US9079370B2 - Method for extruding a drop cable - Google Patents

Method for extruding a drop cable Download PDF

Info

Publication number
US9079370B2
US9079370B2 US13/555,644 US201213555644A US9079370B2 US 9079370 B2 US9079370 B2 US 9079370B2 US 201213555644 A US201213555644 A US 201213555644A US 9079370 B2 US9079370 B2 US 9079370B2
Authority
US
United States
Prior art keywords
reinforcing members
outer jacket
fiber
reinforcing member
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/555,644
Other versions
US20130032280A1 (en
Inventor
Wayne M. Kachmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope EMEA Ltd
Commscope Technologies LLC
Original Assignee
ADC Telecommunications Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADC Telecommunications Inc filed Critical ADC Telecommunications Inc
Priority to US13/555,644 priority Critical patent/US9079370B2/en
Publication of US20130032280A1 publication Critical patent/US20130032280A1/en
Assigned to ADC TELECOMMUNICATIONS, INC. reassignment ADC TELECOMMUNICATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KACHMAR, WAYNE M.
Application granted granted Critical
Publication of US9079370B2 publication Critical patent/US9079370B2/en
Assigned to TYCO ELECTRONICS SERVICES GMBH reassignment TYCO ELECTRONICS SERVICES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADC TELECOMMUNICATIONS, INC., TE CONNECTIVITY SOLUTIONS GMBH
Assigned to COMMSCOPE EMEA LIMITED reassignment COMMSCOPE EMEA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TYCO ELECTRONICS SERVICES GMBH
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMSCOPE EMEA LIMITED
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (TERM) Assignors: COMMSCOPE TECHNOLOGIES LLC
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: COMMSCOPE TECHNOLOGIES LLC
Assigned to REDWOOD SYSTEMS, INC., ANDREW LLC, COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, ALLEN TELECOM LLC reassignment REDWOOD SYSTEMS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC, REDWOOD SYSTEMS, INC., COMMSCOPE TECHNOLOGIES LLC, ALLEN TELECOM LLC reassignment COMMSCOPE, INC. OF NORTH CAROLINA RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. TERM LOAN SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. ABL SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: COMMSCOPE TECHNOLOGIES LLC
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29C47/027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the present disclosure relates to telecommunication cable. More particularly, the present disclosure relates to fiber optic cable for use in a communication network.
  • a fiber optic cable typically includes: (1) an optical fiber; (2) a buffer layer that surrounds the optical fiber; (3) a plurality of reinforcing members loosely surrounding the buffer layer; and (4) an outer jacket.
  • Optical fibers function to carry optical signals.
  • a typical optical fiber includes an inner core surrounded by a cladding that is protected by a coating.
  • the buffer layer functions to surround and protect the coated optical fibers.
  • Reinforcing members add mechanical reinforcement to fiber optic cables to protect the internal optical fibers against stresses applied to the cables during installation and thereafter. Outer jackets also provide protection against chemical damage.
  • Drop cables used in fiber optic networks can be constructed having a jacket with a flat transverse profile.
  • Such cables typically include a central buffer tube containing a plurality of optical fibers and reinforcing members such as rods made of glass reinforced epoxy embedded in the jacket on opposite sides of the buffer tube.
  • U.S. Pat. No. 6,542,674 discloses a drop cable of a type described above.
  • One aspect of the present disclosure relates to a method for extruding a drop cable having reinforcing members positioned on opposite sides of a fiber passage.
  • the method allows uniform tension to be applied to the reinforcing members during the extrusion process.
  • the present disclosure relates to a method for manufacturing a fiber optic cable.
  • the method includes extruding an outer jacket that defines a fiber passage and first and second reinforcing member passages, feeding an optical fiber ribbon into the fiber passage, and feeding reinforcing members into the first and second reinforcing member passages.
  • the outer jacket has an elongated transverse cross-sectional profile that defines a major axis and a minor axis that meet at a lengthwise axis of the fiber optic cable.
  • the elongated transverse cross-sectional profile has a width that extends along the major axis and a thickness that extends along the minor axis.
  • the width of the elongated transverse cross-sectional profile is longer than the thickness of the elongated transverse cross-sectional profile.
  • the fiber passage extends through the outer jacket along a lengthwise axis of the outer jacket.
  • the first and second reinforcing member passages are positioned on opposite sides of the fiber passage. The reinforcing members are paid-off from a single spool.
  • the reinforcing members are paid-off from the single spool by paying-off a precursor reinforcing member from the single spool.
  • the precursor reinforcing member is then divided into the reinforcing members which are then fed into the first and second reinforcing member passages.
  • the precursor reinforcing member can be divided into the reinforcing members using a slitter.
  • the method further includes providing a water-blocking material within the fiber passage of the outer jacket.
  • the water-blocking material can be a water-blocking gel.
  • FIG. 1 is a partially cut-away perspective view of a fiber optic cable in accordance with the principles of the present disclosure
  • FIG. 1A is a cross-sectional perspective view with the same orientation as FIG. 1 of a jacket of the fiber optic cable of FIG. 1 ;
  • FIG. 2 is a transverse cross-sectional view taken along section line 2 - 2 of the fiber optic cable of FIG. 1 ;
  • FIG. 2A is the transverse cross-sectional view of FIG. 2 , but showing only the jacket of FIG. 1A ;
  • FIG. 3 is a schematic view of a system for manufacturing the fiber optic cable of FIGS. 1 and 2 ;
  • FIG. 4 is a flow chart outlining a method for making the fiber optic cable of FIGS. 1 and 2 ;
  • FIG. 5 is a perspective view of an optical fiber suitable for use in the fiber optic cable of FIG. 1 .
  • FIGS. 1 and 2 show a fiber optic cable 10 in accordance with the principles of the present disclosure.
  • the fiber optic cable 10 includes an optical fiber ribbon 11 including a plurality of optical fibers 12 (e.g., 12 optical fibers).
  • the optical fibers 12 of the optical fiber ribbon 11 are mechanically bound (i.e., linked, coupled, secured, etc.) together in a row by a binding material 50 (i.e., a matrix material, a substrate material, etc.).
  • the optical fiber ribbon 11 is contained within a fiber passage 13 defined by an outer jacket 16 of the fiber optic cable 10 .
  • the optical fiber ribbon 11 is positioned directly within the fiber passage 13 and is not positioned within a separate buffer tube positioned within the fiber passage 13 .
  • an intermediate buffing layer e.g., a buffer tube
  • a material such as gel can be provided within the fiber passage 13 for providing water blocking and for centering the optical fiber ribbon 11 within the fiber passage 13 .
  • Reinforcing members 18 are embedded in the outer jacket 16 on opposite sides of the fiber passage 13 to provide the fiber optic cable 10 with axial reinforcement (e.g., resistance to both tensile and compressive loading).
  • the outer jacket 16 has a non-circular outer profile.
  • the outer profile of the outer jacket 16 when viewed in transverse cross-section, has a flat generally obround or rectangular shape.
  • the outer jacket 16 is longer along a major axis 20 than along a minor axis 21 .
  • the major and minor axes 20 , 21 are perpendicular to one another and intersect at a center 27 of the outer jacket 16 .
  • the fiber optic cable 10 has an elongated transverse cross-sectional profile (e.g., a flattened cross-sectional profile, an oblong cross-sectional profile, an obround cross-sectional profile, etc.) defined by the outer jacket 16 .
  • a width W 1 of the outer jacket 16 extends along the major axis 20 and a thickness T 1 of the outer jacket 16 extends along the minor axis 21 .
  • the width W 1 is longer than the thickness T 1 .
  • the width W 1 is at least 50 percent longer than the thickness T 1 .
  • the transverse cross-sectional profile defined by the outer jacket 16 is generally rectangular with rounded ends.
  • the major axis 20 and the minor axis 21 intersect perpendicularly at a lengthwise axis 23 of the fiber optic cable 10 which coincides with the center 27 .
  • the reinforcing members 18 have lengths that extend along the lengthwise axis 23 of the fiber optic cable 10 .
  • the construction of the fiber optic cable 10 allows the fiber optic cable 10 to be bent more easily along a plane P 1 that coincides with the minor axis 21 than along a plane P 2 that coincides with the major axis 20 .
  • the fiber optic cable 10 is preferably bent along the plane P 1 .
  • the outer jacket 16 of the fiber optic cable 10 can be shaped through an extrusion process and can be made by any number of different types of polymeric materials.
  • the outer jacket 16 can have a construction that resists post-extrusion shrinkage of the outer jacket 16 .
  • the outer jacket 16 can include a shrinkage reduction material disposed within a polymeric base material (e.g., polyethylene).
  • a polymeric base material e.g., polyethylene
  • the shrinkage reduction material is a liquid crystal polymer (LCP).
  • LCP liquid crystal polymer
  • the concentration of the shrinkage reduction material is relatively small as compared to the base material.
  • the shrinkage reduction material constitutes less than about 10% of the total weight of the outer jacket 16 .
  • the shrinkage reduction material constitutes less than about 5% of the total weight of the outer jacket 16 . In another embodiment, the shrinkage reduction material constitutes less than about 2% of the total weight of the outer jacket 16 . In another embodiment, shrinkage reduction material constitutes less than about 1.9%, less than about 1.8%, less than 1.7%, less than about 1.6%, less than about 1.5%, less than about 1.4%, less than about 1.3%, less than about 1.2%, less than about 1.1%, or less than about 1.0% of the total weight of the outer jacket 16 .
  • Example base materials for the outer jacket 16 include low-smoke zero halogen materials such as low-smoke zero halogen polyolefin and polycarbon.
  • the base material can include thermal plastic materials such as polyethylene, polypropylene, ethylene-propylene, copolymers, polystyrene and styrene copolymers, polyvinyl chloride, polyamide (i.e., nylon), polyesters such as polyethylene terephthalate, polyetheretherketone, polyphenylene sulfide, polyetherimide, polybutylene terephthalate, as well as other plastic materials.
  • the outer jacket 16 can be made of low density, medium density or high density polyethylene materials.
  • Such polyethylene materials can include low density, medium density or high density ultra-high molecular weight polyethylene materials.
  • the fiber passage 13 defined by the outer jacket 16 , comprises a single fiber passage that is centered within the outer jacket 16 .
  • the fiber passage 13 has an elongated shape/profile when viewed in transverse cross-section.
  • the fiber passage 13 is elongated along the major axis 20 .
  • a width W 2 of the fiber passage 13 is at least 50 percent as long as the width W 1 of the fiber optic cable 10 .
  • a thickness T 2 of the fiber passage 13 is less than 50 percent of the width W 2 .
  • the fiber passage 13 is defined by an inner surface 25 of the outer jacket 16 that extends through a length of the fiber optic cable 10 along the lengthwise axis 23 of the fiber optic cable 10 .
  • the fiber passage 13 is filled with a water-blocking gel 26 .
  • other structures for preventing water from migrating along the fiber passage 13 e.g., water-swellable fibers, water-swellable tape, or water-swellable yarn
  • one or more of the optical fibers 12 can be positioned within the fiber passage 13 .
  • the fiber passage 13 contains at least twelve of the optical fibers 12 bound together to form the optical fiber ribbon 11 .
  • the optical fibers 12 are preferably unbuffered and in certain embodiments have outer diameters in a range of 230-270 micrometers ( ⁇ m).
  • the optical fibers 12 can have any number of different types of configurations.
  • the optical fiber 12 includes a core 32 .
  • the core 32 is made of a glass material, such as a silica-based material, having an index of refraction.
  • the core 32 has an outer diameter D 1 of less than or equal to about 10 ⁇ m.
  • the core 32 of each of the optical fibers 12 is surrounded by a first cladding layer 34 that is also made of a glass material, such as a silica-based material.
  • the first cladding layer 34 has an index of refraction that is less than the index of refraction of the core 32 . This difference between the index of refraction of the first cladding layer 34 and the index of refraction of the core 32 allows an optical signal that is transmitted through the optical fiber 12 to be confined to the core 32 .
  • a trench layer 36 surrounds the first cladding layer 34 .
  • the trench layer 36 has an index of refraction that is less than the index of refraction of the first cladding layer 34 .
  • the trench layer 36 is immediately adjacent to the first cladding layer 34 .
  • a second cladding layer 38 surrounds the trench layer 36 .
  • the second cladding layer 38 has an index of refraction.
  • the index of refraction of the second cladding layer 38 is about equal to the index of refraction of the first cladding layer 34 .
  • the second cladding layer 38 is immediately adjacent to the trench layer 36 .
  • the second cladding layer 38 has an outer diameter D 2 of less than or equal to about 125 ⁇ m.
  • a coating, generally designated 40 surrounds the second cladding layer 38 .
  • the coating 40 includes an inner layer 42 and an outer layer 44 .
  • the inner layer 42 of the coating 40 is immediately adjacent to the second cladding layer 38 such that the inner layer 42 surrounds the second cladding layer 38 .
  • the inner layer 42 is a polymeric material (e.g., polyvinyl chloride, polyethylenes, polyurethanes, polypropylenes, polyvinylidene fluorides, ethylene vinyl acetate, nylon, polyester, or other materials) having a low modulus of elasticity.
  • the low modulus of elasticity of the inner layer 42 functions to protect the optical fiber 12 from microbending.
  • the outer layer 44 of the coating 40 is a polymeric material having a higher modulus of elasticity than the inner layer 42 .
  • the outer layer 44 of the coating 40 is immediately adjacent to the inner layer 42 such that the outer layer 44 surrounds the inner layer 42 .
  • the higher modulus of elasticity of the outer layer 44 functions to mechanically protect and retain the shape of the optical fiber 12 during handling.
  • the outer layer 44 has an outer diameter D 3 of less than or equal to about 275 ⁇ m.
  • the optical fibers 12 are manufactured to reduce the sensitivity of the optical fibers 12 to micro or macro-bending (hereinafter referred to as “bend-insensitive”).
  • Exemplary bend insensitive optical fibers have been described in U.S. Pat. Nos. 7,623,747 and 7,587,111 that are hereby incorporated by reference in their entirety.
  • An exemplary bend-insensitive optical fiber is commercially available from Draka Comteq under the name BendBright XS.
  • the optical fibers 12 need not be bend insensitive optical fibers.
  • the reinforcing members 18 can include reinforcing rods that provide the fiber optic cable 10 with both tensile and compressive reinforcement.
  • Such rods can have a glass reinforced polymer (GRP) construction.
  • the glass reinforced polymer can include a polymer base material (e.g., epoxy) reinforced by a plurality of glass fibers such as E-glass, S-glass or other types of glass fiber.
  • the reinforcing members 18 are bonded to the outer jacket 16 .
  • the bonding between the reinforcing members 18 and the outer jacket 16 can be chemical bonding or thermal bonding.
  • the reinforcing members 18 may be coated with or otherwise provided with a material having bonding characteristics (e.g., ethylene acetate) to bond the reinforcing members 18 to the outer jacket 16 .
  • the reinforcing members 18 can have a flexible construction that provides tensile reinforcement while providing minimal resistance to compressive loading. Further details of reinforcing members having such properties are disclosed at U.S. Patent Application Publication No. 2010/0278493, which is hereby incorporated by reference in its entirety.
  • the reinforcing member 18 is formed by a generally flat layer of reinforcing elements (e.g., fibers or yarns such as aramid fibers or yarns) embedded or otherwise integrated within a binder to form a flat reinforcing structure (e.g., a structure such as a sheet-like structure, a film-like structure, or a tape-like structure).
  • the binder is a polymeric material such ethylene acetate acrylite (e.g., UV-cured, etc.), silicone (e.g., RTV silicone, etc.), polyester films (e.g., biaxially oriented polyethylene terephthalate polyester film, etc.), and polyisobutylene.
  • the binder may be a matrix material, an adhesive material, a finish material, or another type of material that binds, couples, or otherwise mechanically links together reinforcing elements.
  • the reinforcing member 18 can have a glass reinforced polymer (GRP) construction.
  • the glass reinforced polymer can include a polymer base material reinforced by a plurality of glass fibers such as E-glass, S-glass, or other types of glass fiber.
  • the polymer used in the glass reinforced polymer is preferably relatively soft and flexible after curing.
  • the polymer has a Shore A hardness less than 50 after curing.
  • the polymer has a Shore A hardness less than 46 after curing.
  • the polymer has a Shore A hardness in the range of about 34-46.
  • FIG. 3 shows a system 70 for manufacturing the fiber optic cable 10 .
  • the system 70 includes a jacket material source 73 at which a material 17 used to form the outer jacket 16 of the fiber optic cable 10 is heated and masticated.
  • the heated jacket material 17 is pressurized and forced to flow (e.g., via an auger arrangement) through an extrusion head 74 where the material 17 is shaped to the desired transverse cross-sectional profile of the outer jacket 16 .
  • the outer jacket 16 is extruded to size while in other embodiments the outer jacket 16 is extruded to a larger size and subsequently drawn down to the desired size.
  • the reinforcing members 18 are fed into passages 15 formed in the jacket material 17 during the extrusion process.
  • the jacket material 17 preferably bonds to the reinforcing members 18 .
  • the optical fiber ribbon 11 is fed into the central fiber passage 13 which is also formed in the jacket material 17 during the extrusion process.
  • the central fiber passage 13 is between the passages 15 which receive the reinforcing members 18 .
  • the optical fiber ribbon 11 is paid-off of a spool 76 a and a precursor reinforcing member 18 ′ is paid-off of a spool 76 b .
  • the spools 76 a and 76 b rotate about central axes of rotation 78 a and 78 b to allow the precursor reinforcing member 18 ′ and the optical fiber ribbon 11 to be paid-off from the spools 76 a , 76 b as the outer jacket 16 is extruded through the extrusion head 74 .
  • a slitter 80 is positioned between the spool 76 b and the extrusion head 74 .
  • the slitter 80 divides/splits the precursor reinforcing member 18 ′ into the separate reinforcing members 18 which are ultimately fed through the extrusion head 74 on opposite sides of the central fiber passage 13 . Because the reinforcing members 18 are both fed off the same spool 76 b , uniform (i.e., equal) tension is applied to both of the reinforcing members 18 during the extrusion process. By uniformly tensioning the reinforcing members 18 during the extrusion process, the likelihood of generating internal stresses within the fiber optic cable 10 is reduced thereby enhancing the stress balance of the fiber optic cable 10 .
  • the system 70 may be practiced on a machine 100 (see FIG. 3 ).
  • the machine 100 includes the spools 76 a , 76 b and means to rotatably support the axes 78 a , 78 b of the spools 76 a , 76 b .
  • the machine 100 also includes the slitter 80 for dividing the precursor reinforcing member 18 ′.
  • the machine 100 further includes the jacket material source 73 and the extrusion head 74 .
  • FIG. 4 shows a method for manufacturing the fiber optic cable 10 utilizing the system 70 of FIG. 3 .
  • the method is started.
  • a step 92 of loading the optical fiber ribbon 11 may follow the step 90 .
  • the step 92 may include loading the spool 76 a , with the optical fiber ribbon 11 included thereon, onto the machine 100 .
  • a step 94 of loading the precursor reinforcing member 18 ′ may follow the step 90 .
  • the step 94 may include loading the spool 76 b , with the precursor reinforcing member 18 ′ included thereon, onto the machine 100 .
  • a step 96 of loading the jacket material 17 may follow the step 90 .
  • the step 96 may include loading the jacket material 17 , in granular form, into a hopper 75 of the jacket material source 73 (e.g., an injector) and thereby into the machine 100 .
  • the jacket material source 73 e.g., an injector
  • a step 104 of feeding the precursor reinforcing member 18 ′ into the slitter 80 may follow the step 94 .
  • the step 104 may include moving an end portion of the precursor reinforcing member 18 ′ from the spool 76 b to the slitter 80 and engaging the end portion with the slitter 80 .
  • a step 114 of slitting the precursor reinforcing member 18 ′ into the reinforcing members 18 may follow the step 104 .
  • the step 114 may include slitting the precursor reinforcing member 18 ′ into the reinforcing members 18 with the slitter 80 .
  • a step 106 of feeding the jacket material 17 into the jacket material source 73 may follow the step 96 .
  • the step 106 may include gravity feeding the jacket material 17 from the hopper 75 into the injector.
  • a step 116 of heating and masticating the jacket material 17 may follow the step 106 .
  • the step 116 may include using heaters and an injection screw of the jacket material source 73 .
  • a step 122 of feeding the optical fiber ribbon 11 into the extrusion head 74 may follow the step 92 .
  • the step 122 may include moving an end portion of the optical fiber ribbon 11 from the spool 76 a to the extrusion head 74 .
  • a step 124 of feeding the reinforcing members 18 into the extrusion head 74 may follow the step 114 .
  • the step 124 may include moving end portions of the reinforcing members 18 from the slitter 80 to the extrusion head 74 .
  • a step 126 of injecting the jacket material 17 into the extrusion head 74 may follow the step 116 .
  • the step 126 may include using the injection screw and a nozzle of the jacket material source 73 .
  • a step 132 of feeding the optical fiber ribbon 11 into the fiber passage 13 of the outer jacket 16 may follow the step 122 .
  • the step 132 may include using a hollow mandrel of the extrusion head 74 .
  • a step 134 of feeding the reinforcing members 18 into the reinforcing member passages 15 may follow the step 124 .
  • the step 134 may include using a hollow mandrel of the extrusion head 74 .
  • a step 136 of extruding the jacket material 17 into the pre-filled outer jacket 16 may follow the step 126 .
  • the pre-filled outer jacket 16 may not necessarily be fully formed yet and the fiber passage 13 and the reinforcing member passages 15 may not necessarily be fully formed yet.
  • the step 136 may include using the hollow mandrels and a die of the extrusion head 74 .
  • a step 140 of extruding the post-filled outer jacket 16 may follow the steps 132 , 134 , and 136 .
  • the step 140 may include a pultrusion process and/or a pressure-driven process of extruding.
  • the step 140 results in an embodiment of the fiber optic cable 10 being produced.
  • the fiber optic cable 10 may include water-blocking gel 26 , water-swellable members, etc.
  • a step 142 of cutting the fiber optic cable 10 to a desired length may follow the step 140 .
  • the method is ended.

Abstract

The present disclosure relates to a fiber optic cable and a method for manufacturing the cable. The cable includes an outer jacket that defines a fiber passage and first and second reinforcing member passages, an optical fiber ribbon, and reinforcing members. The method includes extruding the jacket, feeding the ribbon into the fiber passage, and feeding the reinforcing members into the reinforcing member passages. The jacket has a width and a thickness. The width is longer than the thickness. The reinforcing member passages are positioned on opposite sides of the fiber passage. The reinforcing members are paid-off from a single spool by paying-off a precursor reinforcing member from the spool. The precursor reinforcing member can be divided (e.g., by using a slitter) into the reinforcing members which are then fed into the reinforcing member passages.

Description

CROSS-REFERENCE TO RELATED APPLICATION
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/510,326, filed Jul. 21, 2011, which application is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
The present disclosure relates to telecommunication cable. More particularly, the present disclosure relates to fiber optic cable for use in a communication network.
BACKGROUND
A fiber optic cable typically includes: (1) an optical fiber; (2) a buffer layer that surrounds the optical fiber; (3) a plurality of reinforcing members loosely surrounding the buffer layer; and (4) an outer jacket. Optical fibers function to carry optical signals. A typical optical fiber includes an inner core surrounded by a cladding that is protected by a coating. The buffer layer functions to surround and protect the coated optical fibers. Reinforcing members add mechanical reinforcement to fiber optic cables to protect the internal optical fibers against stresses applied to the cables during installation and thereafter. Outer jackets also provide protection against chemical damage.
Drop cables used in fiber optic networks can be constructed having a jacket with a flat transverse profile. Such cables typically include a central buffer tube containing a plurality of optical fibers and reinforcing members such as rods made of glass reinforced epoxy embedded in the jacket on opposite sides of the buffer tube. U.S. Pat. No. 6,542,674 discloses a drop cable of a type described above.
SUMMARY
One aspect of the present disclosure relates to a method for extruding a drop cable having reinforcing members positioned on opposite sides of a fiber passage. The method allows uniform tension to be applied to the reinforcing members during the extrusion process.
Another aspect of the present disclosure relates to a method for manufacturing a fiber optic cable. The method includes extruding an outer jacket that defines a fiber passage and first and second reinforcing member passages, feeding an optical fiber ribbon into the fiber passage, and feeding reinforcing members into the first and second reinforcing member passages. The outer jacket has an elongated transverse cross-sectional profile that defines a major axis and a minor axis that meet at a lengthwise axis of the fiber optic cable. The elongated transverse cross-sectional profile has a width that extends along the major axis and a thickness that extends along the minor axis. The width of the elongated transverse cross-sectional profile is longer than the thickness of the elongated transverse cross-sectional profile. The fiber passage extends through the outer jacket along a lengthwise axis of the outer jacket. The first and second reinforcing member passages are positioned on opposite sides of the fiber passage. The reinforcing members are paid-off from a single spool.
In certain embodiments, the reinforcing members are paid-off from the single spool by paying-off a precursor reinforcing member from the single spool. The precursor reinforcing member is then divided into the reinforcing members which are then fed into the first and second reinforcing member passages. The precursor reinforcing member can be divided into the reinforcing members using a slitter.
In other embodiments, the method further includes providing a water-blocking material within the fiber passage of the outer jacket. The water-blocking material can be a water-blocking gel.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partially cut-away perspective view of a fiber optic cable in accordance with the principles of the present disclosure;
FIG. 1A is a cross-sectional perspective view with the same orientation as FIG. 1 of a jacket of the fiber optic cable of FIG. 1;
FIG. 2 is a transverse cross-sectional view taken along section line 2-2 of the fiber optic cable of FIG. 1;
FIG. 2A is the transverse cross-sectional view of FIG. 2, but showing only the jacket of FIG. 1A;
FIG. 3 is a schematic view of a system for manufacturing the fiber optic cable of FIGS. 1 and 2;
FIG. 4 is a flow chart outlining a method for making the fiber optic cable of FIGS. 1 and 2; and
FIG. 5 is a perspective view of an optical fiber suitable for use in the fiber optic cable of FIG. 1.
DETAILED DESCRIPTION
FIGS. 1 and 2 show a fiber optic cable 10 in accordance with the principles of the present disclosure. The fiber optic cable 10 includes an optical fiber ribbon 11 including a plurality of optical fibers 12 (e.g., 12 optical fibers). The optical fibers 12 of the optical fiber ribbon 11 are mechanically bound (i.e., linked, coupled, secured, etc.) together in a row by a binding material 50 (i.e., a matrix material, a substrate material, etc.). The optical fiber ribbon 11 is contained within a fiber passage 13 defined by an outer jacket 16 of the fiber optic cable 10. In the depicted embodiment, the optical fiber ribbon 11 is positioned directly within the fiber passage 13 and is not positioned within a separate buffer tube positioned within the fiber passage 13. In other embodiments, an intermediate buffing layer (e.g., a buffer tube) can be positioned between the optical fiber ribbon 11 and the outer jacket 16. A material such as gel can be provided within the fiber passage 13 for providing water blocking and for centering the optical fiber ribbon 11 within the fiber passage 13. Reinforcing members 18 are embedded in the outer jacket 16 on opposite sides of the fiber passage 13 to provide the fiber optic cable 10 with axial reinforcement (e.g., resistance to both tensile and compressive loading).
Referring to FIG. 2, the outer jacket 16 has a non-circular outer profile. For example, as shown at FIG. 2, when viewed in transverse cross-section, the outer profile of the outer jacket 16 has a flat generally obround or rectangular shape. The outer jacket 16 is longer along a major axis 20 than along a minor axis 21. The major and minor axes 20, 21 are perpendicular to one another and intersect at a center 27 of the outer jacket 16. The fiber optic cable 10 has an elongated transverse cross-sectional profile (e.g., a flattened cross-sectional profile, an oblong cross-sectional profile, an obround cross-sectional profile, etc.) defined by the outer jacket 16. A width W1 of the outer jacket 16 extends along the major axis 20 and a thickness T1 of the outer jacket 16 extends along the minor axis 21. The width W1 is longer than the thickness T1. In certain embodiments, the width W1 is at least 50 percent longer than the thickness T1. The transverse cross-sectional profile defined by the outer jacket 16 is generally rectangular with rounded ends. The major axis 20 and the minor axis 21 intersect perpendicularly at a lengthwise axis 23 of the fiber optic cable 10 which coincides with the center 27. The reinforcing members 18 have lengths that extend along the lengthwise axis 23 of the fiber optic cable 10.
The construction of the fiber optic cable 10 allows the fiber optic cable 10 to be bent more easily along a plane P1 that coincides with the minor axis 21 than along a plane P2 that coincides with the major axis 20. Thus, when the fiber optic cable 10 is wrapped around a spool or guide, the fiber optic cable 10 is preferably bent along the plane P1.
It will be appreciated that the outer jacket 16 of the fiber optic cable 10 can be shaped through an extrusion process and can be made by any number of different types of polymeric materials. In certain embodiments, the outer jacket 16 can have a construction that resists post-extrusion shrinkage of the outer jacket 16. For example, the outer jacket 16 can include a shrinkage reduction material disposed within a polymeric base material (e.g., polyethylene). U.S. Pat. No. 7,379,642, which is hereby incorporated by reference in its entirety, describes an exemplary use of shrinkage reduction material within the base material of a fiber optic cable jacket.
In one embodiment, the shrinkage reduction material is a liquid crystal polymer (LCP). Examples of liquid crystal polymers suitable for use in fiber-optic cables are described in U.S. Pat. Nos. 3,911,041; 4,067,852; 4,083,829; 4,130,545; 4,161,470; 4,318,842; and 4,468,364 which are hereby incorporated by reference in their entireties. To promote flexibility of the fiber optic cable 10, the concentration of the shrinkage reduction material (e.g. LCP) is relatively small as compared to the base material. In one embodiment, and by way of example only, the shrinkage reduction material constitutes less than about 10% of the total weight of the outer jacket 16. In another embodiment, and by way of example only, the shrinkage reduction material constitutes less than about 5% of the total weight of the outer jacket 16. In another embodiment, the shrinkage reduction material constitutes less than about 2% of the total weight of the outer jacket 16. In another embodiment, shrinkage reduction material constitutes less than about 1.9%, less than about 1.8%, less than 1.7%, less than about 1.6%, less than about 1.5%, less than about 1.4%, less than about 1.3%, less than about 1.2%, less than about 1.1%, or less than about 1.0% of the total weight of the outer jacket 16.
Example base materials for the outer jacket 16 include low-smoke zero halogen materials such as low-smoke zero halogen polyolefin and polycarbon. In other embodiments, the base material can include thermal plastic materials such as polyethylene, polypropylene, ethylene-propylene, copolymers, polystyrene and styrene copolymers, polyvinyl chloride, polyamide (i.e., nylon), polyesters such as polyethylene terephthalate, polyetheretherketone, polyphenylene sulfide, polyetherimide, polybutylene terephthalate, as well as other plastic materials. In still other embodiments, the outer jacket 16 can be made of low density, medium density or high density polyethylene materials. Such polyethylene materials can include low density, medium density or high density ultra-high molecular weight polyethylene materials.
Referring still to FIG. 2, the fiber passage 13, defined by the outer jacket 16, comprises a single fiber passage that is centered within the outer jacket 16. The fiber passage 13 has an elongated shape/profile when viewed in transverse cross-section. The fiber passage 13 is elongated along the major axis 20. In the depicted embodiment, a width W2 of the fiber passage 13 is at least 50 percent as long as the width W1 of the fiber optic cable 10. In the depicted embodiment, a thickness T2 of the fiber passage 13 is less than 50 percent of the width W2. The fiber passage 13 is defined by an inner surface 25 of the outer jacket 16 that extends through a length of the fiber optic cable 10 along the lengthwise axis 23 of the fiber optic cable 10. It is preferred for the fiber passage 13 to be filled with a water-blocking gel 26. Additionally, other structures for preventing water from migrating along the fiber passage 13 (e.g., water-swellable fibers, water-swellable tape, or water-swellable yarn) can be provided within the fiber passage 13 along with the optical fibers 12.
Referring now to FIGS. 1 and 2, one or more of the optical fibers 12 can be positioned within the fiber passage 13. In a preferred embodiment, the fiber passage 13 contains at least twelve of the optical fibers 12 bound together to form the optical fiber ribbon 11. The optical fibers 12 are preferably unbuffered and in certain embodiments have outer diameters in a range of 230-270 micrometers (μm).
It will be appreciated that the optical fibers 12 can have any number of different types of configurations. In the embodiment of FIG. 5, the optical fiber 12 includes a core 32. The core 32 is made of a glass material, such as a silica-based material, having an index of refraction. In the subject embodiment, the core 32 has an outer diameter D1 of less than or equal to about 10 μm.
The core 32 of each of the optical fibers 12 is surrounded by a first cladding layer 34 that is also made of a glass material, such as a silica-based material. The first cladding layer 34 has an index of refraction that is less than the index of refraction of the core 32. This difference between the index of refraction of the first cladding layer 34 and the index of refraction of the core 32 allows an optical signal that is transmitted through the optical fiber 12 to be confined to the core 32.
A trench layer 36 surrounds the first cladding layer 34. The trench layer 36 has an index of refraction that is less than the index of refraction of the first cladding layer 34. In the subject embodiment, the trench layer 36 is immediately adjacent to the first cladding layer 34.
A second cladding layer 38 surrounds the trench layer 36. The second cladding layer 38 has an index of refraction. In the subject embodiment, the index of refraction of the second cladding layer 38 is about equal to the index of refraction of the first cladding layer 34. The second cladding layer 38 is immediately adjacent to the trench layer 36. In the subject embodiment, the second cladding layer 38 has an outer diameter D2 of less than or equal to about 125 μm.
A coating, generally designated 40, surrounds the second cladding layer 38. The coating 40 includes an inner layer 42 and an outer layer 44. In the subject embodiment, the inner layer 42 of the coating 40 is immediately adjacent to the second cladding layer 38 such that the inner layer 42 surrounds the second cladding layer 38. The inner layer 42 is a polymeric material (e.g., polyvinyl chloride, polyethylenes, polyurethanes, polypropylenes, polyvinylidene fluorides, ethylene vinyl acetate, nylon, polyester, or other materials) having a low modulus of elasticity. The low modulus of elasticity of the inner layer 42 functions to protect the optical fiber 12 from microbending.
The outer layer 44 of the coating 40 is a polymeric material having a higher modulus of elasticity than the inner layer 42. In the subject embodiment, the outer layer 44 of the coating 40 is immediately adjacent to the inner layer 42 such that the outer layer 44 surrounds the inner layer 42. The higher modulus of elasticity of the outer layer 44 functions to mechanically protect and retain the shape of the optical fiber 12 during handling. In another embodiment, the outer layer 44 has an outer diameter D3 of less than or equal to about 275 μm.
In the subject embodiment, the optical fibers 12 are manufactured to reduce the sensitivity of the optical fibers 12 to micro or macro-bending (hereinafter referred to as “bend-insensitive”). Exemplary bend insensitive optical fibers have been described in U.S. Pat. Nos. 7,623,747 and 7,587,111 that are hereby incorporated by reference in their entirety. An exemplary bend-insensitive optical fiber is commercially available from Draka Comteq under the name BendBright XS. In other embodiments, the optical fibers 12 need not be bend insensitive optical fibers.
In certain embodiments, the reinforcing members 18 can include reinforcing rods that provide the fiber optic cable 10 with both tensile and compressive reinforcement. Such rods can have a glass reinforced polymer (GRP) construction. The glass reinforced polymer can include a polymer base material (e.g., epoxy) reinforced by a plurality of glass fibers such as E-glass, S-glass or other types of glass fiber.
In certain embodiments, the reinforcing members 18 are bonded to the outer jacket 16. The bonding between the reinforcing members 18 and the outer jacket 16 can be chemical bonding or thermal bonding. In one embodiment, the reinforcing members 18 may be coated with or otherwise provided with a material having bonding characteristics (e.g., ethylene acetate) to bond the reinforcing members 18 to the outer jacket 16.
In certain embodiments, the reinforcing members 18 can have a flexible construction that provides tensile reinforcement while providing minimal resistance to compressive loading. Further details of reinforcing members having such properties are disclosed at U.S. Patent Application Publication No. 2010/0278493, which is hereby incorporated by reference in its entirety.
In certain embodiments, the reinforcing member 18 is formed by a generally flat layer of reinforcing elements (e.g., fibers or yarns such as aramid fibers or yarns) embedded or otherwise integrated within a binder to form a flat reinforcing structure (e.g., a structure such as a sheet-like structure, a film-like structure, or a tape-like structure). In one example embodiment, the binder is a polymeric material such ethylene acetate acrylite (e.g., UV-cured, etc.), silicone (e.g., RTV silicone, etc.), polyester films (e.g., biaxially oriented polyethylene terephthalate polyester film, etc.), and polyisobutylene. In other example instances, the binder may be a matrix material, an adhesive material, a finish material, or another type of material that binds, couples, or otherwise mechanically links together reinforcing elements.
In other embodiments, the reinforcing member 18 can have a glass reinforced polymer (GRP) construction. The glass reinforced polymer can include a polymer base material reinforced by a plurality of glass fibers such as E-glass, S-glass, or other types of glass fiber. The polymer used in the glass reinforced polymer is preferably relatively soft and flexible after curing. For example, in one embodiment, the polymer has a Shore A hardness less than 50 after curing. In other embodiments, the polymer has a Shore A hardness less than 46 after curing. In certain other embodiments, the polymer has a Shore A hardness in the range of about 34-46.
FIG. 3 shows a system 70 for manufacturing the fiber optic cable 10. The system 70 includes a jacket material source 73 at which a material 17 used to form the outer jacket 16 of the fiber optic cable 10 is heated and masticated. The heated jacket material 17 is pressurized and forced to flow (e.g., via an auger arrangement) through an extrusion head 74 where the material 17 is shaped to the desired transverse cross-sectional profile of the outer jacket 16. In some embodiments, the outer jacket 16 is extruded to size while in other embodiments the outer jacket 16 is extruded to a larger size and subsequently drawn down to the desired size. As the jacket material 17 is extruded through the extrusion head 74, the reinforcing members 18 are fed into passages 15 formed in the jacket material 17 during the extrusion process. The jacket material 17 preferably bonds to the reinforcing members 18. Also, the optical fiber ribbon 11 is fed into the central fiber passage 13 which is also formed in the jacket material 17 during the extrusion process. The central fiber passage 13 is between the passages 15 which receive the reinforcing members 18.
During the extrusion process, the optical fiber ribbon 11 is paid-off of a spool 76 a and a precursor reinforcing member 18′ is paid-off of a spool 76 b. The spools 76 a and 76 b rotate about central axes of rotation 78 a and 78 b to allow the precursor reinforcing member 18′ and the optical fiber ribbon 11 to be paid-off from the spools 76 a, 76 b as the outer jacket 16 is extruded through the extrusion head 74. A slitter 80 is positioned between the spool 76 b and the extrusion head 74. The slitter 80 divides/splits the precursor reinforcing member 18′ into the separate reinforcing members 18 which are ultimately fed through the extrusion head 74 on opposite sides of the central fiber passage 13. Because the reinforcing members 18 are both fed off the same spool 76 b, uniform (i.e., equal) tension is applied to both of the reinforcing members 18 during the extrusion process. By uniformly tensioning the reinforcing members 18 during the extrusion process, the likelihood of generating internal stresses within the fiber optic cable 10 is reduced thereby enhancing the stress balance of the fiber optic cable 10.
The system 70 may be practiced on a machine 100 (see FIG. 3). The machine 100 includes the spools 76 a, 76 b and means to rotatably support the axes 78 a, 78 b of the spools 76 a, 76 b. The machine 100 also includes the slitter 80 for dividing the precursor reinforcing member 18′. The machine 100 further includes the jacket material source 73 and the extrusion head 74.
FIG. 4 shows a method for manufacturing the fiber optic cable 10 utilizing the system 70 of FIG. 3. At step 90 of the method, the method is started.
A step 92 of loading the optical fiber ribbon 11 may follow the step 90. The step 92 may include loading the spool 76 a, with the optical fiber ribbon 11 included thereon, onto the machine 100.
A step 94 of loading the precursor reinforcing member 18′ may follow the step 90. The step 94 may include loading the spool 76 b, with the precursor reinforcing member 18′ included thereon, onto the machine 100.
A step 96 of loading the jacket material 17 may follow the step 90. The step 96 may include loading the jacket material 17, in granular form, into a hopper 75 of the jacket material source 73 (e.g., an injector) and thereby into the machine 100.
A step 104 of feeding the precursor reinforcing member 18′ into the slitter 80 may follow the step 94. The step 104 may include moving an end portion of the precursor reinforcing member 18′ from the spool 76 b to the slitter 80 and engaging the end portion with the slitter 80.
A step 114 of slitting the precursor reinforcing member 18′ into the reinforcing members 18 may follow the step 104. The step 114 may include slitting the precursor reinforcing member 18′ into the reinforcing members 18 with the slitter 80.
A step 106 of feeding the jacket material 17 into the jacket material source 73 may follow the step 96. The step 106 may include gravity feeding the jacket material 17 from the hopper 75 into the injector.
A step 116 of heating and masticating the jacket material 17 may follow the step 106. The step 116 may include using heaters and an injection screw of the jacket material source 73.
A step 122 of feeding the optical fiber ribbon 11 into the extrusion head 74 may follow the step 92. The step 122 may include moving an end portion of the optical fiber ribbon 11 from the spool 76 a to the extrusion head 74.
A step 124 of feeding the reinforcing members 18 into the extrusion head 74 may follow the step 114. The step 124 may include moving end portions of the reinforcing members 18 from the slitter 80 to the extrusion head 74.
A step 126 of injecting the jacket material 17 into the extrusion head 74 may follow the step 116. The step 126 may include using the injection screw and a nozzle of the jacket material source 73.
A step 132 of feeding the optical fiber ribbon 11 into the fiber passage 13 of the outer jacket 16 may follow the step 122. The step 132 may include using a hollow mandrel of the extrusion head 74.
A step 134 of feeding the reinforcing members 18 into the reinforcing member passages 15 may follow the step 124. The step 134 may include using a hollow mandrel of the extrusion head 74.
A step 136 of extruding the jacket material 17 into the pre-filled outer jacket 16 (i.e., the fiber passage 13 and the reinforcing member passages 15 are not yet filled with the optical fiber ribbon 11 or the reinforcing members 18) may follow the step 126. The pre-filled outer jacket 16 may not necessarily be fully formed yet and the fiber passage 13 and the reinforcing member passages 15 may not necessarily be fully formed yet. The step 136 may include using the hollow mandrels and a die of the extrusion head 74.
A step 140 of extruding the post-filled outer jacket 16 (i.e., the fiber passage 13 and the reinforcing member passages 15 contain the optical fiber ribbon 11 and the reinforcing members 18, respectively) may follow the steps 132, 134, and 136. The step 140 may include a pultrusion process and/or a pressure-driven process of extruding. The step 140 results in an embodiment of the fiber optic cable 10 being produced. In other embodiments, the fiber optic cable 10 may include water-blocking gel 26, water-swellable members, etc.
A step 142 of cutting the fiber optic cable 10 to a desired length may follow the step 140. At a step 146, that may follow the step 142, the method is ended.
The above specification provides examples of how certain inventive aspects may be put into practice. It will be appreciated that the inventive aspects can be practiced in other ways than those specifically shown and described herein without departing from the spirit and scope of the inventive aspects of the present disclosure.

Claims (20)

The invention claimed is:
1. A method for manufacturing a fiber optic cable, the method comprising:
extruding an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis that meet at a lengthwise axis of the fiber optic cable, the elongated transverse cross-sectional profile having a width that extends along the major axis and a thickness that extends along the minor axis, the width of the elongated transverse cross-sectional profile being longer than the thickness of the elongated transverse cross-sectional profile, the outer jacket also defining a fiber passage that extends through the outer jacket along a lengthwise axis of the outer jacket, the outer jacket further defining first and second reinforcing member passages positioned on opposite sides of the fiber passage;
feeding an optical fiber ribbon into the fiber passage;
feeding reinforcing members into the first and second reinforcing member passages, a first set of the reinforcing members aligned with the first reinforcing member passage and a second set of the reinforcing members aligned with the second reinforcing member passage; and
paying-off the first set and the second set of the reinforcing members from a single spool section as a physically combined set of the reinforcing members and thereby applying uniform tension to the first set and the second set of the reinforcing members.
2. The method of claim 1, wherein the physically combined set of the reinforcing members is paid-off from the single spool section by paying-off a precursor reinforcing member from the single spool section, and then by dividing the precursor reinforcing member into the first and the second sets of the reinforcing members which are fed into the first and second reinforcing member passages, respectively.
3. The method of claim 2, wherein the precursor reinforcing member is divided into the reinforcing members using a slitter.
4. The method of claim 3, further including providing a water-blocking material within the fiber passage of the outer jacket.
5. The method of claim 4, wherein the water-blocking material is a water-blocking gel.
6. The method of claim 2, further including providing a water-blocking material within the fiber passage of the outer jacket.
7. The method of claim 6, wherein the water-blocking material is a water-blocking gel.
8. The method of claim 1, further including providing a water-blocking material within the fiber passage of the outer jacket.
9. The method of claim 8, wherein the water-blocking material is a water-blocking gel.
10. The method of claim 1, wherein the physically combined set of the reinforcing members is aligned with the lengthwise axis of the fiber optic cable.
11. The method of claim 1, wherein the uniform tension is applied to the first and the second sets of the reinforcing members by the single spool section.
12. The method of claim 1, wherein the first and the second sets of the reinforcing members are symmetrically arranged about the physically combined set of the reinforcing members.
13. A method for manufacturing a fiber optic cable, the method comprising:
extruding an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis that meet at a lengthwise axis of the fiber optic cable, the elongated transverse cross-sectional profile having a width that extends along the major axis and a thickness that extends along the minor axis, the width of the elongated transverse cross-sectional profile being longer than the thickness of the elongated transverse cross-sectional profile, the outer jacket also defining a fiber passage that extends through the outer jacket along a lengthwise axis of the outer jacket, the outer jacket further defining first and second reinforcing member passages positioned on opposite sides of the fiber passage;
feeding an optical fiber ribbon into the fiber passage; and
feeding reinforcing members into the first and second reinforcing member passages, the reinforcing members being paid-off from a single spool as a single precursor reinforcing member, the single precursor reinforcing member aligned with the lengthwise axis of the fiber optic cable;
wherein the single precursor reinforcing member from the single spool is divided into first and second sets of the reinforcing members which are respectively fed into the first and second reinforcing member passages at uniform tension.
14. The method of claim 13, wherein the single precursor reinforcing member is divided into the reinforcing members using a slitter.
15. The method of claim 13, further including providing a water-blocking material within the fiber passage of the outer jacket.
16. The method of claim 15, wherein the water-blocking material is a water-blocking gel.
17. The method of claim 13, wherein the first and the second sets of the reinforcing members are symmetrically arranged about the single precursor reinforcing member and the lengthwise axis of the fiber optic cable.
18. A method for manufacturing a fiber optic cable, the method comprising:
routing reinforcing members from a single spool to an extrusion head, the reinforcing members paid-off from the single spool as a physically combined set of reinforcing members;
dividing the physically combined set of reinforcing members into first and second sets of reinforcing members with a dividing device positioned between the single spool and the extrusion head, the first and second sets of reinforcing members being uniformly tensioned;
forming an outer jacket having an elongated transverse cross-sectional profile with the extrusion head;
feeding an optical fiber into a fiber passage that extends through the outer jacket along a lengthwise axis of the outer jacket; and
feeding the uniformly tensioned first and second sets of reinforcing members into first and second reinforcing member passages of the outer jacket, the first and second reinforcing member passages positioned on opposite sides of the fiber passage.
19. The method of claim 18, wherein the reinforcing members are routed directly from the single spool to the extrusion head.
20. The method of claim 18, wherein a fiber spool feeds the optical fiber into the fiber passage, wherein the fiber spool is positioned between the dividing device and the extrusion head, and wherein the first and second sets of reinforcing members are symmetrically positioned about the optical fiber.
US13/555,644 2011-07-21 2012-07-23 Method for extruding a drop cable Expired - Fee Related US9079370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/555,644 US9079370B2 (en) 2011-07-21 2012-07-23 Method for extruding a drop cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161510326P 2011-07-21 2011-07-21
US13/555,644 US9079370B2 (en) 2011-07-21 2012-07-23 Method for extruding a drop cable

Publications (2)

Publication Number Publication Date
US20130032280A1 US20130032280A1 (en) 2013-02-07
US9079370B2 true US9079370B2 (en) 2015-07-14

Family

ID=47558754

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/555,644 Expired - Fee Related US9079370B2 (en) 2011-07-21 2012-07-23 Method for extruding a drop cable

Country Status (4)

Country Link
US (1) US9079370B2 (en)
AU (1) AU2012285834B2 (en)
MX (1) MX2014000631A (en)
WO (1) WO2013013239A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2963430T3 (en) * 2015-01-26 2024-03-27 Asus Tech Licensing Inc Procedure and apparatus for detecting beams in a wireless communication system
JP6623106B2 (en) * 2016-03-31 2019-12-18 古河電気工業株式会社 Optical waveguide structure and optical waveguide circuit

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880194A (en) * 1973-02-20 1975-04-29 Gen Electric Electrical insulators
US3911041A (en) 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US3953250A (en) * 1974-10-30 1976-04-27 Monsanto Company Method for producing wire with a small cross-sectional area
US4067852A (en) 1976-05-13 1978-01-10 Celanese Corporation Melt processable thermotropic wholly aromatic polyester containing polybenzoyl units
US4083829A (en) 1976-05-13 1978-04-11 Celanese Corporation Melt processable thermotropic wholly aromatic polyester
US4130545A (en) 1977-09-12 1978-12-19 Celanese Corporation Melt processable thermotropic wholly aromatic polyester comprising both para-oxybenzoyl and meta-oxybenzoyl moieties
US4161470A (en) 1977-10-20 1979-07-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US4190319A (en) * 1978-02-13 1980-02-26 Essex Group, Inc. Fiber optic ribbon and cable made therefrom
US4199225A (en) * 1978-04-07 1980-04-22 Bicc Limited Optical guides
US4318842A (en) 1980-10-06 1982-03-09 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and 1,4-cyclohexanedicarboxylic acid capable of undergoing melt processing
US4468364A (en) 1983-04-28 1984-08-28 Celanese Corporation Process for extruding thermotropic liquid crystalline polymers
US4715677A (en) * 1985-12-24 1987-12-29 Sumitomo Electric Research Triangle, Inc. Ruggedized optical fiber cable
US4830459A (en) * 1987-02-12 1989-05-16 Stc Plc Optical fibre cable
US4911525A (en) * 1988-10-05 1990-03-27 Hicks John W Optical communication cable
US5448670A (en) * 1994-06-10 1995-09-05 Commscope, Inc. Elliptical aerial self-supporting fiber optic cable and associated apparatus and methods
US5611017A (en) * 1995-06-01 1997-03-11 Minnesota Mining And Manufacturing Co. Fiber optic ribbon cable with pre-installed locations for subsequent connectorization
US6385828B1 (en) * 2001-08-28 2002-05-14 Zoltek Companies, Inc. Apparatus and method for splitting a tow of fibers
US6542674B1 (en) 2000-08-25 2003-04-01 Corning Cable Systems Llc Fiber optic cables with strength members
US20030118298A1 (en) * 2000-06-06 2003-06-26 Asahi Glass Company Limited Optical fiber cable
US6826338B2 (en) * 2001-02-28 2004-11-30 Asahi Glass Company, Limited Optical fiber cable having a partitioning spacer
US20060165355A1 (en) * 2002-12-19 2006-07-27 Greenwood Jody L Fiber optic cable having a dry insert and methods of making the same
US7185838B2 (en) * 2002-03-13 2007-03-06 Nv Bekaert Sa Spool filled with multiple elongated elements wound closely together
US7379642B2 (en) 2005-01-18 2008-05-27 Adc Telecommunications, Inc. Low shrink telecommunications cable and methods for manufacturing the same
US20090152746A1 (en) 2007-10-16 2009-06-18 Adc Telecommunications, Inc. Multi-stage injection over-molding system with intermediate support and method of use
US7587111B2 (en) 2006-04-10 2009-09-08 Draka Comteq B.V. Single-mode optical fiber
US20090274425A1 (en) 2007-07-31 2009-11-05 Corning Cable Systems Llc, Fiber Optic Cables Having Coupling and Methods Therefor
US7623747B2 (en) 2005-11-10 2009-11-24 Draka Comteq B.V. Single mode optical fiber
WO2010062646A1 (en) 2008-10-28 2010-06-03 Adc Telecommunications, Inc. Flat drop cable
WO2011050181A2 (en) 2009-10-21 2011-04-28 Adc Telecommunications, Inc. Flat drop cable with center strength member

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880194A (en) * 1973-02-20 1975-04-29 Gen Electric Electrical insulators
US3911041A (en) 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US3953250A (en) * 1974-10-30 1976-04-27 Monsanto Company Method for producing wire with a small cross-sectional area
US4067852A (en) 1976-05-13 1978-01-10 Celanese Corporation Melt processable thermotropic wholly aromatic polyester containing polybenzoyl units
US4083829A (en) 1976-05-13 1978-04-11 Celanese Corporation Melt processable thermotropic wholly aromatic polyester
US4130545A (en) 1977-09-12 1978-12-19 Celanese Corporation Melt processable thermotropic wholly aromatic polyester comprising both para-oxybenzoyl and meta-oxybenzoyl moieties
US4161470A (en) 1977-10-20 1979-07-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US4190319A (en) * 1978-02-13 1980-02-26 Essex Group, Inc. Fiber optic ribbon and cable made therefrom
US4199225A (en) * 1978-04-07 1980-04-22 Bicc Limited Optical guides
US4318842A (en) 1980-10-06 1982-03-09 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and 1,4-cyclohexanedicarboxylic acid capable of undergoing melt processing
US4468364A (en) 1983-04-28 1984-08-28 Celanese Corporation Process for extruding thermotropic liquid crystalline polymers
US4715677A (en) * 1985-12-24 1987-12-29 Sumitomo Electric Research Triangle, Inc. Ruggedized optical fiber cable
US4830459A (en) * 1987-02-12 1989-05-16 Stc Plc Optical fibre cable
US4911525A (en) * 1988-10-05 1990-03-27 Hicks John W Optical communication cable
US5448670A (en) * 1994-06-10 1995-09-05 Commscope, Inc. Elliptical aerial self-supporting fiber optic cable and associated apparatus and methods
US5611017A (en) * 1995-06-01 1997-03-11 Minnesota Mining And Manufacturing Co. Fiber optic ribbon cable with pre-installed locations for subsequent connectorization
US20030118298A1 (en) * 2000-06-06 2003-06-26 Asahi Glass Company Limited Optical fiber cable
US6542674B1 (en) 2000-08-25 2003-04-01 Corning Cable Systems Llc Fiber optic cables with strength members
US6826338B2 (en) * 2001-02-28 2004-11-30 Asahi Glass Company, Limited Optical fiber cable having a partitioning spacer
US6385828B1 (en) * 2001-08-28 2002-05-14 Zoltek Companies, Inc. Apparatus and method for splitting a tow of fibers
US7185838B2 (en) * 2002-03-13 2007-03-06 Nv Bekaert Sa Spool filled with multiple elongated elements wound closely together
US20060165355A1 (en) * 2002-12-19 2006-07-27 Greenwood Jody L Fiber optic cable having a dry insert and methods of making the same
US7379642B2 (en) 2005-01-18 2008-05-27 Adc Telecommunications, Inc. Low shrink telecommunications cable and methods for manufacturing the same
US7623747B2 (en) 2005-11-10 2009-11-24 Draka Comteq B.V. Single mode optical fiber
US7587111B2 (en) 2006-04-10 2009-09-08 Draka Comteq B.V. Single-mode optical fiber
US20090274425A1 (en) 2007-07-31 2009-11-05 Corning Cable Systems Llc, Fiber Optic Cables Having Coupling and Methods Therefor
US20090152746A1 (en) 2007-10-16 2009-06-18 Adc Telecommunications, Inc. Multi-stage injection over-molding system with intermediate support and method of use
WO2010062646A1 (en) 2008-10-28 2010-06-03 Adc Telecommunications, Inc. Flat drop cable
US20100278493A1 (en) 2008-10-28 2010-11-04 Adc Telecommunications, Inc. Flat Drop Cable
WO2011050181A2 (en) 2009-10-21 2011-04-28 Adc Telecommunications, Inc. Flat drop cable with center strength member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion for PCT/US2012/047861 mailed Mar. 25, 2013.

Also Published As

Publication number Publication date
AU2012285834A1 (en) 2014-01-30
US20130032280A1 (en) 2013-02-07
MX2014000631A (en) 2014-04-30
WO2013013239A3 (en) 2013-07-04
WO2013013239A2 (en) 2013-01-24
NZ620028A (en) 2015-06-26
AU2012285834B2 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
US11880078B2 (en) Optical communication cable
US8238706B2 (en) Flat drop cable with medial bump
US8897613B2 (en) Flat drop cable
US8620124B1 (en) Binder film for a fiber optic cable
US8363994B2 (en) Fiber optic cable assembly
US9091830B2 (en) Binder film for a fiber optic cable
US8818156B2 (en) Multiple channel optical fiber furcation tube and cable assembly using same
US9547147B2 (en) Fiber optic cable with extruded tape
US9927590B2 (en) Composite film for a fiber optic cable
CN105980902A (en) Binder film system
US20130022325A1 (en) Drop Cable with Fiber Ribbon Conforming to Fiber Passage
US9079370B2 (en) Method for extruding a drop cable
CN107533203A (en) SAP coatings and related system and method for cable assemblies
NZ620028B2 (en) Method for extruding a drop cable
US8781281B2 (en) Drop cable with angled reinforcing member configurations
EP4206774A1 (en) Embedded strength member for optical fiber cables and manufacturing method thereof
US10401583B2 (en) Optical cable for terrestrial networks
AU2015100378A4 (en) Binder film for a fiber optic cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADC TELECOMMUNICATIONS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KACHMAR, WAYNE M.;REEL/FRAME:031084/0723

Effective date: 20120828

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TYCO ELECTRONICS SERVICES GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADC TELECOMMUNICATIONS, INC.;TE CONNECTIVITY SOLUTIONS GMBH;REEL/FRAME:036908/0443

Effective date: 20150825

AS Assignment

Owner name: COMMSCOPE EMEA LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO ELECTRONICS SERVICES GMBH;REEL/FRAME:036956/0001

Effective date: 20150828

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:037012/0001

Effective date: 20150828

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196

Effective date: 20151220

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504

Effective date: 20190404

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396

Effective date: 20190404

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051

Effective date: 20190404

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051

Effective date: 20190404

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20190714