US9263996B2 - Quasi iso-gain supply voltage function for envelope tracking systems - Google Patents

Quasi iso-gain supply voltage function for envelope tracking systems Download PDF

Info

Publication number
US9263996B2
US9263996B2 US13/552,768 US201213552768A US9263996B2 US 9263996 B2 US9263996 B2 US 9263996B2 US 201213552768 A US201213552768 A US 201213552768A US 9263996 B2 US9263996 B2 US 9263996B2
Authority
US
United States
Prior art keywords
supply voltage
iso
gain
gain supply
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/552,768
Other versions
US20130024142A1 (en
Inventor
Andrew F. Folkmann
James M. Retz
Nadim Khlat
Jean-Frederic Chiron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qorvo US Inc
Original Assignee
RF Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF Micro Devices Inc filed Critical RF Micro Devices Inc
Priority to US13/552,768 priority Critical patent/US9263996B2/en
Publication of US20130024142A1 publication Critical patent/US20130024142A1/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: RF MICRO DEVICES, INC.
Assigned to RF MICRO DEVICES, INC. reassignment RF MICRO DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIRON, JEAN-FREDERIC, KHLAT, NADIM, FOLKMANN, ANDREW F., RETZ, JAMES M.
Assigned to RF MICRO DEVICES, INC. reassignment RF MICRO DEVICES, INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (RECORDED 3/19/13 AT REEL/FRAME 030045/0831) Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Application granted granted Critical
Publication of US9263996B2 publication Critical patent/US9263996B2/en
Assigned to QORVO US, INC. reassignment QORVO US, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: RF MICRO DEVICES, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages

Definitions

  • Embodiments of the present disclosure relate to amplitude modulated (AM) radio frequency (RF) power amplifiers (PAs), including polar-modulated RF PAs that are powered via AM power supplies.
  • AM amplitude modulated
  • RF radio frequency
  • Standard practice in envelope tracking transmit systems is to supply a power amplifier (PA) with a modulated supply voltage that is proportional to the instantaneous amplitude of an RF waveform.
  • a related art technique modulates a supply voltage to be exactly proportional to the instantaneous amplitude of an RF waveform being amplified by the PA. Moreover, the supply voltage is adjusted to achieve constant gain at all power levels. As such, the related art technique provides improved transmitter linearity by eliminating AM/AM distortion. However, under certain conditions a high supply voltage may be required to maintain constant gain at low power levels. A resulting supply voltage waveform has significantly more high frequency content, which places increased demands on a modulator and degrades system efficiency.
  • the present disclosure provides a method of defining a quasi iso-gain supply voltage function for improved performance in envelope tracking systems.
  • the method includes a step of capturing iso-gain supply voltage values versus power values for a device under test (DUT). Other steps involve locating a minimum iso-gain supply voltage value, and then replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value.
  • At least one embodiment further includes a step of generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power for the DUT after the step of replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value.
  • LUT look-up table
  • FIG. 1 is a basic block diagram of a related art power amplifier with an amplitude modulated (AM) power supply having pre-distortion circuitry.
  • AM amplitude modulated
  • FIG. 2 is a plot of gain versus input power for a typical power amplifier operating from a fixed voltage supply.
  • FIG. 3 is a plot of VCC versus the output power of the power amplifier.
  • FIG. 4 is a graph with plots of instantaneous power and AM power supply output voltage versus time.
  • FIG. 5 is an RF spectrum of the AM power supply output voltage.
  • FIG. 6 is a plot of gain versus input power for the power amplifier wherein the gain target is set 1 dB below the peak gain of nearly 28 dB.
  • FIG. 7 is a plot of voltage and gain versus input power that shows an inflection point below about +20 dBm in which the iso-gain supply voltage increases as output power decreases.
  • FIG. 8 is an exemplary plot of AM power supply voltage versus time that falls out of unison with the instantaneous power near an envelope minimum.
  • FIG. 9 depicts a supply voltage spectrum that results from the AM supply voltage of FIG. 8 .
  • FIG. 10 is a gain curve illustrating that a quasi iso-gain supply voltage function introduces a small drop in gain at low power levels causing a negligible effect on transmitter linearity.
  • FIG. 11 is a graph with plots of instantaneous power and AM power supply output voltage versus time illustrating the improved performance of the quasi iso-gain supply voltage function in an envelope tracking system.
  • FIG. 12 is an improved supply voltage spectrum resulting from the employment of the quasi iso-gain supply voltage function in an envelope tracking system.
  • FIG. 13A is a graph of an output spectrum of a power amplifier having an iso-gain supply voltage.
  • FIG. 13B is a graph of an output spectrum of a power amplifier having a quasi iso-gain supply voltage.
  • FIG. 14 is a block diagram of an automatic test system (ATS) configured to provide supply voltage data versus output power data.
  • ATS automatic test system
  • FIG. 15 is a flow chart of a method for producing data usable to define a quasi iso-gain supply voltage function for improved performance in envelope tracking systems.
  • the present disclosure provides a new technique for retaining the benefit of iso-gain envelope tracking without increased modulator requirements that result in a loss of system efficiency.
  • the disclosed new technique defines a quasi iso-gain supply voltage function that retains the improved linearity benefit of an iso-gain envelope tracking system without incurring a loss in efficiency.
  • FIG. 1 is a basic block diagram of a related art power amplifier 10 with an amplitude modulated (AM) power supply 12 having pre-distortion circuitry 14 .
  • the power amplifier 10 is configured as an iso-gain envelope tracking system that is responsive to an AM signal.
  • AM is a modulation technique such that the amplitude of an RF carrier is modulated, which may be used to encode information.
  • An AM baseband controller 16 provides an AM signal V AM to an AM modulation circuit 18 .
  • the AM signal V AM once pre-distorted by the pre-distortion circuitry 14 , provides an AM power supply input signal V AMPSI to the AM power supply 12 .
  • An AM power supply output signal V AMPSO based on the AM power supply input signal V AMPSI is output from the AM power supply 12 .
  • the AM modulation circuit 18 receives and amplitude-modulates an RF carrier signal RF CAR using the AM signal V AM to provide an AM RF input signal RF AM to a PA stage 20 , which amplifies the AM RF input signal RF AM to provide an AM RF output signal RF AMOUT .
  • the AM power supply output signal V AMPSO may provide power for amplification to the PA stage 20 .
  • the AM signal V AM is typically based on at least one of values extracted from a look-up table (LUT) 22 and interpolation between values in the LUT 22 .
  • LUT look-up table
  • FIG. 2 is a plot of gain versus input power for a typical power amplifier operating from a fixed voltage supply. Notice that the gain is constant at low power levels and has approximately 1.4 dB of gain expansion before entering a region of gain compression above around 27 dBm of output power. To illustrate the iso-gain envelope following technique, a gain target of 2 dB below a peak gain of nearly 28 dB is chosen. The input power is swept a full dynamic range that provides an output power Po_dBm from about 0 dBm to about 35 dBm.
  • FIG. 3 is a plot of VCC versus the output power Po_dBm of the power amplifier 10 .
  • the supply voltage VCC is adjusted at each power level of the output power Po_dbm in order to achieve constant gain.
  • Data derived from the input power sweep that maintains a constant gain is stored in a LUT, such as LUT 22 ( FIG. 1 ), and is usable to control the envelope tracking system of power amplifier 10 .
  • FIG. 4 is a graph with plots of instantaneous power and AM power supply output voltage VCC versus time. Note that the supply voltage peaks occur simultaneously with the output power peaks. Likewise, the supply voltage minimums occur simultaneously with the output power minimums. In the graph of FIG. 4 , an exemplary output power minimum labeled m 1 , and an exemplary supply voltage minimum labeled m 2 occur practically simultaneously at around 12 ⁇ S.
  • the RF spectrum of the AM power supply output voltage VCC is shown in FIG. 5 . Note that the RF spectrum above about 5 MHz is approximately 20 dB below the level of a spectrum within a wideband code division multiple access (W-CDMA) modulation bandwidth.
  • W-CDMA wideband code division multiple access
  • the exemplary plot of AM power supply output voltage VCC shown in FIG. 4 is in unison with the instantaneous power. As a result, the resulting RF spectrum is acceptable.
  • a gain target is higher than a small signal gain.
  • the target gain can become larger than the small signal gain when a bias for the power amplifier 10 ( FIG. 1 ) is reduced, resulting in an increased gain expansion.
  • the target gain can also become larger than the small signal gain when a need arises to operate the power amplifier 10 configured for iso-gain envelope tracking at low compression levels.
  • FIG. 6 is a plot of gain versus input power for the power amplifier 10 wherein the gain target is set 1 dB below the peak gain of nearly 28 dB.
  • FIG. 7 shows that in order to meet the objective for the gain target shown in FIG. 6 , the supply voltage VCC starts out relatively high for relatively low power levels and then dips at relatively moderate power levels before increasing for relatively high power levels.
  • the supply voltage VCC as a function of output power needed to implement an iso-gain condition over the output power range of +23 dBm to +33 dBm is similar to that of the same range in FIG. 2 .
  • the supply voltage VCC is approximately proportional to the output voltage of the power amplifier 10 .
  • the instantaneous peaks of AM supply voltage VCC will not track when the output power of the power amplifier 10 is near an envelope minimum.
  • FIG. 8 is an exemplary plot of AM power supply voltage VCC that falls out of unison with the instantaneous power near an envelope minimum.
  • the marker m 2 of FIG. 8 is at an instantaneous peak of supply voltage VCC at practically the same time that the instantaneous output power reaches an envelope minimum as indicated by marker m 1 .
  • FIG. 9 depicts a supply voltage spectrum that results from the AM supply voltage of FIG. 8 .
  • a spectrum level above 5 MHz is now on the order of 10 dB higher than the supply voltage spectrum level above 5 MHz shown in FIG. 4 .
  • This 10 dB increase in supply voltage spectrum level above 5 MHz degrades overall system efficiency.
  • FIG. 10 is a gain curve illustrating that a quasi iso-gain supply voltage introduces a small drop in gain at low power levels causing a negligible effect on transmitter linearity. Note that for output powers of +22 dBm and above the gain curve of FIG. 10 is substantially the same. However, below about +22 dBm the supply voltage remains relatively constant instead of increasing relatively rapidly as shown by the iso-gain shown in FIG. 7 .
  • FIG. 11 is a graph with plots of instantaneous power and AM power supply output voltage versus time illustrating the improved performance of the quasi iso-gain supply voltage function in an envelope tracking system. Notice that the undesirable supply voltage peak that is indicated by marker m 2 in FIG. 8 during modulation minima is not present in the graph of FIG. 11 . In particular, the marker m 2 in the graph of FIG. 11 indicates that the supply voltage minimums occur when the output power is at a minimum. As a result, a supply voltage spectrum is significantly improved compared to an envelope tracking system that does not employ the quasi iso-gain supply voltage function of the present disclosure.
  • FIG. 12 is an improved supply voltage spectrum resulting from the employment of the quasi iso-gain supply voltage function in an envelope tracking system. Notice that the high frequency content above about 4.5 MHz is relatively lower than the spectrum of the iso-gain example of FIG. 5 .
  • This improved spectrum shows that the spectral performance of an envelope tracking system employing the quasi iso-gain supply voltage function may be improved even during periods when the supply voltage does not increase at low power levels.
  • the exact power level over which the supply voltage remains constant can be arbitrarily selected to achieve a relatively high efficiency for an employing envelope tracking system.
  • some loss in linearity can be expected. The loss in linearity can be held to negligible levels with by reducing efficiency by a relatively slight amount.
  • FIG. 13A and FIG. 13B are output spectrum graphs that compare the performance of a transmitter with an envelope tracking system (i.e., an envelope tracking transmit system) using an iso-gain supply voltage and a quasi iso-gain supply voltage, respectively.
  • Simulation results indicate that linearity degradation for the quasi iso-gain function is negligible both in terms of adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM).
  • ACLR adjacent channel leakage ratio
  • EVM error vector magnitude
  • the ACLR is less than 0.1 dB in degradation, while the EVM experiences less than 0.01%.
  • the negligible linearity degradation there is considerable leeway in adjusting a low power threshold for the quasi iso-gain supply voltage function.
  • FIG. 14 is a block diagram of an automatic test system (ATS) 24 configured to provide supply voltage data versus output power data.
  • the ATS 24 includes a system controller 26 that has a computing device that executes code from a tangible computer-readable medium 28 .
  • the system controller 26 provides test signals to a device under test (DUT) 30 . These test signals can include but are not limited to, input power levels, bias levels, and supply voltage levels.
  • the DUT 30 is typically a power amplifier that provides an output power (POUT) in response to an input power (PIN) and a supply voltage varied to generate iso-gain.
  • the POUT of DUT 30 is detected by a power meter 32 that captures power data that is transmitted to the system controller 26 .
  • LUT look-up table
  • the system controller 26 may derive the LUT for the DUT 30 using the POUT data and corresponding supply voltage data, or the system controller 26 can pass along the POUT data and corresponding supply voltage data to an external processor (not shown) for LUT generation.
  • FIG. 15 is a flow chart of a method for producing data usable to define a quasi iso-gain supply voltage function for improved performance in envelope tracking systems.
  • the method begins by providing the ATS 24 ( FIG. 14 ) that includes the system controller 26 and the power meter 32 (step 100 ).
  • the system controller 26 applies an initial supply voltage and an initial input power to the DUT 30 , which is typically a power amplifier (step 102 ).
  • the power meter then provides feedback in the form of output power data that is received by the system controller 26 (step 104 ).
  • the supply voltage is then automatically adjusted by the system controller 26 to achieve an iso-gain target (step 106 ).
  • the system controller 26 records an iso-gain supply voltage, a corresponding input power value, and a corresponding output power value into a memory array (step 108 ).
  • the system controller 26 then automatically increments the input power applied to the DUT 30 (step 110 ).
  • the system controller 26 determines if a desired input power range has been swept (step 112 ). Steps 104 through 112 are repeated if the determination is negative. However, if the determination is positive, the system controller 26 searches the memory array and locates a minimum iso-gain supply voltage value (step 114 ).
  • the system controller 26 then replaces the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value (step 116 ). It is to be understood that the system controller 26 could alternately replace the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding input power values that are less than an input power value corresponding to the minimum iso-gain supply voltage value.
  • the system controller also generates a look-table (LUT) such as LUT 22 ( FIG. 1 ) such that the iso-gain supply voltage values of step 116 are a function of input power (step 118 ). Alternately, the system controller can write LUT data including the iso-gain supply voltage values of step 116 to the computer readable medium 28 ( FIG. 14 ) so that an external processor (not shown) can generate the LUT 22 .
  • LUT look-table

Abstract

A method of defining a quasi iso-gain supply voltage function for an envelope tracking system is disclosed. The method includes a step of capturing iso-gain supply voltage values versus power values for a device under test (DUT). Other steps involve locating a minimum iso-gain supply voltage value, and then replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value. The method further includes a step of generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power for the DUT after the step of replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value.

Description

RELATED APPLICATIONS
This application claims the benefit of provisional patent application Ser. No. 61/509,811, filed Jul. 20, 2011, the disclosure of which is hereby incorporated herein by reference in its entirety. This application is also related to U.S. application Ser. No. 12/112,006 filed Apr. 30, 2008, now U.S. Pat. No. 7,884,681 entitled “RADIO FREQUENCY POWER AMPLIFIER IMPROVEMENTS USING PRE-DISTORTION OF AN AMPLITUDE MODULATION POWER SUPPLY”, the disclosure of which is hereby incorporated herein by reference in its entirety.
FIELD OF THE DISCLOSURE
Embodiments of the present disclosure relate to amplitude modulated (AM) radio frequency (RF) power amplifiers (PAs), including polar-modulated RF PAs that are powered via AM power supplies.
BACKGROUND
Standard practice in envelope tracking transmit systems is to supply a power amplifier (PA) with a modulated supply voltage that is proportional to the instantaneous amplitude of an RF waveform. A related art technique modulates a supply voltage to be exactly proportional to the instantaneous amplitude of an RF waveform being amplified by the PA. Moreover, the supply voltage is adjusted to achieve constant gain at all power levels. As such, the related art technique provides improved transmitter linearity by eliminating AM/AM distortion. However, under certain conditions a high supply voltage may be required to maintain constant gain at low power levels. A resulting supply voltage waveform has significantly more high frequency content, which places increased demands on a modulator and degrades system efficiency. What is needed is a new technique for retaining the benefit of iso-gain envelope tracking without increased modulator requirements that results in a loss of system efficiency. In particular, a new technique for defining a quasi iso-gain supply voltage function retains the improved linearity benefit of an iso-gain envelope tracking system without incurring a loss in efficiency.
SUMMARY
The present disclosure provides a method of defining a quasi iso-gain supply voltage function for improved performance in envelope tracking systems. The method includes a step of capturing iso-gain supply voltage values versus power values for a device under test (DUT). Other steps involve locating a minimum iso-gain supply voltage value, and then replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value. At least one embodiment further includes a step of generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power for the DUT after the step of replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
FIG. 1 is a basic block diagram of a related art power amplifier with an amplitude modulated (AM) power supply having pre-distortion circuitry.
FIG. 2 is a plot of gain versus input power for a typical power amplifier operating from a fixed voltage supply.
FIG. 3 is a plot of VCC versus the output power of the power amplifier.
FIG. 4 is a graph with plots of instantaneous power and AM power supply output voltage versus time.
FIG. 5 is an RF spectrum of the AM power supply output voltage.
FIG. 6 is a plot of gain versus input power for the power amplifier wherein the gain target is set 1 dB below the peak gain of nearly 28 dB.
FIG. 7 is a plot of voltage and gain versus input power that shows an inflection point below about +20 dBm in which the iso-gain supply voltage increases as output power decreases.
FIG. 8 is an exemplary plot of AM power supply voltage versus time that falls out of unison with the instantaneous power near an envelope minimum.
FIG. 9 depicts a supply voltage spectrum that results from the AM supply voltage of FIG. 8.
FIG. 10 is a gain curve illustrating that a quasi iso-gain supply voltage function introduces a small drop in gain at low power levels causing a negligible effect on transmitter linearity.
FIG. 11 is a graph with plots of instantaneous power and AM power supply output voltage versus time illustrating the improved performance of the quasi iso-gain supply voltage function in an envelope tracking system.
FIG. 12 is an improved supply voltage spectrum resulting from the employment of the quasi iso-gain supply voltage function in an envelope tracking system.
FIG. 13A is a graph of an output spectrum of a power amplifier having an iso-gain supply voltage.
FIG. 13B is a graph of an output spectrum of a power amplifier having a quasi iso-gain supply voltage.
FIG. 14 is a block diagram of an automatic test system (ATS) configured to provide supply voltage data versus output power data.
FIG. 15 is a flow chart of a method for producing data usable to define a quasi iso-gain supply voltage function for improved performance in envelope tracking systems.
DETAILED DESCRIPTION
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
The present disclosure provides a new technique for retaining the benefit of iso-gain envelope tracking without increased modulator requirements that result in a loss of system efficiency. In particular, the disclosed new technique defines a quasi iso-gain supply voltage function that retains the improved linearity benefit of an iso-gain envelope tracking system without incurring a loss in efficiency.
FIG. 1 is a basic block diagram of a related art power amplifier 10 with an amplitude modulated (AM) power supply 12 having pre-distortion circuitry 14. The power amplifier 10 is configured as an iso-gain envelope tracking system that is responsive to an AM signal. AM is a modulation technique such that the amplitude of an RF carrier is modulated, which may be used to encode information. An AM baseband controller 16 provides an AM signal VAM to an AM modulation circuit 18. The AM signal VAM, once pre-distorted by the pre-distortion circuitry 14, provides an AM power supply input signal VAMPSI to the AM power supply 12. An AM power supply output signal VAMPSO based on the AM power supply input signal VAMPSI is output from the AM power supply 12. The AM modulation circuit 18 receives and amplitude-modulates an RF carrier signal RFCAR using the AM signal VAM to provide an AM RF input signal RFAM to a PA stage 20, which amplifies the AM RF input signal RFAM to provide an AM RF output signal RFAMOUT. The AM power supply output signal VAMPSO may provide power for amplification to the PA stage 20. The AM signal VAM is typically based on at least one of values extracted from a look-up table (LUT) 22 and interpolation between values in the LUT 22.
FIG. 2 is a plot of gain versus input power for a typical power amplifier operating from a fixed voltage supply. Notice that the gain is constant at low power levels and has approximately 1.4 dB of gain expansion before entering a region of gain compression above around 27 dBm of output power. To illustrate the iso-gain envelope following technique, a gain target of 2 dB below a peak gain of nearly 28 dB is chosen. The input power is swept a full dynamic range that provides an output power Po_dBm from about 0 dBm to about 35 dBm.
A supply voltage VCC for the power amplifier is adjusted during the input power sweep in order to maintain a constant gain for the power amplifier 10 (FIG. 1). FIG. 3 is a plot of VCC versus the output power Po_dBm of the power amplifier 10. The supply voltage VCC is adjusted at each power level of the output power Po_dbm in order to achieve constant gain. Data derived from the input power sweep that maintains a constant gain is stored in a LUT, such as LUT 22 (FIG. 1), and is usable to control the envelope tracking system of power amplifier 10.
FIG. 4 is a graph with plots of instantaneous power and AM power supply output voltage VCC versus time. Note that the supply voltage peaks occur simultaneously with the output power peaks. Likewise, the supply voltage minimums occur simultaneously with the output power minimums. In the graph of FIG. 4, an exemplary output power minimum labeled m1, and an exemplary supply voltage minimum labeled m2 occur practically simultaneously at around 12 μS. The RF spectrum of the AM power supply output voltage VCC is shown in FIG. 5. Note that the RF spectrum above about 5 MHz is approximately 20 dB below the level of a spectrum within a wideband code division multiple access (W-CDMA) modulation bandwidth.
The exemplary plot of AM power supply output voltage VCC shown in FIG. 4 is in unison with the instantaneous power. As a result, the resulting RF spectrum is acceptable. However, there are applications in which a gain target is higher than a small signal gain. For example, the target gain can become larger than the small signal gain when a bias for the power amplifier 10 (FIG. 1) is reduced, resulting in an increased gain expansion. The target gain can also become larger than the small signal gain when a need arises to operate the power amplifier 10 configured for iso-gain envelope tracking at low compression levels. One such situation is shown in FIG. 6, which is a plot of gain versus input power for the power amplifier 10 wherein the gain target is set 1 dB below the peak gain of nearly 28 dB.
FIG. 7 shows that in order to meet the objective for the gain target shown in FIG. 6, the supply voltage VCC starts out relatively high for relatively low power levels and then dips at relatively moderate power levels before increasing for relatively high power levels. Notice in FIG. 7 that the supply voltage VCC as a function of output power needed to implement an iso-gain condition over the output power range of +23 dBm to +33 dBm is similar to that of the same range in FIG. 2. As a result, the supply voltage VCC is approximately proportional to the output voltage of the power amplifier 10. However, in the exemplary case shown in FIG. 7, there is an inflection point below about +20 dBm in which the iso-gain supply voltage VCC increases as output power decreases. As a result, the instantaneous peaks of AM supply voltage VCC will not track when the output power of the power amplifier 10 is near an envelope minimum.
This situation is demonstrated in FIG. 8, which is an exemplary plot of AM power supply voltage VCC that falls out of unison with the instantaneous power near an envelope minimum. Unlike the exemplary case of FIG. 4, the marker m2 of FIG. 8 is at an instantaneous peak of supply voltage VCC at practically the same time that the instantaneous output power reaches an envelope minimum as indicated by marker m1.
FIG. 9 depicts a supply voltage spectrum that results from the AM supply voltage of FIG. 8. As shown in FIG. 9, a spectrum level above 5 MHz is now on the order of 10 dB higher than the supply voltage spectrum level above 5 MHz shown in FIG. 4. This 10 dB increase in supply voltage spectrum level above 5 MHz degrades overall system efficiency.
The present disclosure provides a method for defining a quasi iso-gain supply voltage function that retains the improved linearity of benefit of the iso-gain envelope tracking system without incurring a loss in efficiency associated with the iso-gain curve of FIG. 7. FIG. 10 is a gain curve illustrating that a quasi iso-gain supply voltage introduces a small drop in gain at low power levels causing a negligible effect on transmitter linearity. Note that for output powers of +22 dBm and above the gain curve of FIG. 10 is substantially the same. However, below about +22 dBm the supply voltage remains relatively constant instead of increasing relatively rapidly as shown by the iso-gain shown in FIG. 7.
FIG. 11 is a graph with plots of instantaneous power and AM power supply output voltage versus time illustrating the improved performance of the quasi iso-gain supply voltage function in an envelope tracking system. Notice that the undesirable supply voltage peak that is indicated by marker m2 in FIG. 8 during modulation minima is not present in the graph of FIG. 11. In particular, the marker m2 in the graph of FIG. 11 indicates that the supply voltage minimums occur when the output power is at a minimum. As a result, a supply voltage spectrum is significantly improved compared to an envelope tracking system that does not employ the quasi iso-gain supply voltage function of the present disclosure.
FIG. 12 is an improved supply voltage spectrum resulting from the employment of the quasi iso-gain supply voltage function in an envelope tracking system. Notice that the high frequency content above about 4.5 MHz is relatively lower than the spectrum of the iso-gain example of FIG. 5. This improved spectrum shows that the spectral performance of an envelope tracking system employing the quasi iso-gain supply voltage function may be improved even during periods when the supply voltage does not increase at low power levels. Moreover, the exact power level over which the supply voltage remains constant can be arbitrarily selected to achieve a relatively high efficiency for an employing envelope tracking system. However, some loss in linearity can be expected. The loss in linearity can be held to negligible levels with by reducing efficiency by a relatively slight amount.
A potential concern with the quasi iso-gain function is a possibility of an increase in distortion due to gain variation introduced at low power levels. FIG. 13A and FIG. 13B are output spectrum graphs that compare the performance of a transmitter with an envelope tracking system (i.e., an envelope tracking transmit system) using an iso-gain supply voltage and a quasi iso-gain supply voltage, respectively. Simulation results indicate that linearity degradation for the quasi iso-gain function is negligible both in terms of adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM). In particular, the ACLR is less than 0.1 dB in degradation, while the EVM experiences less than 0.01%. As a result of the negligible linearity degradation, there is considerable leeway in adjusting a low power threshold for the quasi iso-gain supply voltage function.
FIG. 14 is a block diagram of an automatic test system (ATS) 24 configured to provide supply voltage data versus output power data. The ATS 24 includes a system controller 26 that has a computing device that executes code from a tangible computer-readable medium 28. The system controller 26 provides test signals to a device under test (DUT) 30. These test signals can include but are not limited to, input power levels, bias levels, and supply voltage levels. The DUT 30 is typically a power amplifier that provides an output power (POUT) in response to an input power (PIN) and a supply voltage varied to generate iso-gain. The POUT of DUT 30 is detected by a power meter 32 that captures power data that is transmitted to the system controller 26. Data for a look-up table (LUT) for the DUT 30 can then be recorded to the tangible computer-readable medium 28. The system controller 26 may derive the LUT for the DUT 30 using the POUT data and corresponding supply voltage data, or the system controller 26 can pass along the POUT data and corresponding supply voltage data to an external processor (not shown) for LUT generation.
FIG. 15 is a flow chart of a method for producing data usable to define a quasi iso-gain supply voltage function for improved performance in envelope tracking systems. The method begins by providing the ATS 24 (FIG. 14) that includes the system controller 26 and the power meter 32 (step 100). Next, the system controller 26 applies an initial supply voltage and an initial input power to the DUT 30, which is typically a power amplifier (step 102). The power meter then provides feedback in the form of output power data that is received by the system controller 26 (step 104). The supply voltage is then automatically adjusted by the system controller 26 to achieve an iso-gain target (step 106). Next, the system controller 26 records an iso-gain supply voltage, a corresponding input power value, and a corresponding output power value into a memory array (step 108). The system controller 26 then automatically increments the input power applied to the DUT 30 (step 110). The system controller 26 then determines if a desired input power range has been swept (step 112). Steps 104 through 112 are repeated if the determination is negative. However, if the determination is positive, the system controller 26 searches the memory array and locates a minimum iso-gain supply voltage value (step 114). The system controller 26 then replaces the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value (step 116). It is to be understood that the system controller 26 could alternately replace the iso-gain supply voltage values with the minimum iso-gain supply voltage value for corresponding input power values that are less than an input power value corresponding to the minimum iso-gain supply voltage value. The system controller also generates a look-table (LUT) such as LUT 22 (FIG. 1) such that the iso-gain supply voltage values of step 116 are a function of input power (step 118). Alternately, the system controller can write LUT data including the iso-gain supply voltage values of step 116 to the computer readable medium 28 (FIG. 14) so that an external processor (not shown) can generate the LUT 22.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims (19)

What is claimed is:
1. A method of defining a quasi iso-gain supply voltage function for an envelope tracking system comprising:
capturing into a memory array iso-gain supply voltage values versus output power values and input power values over a predetermined input power range for a device under test (DUT);
locating a minimum iso-gain supply voltage value within the memory array;
replacing the iso-gain supply voltage values within the memory array with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value;
generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power values from the iso-gain supply voltage values and input power values captured in the memory array; and
writing the LUT to a tangible computer-readable medium.
2. The method of claim 1 wherein the DUT is a power amplifier configured to operate in the envelope tracking system.
3. The method of claim 2 wherein the predetermined input power range is a predetermined supply voltage operating range of the envelope tracking system.
4. The method of claim 2 wherein quasi iso-gain supply voltage tracks instantaneous output power minimums for a gain target that is higher than a small signal gain of the power amplifier.
5. The method of claim 1 wherein a degradation of adjacent channel leakage ratio (ACLR) is less than 0.1 dB for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
6. The method of claim 1 wherein a degradation of error vector magnitude (EVM) is less than 0.01% for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
7. An automated test system (ATS) of defining a quasi iso-gain supply voltage function for an envelope tracking system comprising:
a system controller programmed to execute steps comprising:
capturing into a memory array iso-gain supply voltage values versus output power values and input power values over a predetermined input power range for a device under test (DUT);
locating a minimum iso-gain supply voltage value within the memory array;
replacing the iso-gain supply voltage values within the memory array with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value;
generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power values from the iso-gain supply voltage values and input power values captured in the memory array; and
writing the LUT to a tangible computer-readable medium.
8. The ATS of claim 7 wherein the DUT is a power amplifier configured to operate in the envelope tracking system.
9. The ATS of claim 8 wherein the predetermined input power range is a predetermined supply voltage operating range of the envelope tracking system.
10. The ATS of claim 8 wherein quasi iso-gain supply voltage tracks instantaneous output power minimums for a gain target that is higher than a small signal gain of the power amplifier.
11. The ATS of claim 7 wherein a degradation of adjacent channel leakage ratio (ACLR) is less than 0.1 dB for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
12. The ATS of claim 7 wherein a degradation of error vector magnitude (EVM) is less than 0.01% for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
13. A tangible computer-readable medium having computer instructions stored thereon, wherein the computer instructions are readable by a computing device of an automated test system (ATS) to perform operations for defining a quasi iso-gain supply voltage function for an envelope tracking system, the operations comprising:
capturing into a memory array iso-gain supply voltage values versus output power values and input power values over a predetermined input power range for a device under test (DUT);
locating a minimum iso-gain supply voltage value within the memory array within the predetermined input power range;
replacing the iso-gain supply voltage values within the memory array with the minimum iso-gain supply voltage value for corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value;
generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power values from the iso-gain supply voltage values and input power values captured in the memory array; and
writing the LUT to a tangible computer-readable medium.
14. The tangible computer-readable medium of claim 13 wherein the DUT is a power amplifier configured to operate in the envelope tracking system.
15. The tangible computer-readable medium of claim 14 wherein the predetermined input power range is a predetermined supply voltage operating range of the envelope tracking system.
16. The tangible computer-readable medium of claim 13 further comprising generating a look-up table (LUT) of iso-gain supply voltage values as a function of input power for the DUT after replacing the iso-gain supply voltage values with the minimum iso-gain supply voltage value for the corresponding output power values that are less than an output power value corresponding to the minimum iso-gain supply voltage value.
17. The tangible computer-readable medium of claim 14 wherein quasi iso-gain supply voltage tracks instantaneous output power minimums for a gain target that is higher than a small signal gain of the power amplifier.
18. The tangible computer-readable medium of claim 13 wherein a degradation of adjacent channel leakage ratio (ACLR) is less than 0.1 dB for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
19. The tangible computer-readable medium of claim 13 wherein a degradation of error vector magnitude (EVM) is less than 0.01% for an envelope tracking transmit system employing the quasi iso-gain supply voltage function versus the envelope tracking system without employing the quasi iso-gain supply voltage function.
US13/552,768 2011-07-20 2012-07-19 Quasi iso-gain supply voltage function for envelope tracking systems Active 2034-06-14 US9263996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/552,768 US9263996B2 (en) 2011-07-20 2012-07-19 Quasi iso-gain supply voltage function for envelope tracking systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161509811P 2011-07-20 2011-07-20
US13/552,768 US9263996B2 (en) 2011-07-20 2012-07-19 Quasi iso-gain supply voltage function for envelope tracking systems

Publications (2)

Publication Number Publication Date
US20130024142A1 US20130024142A1 (en) 2013-01-24
US9263996B2 true US9263996B2 (en) 2016-02-16

Family

ID=47556377

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/552,768 Active 2034-06-14 US9263996B2 (en) 2011-07-20 2012-07-19 Quasi iso-gain supply voltage function for envelope tracking systems

Country Status (1)

Country Link
US (1) US9263996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843294B2 (en) 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
CN102971962B (en) 2010-04-19 2016-05-25 射频小型装置公司 Pseudo-envelope following power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
CN103748794B (en) 2011-05-31 2015-09-16 射频小型装置公司 A kind of method and apparatus of the complex gain for measuring transmission path
CN103858338B (en) 2011-09-02 2016-09-07 射频小型装置公司 Separation VCC and common VCC power management framework for envelope-tracking
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9929696B2 (en) 2013-01-24 2018-03-27 Qorvo Us, Inc. Communications based adjustments of an offset capacitive voltage
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
US9203353B2 (en) 2013-03-14 2015-12-01 Rf Micro Devices, Inc. Noise conversion gain limited RF power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9231627B2 (en) 2013-11-06 2016-01-05 Stmicroelectronics International N.V. Adaptive ISO-Gain pre-distortion for an RF power amplifier operating in envelope tracking
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US11683016B2 (en) * 2020-01-09 2023-06-20 Skyworks Solutions, Inc. ISO-gain implementation for a WiFi symbol-power-tracking architecture

Citations (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969682A (en) 1974-10-21 1976-07-13 Oberheim Electronics Inc. Circuit for dynamic control of phase shift
US3980964A (en) 1974-05-20 1976-09-14 Grodinsky Robert M Noise reduction circuit
US4587552A (en) 1983-09-02 1986-05-06 Rca Corporation Apparatus for generating the magnitude of the vector sum of two orthogonal signals as for use in a digital TV receiver
US4692889A (en) 1984-09-28 1987-09-08 Rca Corporation Circuitry for calculating magnitude of vector sum from its orthogonal components in digital television receiver
US4831258A (en) 1988-03-04 1989-05-16 Exergen Corporation Dual sensor radiation detector
US4996500A (en) 1989-10-24 1991-02-26 Hewlett-Packard Company Automatic control system
US5099203A (en) 1990-06-05 1992-03-24 Continental Electronics Corporation Power amplifier having multiple switched stages and method of operating same
US5146504A (en) 1990-12-07 1992-09-08 Motorola, Inc. Speech selective automatic gain control
US5187396A (en) 1991-05-22 1993-02-16 Benchmarq Microelectronics, Inc. Differential comparator powered from signal input terminals for use in power switching applications
US5311309A (en) 1990-06-01 1994-05-10 Thomson Consumer Electronics, Inc. Luminance processing system for compressing and expanding video data
US5317217A (en) 1990-11-29 1994-05-31 Deutsche Thomson-Brandt Gmbh Universal active filter
US5351087A (en) 1990-06-01 1994-09-27 Thomson Consumer Electronics, Inc. Two stage interpolation system
US5414614A (en) 1994-06-06 1995-05-09 Motorola, Inc. Dynamically configurable switched capacitor power supply and method
US5420643A (en) 1990-06-01 1995-05-30 Thomson Consumer Electronics, Inc. Chrominance processing system for compressing and expanding video data
US5457620A (en) 1993-07-30 1995-10-10 At&T Ipm Corp. Current estimating circuit for switch mode power supply
US5486871A (en) 1990-06-01 1996-01-23 Thomson Consumer Electronics, Inc. Automatic letterbox detection
US5532916A (en) 1992-09-02 1996-07-02 Nec Corporation Voltage converting circuit and multiphase clock generating circuit used for driving the same
US5541547A (en) 1995-05-03 1996-07-30 Sun Microsystems, Inc. Test generator system for controllably inducing power pin latch-up and signal pin latch-up in a CMOS device
US5581454A (en) 1994-11-22 1996-12-03 Collins; Hansel High power switched capacitor voltage conversion and regulation apparatus
EP0755121A2 (en) 1995-07-21 1997-01-22 Nec Corporation Exponential and logarithmic conversion circuit
US5646621A (en) 1994-11-02 1997-07-08 Advanced Micro Devices, Inc. Delta-sigma ADC with multi-stage decimation filter and gain compensation filter
US5715526A (en) 1995-09-08 1998-02-03 Qualcomm Incorporated Apparatus and method for controlling transmission power in a cellular communications system
US5767744A (en) 1995-11-22 1998-06-16 Qsc Audio Products, Inc. Lightweight fixed frequency discontinuous resonant power supply for audio amplifiers
US5822318A (en) 1994-07-29 1998-10-13 Qualcomm Incorporated Method and apparatus for controlling power in a variable rate communication system
CN1211355A (en) 1996-02-14 1999-03-17 格莱纳瑞电子公司 Linear transmitter using predistortion
US5898342A (en) 1998-01-20 1999-04-27 Advanced Micro Devices Power amplifier arrangement and method for data signal interface
US5905407A (en) 1997-07-30 1999-05-18 Motorola, Inc. High efficiency power amplifier using combined linear and switching techniques with novel feedback system
US5936464A (en) 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6043707A (en) 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6043610A (en) 1998-07-16 2000-03-28 Durel Corporation Battery operated power supply including a low level boost and a high level boost
US6055168A (en) 1998-03-04 2000-04-25 National Semiconductor Corporation Capacitor DC-DC converter with PFM and gain hopping
US6070181A (en) 1998-03-27 2000-05-30 Chun-Shan Institute Of Science And Technology Method and circuit for envelope detection using a peel cone approximation
WO2000048306A1 (en) 1999-02-09 2000-08-17 Tropian, Inc. High-efficiency amplifier output level and burst control
US6118343A (en) 1999-05-10 2000-09-12 Tyco Electronics Logistics Ag Power Amplifier incorporating single drain switch and single negative voltage generator
US6133777A (en) 1998-03-13 2000-10-17 Stmicroelectronics S.A. Selector circuit for the switching over of analog signals with amplitudes greater than that of the supply voltage
EP1047188A2 (en) 1999-04-23 2000-10-25 Linear Technology Corporation Offset voltage cancellation system for radio frequency power controllers
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
US6147478A (en) 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
US6166598A (en) * 1999-07-22 2000-12-26 Motorola, Inc. Power amplifying circuit with supply adjust to control adjacent and alternate channel power
US6198645B1 (en) 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
US6204731B1 (en) 1998-12-05 2001-03-20 Institute Of Microelectronics Power amplifier
US6256482B1 (en) 1997-04-07 2001-07-03 Frederick H. Raab Power- conserving drive-modulation method for envelope-elimination-and-restoration (EER) transmitters
US6300826B1 (en) 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
US6313681B1 (en) 1998-10-27 2001-11-06 Nec Corporation Variable delay circuit
US6348780B1 (en) 2000-09-22 2002-02-19 Texas Instruments Incorporated Frequency control of hysteretic power converter by adjusting hystersis levels
US6400775B1 (en) 1998-01-06 2002-06-04 Alcatel Method and a system for digitally linearizing an amplifier
US20020071497A1 (en) 2000-10-31 2002-06-13 Erik Bengtsson IQ modulation systems and methods that use separate phase and amplitude signal paths and perform modulation within a phase locked loop
US6483281B2 (en) 2000-02-11 2002-11-19 Champion Microelectronic Corporation Low power mode and feedback arrangement for a switching power converter
US20030017286A1 (en) 2001-07-11 2003-01-23 Williams William Andrus Accelerator free latex formulations, methods of making same and articles made from same
US20030031271A1 (en) 2001-08-07 2003-02-13 Bozeki John Janos Isolator eliminator for a linear transmitter
US20030062950A1 (en) 2001-09-28 2003-04-03 Kunihiro Hamada Transmission power controller circuit
US6559689B1 (en) 2000-10-02 2003-05-06 Allegro Microsystems, Inc. Circuit providing a control voltage to a switch and including a capacitor
US6566935B1 (en) 1999-08-31 2003-05-20 Stmicroelectronics S.A. Power supply circuit with a voltage selector
EP1317105A1 (en) 2001-11-30 2003-06-04 Texas Instruments Incorporated Line driver using a class G amplifier and a programmable peak detector
US6583610B2 (en) 2001-03-12 2003-06-24 Semtech Corporation Virtual ripple generation in switch-mode power supplies
US20030137286A1 (en) 2002-01-23 2003-07-24 Donald Kimball Capacitorless DC-DC converter
US20030146791A1 (en) 2002-02-06 2003-08-07 Shvarts Emanuil Y. Variable output power supply
US20030153289A1 (en) 2000-05-30 2003-08-14 Hughes James David Digitized automatic gain control system and methods for a controlled gain receiver
US6617930B2 (en) 2000-08-25 2003-09-09 Sharp Kabushiki Kaisha Power supply circuit for transmitter
US6621808B1 (en) 1999-08-13 2003-09-16 International Business Machines Corporation Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation
US6624712B1 (en) 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
US20030198063A1 (en) 2002-04-18 2003-10-23 Smyth David Bruce Audio band conducted emissions suppression on power feeders
US20030206603A1 (en) 2002-05-03 2003-11-06 Husted Paul J. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US20030220953A1 (en) 2002-05-17 2003-11-27 Texas Instruments Incorporated Circuits, systems, and methods implementing approximations for logarithm, inverse logrithm,and reciprocal
US6658445B1 (en) 2000-05-17 2003-12-02 Chun-Shan Institute Of Science And Technology Apparatus and method for demodulating a square root of the sum of two squares
US20030232622A1 (en) 2002-02-17 2003-12-18 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving uplink power offset information in a mobile communication system supporting HSDPA
WO2004002006A1 (en) 2002-06-20 2003-12-31 Motorola, Inc. Method for tuning an envelope tracking amplification system
US6681101B1 (en) 2000-01-11 2004-01-20 Skyworks Solutions, Inc. RF transmitter with extended efficient power control range
US6690652B1 (en) 1998-10-26 2004-02-10 International Business Machines Corporation Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation
US6701141B2 (en) 1999-05-18 2004-03-02 Lockheed Martin Corporation Mixed signal true time delay digital beamformer
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
US20040047329A1 (en) 2000-09-25 2004-03-11 Huawei Technologies Co., Ltd. Method for multiple time slot power control
US20040051384A1 (en) 2002-09-13 2004-03-18 Analog Devices, Inc. Multi-channel power supply selector
US6728163B2 (en) 2002-08-23 2004-04-27 Micron Technology, Inc. Controlling a delay lock loop circuit
US20040127173A1 (en) 2002-12-30 2004-07-01 Motorola, Inc. Multiple mode transmitter
US20040124913A1 (en) 2002-12-31 2004-07-01 Pallab Midya Power amplifier circuit and method using bandlimited signal component estimates
US20040132424A1 (en) 2003-01-08 2004-07-08 Lucent Technologies Inc. Method and apparatus for suppressing local oscillator leakage in a wireless transmitter
CN1518209A (en) 2003-01-15 2004-08-04 安德鲁公司 Uncorrelated self-adaptive predistorter
GB2398648A (en) 2003-02-19 2004-08-25 Nujira Ltd Amplifier power supply whose voltage tracks a signal envelope
US20040184569A1 (en) 2001-07-16 2004-09-23 Raghu Challa Digital voltage gain amplifier for zero if architecture
WO2004082135A2 (en) 2003-03-12 2004-09-23 Analog Devices, Inc. Closed loop power control of non-constant envelope waveforms using sample/hold
US20040196095A1 (en) 2002-07-31 2004-10-07 Nec Corporation Charge pump-type booster circuit
US20040219891A1 (en) 2003-04-30 2004-11-04 Aristotle Hadjichristos Polar modulation transmitter
US6819938B2 (en) 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US20040239301A1 (en) 2003-04-16 2004-12-02 Hidenori Kobayashi Power system
EP1492227A1 (en) 2003-06-24 2004-12-29 Northrop Grumman Corporation Multi-mode amplifier system
US20040267842A1 (en) 2003-06-24 2004-12-30 Texas Instruments Incorporated Device with dB-to-linear gain conversion
US20050008093A1 (en) 2003-07-08 2005-01-13 Toru Matsuura Modulation circuit device, modulation method and radio communication device
US20050032499A1 (en) 2003-08-08 2005-02-10 Cho Jin Wook Radio frequency power detecting circuit and method therefor
WO2005013084A2 (en) 2003-07-31 2005-02-10 Cradle Technologies, Inc. Method and system for performing operations on data and transferring data
US20050047180A1 (en) 2003-08-26 2005-03-03 Samsung Electronics Co., Ltd. Voltage boosting circuit and method
US20050064830A1 (en) 2003-09-16 2005-03-24 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
US20050079835A1 (en) 2002-10-03 2005-04-14 Shinichiro Takabayashi Transmitting method and transmitter apparatus
US6885176B2 (en) 2002-06-21 2005-04-26 Stmicroelectronics S.R.L. PWM control circuit for the post-adjustment of multi-output switching power supplies
US20050093630A1 (en) 2003-10-30 2005-05-05 Whittaker Edward J. Power level controlling of first amplification stage for an integrated rf power amplifier
US20050110562A1 (en) 2003-11-20 2005-05-26 Ian Robinson Variable supply amplifier system
US20050122171A1 (en) 2003-12-08 2005-06-09 Osamu Miki Power source circuit for high frequency power amplifying circuit and semiconductor integrated circuit for power source and electronics component for power source
US20050157778A1 (en) 2004-01-15 2005-07-21 Trachewsky Jason A. Orthogonal normalization for a radio frequency integrated circuit
US20050156662A1 (en) 2004-01-16 2005-07-21 Arun Raghupathy Amplifier predistortion and autocalibration method and apparatus
US20050156582A1 (en) 2004-01-21 2005-07-21 Analog Devices, Inc. Switched noise filter circuit for a dc-dc converter
EP1557955A1 (en) 2002-10-28 2005-07-27 Matsushita Electric Industrial Co., Ltd. Transmitter
EP1569330A1 (en) 2004-02-20 2005-08-31 Research In Motion Limited Method and apparatus for improving power amplifier efficience in wireless communication systems having high peak to average power ratios
US20050200407A1 (en) 2001-12-12 2005-09-15 Renesas Technology Corp. High frequency power amplifier and wireless communication module
US6958596B1 (en) 2002-12-20 2005-10-25 Intersil Americas Inc. Compensation sample and hold for voltage regulator amplifier
US20050286616A1 (en) 2004-06-28 2005-12-29 Venkat Kodavati Integrated radio circuit having multiple function I/O modules
US20060006946A1 (en) 2004-07-08 2006-01-12 Lawrence Burns Method and apparatus for an improved power amplifier
US6995995B2 (en) 2003-12-03 2006-02-07 Fairchild Semiconductor Corporation Digital loop for regulating DC/DC converter with segmented switching
WO2006021774A1 (en) 2004-08-25 2006-03-02 Siemens Aktiengesellschaft A method of controlling a linear power amplifier
US20060062324A1 (en) 2004-09-17 2006-03-23 Masashi Naito Distortion compensation quadrature modulator and radio transmitter
US7038536B2 (en) 2001-08-29 2006-05-02 Tropian, Inc. Power supply processing for power amplifiers
US20060097711A1 (en) 2004-11-09 2006-05-11 Brandt Randy L DC-DC converter having magnetic feedback
US7053718B2 (en) 2003-09-25 2006-05-30 Silicon Laboratories Inc. Stacked RF power amplifier
US20060128324A1 (en) 2004-12-14 2006-06-15 Motorola, Inc. Amplifier with varying supply voltage and input attenuation based upon supply voltage
US20060147062A1 (en) 2005-01-06 2006-07-06 Nec Electronics Corporation Voltage supply circuit and microphone unit
WO2006070319A1 (en) 2004-12-27 2006-07-06 Koninklijke Philips Electronics N.V. Transmitter apparatus
US20060154637A1 (en) 2003-07-08 2006-07-13 Thales Method for estimating a carrier leak, an estimator and modulation system provided with automatic control of a carrier using said system
WO2006073208A1 (en) 2005-01-06 2006-07-13 Matsushita Electric Industrial Co., Ltd. Polar modulator and wireless communication apparatus using the same
US20060178119A1 (en) 2005-02-09 2006-08-10 Nokia Corporation Variable bandwidth envelope modulator for use with envelope elimination and restoration transmitter architecture and method
US20060181340A1 (en) 2005-02-17 2006-08-17 Zywyn Corporation Regulating charge pump
US7099635B2 (en) 1999-02-09 2006-08-29 Matsushita Electric Industrial Co., Ltd. High-efficiency modulating RF amplifier
US20060220627A1 (en) 2005-03-29 2006-10-05 Samsung Electronics Co., Ltd. DC-DC converter utilizing a modified Schmitt trigger circuit and method of modulating a pulse width
US20060244513A1 (en) 2005-04-28 2006-11-02 Chih-Jen Yen Charge pump
US20070008804A1 (en) 2005-07-11 2007-01-11 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage wordline driver with a three stage level shifter
US7164893B2 (en) 2001-08-31 2007-01-16 Motorola, Inc. Method and apparatus for optimizing supply modulation in a transmitter
US20070014382A1 (en) 2005-07-15 2007-01-18 Nokia Corporation Reconfigurable transmitter
US7170341B2 (en) 2003-08-05 2007-01-30 Motorola, Inc. Low power consumption adaptive power amplifier
US20070024360A1 (en) 2005-07-27 2007-02-01 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US20070024365A1 (en) 2005-07-29 2007-02-01 Texas Instruments, Inc. Class-D amplifier system
US20070063681A1 (en) 2005-09-16 2007-03-22 Amazion Electronics, Inc. Direct mode pulse width modulation for DC to DC converters
US7200365B2 (en) 1998-10-27 2007-04-03 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication device including the same
US20070082622A1 (en) 2004-12-22 2007-04-12 Nokia Corporation Interoperability improvement between receivers and transmitters in a mobile station
US7233130B1 (en) 2005-08-05 2007-06-19 Rf Micro Devices, Inc. Active ripple reduction switched mode power supplies
US20070146076A1 (en) 2004-02-06 2007-06-28 Mitsubishi Electric Corporation Power amplifier unit, communication terminal and control method of power amplifier unit
US20070159256A1 (en) 2005-12-27 2007-07-12 Fujitsu Limited Timing controller and timing control method
US7253589B1 (en) 2004-07-09 2007-08-07 National Semiconductor Corporation Dual-source CMOS battery charger
US7254157B1 (en) 2002-03-27 2007-08-07 Xilinx, Inc. Method and apparatus for generating a phase locked spread spectrum clock signal
US20070184794A1 (en) 2006-02-03 2007-08-09 Quantance, Inc. RF Power Amplifier Controller Circuit Including Calibrated Phase Control Loop
US20070182392A1 (en) 2006-02-01 2007-08-09 Junji Nishida DC-DC converter capable of performing for wide and dynamic voltage range
US20070183532A1 (en) 2006-02-06 2007-08-09 Nokia Corporation Method and system for transmitter envelope delay calibration
WO2007107919A1 (en) 2006-03-17 2007-09-27 Nxp B.V. Supply circuit with ripple compensation
US7279875B2 (en) 2005-06-16 2007-10-09 Ge Gan High switching frequency DC-DC converter with fast response time
US20070249304A1 (en) 2005-03-25 2007-10-25 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
US20070259628A1 (en) 2006-05-08 2007-11-08 Harris Corporation Multiband radio with transmitter output power optimization
US7304537B2 (en) 2002-02-01 2007-12-04 Avago Technologies Korea Co., Ltd Power amplification apparatus of a portable terminal
US20070290749A1 (en) 2006-06-04 2007-12-20 Wangmyong Woo Systems, Methods, and Apparatuses for Multi-Path Orthogonal Recursive Predistortion
US20080003950A1 (en) 2006-06-30 2008-01-03 Nokia Corporation Controlling switching mode power supply of power amplifier
CN101106357A (en) 2006-07-14 2008-01-16 沃福森微电子有限公司 Amplifier circuits, methods of starting and stopping amplifier circuits
US20080044041A1 (en) 2006-08-21 2008-02-21 John Christopher Tucker Energy-efficient consumer device audio power output stage
US7348847B2 (en) 2005-04-28 2008-03-25 Sige Semiconductor Inc. Integrated implementation of a collector boost scheme and method therefor
US20080081572A1 (en) 2006-09-29 2008-04-03 Ahmadreza Rofougaran Method and System for Minimizing Power Consumption in a Communication System
US20080104432A1 (en) 2006-10-30 2008-05-01 Quantance, Inc. Power combining power supply system
CN101201891A (en) 2006-12-12 2008-06-18 财团法人工业技术研究院 Rfid reader and circuit and method for echo cancellation thereof
US20080150619A1 (en) 2006-12-22 2008-06-26 Lesso John P Charge pump circuit and methods of operation thereof
US7394233B1 (en) 2004-12-02 2008-07-01 Nortel Networks Limited High efficiency modulated power supply
US7405618B2 (en) 2003-03-04 2008-07-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling a power amplifier in a mobile communication system
US7411316B2 (en) 2005-02-03 2008-08-12 Richtek Technology Corp. Dual-input power converter and control methods thereof
US7414330B2 (en) 2006-03-02 2008-08-19 Himax Technologies Limited Power switch device
US20080205095A1 (en) 2007-02-22 2008-08-28 Stmicroelectronics Sa Ripple compensator and switching converter having such a ripple compensator
US20080224769A1 (en) 2007-03-13 2008-09-18 Piotr Markowski Power supply providing ultrafast modulation of output voltage
US20080242246A1 (en) 2005-07-27 2008-10-02 Nxp B.V. Rf Transmitter With Compensation of Differential Path Delay
US20080252278A1 (en) 2006-12-06 2008-10-16 Jonne Jalmar Sebastian Lindeberg System and Method for Controlling a Hysteretic Mode Converter
US20080259656A1 (en) 2007-04-23 2008-10-23 Active-Semi International, Inc. Regulating output current from a primary side power converter by clamping an error signal
US20080258831A1 (en) 2006-01-10 2008-10-23 Nec Corporation Amplifying apparatus
US20080280577A1 (en) 2006-01-31 2008-11-13 International Business Machines Corporation Receiver and integrated am-fm/iq demodulators for gigabit-rate data detection
US20090004981A1 (en) 2007-06-27 2009-01-01 Texas Instruments Incorporated High efficiency digital transmitter incorporating switching power supply and linear power amplifier
US20090045872A1 (en) 2005-03-07 2009-02-19 Peter Blakeborough Kenington Integrated transceiver with envelope tracking
US20090082006A1 (en) 2007-09-14 2009-03-26 Stmicroelectronics Sa Method for notch filtering a digital signal, and corresponding electronic device
US7515885B2 (en) 2001-04-11 2009-04-07 Panasonic Corporation Communications signal amplifiers having independent power control and amplitude modulation
US20090097591A1 (en) 2007-10-10 2009-04-16 Samsung Electronics Co., Ltd. Apparatus and method for envelope tracking power amplification in wireless communication system
US7528807B2 (en) 2003-07-31 2009-05-05 Lg Electronics Inc. Power supply and driving method thereof and apparatus and method for driving electro-luminescence display device using the same
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
CN101427459A (en) 2006-05-05 2009-05-06 诺基亚公司 Method and arrangement for optimizing efficiency of a power amplifier
US20090160548A1 (en) 2007-12-20 2009-06-25 Fujitsu Limited Power amplifying apparatus
US20090167260A1 (en) 2005-06-28 2009-07-02 Manfred Pauritsch Electrical Power Supply Arrangement and Use Thereof
US20090174466A1 (en) 2008-01-08 2009-07-09 Novatek Microelectronics Corp. Charge pump circuit
US20090191826A1 (en) 2008-01-29 2009-07-30 Matsushita Electric Industrial Co., Ltd. High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
US20090190699A1 (en) 2002-06-11 2009-07-30 Interdigital Technology Corporation Gain control method and apparatus
US20090218995A1 (en) 2008-03-03 2009-09-03 Samsung Electronics Co., Ltd. Apparatus and method for bias modulator using zero current switching
US20090230934A1 (en) 2008-03-12 2009-09-17 Sony Ericsson Mobile Communications Ab Switched mode voltage converter with low-current mode and methods of performing voltage conversion with low-current mode
US7595569B2 (en) 2004-02-17 2009-09-29 Agere Systems Inc. Versatile and intelligent power controller
US7609114B2 (en) 2007-09-04 2009-10-27 Upi Semiconductor Corporation Voltage generating apparatus and methods
US7615979B2 (en) 2005-11-28 2009-11-10 David J. Caldwell Flexible power converter and simplified process controller
US20090284235A1 (en) 2008-05-13 2009-11-19 Micrel, Inc. Adaptive Compensation Scheme for LC Circuits In Feedback Loops
US20090289720A1 (en) 2008-05-23 2009-11-26 Matsushita Electric Industrial Co., Ltd. High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
US7627622B2 (en) 2003-11-14 2009-12-01 International Business Machines Corporation System and method of curve fitting
US20090319065A1 (en) 2008-06-19 2009-12-24 Texas Instruments Incorporated Efficient Asynchronous Sample Rate Conversion
US20100002473A1 (en) 2008-07-07 2010-01-07 Advanced Analogic Technologies, Inc. Multiple-Output Dual-Polarity DC/DC Converters and Voltage Regulators
US20100001793A1 (en) 2006-12-12 2010-01-07 Koninklijke Philips Electronics N.V. High efficiency modulating rf amplifier
US7646108B2 (en) 2006-09-29 2010-01-12 Intel Corporation Multiple output voltage regulator
CN101626355A (en) 2009-08-11 2010-01-13 北京天碁科技有限公司 Calibration device and calibration method of multi-input multi-output (MIMO) terminal
US20100017553A1 (en) 2008-07-16 2010-01-21 Proton World International N.V. Interface between a twin-wire bus and a single-wire bus
CN101635697A (en) 2009-08-04 2010-01-27 京信通信系统(中国)有限公司 Transmitter and transmitter signal processing method
US20100019749A1 (en) 2008-07-28 2010-01-28 Texas Instruments Incorporated Switching power supply device
US20100019840A1 (en) 2007-01-24 2010-01-28 Kiyohiko Takahashi Power amplifier
GB2462204A (en) 2008-07-31 2010-02-03 Motorola Inc Control of Power converters including high-order output filters
US20100026250A1 (en) 2008-07-29 2010-02-04 John Stewart Petty Multimode voltage regulator circuit
US20100045247A1 (en) 2005-04-20 2010-02-25 Nxp B.V. Parallel arranged linear amplifier and dc-dc converter
US7679433B1 (en) 2007-02-02 2010-03-16 National Semiconductor Corporation Circuit and method for RF power amplifier power regulation and modulation envelope tracking
US7684216B2 (en) 2007-03-28 2010-03-23 Fairchild Korea Semiconductor, Ltd. Quasi resonant switching mode power supply
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US7724837B2 (en) 2003-02-20 2010-05-25 Sony Ericsson Mobile Communications Ab Efficient modulation of RF signals
GB2465552A (en) 2008-11-18 2010-05-26 Nujira Ltd Tracking power supplies for a multi-stage transmitter amplifier
US20100171553A1 (en) 2008-12-25 2010-07-08 Yoichi Okubo Power circuit
US7755431B2 (en) 2007-12-24 2010-07-13 Samsung Electronics Co., Ltd. Apparatus for power amplification based on envelope elimination and restoration (EER) and push-pull switching
US7764060B2 (en) 2003-12-09 2010-07-27 Nujira Limited Transformer based voltage supply
EP2214304A1 (en) 2009-01-30 2010-08-04 Alcatel-Lucent Deutschland AG Switch mode assisted linear amplifier for baseband signal amplification
US7773691B2 (en) 2005-04-25 2010-08-10 Rf Micro Devices, Inc. Power control system for a continuous time mobile transmitter
US7773965B1 (en) 2006-09-21 2010-08-10 Rf Micro Devices, Inc. Calibrated quadrature very low intermediate frequency receiver
US7777459B2 (en) 2006-12-30 2010-08-17 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
US7782036B1 (en) 2008-01-07 2010-08-24 National Semiconductor Corporation Adaptive on-time control for switching regulators
US7783269B2 (en) 2007-09-20 2010-08-24 Quantance, Inc. Power amplifier controller with polar transmitter
US7800427B2 (en) 2006-11-21 2010-09-21 Samsung Electronics Co., Ltd. Switched capacitor circuit with inverting amplifier and offset unit
US7805115B1 (en) 2003-06-02 2010-09-28 Analog Devices, Inc. Variable filter systems and methods for enhanced data rate communication systems
US20100253309A1 (en) 2009-04-06 2010-10-07 Xiaoyu Xi Accurate current limit for peak current mode dc-dc converter
CN101867284A (en) 2010-05-31 2010-10-20 华为技术有限公司 Control method of fast tracking power supply, fast tracking power supply and system
US20100266066A1 (en) 2007-11-05 2010-10-21 Nec Corporation Power amplifier and radio wave transmitter having the same
EP2244366A1 (en) 2008-02-08 2010-10-27 Sumitomo Electric Industries, Ltd. Envelope tracking power supply circuit and high-frequency amplifier including envelope tracking power supply circuit
US20100289568A1 (en) 2009-05-12 2010-11-18 Number 14 B.V. Low-Noise, Low-Power, Low Drift Offset Correction in Operational and Instrumentation Amplifiers
US20100301947A1 (en) 2006-06-19 2010-12-02 Renesas Technology Corp. Rf power amplifier
US20100308654A1 (en) 2009-06-09 2010-12-09 Silergy Technology Mixed mode control for switching regulator with fast transient responses
US7852150B1 (en) 2007-12-20 2010-12-14 The Tc Group A/S Switching amplifier driven by a controlled power supply
CN201674399U (en) 2010-05-14 2010-12-15 珠海世纪鼎利通信科技股份有限公司 Low-ripple power source device
US7856048B1 (en) 2006-11-20 2010-12-21 Marvell International, Ltd. On-chip IQ imbalance and LO leakage calibration for transceivers
US20100321127A1 (en) 2008-02-21 2010-12-23 Advantest Corporation Test apparatus for digital modulated signal
US20100327825A1 (en) 2007-03-30 2010-12-30 Intersil Americas Inc. Switching regulator circuit, system, and method for providing input current measurement without a dedicated input current sense element
US20100327971A1 (en) 2009-06-26 2010-12-30 Fujitsu Limited Transmission device, distortion compensation device, and distortion compensation method
US20110018626A1 (en) 2008-10-24 2011-01-27 Advantest Corporation Quadrature amplitude demodulator and demodulation method
US7880547B2 (en) 2007-01-10 2011-02-01 Samsung Electro-Mechanics Systems and methods for power amplifiers with voltage boosting multi-primary transformers
US7884681B1 (en) 2008-04-30 2011-02-08 Rf Micro Devices, Inc. Radio frequency power amplifier improvements using pre-distortion of an amplitude modulation power supply
US7894216B2 (en) 2007-05-02 2011-02-22 Cirrus Logic, Inc. Switching power converter with efficient switching control signal period generation
US7898327B2 (en) 2008-08-29 2011-03-01 Nokia Corporation Correcting distortions at output of power amplifier
US7898268B2 (en) 2008-02-15 2011-03-01 Infineon Technologies Ag Circuit and method for capacitor effective series resistance measurement
US20110058601A1 (en) 2009-09-07 2011-03-10 Samsung Electronics Co., Ltd. Apparatus and method for envelope tracking power amplifier in wireless communication system
US7907010B2 (en) 2003-04-07 2011-03-15 Nxp B.V. Digital amplifier
US7915961B1 (en) 2008-05-13 2011-03-29 National Semiconductor Corporation Power amplifier multiple stage control for polar modulation circuit
US7920023B2 (en) 2006-09-05 2011-04-05 New Transducers Limited Switching amplifier
US7923974B2 (en) 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
US20110084760A1 (en) 2009-10-09 2011-04-14 Richtek Technology Corp. Highly efficient class-g amplifier and control method thereof
US20110109387A1 (en) 2009-11-10 2011-05-12 Samsung Electronics Co., Ltd. Power amplification apparatus for envelope modulation of high frequency signal and method for controlling the same
US20110148375A1 (en) 2009-12-22 2011-06-23 Yamaha Corporation Power amplifying circuit, DC-DC converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
US7994864B2 (en) 2008-12-15 2011-08-09 Mediatek Inc. Audio out unit
US8000117B2 (en) 2008-08-13 2011-08-16 Intersil Americas Inc. Buck boost function based on a capacitor bootstrap input buck converter
US8008970B1 (en) 2010-06-07 2011-08-30 Skyworks Solutions, Inc. Apparatus and method for enabled switch detection
US8022761B2 (en) 2007-05-18 2011-09-20 Quantance, Inc. Error driven RF power amplifier control with increased efficiency
US8026765B2 (en) 2009-04-12 2011-09-27 Roberto Michele Giovannotto Audio frequency amplifier
US20110234182A1 (en) 2008-05-09 2011-09-29 Nujira Limited Modulated supply stage with feedback to switched supply
US20110235827A1 (en) 2006-06-30 2011-09-29 Lesso John P Amplifier circuit and methods of operation thereof
EP2372904A1 (en) 2008-12-25 2011-10-05 NEC Corporation Power amplication device
US8044639B2 (en) 2007-10-23 2011-10-25 Rohm Co., Ltd. Selector circuit
US20110260706A1 (en) 2008-12-24 2011-10-27 Kimihiro Nishijima Power Supply Apparatus
US8054126B2 (en) 2009-07-23 2011-11-08 Sungkyunkwan University Foundation For Corporate Collaboration Dynamic bias supply devices
US20110279180A1 (en) 2009-02-05 2011-11-17 Nec Corporation Power amplifier and power amplifying method
US8068622B2 (en) 2006-12-13 2011-11-29 Cirrus Logic, Inc. Method and apparatus for controlling a selectable voltage audio power output stage
US20110298433A1 (en) 2010-06-04 2011-12-08 Apple Inc. Switching power supply inductor arrangement
US20110298539A1 (en) 2010-06-04 2011-12-08 Quantance, Inc. Rf power amplifier circuit with mismatch tolerance
US8081199B2 (en) 2009-06-26 2011-12-20 Panasonic Corporation Light emitting element drive apparatus, planar illumination apparatus, and liquid crystal display apparatus
US8093951B1 (en) 2009-04-14 2012-01-10 Cirrus Logic, Inc. Pulse-width modulated (PWM) audio power amplifier having output signal magnitude controlled pulse voltage and switching frequency
US20120025919A1 (en) 2010-07-28 2012-02-02 Active-Semi, Inc. Synchronization of multiple high frequency switching power converters in an integrated circuit
US20120025907A1 (en) 2010-07-28 2012-02-02 Korea Advanced Institute Of Science And Technology Power amplifier
US20120034893A1 (en) 2010-02-01 2012-02-09 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US20120049894A1 (en) 2010-04-20 2012-03-01 Rf Micro Devices, Inc. Dc-dc converter current sensing
US20120049953A1 (en) 2010-08-25 2012-03-01 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US20120074916A1 (en) 2008-11-25 2012-03-29 St-Ericsson Sa Switch-Mode Voltage Regulator
GB2484475A (en) 2010-10-11 2012-04-18 Toshiba Res Europ Ltd A power supply modulator for an RF amplifier, using a current-output class G amplifier
US8164388B2 (en) 2009-09-18 2012-04-24 Yamaha Corporation Amplifying apparatus
US20120098595A1 (en) 2010-04-19 2012-04-26 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8174313B2 (en) 2010-05-17 2012-05-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Apparatus and method for controlling power amplifier
US20120119813A1 (en) 2010-11-16 2012-05-17 Rf Micro Devices, Inc. Digital fast db to gain multiplier for envelope tracking systems
US8183929B2 (en) 2010-04-09 2012-05-22 Viasat, Inc. Multi-chip doherty amplifier with integrated power detection
US20120133299A1 (en) 2010-11-30 2012-05-31 Infineon Technologies Ag Multi Channel LED Driver
US20120139516A1 (en) 2010-12-02 2012-06-07 Richtek Technology Corporation, R.O.C. Power supply circuit with adaptive input selection and method for power supply
US8198941B2 (en) 2007-08-03 2012-06-12 Wolfson Microelectronics Plc Amplifier circuit and method of amplifying a signal in an amplifier circuit
US8204456B2 (en) 2010-09-15 2012-06-19 Fujitsu Semiconductor Limited Systems and methods for spurious emission cancellation
US20120154054A1 (en) 2010-12-17 2012-06-21 Skyworks Solutions, Inc. Apparatus and methods for oscillation suppression
US20120154035A1 (en) 2010-12-21 2012-06-21 Fujitsu Limited Amplifying device
US20120170334A1 (en) 2011-01-03 2012-07-05 Paolo Menegoli Hysteretic CL power converter
US20120176196A1 (en) 2011-01-10 2012-07-12 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US20120194274A1 (en) 2011-02-01 2012-08-02 Paul Fowers Integrated circuit, wireless communication unit and method for providing a power supply
US20120200354A1 (en) 2011-02-07 2012-08-09 Nujira Ltd Apparatus and methods for envelope tracking calibration
US8242813B1 (en) 2009-10-05 2012-08-14 Adaptive Digital Power, Inc. Adaptive non-positive inductor current detector (ANPICD)
US8253487B2 (en) 2010-02-10 2012-08-28 Huawei Technologies Co., Ltd. Tracking power supply, method for controlling power supply, and communication apparatus
US8253485B2 (en) 2010-03-31 2012-08-28 Sony Europe Limited Power amplifier
US20120236444A1 (en) 2011-03-14 2012-09-20 Qualcomm Incorporated Charge pump electrostatic discharge protection
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
US20120244916A1 (en) 2011-03-25 2012-09-27 R2 Semiconductor, Inc. Multimode Operation DC-DC Converter
US8289084B2 (en) 2010-06-07 2012-10-16 Renesas Electronics Corporation RF power amplifier device and operating method thereof
US20120269240A1 (en) 2011-04-25 2012-10-25 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
WO2012151594A2 (en) 2011-05-05 2012-11-08 Rf Micro Devices, Inc. Power managent system for pseudo-envelope and average power tracking
US20120299647A1 (en) 2010-04-20 2012-11-29 Rf Micro Devices, Inc. Pa envelope power supply undershoot compensation
US20120313701A1 (en) 2010-04-19 2012-12-13 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
WO2012172544A1 (en) 2011-06-16 2012-12-20 Fleischer David Leonardo Method and system for boosting the supply of power amplifier
US8362837B2 (en) 2011-05-23 2013-01-29 Vyycore Ltd. System and a method for amplifying a signal by multiple non-linear power amplifiers
US20130034139A1 (en) 2011-02-07 2013-02-07 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US20130094553A1 (en) 2011-10-14 2013-04-18 Samsung Electronics Co. Ltd. Apparatus and method for calibration of supply modulation in transmitter
US20130107769A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US20130106378A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Rf switching converter with ripple correction
US20130135043A1 (en) 2011-11-30 2013-05-30 Rf Micro Devices, Inc. Multimode rf amplifier system
US20130134956A1 (en) 2011-11-30 2013-05-30 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US20130141068A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Average power tracking controller
US20130141169A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US20130141072A1 (en) 2011-12-02 2013-06-06 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US20130141064A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US20130147445A1 (en) 2010-04-20 2013-06-13 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
US20130154729A1 (en) 2011-12-16 2013-06-20 Rf Micro Devices, Inc. Dynamic loadline power amplifier with baseband linearization
US20130169245A1 (en) 2011-12-28 2013-07-04 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US20130181521A1 (en) 2010-09-29 2013-07-18 Rf Micro Devices, Inc Single +82 c-buckboost converter with multiple regulated supply outputs
US8493141B2 (en) 2010-04-19 2013-07-23 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US20130214858A1 (en) 2012-02-17 2013-08-22 Quantance, Inc. Dynamic power supply employing a linear driver and a switching regulator
US8519788B2 (en) 2010-04-19 2013-08-27 Rf Micro Devices, Inc. Boost charge-pump with fractional ratio and offset loop for supply modulation
US20130229235A1 (en) 2010-11-17 2013-09-05 Masami Ohnishi High-frequency amplifier, and high-frequency module and wireless transceiver using same
US20130238913A1 (en) 2012-03-08 2013-09-12 Shih-Chao Huang Apparatus and method for power management
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8541993B2 (en) 2009-07-22 2013-09-24 Wolfson Microelectronics Plc DC-DC converters operable in a discontinuous switching mode
US8558616B2 (en) 2010-11-22 2013-10-15 Fujitsu Limited Amplifying apparatus
US20130271221A1 (en) 2010-04-20 2013-10-17 Rf Micro Devices, Inc. Direct current (dc)-dc converter having a multi-stage output filter
US20130328613A1 (en) 2012-06-11 2013-12-12 Rf Micro Devices, Inc. Power source multiplexer
US8611402B2 (en) 2011-02-02 2013-12-17 Rf Micro Devices, Inc. Fast envelope system calibration
US8618868B2 (en) 2011-08-17 2013-12-31 Rf Micro Devices, Inc. Single charge-pump buck-boost for providing independent voltages
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
US20140009200A1 (en) 2010-04-19 2014-01-09 Rf Micro Devices, Inc. Programmable delay circuitry
US20140009227A1 (en) 2010-04-19 2014-01-09 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8638165B2 (en) 2011-06-06 2014-01-28 Qualcomm Incorporated Switched-capacitor DC blocking amplifier
US20140028392A1 (en) 2012-01-16 2014-01-30 Nujira Limited Pre-distortion in rf path in combination with shaping table in envelope path for envelope tracking amplifier
US20140028370A1 (en) 2012-01-16 2014-01-30 Nujira Limited Crest Factor Reduction Applied To Shaping Table To Increase Power Amplifier Efficiency Of Envelope Tracking Amplifier
US8648657B1 (en) 2012-08-13 2014-02-11 Broadcom Corporation Mobile device including a power amplifier with selectable voltage supply
US20140049321A1 (en) 2012-08-15 2014-02-20 Skyworks Solutions, Inc. Systems, circuits and methods related to controllers for radio-frequency power amplifiers
US20140057684A1 (en) 2011-05-05 2014-02-27 Rf Micro Devices, Inc. Power loop control based envelope tracking
US20140055197A1 (en) 2011-05-05 2014-02-27 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US20140062590A1 (en) 2011-05-05 2014-03-06 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US20140077787A1 (en) 2012-09-14 2014-03-20 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a dc-dc converter
US8693676B2 (en) 2009-04-07 2014-04-08 Futurewei Technologies, Inc. Power efficiency of a line driver
US20140099906A1 (en) 2012-10-08 2014-04-10 Rf Micro Devices, Inc. Reducing effects of rf mixer-based artifact using pre-distortion of an envelope power supply signal
US20140099907A1 (en) 2011-05-31 2014-04-10 Rf Micro Devices, Inc. Rugged iq receiver based rf gain measurements
US20140097895A1 (en) 2010-04-19 2014-04-10 Rf Micro Devices, Inc. Pseudo-envelope following feedback delay compensation
US20140103995A1 (en) 2012-10-15 2014-04-17 Andreas Langer Control Circuit and Method for Controlling an Operation of a Power Amplifier
US20140111178A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US8718579B2 (en) 2012-03-04 2014-05-06 Quantance, Inc. Envelope tracking power amplifier system with delay calibration
US8717100B2 (en) 2011-03-15 2014-05-06 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8718582B2 (en) 2008-02-08 2014-05-06 Qualcomm Incorporated Multi-mode power amplifiers
US20140139199A1 (en) 2012-11-16 2014-05-22 Rf Micro Devices, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US8744382B2 (en) 2010-01-30 2014-06-03 Huawei Technologies Co., Ltd. Fast tracking power supply device, fast tracking power supply control method, and communication equipment
US8749307B2 (en) 2010-09-02 2014-06-10 Samsung Electronics Co., Ltd. Apparatus and method for a tunable multi-mode multi-band power amplifier module
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US20140184335A1 (en) 2012-12-28 2014-07-03 Peregrine Semiconductor Corporation Amplifiers Operating in Envelope Tracking Mode or Non-Envelope Tracking Mode
US20140203868A1 (en) 2013-01-24 2014-07-24 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US8792840B2 (en) 2011-07-15 2014-07-29 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US20140225674A1 (en) 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US8824978B2 (en) 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
US20140266428A1 (en) 2013-03-14 2014-09-18 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
US20140266427A1 (en) 2013-03-14 2014-09-18 Rf Micro Devices, Inc. Noise conversion gain limited rf power amplifier
US20140306769A1 (en) 2013-04-16 2014-10-16 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US8909175B1 (en) 2013-06-27 2014-12-09 Crestcom, Inc. Transmitter and method for RF power amplifier having a bandwidth controlled, detroughed envelope tracking signal
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US8947162B2 (en) 2011-02-15 2015-02-03 Nujira Limited Power control
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
US20150048891A1 (en) 2013-08-13 2015-02-19 Rf Micro Devices, Inc. Expanded range dc-dc converter
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US8981847B2 (en) 2012-02-09 2015-03-17 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
US8994345B2 (en) 2009-01-14 2015-03-31 Nujira Limited Control of multi-level supply stage
US9020451B2 (en) 2012-07-26 2015-04-28 Rf Micro Devices, Inc. Programmable RF notch filter for envelope tracking
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9041364B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. RF power converter
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load

Patent Citations (418)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980964A (en) 1974-05-20 1976-09-14 Grodinsky Robert M Noise reduction circuit
US3969682A (en) 1974-10-21 1976-07-13 Oberheim Electronics Inc. Circuit for dynamic control of phase shift
US4587552A (en) 1983-09-02 1986-05-06 Rca Corporation Apparatus for generating the magnitude of the vector sum of two orthogonal signals as for use in a digital TV receiver
US4692889A (en) 1984-09-28 1987-09-08 Rca Corporation Circuitry for calculating magnitude of vector sum from its orthogonal components in digital television receiver
US4831258A (en) 1988-03-04 1989-05-16 Exergen Corporation Dual sensor radiation detector
US4996500A (en) 1989-10-24 1991-02-26 Hewlett-Packard Company Automatic control system
US5311309A (en) 1990-06-01 1994-05-10 Thomson Consumer Electronics, Inc. Luminance processing system for compressing and expanding video data
US5486871A (en) 1990-06-01 1996-01-23 Thomson Consumer Electronics, Inc. Automatic letterbox detection
US5351087A (en) 1990-06-01 1994-09-27 Thomson Consumer Electronics, Inc. Two stage interpolation system
US5420643A (en) 1990-06-01 1995-05-30 Thomson Consumer Electronics, Inc. Chrominance processing system for compressing and expanding video data
US5099203A (en) 1990-06-05 1992-03-24 Continental Electronics Corporation Power amplifier having multiple switched stages and method of operating same
US5317217A (en) 1990-11-29 1994-05-31 Deutsche Thomson-Brandt Gmbh Universal active filter
US5146504A (en) 1990-12-07 1992-09-08 Motorola, Inc. Speech selective automatic gain control
US5187396A (en) 1991-05-22 1993-02-16 Benchmarq Microelectronics, Inc. Differential comparator powered from signal input terminals for use in power switching applications
US5532916A (en) 1992-09-02 1996-07-02 Nec Corporation Voltage converting circuit and multiphase clock generating circuit used for driving the same
US5457620A (en) 1993-07-30 1995-10-10 At&T Ipm Corp. Current estimating circuit for switch mode power supply
US5414614A (en) 1994-06-06 1995-05-09 Motorola, Inc. Dynamically configurable switched capacitor power supply and method
US5822318A (en) 1994-07-29 1998-10-13 Qualcomm Incorporated Method and apparatus for controlling power in a variable rate communication system
US5646621A (en) 1994-11-02 1997-07-08 Advanced Micro Devices, Inc. Delta-sigma ADC with multi-stage decimation filter and gain compensation filter
US5581454A (en) 1994-11-22 1996-12-03 Collins; Hansel High power switched capacitor voltage conversion and regulation apparatus
US5541547A (en) 1995-05-03 1996-07-30 Sun Microsystems, Inc. Test generator system for controllably inducing power pin latch-up and signal pin latch-up in a CMOS device
EP0755121A2 (en) 1995-07-21 1997-01-22 Nec Corporation Exponential and logarithmic conversion circuit
US5715526A (en) 1995-09-08 1998-02-03 Qualcomm Incorporated Apparatus and method for controlling transmission power in a cellular communications system
US5767744A (en) 1995-11-22 1998-06-16 Qsc Audio Products, Inc. Lightweight fixed frequency discontinuous resonant power supply for audio amplifiers
CN1211355A (en) 1996-02-14 1999-03-17 格莱纳瑞电子公司 Linear transmitter using predistortion
US6256482B1 (en) 1997-04-07 2001-07-03 Frederick H. Raab Power- conserving drive-modulation method for envelope-elimination-and-restoration (EER) transmitters
US5905407A (en) 1997-07-30 1999-05-18 Motorola, Inc. High efficiency power amplifier using combined linear and switching techniques with novel feedback system
US5936464A (en) 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
US6400775B1 (en) 1998-01-06 2002-06-04 Alcatel Method and a system for digitally linearizing an amplifier
US5898342A (en) 1998-01-20 1999-04-27 Advanced Micro Devices Power amplifier arrangement and method for data signal interface
US6055168A (en) 1998-03-04 2000-04-25 National Semiconductor Corporation Capacitor DC-DC converter with PFM and gain hopping
US6133777A (en) 1998-03-13 2000-10-17 Stmicroelectronics S.A. Selector circuit for the switching over of analog signals with amplitudes greater than that of the supply voltage
US6070181A (en) 1998-03-27 2000-05-30 Chun-Shan Institute Of Science And Technology Method and circuit for envelope detection using a peel cone approximation
TW461168B (en) 1998-07-02 2001-10-21 Nat Semiconductor Corp Buck and boost switched capacitor gain stage with optional shared rest stage
US6198645B1 (en) 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
US6043610A (en) 1998-07-16 2000-03-28 Durel Corporation Battery operated power supply including a low level boost and a high level boost
US6690652B1 (en) 1998-10-26 2004-02-10 International Business Machines Corporation Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation
US6313681B1 (en) 1998-10-27 2001-11-06 Nec Corporation Variable delay circuit
US7200365B2 (en) 1998-10-27 2007-04-03 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication device including the same
US6204731B1 (en) 1998-12-05 2001-03-20 Institute Of Microelectronics Power amplifier
US6043707A (en) 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US7099635B2 (en) 1999-02-09 2006-08-29 Matsushita Electric Industrial Co., Ltd. High-efficiency modulating RF amplifier
WO2000048306A1 (en) 1999-02-09 2000-08-17 Tropian, Inc. High-efficiency amplifier output level and burst control
EP1047188A2 (en) 1999-04-23 2000-10-25 Linear Technology Corporation Offset voltage cancellation system for radio frequency power controllers
US6118343A (en) 1999-05-10 2000-09-12 Tyco Electronics Logistics Ag Power Amplifier incorporating single drain switch and single negative voltage generator
US6701141B2 (en) 1999-05-18 2004-03-02 Lockheed Martin Corporation Mixed signal true time delay digital beamformer
US6166598A (en) * 1999-07-22 2000-12-26 Motorola, Inc. Power amplifying circuit with supply adjust to control adjacent and alternate channel power
US6621808B1 (en) 1999-08-13 2003-09-16 International Business Machines Corporation Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation
US6566935B1 (en) 1999-08-31 2003-05-20 Stmicroelectronics S.A. Power supply circuit with a voltage selector
US6147478A (en) 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
US6681101B1 (en) 2000-01-11 2004-01-20 Skyworks Solutions, Inc. RF transmitter with extended efficient power control range
US6483281B2 (en) 2000-02-11 2002-11-19 Champion Microelectronic Corporation Low power mode and feedback arrangement for a switching power converter
US6300826B1 (en) 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
US6658445B1 (en) 2000-05-17 2003-12-02 Chun-Shan Institute Of Science And Technology Apparatus and method for demodulating a square root of the sum of two squares
US20030153289A1 (en) 2000-05-30 2003-08-14 Hughes James David Digitized automatic gain control system and methods for a controlled gain receiver
US6617930B2 (en) 2000-08-25 2003-09-09 Sharp Kabushiki Kaisha Power supply circuit for transmitter
US6348780B1 (en) 2000-09-22 2002-02-19 Texas Instruments Incorporated Frequency control of hysteretic power converter by adjusting hystersis levels
US20040047329A1 (en) 2000-09-25 2004-03-11 Huawei Technologies Co., Ltd. Method for multiple time slot power control
US6559689B1 (en) 2000-10-02 2003-05-06 Allegro Microsystems, Inc. Circuit providing a control voltage to a switch and including a capacitor
US20020071497A1 (en) 2000-10-31 2002-06-13 Erik Bengtsson IQ modulation systems and methods that use separate phase and amplitude signal paths and perform modulation within a phase locked loop
US6583610B2 (en) 2001-03-12 2003-06-24 Semtech Corporation Virtual ripple generation in switch-mode power supplies
US7515885B2 (en) 2001-04-11 2009-04-07 Panasonic Corporation Communications signal amplifiers having independent power control and amplitude modulation
US6819938B2 (en) 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US20030017286A1 (en) 2001-07-11 2003-01-23 Williams William Andrus Accelerator free latex formulations, methods of making same and articles made from same
US20040184569A1 (en) 2001-07-16 2004-09-23 Raghu Challa Digital voltage gain amplifier for zero if architecture
US20030031271A1 (en) 2001-08-07 2003-02-13 Bozeki John Janos Isolator eliminator for a linear transmitter
US7038536B2 (en) 2001-08-29 2006-05-02 Tropian, Inc. Power supply processing for power amplifiers
US7164893B2 (en) 2001-08-31 2007-01-16 Motorola, Inc. Method and apparatus for optimizing supply modulation in a transmitter
US20030062950A1 (en) 2001-09-28 2003-04-03 Kunihiro Hamada Transmission power controller circuit
EP1317105A1 (en) 2001-11-30 2003-06-04 Texas Instruments Incorporated Line driver using a class G amplifier and a programmable peak detector
US20050200407A1 (en) 2001-12-12 2005-09-15 Renesas Technology Corp. High frequency power amplifier and wireless communication module
US20030137286A1 (en) 2002-01-23 2003-07-24 Donald Kimball Capacitorless DC-DC converter
US7304537B2 (en) 2002-02-01 2007-12-04 Avago Technologies Korea Co., Ltd Power amplification apparatus of a portable terminal
US20030146791A1 (en) 2002-02-06 2003-08-07 Shvarts Emanuil Y. Variable output power supply
US20030232622A1 (en) 2002-02-17 2003-12-18 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving uplink power offset information in a mobile communication system supporting HSDPA
US7254157B1 (en) 2002-03-27 2007-08-07 Xilinx, Inc. Method and apparatus for generating a phase locked spread spectrum clock signal
US20030198063A1 (en) 2002-04-18 2003-10-23 Smyth David Bruce Audio band conducted emissions suppression on power feeders
US20030206603A1 (en) 2002-05-03 2003-11-06 Husted Paul J. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US20030220953A1 (en) 2002-05-17 2003-11-27 Texas Instruments Incorporated Circuits, systems, and methods implementing approximations for logarithm, inverse logrithm,and reciprocal
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
US20090190699A1 (en) 2002-06-11 2009-07-30 Interdigital Technology Corporation Gain control method and apparatus
US6624712B1 (en) 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
WO2004002006A1 (en) 2002-06-20 2003-12-31 Motorola, Inc. Method for tuning an envelope tracking amplification system
US6885176B2 (en) 2002-06-21 2005-04-26 Stmicroelectronics S.R.L. PWM control circuit for the post-adjustment of multi-output switching power supplies
US20040196095A1 (en) 2002-07-31 2004-10-07 Nec Corporation Charge pump-type booster circuit
US6728163B2 (en) 2002-08-23 2004-04-27 Micron Technology, Inc. Controlling a delay lock loop circuit
US20040051384A1 (en) 2002-09-13 2004-03-18 Analog Devices, Inc. Multi-channel power supply selector
US6744151B2 (en) 2002-09-13 2004-06-01 Analog Devices, Inc. Multi-channel power supply selector
US20050079835A1 (en) 2002-10-03 2005-04-14 Shinichiro Takabayashi Transmitting method and transmitter apparatus
EP1557955A1 (en) 2002-10-28 2005-07-27 Matsushita Electric Industrial Co., Ltd. Transmitter
US6958596B1 (en) 2002-12-20 2005-10-25 Intersil Americas Inc. Compensation sample and hold for voltage regulator amplifier
US20040127173A1 (en) 2002-12-30 2004-07-01 Motorola, Inc. Multiple mode transmitter
US20040124913A1 (en) 2002-12-31 2004-07-01 Pallab Midya Power amplifier circuit and method using bandlimited signal component estimates
US20040132424A1 (en) 2003-01-08 2004-07-08 Lucent Technologies Inc. Method and apparatus for suppressing local oscillator leakage in a wireless transmitter
CN1518209A (en) 2003-01-15 2004-08-04 安德鲁公司 Uncorrelated self-adaptive predistorter
GB2398648A (en) 2003-02-19 2004-08-25 Nujira Ltd Amplifier power supply whose voltage tracks a signal envelope
US7724837B2 (en) 2003-02-20 2010-05-25 Sony Ericsson Mobile Communications Ab Efficient modulation of RF signals
US7405618B2 (en) 2003-03-04 2008-07-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling a power amplifier in a mobile communication system
WO2004082135A2 (en) 2003-03-12 2004-09-23 Analog Devices, Inc. Closed loop power control of non-constant envelope waveforms using sample/hold
US7907010B2 (en) 2003-04-07 2011-03-15 Nxp B.V. Digital amplifier
US20040239301A1 (en) 2003-04-16 2004-12-02 Hidenori Kobayashi Power system
US20040219891A1 (en) 2003-04-30 2004-11-04 Aristotle Hadjichristos Polar modulation transmitter
US7805115B1 (en) 2003-06-02 2010-09-28 Analog Devices, Inc. Variable filter systems and methods for enhanced data rate communication systems
EP1492227A1 (en) 2003-06-24 2004-12-29 Northrop Grumman Corporation Multi-mode amplifier system
US20040266366A1 (en) 2003-06-24 2004-12-30 Ian Robinson Multi-mode amplifier system
US20040267842A1 (en) 2003-06-24 2004-12-30 Texas Instruments Incorporated Device with dB-to-linear gain conversion
US7043213B2 (en) 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
US20050008093A1 (en) 2003-07-08 2005-01-13 Toru Matsuura Modulation circuit device, modulation method and radio communication device
US20060154637A1 (en) 2003-07-08 2006-07-13 Thales Method for estimating a carrier leak, an estimator and modulation system provided with automatic control of a carrier using said system
US7528807B2 (en) 2003-07-31 2009-05-05 Lg Electronics Inc. Power supply and driving method thereof and apparatus and method for driving electro-luminescence display device using the same
WO2005013084A2 (en) 2003-07-31 2005-02-10 Cradle Technologies, Inc. Method and system for performing operations on data and transferring data
US7170341B2 (en) 2003-08-05 2007-01-30 Motorola, Inc. Low power consumption adaptive power amplifier
CN101416385A (en) 2003-08-05 2009-04-22 摩托罗拉公司(在特拉华州注册的公司) Low power consumption adaptive power amplifier related application
US20050032499A1 (en) 2003-08-08 2005-02-10 Cho Jin Wook Radio frequency power detecting circuit and method therefor
US20050047180A1 (en) 2003-08-26 2005-03-03 Samsung Electronics Co., Ltd. Voltage boosting circuit and method
US20050064830A1 (en) 2003-09-16 2005-03-24 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
US7058373B2 (en) 2003-09-16 2006-06-06 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
US7653366B2 (en) 2003-09-16 2010-01-26 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
CN1898860A (en) 2003-09-25 2007-01-17 硅实验室公司 Stacked RF power amplifier
US7053718B2 (en) 2003-09-25 2006-05-30 Silicon Laboratories Inc. Stacked RF power amplifier
US20050093630A1 (en) 2003-10-30 2005-05-05 Whittaker Edward J. Power level controlling of first amplification stage for an integrated rf power amplifier
US7627622B2 (en) 2003-11-14 2009-12-01 International Business Machines Corporation System and method of curve fitting
US20050110562A1 (en) 2003-11-20 2005-05-26 Ian Robinson Variable supply amplifier system
US6995995B2 (en) 2003-12-03 2006-02-07 Fairchild Semiconductor Corporation Digital loop for regulating DC/DC converter with segmented switching
US20050122171A1 (en) 2003-12-08 2005-06-09 Osamu Miki Power source circuit for high frequency power amplifying circuit and semiconductor integrated circuit for power source and electronics component for power source
US7764060B2 (en) 2003-12-09 2010-07-27 Nujira Limited Transformer based voltage supply
US20050157778A1 (en) 2004-01-15 2005-07-21 Trachewsky Jason A. Orthogonal normalization for a radio frequency integrated circuit
US20050156662A1 (en) 2004-01-16 2005-07-21 Arun Raghupathy Amplifier predistortion and autocalibration method and apparatus
US20050156582A1 (en) 2004-01-21 2005-07-21 Analog Devices, Inc. Switched noise filter circuit for a dc-dc converter
US20070146076A1 (en) 2004-02-06 2007-06-28 Mitsubishi Electric Corporation Power amplifier unit, communication terminal and control method of power amplifier unit
US7595569B2 (en) 2004-02-17 2009-09-29 Agere Systems Inc. Versatile and intelligent power controller
EP1569330A1 (en) 2004-02-20 2005-08-31 Research In Motion Limited Method and apparatus for improving power amplifier efficience in wireless communication systems having high peak to average power ratios
US20050286616A1 (en) 2004-06-28 2005-12-29 Venkat Kodavati Integrated radio circuit having multiple function I/O modules
US20060006946A1 (en) 2004-07-08 2006-01-12 Lawrence Burns Method and apparatus for an improved power amplifier
US7253589B1 (en) 2004-07-09 2007-08-07 National Semiconductor Corporation Dual-source CMOS battery charger
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
WO2006021774A1 (en) 2004-08-25 2006-03-02 Siemens Aktiengesellschaft A method of controlling a linear power amplifier
US20060062324A1 (en) 2004-09-17 2006-03-23 Masashi Naito Distortion compensation quadrature modulator and radio transmitter
US20060097711A1 (en) 2004-11-09 2006-05-11 Brandt Randy L DC-DC converter having magnetic feedback
US7394233B1 (en) 2004-12-02 2008-07-01 Nortel Networks Limited High efficiency modulated power supply
US20060128324A1 (en) 2004-12-14 2006-06-15 Motorola, Inc. Amplifier with varying supply voltage and input attenuation based upon supply voltage
US7539466B2 (en) 2004-12-14 2009-05-26 Motorola, Inc. Amplifier with varying supply voltage and input attenuation based upon supply voltage
US20070082622A1 (en) 2004-12-22 2007-04-12 Nokia Corporation Interoperability improvement between receivers and transmitters in a mobile station
WO2006070319A1 (en) 2004-12-27 2006-07-06 Koninklijke Philips Electronics N.V. Transmitter apparatus
US20060147062A1 (en) 2005-01-06 2006-07-06 Nec Electronics Corporation Voltage supply circuit and microphone unit
WO2006073208A1 (en) 2005-01-06 2006-07-13 Matsushita Electric Industrial Co., Ltd. Polar modulator and wireless communication apparatus using the same
US7411316B2 (en) 2005-02-03 2008-08-12 Richtek Technology Corp. Dual-input power converter and control methods thereof
US20060178119A1 (en) 2005-02-09 2006-08-10 Nokia Corporation Variable bandwidth envelope modulator for use with envelope elimination and restoration transmitter architecture and method
US20060181340A1 (en) 2005-02-17 2006-08-17 Zywyn Corporation Regulating charge pump
US20090045872A1 (en) 2005-03-07 2009-02-19 Peter Blakeborough Kenington Integrated transceiver with envelope tracking
US7715811B2 (en) 2005-03-07 2010-05-11 Andrew Llc Integrated transceiver with envelope tracking
US20070249304A1 (en) 2005-03-25 2007-10-25 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
US20060220627A1 (en) 2005-03-29 2006-10-05 Samsung Electronics Co., Ltd. DC-DC converter utilizing a modified Schmitt trigger circuit and method of modulating a pulse width
US20100045247A1 (en) 2005-04-20 2010-02-25 Nxp B.V. Parallel arranged linear amplifier and dc-dc converter
US7773691B2 (en) 2005-04-25 2010-08-10 Rf Micro Devices, Inc. Power control system for a continuous time mobile transmitter
US20060244513A1 (en) 2005-04-28 2006-11-02 Chih-Jen Yen Charge pump
US7348847B2 (en) 2005-04-28 2008-03-25 Sige Semiconductor Inc. Integrated implementation of a collector boost scheme and method therefor
US7279875B2 (en) 2005-06-16 2007-10-09 Ge Gan High switching frequency DC-DC converter with fast response time
US20090167260A1 (en) 2005-06-28 2009-07-02 Manfred Pauritsch Electrical Power Supply Arrangement and Use Thereof
US20070008804A1 (en) 2005-07-11 2007-01-11 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage wordline driver with a three stage level shifter
US20070014382A1 (en) 2005-07-15 2007-01-18 Nokia Corporation Reconfigurable transmitter
US20080242246A1 (en) 2005-07-27 2008-10-02 Nxp B.V. Rf Transmitter With Compensation of Differential Path Delay
US20090261908A1 (en) 2005-07-27 2009-10-22 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US20070024360A1 (en) 2005-07-27 2007-02-01 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US7262658B2 (en) 2005-07-29 2007-08-28 Texas Instruments Incorporated Class-D amplifier system
US20070024365A1 (en) 2005-07-29 2007-02-01 Texas Instruments, Inc. Class-D amplifier system
US7233130B1 (en) 2005-08-05 2007-06-19 Rf Micro Devices, Inc. Active ripple reduction switched mode power supplies
US20070063681A1 (en) 2005-09-16 2007-03-22 Amazion Electronics, Inc. Direct mode pulse width modulation for DC to DC converters
US7615979B2 (en) 2005-11-28 2009-11-10 David J. Caldwell Flexible power converter and simplified process controller
US20070159256A1 (en) 2005-12-27 2007-07-12 Fujitsu Limited Timing controller and timing control method
US20080258831A1 (en) 2006-01-10 2008-10-23 Nec Corporation Amplifying apparatus
US20080280577A1 (en) 2006-01-31 2008-11-13 International Business Machines Corporation Receiver and integrated am-fm/iq demodulators for gigabit-rate data detection
US20070182392A1 (en) 2006-02-01 2007-08-09 Junji Nishida DC-DC converter capable of performing for wide and dynamic voltage range
US20070184794A1 (en) 2006-02-03 2007-08-09 Quantance, Inc. RF Power Amplifier Controller Circuit Including Calibrated Phase Control Loop
US20070183532A1 (en) 2006-02-06 2007-08-09 Nokia Corporation Method and system for transmitter envelope delay calibration
CN101379695A (en) 2006-02-06 2009-03-04 诺基亚公司 Method and system for transmitter envelope delay calibration
US7414330B2 (en) 2006-03-02 2008-08-19 Himax Technologies Limited Power switch device
CN101405671A (en) 2006-03-17 2009-04-08 Nxp股份有限公司 Supply circuit with ripple compensation
WO2007107919A1 (en) 2006-03-17 2007-09-27 Nxp B.V. Supply circuit with ripple compensation
CN101427459A (en) 2006-05-05 2009-05-06 诺基亚公司 Method and arrangement for optimizing efficiency of a power amplifier
US20070259628A1 (en) 2006-05-08 2007-11-08 Harris Corporation Multiband radio with transmitter output power optimization
US20070290749A1 (en) 2006-06-04 2007-12-20 Wangmyong Woo Systems, Methods, and Apparatuses for Multi-Path Orthogonal Recursive Predistortion
WO2007149346A2 (en) 2006-06-16 2007-12-27 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
US20100301947A1 (en) 2006-06-19 2010-12-02 Renesas Technology Corp. Rf power amplifier
US20080003950A1 (en) 2006-06-30 2008-01-03 Nokia Corporation Controlling switching mode power supply of power amplifier
US20110235827A1 (en) 2006-06-30 2011-09-29 Lesso John P Amplifier circuit and methods of operation thereof
CN101106357A (en) 2006-07-14 2008-01-16 沃福森微电子有限公司 Amplifier circuits, methods of starting and stopping amplifier circuits
US20080044041A1 (en) 2006-08-21 2008-02-21 John Christopher Tucker Energy-efficient consumer device audio power output stage
US7920023B2 (en) 2006-09-05 2011-04-05 New Transducers Limited Switching amplifier
US7773965B1 (en) 2006-09-21 2010-08-10 Rf Micro Devices, Inc. Calibrated quadrature very low intermediate frequency receiver
US7646108B2 (en) 2006-09-29 2010-01-12 Intel Corporation Multiple output voltage regulator
US20080081572A1 (en) 2006-09-29 2008-04-03 Ahmadreza Rofougaran Method and System for Minimizing Power Consumption in a Communication System
US7454238B2 (en) 2006-10-30 2008-11-18 Quantance, Inc. Power combining power supply system
CN101548476A (en) 2006-10-30 2009-09-30 匡坦斯公司 Power combining power supply system
US20080104432A1 (en) 2006-10-30 2008-05-01 Quantance, Inc. Power combining power supply system
US7856048B1 (en) 2006-11-20 2010-12-21 Marvell International, Ltd. On-chip IQ imbalance and LO leakage calibration for transceivers
US7800427B2 (en) 2006-11-21 2010-09-21 Samsung Electronics Co., Ltd. Switched capacitor circuit with inverting amplifier and offset unit
US20080252278A1 (en) 2006-12-06 2008-10-16 Jonne Jalmar Sebastian Lindeberg System and Method for Controlling a Hysteretic Mode Converter
US20100001793A1 (en) 2006-12-12 2010-01-07 Koninklijke Philips Electronics N.V. High efficiency modulating rf amplifier
CN101201891A (en) 2006-12-12 2008-06-18 财团法人工业技术研究院 Rfid reader and circuit and method for echo cancellation thereof
US8068622B2 (en) 2006-12-13 2011-11-29 Cirrus Logic, Inc. Method and apparatus for controlling a selectable voltage audio power output stage
US20080150619A1 (en) 2006-12-22 2008-06-26 Lesso John P Charge pump circuit and methods of operation thereof
US7777459B2 (en) 2006-12-30 2010-08-17 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
US7880547B2 (en) 2007-01-10 2011-02-01 Samsung Electro-Mechanics Systems and methods for power amplifiers with voltage boosting multi-primary transformers
US7965140B2 (en) 2007-01-24 2011-06-21 Nec Corporation Power amplifier
US20100019840A1 (en) 2007-01-24 2010-01-28 Kiyohiko Takahashi Power amplifier
US7679433B1 (en) 2007-02-02 2010-03-16 National Semiconductor Corporation Circuit and method for RF power amplifier power regulation and modulation envelope tracking
US20080205095A1 (en) 2007-02-22 2008-08-28 Stmicroelectronics Sa Ripple compensator and switching converter having such a ripple compensator
US20090184764A1 (en) 2007-03-13 2009-07-23 Piotr Markowski Power supply providing ultrafast modulation of output voltage
CN101669280A (en) 2007-03-13 2010-03-10 雅达电子国际有限公司 Power supply providing ultrafast modulation of output voltage
US20080224769A1 (en) 2007-03-13 2008-09-18 Piotr Markowski Power supply providing ultrafast modulation of output voltage
US7859336B2 (en) 2007-03-13 2010-12-28 Astec International Limited Power supply providing ultrafast modulation of output voltage
US7684216B2 (en) 2007-03-28 2010-03-23 Fairchild Korea Semiconductor, Ltd. Quasi resonant switching mode power supply
US20100327825A1 (en) 2007-03-30 2010-12-30 Intersil Americas Inc. Switching regulator circuit, system, and method for providing input current measurement without a dedicated input current sense element
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US20080259656A1 (en) 2007-04-23 2008-10-23 Active-Semi International, Inc. Regulating output current from a primary side power converter by clamping an error signal
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
US7894216B2 (en) 2007-05-02 2011-02-22 Cirrus Logic, Inc. Switching power converter with efficient switching control signal period generation
US8022761B2 (en) 2007-05-18 2011-09-20 Quantance, Inc. Error driven RF power amplifier control with increased efficiency
US20090004981A1 (en) 2007-06-27 2009-01-01 Texas Instruments Incorporated High efficiency digital transmitter incorporating switching power supply and linear power amplifier
US8198941B2 (en) 2007-08-03 2012-06-12 Wolfson Microelectronics Plc Amplifier circuit and method of amplifying a signal in an amplifier circuit
US7609114B2 (en) 2007-09-04 2009-10-27 Upi Semiconductor Corporation Voltage generating apparatus and methods
US20090082006A1 (en) 2007-09-14 2009-03-26 Stmicroelectronics Sa Method for notch filtering a digital signal, and corresponding electronic device
US7783269B2 (en) 2007-09-20 2010-08-24 Quantance, Inc. Power amplifier controller with polar transmitter
US20100311365A1 (en) 2007-09-20 2010-12-09 Quantance, Inc. Power Amplifier Controller With Polar Transmitter
US20090097591A1 (en) 2007-10-10 2009-04-16 Samsung Electronics Co., Ltd. Apparatus and method for envelope tracking power amplification in wireless communication system
US8044639B2 (en) 2007-10-23 2011-10-25 Rohm Co., Ltd. Selector circuit
US20100266066A1 (en) 2007-11-05 2010-10-21 Nec Corporation Power amplifier and radio wave transmitter having the same
US7852150B1 (en) 2007-12-20 2010-12-14 The Tc Group A/S Switching amplifier driven by a controlled power supply
US20090160548A1 (en) 2007-12-20 2009-06-25 Fujitsu Limited Power amplifying apparatus
US7755431B2 (en) 2007-12-24 2010-07-13 Samsung Electronics Co., Ltd. Apparatus for power amplification based on envelope elimination and restoration (EER) and push-pull switching
US7923974B2 (en) 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
US7782036B1 (en) 2008-01-07 2010-08-24 National Semiconductor Corporation Adaptive on-time control for switching regulators
US20090174466A1 (en) 2008-01-08 2009-07-09 Novatek Microelectronics Corp. Charge pump circuit
US20090191826A1 (en) 2008-01-29 2009-07-30 Matsushita Electric Industrial Co., Ltd. High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
EP2244366A1 (en) 2008-02-08 2010-10-27 Sumitomo Electric Industries, Ltd. Envelope tracking power supply circuit and high-frequency amplifier including envelope tracking power supply circuit
US8718582B2 (en) 2008-02-08 2014-05-06 Qualcomm Incorporated Multi-mode power amplifiers
US7898268B2 (en) 2008-02-15 2011-03-01 Infineon Technologies Ag Circuit and method for capacitor effective series resistance measurement
US20100321127A1 (en) 2008-02-21 2010-12-23 Advantest Corporation Test apparatus for digital modulated signal
US20090218995A1 (en) 2008-03-03 2009-09-03 Samsung Electronics Co., Ltd. Apparatus and method for bias modulator using zero current switching
US20090230934A1 (en) 2008-03-12 2009-09-17 Sony Ericsson Mobile Communications Ab Switched mode voltage converter with low-current mode and methods of performing voltage conversion with low-current mode
US7884681B1 (en) 2008-04-30 2011-02-08 Rf Micro Devices, Inc. Radio frequency power amplifier improvements using pre-distortion of an amplitude modulation power supply
US20110234182A1 (en) 2008-05-09 2011-09-29 Nujira Limited Modulated supply stage with feedback to switched supply
US7915961B1 (en) 2008-05-13 2011-03-29 National Semiconductor Corporation Power amplifier multiple stage control for polar modulation circuit
US20090284235A1 (en) 2008-05-13 2009-11-19 Micrel, Inc. Adaptive Compensation Scheme for LC Circuits In Feedback Loops
US20090289720A1 (en) 2008-05-23 2009-11-26 Matsushita Electric Industrial Co., Ltd. High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
US20090319065A1 (en) 2008-06-19 2009-12-24 Texas Instruments Incorporated Efficient Asynchronous Sample Rate Conversion
US20100002473A1 (en) 2008-07-07 2010-01-07 Advanced Analogic Technologies, Inc. Multiple-Output Dual-Polarity DC/DC Converters and Voltage Regulators
US20100017553A1 (en) 2008-07-16 2010-01-21 Proton World International N.V. Interface between a twin-wire bus and a single-wire bus
US20100019749A1 (en) 2008-07-28 2010-01-28 Texas Instruments Incorporated Switching power supply device
US20100026250A1 (en) 2008-07-29 2010-02-04 John Stewart Petty Multimode voltage regulator circuit
GB2462204A (en) 2008-07-31 2010-02-03 Motorola Inc Control of Power converters including high-order output filters
US8000117B2 (en) 2008-08-13 2011-08-16 Intersil Americas Inc. Buck boost function based on a capacitor bootstrap input buck converter
US7898327B2 (en) 2008-08-29 2011-03-01 Nokia Corporation Correcting distortions at output of power amplifier
US20110018626A1 (en) 2008-10-24 2011-01-27 Advantest Corporation Quadrature amplitude demodulator and demodulation method
US20120068767A1 (en) 2008-11-18 2012-03-22 Nujira Limited Power supply arrangement for multi-stage amplifier
GB2465552A (en) 2008-11-18 2010-05-26 Nujira Ltd Tracking power supplies for a multi-stage transmitter amplifier
US8659355B2 (en) 2008-11-18 2014-02-25 Nujira Limited Power supply arrangement for multi-stage amplifier
US20120074916A1 (en) 2008-11-25 2012-03-29 St-Ericsson Sa Switch-Mode Voltage Regulator
US7994864B2 (en) 2008-12-15 2011-08-09 Mediatek Inc. Audio out unit
US20110260706A1 (en) 2008-12-24 2011-10-27 Kimihiro Nishijima Power Supply Apparatus
US20100171553A1 (en) 2008-12-25 2010-07-08 Yoichi Okubo Power circuit
EP2372904A1 (en) 2008-12-25 2011-10-05 NEC Corporation Power amplication device
US8994345B2 (en) 2009-01-14 2015-03-31 Nujira Limited Control of multi-level supply stage
EP2214304A1 (en) 2009-01-30 2010-08-04 Alcatel-Lucent Deutschland AG Switch mode assisted linear amplifier for baseband signal amplification
US20110279180A1 (en) 2009-02-05 2011-11-17 Nec Corporation Power amplifier and power amplifying method
US20100253309A1 (en) 2009-04-06 2010-10-07 Xiaoyu Xi Accurate current limit for peak current mode dc-dc converter
US8693676B2 (en) 2009-04-07 2014-04-08 Futurewei Technologies, Inc. Power efficiency of a line driver
US8026765B2 (en) 2009-04-12 2011-09-27 Roberto Michele Giovannotto Audio frequency amplifier
US8093951B1 (en) 2009-04-14 2012-01-10 Cirrus Logic, Inc. Pulse-width modulated (PWM) audio power amplifier having output signal magnitude controlled pulse voltage and switching frequency
US20100289568A1 (en) 2009-05-12 2010-11-18 Number 14 B.V. Low-Noise, Low-Power, Low Drift Offset Correction in Operational and Instrumentation Amplifiers
US20100308654A1 (en) 2009-06-09 2010-12-09 Silergy Technology Mixed mode control for switching regulator with fast transient responses
US8081199B2 (en) 2009-06-26 2011-12-20 Panasonic Corporation Light emitting element drive apparatus, planar illumination apparatus, and liquid crystal display apparatus
US20100327971A1 (en) 2009-06-26 2010-12-30 Fujitsu Limited Transmission device, distortion compensation device, and distortion compensation method
US8159297B2 (en) 2009-06-26 2012-04-17 Fujitsu Limited Transmission device, distortion compensation device, and distortion compensation method
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8541993B2 (en) 2009-07-22 2013-09-24 Wolfson Microelectronics Plc DC-DC converters operable in a discontinuous switching mode
US8054126B2 (en) 2009-07-23 2011-11-08 Sungkyunkwan University Foundation For Corporate Collaboration Dynamic bias supply devices
CN101635697A (en) 2009-08-04 2010-01-27 京信通信系统(中国)有限公司 Transmitter and transmitter signal processing method
CN101626355A (en) 2009-08-11 2010-01-13 北京天碁科技有限公司 Calibration device and calibration method of multi-input multi-output (MIMO) terminal
US20110058601A1 (en) 2009-09-07 2011-03-10 Samsung Electronics Co., Ltd. Apparatus and method for envelope tracking power amplifier in wireless communication system
US8164388B2 (en) 2009-09-18 2012-04-24 Yamaha Corporation Amplifying apparatus
US8242813B1 (en) 2009-10-05 2012-08-14 Adaptive Digital Power, Inc. Adaptive non-positive inductor current detector (ANPICD)
US20110084760A1 (en) 2009-10-09 2011-04-14 Richtek Technology Corp. Highly efficient class-g amplifier and control method thereof
US20110109387A1 (en) 2009-11-10 2011-05-12 Samsung Electronics Co., Ltd. Power amplification apparatus for envelope modulation of high frequency signal and method for controlling the same
US20110148375A1 (en) 2009-12-22 2011-06-23 Yamaha Corporation Power amplifying circuit, DC-DC converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
US8744382B2 (en) 2010-01-30 2014-06-03 Huawei Technologies Co., Ltd. Fast tracking power supply device, fast tracking power supply control method, and communication equipment
US20120034893A1 (en) 2010-02-01 2012-02-09 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US8253487B2 (en) 2010-02-10 2012-08-28 Huawei Technologies Co., Ltd. Tracking power supply, method for controlling power supply, and communication apparatus
US8253485B2 (en) 2010-03-31 2012-08-28 Sony Europe Limited Power amplifier
US8183929B2 (en) 2010-04-09 2012-05-22 Viasat, Inc. Multi-chip doherty amplifier with integrated power detection
US20140009200A1 (en) 2010-04-19 2014-01-09 Rf Micro Devices, Inc. Programmable delay circuitry
US20120170690A1 (en) 2010-04-19 2012-07-05 Rf Micro Devices, Inc. Auto configurable 2/3 wire serial interface
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US8493141B2 (en) 2010-04-19 2013-07-23 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US20140097895A1 (en) 2010-04-19 2014-04-10 Rf Micro Devices, Inc. Pseudo-envelope following feedback delay compensation
US20120313701A1 (en) 2010-04-19 2012-12-13 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US20150180422A1 (en) 2010-04-19 2015-06-25 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8633766B2 (en) 2010-04-19 2014-01-21 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US20140009227A1 (en) 2010-04-19 2014-01-09 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US20120098595A1 (en) 2010-04-19 2012-04-26 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US20130307617A1 (en) 2010-04-19 2013-11-21 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US8519788B2 (en) 2010-04-19 2013-08-27 Rf Micro Devices, Inc. Boost charge-pump with fractional ratio and offset loop for supply modulation
US20140125408A1 (en) 2010-04-19 2014-05-08 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US20130271221A1 (en) 2010-04-20 2013-10-17 Rf Micro Devices, Inc. Direct current (dc)-dc converter having a multi-stage output filter
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US20120299647A1 (en) 2010-04-20 2012-11-29 Rf Micro Devices, Inc. Pa envelope power supply undershoot compensation
US20120049894A1 (en) 2010-04-20 2012-03-01 Rf Micro Devices, Inc. Dc-dc converter current sensing
US20130147445A1 (en) 2010-04-20 2013-06-13 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
CN201674399U (en) 2010-05-14 2010-12-15 珠海世纪鼎利通信科技股份有限公司 Low-ripple power source device
US8174313B2 (en) 2010-05-17 2012-05-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Apparatus and method for controlling power amplifier
CN101867284A (en) 2010-05-31 2010-10-20 华为技术有限公司 Control method of fast tracking power supply, fast tracking power supply and system
EP2579456A1 (en) 2010-05-31 2013-04-10 Huawei Technologies Co., Ltd. Control method for fast tracking power source, fast tracking power source and system
US8183917B2 (en) 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance
US20110298433A1 (en) 2010-06-04 2011-12-08 Apple Inc. Switching power supply inductor arrangement
US20110298539A1 (en) 2010-06-04 2011-12-08 Quantance, Inc. Rf power amplifier circuit with mismatch tolerance
US8008970B1 (en) 2010-06-07 2011-08-30 Skyworks Solutions, Inc. Apparatus and method for enabled switch detection
US8289084B2 (en) 2010-06-07 2012-10-16 Renesas Electronics Corporation RF power amplifier device and operating method thereof
US20120025919A1 (en) 2010-07-28 2012-02-02 Active-Semi, Inc. Synchronization of multiple high frequency switching power converters in an integrated circuit
US20120025907A1 (en) 2010-07-28 2012-02-02 Korea Advanced Institute Of Science And Technology Power amplifier
US20120049953A1 (en) 2010-08-25 2012-03-01 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US8571498B2 (en) 2010-08-25 2013-10-29 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US8749307B2 (en) 2010-09-02 2014-06-10 Samsung Electronics Co., Ltd. Apparatus and method for a tunable multi-mode multi-band power amplifier module
US8204456B2 (en) 2010-09-15 2012-06-19 Fujitsu Semiconductor Limited Systems and methods for spurious emission cancellation
US20130181521A1 (en) 2010-09-29 2013-07-18 Rf Micro Devices, Inc Single +82 c-buckboost converter with multiple regulated supply outputs
GB2484475A (en) 2010-10-11 2012-04-18 Toshiba Res Europ Ltd A power supply modulator for an RF amplifier, using a current-output class G amplifier
US20120119813A1 (en) 2010-11-16 2012-05-17 Rf Micro Devices, Inc. Digital fast db to gain multiplier for envelope tracking systems
US8782107B2 (en) 2010-11-16 2014-07-15 Rf Micro Devices, Inc. Digital fast CORDIC for envelope tracking generation
US20130229235A1 (en) 2010-11-17 2013-09-05 Masami Ohnishi High-frequency amplifier, and high-frequency module and wireless transceiver using same
US8558616B2 (en) 2010-11-22 2013-10-15 Fujitsu Limited Amplifying apparatus
US20120133299A1 (en) 2010-11-30 2012-05-31 Infineon Technologies Ag Multi Channel LED Driver
US20120139516A1 (en) 2010-12-02 2012-06-07 Richtek Technology Corporation, R.O.C. Power supply circuit with adaptive input selection and method for power supply
US20120154054A1 (en) 2010-12-17 2012-06-21 Skyworks Solutions, Inc. Apparatus and methods for oscillation suppression
US20120154035A1 (en) 2010-12-21 2012-06-21 Fujitsu Limited Amplifying device
US20120170334A1 (en) 2011-01-03 2012-07-05 Paolo Menegoli Hysteretic CL power converter
US20120176196A1 (en) 2011-01-10 2012-07-12 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US8588713B2 (en) 2011-01-10 2013-11-19 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US20120194274A1 (en) 2011-02-01 2012-08-02 Paul Fowers Integrated circuit, wireless communication unit and method for providing a power supply
US8803605B2 (en) 2011-02-01 2014-08-12 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for providing a power supply
US8611402B2 (en) 2011-02-02 2013-12-17 Rf Micro Devices, Inc. Fast envelope system calibration
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
US8942313B2 (en) 2011-02-07 2015-01-27 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US20120200354A1 (en) 2011-02-07 2012-08-09 Nujira Ltd Apparatus and methods for envelope tracking calibration
US20130034139A1 (en) 2011-02-07 2013-02-07 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US8947162B2 (en) 2011-02-15 2015-02-03 Nujira Limited Power control
US20120236444A1 (en) 2011-03-14 2012-09-20 Qualcomm Incorporated Charge pump electrostatic discharge protection
US8717100B2 (en) 2011-03-15 2014-05-06 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US20120244916A1 (en) 2011-03-25 2012-09-27 R2 Semiconductor, Inc. Multimode Operation DC-DC Converter
US8725218B2 (en) 2011-03-25 2014-05-13 R2 Semiconductor, Inc. Multimode operation DC-DC converter
US20120269240A1 (en) 2011-04-25 2012-10-25 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
WO2012151594A2 (en) 2011-05-05 2012-11-08 Rf Micro Devices, Inc. Power managent system for pseudo-envelope and average power tracking
US20140062590A1 (en) 2011-05-05 2014-03-06 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US20140055197A1 (en) 2011-05-05 2014-02-27 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US20140057684A1 (en) 2011-05-05 2014-02-27 Rf Micro Devices, Inc. Power loop control based envelope tracking
US8362837B2 (en) 2011-05-23 2013-01-29 Vyycore Ltd. System and a method for amplifying a signal by multiple non-linear power amplifiers
US20140099907A1 (en) 2011-05-31 2014-04-10 Rf Micro Devices, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8638165B2 (en) 2011-06-06 2014-01-28 Qualcomm Incorporated Switched-capacitor DC blocking amplifier
WO2012172544A1 (en) 2011-06-16 2012-12-20 Fleischer David Leonardo Method and system for boosting the supply of power amplifier
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
US8792840B2 (en) 2011-07-15 2014-07-29 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US8618868B2 (en) 2011-08-17 2013-12-31 Rf Micro Devices, Inc. Single charge-pump buck-boost for providing independent voltages
US8624576B2 (en) 2011-08-17 2014-01-07 Rf Micro Devices, Inc. Charge-pump system for providing independent voltages
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
US20130094553A1 (en) 2011-10-14 2013-04-18 Samsung Electronics Co. Ltd. Apparatus and method for calibration of supply modulation in transmitter
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US20130107769A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US20130106378A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Rf switching converter with ripple correction
US20130135043A1 (en) 2011-11-30 2013-05-30 Rf Micro Devices, Inc. Multimode rf amplifier system
US20130134956A1 (en) 2011-11-30 2013-05-30 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US20150234402A1 (en) 2011-12-01 2015-08-20 Rf Micro Devices, Inc. Multiple mode rf power converter
US20130141169A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9041364B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. RF power converter
US20130141064A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US20130141068A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Average power tracking controller
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US20130141072A1 (en) 2011-12-02 2013-06-06 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US20130154729A1 (en) 2011-12-16 2013-06-20 Rf Micro Devices, Inc. Dynamic loadline power amplifier with baseband linearization
US20130169245A1 (en) 2011-12-28 2013-07-04 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US20140028392A1 (en) 2012-01-16 2014-01-30 Nujira Limited Pre-distortion in rf path in combination with shaping table in envelope path for envelope tracking amplifier
US20140028370A1 (en) 2012-01-16 2014-01-30 Nujira Limited Crest Factor Reduction Applied To Shaping Table To Increase Power Amplifier Efficiency Of Envelope Tracking Amplifier
US8981847B2 (en) 2012-02-09 2015-03-17 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
US20130214858A1 (en) 2012-02-17 2013-08-22 Quantance, Inc. Dynamic power supply employing a linear driver and a switching regulator
US8718579B2 (en) 2012-03-04 2014-05-06 Quantance, Inc. Envelope tracking power amplifier system with delay calibration
US20130238913A1 (en) 2012-03-08 2013-09-12 Shih-Chao Huang Apparatus and method for power management
US20130328613A1 (en) 2012-06-11 2013-12-12 Rf Micro Devices, Inc. Power source multiplexer
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
US9020451B2 (en) 2012-07-26 2015-04-28 Rf Micro Devices, Inc. Programmable RF notch filter for envelope tracking
US8648657B1 (en) 2012-08-13 2014-02-11 Broadcom Corporation Mobile device including a power amplifier with selectable voltage supply
US20140049321A1 (en) 2012-08-15 2014-02-20 Skyworks Solutions, Inc. Systems, circuits and methods related to controllers for radio-frequency power amplifiers
US20140077787A1 (en) 2012-09-14 2014-03-20 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a dc-dc converter
US20140099906A1 (en) 2012-10-08 2014-04-10 Rf Micro Devices, Inc. Reducing effects of rf mixer-based artifact using pre-distortion of an envelope power supply signal
US8884696B2 (en) 2012-10-15 2014-11-11 Intel Mobile Communications GmbH Control circuit and method for controlling an operation of a power amplifier
US20140103995A1 (en) 2012-10-15 2014-04-17 Andreas Langer Control Circuit and Method for Controlling an Operation of a Power Amplifier
US20140111178A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US8824978B2 (en) 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
US20140139199A1 (en) 2012-11-16 2014-05-22 Rf Micro Devices, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US20140184335A1 (en) 2012-12-28 2014-07-03 Peregrine Semiconductor Corporation Amplifiers Operating in Envelope Tracking Mode or Non-Envelope Tracking Mode
US20140203869A1 (en) 2013-01-24 2014-07-24 Rf Micro Devices, Inc. Communications based adjustments of an offset capacitive voltage
US20140203868A1 (en) 2013-01-24 2014-07-24 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US20140225674A1 (en) 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US20140266428A1 (en) 2013-03-14 2014-09-18 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
US20140266427A1 (en) 2013-03-14 2014-09-18 Rf Micro Devices, Inc. Noise conversion gain limited rf power amplifier
US20140306769A1 (en) 2013-04-16 2014-10-16 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US8909175B1 (en) 2013-06-27 2014-12-09 Crestcom, Inc. Transmitter and method for RF power amplifier having a bandwidth controlled, detroughed envelope tracking signal
US20150048891A1 (en) 2013-08-13 2015-02-19 Rf Micro Devices, Inc. Expanded range dc-dc converter

Non-Patent Citations (211)

* Cited by examiner, † Cited by third party
Title
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages.
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages.
Advisory Action for U.S. Appl. No. 13/661,227, mailed May 12, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/689,883, mailed Apr. 20, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/689,922, mailed Dec. 18, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/714,600, mailed May 26, 2015, 3 pages.
Author Unknown, "Automatically," Definition, Dictionary.com Unabridged, 2015, pp. 1-6, http://dictionary.reference.com/browse/automatically.
Choi, J. et al., "A New Power Management IC Architecture for Envelope Tracking Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802.
Cidronali, A. et al., "A 240W dual-band 870 and 2140 MHz envelope tracking GaN PA designed by a probability distribution conscious approach," IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/689,940, mailed Nov. 17, 2015, 4 pages.
Corrected Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Apr. 6, 2015, 11 pages.
Corrected Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Jun. 5, 2015, 11 pages.
Dixon, N., "Standardization boosts momentum for Envelope tracking," Microwave Engineers, Europe, Apr. 20, 2011, 2 pages.
European Examination Report for European Patent Application No. 14162682.0, mailed May 22, 2015, 5 pages.
European Search Report for European Patent Application No. 14190851.7, issued Mar. 5, 2015, 6 pages.
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages.
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages.
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages.
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages.
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages.
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages.
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages.
Final Office Action for U.S. Appl. No. 13/661,227, mailed Feb. 6, 2015, 24 pages.
Final Office Action for U.S. Appl. No. 13/689,883, mailed Jan. 2, 2015, 13 pages.
Final Office Action for U.S. Appl. No. 13/689,922, mailed Oct. 6, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 13/714,600, mailed Mar. 10, 2015, 14 pages.
Final Office Action for U.S. Appl. No. 13/747,749, mailed Mar. 20, 2015, 35 pages.
Final Office Action for U.S. Appl. No. 14/082,629, mailed Nov. 4, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 14/163,256, mailed Nov. 2, 2015, 10 pages.
First Office Action and Search Report for Chinese Patent Application No. 201210596632.X, mailed Jun. 25, 2015, 16 pages.
First Office Action and Search Report for Chinese Patent Application No. 201280007941.7, issued May 13, 2015, 13 pages.
First Office Action for Chinese Patent Application No. 201180030273.5, issued Dec. 3, 2014, 15 pages (with English translation).
First Office Action for Chinese Patent Application No. 201180067293.X, mailed Aug. 6, 2015, 13 pages.
First Office Action for Chinese Patent Application No. 2012800265590, issued Nov. 3, 2014, 14 pages (with English translation).
First Office Action for Chinese Patent Application No. 201280052694.2, issued Mar. 24, 2015, 35 pages.
Hassan, Muhammad, et al., "A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications," IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 1, 2012, pp. 1185-1198.
Hekkala, A. et al., "Adaptive time misalignment compensation in envelope tracking amplifiers," International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765.
Hoversten, John, et al., "Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters," IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020.
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages.
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages.
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Oct. 23, 2012, 7 pages.
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages.
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages.
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages.
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages.
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages.
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages.
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages.
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages.
International Preliminary Report on Patentability for PCT/US2013/052277, mailed Feb. 5, 2015, 9 pages.
International Preliminary Report on Patentability for PCT/US2013/065403, mailed Apr. 30, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2014/012927, mailed Aug. 6, 2015, 9 pages.
International Preliminary Report on Patentability for PCT/US2014/028089, mailed Sep. 24, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2014/028178, mailed Sep. 24, 2015, 11 pages.
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages.
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages.
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages.
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages.
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages.
International Search Report for PCT/US11/033037 mailed Aug. 9, 2011, 10 pages.
International Search Report for PCT/US11/49243 mailed Dec. 22, 2011, 9 pages.
International Search Report for PCT/US12/40317 mailed Sep. 7, 2012, 7 pages.
International Search Report for PCT/US2011/044857 mailed Oct. 24, 2011, 10 pages.
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages.
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages.
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages.
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages.
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages.
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages.
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages.
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014/028178, mailed Jul. 24, 2014, 7 pages.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2011/061007 mailed Feb. 13, 2012, 7 pages.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages.
Kim, D. et al., "High Efficiency and Wideband Envelope Tracking Power Amplifier with Sweet Spot Tracking," 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258.
Kim, N. et al, "Ripple feedback filter suitable for analog/digital mixed-mode audio amplifier for improved efficiency and stability," 33rd Annual Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49.
Knutson, P, et al., "An Optimal Approach to Digital Raster Mapper Design," 1991 IEEE Transactions on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752.
Le, Hanh-Phuc et al., "A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mm2 at 81% Efficiency," 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212.
Li et al., "A highly efficient SiGe differential power amplifier using an envelope-tracking technique for 3GPP LTE applications," IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124.
Lie, Donald Y.C. et al., "Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications," IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350.
Lie, Donald Y.C. et al., "Highly Efficient and Linear Class E SiGe Power Amplifier Design," 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529.
Non final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691 mailed Feb. 1, 2008, 17 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages.
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, now Patent No. 7,884,681, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages.
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/647,815 mailed May 2, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Jul. 27, 2015, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/684,826 mailed Apr. 3, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Jul. 24, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,922, mailed Apr. 20, 2015, 19 pages.
Non-Final Office Action for U.S. Appl. No. 13/692,084 mailed Apr. 10, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600 mailed May 9, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Jul. 17, 2015, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/727,911, mailed Apr. 20, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages.
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/951,976 mailed Apr. 4, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/048,109, mailed Feb. 18, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/056,292, mailed Mar. 6, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,120, mailed Apr. 14, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 18, 2015, 4 pages.
Non-Final Office Action for U.S. Appl. No. 14/082,629, mailed Jun. 18, 2015, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/101,770, mailed Sep. 21, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/122,852, mailed Feb. 27, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/163,229, mailed Apr. 23, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/163,256, mailed Apr. 23, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/254,215, mailed Oct. 15, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/458,341, mailed Nov. 12, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/702,192, mailed Oct. 7, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/112,006 mailed Jul. 19, 2010, now Patent No. 7,884,681, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307, mailed Mar. 2, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Feb. 25, 2015, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/661,164, mailed Jun. 3, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/661,164, mailed Oct. 21, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/661,552, mailed Jun. 13, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Jul. 18, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/689,940, mailed Aug. 3, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/689,940, mailed Sep. 16, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Dec. 19, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/692,084, mailed Jul. 23, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/727,911, mailed Nov. 10, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/727,911, mailed Sep. 14, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/747,694, mailed Dec. 22, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Feb. 2, 2015, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed May 13, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Oct. 28, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Sep. 1, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/747,749, mailed Jun. 4, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/747,749, mailed Oct. 2, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/948,291, mailed Feb. 11, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/948,291, mailed Jul. 17, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/951,976, mailed Dec. 26, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Feb. 17, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/027,416, mailed Aug. 11, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/072,120, mailed Jul. 30, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 20, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 27, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Dec. 2, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/072,225, mailed Jan. 22, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/163,229, mailed Nov. 5, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/176,611, mailed Apr. 27, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/212,154, mailed Jul. 17, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/212,199, mailed Jul. 20, 2015, 8 pages.
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages.
Quayle Action for U.S. Appl. No. 13/689,940, mailed May 14, 2015, 7 pages.
Sahu, B. et al., "Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets-An Integrated System Design Approach," submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages.
Second Office Action for Chinese Patent Application No. 201180030273.5, issued Aug. 14, 2015, 8 pages.
Unknown, "Nujira files 100th envelope tracking patent," CS: Compound Semiconductor, Apr. 11, 2011, 1 page.
Wu, Patrick Y. et al., "A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement," IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556.
Yousefzadeh, Vahid et al., "Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers," 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7.
Yun, Hu et al., "Study of envelope tracking power amplifier design," Journal of Circuits and Systems, vol. 15, No. 6, Dec. 2010, pp. 6-10.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843294B2 (en) 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry

Also Published As

Publication number Publication date
US20130024142A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
US9263996B2 (en) Quasi iso-gain supply voltage function for envelope tracking systems
US10148229B2 (en) Pre-distortion in RF path in combination with shaping table in envelope path for envelope tracking amplifier
US9595981B2 (en) Reduced bandwidth envelope tracking
JP6138157B2 (en) Crest factor reduction applied to shaping table to increase power amplifier efficiency of envelope tracking amplifier
CN102150362B (en) Adaptive digital predistortion of complex modulated waveform using peak and RMS voltage feedback from the output of a power amplifier
US9793858B2 (en) Transfer function regulation
US9800274B2 (en) Communication units and methods for power supply control
CN101057437B (en) System and method for forward path gain control in a digital predistortion linearized transmitter
US9385665B2 (en) PPA linearization
US8917140B2 (en) Apparatus and method for improving efficiency in power amplifier
US9444501B1 (en) Polar modulation using product mode
CN101512895B (en) Amplifier architecture for polar modulation
US9680422B2 (en) Power amplifier signal compensation
US9602058B1 (en) Method and apparatus for envelope tracking calibration
US6646510B2 (en) Method of adjusting gain and current consumption of a power amplifier circuit while maintaining linearity
JP6920558B2 (en) Power amplifier performance correction method and equipment for that purpose
US10044324B2 (en) Power amplifier device with controlled envelope tracking modulator and adapted static voltage
JP5795218B2 (en) ET power amplifier
JP2012015708A (en) Power amplification device
US20160182099A1 (en) Systems and methods for efficient multi-channel satcom with dynamic power supply and digital pre-distortion
US8554160B2 (en) AM transmitter and modulation method using same

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TE

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:RF MICRO DEVICES, INC.;REEL/FRAME:030045/0831

Effective date: 20130319

AS Assignment

Owner name: RF MICRO DEVICES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLKMANN, ANDREW F.;RETZ, JAMES M.;KHLAT, NADIM;AND OTHERS;SIGNING DATES FROM 20120718 TO 20120719;REEL/FRAME:030149/0392

AS Assignment

Owner name: RF MICRO DEVICES, INC., NORTH CAROLINA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (RECORDED 3/19/13 AT REEL/FRAME 030045/0831);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:035334/0363

Effective date: 20150326

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: QORVO US, INC., NORTH CAROLINA

Free format text: MERGER;ASSIGNOR:RF MICRO DEVICES, INC.;REEL/FRAME:039196/0941

Effective date: 20160330

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8