US9094076B2 - Method and system for interference cancellation - Google Patents

Method and system for interference cancellation Download PDF

Info

Publication number
US9094076B2
US9094076B2 US13/956,541 US201313956541A US9094076B2 US 9094076 B2 US9094076 B2 US 9094076B2 US 201313956541 A US201313956541 A US 201313956541A US 9094076 B2 US9094076 B2 US 9094076B2
Authority
US
United States
Prior art keywords
common mode
signal
mode signal
interference
differential signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/956,541
Other versions
US20130315357A1 (en
Inventor
Mehdi Tavassoli Kilani
Scott Powell
Kadir Dinc
Kishore Kota
John Creigh
Hooman Parizi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US13/956,541 priority Critical patent/US9094076B2/en
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOTA, KISHORE, POWELL, SCOTT, CREIGH, JOHN, PARIZI, HOOMAN, TAVASSOLI KILANI, MEHDI, DINC, KADIR
Publication of US20130315357A1 publication Critical patent/US20130315357A1/en
Application granted granted Critical
Publication of US9094076B2 publication Critical patent/US9094076B2/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Assigned to AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED reassignment AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED MERGER (SEE DOCUMENT FOR DETAILS). Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
Assigned to AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED reassignment AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE PREVIOUSLY RECORDED ON REEL 047229 FRAME 0408. ASSIGNOR(S) HEREBY CONFIRMS THE THE EFFECTIVE DATE IS 09/05/2018. Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
Assigned to AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED reassignment AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NUMBER 9,385,856 TO 9,385,756 PREVIOUSLY RECORDED AT REEL: 47349 FRAME: 001. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER. Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • H04L25/0274Arrangements for ensuring balanced coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • H04L25/085Arrangements for reducing interference in line transmission systems, e.g. by differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0292Arrangements specific to the receiver end

Definitions

  • Certain embodiments of the invention relate to signal processing. More specifically, certain embodiments of the invention relate to a method and system for interference cancellation.
  • a system and/or method is provided for interference cancellation, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • FIG. 1 is a diagram depicting two communication devices communicating over a plurality of communication channels, in accordance with an embodiment of the invention.
  • FIG. 2 is a diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
  • FIG. 3 is another diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
  • FIG. 4 is a diagram illustrating exemplary magnetics which may be operable to provide interference cancellation for a communication device, in accordance with an embodiment of the invention.
  • FIG. 5 is a flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
  • FIG. 6 is another flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
  • a receiver may be operable to receive a differential signal via a differential channel, and to sense a common mode signal on the differential channel.
  • a frequency range in which interference is present in the common mode signal may be determined and the common mode signal and the differential signal may be filtered to attenuate frequencies outside the determined frequency range.
  • a phase and/or amplitude of the filtered common mode signal may be adjusted based on the filtered differential signal and the adjusted and filtered common mode signal may be subtracted from the received differential signal.
  • the common mode signal may be sensed via a pair of resistors coupled to the differential channel.
  • a first terminal of a first one of the resistors may be coupled to a first wire of the differential channel, a first terminal of a second one of the resistors may be coupled to a second wire of the differential channel, a second terminal of the first one of the resistors may be coupled to a second terminal of the second one of the resistors, and the common mode signal may be present on the second terminals of the resistors.
  • the second terminals of the resistors may be coupled to a first terminal of a primary winding of a transformer and a second terminal of the primary winding may be coupled to signal ground.
  • Either of an adaptive line enhancer and a filter may be selected for performing the filtering.
  • a selection between the adaptive line enhancer and the filter may be based on signal levels output by the adaptive line enhancer and the filter.
  • the filter may be selected in instances that the adaptive line enhancer is unable to converge on a frequency within the determined frequency range.
  • a frequency response of the filter may be configured to select between a high-pass response and a low-pass response.
  • the frequency range may be determined based on a pre-programmed or dynamically programmed value.
  • the subtraction may be enabled and disabled based on signal levels of the common mode signal and/or signal levels of the filtered common mode signal.
  • a phase and/or amplitude of the filtered common mode signal may be adjusted to minimize a difference between the filtered differential signal and the adjusted and filtered common mode signal.
  • FIG. 1 is a diagram depicting two communication devices communicating over a plurality of communication channels, in accordance with an embodiment of the invention. Referring to FIG. 1 there is shown a communication device 102 a and a communication device 102 b which communicate over a cable 108 that comprises communication channels 106 1 - 106 N , where N is an integer greater than or equal to 1.
  • Each of the communication devices 102 a and 102 b may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to communicate, utilizing differential signaling, over one or more of the channels 106 1 - 106 N .
  • Each communication channel 106 n may comprise, for example a twisted-pair, where n is an integer between 1 and N inclusive.
  • each of the communication devices 102 a and 102 b may comprise one or both of a transmitter and a receiver.
  • the communication devices 102 a and 102 b may communicate over the cable 108 in accordance with IEEE 802.3 (Ethernet) standards.
  • the cable 108 may comprise twisted pairs 106 1 - 106 4
  • the communication devices 102 a and 102 b may, depending on the particular 802.3 standard being utilized, may engage in simplex, half-duplex, and/or full-duplex communications over one or more of the twisted pairs 106 1 - 106 4 .
  • interference signal 104 having frequency f int may be incident on the cable 108 and may appear on the channels 106 1 - 106 N as a common mode signal.
  • Exemplary sources of the interference 104 comprise broadcast radio and/or television signals, cellular signals, and radiated electromagnetic interference (EMI) from other electronic devices or cables located near the cable 108 .
  • EMI radiated electromagnetic interference
  • Degraded communications over the cable 108 resulting from the interference 104 may manifest itself in the form of, for example, increased receive error rates in the communication devices 102 a and 102 b .
  • various aspects of the invention may enable, for each channel 106 n , accurate estimation and/or reproduction of a common mode interference on the channel 106 n , and subtracting the common mode interference from the differential signal received via the channel 106 n .
  • the N common mode interference signals may be estimated or reproduced by detecting the common mode signal on only one of the channels 106 1 - 106 N . Accordingly, redundant detection circuitry may be reduced or eliminated.
  • the common mode signals may be detected on any number of channels and utilized for reducing interference on any number of channels.
  • FIG. 2 is a diagram depicting an exemplary portion of a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
  • the communication device 102 may comprise differential processing paths 202 1 - 202 N , common mode processing path 204 , and control unit 208 .
  • the common mode path 204 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to sense a raw common mode signal present on the channel 106 1 , and to process the raw signal to output an enhanced common mode signal 206 .
  • the common mode path 204 may be operable to generate the common mode signal 206 by amplifying, filtering, and/or delaying the raw signal.
  • the common mode signal 206 may be output to each of the differential paths 202 1 - 202 N .
  • Each differential path 202 n may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to adjust the phase and/or amplitude of the enhanced common mode signal 206 and subtract the resulting signal from the differential signal received via the channel 106 n .
  • the control unit 208 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to configure the differential paths 202 1 - 202 N and/or the common mode path 204 .
  • the control unit 208 may provide control signals to switching elements such as multiplexers, control gain of one or more amplifiers, control frequency of one or more filters, and/or control a delay introduced by one or more delay elements or components.
  • the control unit 208 may configure the differential paths 202 1 - 202 N and/or the common mode path 204 based on a signal strength of the raw common mode signal, the common mode signal 206 , or some intermediate signal achieved while generating the common mode signal 206 from the raw common mode signal.
  • the signal 104 incident on the channels 106 1 - 106 N may result in a narrowband common mode interference signal at f int on each of the channels 106 1 - 106 N .
  • some of that common mode interference may get converted to narrowband interference at f int in the differential signal.
  • the common mode interference on each channels 106 n may be replicated or estimated and may be subtracted from the differential signal received via the channel 106 n .
  • FIG. 3 is another diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
  • the differential path 202 n comprises magnetics 302 , hybrid 304 , analog front end 306 (AFE), digital-to-analog converter (DAC) 308 , analog-to-digital converter (ADC) 310 , bandpass filter (BPF) 312 , filter bank 314 , multiplexers 316 and 325 , adaptive filter 318 , and combiners 320 and 324 .
  • AFE analog front end 306
  • DAC digital-to-analog converter
  • ADC analog-to-digital converter
  • BPF bandpass filter
  • the common mode path 204 comprises common mode sensor 326 , variable gain amplifier (VGA) 328 , ADC 330 , adaptive line enhancer (ALE) 332 , filter bank 334 , multiplexers 336 and 338 , delay block 340 , and detector 342 .
  • VGA variable gain amplifier
  • ALE adaptive line enhancer
  • the magnetics 302 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to couple the channel 106 n to the differential path 202 n .
  • the magnetics 302 may provide noise and/or EMI suppression and/or may impedance match the channel 106 n to the differential path 202 n .
  • the magnetics 302 may comprise one or more transformers and/or one or more inductive chokes.
  • the magnetics 302 may also comprise other components such as resistors, capacitors, and/or inductors for achieving impedance matching, isolation, and/or noise and/or EMI suppression.
  • the magnetics 302 may comprise the common mode sensor 326 , as described below with respect to FIG. 4 .
  • the various components depicted in FIG. 3 may be interconnected via differential traces on and/or in printed circuit boards (PCBs) and/or integrated circuits (ICs) on and/or in which the components are fabricated. Such differential signal routing may reduce noise coupled into the signals within and/or on the PCBs and/or ICs.
  • the hybrid 304 may comprise suitable logic, circuitry, and/or code that may enable separation of the transmitted and received signals from the channel 106 n and combining transmitted and received signals onto the channel 106 n .
  • the analog front end (AFE) 306 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to perform processing of received signals and signals that are to be transmitted in the analog domain. Such processing may comprise, for example, amplification, filtering, modulation, and demodulation.
  • the DAC 308 may comprise suitable logic, circuitry, interface, and/or code that may be operable to convert a digital signal to an analog representation. That is, the digital signal 309 is converted to the analog signal 307 .
  • Each of the ADCs 310 and 330 may comprise suitable logic, circuitry, interface, and/or code that may be operable to convert an analog signal to a digital representation. That is, the analog signal 307 is converted to the digital signal 311 .
  • the BPF 312 may comprise suitable logic, circuitry, interfaces, and/or code having a frequency response such that frequencies within a selected band, the passband, are attenuated less than frequencies above and below the selected band.
  • the frequency response of the BPF 312 may be controlled via the control signal 357 which may be generated by the ALE 332 and/or the control unit 208 .
  • Each of the filter banks 314 and 334 may comprise suitable logic, circuitry, interfaces, and/or code that may be configurable to have a high-pass and/or low-pass frequency response.
  • the frequency response of each of the filter banks 314 and 334 may be controlled via the control signal 359 from the control unit 208 .
  • each of the filter banks may comprise a first order infinite impulse response (IIR) filter.
  • Each of the multiplexers 316 , 325 , 336 , and 338 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to select one of a plurality of inputs for conveyance to an output.
  • the signals 351 , 351 , 355 , and 353 generated by the control unit may control, respectively, the multiplexers 316 , 336 , 325 and 338 .
  • the adaptive filter 318 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to adjust an amplitude and/or phase of the signal 206 to minimize the error signal 321 .
  • the adaptive filter 318 may comprise a two tap finite impulse response (FIR) filter.
  • FIR finite impulse response
  • a bandwidth and/or step size utilized in an adaptation algorithm performed by the adaptive filter 318 may be configured by the control unit 208 . Such control may affect how long it takes the adaptive filter 318 to converge and/or the accuracy of the coefficients on which it converges.
  • the combiners 320 and 324 may each comprise suitable logic, circuitry, interfaces, and/or code that may be operable to combine digital signals.
  • the combiners 320 and 324 may be operable to add and/or subtract two or more digital signals.
  • the combiners 320 and 324 may be operable to weight the signals prior to addition or subtraction.
  • the common mode sensor 326 may comprise suitable logic, circuitry, interfaces, and/or code operable to detect a common mode signal on the channel 106 n .
  • the common mode sensor 326 may output a raw common mode signal 327 .
  • the common mode sensor may comprise a pair of resistors and a transformer as described below with respect to FIG. 4 .
  • the common mode sensor 326 may comprise a center tap of a transformer in the magnetics 302 .
  • the variable gain amplifier (VGA) 328 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to amplify the raw common mode signal 327 .
  • the gain of the VGA 328 may be controlled via control signal 361 from the control unit.
  • the ALE 332 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to suppress wide-band noise component of the signal 331 while passing a narrow band component of the signal 331 .
  • the ALE 332 may implement one or ore more algorithms to automatically seek and attempt to lock its passband to the frequency, f int , of the narrowband interference resulting from the interference signal 104 ( FIG. 1 ).
  • the ALE 332 may comprise a second order Infinite Impulse Response (IIR) bandpass filter.
  • IIR Infinite Impulse Response
  • the ALE 332 may comprise a finite impulse response (FIR) filter.
  • a bandwidth and/or step size utilized in an adaptation algorithm performed by the ALE 332 may be configured by the control unit 208 . Such control may affect how long it takes the ALE 332 to converge and/or the accuracy of the frequency on which it converges.
  • the delay block 340 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to delay the signal 337 . That is, the signal 206 may be a delayed version of the signal 337 .
  • the delay introduced by the delay block 340 may be controlled by a control signal 363 from the control unit.
  • the delay block 340 may compensate for the difference in delays between the differential path 202 n and common mode path 204 .
  • the delay introduced by the delay block 340 may be fixed or programmable.
  • the detector 342 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to detect the levels of the signal 339 and compare the levels of the signal 339 to a threshold, S th .
  • the output 343 of the detector 342 may indicate whether the levels of the signal 342 is greater than or less than S th .
  • the control unit 208 may be as described with respect to FIG. 2 .
  • the control unit 208 may be operable to generate the control signal 351 for controlling the multiplexers 316 and 336 , the control signal 353 for controlling the multiplexer 338 , the control signal 355 for controlling the multiplexer 325 , the control signal 359 for configuring the filter banks 314 and 334 , the control signal 361 for controlling the VGA 361 , the control signal 363 for controlling the delay 363 , and the threshold voltage S th .
  • the control unit 208 may comprise a processor and memory.
  • the raw common mode signal 327 may be obtained from the sensor 326 .
  • the raw common mode signal 327 may be scaled by the VGA 328 resulting in the signal 329 . Such scaling may be utilized to accommodate for the dynamic range of the ADC 330 .
  • the signal 329 may be digitized by the ADC 330 to generate the signal 331 which is input to ALE 332 and the filter bank 334 .
  • the ALE 332 may attempt to detect and converge on the frequency, f int , of the narrowband interference present in the signal 331 . After convergence, the bandpass filter portion of the ALE 332 may filter out wideband noise while passing a narrow range of frequencies around f int . In instances that the ALE 332 converges on f int , then the multiplexer 336 may select the signal 333 to be output as the signal 337 .
  • the output In instances that the f int is outside a range suitable for the bandpass filtering of the ALE 332 , the output. That is, when the ALE 332 cannot converge on f int , the output the multiplexer 336 may select the output 335 of the filter bank 334 to be output as the signal 337 . In this regard, in instances that f int is lower than the convergence range of the ALE 332 , the filter bank 334 may be configured into a low-pass configuration. Similarly, in instances that f int is higher than the convergence range of the ALE 332 , the filter bank 334 may be configured into a high-pass configuration.
  • the signal 337 may be communicatively coupled to the delay block 340 .
  • the amount of delay introduced by the delay block 340 may be controlled such that that the enhanced common mode signal 206 is roughly time aligned with the signal 317 in the differential path 202 n .
  • the signal 337 is also coupled to the multiplexor 338 .
  • the multiplexor 338 may select between the signals 331 and the signals 337 for conveyance to the detector 342 .
  • the threshold S th may be set to a first value and when the signal 337 is selected, the threshold S th may be set to a second value.
  • the detector 342 may measure levels of the signal 337 within a time period and compare the levels against the threshold S th .
  • the result 343 of the comparison may be input to the control unit 208 which may generate on or more control signals based on the result.
  • the multiplexer 338 and the detector 342 may be utilized to determine when to enable and when to disable interference cancellation. An example of enabling and disabling interference cancellation is described below with respect to FIG. 6 .
  • the control unit 208 may alternate signal 351 between 0 and 1, thus alternating selection of the signal 333 and the signal 335 , and determine which of the signals 333 and 335 to select based on the levels of the signals. For example, if the ALE 332 achieves convergence while it is selected, then the control unit 208 may stop alternating the signal 353 and stay on the value of the signal 353 that selects signal 333 . If the ALE 332 does not converge, the signal 335 may be selected and signal levels may be checked for each of a high-pass and low-pass configuration of the filter bank 334 .
  • signal 335 may be selected and the signal 353 may stop alternating. Otherwise, the signal 333 may again be selected as the ALE 332 again attempts to converge on the narrowband interference, utilizing, for example, new parameters for bandwidth and/or adaptation step size. The process may repeat until the narrowband interference at f int is detected.
  • a low-pass configuration of the filter bank 334 may be selected when f int is on the low end of the frequency spectrum
  • a high-pass configuration of the filter bank 334 may be selected when f int is equal to half the sampling frequency or higher
  • the ALE 332 may be selected for when f int is somewhere in between.
  • the signal 351 also controls the multiplexer 316 . Accordingly, if the signal 333 is selected by the multiplexer 336 , then the signal 313 is selected by the multiplexer 316 . In instances that the ALE 332 has converged on f int , and the signal 333 has been selected by the multiplexer 336 , the configuration of the ALE 332 may be copied to the BPF 312 . That is, the signal 357 may configure the BPF 312 to have the same (within a tolerance) frequency response as the ALE 332 . Similarly, in instances that the signal 335 is selected, the configuration of the filter bank 334 may be copied to the filter bank 314 . That is, the signal 359 may configure the filter bank 314 to have the same, within a tolerance, frequency response as the filter bank 334 .
  • the signals 317 and 206 may be input to the adaptive filter 318 .
  • the adaptive filter 318 may adjust the amplitude and/or phase of the signal 206 to generate the signal 319 .
  • the adaptive filter 318 may adjust the phase and/or amplitude of the signal 206 to minimize the error signal 321 .
  • the signal 319 may correspond to an accurate replica of the interference in the signal 311 resulting from the interfering signal 104 ( FIG. 1 ).
  • the multiplexer 325 may be configured to output the signal 319 to the combiner 324 such that the signal 319 is subtracted from the signal 311 .
  • the multiplexer 325 may select the zero input which allows the signal 311 to pass through the combiner 324 unmodified.
  • FIG. 4 is a diagram illustrating exemplary magnetics, which may be operable to provide interference cancellation, for a communication device, in accordance with an embodiment of the invention.
  • the magnetics 302 may couple the channels 106 1 - 106 N to the differential signal traces 406 1 - 406 N .
  • the magnetics 302 and may comprise chokes 402 1 - 402 N , transformers 404 1 - 404 N+1 , and resistors 408 a and 408 b .
  • the common mode sensor 326 described with respect to FIG. 3 may comprise the resistors 408 a and 408 b and the transformer 404 N+1 .
  • the chokes 402 1 - 402 N may be operable to attenuate common mode signals while passing differential signals.
  • the chokes 402 1 - 402 N may comprise one or more inductors and/or ferrites.
  • the transformers 404 1 - 404 N may be operable to inductively couple the differential outputs of the chokes 402 1 - 402 N to the differential signal traces 406 1 - 406 N .
  • Each of the transformers 404 1 - 404 N may comprise a primary winding, a secondary winding, and a core.
  • common mode energy on the two conductors of channel 106 N may sum through the resistors 408 a and 408 b and appear as a single-ended raw common mode signal at the primary winding 404 N+1 .
  • the transformer 404 N+1 may convert the single-ended raw common mode signal to a differential raw common mode signal on the differential trace 406 N+1
  • FIG. 5 is a flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
  • the exemplary steps may begin with step 502 when a common mode sensor may sense a common mode signal on a differential channel and output a raw common mode signal.
  • the raw common mode signal may be enhanced by amplifying it, filtering it, and/or delaying it.
  • the filtering may comprising automatically centering a pass band around a frequency, f int , of a narrowband interference signal present in the raw common mode signal, such that the narrow band interference signal is passed while wideband noise is filtered out.
  • a phase and/or amplitude of the enhanced common mode signal may be adjusted such that the phase and amplitude of the enhanced common mode signal are approximately equal to the phase and amplitude of interference present on a received differential signal. That is, the same source of interference that generated the narrowband interference present in the common mode signal may also have created some interference on a received differential signal. That is, through imperfections in the channel and/or the received differential signal, some common mode to differential conversion may take place that results in interference in the received differential signal. Accordingly, adjusting the phase and/or amplitude of the enhanced common mode signal may result in a signal that accurately estimates the interference in the differential signal.
  • the interference estimate that is, the phase and/or amplitude adjusted version of the enhanced common mode signal, may be subtracted from the received differential signal, thus resulting in a cleaner received signal.
  • FIG. 6 is another flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
  • the exemplary steps may begin with start step 602 and proceed to step 604 .
  • the communication device 102 a may begin receiving signals via one or more of the differential channels 106 1 - 106 N .
  • the communication device 102 a may initially be configured such that interference cancellation is disabled.
  • step 606 it may be determined whether signal 331 is greater than a first value of the threshold S th .
  • the multiplexer 338 may be configured to select the signal 331 for conveyance to the detector 342 .
  • the steps may return to step 604 .
  • the exemplary steps may advance to step 608 .
  • step 608 it may be determined whether the frequency, f int , of the interference signal 104 ( FIG. 1 ) is known.
  • a network administrator may be aware of a nearby radio tower or other source of interference and may program f int into the communication device 102 a .
  • the location of the communication device 102 a may be utilized to determine nearby sources of interference and the frequencies of the interference. For example, GPS may be utilized to map out the RF characteristics of an area and the GPS coordinates of the communication device 102 a may be utilized to determine nearby sources of interference.
  • the exemplary steps may proceed to step 612
  • the communication device 102 a may automatically detect the frequency, f int , of the narrowband interference.
  • f int may be detected by convergence of the ALE 332 and/or based on levels of the signals 333 and 335 measured by the detector 342 .
  • corresponding filters 312 and/or 314 in the differential paths 102 1 - 102 N may be configured to pass the detected f int and filter out other frequencies.
  • the exemplary steps may advance to step 614 .
  • step 614 the narrowband common mode signal output by the ALE 332 or the filter bank 334 may be delayed by delay block 340 , resulting in the enhanced common mode signal 206 .
  • the signal 206 may then be phase and/or level adjusted by the adaptive filter 318 .
  • the exemplary steps may proceed to step 616 .
  • step 616 the multiplexer 325 may be configured to select the signal 319 and the combiner 324 may subtract the signal 319 from the signal 311 . Subsequent to step 616 , the exemplary steps may proceed to step 618 .
  • step 618 if the levels of the narrowband signal 337 drops below a threshold then the exemplary steps may proceed to step 604 and interference cancellation may be disabled. This may happen, for example, when the signal 104 goes away or changes frequency. Conversely, while the level of the signal 337 remains above a threshold, interference cancellation may remain enabled.
  • step 610 in instances that f int is within a lock range of the ALE 32 , then the ALE 332 may be configured such that it will quickly lock to f int and the passband of the corresponding BPFs 312 in the differential paths 202 1 - 202 N may be set to f int .
  • the filter bank 334 may be configured to pass f int and the corresponding filter banks 314 in the differential paths 202 1 - 202 N may be configured to pass f int .
  • the exemplary steps may advance to step 614 .
  • one or more circuits and/or processors of a communication device 102 a may be operable to receive a differential signal 311 ( FIG. 3 ) via a differential channel 106 n ( FIGS. 1-3 ), and to sense a common mode signal 327 ( FIG. 3 ) on the differential channel 106 n .
  • a frequency range in which interference is present in the common mode signal 327 may be determined and the differential signal 311 and the common mode signal 327 , or signal 331 , an amplified and/or digitized version of signal 327 , may be filtered to attenuate frequencies outside the determined frequency range.
  • a phase and/or amplitude of the filtered common mode signal 337 , or the signal 206 , a delayed version of signal 337 , may be adjusted based on the filtered differential signal 317 and the adjusted and filtered common mode signal 319 may be subtracted from the received differential signal 311 .
  • the common mode signal 327 may be sensed via a pair of resistors 408 a and 408 b ( FIG. 4 ) coupled to the differential channel 106 n .
  • a first terminal of the resistors 408 a may be coupled to a first wire of the differential channel 106 n
  • a first terminal of the resistors 408 b may be coupled to a second wire of the differential channel 106 n
  • a second terminal of the resistor 408 a may be coupled to a second terminal of the resistor 408 b
  • the common mode signal 327 may be present on the second terminals of the resistors.
  • the second terminals of the resistors 408 a and 408 b may be coupled to a first terminal of a primary winding of a transformer 404 N+1 and a second terminal of the primary winding may be coupled to signal ground.
  • Either of an adaptive line enhancer 332 and a filter 334 may be selected for performing the filtering.
  • a selection between the adaptive line enhancer 332 and the filter 334 may be based on signal levels output by the adaptive line enhancer 332 and the filter 334 .
  • the filter 334 may be selected in instances that the adaptive line enhancer 332 is unable to converge on a frequency within the determined frequency range.
  • a frequency response of the filter 334 may be configured to select between a high-pass response and a low-pass response.
  • the frequency range may be determined based on a programmed value which may be pre-programmed or determined dynamically.
  • the subtraction may be enabled and disabled based on signal levels of the common mode signal 327 , or signal 331 , an amplified and/or digitized version of signal 327 , and/or signal levels of the filtered common mode signal 337 .
  • a phase and/or amplitude of the filtered common mode signal 337 , or signal 206 , a delayed version of signal 337 may be adjusted to minimize a difference between the filtered differential signal 317 and the adjusted and filtered common mode signal 319 .
  • inventions may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for interference cancellation.
  • the present invention may be realized in hardware, software, or a combination of hardware and software.
  • the present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited.
  • a typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
  • the present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods.
  • Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.

Abstract

Aspects of a method and system for interference cancellation substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims. In this regard, a receiver may be operable to receive a differential signal via a differential channel, and to sense a common mode signal on the differential channel. A frequency range in which interference is present in the common mode signal may be determined. The differential signal and the common mode signal may be filtered to attenuate frequencies outside the determined frequency range. A phase and/or amplitude of the filtered common mode signal may be adjusted based on the filtered differential signal and the adjusted and filtered common mode signal may be subtracted from the received differential signal. The common mode signal may be sensed via a pair of resistors coupled to the differential channel.

Description

This patent application is a continuation of U.S. patent application Ser. No. 12/857,303, titled “Method and System for Interference Cancellation,” filed Aug. 16, 2010, and makes reference to, claims priority to and claims benefit from U.S. Provisional Patent Application Ser. No. 61/243,987, filed Sep. 18, 2009, and U.S. Provisional Patent Application Ser. No. 61/362,012, filed Jul. 7, 2010.
Each of the above stated applications are hereby incorporated herein by reference in their entirety.
FIELD OF THE INVENTION
Certain embodiments of the invention relate to signal processing. More specifically, certain embodiments of the invention relate to a method and system for interference cancellation.
BACKGROUND OF THE INVENTION
In almost any communication system, interference, externally and/or internally generated, limits the performance of the communication system. Differential signaling is one technique that can be utilized for dealing with such interference. However, while differential signaling may reduce the effects of such interference, it does not eliminate them.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
BRIEF SUMMARY OF THE INVENTION
A system and/or method is provided for interference cancellation, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
FIG. 1. is a diagram depicting two communication devices communicating over a plurality of communication channels, in accordance with an embodiment of the invention.
FIG. 2 is a diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
FIG. 3 is another diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention.
FIG. 4 is a diagram illustrating exemplary magnetics which may be operable to provide interference cancellation for a communication device, in accordance with an embodiment of the invention.
FIG. 5 is a flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
FIG. 6 is another flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Certain embodiments of the invention may be found in a method and system for interference cancellation. In various embodiments of the invention, a receiver may be operable to receive a differential signal via a differential channel, and to sense a common mode signal on the differential channel. A frequency range in which interference is present in the common mode signal may be determined and the common mode signal and the differential signal may be filtered to attenuate frequencies outside the determined frequency range. A phase and/or amplitude of the filtered common mode signal may be adjusted based on the filtered differential signal and the adjusted and filtered common mode signal may be subtracted from the received differential signal. The common mode signal may be sensed via a pair of resistors coupled to the differential channel. A first terminal of a first one of the resistors may be coupled to a first wire of the differential channel, a first terminal of a second one of the resistors may be coupled to a second wire of the differential channel, a second terminal of the first one of the resistors may be coupled to a second terminal of the second one of the resistors, and the common mode signal may be present on the second terminals of the resistors. The second terminals of the resistors may be coupled to a first terminal of a primary winding of a transformer and a second terminal of the primary winding may be coupled to signal ground.
Either of an adaptive line enhancer and a filter may be selected for performing the filtering. A selection between the adaptive line enhancer and the filter may be based on signal levels output by the adaptive line enhancer and the filter. The filter may be selected in instances that the adaptive line enhancer is unable to converge on a frequency within the determined frequency range. A frequency response of the filter may be configured to select between a high-pass response and a low-pass response. The frequency range may be determined based on a pre-programmed or dynamically programmed value. The subtraction may be enabled and disabled based on signal levels of the common mode signal and/or signal levels of the filtered common mode signal. A phase and/or amplitude of the filtered common mode signal may be adjusted to minimize a difference between the filtered differential signal and the adjusted and filtered common mode signal.
FIG. 1 is a diagram depicting two communication devices communicating over a plurality of communication channels, in accordance with an embodiment of the invention. Referring to FIG. 1 there is shown a communication device 102 a and a communication device 102 b which communicate over a cable 108 that comprises communication channels 106 1-106 N, where N is an integer greater than or equal to 1.
Each of the communication devices 102 a and 102 b may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to communicate, utilizing differential signaling, over one or more of the channels 106 1-106 N. Each communication channel 106 n may comprise, for example a twisted-pair, where n is an integer between 1 and N inclusive. In this regard, each of the communication devices 102 a and 102 b may comprise one or both of a transmitter and a receiver. In various embodiments of the invention, the communication devices 102 a and 102 b may communicate over the cable 108 in accordance with IEEE 802.3 (Ethernet) standards. For example, for 10/100/1G/10 GBASE-T the cable 108 may comprise twisted pairs 106 1-106 4, and the communication devices 102 a and 102 b may, depending on the particular 802.3 standard being utilized, may engage in simplex, half-duplex, and/or full-duplex communications over one or more of the twisted pairs 106 1-106 4.
In operation, interference signal 104 having frequency fint may be incident on the cable 108 and may appear on the channels 106 1-106 N as a common mode signal. Exemplary sources of the interference 104 comprise broadcast radio and/or television signals, cellular signals, and radiated electromagnetic interference (EMI) from other electronic devices or cables located near the cable 108. Degraded communications over the cable 108 resulting from the interference 104 may manifest itself in the form of, for example, increased receive error rates in the communication devices 102 a and 102 b. Accordingly, various aspects of the invention may enable, for each channel 106 n, accurate estimation and/or reproduction of a common mode interference on the channel 106 n, and subtracting the common mode interference from the differential signal received via the channel 106 n. In an exemplary embodiment of the invention, the N common mode interference signals may be estimated or reproduced by detecting the common mode signal on only one of the channels 106 1-106 N. Accordingly, redundant detection circuitry may be reduced or eliminated. The common mode signals may be detected on any number of channels and utilized for reducing interference on any number of channels.
FIG. 2 is a diagram depicting an exemplary portion of a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention. Referring to FIG. 2 the communication device 102 may comprise differential processing paths 202 1-202 N, common mode processing path 204, and control unit 208.
The common mode path 204 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to sense a raw common mode signal present on the channel 106 1, and to process the raw signal to output an enhanced common mode signal 206. The common mode path 204 may be operable to generate the common mode signal 206 by amplifying, filtering, and/or delaying the raw signal. The common mode signal 206 may be output to each of the differential paths 202 1-202 N.
Each differential path 202 n may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to adjust the phase and/or amplitude of the enhanced common mode signal 206 and subtract the resulting signal from the differential signal received via the channel 106 n.
The control unit 208 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to configure the differential paths 202 1-202 N and/or the common mode path 204. For example, the control unit 208 may provide control signals to switching elements such as multiplexers, control gain of one or more amplifiers, control frequency of one or more filters, and/or control a delay introduced by one or more delay elements or components. In an exemplary embodiment of the invention, the control unit 208 may configure the differential paths 202 1-202 N and/or the common mode path 204 based on a signal strength of the raw common mode signal, the common mode signal 206, or some intermediate signal achieved while generating the common mode signal 206 from the raw common mode signal.
In operation, the signal 104 incident on the channels 106 1-106 N may result in a narrowband common mode interference signal at fint on each of the channels 106 1-106 N. Furthermore, due to length and/or impedance mismatches, for example, some of that common mode interference may get converted to narrowband interference at fint in the differential signal. To cancel or reduce such interference, the common mode interference on each channels 106 n may be replicated or estimated and may be subtracted from the differential signal received via the channel 106 n.
FIG. 3 is another diagram depicting an exemplary portion a communication device, which may be operable to provide interference cancellation, in accordance with an embodiment of the invention. Referring to FIG. 3 there is shown an exemplary differential path 202 n, the common mode path 204, and the control unit 208. The differential path 202 n comprises magnetics 302, hybrid 304, analog front end 306 (AFE), digital-to-analog converter (DAC) 308, analog-to-digital converter (ADC) 310, bandpass filter (BPF) 312, filter bank 314, multiplexers 316 and 325, adaptive filter 318, and combiners 320 and 324. Although FIG. 3 depicts only a single differential path, each of the differential paths 202 1-202 N may be treated and/or behave in a manner that is similar to that of the exemplary differential path 202 n. The common mode path 204 comprises common mode sensor 326, variable gain amplifier (VGA) 328, ADC 330, adaptive line enhancer (ALE) 332, filter bank 334, multiplexers 336 and 338, delay block 340, and detector 342.
The magnetics 302 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to couple the channel 106 n to the differential path 202 n. In this regard, the magnetics 302 may provide noise and/or EMI suppression and/or may impedance match the channel 106 n to the differential path 202 n. In this regard, the magnetics 302 may comprise one or more transformers and/or one or more inductive chokes. In some instances, the magnetics 302 may also comprise other components such as resistors, capacitors, and/or inductors for achieving impedance matching, isolation, and/or noise and/or EMI suppression. In some embodiments of the invention, the magnetics 302 may comprise the common mode sensor 326, as described below with respect to FIG. 4. In various embodiments of the invention, the various components depicted in FIG. 3 may be interconnected via differential traces on and/or in printed circuit boards (PCBs) and/or integrated circuits (ICs) on and/or in which the components are fabricated. Such differential signal routing may reduce noise coupled into the signals within and/or on the PCBs and/or ICs.
The hybrid 304 may comprise suitable logic, circuitry, and/or code that may enable separation of the transmitted and received signals from the channel 106 n and combining transmitted and received signals onto the channel 106 n.
The analog front end (AFE) 306 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to perform processing of received signals and signals that are to be transmitted in the analog domain. Such processing may comprise, for example, amplification, filtering, modulation, and demodulation.
The DAC 308 may comprise suitable logic, circuitry, interface, and/or code that may be operable to convert a digital signal to an analog representation. That is, the digital signal 309 is converted to the analog signal 307.
Each of the ADCs 310 and 330 may comprise suitable logic, circuitry, interface, and/or code that may be operable to convert an analog signal to a digital representation. That is, the analog signal 307 is converted to the digital signal 311.
The BPF 312 may comprise suitable logic, circuitry, interfaces, and/or code having a frequency response such that frequencies within a selected band, the passband, are attenuated less than frequencies above and below the selected band. The frequency response of the BPF 312 may be controlled via the control signal 357 which may be generated by the ALE 332 and/or the control unit 208.
Each of the filter banks 314 and 334 may comprise suitable logic, circuitry, interfaces, and/or code that may be configurable to have a high-pass and/or low-pass frequency response. The frequency response of each of the filter banks 314 and 334 may be controlled via the control signal 359 from the control unit 208. In an exemplary embodiment of the invention each of the filter banks may comprise a first order infinite impulse response (IIR) filter.
Each of the multiplexers 316, 325, 336, and 338 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to select one of a plurality of inputs for conveyance to an output. The signals 351, 351, 355, and 353 generated by the control unit may control, respectively, the multiplexers 316, 336, 325 and 338.
The adaptive filter 318 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to adjust an amplitude and/or phase of the signal 206 to minimize the error signal 321. In an exemplary embodiment of the invention, the adaptive filter 318 may comprise a two tap finite impulse response (FIR) filter. In various embodiments of the invention, a bandwidth and/or step size utilized in an adaptation algorithm performed by the adaptive filter 318 may be configured by the control unit 208. Such control may affect how long it takes the adaptive filter 318 to converge and/or the accuracy of the coefficients on which it converges.
The combiners 320 and 324 may each comprise suitable logic, circuitry, interfaces, and/or code that may be operable to combine digital signals. The combiners 320 and 324 may be operable to add and/or subtract two or more digital signals. The combiners 320 and 324 may be operable to weight the signals prior to addition or subtraction.
The common mode sensor 326 may comprise suitable logic, circuitry, interfaces, and/or code operable to detect a common mode signal on the channel 106 n. The common mode sensor 326 may output a raw common mode signal 327. In an exemplary embodiment of the invention, the common mode sensor may comprise a pair of resistors and a transformer as described below with respect to FIG. 4. In another exemplary embodiment of the invention, the common mode sensor 326 may comprise a center tap of a transformer in the magnetics 302.
The variable gain amplifier (VGA) 328 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to amplify the raw common mode signal 327. The gain of the VGA 328 may be controlled via control signal 361 from the control unit.
The ALE 332 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to suppress wide-band noise component of the signal 331 while passing a narrow band component of the signal 331. In this regard, the ALE 332 may implement one or ore more algorithms to automatically seek and attempt to lock its passband to the frequency, fint, of the narrowband interference resulting from the interference signal 104 (FIG. 1). In an exemplary embodiment of the invention, the ALE 332 may comprise a second order Infinite Impulse Response (IIR) bandpass filter. In an exemplary embodiment of the invention, the ALE 332 may comprise a finite impulse response (FIR) filter. In various embodiments of the invention, a bandwidth and/or step size utilized in an adaptation algorithm performed by the ALE 332 may be configured by the control unit 208. Such control may affect how long it takes the ALE 332 to converge and/or the accuracy of the frequency on which it converges.
The delay block 340 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to delay the signal 337. That is, the signal 206 may be a delayed version of the signal 337. The delay introduced by the delay block 340 may be controlled by a control signal 363 from the control unit. The delay block 340 may compensate for the difference in delays between the differential path 202 n and common mode path 204. The delay introduced by the delay block 340 may be fixed or programmable.
The detector 342 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to detect the levels of the signal 339 and compare the levels of the signal 339 to a threshold, Sth. The output 343 of the detector 342 may indicate whether the levels of the signal 342 is greater than or less than Sth.
The control unit 208 may be as described with respect to FIG. 2. The control unit 208 may be operable to generate the control signal 351 for controlling the multiplexers 316 and 336, the control signal 353 for controlling the multiplexer 338, the control signal 355 for controlling the multiplexer 325, the control signal 359 for configuring the filter banks 314 and 334, the control signal 361 for controlling the VGA 361, the control signal 363 for controlling the delay 363, and the threshold voltage Sth. In an exemplary embodiment of the invention, the control unit 208 may comprise a processor and memory.
In operation, the raw common mode signal 327 may be obtained from the sensor 326. The raw common mode signal 327 may be scaled by the VGA 328 resulting in the signal 329. Such scaling may be utilized to accommodate for the dynamic range of the ADC 330. The signal 329 may be digitized by the ADC 330 to generate the signal 331 which is input to ALE 332 and the filter bank 334.
The ALE 332 may attempt to detect and converge on the frequency, fint, of the narrowband interference present in the signal 331. After convergence, the bandpass filter portion of the ALE 332 may filter out wideband noise while passing a narrow range of frequencies around fint. In instances that the ALE 332 converges on fint, then the multiplexer 336 may select the signal 333 to be output as the signal 337.
In instances that the fint is outside a range suitable for the bandpass filtering of the ALE 332, the output. That is, when the ALE 332 cannot converge on fint, the output the multiplexer 336 may select the output 335 of the filter bank 334 to be output as the signal 337. In this regard, in instances that fint is lower than the convergence range of the ALE 332, the filter bank 334 may be configured into a low-pass configuration. Similarly, in instances that fint is higher than the convergence range of the ALE 332, the filter bank 334 may be configured into a high-pass configuration.
The signal 337 may be communicatively coupled to the delay block 340. The amount of delay introduced by the delay block 340 may be controlled such that that the enhanced common mode signal 206 is roughly time aligned with the signal 317 in the differential path 202 n.
The signal 337 is also coupled to the multiplexor 338. The multiplexor 338 may select between the signals 331 and the signals 337 for conveyance to the detector 342. In this regard, when the signal 331 is selected, the threshold Sth may be set to a first value and when the signal 337 is selected, the threshold Sth may be set to a second value. The detector 342 may measure levels of the signal 337 within a time period and compare the levels against the threshold Sth. The result 343 of the comparison may be input to the control unit 208 which may generate on or more control signals based on the result. In an exemplary embodiment of the invention, the multiplexer 338 and the detector 342 may be utilized to determine when to enable and when to disable interference cancellation. An example of enabling and disabling interference cancellation is described below with respect to FIG. 6.
In an exemplary embodiment of the invention, to select among the ALE 332 and the filter bank 334, the control unit 208 may alternate signal 351 between 0 and 1, thus alternating selection of the signal 333 and the signal 335, and determine which of the signals 333 and 335 to select based on the levels of the signals. For example, if the ALE 332 achieves convergence while it is selected, then the control unit 208 may stop alternating the signal 353 and stay on the value of the signal 353 that selects signal 333. If the ALE 332 does not converge, the signal 335 may be selected and signal levels may be checked for each of a high-pass and low-pass configuration of the filter bank 334. If either the high-pass or low-pass configuration results in signal 339 being above the threshold, then signal 335 may be selected and the signal 353 may stop alternating. Otherwise, the signal 333 may again be selected as the ALE 332 again attempts to converge on the narrowband interference, utilizing, for example, new parameters for bandwidth and/or adaptation step size. The process may repeat until the narrowband interference at fint is detected. In an exemplary embodiment of the invention, a low-pass configuration of the filter bank 334 may be selected when fint is on the low end of the frequency spectrum, a high-pass configuration of the filter bank 334 may be selected when fint is equal to half the sampling frequency or higher, and the ALE 332 may be selected for when fint is somewhere in between.
The signal 351 also controls the multiplexer 316. Accordingly, if the signal 333 is selected by the multiplexer 336, then the signal 313 is selected by the multiplexer 316. In instances that the ALE 332 has converged on fint, and the signal 333 has been selected by the multiplexer 336, the configuration of the ALE 332 may be copied to the BPF 312. That is, the signal 357 may configure the BPF 312 to have the same (within a tolerance) frequency response as the ALE 332. Similarly, in instances that the signal 335 is selected, the configuration of the filter bank 334 may be copied to the filter bank 314. That is, the signal 359 may configure the filter bank 314 to have the same, within a tolerance, frequency response as the filter bank 334.
The signals 317 and 206 may be input to the adaptive filter 318. The adaptive filter 318 may adjust the amplitude and/or phase of the signal 206 to generate the signal 319. In this regard, the adaptive filter 318 may adjust the phase and/or amplitude of the signal 206 to minimize the error signal 321. The signal 319 may correspond to an accurate replica of the interference in the signal 311 resulting from the interfering signal 104 (FIG. 1). Accordingly, once signal 319 is a stable representation of the narrowband interference at fint in the signal 311, the multiplexer 325 may be configured to output the signal 319 to the combiner 324 such that the signal 319 is subtracted from the signal 311. In this regard, when interference cancellation is disabled and/or the system is unable to detect or lock to the narrowband interference at fint, the multiplexer 325 may select the zero input which allows the signal 311 to pass through the combiner 324 unmodified.
FIG. 4 is a diagram illustrating exemplary magnetics, which may be operable to provide interference cancellation, for a communication device, in accordance with an embodiment of the invention. Referring to FIG. 4, the magnetics 302 may couple the channels 106 1-106 N to the differential signal traces 406 1-406 N. The magnetics 302 and may comprise chokes 402 1-402 N, transformers 404 1-404 N+1, and resistors 408 a and 408 b. In this regard, the common mode sensor 326 described with respect to FIG. 3 may comprise the resistors 408 a and 408 b and the transformer 404 N+1.
The chokes 402 1-402 N may be operable to attenuate common mode signals while passing differential signals. In an exemplary embodiment of the invention, the chokes 402 1-402 N may comprise one or more inductors and/or ferrites.
The transformers 404 1-404 N may be operable to inductively couple the differential outputs of the chokes 402 1-402 N to the differential signal traces 406 1-406 N. Each of the transformers 404 1-404 N may comprise a primary winding, a secondary winding, and a core.
In operation, common mode energy on the two conductors of channel 106 N may sum through the resistors 408 a and 408 b and appear as a single-ended raw common mode signal at the primary winding 404 N+1. The transformer 404 N+1 may convert the single-ended raw common mode signal to a differential raw common mode signal on the differential trace 406 N+1
FIG. 5 is a flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention. Referring to FIG. 5, the exemplary steps may begin with step 502 when a common mode sensor may sense a common mode signal on a differential channel and output a raw common mode signal. In step 504, the raw common mode signal may be enhanced by amplifying it, filtering it, and/or delaying it. The filtering may comprising automatically centering a pass band around a frequency, fint, of a narrowband interference signal present in the raw common mode signal, such that the narrow band interference signal is passed while wideband noise is filtered out.
In step 506, a phase and/or amplitude of the enhanced common mode signal may be adjusted such that the phase and amplitude of the enhanced common mode signal are approximately equal to the phase and amplitude of interference present on a received differential signal. That is, the same source of interference that generated the narrowband interference present in the common mode signal may also have created some interference on a received differential signal. That is, through imperfections in the channel and/or the received differential signal, some common mode to differential conversion may take place that results in interference in the received differential signal. Accordingly, adjusting the phase and/or amplitude of the enhanced common mode signal may result in a signal that accurately estimates the interference in the differential signal. In step 508, the interference estimate, that is, the phase and/or amplitude adjusted version of the enhanced common mode signal, may be subtracted from the received differential signal, thus resulting in a cleaner received signal.
FIG. 6 is another flow chart illustrating exemplary steps for interference cancellation, in accordance with an embodiment of the invention. Referring to FIG. 6, the exemplary steps may begin with start step 602 and proceed to step 604. In step 604, the communication device 102 a may begin receiving signals via one or more of the differential channels 106 1-106 N. The communication device 102 a may initially be configured such that interference cancellation is disabled.
In step 606, it may be determined whether signal 331 is greater than a first value of the threshold Sth. In this regard, while interference cancellation is disabled, the multiplexer 338 may be configured to select the signal 331 for conveyance to the detector 342. In instances that signal 331 is not greater than the threshold Sth, the steps may return to step 604. In instances that the signal 331 is greater than the threshold Sth, the exemplary steps may advance to step 608.
In step 608, it may be determined whether the frequency, fint, of the interference signal 104 (FIG. 1) is known. In an exemplary embodiment of the invention, a network administrator may be aware of a nearby radio tower or other source of interference and may program fint into the communication device 102 a. In an exemplary embodiment of the invention, the location of the communication device 102 a may be utilized to determine nearby sources of interference and the frequencies of the interference. For example, GPS may be utilized to map out the RF characteristics of an area and the GPS coordinates of the communication device 102 a may be utilized to determine nearby sources of interference. In instances that fint is not known, the exemplary steps may proceed to step 612
In step 612, the communication device 102 a may automatically detect the frequency, fint, of the narrowband interference. In this regard, fint may be detected by convergence of the ALE 332 and/or based on levels of the signals 333 and 335 measured by the detector 342. Once fint has been determined, corresponding filters 312 and/or 314 in the differential paths 102 1-102 N may be configured to pass the detected fint and filter out other frequencies. Subsequent to step 612, the exemplary steps may advance to step 614.
In step 614, the narrowband common mode signal output by the ALE 332 or the filter bank 334 may be delayed by delay block 340, resulting in the enhanced common mode signal 206. The signal 206 may then be phase and/or level adjusted by the adaptive filter 318. Upon the adaptive filter converging or stabilizing, the exemplary steps may proceed to step 616.
In step 616, the multiplexer 325 may be configured to select the signal 319 and the combiner 324 may subtract the signal 319 from the signal 311. Subsequent to step 616, the exemplary steps may proceed to step 618.
In step 618, if the levels of the narrowband signal 337 drops below a threshold then the exemplary steps may proceed to step 604 and interference cancellation may be disabled. This may happen, for example, when the signal 104 goes away or changes frequency. Conversely, while the level of the signal 337 remains above a threshold, interference cancellation may remain enabled.
Returning to step 608, in instances that fint is known, the exemplary steps may proceed to step 610. In step 610, in instances that fint is within a lock range of the ALE 32, then the ALE 332 may be configured such that it will quickly lock to fint and the passband of the corresponding BPFs 312 in the differential paths 202 1-202 N may be set to fint. Alternatively, in instances that fint is outside a lock range of the ALE 332, then the filter bank 334 may be configured to pass fint and the corresponding filter banks 314 in the differential paths 202 1-202 N may be configured to pass fint. Subsequent to step 610, the exemplary steps may advance to step 614.
Various embodiments of a method and system for interference cancellation are provided. In an exemplary embodiment of the invention, one or more circuits and/or processors of a communication device 102 a (FIGS. 1-3) may be operable to receive a differential signal 311 (FIG. 3) via a differential channel 106 n (FIGS. 1-3), and to sense a common mode signal 327 (FIG. 3) on the differential channel 106 n. A frequency range in which interference is present in the common mode signal 327 may be determined and the differential signal 311 and the common mode signal 327, or signal 331, an amplified and/or digitized version of signal 327, may be filtered to attenuate frequencies outside the determined frequency range. A phase and/or amplitude of the filtered common mode signal 337, or the signal 206, a delayed version of signal 337, may be adjusted based on the filtered differential signal 317 and the adjusted and filtered common mode signal 319 may be subtracted from the received differential signal 311.
The common mode signal 327 may be sensed via a pair of resistors 408 a and 408 b (FIG. 4) coupled to the differential channel 106 n. A first terminal of the resistors 408 a may be coupled to a first wire of the differential channel 106 n, a first terminal of the resistors 408 b may be coupled to a second wire of the differential channel 106 n, a second terminal of the resistor 408 a may be coupled to a second terminal of the resistor 408 b, and the common mode signal 327 may be present on the second terminals of the resistors. The second terminals of the resistors 408 a and 408 b may be coupled to a first terminal of a primary winding of a transformer 404 N+1 and a second terminal of the primary winding may be coupled to signal ground.
Either of an adaptive line enhancer 332 and a filter 334 may be selected for performing the filtering. A selection between the adaptive line enhancer 332 and the filter 334 may be based on signal levels output by the adaptive line enhancer 332 and the filter 334. The filter 334 may be selected in instances that the adaptive line enhancer 332 is unable to converge on a frequency within the determined frequency range. A frequency response of the filter 334 may be configured to select between a high-pass response and a low-pass response. The frequency range may be determined based on a programmed value which may be pre-programmed or determined dynamically. The subtraction may be enabled and disabled based on signal levels of the common mode signal 327, or signal 331, an amplified and/or digitized version of signal 327, and/or signal levels of the filtered common mode signal 337. A phase and/or amplitude of the filtered common mode signal 337, or signal 206, a delayed version of signal 337, may be adjusted to minimize a difference between the filtered differential signal 317 and the adjusted and filtered common mode signal 319.
Other embodiments of the invention may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for interference cancellation.
Accordingly, the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A method for communications, comprising:
sensing a common mode signal;
determining a frequency range in which interference is present in said common mode signal;
adjusting a frequency response of an adaptive filter according to said determined frequency range of said interference in said common mode signal; configuring a responsive filter based on the adjusted frequency response; filtering, with said responsive filter,
a differential signal to generate a filtered differential signal that is without said interference; and
generating a representative signal of the interference in said common mode signal based on the filtered differential signal and an adjusted common mode signal.
2. The method according to claim 1, wherein
determining said frequency range in which interference is present in said common mode signal comprises converging on and locking to a narrowband interference frequency of said common mode signal.
3. The method according to claim 2, further comprising
determining whether to enable or disable an interference cancellation mode based on whether said converging converges on and locks to said narrowband interference frequency of said common mode signal.
4. The method according to claim 1, further comprising
generating the adjusted common mode signal by adjusting at least one of a phase and an amplitude of said common mode signal based on said filtered differential signal.
5. The method according to claim 4, wherein
adjusting at least one of said phase and said amplitude of said common mode signal comprises reducing a difference between said filtered differential signal and said adjusted common mode signal.
6. The method according to claim 4, further comprising
combining said filtered differential signal and said adjusted common mode signal.
7. The method according to claim 1, further comprising
removing interference in the differential signal by subtracting the representative signal from the differential signal.
8. A system for communications, comprising:
a common mode sensor that senses a common mode signal;
a line enhancer that converges on a frequency in which interference is present in said common mode signal; and circuitry that adjusts a frequency response of the line enhancer according to a frequency range of said interference in said common mode signal, configures a responsive filter based on the adjusted frequency response, filters, with said responsive filter, a differential signal to generate a filtered differential signal that is without said interference, and
generates a representative signal of the interference in said common mode signal based on the filtered differential signal and an adjusted common mode signal.
9. The system according to claim 8, wherein
said line enhancer automatically converges on and locks to a narrowband interference frequency of said common mode signal.
10. The system according to claim 8, wherein the circuitry adjusts, with an adaptive filter, at least one of a phase and an amplitude of said common mode signal based on said filtered differential signal, to provide the adjusted common mode signal.
11. The system according to claim 10, wherein
said circuitry reduces, with said adaptive filter, a difference between said filtered differential signal and said adjusted common mode signal.
12. The system according to claim 10, wherein the circuitry combines said filtered differential signal and said adjusted common mode signal.
13. The system according to claim 8, further comprising:
a filter bank; and
a multiplexer that selects between an output of said line enhancer and an output of said filter bank.
14. The system according to claim 13, wherein
said multiplexer selects said filter bank when said line enhancer is unable to converge on said frequency in which interference is present in said common mode signal.
15. The system according to claim 14, further comprising
a control unit that selects between a high-pass response and a low-pass response of said filter bank.
16. The system according to claim 8, further comprising
a subtractor that removes interference in the differential signal by subtracting the representative signal from the differential signal.
17. A method for communications, comprising:
converging on a frequency in which interference is present in a common mode signal;
determining a frequency range in which interference is present in said common mode signal; adjusting a frequency response of an adaptive filter according to said determined frequency range of said interference in said common mode signal; configuring a responsive filter based on the adjusted frequency response; filtering, with said responsive filter,
a differential signal to generate a filtered differential signal that is without said interference;
enhancing said common mode signal to provide an enhanced common mode signal;
generating a representative signal of the interference in said common mode signal based on the filtered differential signal and the enhanced common mode signal; and
subtracting said representative signal from said differential signal.
18. The method according to claim 17, wherein
converging on said frequency in which interference is present in said common mode signal comprises automatically converging on locking to a narrowband interference frequency of said common mode signal.
19. The method according to claim 17, wherein
enhancing said common mode signal comprises adjusting at least one of a phase and an amplitude of said common mode signal based on said filtered differential signal.
20. The method according to claim 19, wherein
adjusting at least one of said phase and said amplitude of said common mode signal comprises reducing a difference between said filtered differential signal and said enhanced common mode signal.
US13/956,541 2009-09-18 2013-08-01 Method and system for interference cancellation Expired - Fee Related US9094076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/956,541 US9094076B2 (en) 2009-09-18 2013-08-01 Method and system for interference cancellation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24398709P 2009-09-18 2009-09-18
US36201210P 2010-07-07 2010-07-07
US12/857,303 US8514951B2 (en) 2009-09-18 2010-08-16 Method and system for interference cancellation
US13/956,541 US9094076B2 (en) 2009-09-18 2013-08-01 Method and system for interference cancellation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/857,303 Continuation US8514951B2 (en) 2009-09-18 2010-08-16 Method and system for interference cancellation

Publications (2)

Publication Number Publication Date
US20130315357A1 US20130315357A1 (en) 2013-11-28
US9094076B2 true US9094076B2 (en) 2015-07-28

Family

ID=43756613

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/857,303 Expired - Fee Related US8514951B2 (en) 2009-09-18 2010-08-16 Method and system for interference cancellation
US13/956,541 Expired - Fee Related US9094076B2 (en) 2009-09-18 2013-08-01 Method and system for interference cancellation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/857,303 Expired - Fee Related US8514951B2 (en) 2009-09-18 2010-08-16 Method and system for interference cancellation

Country Status (1)

Country Link
US (2) US8514951B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8442099B1 (en) 2008-09-25 2013-05-14 Aquantia Corporation Crosstalk cancellation for a common-mode channel
US9912375B1 (en) 2008-09-25 2018-03-06 Aquantia Corp. Cancellation of alien interference in communication systems
US8625704B1 (en) 2008-09-25 2014-01-07 Aquantia Corporation Rejecting RF interference in communication systems
US8891595B1 (en) 2010-05-28 2014-11-18 Aquantia Corp. Electromagnetic interference reduction in wireline applications using differential signal compensation
US8724678B2 (en) 2010-05-28 2014-05-13 Aquantia Corporation Electromagnetic interference reduction in wireline applications using differential signal compensation
US9118469B2 (en) * 2010-05-28 2015-08-25 Aquantia Corp. Reducing electromagnetic interference in a received signal
US8792597B2 (en) * 2010-06-18 2014-07-29 Aquantia Corporation Reducing electromagnetic interference in a receive signal with an analog correction signal
US8861663B1 (en) 2011-12-01 2014-10-14 Aquantia Corporation Correlated noise canceller for high-speed ethernet receivers
JP2013232886A (en) * 2012-04-06 2013-11-14 Panasonic Corp Communication device, method for detecting wiring state using communication device, and computer program
US8571093B1 (en) * 2012-04-24 2013-10-29 Nxp B.V. Communication interface for galvanic isolation
US8929468B1 (en) 2012-06-14 2015-01-06 Aquantia Corp. Common-mode detection with magnetic bypass
US9130650B1 (en) * 2013-10-31 2015-09-08 Pmc-Sierra Us, Inc. Transformer based circuit for reducing EMI radiation in high speed CMOS SERDES transmitters
US9859928B1 (en) * 2014-10-30 2018-01-02 Marvell International Ltd. Method and apparatus for detecting EMI signals using a common mode sense at the differential pins of a chip
US9455642B2 (en) * 2014-12-29 2016-09-27 Hamilton Sundstrand Corporation Digital frequency selective transformer-rectifier unit ripple fault detection
US9621445B2 (en) 2015-01-25 2017-04-11 Valens Semiconductor Ltd. Utilizing known data for status signaling
US10256920B2 (en) 2015-01-25 2019-04-09 Valens Semiconductor Ltd. Mode-conversion digital canceller for high bandwidth differential signaling
US10171182B2 (en) 2015-01-25 2019-01-01 Valens Semiconductor Ltd. Sending known data to support fast convergence
EP3293931A1 (en) 2015-01-25 2018-03-14 Valens Semiconductor Ltd. Transceiver and method for fast recovery from quality degradation
US9685991B2 (en) 2015-01-25 2017-06-20 Valens Semiconductor Ltd. Reducing transmission rate to support fast convergence
US10353517B2 (en) * 2015-03-16 2019-07-16 Parade Technologies Ltd. Differential IIR baseline algorithm for capacitive touch sensing
US9582018B1 (en) * 2015-03-19 2017-02-28 Maxlinear Asia Singapore Pte Ltd. Automatic gain compression detection and gain control for analog front-end with nonlinear distortion
EP3503418A1 (en) * 2017-12-21 2019-06-26 Nxp B.V. Transceiver and method of adjusting the tx signal of the transceiver for weakening emi
EP3503417B1 (en) 2017-12-21 2020-10-28 Nxp B.V. Transceiver and system for electromagnetic emission detection
CN115395967A (en) * 2021-05-25 2022-11-25 瑞昱半导体股份有限公司 Transmitter and correction method thereof
CN115963330A (en) * 2023-03-10 2023-04-14 荣耀终端有限公司 Cable radiation emission detection method, electronic equipment and system

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995567A (en) * 1996-04-19 1999-11-30 Texas Instruments Incorporated Radio frequency noise canceller
US6018754A (en) 1996-04-10 2000-01-25 United Microelectronics Corp. Apparatus for filtering a signal utilizing recursion and decimation
US6052420A (en) * 1997-05-15 2000-04-18 Northern Telecom Limited Adaptive multiple sub-band common-mode RFI suppression
US20010050987A1 (en) * 2000-06-09 2001-12-13 Yeap Tet Hin RFI canceller using narrowband and wideband noise estimators
US20020093908A1 (en) * 2000-11-24 2002-07-18 Esion Networks Inc. Noise/interference suppression system
US6546057B1 (en) 1998-06-04 2003-04-08 Bell Canada Suppression of radio frequency interference and impulse noise in communications channels
US20040042572A1 (en) 2000-08-01 2004-03-04 George Palaskas Circuit and method for dynamically modifiable signal processor
US6714588B1 (en) 1998-11-16 2004-03-30 Nortel Networks Limited Method and apparatus for interference cancellation in a high speed modem
US6940973B1 (en) 1999-06-07 2005-09-06 Bell Canada Method and apparatus for cancelling common mode noise occurring in communications channels
US6976044B1 (en) 2001-05-11 2005-12-13 Maxim Integrated Products, Inc. Narrowband interference canceller for wideband communication systems
US7315592B2 (en) 2003-09-08 2008-01-01 Aktino, Inc. Common mode noise cancellation
US20080100372A1 (en) 2006-10-26 2008-05-01 Chia-Liang Lin Filter of adjustable frequency response and method thereof
US20080144709A1 (en) 2006-12-19 2008-06-19 Crestcom, Inc. RF transmitter with predistortion and method therefor
US7593494B1 (en) * 2004-09-23 2009-09-22 Adtran, Inc. System and method for canceling impulse noise
US20100111202A1 (en) * 2008-10-30 2010-05-06 Schley-May James T Method and apparatus for generating a common-mode reference signal
US7809076B1 (en) * 2005-03-11 2010-10-05 Adtran, Inc. Adaptive interference canceling system and method
US20120002711A1 (en) * 2010-07-01 2012-01-05 Kishore Kota Method and system for adaptive tone cancellation for mitigating the effects of electromagnetic interference
US20120051410A1 (en) * 2009-03-04 2012-03-01 Flowers Mark B Dsl noise cancellation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018754A (en) 1996-04-10 2000-01-25 United Microelectronics Corp. Apparatus for filtering a signal utilizing recursion and decimation
US5995567A (en) * 1996-04-19 1999-11-30 Texas Instruments Incorporated Radio frequency noise canceller
US6052420A (en) * 1997-05-15 2000-04-18 Northern Telecom Limited Adaptive multiple sub-band common-mode RFI suppression
US6546057B1 (en) 1998-06-04 2003-04-08 Bell Canada Suppression of radio frequency interference and impulse noise in communications channels
US6714588B1 (en) 1998-11-16 2004-03-30 Nortel Networks Limited Method and apparatus for interference cancellation in a high speed modem
US6940973B1 (en) 1999-06-07 2005-09-06 Bell Canada Method and apparatus for cancelling common mode noise occurring in communications channels
US6959056B2 (en) 2000-06-09 2005-10-25 Bell Canada RFI canceller using narrowband and wideband noise estimators
US20010050987A1 (en) * 2000-06-09 2001-12-13 Yeap Tet Hin RFI canceller using narrowband and wideband noise estimators
US20040042572A1 (en) 2000-08-01 2004-03-04 George Palaskas Circuit and method for dynamically modifiable signal processor
US20020093908A1 (en) * 2000-11-24 2002-07-18 Esion Networks Inc. Noise/interference suppression system
US6976044B1 (en) 2001-05-11 2005-12-13 Maxim Integrated Products, Inc. Narrowband interference canceller for wideband communication systems
US7315592B2 (en) 2003-09-08 2008-01-01 Aktino, Inc. Common mode noise cancellation
US7593494B1 (en) * 2004-09-23 2009-09-22 Adtran, Inc. System and method for canceling impulse noise
US7809076B1 (en) * 2005-03-11 2010-10-05 Adtran, Inc. Adaptive interference canceling system and method
US20080100372A1 (en) 2006-10-26 2008-05-01 Chia-Liang Lin Filter of adjustable frequency response and method thereof
US20080144709A1 (en) 2006-12-19 2008-06-19 Crestcom, Inc. RF transmitter with predistortion and method therefor
US20100111202A1 (en) * 2008-10-30 2010-05-06 Schley-May James T Method and apparatus for generating a common-mode reference signal
US20120051410A1 (en) * 2009-03-04 2012-03-01 Flowers Mark B Dsl noise cancellation
US20120002711A1 (en) * 2010-07-01 2012-01-05 Kishore Kota Method and system for adaptive tone cancellation for mitigating the effects of electromagnetic interference

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Amir Homayoun Kamkar-Parsi, ADSL-VDSL interference mitigation for the fiber to the cabinet architecture using adaptive filtering and the longitudinal signal as a reference, Thesis, University of Ottawa, 2004. *

Also Published As

Publication number Publication date
US20130315357A1 (en) 2013-11-28
US20110069794A1 (en) 2011-03-24
US8514951B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
US9094076B2 (en) Method and system for interference cancellation
US8498217B2 (en) Method and system for adaptive tone cancellation for mitigating the effects of electromagnetic interference
US6959056B2 (en) RFI canceller using narrowband and wideband noise estimators
US6940973B1 (en) Method and apparatus for cancelling common mode noise occurring in communications channels
US9807504B2 (en) Multi-path analog front end and analog-to-digital converter for a signal processing system with low-pass filter between paths
US7333603B1 (en) System and method for adapting an analog echo canceller in a transceiver front end
US6052420A (en) Adaptive multiple sub-band common-mode RFI suppression
US9118469B2 (en) Reducing electromagnetic interference in a received signal
US7139342B1 (en) System and method for cancelling signal echoes in a full-duplex transceiver front end
US6714775B1 (en) Interference canceller
US6313738B1 (en) Adaptive noise cancellation system
US8537728B2 (en) Communication apparatus with echo cancellation and method thereof
US10237100B2 (en) Method and apparatus for digitization of broadband analog signals
US11063628B2 (en) Communication device capable of echo cancellation
US8861687B2 (en) Integrated hybird circuit applied to a digital subscriber loop and setting method thereof
CN106716851B (en) Interference signal cancellation device and method
US7072617B1 (en) System and method for suppression of RFI interference
US11456895B2 (en) Channel estimation method
CA2273658A1 (en) Method and apparatus for cancelling common mode noise in communications channels
CA2311081C (en) Rfi canceller using narrowband and wideband noise estimators
TWI411241B (en) Network apparatus for eliminating interference between transport ports and method thereof
US11855669B2 (en) Method for cancelling radio frequency interference and communication system thereof
EP1255359A1 (en) Method and apparatus for cancelling radio frequency interference
CN112886975A (en) Baseline drift elimination device and receiver
EP4042717A1 (en) Signal crosstalk suppression on a common wire

Legal Events

Date Code Title Description
AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAVASSOLI KILANI, MEHDI;POWELL, SCOTT;DINC, KADIR;AND OTHERS;SIGNING DATES FROM 20100802 TO 20100816;REEL/FRAME:031165/0324

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119

AS Assignment

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE

Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047229/0408

Effective date: 20180509

AS Assignment

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE PREVIOUSLY RECORDED ON REEL 047229 FRAME 0408. ASSIGNOR(S) HEREBY CONFIRMS THE THE EFFECTIVE DATE IS 09/05/2018;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047349/0001

Effective date: 20180905

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NUMBER 9,385,856 TO 9,385,756 PREVIOUSLY RECORDED AT REEL: 47349 FRAME: 001. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:051144/0648

Effective date: 20180905

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20190728