one ( 7 ) placed in a zone where the field is weaker (passive electrode).
  • the embodiment described above leads back to a consideration of the interaction between two asymmetric oscillating electric dipoles.
  • the two electrical dipoles interact in a manner that is similar to the interaction obtained between two magnetic induction coils traversed by alternating electrical currents.
  • the device according to the invention is therefore, for influence, the equivalent of partial coupling transformers.
  • the coupling takes place through a dielectric medium of permittivity e, instead of an inductive medium of magnetic permeability ⁇ in the case of a transformer.
  • the specific arrangement where the two dipoles are aligned on the same axis allows the range to be improved and, in the specific case of influence, a limitation of the number of active electrodes.
  • FIG. 2 represents different possible situations for the internal composition of the H.T.H.F. load.
  • FIG. 2 a represents the case in which the use of an induction transformer ( 8 ) associated optionally with a rectifying device (not shown) allows a final low-impedance load ( 9 ) to be powered.
  • FIG. 2 b represents the case in which the H.T.H.F. load consists simply of one component that naturally exhibits high impedance.
  • FIG. 2 c represents the case in which the H.T.H.F. load consists of a low-pressure ionized gas ( 15 ) contained in a solid dielectric enclosure ( 16 ).
  • FIG. 3 illustrates more sophisticated embodiments of the invention.
  • FIG. 3 a represents a case where an additional modulation device ( 11 ) is inserted on the side of the consuming device, between the step-down transformer ( 8 ) and the low-voltage charge ( 9 ).
  • This modulation associated with an amplification device ( 12 ) on the side of the consuming device, allows simultaneous transport of the information in the direction opposite to that in which energy is being transported.
  • the information is generated by a control and management device ( 13 ) located on the consuming device side; a similar device associated with a second modulator placed on the generator device side, between the step-up transformer ( 8 ) and the power source ( 10 ), allows the latter to adapt to the power requirements of the consumer device.
  • FIG. 3 b represents a case in which amplification and additional management on the consuming device side allow bi-directional transmission, which is optionally simultaneous, of information between the consumer and generator devices.
  • a communication protocol allows the consumer device to request the producer device to adapt to its requirements by varying the mean amplitude of the voltages applied to the generator electrodes. Inversely, the producer device can inform the consumer device about its power reserves.
  • the consumer device may be backed up by a means of internal energy storage in case of temporary rupture of the connection.
  • the energy transmitted decreases proportionally to 1/R 4 when the distance R between the dipoles becomes great.
  • the practical range of a producer dipole that powers a relatively small consumer dipole is thus on the order of several times the size of the producer dipole.
  • the range for transport of information only between the producer dipole and the consumer dipole is much greater than that described previously if sufficient amplification of the received signal can be achieved both on the side of the consumer device and that of the producer device.
  • the producer device goes automatically into power-save mode when the load no longer requires energy, by greatly decreasing the mean amplitude of voltages applied to the generating electrode without breaking the information connection with the consumer device.
  • a more developed power save mode is achieved by intermittent interrogations between the producer and consumer devices.
  • only information can be transmitted (according to either a mono, alternating bi-directional, or simultaneous mode).
  • the producer and consumer devices or only the generating and electromotive electrode(s), are kept in place by one or more mechanical connections, which may be removable, which make use of dielectric materials in such manner that the generator and electromotive electrodes face each other without direct electrical contact.
  • This type of mechanism approaches an “electrical outlet” type device.
  • producer and consumer devices can be moved relative to each other without the “energy connection” that unites them being broken.
  • This limited mobility in translation and in rotation can, as an option, be extended to full angular mobility by appropriate management of rotating fields.
  • Relative rotation between a producer device and a consumer device can, optionally, be compensated for by a counter rotation of the field, obtained either by application of voltages of inverted phases to a set of electrodes on the producer device side, or by internal switching of a set of electrodes on the consumer device(s) side.
  • FIG. 4 illustrates the case in which a set of four internally-switched electrodes (not shown in the figure) is used so that a mobile consumer device remains powered, independently of its angular position in space.
  • a set of a minimum of 6 electrodes is required if the consumer device is to rotate around two axes.
  • Management of the rotation of the one or more fields can, optionally, make use of the information connection between the producer and consumer device(s).
  • FIG. 5 illustrates an embodiment for the distribution of energy using a single producing device towards several consumer devices over short distances.
  • FIG. 6 illustrates an embodiment that is possible for the distribution of energy over medium or great distances.
  • energy is provided to the circuit by a high-frequency, low-voltage generator ( 10 ), it is then distributed to remote step-up transformers ( 8 ).
  • the use of low voltage distribution allows the reactive power due to the intrinsic capacitance of the wires (and Joule losses associated with it), as well as the radiation induced by the wires (left part of FIG. 6 ), to be limited.
  • a coaxial-cable type propagation line ( 14 ) can also be used to limit losses by electromagnetic radiation (right portion of FIG. 6 ).
  • the electrodes (like the connecting wires) on both the producer device and consumer device sides, do not need to be good conductors and, optionally, may have relatively high impedance.
  • they consist of very little conductive or semi-conductive material.
  • Active electrodes in the embodiments that use high power can, optionally, be covered with one or more solid insulating materials or, more generally, with a material with a high breakdown voltage and low surface conductivity in order to guarantee the safety of the user by preventing high local increase of current density in case of accidental localized contact.

Abstract

The invention proposes a means for transporting electrical energy and/or information from a distance by using, at a slowly varying regime, the Coulomb field which surrounds any set of charged conductors. The device according to the invention is composed of energy production and consumption devices situated a short distance apart, it uses neither the propagation of electromagnetic waves nor induction and cannot be reduced to a simple arrangement of electrical capacitors. The device is modeled in the form of an interaction between oscillating asymmetric electric dipoles, consisting of a high-frequency high-voltage generator (1) or of a high-frequency high-voltage load (5) placed between two electrodes. The dipoles exert a mutual influence on one another. The devices according to the invention are suitable for powering industrial and domestic electrical apparatus, they are especially suitable for powering low-power devices moving in a limited environment and for short-distance non-radiating transmission of information.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
The present application is a divisional of application Ser. No. 12/293,531, filed Sep. 18, 2008, which is a §371 application of PCT/FR2006/000614, filed Mar. 21, 2006, the entire contents of each of which are incorporated herein by reference.
TECHNICAL FIELD
The invention relates to the topic of electrical energy transport.
Observations on the effects of electricity, first empirically in the 17th and 18th centuries with the use of electrostatic machines, then quantitatively from the work of Charles Augustin Coulomb (1736-1806) followed by numerous others that were supported by inventions of which the first significant one was the Leyden jar, were assembled and represented for the first time with a formalism unified by Sir James Clerk Maxwell (1831-1879). The discovery of electromagnetic waves by Heinrich Rudolph Hertz (1857-1894) was the prelude to the invention of the radio in 1896 by Marconi. The Maxwell equations, supplemented by the Lorentz (1853-1928) force relation, (simply represented, since, in a more compact formalism) are not only still relevant but also gave birth to relativity In fact it can be said that Einstein transposed the invariance character to mechanics using the Lorentz transformation observed in the behavior of the Maxwell-Lorentz equations. In accordance with these latter, we can classify remote actions into three categories:
a purely electrical action that corresponds to the mechanical repulsion/attraction of two distant charges and which gives rise to the definition of the Coulomb potential;
a purely magnetic action that corresponds to the repulsion/attraction of two magnets and allows us to define a scalar magnetic potential (not to be confused with vector potential);
to complete the set, a combined action that occurs when the phenomena present variations that are sufficiently quick over time and which corresponds to the propagation of electromagnetic waves.
We note here that the first two actions are not self-propagating, the third, which corresponds to the propagation of energy at the speed of light, is associated with transverse waves (longitudinal waves are not compatible with Maxwell's equations). Let us also note that the applications of the action of forces at a distance (remote forces) may exhibit a mechanical macroscopic character when the charges are bound to matter, or a macroscopic character that is only electrical when the charges are free in an immobile solid material.
We shall use the following terms: “electrical influence” (electrostatic induction) or simply “influence” to designate the remote transport of energy by electrical force alone; “magnetic induction”, or simply “induction”, to designate the remote transport of energy by magnetic force alone. Electromagnetic waves are the specific case in which energy is propagated by oscillations, in quadrature, in both these forms of energy.
Only electromagnetic waves can transport energy over great distances, the other cases correspond to energy that is stored in the immediate area surrounding the generators; energy is available only over a short distance, i.e. locally. Mathematically, the energy density that can be associated with scalar potentials decreases very rapidly with distance.
The applications of influence and induction are numerous and varied. As regards the mechanical applications of influence, we can cite, notably, the electroscope and charge projectors (paints, inks, dust), used in machines such as paint sprayers, photocopiers, air purifiers. The mechanical applications of induction (magnets, electromagnets) are very widespread.
In the context of applications of transformation of mechanical energy into electrical energy, and vice versa, we can, as regards magnetic induction, note the following: typical motors and electric generators. Influence motors also exist, influence generators also being incorrectly called “electrostatic machines”. Local storage of magnetic energy (induction) is achieved through components called coils or induction coils, whereas local storage of electrical energy (influence) is achieved using capacitors. Particular arrangements of induction coils or capacitors allow induction or influence transformers to be produced. It should be noted that these types of devices involve alternating currents. The laws of influence and induction remain valid in variable (alternating current) applications when the frequencies used are rather low, in this case we use the terms “quasi-static” or “quasi-stationary” regime. In practice, it is necessary for the size of the device to remain small compared to the wavelength in the medium involved. For higher frequencies, influence and induction are no longer dissociable and propagation phenomena must be taken into consideration.
The invention that we will describe is based on the possibility of transporting electrical energy over a short distance, through a vacuum or any dielectric insulating material, by influence. In this regard, induction and electromagnetic waves do not contribute to the principle in use and cannot therefore be present except as part of attached devices or losses. The devices according to the invention bring into play types of multiple capacitive coupling between multiple conductors which have historically been designated according to the expression “conductors under partial influence”. This type of regime is quite different from the usual idea we have of standard devices known as “total influence” devices, it therefore seems necessary to us to get back to the basics of electrostatics which allow us to define them more precisely.
If we take a spherical conductor, place it far away from any other conductor, and give it an electrical charge Q, the potential V that can be associated with the conductor is given by: V=Q/4π∈R (taking the usual convention: nil potential at infinity), where R is the conductor radius and ∈ is the electrical permittivity of the surrounding dielectric medium. The electrical charge on an isolated conductor is therefore intrinsically associated with the potential by the formula: Q=C.V (1), where C=4π∈R. The capacitance obtained can be called the “intrinsic capacitance” of the conductor because, after a fashion, it measures the coupling, by influence, between the electrode and the surrounding dielectric medium. The value obtained for typical gases is very close to the one obtained in a vacuum. When several electrodes are present in a given dielectric medium, we can define the capacitance for each conductor using formula (1), the value obtained is different from that obtained for the isolated conductor. Also, we should define the capacitances of mutual influence. In the general situation of n influence conductors, charges Qi(i=1, 2, . . . , n) obtained on the n conductors are associated with potentials Vi by the matrix relationship (Qi)=(Cij)(Vi), where matrix (Cij) is an n×n matrix. With coefficient Cii being the capacitance proper to conductor i, it is not equal to its intrinsic capacitance unless the distances between conductor i and the other conductors are large compared to the size of conductor i. When two conductors are very close together and have large surfaces facing each other, it can be shown that: C11=C22=−C12=−C21=C and Q1=−Q2=Q and therefore: Q=C(V1-V2). We then say that the conductors are in total influence. We can also say that two conductors are in total influence when all the field lines leaving a conductor systematically return to the other; they are in partial influence only if some lines terminate on conductors other than the two conductors initially being considered.
The case of interaction between two remote electric dipoles, upon which the invention is based, arises from the partial influence between four conductors and cannot therefore in any case be equated to an assembly of standard capacitors, even asymmetric ones. In this type of case, it is not possible to use the expression “capacitive coupling” to describe the overall situation, on the other hand it is possible to discuss the matrix of capacitances or capacitive coefficients.
The physics of influence (electrostatic induction), in the general case where it is not total, is relatively complex. It can be noted that the law of conservation of intensity is no longer verified in it. It is easy to understand that if, in a dynamic application, electrical charges deposit themselves on the walls of a long, thin conductor, their quantity, or, more precisely, their flow, decreases with distance (and the inverse if the charges are collected). Maxwell's equations require conservation of total current density flux: jm+jd where: jd is the displacement current density given by
j d = ɛ E t
and jm the physical current density (density of the current which is circulating in the conductors), the displacement current therefore replaces the physical current at the conductor/dielectric boundary. This remains valid for a vacuum, which is therefore also crossed in the vicinity of a conductor by a displacement current. The displacement current density, which is usually very low, can be increased by using intense electrical fields and high frequencies. Nevertheless, contrary to a widespread mistaken idea, displacement currents are not always associated with electromagnetic waves (otherwise we would have to consider that waves cross capacitors operating in an alternating regime).
There local electrical or magnetic phenomena, which cannot be associated with waves and which require us to consider the dielectric surrounding the conductors as a medium under electrical or magnetic constraints, can, by analogy with physical media, be called “transport phenomena”. In this way, the electrons that move coherently in the conductors are not in direct contact and interact with each other in the same way as remote physical conductors, by influence.
Although the invention relates to remote energy transmission without solid contact through a dielectric medium, it does not relate to the transmission of electromagnetic energy in the form of radiation but, in fact, to the field of electrical energy transport.
STATE OF THE ART
Influence (electrostatic induction) was discovered and studied long before electromagnetic induction. Aside from total-influence capacitors, until now it has given rise to only a few industrial applications that are purely electrical. The mechanical forces that can be obtained by influence between two remote charges are very weak compared to those that we know are produced between two magnets. Significant energy transport cannot be achieved for partial-influence devices except in the case where high-voltage, high-frequency generators are used.
The conditions required to transport electrical energy by influence were assembled for the first time by Nikola Tesla (1856-1943). The devices used were of large size (several tens of meters) and the effects observed extended over several tens of kilometers, i.e. over distances greater than the wave length. In this way, Tesla was not in a quasi-static-regime. In his U.S. Pat. No. 648,621 in 1900, he describes an arrangement that allows remote transverse transmission of energy. The fact that he used the ground on one side and ionized layers of the atmosphere on the other side (experiments at Colorado Springs) makes us think that he achieved something more like transverse wave propagation that was partially guided by the ionosphere. Moreover, on a stormy day he observed the first stationary electromagnetic waves. More recently, Stanislav and Constantin Avramenko, in patent WO 93/23907 thought they obtained longitudinal waves that were propagated along a very fine wire. The receiver device that they used in one of their embodiments seems to call upon the charge reservoir technique that we are also using in our invention. In this same patent, the generator (seen as an emitter of very specific waves) is therefore of a nature that is different from the load. In this regard, we can note the absence of a connection on one of the terminals of the transformer's secondary circuit.
Our invention distinguishes itself from Tesla's work and patents by the fact that energy is transmitted over short distances, preferentially on a longitudinal axis (parallel to the electric field) and without requiring the use of a connection to ground.
Our invention distinguishes itself from S. and C. Avramenko's patent by the fact that energy is transmitted over short distances without wires or waves and by the fact that generators and loads are of the same nature.
Our invention is distinct from any type of grouping of capacitors, even asymmetrical ones, due to the fact that the simplest embodiment of the invention cannot in any case be reduced to such a type of assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a first embodiment of the present invention;
FIG. 2 represents different possible situations for the internal composition of the H.T.H.F. load;
FIG. 3 illustrates further embodiments of the invention;
FIG. 4 illustrates the case in which a set of four internally-switched electrodes (not shown in the figure) are used so that a mobile consumer device remains powered, independently of its angular position in space;
FIG. 5 illustrates an embodiment for the distribution of energy using a single producing device towards several consumer devices over short distances; and
FIG. 6 illustrates an embodiment that is possible for the distribution of energy over medium or great distances.
STATEMENT OF THE INVENTION
The device according to the invention proposes a method of transporting electrical energy over a relatively short distance through a dielectric medium without using electric wires or requiring the slightest form of physical contact (such as, for example, the use of grounding). In this regard, the invention allows energy to be transported between two remote points, in a vacuum. The technique that is used is based on the use of the Coulomb interaction, which is also called: electrical influence.
The word “transport” as well as verbs and adjectives derived from it, designates the longitudinal mechanical nature associated with the concept of electrical force. In this way, even if within the scope of the invention, this latter is exerted remotely (at a distance) through a vacuum, its action must not be confused with electromagnetic transmission (which exhibits a transverse non-mechanical nature and which does not participate in the principle that is used here, other than in the form of undesired losses).
More precisely, the device according to the invention finds itself within the context of partial influence, a context in which some conductors must be considered either as isolated and in interaction with the surrounding dielectric medium (optionally, in a vacuum) or as in interaction with multiple remote conductors, which are sometimes far away and undefined. For some conductors used in the context of the invention, the intrinsic capacitance of the isolated conductor is the important physical property that sets the order of magnitude of the performances obtained.
The mathematical tool that is adapted to handle the case of multiple conductors in interactions is the matrix description. In the limit case of media that we can consider to be continuous, physicists also use the expression “near field” (as opposed to “distant field”) which is easier to handle.
The device according to the invention cannot in any case be reduced to an assembly of standard capacitors, whose object would be to create an electrical coupling between two solid, unconnected parts. In such an assembly, each element (a traditional capacitor) can be considered to be entirely distinct from the others whereas, in the invention, there are multiple couplings between the electrodes.
The device according to the invention calls upon intense electrical fields that exhibit swift temporal variations to use, in the dielectric media outside the conductors, the Maxwell displacement current which is usually extremely weak. These same fields are associated with potentials and impedances which can be very high depending on the size of the devices produced.
In the device according to the invention, the frequencies implemented, which shall henceforth be called high frequencies (H.F.), are much higher than those customarily used for the transport of electrical energy but in spite of everything remain rather low so that electromagnetic radiation will be negligible. This is the result when the size of a device represents only a small portion of the wavelength in the exterior medium surrounding this latter, or by judicious use of forms (shapes) and phase differences applied to different electrodes.
In the embodiments of the invention that we shall describe below, large-amplitude, rapidly-varying fields are obtained using high-voltage, high-frequency generators (hereinafter referred to as H.T.H.F. generators). H.T.H.F. will be associated with H.T.H.F. loads.
Alternating voltages are either purely sinusoidal or consist of multiple frequencies and go from to several hundred volts for applications at very low powers or within the scope of devices of very small sizes (micrometric distances), up to several MV (millions of volts) for high-power or large-size applications.
H.T.H.F. generators and loads that function under high voltage and low intensities usually exhibit high impedances.
The devices according to the invention consist of at least two distinct parts:
An energy-producing device consisting of at least one H.T.H.F. generator and multiple electrodes, electrically connected to the generator(s), whose role is to charge the surrounding medium, optionally a vacuum, with electrical energy.
An energy-consuming device consisting of at least one H.T.H.F. load and, optionally, electrodes electrically connected to this/these load(s).
The electrodes and connecting wires are defined in the context of the invention as conducting media that have spatial extensions and shapes that are well defined. Mathematically, they correspond to surfaces or volumes that are practically equipotential. The electrodes and connecting wires customarily consist of conductive metals, but can consist optionally partially or totally of conductive liquids or ionized gases, perhaps contained inside solid dielectric materials.
The H.T.H.F. generator according to the invention are obtained in many different ways, for example, from an alternating low voltage applied to the primary of an induction transformer that provides a high voltage to the secondary and which is capable of operating at relatively high frequencies, but also optionally using piezoelectrical transformers or any other technology that gives the same results.
The H.T.H.F. loads, according to the invention, are devices that are similar to those of H.T.H.F. generators; optionally, to supply power to a low-voltage device they use the same technologies as the generators when they are reversible.
The connection obtained in the context of devices according to the invention is simultaneously bidirectional and verifies the action/reaction principle.
It arises from this that, when the technologies used, both on the generator side and on the load side, are reversible, then the entire device is reversible and energy can circulate in either direction.
When we consider simple systems, not composed of multiple electrodes subjected to phase differences, the H.T.H.F. generators (as also, optionally, the H.T.H.F. loads) are connected by conductive wires to two types of electrodes placed, preferably, at short distances from the generators, in order to prevent radiative losses.
The abovementioned electrodes have different properties and functions depending on their size. A large electrode, powered by the same alternating current as a small one, is subject to lower voltages and thus generates weaker electric fields in its environment; we shall name this type of electrode a “passive electrode” or “reservoir electrode”. The largest reservoir that we have, optionally, available to us is the Earth itself. The smaller electrodes are associated with larger fields and are called: “active electrodes”: we call the ones that create the field “generator electrodes”, and the ones that are subjected to it are called “electromotive electrodes”. In a reversible embodiment, the electrodes are, in turn, electromotive and generative, depending on the direction in which the energy is being transported.
FIG. 1 shows one possible production/consumption association. An H.T.H.F. generator (1) is connected on one side to a large-size passive electrode (2 a) (FIG. 1 a) or to ground (reservoir electrode) (FIG. 1 b) and on the other side to a smaller, active electrode (3) (generator electrode) which produces an intense field zone where the energy is concentrated (4). The high-impedance load (5), for its part, is connected on one side to a small electrode (6) (electromotive electrode) placed in the zone where the field is intense, and on the other side to another electrode, preferably a larger one (7) placed in a zone where the field is weaker (passive electrode).
The embodiment described above (FIG. 1), leads back to a consideration of the interaction between two asymmetric oscillating electric dipoles. In this regard, the two electrical dipoles interact in a manner that is similar to the interaction obtained between two magnetic induction coils traversed by alternating electrical currents. The device according to the invention is therefore, for influence, the equivalent of partial coupling transformers. The coupling takes place through a dielectric medium of permittivity e, instead of an inductive medium of magnetic permeability μ in the case of a transformer.
As in the case of the air transformer, numerous configurations are possible for the two electric dipoles, the specific arrangement where the two dipoles are aligned on the same axis allows the range to be improved and, in the specific case of influence, a limitation of the number of active electrodes.
In the case of loads that require the impedance to be adapted, there is, in the context of the invention, a minimum of only two active electrodes, one on the side of the producer device (the generating electrode), and the other on the side of the consumer device (the electromotive electrode).
In the case of loads that naturally exhibit a high impedance, such as ionized low-pressure media, solid materials that are highly resistive or some semi-conductors, such loads are placed, optionally, directly in the intense-field zone without the need for connections with additional electrodes. In these types of cases, it is the physical boundaries of such media that play the role of electrodes. In this way, in the case of remote powering of an H.T.H.F. load of high natural impedance, such as an ionized gas contained in a solid dielectric enclosure and use is made of a ground connection connected to one of the generator's terminal, there is now only one single electrode that needs to be connected to the generator's other terminal. This single electrode is, thus, necessarily the generator electrode.
FIG. 2 represents different possible situations for the internal composition of the H.T.H.F. load.
FIG. 2 a represents the case in which the use of an induction transformer (8) associated optionally with a rectifying device (not shown) allows a final low-impedance load (9) to be powered.
FIG. 2 b represents the case in which the H.T.H.F. load consists simply of one component that naturally exhibits high impedance.
FIG. 2 c represents the case in which the H.T.H.F. load consists of a low-pressure ionized gas (15) contained in a solid dielectric enclosure (16).
FIG. 3 illustrates more sophisticated embodiments of the invention.
FIG. 3 a represents a case where an additional modulation device (11) is inserted on the side of the consuming device, between the step-down transformer (8) and the low-voltage charge (9). This modulation, associated with an amplification device (12) on the side of the consuming device, allows simultaneous transport of the information in the direction opposite to that in which energy is being transported. The information is generated by a control and management device (13) located on the consuming device side; a similar device associated with a second modulator placed on the generator device side, between the step-up transformer (8) and the power source (10), allows the latter to adapt to the power requirements of the consumer device.
FIG. 3 b represents a case in which amplification and additional management on the consuming device side allow bi-directional transmission, which is optionally simultaneous, of information between the consumer and generator devices.
These exchanges are not affected by the direction in which energy is transported. An inversion in the direction of energy transport is possible when the unit assembled uses reversible devices (9) and (10).
In one embodiment of the previous device, a communication protocol allows the consumer device to request the producer device to adapt to its requirements by varying the mean amplitude of the voltages applied to the generator electrodes. Inversely, the producer device can inform the consumer device about its power reserves. The consumer device may be backed up by a means of internal energy storage in case of temporary rupture of the connection.
In one embodiment of the invention leading back to a coupling between two dipoles, which corresponds to a quadripolar structure, the energy transmitted decreases proportionally to 1/R4 when the distance R between the dipoles becomes great. The practical range of a producer dipole that powers a relatively small consumer dipole is thus on the order of several times the size of the producer dipole.
In the case in which the consumer dipole is energy independent, the range for transport of information only between the producer dipole and the consumer dipole is much greater than that described previously if sufficient amplification of the received signal can be achieved both on the side of the consumer device and that of the producer device.
In one embodiment of the invention, the producer device goes automatically into power-save mode when the load no longer requires energy, by greatly decreasing the mean amplitude of voltages applied to the generating electrode without breaking the information connection with the consumer device. A more developed power save mode is achieved by intermittent interrogations between the producer and consumer devices.
Finally, in one specific embodiment, only information can be transmitted (according to either a mono, alternating bi-directional, or simultaneous mode).
In some embodiments of the invention, the producer and consumer devices, or only the generating and electromotive electrode(s), are kept in place by one or more mechanical connections, which may be removable, which make use of dielectric materials in such manner that the generator and electromotive electrodes face each other without direct electrical contact. This type of mechanism approaches an “electrical outlet” type device.
In some embodiments of the invention, producer and consumer devices can be moved relative to each other without the “energy connection” that unites them being broken. This limited mobility in translation and in rotation can, as an option, be extended to full angular mobility by appropriate management of rotating fields. Relative rotation between a producer device and a consumer device can, optionally, be compensated for by a counter rotation of the field, obtained either by application of voltages of inverted phases to a set of electrodes on the producer device side, or by internal switching of a set of electrodes on the consumer device(s) side.
FIG. 4 illustrates the case in which a set of four internally-switched electrodes (not shown in the figure) is used so that a mobile consumer device remains powered, independently of its angular position in space. A set of a minimum of 6 electrodes is required if the consumer device is to rotate around two axes.
Management of the rotation of the one or more fields can, optionally, make use of the information connection between the producer and consumer device(s).
FIG. 5 illustrates an embodiment for the distribution of energy using a single producing device towards several consumer devices over short distances.
FIG. 6 illustrates an embodiment that is possible for the distribution of energy over medium or great distances. In FIG. 6, energy is provided to the circuit by a high-frequency, low-voltage generator (10), it is then distributed to remote step-up transformers (8). The use of low voltage distribution allows the reactive power due to the intrinsic capacitance of the wires (and Joule losses associated with it), as well as the radiation induced by the wires (left part of FIG. 6), to be limited. For even greater distances, a coaxial-cable type propagation line (14) can also be used to limit losses by electromagnetic radiation (right portion of FIG. 6).
The electrodes (like the connecting wires) on both the producer device and consumer device sides, do not need to be good conductors and, optionally, may have relatively high impedance. Advantageously, they consist of very little conductive or semi-conductive material.
Active electrodes in the embodiments that use high power can, optionally, be covered with one or more solid insulating materials or, more generally, with a material with a high breakdown voltage and low surface conductivity in order to guarantee the safety of the user by preventing high local increase of current density in case of accidental localized contact.

Claims (8)

The invention claimed is:
1. A method of supplying power to a load in an energy-consumer device comprising an active electrode, a passive electrode, and said load connected on a first side thereof to said active electrode and on a second side thereof to said passive electrode, the method comprising the steps of:
providing an energy-producer device having an active electrode, a passive electrode, and a generator connected on a first side thereof to the active electrode of the energy-producer device and on a second side thereof to the passive electrode of the energy-producer device, so as to subject said active electrode to variations in potential, wherein the active and passive electrodes of the energy-producer device are asymmetrical, the passive electrode either being larger in size than the active electrode or being a ground, and the passive electrode of the energy-producer device having potential variations of lower amplitude than the potential variations of the active electrode of the energy-producer device, and at least one of the passive electrodes is not connected to a ground potential; and
positioning the active electrode of the energy-consumer device in an intense field zone created by the active electrode of the energy-producer device to produce a Coulomb interaction between the active electrode of the energy-consumer device and the active electrode of the energy-producer device forming a direct capacitive coupling between the active electrode of the energy-consumer device and the active electrode of the energy-producer device, to couple the passive electrode of the energy-consumer device to the passive electrode of the energy-producer device by capacitive coupling.
2. The power-supplying method according to claim 1, wherein in the providing step the generator of the energy-producer device is a high-voltage high-frequency generator.
3. The power-supplying method according to claim 2, wherein in the positioning step the active electrode of the energy-consumer device is disposed in an area where the variations in potential are high and the passive electrode of the energy-consumer device is disposed in an area where variations in potential are lower.
4. The power-supplying method according to claim 3, wherein the energy-producer device and energy-consumer device each comprise a modulator adapted to cause modulation of the varying potentials in said area, making use of the frequency or frequencies used for energy transport or of superposed frequencies which do not produce significant losses by radiation, whereby to perform simultaneous bidirectional transfer of signals that transport information independently of the direction in which the energy is transported.
5. The power-supplying method according to claim 4, and comprising the step of amplifying, in the energy-producer device and the energy-consumer device, information transported therebetween.
6. The power-supplying method according to claim 1, wherein at least one of the active electrodes is in electrical contact with at least one removable mechanical electrical outlet connection.
7. The power-supplying method according to claim 1, wherein the energy-producer device is a dipolar, asymmetrical oscillating energy-producer device and the energy-consumer device is a dipolar, asymmetrical oscillating energy-consumer device.
8. A method of supplying power to a load in an energy-consumer device comprising an active electrode, a passive electrode, and said load connected on a first side thereof to said active electrode and on a second side thereof to said passive electrode, the method comprising the steps of:
providing an energy-producer device having an active electrode, a passive electrode, and a generator connected on a first side thereof to the active electrode of the energy-producer device and on a second side thereof to the passive electrode of the energy-producer device, so as to subject said active electrode to variations in potential, wherein the active and passive electrodes of the energy-producer device are asymmetrical, the passive electrode either being larger in size than the active electrode or being a ground, and the passive electrode of the energy-producer device having potential variations of lower amplitude than the potential variations of the active electrode of the energy-producer device; and
positioning the active electrode of the energy-consumer device in an intense field zone created by the active electrode of the energy-producer device to produce a Coulomb interaction between the active electrode of the energy-consumer device and the active electrode of the energy-producer device forming a direct capacitive coupling between the active electrode of the energy-consumer device and the active electrode of the energy-producer device, to couple the passive electrode of the energy-consumer device to the passive electrode of the energy-producer device by capacitive coupling, wherein in the providing step:
the generator of the energy-producer device comprises a second generator and a plurality of transformers remote from said second generator and connected thereto by coaxial cables; and
the energy-producer device comprises a plurality of active electrodes, connected to respective ones of said plurality of transformers,
whereby power can be supplied to the energy-consumer device, remote from said second generator, positioned relative to any of said plurality of active electrodes of the energy-producer device.
US13/535,866 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium Active US8587156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/535,866 US8587156B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/FR2006/000614 WO2007107642A1 (en) 2006-03-21 2006-03-21 Device for transporting energy by partial influence through a dielectric medium
US29353108A 2008-09-18 2008-09-18
US13/535,866 US8587156B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/293,531 Division US8242638B2 (en) 2006-03-21 2006-03-21 Device for transporting energy by partial influence through a dielectric medium
PCT/FR2006/000614 Division WO2007107642A1 (en) 2006-03-21 2006-03-21 Device for transporting energy by partial influence through a dielectric medium
US29353108A Division 2006-03-21 2008-09-18

Publications (2)

Publication Number Publication Date
US20120267959A1 US20120267959A1 (en) 2012-10-25
US8587156B2 true US8587156B2 (en) 2013-11-19

Family

ID=37451001

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/293,531 Active US8242638B2 (en) 2006-03-21 2006-03-21 Device for transporting energy by partial influence through a dielectric medium
US13/536,060 Active US8587157B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium
US13/536,035 Active US8729738B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium
US13/535,866 Active US8587156B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/293,531 Active US8242638B2 (en) 2006-03-21 2006-03-21 Device for transporting energy by partial influence through a dielectric medium
US13/536,060 Active US8587157B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium
US13/536,035 Active US8729738B2 (en) 2006-03-21 2012-06-28 Device for transporting energy by partial influence through a dielectric medium

Country Status (7)

Country Link
US (4) US8242638B2 (en)
EP (1) EP1997238B1 (en)
JP (1) JP4962560B2 (en)
KR (1) KR101299541B1 (en)
CN (1) CN101416411B (en)
BR (1) BRPI0621437A2 (en)
WO (1) WO2007107642A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110316353A1 (en) * 2010-06-24 2011-12-29 Murata Manufacturing Co., Ltd. Power transmitting apparatus, power receiving apparatus, and wireless power transmission system
US20120146574A1 (en) * 2009-06-25 2012-06-14 Murata Manufacturing Co., Ltd. Power Transfer System and Noncontact Charging Device
US20150256022A1 (en) * 2014-03-06 2015-09-10 Samsung Electro-Mechanics Co., Ltd. Non-contact type power charging apparatus and non-contact type battery apparatus
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
US9755460B2 (en) 2011-10-28 2017-09-05 Murata Manufacturing Co., Ltd. Power reception device, power transmission device and wireless power transmission system

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242638B2 (en) 2006-03-21 2012-08-14 Murata Manufacturing Co., Ltd. Device for transporting energy by partial influence through a dielectric medium
US7881693B2 (en) 2006-10-17 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
FR2920061A1 (en) 2007-08-17 2009-02-20 Patrick Camurati METHOD AND DEVICE FOR TRANSPORTING, DISTRIBUTING AND MANAGING ELECTRICAL ENERGY BY LONGITUDINAL COUPLING IN A CLOSE FIELD BETWEEN ELECTRIC DIPOLES
JP5287863B2 (en) * 2008-10-09 2013-09-11 トヨタ自動車株式会社 Non-contact power receiving apparatus and vehicle equipped with the same
FR2956869B1 (en) 2010-03-01 2014-05-16 Alex Hr Roustaei SYSTEM FOR PRODUCING HIGH CAPACITY FLEXIBLE FILM FOR PHOTOVOLTAIC AND OLED CELLS BY CYCLIC LAYER DEPOSITION
JP5354029B2 (en) * 2009-06-25 2013-11-27 株式会社村田製作所 Power transmission system and non-contact charging device
WO2010150317A1 (en) * 2009-06-25 2010-12-29 Murata Manufacturing Co., Ltd. Power transfer system and noncontact charging device
DE102009039998B4 (en) * 2009-09-03 2014-12-11 Siemens Aktiengesellschaft Particle accelerator with switch arrangement near an accelerator cell
JP2013513350A (en) * 2009-12-04 2013-04-18 パワーマッド テクノロジーズ リミテッド System and method for controlling connection from a power source to an inductive power outlet
JP5403073B2 (en) * 2010-01-29 2014-01-29 株式会社村田製作所 Power receiving device and power transmitting device
CN102754306B (en) * 2010-05-28 2014-12-24 株式会社村田制作所 Power transmission system
JP5093369B2 (en) * 2010-07-28 2012-12-12 株式会社村田製作所 Power transmission device, power reception device, and power transmission system
JP5177187B2 (en) 2010-08-10 2013-04-03 株式会社村田製作所 Power transmission system
JP5821370B2 (en) * 2010-08-25 2015-11-24 株式会社村田製作所 Power transmission device and power transmission system using the power transmission device
JP5581899B2 (en) * 2010-08-27 2014-09-03 株式会社村田製作所 Power transmission device and power transmission system using the power transmission device
JP2012049434A (en) * 2010-08-30 2012-03-08 Sony Corp Electronic component, feeder device, power receiver, and wireless feeder system
JP5672898B2 (en) * 2010-09-27 2015-02-18 株式会社村田製作所 Power transmission system
CN103098343B (en) * 2010-11-25 2015-04-29 株式会社村田制作所 Electric power transmission system, and power transmission device used in electric power transmission system
KR101468020B1 (en) * 2010-12-24 2014-12-02 가부시키가이샤 무라타 세이사쿠쇼 Wireless power transmission system
JP5500269B2 (en) * 2010-12-24 2014-05-21 株式会社村田製作所 Wireless power transmission system, power transmission device and power reception device
US9781783B2 (en) 2011-04-15 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting system, and display system
WO2012144548A1 (en) * 2011-04-20 2012-10-26 株式会社村田製作所 Power transmission system and power reception jacket
JP5690642B2 (en) 2011-04-22 2015-03-25 矢崎総業株式会社 Resonance type non-contact power feeding system, power transmission side device of resonance type non-contact power feeding system, and in-vehicle charging device
KR101360011B1 (en) * 2011-05-13 2014-02-11 가부시키가이샤 무라타 세이사쿠쇼 Power transmitting device, power receiving device, and power transmission system
JP5299578B2 (en) * 2011-05-13 2013-09-25 株式会社村田製作所 Power transmission device and power transmission system
JP5708270B2 (en) * 2011-06-03 2015-04-30 株式会社村田製作所 Power transmission device, power reception device, and power transmission system
WO2012172929A1 (en) 2011-06-13 2012-12-20 株式会社村田製作所 Power transmission system and power reception device
WO2012172930A1 (en) 2011-06-14 2012-12-20 株式会社村田製作所 Power transmission device and power transmission system
CN102959830B (en) * 2011-06-28 2015-04-01 株式会社村田制作所 High-frequency power device, power transmission device, and power transfer system
JP6198734B2 (en) * 2011-08-16 2017-09-20 フィリップス ライティング ホールディング ビー ヴィ Wireless power converters used as capacitive power transfer systems
CN103748797B (en) * 2011-08-16 2016-08-17 皇家飞利浦有限公司 For realizing the capacitive character electric power system that wireless power transmits within tubular-shaped structures
JP5799656B2 (en) * 2011-08-18 2015-10-28 株式会社村田製作所 Power transmission system
CA2788895C (en) * 2011-09-07 2020-08-18 Solace Power Inc. Wireless electric field power transmission system and method
CN103493387A (en) * 2011-09-07 2014-01-01 株式会社村田制作所 Power transmission system and power transmission device
RU2481705C1 (en) * 2011-09-13 2013-05-10 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Wireless electromagnetic receiver and system of wireless energy transfer
JP5742955B2 (en) * 2011-10-03 2015-07-01 株式会社村田製作所 Power transmission system and power transmission device
GB2509030B (en) * 2011-10-12 2016-06-22 Murata Manufacturing Co Wireless power transmission system
US20140300204A1 (en) 2011-10-31 2014-10-09 Showa Denko K.K. Composite material, transmission sheet, transmission unit, and non-contact power transmission system including the same
JP2013096174A (en) * 2011-11-02 2013-05-20 Hosiden Corp Electric field coupling type electric lock
JP5472547B2 (en) * 2011-11-14 2014-04-16 株式会社村田製作所 Power transmission system
GB2511448B (en) 2011-11-24 2017-10-04 Murata Manufacturing Co Power transmission device and power transmission control method
JP5574058B2 (en) * 2011-12-01 2014-08-20 株式会社村田製作所 Step-down circuit and power receiving device using the step-down circuit
CN102522831A (en) * 2011-12-08 2012-06-27 辽宁省电力有限公司沈阳超高压分公司 Non-contact electric field type induction power access method and power access apparatus thereof
JP5812839B2 (en) 2011-12-12 2015-11-17 富士機械製造株式会社 Non-contact power feeding device
EP2819485A4 (en) * 2012-02-20 2016-01-06 Kaneka Corp Light emitting system and organic el apparatus
JP5844662B2 (en) * 2012-03-07 2016-01-20 日立マクセル株式会社 Non-contact power transmission system and non-contact power transmission method
JP5729626B2 (en) * 2012-03-23 2015-06-03 株式会社村田製作所 Power transmission device, power reception device, and non-contact power transmission system
WO2013145180A1 (en) * 2012-03-28 2013-10-03 富士機械製造株式会社 Electrostatic-coupling-type non-contact power supplying device
WO2013168307A1 (en) 2012-05-09 2013-11-14 株式会社村田製作所 Wireless power transmission system
JP6065447B2 (en) * 2012-08-03 2017-01-25 株式会社村田製作所 Power transmission device and power transmission system
WO2014103435A1 (en) 2012-12-27 2014-07-03 株式会社村田製作所 Measuring circuit and measuring device for wireless power transmission system
CN204992789U (en) 2013-01-21 2016-01-20 株式会社村田制作所 Power transmission system
GB2519924A (en) 2013-01-21 2015-05-06 Murata Manufacturing Co Power receiving device, power transmitting device, and power transmission system
JP5804303B2 (en) * 2013-01-29 2015-11-04 株式会社村田製作所 Power transmission equipment
JP6161683B2 (en) 2013-02-15 2017-07-12 富士機械製造株式会社 Electrostatic coupling type non-contact power feeding device
JP5979301B2 (en) * 2013-03-01 2016-08-24 株式会社村田製作所 Power transmission device and power reception device
WO2014148369A1 (en) 2013-03-19 2014-09-25 株式会社村田製作所 Wireless power transmission system
JP2014204348A (en) 2013-04-05 2014-10-27 帝人株式会社 Antenna device
JP6127777B2 (en) 2013-06-28 2017-05-17 ソニー株式会社 Power supply device and power supply system
WO2015002126A1 (en) 2013-07-01 2015-01-08 株式会社村田製作所 Wireless power-transmission system
WO2015005155A1 (en) 2013-07-08 2015-01-15 株式会社村田製作所 Power conversion circuit, power transmission system, and power conversion system
US9577448B2 (en) 2013-07-30 2017-02-21 Intel Corporation Integration of wireless charging unit in a wireless device
CN105339858B (en) 2013-07-31 2019-07-09 英特尔公司 Wireless charging unit for wireless device and the docking combination based on coupler
JP2015077021A (en) * 2013-10-10 2015-04-20 ソニー株式会社 Power reception device and power transmission unit and power supply system
JP6315382B2 (en) 2013-12-19 2018-04-25 パナソニックIpマネジメント株式会社 Power transmission device, power reception device, and wireless power transmission system for wireless power transmission
CN106716778A (en) * 2014-06-26 2017-05-24 索雷斯能源公司 Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
SG11201701617QA (en) 2014-09-05 2017-03-30 Solace Power Inc Wireless electric field power transfer system, method, transmitter and receiver therefor
US9887556B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Chemically enhanced isolated capacitance
CN104594695A (en) * 2014-12-27 2015-05-06 重庆市喜植机械设备有限公司 High-voltage electricity transmitting device
CN104594694A (en) * 2014-12-27 2015-05-06 重庆市喜植机械设备有限公司 Electric power high voltage transmission device
CN104631899A (en) * 2015-01-20 2015-05-20 徐勇 High voltage transmission device
CN104617604A (en) * 2015-01-20 2015-05-13 徐勇 High voltage power transmission device
CN104612456A (en) * 2015-01-20 2015-05-13 徐勇 High voltage transmission device
DE102015004701A1 (en) * 2015-04-09 2016-10-13 Audi Ag Electric vehicle with fast charging function
CN106340843B (en) * 2016-10-14 2017-12-05 黑龙江省电力科学研究院 A kind of high voltage differential power transmitting device
EP3386072A1 (en) 2017-04-07 2018-10-10 ABB Schweiz AG A system for wireless power transfer between low and high electrical potential, and a high voltage circuit breaker
US11139686B2 (en) * 2017-04-13 2021-10-05 Richard Marion Mansell System and method for wireless transmission of power
CN110994808B (en) * 2020-01-01 2021-07-13 东北石油大学 Electromagnetic induction coupling charging device and method for oil field underground environment

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645576A (en) 1897-09-02 1900-03-20 Nikola Tesla System of transmission of electrical energy.
US4763340A (en) 1983-12-22 1988-08-09 Sharp Kabushiki Kaisha Capacitive coupling type data transmission circuit for portable electronic apparatus
WO1993023907A1 (en) 1992-05-08 1993-11-25 New Systems Limited Apparatus and method for single line electrical transmission
JPH06150079A (en) 1992-11-13 1994-05-31 Pfu Ltd Non-contact ic memory card system
JPH07134894A (en) 1993-11-10 1995-05-23 Nec Corp Semiconductor memory device
US5572441A (en) 1994-04-04 1996-11-05 Lucent Technologies Inc. Data connector for portable devices
US5621913A (en) 1992-05-15 1997-04-15 Micron Technology, Inc. System with chip to chip communication
WO1997014112A1 (en) 1995-10-11 1997-04-17 Motorola Inc. Remotely powered electronic tag and associated exciter/reader and related method
US6336031B1 (en) 1998-12-22 2002-01-01 Nortel Networks Limited Wireless data transmission over quasi-static electric potential fields
US20020051435A1 (en) 2000-10-27 2002-05-02 L-3 Communications Corporation Two-dimensional channel bonding in a hybrid CDMA/FDMA fixed wireless access system to provide finely variable rate channels
US20020132585A1 (en) 2001-03-16 2002-09-19 Aura Communications, Inc. Techniques for inductive communication systems
US20020183003A1 (en) 2001-04-20 2002-12-05 Mastek International Wireless IC interconnection method and system
JP2003523699A (en) 2000-02-18 2003-08-05 サイパック アクチボラゲット Two-way wireless transmission system for electrical signals
DE10304584A1 (en) 2003-02-05 2004-08-19 Abb Research Ltd. Communication of power and data to sensors and actuators in a process uses field transmission and avoids wiring
US6859050B2 (en) 2002-05-31 2005-02-22 Agilent Technologies, Inc. High frequency contactless heating with temperature and/or conductivity monitoring
US6865409B2 (en) 2001-11-07 2005-03-08 Kinesense, Inc. Surface electromyographic electrode assembly
JP2005079786A (en) 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
US6943705B1 (en) 2002-05-03 2005-09-13 Synaptics, Inc. Method and apparatus for providing an integrated membrane switch and capacitive sensor
FR2875649A1 (en) 2004-09-21 2006-03-24 Henri Bondar Electric power transmission device for e.g. electric household appliance, has electric dipoles aligned on same axis, and generating and electromotive electrodes that are active and covered by solid insulating material
FR2875939A1 (en) 2004-09-27 2006-03-31 Henri Bondar Contactless outlet for connecting high voltage high frequency generator and load, has generative and electromotive electrodes covered with insulator and positioned at short distance, and connected by respective wires to generator and load
FR2876495A1 (en) 2004-10-11 2006-04-14 Henri Bondar Electric induction device e.g. ionized gas based lighting device, for e.g. forming light panel, has generator electrode connected to high tension radio-frequency generator and placed at short distance from solid insulating casing
US7142811B2 (en) 2001-03-16 2006-11-28 Aura Communications Technology, Inc. Wireless communication over a transducer device
WO2007107642A1 (en) 2006-03-21 2007-09-27 Tmms Co., Ltd. Device for transporting energy by partial influence through a dielectric medium
US20080076351A1 (en) 2006-09-11 2008-03-27 Takanori Washiro Communication System, Communication Apparatus, and Electric-Field-Coupling Antenna
US20090026675A1 (en) 2007-07-13 2009-01-29 Tokai Rubber Industries, Ltd. Vibration damping device equipped with rubber heat-insulating cover
US7521890B2 (en) 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
US7576514B2 (en) 2002-06-10 2009-08-18 Cityu Research Limited Planar inductive battery charging system
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
US7809331B2 (en) 2004-11-19 2010-10-05 Panasonic Corporation Data communication apparatus
US8049370B2 (en) 2007-09-25 2011-11-01 Powermat Ltd. Centrally controlled inductive power transmission platform
US8090550B2 (en) 2007-03-22 2012-01-03 Powermat, Ltd. Efficiency monitor for inductive power transmission

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645576A (en) 1897-09-02 1900-03-20 Nikola Tesla System of transmission of electrical energy.
US4763340A (en) 1983-12-22 1988-08-09 Sharp Kabushiki Kaisha Capacitive coupling type data transmission circuit for portable electronic apparatus
WO1993023907A1 (en) 1992-05-08 1993-11-25 New Systems Limited Apparatus and method for single line electrical transmission
US5621913A (en) 1992-05-15 1997-04-15 Micron Technology, Inc. System with chip to chip communication
JPH06150079A (en) 1992-11-13 1994-05-31 Pfu Ltd Non-contact ic memory card system
JPH07134894A (en) 1993-11-10 1995-05-23 Nec Corp Semiconductor memory device
US5572441A (en) 1994-04-04 1996-11-05 Lucent Technologies Inc. Data connector for portable devices
JPH11513518A (en) 1995-10-11 1999-11-16 モトローラ・インコーポレイテッド Exciter / reader and method for remotely powered electronic tag
WO1997014112A1 (en) 1995-10-11 1997-04-17 Motorola Inc. Remotely powered electronic tag and associated exciter/reader and related method
US6336031B1 (en) 1998-12-22 2002-01-01 Nortel Networks Limited Wireless data transmission over quasi-static electric potential fields
JP2003523699A (en) 2000-02-18 2003-08-05 サイパック アクチボラゲット Two-way wireless transmission system for electrical signals
US6615023B1 (en) 2000-02-18 2003-09-02 Cypak Ab System for wireless, bi-directional transfer of electric signals
US20020051435A1 (en) 2000-10-27 2002-05-02 L-3 Communications Corporation Two-dimensional channel bonding in a hybrid CDMA/FDMA fixed wireless access system to provide finely variable rate channels
US20020132585A1 (en) 2001-03-16 2002-09-19 Aura Communications, Inc. Techniques for inductive communication systems
US7142811B2 (en) 2001-03-16 2006-11-28 Aura Communications Technology, Inc. Wireless communication over a transducer device
US20020183003A1 (en) 2001-04-20 2002-12-05 Mastek International Wireless IC interconnection method and system
US6856788B2 (en) 2001-04-20 2005-02-15 Mastek International Wireless IC interconnection method and system
US6865409B2 (en) 2001-11-07 2005-03-08 Kinesense, Inc. Surface electromyographic electrode assembly
US6943705B1 (en) 2002-05-03 2005-09-13 Synaptics, Inc. Method and apparatus for providing an integrated membrane switch and capacitive sensor
US6859050B2 (en) 2002-05-31 2005-02-22 Agilent Technologies, Inc. High frequency contactless heating with temperature and/or conductivity monitoring
US7576514B2 (en) 2002-06-10 2009-08-18 Cityu Research Limited Planar inductive battery charging system
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
DE10304584A1 (en) 2003-02-05 2004-08-19 Abb Research Ltd. Communication of power and data to sensors and actuators in a process uses field transmission and avoids wiring
JP2005079786A (en) 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
FR2875649A1 (en) 2004-09-21 2006-03-24 Henri Bondar Electric power transmission device for e.g. electric household appliance, has electric dipoles aligned on same axis, and generating and electromotive electrodes that are active and covered by solid insulating material
FR2875939A1 (en) 2004-09-27 2006-03-31 Henri Bondar Contactless outlet for connecting high voltage high frequency generator and load, has generative and electromotive electrodes covered with insulator and positioned at short distance, and connected by respective wires to generator and load
FR2876495A1 (en) 2004-10-11 2006-04-14 Henri Bondar Electric induction device e.g. ionized gas based lighting device, for e.g. forming light panel, has generator electrode connected to high tension radio-frequency generator and placed at short distance from solid insulating casing
US7809331B2 (en) 2004-11-19 2010-10-05 Panasonic Corporation Data communication apparatus
US7521890B2 (en) 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
EP1997238A1 (en) 2006-03-21 2008-12-03 TMMS Co., Ltd. Device for transporting energy by partial influence through a dielectric medium
WO2007107642A1 (en) 2006-03-21 2007-09-27 Tmms Co., Ltd. Device for transporting energy by partial influence through a dielectric medium
JP2008099236A (en) 2006-09-11 2008-04-24 Sony Corp Communication system, communication device, and high-frequency coupler
US20080076351A1 (en) 2006-09-11 2008-03-27 Takanori Washiro Communication System, Communication Apparatus, and Electric-Field-Coupling Antenna
US8090550B2 (en) 2007-03-22 2012-01-03 Powermat, Ltd. Efficiency monitor for inductive power transmission
US20090026675A1 (en) 2007-07-13 2009-01-29 Tokai Rubber Industries, Ltd. Vibration damping device equipped with rubber heat-insulating cover
US8049370B2 (en) 2007-09-25 2011-11-01 Powermat Ltd. Centrally controlled inductive power transmission platform

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146574A1 (en) * 2009-06-25 2012-06-14 Murata Manufacturing Co., Ltd. Power Transfer System and Noncontact Charging Device
US8907617B2 (en) * 2009-06-25 2014-12-09 Murata Manufacturing Co., Ltd Power transfer system and noncontact charging device
US20110316353A1 (en) * 2010-06-24 2011-12-29 Murata Manufacturing Co., Ltd. Power transmitting apparatus, power receiving apparatus, and wireless power transmission system
US8772978B2 (en) * 2010-06-24 2014-07-08 Murata Manufacturing Co., Ltd. Power transmitting apparatus, power receiving apparatus, and wireless power transmission system
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
US9755460B2 (en) 2011-10-28 2017-09-05 Murata Manufacturing Co., Ltd. Power reception device, power transmission device and wireless power transmission system
US20150256022A1 (en) * 2014-03-06 2015-09-10 Samsung Electro-Mechanics Co., Ltd. Non-contact type power charging apparatus and non-contact type battery apparatus
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus

Also Published As

Publication number Publication date
JP2009531009A (en) 2009-08-27
WO2007107642A1 (en) 2007-09-27
US8729738B2 (en) 2014-05-20
CN101416411B (en) 2013-05-15
EP1997238B1 (en) 2011-08-24
US8587157B2 (en) 2013-11-19
US8242638B2 (en) 2012-08-14
US20090206675A1 (en) 2009-08-20
KR20080108993A (en) 2008-12-16
US20120267959A1 (en) 2012-10-25
BRPI0621437A2 (en) 2012-07-10
KR101299541B1 (en) 2013-08-23
US20120262005A1 (en) 2012-10-18
EP1997238A1 (en) 2008-12-03
JP4962560B2 (en) 2012-06-27
US20120267963A1 (en) 2012-10-25
CN101416411A (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US8587156B2 (en) Device for transporting energy by partial influence through a dielectric medium
US8847432B2 (en) Method and device for transporting, distributing and managing electrical energy by remote longitudinal coupling in near field between electric dipoles
US10622839B2 (en) Electrical energy transfer
Alhamrouni et al. Application of inductive coupling for wireless power transfer
Gao et al. Capacitive power transfer through virtual self‐capacitance route
Zhang et al. Interoperability study of fast wireless charging and normal wireless charging of electric vehicles with a shared receiver
CN102983640B (en) By passing through the device of dielectric inducting transmission energy locally
Mita et al. Microscale ultrahigh-frequency resonant wireless powering for capacitive and resistive MEMS actuators
RU2454799C2 (en) Device for electrostatic power transmission through non-conducting medium
CN103036320B (en) Device capable of inducing transmission energy in part through penetrating through dielectric
Sahay et al. Development of wireless power transfer system with internet of things
CN103066707B (en) Energy transmitting device by partial induction of crossing dielectric
Marinescu et al. Contactless power transfer–theoretical principles and fields of applications
Manez Optimization of Inductive Resonant Coupling Links for Low Power and Mid-Range Wireless Power Transfer
Pravin et al. Wireless power transmission using indcutive coupling
Sharma et al. Comparative implication and analysis of inductive & capacitive wireless power and data transfer in usb
Mokalkar et al. Witricity: a novel concept of power transfer
Garg et al. Wireless transmission network: A imagine

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8