US9430410B2 - Systems and methods for supporting a plurality of load accesses of a cache in a single cycle - Google Patents

Systems and methods for supporting a plurality of load accesses of a cache in a single cycle Download PDF

Info

Publication number
US9430410B2
US9430410B2 US13/561,528 US201213561528A US9430410B2 US 9430410 B2 US9430410 B2 US 9430410B2 US 201213561528 A US201213561528 A US 201213561528A US 9430410 B2 US9430410 B2 US 9430410B2
Authority
US
United States
Prior art keywords
access
data cache
requests
cache
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/561,528
Other versions
US20140032845A1 (en
Inventor
Karthikeyan Avudaiyappan
Mohammad Abdallah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Soft Machines Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to SOFT MACHINES, INC. reassignment SOFT MACHINES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABDALLAH, MOHAMMAD, AVUDAIYAPPAN, KARTHIKEYAN
Priority to US13/561,528 priority Critical patent/US9430410B2/en
Application filed by Soft Machines Inc filed Critical Soft Machines Inc
Priority to PCT/US2013/051128 priority patent/WO2014022115A1/en
Priority to TW102127066A priority patent/TWI537731B/en
Publication of US20140032845A1 publication Critical patent/US20140032845A1/en
Priority to US14/173,602 priority patent/US9916253B2/en
Priority to US14/922,053 priority patent/US20160041930A1/en
Publication of US9430410B2 publication Critical patent/US9430410B2/en
Application granted granted Critical
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOFT MACHINES, INC.
Priority to US15/881,515 priority patent/US10698833B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0844Multiple simultaneous or quasi-simultaneous cache accessing
    • G06F12/0846Cache with multiple tag or data arrays being simultaneously accessible
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1458Protection against unauthorised use of memory or access to memory by checking the subject access rights
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • G06F12/0897Caches characterised by their organisation or structure with two or more cache hierarchy levels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1052Security improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/22Employing cache memory using specific memory technology
    • G06F2212/221Static RAM
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/62Details of cache specific to multiprocessor cache arrangements

Definitions

  • a cache in a central processing unit is a data storage structure that is used by the central processing unit of a computer to reduce the average time that it takes to access memory. It is a memory which stores copies of data that is located in the most frequently used main memory locations. Moreover, cache memory is memory that is smaller and that may be accessed more quickly than main memory.
  • caches There are several different types of caches. These include physically indexed physically tagged (PIPT), virtually indexed virtually tagged (VIVT) and virtually indexed physically tagged (VIPT).
  • Caches that can accommodate multiple accesses in a single cycle provide performance advantages.
  • such caches feature reduced access latencies.
  • Conventional approaches to accommodating multiple accesses in a single cycle include the use of multi-ported caches and the provision of caches that include a plurality of tag and data banks.
  • a multi-ported cache is a cache which can serve more than one request at a time. In accessing some conventional caches a single memory address is requested, whereas in a multi-ported cache, N memory addresses can be requested at a time, where N is the number of ports that is possessed by the multi-ported cache.
  • An advantage of a multi ported cache is that greater throughput (e.g., a greater number of load and store requests) may be accommodated. However, the number of cache ports that are needed to accommodate increasingly high levels of throughput may not be practical.
  • Caches that include a plurality of tag and data banks can serve more than one request at a time as each tag and data bank can serve at least one request.
  • the request that will be allowed to access the bank must be determined.
  • arbitration is used to determine which request will be allowed to access a given tag and data bank.
  • the time that it takes to execute the arbitration can delay access to the tag bank and thus delay the triggering of the critical Load Hit signal, typically found in the level 1 cache of processors.
  • a method for supporting a plurality of load accesses of a data cache (e.g., formed from SRAM or other type memory) is disclosed that addresses these shortcomings.
  • a plurality of requests to access the data cache is accessed, and in response, a tag memory is accessed that maintains a plurality of copies of tags for each entry in the data cache.
  • Tags are identified that correspond to individual requests.
  • the data cache (e.g., formed from SRAM or other type memory) is divided into many banks or “blocks”.
  • the data cache is accessed based on the identified tags.
  • a plurality of requests to access the same block of the plurality of blocks of the data cache results in an access arbitration with respect to that block.
  • the block access arbitration is executed in parallel with the access of tags that correspond to individual access requests. Consequently, the penalty to the timing of load hit signals that is exacted by arbitration to access tag and data banks found in conventional approaches is avoided.
  • FIG. 1A shows an exemplary operating environment of a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
  • FIG. 1B shows the manner in which a plurality of data blocks facilitate the accessing of a data cache by a throughput of multiple load accesses in the same clock cycle according to one embodiment.
  • FIG. 1C shows a data cache tag memory that maintains a plurality of copies of the tags that correspond to the entries of a level one data cache according to one embodiment.
  • FIG. 1D illustrates arbitration operations associated with a first access request and a second access request of access requests 1 -N being executed in parallel with a search of a data cache tag memory according to one embodiment.
  • FIG. 1E illustrates the operations that are performed by a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
  • FIG. 2 shows components of a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
  • FIG. 3 shows a flowchart of a method for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
  • references within the specification to “one embodiment” or “an embodiment” are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention.
  • the appearance of the phrase “in one embodiment” in various places within the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • various features are described which may be exhibited by some embodiments and not by others.
  • various requirements are described which may be requirements for some embodiments but not other embodiments.
  • FIG. 1A shows an exemplary operating environment 100 for supporting a plurality of load accesses of a data cache in a single clock cycle according to one embodiment.
  • System 101 enables tags corresponding to data sought by a plurality of load requests to a level one data cache (that has a plurality of data blocks to accommodate the plurality of requests) to be obtained within a single clock cycle.
  • block access arbitrations involving the plurality of load requests to the level one data cache are executed within the same clock cycle. Consequently, a throughput of a plurality of load accesses is accommodated and the penalty to the timing of load hit signals that is exacted by arbitration in conventional approaches is avoided.
  • FIG. 1A shows an exemplary operating environment 100 for supporting a plurality of load accesses of a data cache in a single clock cycle according to one embodiment.
  • System 101 enables tags corresponding to data sought by a plurality of load requests to a level one data cache (that has a plurality of data blocks to accommodate the plurality of requests) to be obtained within
  • Level one (L1) cache 103 shows system 101 , level one (L1) cache 103 , level one (L1) data cache 103 a , data cache tag memory 103 b , L1 cache controller 103 c , CPU 105 , level two (L2) cache 107 , main memory 109 and system interface 111 .
  • L1 cache 103 is a level 1 or “primary” cache and L2 cache 107 is a level 2 or “secondary” cache.
  • L1 cache 103 can be formed as a part of CPU 105 .
  • L1 cache 103 can include L1 data cache 103 a , data cache tag memory 103 b and L1 cache controller 103 c .
  • L1 data cache 103 a can be divided into a plurality of data blocks.
  • L1 data cache 103 a can be divided into four 8 kilobyte data blocks.
  • L1 data cache 103 a can be divided into other numbers of data blocks that have the capacity to store other amounts of data.
  • the plurality of data blocks facilitate the accessing of L1 data cache 103 a by a throughput of multiple accesses in the same clock cycle.
  • conflicting requests for access that seek to access the same block of L1 data cache 103 a at the same time can be resolved using arbitration (whose time impact as discussed above is negated).
  • the data blocks can include cache line entries that are accessed by loads.
  • Data cache tag memory 103 b is configured to maintain tag entries for each of the cache line entries stored in L1 data cache 103 a .
  • data cache tag memory 103 b maintains a plurality of copies (e.g., 1 -N) of the tags that correspond to the entries of L1 data cache 103 a .
  • each request to access L1 data cache 103 a is accorded a dedicated copy of tags corresponding to the entries of L1 data cache 103 a . This manner of maintaining tag entries facilitates the identification of tags that are associated with the cache line entries within a single clock cycle.
  • an identification of a tag can be completed in the same clock cycle in which an arbitration involving an access request (e.g., load request) to L1 data cache 103 a for data associated with the tag is executed.
  • access requests e.g., load requests
  • L1 data cache 103 a trigger a search of data cache tag memory 103 b for the tag that corresponds to the data that is sought by the load request.
  • system 101 responsive to a receipt by L1 cache 103 of a plurality of request to access L1 data cache 103 a of L1 cache 103 , executes a search of a data cache tag memory 103 b such that tags that correspond to data sought by the plurality of requests are identified in parallel with the execution of any arbitration operations that are associated with the requests.
  • FIG. 1D where arbitration operations associated with a first access request AR 1 and a second access request AR 2 of access requests 1 -N, are shown as being executed in parallel with a search of data cache tag memory 103 b .
  • the aforementioned action of system 101 operates to avoid a deleterious impact of arbitration operations on the timing of load hit signals.
  • system 101 supported by duplicated data cache tag memory 103 b and blocked L1 data cache 103 a , facilitates the access of a cache by several load requests in one clock cycle without penalizing cache hit latency and throughput.
  • system 101 can be located in cache controller 103 c . In other embodiments, system 101 can be separate from cache controller 103 c , but operate cooperatively therewith.
  • main memory 111 includes physical addresses that store the information that is copied into cache memory.
  • the corresponding cached information is updated to reflect the changes made to the information stored in main memory.
  • system interface 111 Also shown in FIG. 1A is system interface 111 .
  • FIG. 1E illustrates operations performed by system 101 for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment. These operations, which relate to supporting a plurality of load accesses to a data cache are illustrated for purposes of clarity and brevity. It should be appreciated that other operations not illustrated by FIG. 1E can be performed in accordance with one embodiment.
  • a plurality of requests to access data cache 103 a are received.
  • two of the plurality of requests, access request AR 1 and access request AR 2 attempt to access the same data block (for example block 0 as identified by virtual address bits 6 and 7 of AR 1 and AR 2 , e.g., virtual address bits 7 : 6 of the virtual address associated with AR 1 and AR 2 ) of L1 data cache 103 a are received.
  • data cache tag memory 103 b is searched and tags residing therein that are associated with the data sought by the plurality of requests (AR 1 -ARN) to access L1 data cache 103 a are identified.
  • an arbitration process to determine which of the two requests (access request AR 1 and access request AR 2 ) will be allowed to access block 0 of L1 data cache 103 a is initiated and completed. As a part of the aforementioned arbitration process, one of the two requests (access request AR 1 ) is chosen to proceed with access of block 0 .
  • the plurality of access requests (except those that are arbitration losers such as AR 2 in the FIG. 1E example) access data cache 103 a using the tags that are identified at B.
  • the data (for example “X” corresponding to AR 1 ) that is sought by the access requests are identified in L1 data cache 103 a and read (e.g., loaded).
  • system 101 is designed to operate in environments where several load and store instructions are provided in a single cycle.
  • the methodology disclosed herein avoids the reliance upon the use of an excessive number of cache ports, which may not be practical.
  • throughput is enabled without negatively impacting the timing of the “Load Hit” signal.
  • L1 data cache 103 a can be organized into a plurality of blocks and the tags that correspond to data that is maintained in L1 data cache 103 a can be duplicated and stored in data cache tag memory 103 b .
  • the organization of data cache 103 a into blocks enable several loads to be supported in a single cycle if they do not access the same data block. However, in one embodiment, multiple loads to a single data block can be accommodated as long as they are to the same address.
  • the approach discussed herein does not perform any arbitration with regard to tags and thus avoids a latency penalty (the addition of latency) related to the timing of a “Load Hit” signal that would derive from such arbitration operations.
  • FIG. 2 shows components of a system 101 for supporting a plurality of load accesses of a cache in a single cycle according to one embodiment.
  • components of system 101 implement an algorithm for supporting a plurality of load accesses.
  • components of system 101 include load request accessor 201 , tag memory accessor 203 and cache accessor 205 .
  • Load request accessor 201 accesses a plurality of load requests that seek to access data stored in an L1 data cache (e.g., 103 a in FIG. 1A ). In one embodiment, in some cases, more than one load request of the plurality of load requests can seek to access the same data block in the L1 data cache. In such cases, an arbitration is executed to decide which of the load requests will be allowed to access that block of the L1 data cache.
  • Tag memory accessor 203 in response to the receipt of a plurality of load requests, searches in parallel, respective copies (e.g., 1 -N) of the tags of a data cache tag memory (e.g., 103 b in FIG. 1A ) that correspond to the entries of an L1 data cache (e.g., 103 a of FIG. 1A ).
  • each load request is accorded a dedicated copy of tags that correspond to the entries of the L1 data cache. This manner of maintaining tag entries facilitates the identification of tags that are associated with the cache line entries within a single clock cycle.
  • an arbitration involving an access request (e.g., load request) to a block of the L1 data cache for data associated with a tag is executed within the same clock cycle in which an identification of the tag is completed.
  • Cache accessor 205 accesses a plurality of data blocks of the L1 data cache using the tags that are identified by tag memory accessor 203 .
  • the plurality of data blocks facilitates the accessing of the L1 data cache (e.g. 103 a in FIG. 1A ) by multiple access requestors in the same clock cycle.
  • conflicting requests for access that seek to access the same block of the L1 data cache at the same time can be resolved using arbitration (whose time impact on the “Load Hit” signal, as discussed herein, is negated by the operation of system 101 ).
  • the accesses to the data blocks involve a loading of data.
  • components and operations of system 101 can be implemented in hardware or software or in a combination of both.
  • components and operations of system 101 can be encompassed by components and operations of one or more computer components or programs (e.g., cache controller 103 c in FIG. 1A ).
  • components and operations of system 101 can be separate from the aforementioned one or more computer components or programs but can operate cooperatively with components and operations thereof.
  • FIG. 3 shows a flowchart 300 of a method for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
  • the flowchart includes processes that, in one embodiment can be carried out by processors and electrical components under the control of computer-readable and computer-executable instructions. Although specific steps are disclosed in the flowcharts, such steps are exemplary. That is the present embodiment is well suited to performing various other steps or variations of the steps recited in the flowchart.
  • a plurality of load requests to access a data cache are accessed.
  • the data cache can include a plurality of blocks that can accommodate the plurality of load requests.
  • the plurality of load requests can include a plurality of requests that seek to access the same block of the aforementioned data cache.
  • a tag memory is accessed that maintains a plurality of copies of the tags that correspond to the entries of the data cache.
  • tags are identified that correspond to individual load requests of the plurality of load requests received by the L1 cache.
  • each load request is accorded a dedicated copy of the set of tags that correspond to the entries located in the data cache.
  • the blocks of the data cache are accessed based on the tags that are identified as corresponding to the individual requests.
  • the accessing of the plurality of blocks enables a throughput of multiple load accesses in the same clock cycle.
  • a plurality of requests to access the data cache is accessed, and in response, a tag memory is accessed that maintains a plurality of copies of tags for each entry in the load cache.
  • Tags are identified that correspond to individual requests.
  • the data cache is accessed based on the tags that correspond to the individual requests.
  • a plurality of requests to access the same block of the plurality of blocks causes an access arbitration that is executed in the same clock cycle as is the access of the tag memory.

Abstract

A method for supporting a plurality of load accesses is disclosed. A plurality of requests to access a data cache is accessed, and in response, a tag memory is accessed that maintains a plurality of copies of tags for each entry in the data cache. Tags are identified that correspond to individual requests. The data cache is accessed based on the tags that correspond to the individual requests. A plurality of requests to access the same block of the plurality of blocks causes an access arbitration that is executed in the same clock cycle as is the access of the tag memory.

Description

A cache in a central processing unit is a data storage structure that is used by the central processing unit of a computer to reduce the average time that it takes to access memory. It is a memory which stores copies of data that is located in the most frequently used main memory locations. Moreover, cache memory is memory that is smaller and that may be accessed more quickly than main memory. There are several different types of caches. These include physically indexed physically tagged (PIPT), virtually indexed virtually tagged (VIVT) and virtually indexed physically tagged (VIPT).
Caches that can accommodate multiple accesses in a single cycle provide performance advantages. In particular, such caches feature reduced access latencies. Conventional approaches to accommodating multiple accesses in a single cycle include the use of multi-ported caches and the provision of caches that include a plurality of tag and data banks.
A multi-ported cache is a cache which can serve more than one request at a time. In accessing some conventional caches a single memory address is requested, whereas in a multi-ported cache, N memory addresses can be requested at a time, where N is the number of ports that is possessed by the multi-ported cache. An advantage of a multi ported cache is that greater throughput (e.g., a greater number of load and store requests) may be accommodated. However, the number of cache ports that are needed to accommodate increasingly high levels of throughput may not be practical.
Caches that include a plurality of tag and data banks can serve more than one request at a time as each tag and data bank can serve at least one request. However, when more than one request attempts to access the same bank, the request that will be allowed to access the bank must be determined. In one conventional approach arbitration is used to determine which request will be allowed to access a given tag and data bank. In such conventional approaches, the time that it takes to execute the arbitration can delay access to the tag bank and thus delay the triggering of the critical Load Hit signal, typically found in the level 1 cache of processors.
SUMMARY
Conventional approaches to accommodating throughput that involve multiple loads can result in unsatisfactory delays in receiving load hit signals. A method for supporting a plurality of load accesses of a data cache (e.g., formed from SRAM or other type memory) is disclosed that addresses these shortcomings. However, the claimed embodiments are not limited to implementations that address any or all of the aforementioned shortcomings. As a part of the method, a plurality of requests to access the data cache is accessed, and in response, a tag memory is accessed that maintains a plurality of copies of tags for each entry in the data cache. Tags are identified that correspond to individual requests. The data cache (e.g., formed from SRAM or other type memory) is divided into many banks or “blocks”. The data cache is accessed based on the identified tags. A plurality of requests to access the same block of the plurality of blocks of the data cache results in an access arbitration with respect to that block. The block access arbitration is executed in parallel with the access of tags that correspond to individual access requests. Consequently, the penalty to the timing of load hit signals that is exacted by arbitration to access tag and data banks found in conventional approaches is avoided.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
FIG. 1A shows an exemplary operating environment of a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
FIG. 1B shows the manner in which a plurality of data blocks facilitate the accessing of a data cache by a throughput of multiple load accesses in the same clock cycle according to one embodiment.
FIG. 1C shows a data cache tag memory that maintains a plurality of copies of the tags that correspond to the entries of a level one data cache according to one embodiment.
FIG. 1D illustrates arbitration operations associated with a first access request and a second access request of access requests 1-N being executed in parallel with a search of a data cache tag memory according to one embodiment.
FIG. 1E illustrates the operations that are performed by a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
FIG. 2 shows components of a system for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
FIG. 3 shows a flowchart of a method for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment.
It should be noted that like reference numbers refer to like elements in the figures.
DETAILED DESCRIPTION
Although the present invention has been described in connection with one embodiment, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims.
In the following detailed description, numerous specific details such as specific method orders, structures, elements, and connections have been set forth. It is to be understood however that these and other specific details need not be utilized to practice embodiments of the present invention. In other circumstances, well-known structures, elements, or connections have been omitted, or have not been described in particular detail in order to avoid unnecessarily obscuring this description.
References within the specification to “one embodiment” or “an embodiment” are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearance of the phrase “in one embodiment” in various places within the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals of a computer readable storage medium and are capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “accessing” or “searching” or “identifying” or “providing” or the like, refer to the action and processes of a computer system, or similar electronic computing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories and other computer readable media into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Exemplary Operating Environment of a System for Supporting a Plurality of Load Accesses of a Cache in a Single Cycle According to One Embodiment
FIG. 1A shows an exemplary operating environment 100 for supporting a plurality of load accesses of a data cache in a single clock cycle according to one embodiment. System 101 enables tags corresponding to data sought by a plurality of load requests to a level one data cache (that has a plurality of data blocks to accommodate the plurality of requests) to be obtained within a single clock cycle. Moreover, as a part of the operation of system 101, block access arbitrations involving the plurality of load requests to the level one data cache are executed within the same clock cycle. Consequently, a throughput of a plurality of load accesses is accommodated and the penalty to the timing of load hit signals that is exacted by arbitration in conventional approaches is avoided. FIG. 1A shows system 101, level one (L1) cache 103, level one (L1) data cache 103 a, data cache tag memory 103 b, L1 cache controller 103 c, CPU 105, level two (L2) cache 107, main memory 109 and system interface 111.
Referring to FIG. 1A, L1 cache 103 is a level 1 or “primary” cache and L2 cache 107 is a level 2 or “secondary” cache. In one embodiment, L1 cache 103 can be formed as a part of CPU 105. In one embodiment, as is shown in FIG. 1A, L1 cache 103 can include L1 data cache 103 a, data cache tag memory 103 b and L1 cache controller 103 c. In one embodiment, L1 data cache 103 a can be divided into a plurality of data blocks. In one embodiment, L1 data cache 103 a can be divided into four 8 kilobyte data blocks. In other embodiments, L1 data cache 103 a can be divided into other numbers of data blocks that have the capacity to store other amounts of data. In one embodiment, as shown in FIG. 1B, the plurality of data blocks facilitate the accessing of L1 data cache 103 a by a throughput of multiple accesses in the same clock cycle. In one embodiment, conflicting requests for access that seek to access the same block of L1 data cache 103 a at the same time can be resolved using arbitration (whose time impact as discussed above is negated). In one embodiment, the data blocks can include cache line entries that are accessed by loads.
Data cache tag memory 103 b is configured to maintain tag entries for each of the cache line entries stored in L1 data cache 103 a. Referring to FIG. 1C, in one embodiment, as a part of the aforementioned configuration, data cache tag memory 103 b maintains a plurality of copies (e.g., 1-N) of the tags that correspond to the entries of L1 data cache 103 a. In particular, each request to access L1 data cache 103 a is accorded a dedicated copy of tags corresponding to the entries of L1 data cache 103 a. This manner of maintaining tag entries facilitates the identification of tags that are associated with the cache line entries within a single clock cycle. In one embodiment, an identification of a tag can be completed in the same clock cycle in which an arbitration involving an access request (e.g., load request) to L1 data cache 103 a for data associated with the tag is executed. In one embodiment, access requests (e.g., load requests) to L1 data cache 103 a trigger a search of data cache tag memory 103 b for the tag that corresponds to the data that is sought by the load request.
Referring to FIG. 1A, system 101, responsive to a receipt by L1 cache 103 of a plurality of request to access L1 data cache 103 a of L1 cache 103, executes a search of a data cache tag memory 103 b such that tags that correspond to data sought by the plurality of requests are identified in parallel with the execution of any arbitration operations that are associated with the requests. This is illustrated in FIG. 1D, where arbitration operations associated with a first access request AR1 and a second access request AR2 of access requests 1-N, are shown as being executed in parallel with a search of data cache tag memory 103 b. In one embodiment, the aforementioned action of system 101 operates to avoid a deleterious impact of arbitration operations on the timing of load hit signals. In particular, system 101, supported by duplicated data cache tag memory 103 b and blocked L1 data cache 103 a, facilitates the access of a cache by several load requests in one clock cycle without penalizing cache hit latency and throughput. In one embodiment, system 101 can be located in cache controller 103 c. In other embodiments, system 101 can be separate from cache controller 103 c, but operate cooperatively therewith.
Referring again to FIG. 1A, main memory 111 includes physical addresses that store the information that is copied into cache memory. In one embodiment, when the information that is contained in the physical addresses of main memory that have been cached is changed, the corresponding cached information is updated to reflect the changes made to the information stored in main memory. Also shown in FIG. 1A is system interface 111.
Operation
FIG. 1E illustrates operations performed by system 101 for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment. These operations, which relate to supporting a plurality of load accesses to a data cache are illustrated for purposes of clarity and brevity. It should be appreciated that other operations not illustrated by FIG. 1E can be performed in accordance with one embodiment.
Referring to FIG. 1E, at A, a plurality of requests to access data cache 103 a are received. In the FIG. 1E example, two of the plurality of requests, access request AR1 and access request AR2, attempt to access the same data block (for example block 0 as identified by virtual address bits 6 and 7 of AR1 and AR2, e.g., virtual address bits 7:6 of the virtual address associated with AR1 and AR2) of L1 data cache 103 a are received.
At B, data cache tag memory 103 b is searched and tags residing therein that are associated with the data sought by the plurality of requests (AR1-ARN) to access L1 data cache 103 a are identified.
At C, during the same clock cycle as the search of data cache tag memory 103 b that is executed at B, an arbitration process to determine which of the two requests (access request AR1 and access request AR2) will be allowed to access block 0 of L1 data cache 103 a is initiated and completed. As a part of the aforementioned arbitration process, one of the two requests (access request AR1) is chosen to proceed with access of block 0.
At D, the plurality of access requests (except those that are arbitration losers such as AR2 in the FIG. 1E example) access data cache 103 a using the tags that are identified at B.
At E, the data (for example “X” corresponding to AR1) that is sought by the access requests are identified in L1 data cache 103 a and read (e.g., loaded).
In one embodiment, system 101 is designed to operate in environments where several load and store instructions are provided in a single cycle. In one embodiment, the methodology disclosed herein avoids the reliance upon the use of an excessive number of cache ports, which may not be practical. In exemplary embodiments, throughput is enabled without negatively impacting the timing of the “Load Hit” signal.
In one embodiment, as discussed herein, L1 data cache 103 a can be organized into a plurality of blocks and the tags that correspond to data that is maintained in L1 data cache 103 a can be duplicated and stored in data cache tag memory 103 b. Moreover, as discussed herein, the organization of data cache 103 a into blocks enable several loads to be supported in a single cycle if they do not access the same data block. However, in one embodiment, multiple loads to a single data block can be accommodated as long as they are to the same address. In exemplary embodiments, the approach discussed herein does not perform any arbitration with regard to tags and thus avoids a latency penalty (the addition of latency) related to the timing of a “Load Hit” signal that would derive from such arbitration operations.
Components of System for Supporting a Plurality of Load Accesses of a Cache in a Single Cycle According to One Embodiment
FIG. 2 shows components of a system 101 for supporting a plurality of load accesses of a cache in a single cycle according to one embodiment. In one embodiment, components of system 101 implement an algorithm for supporting a plurality of load accesses. In the FIG. 2 embodiment, components of system 101 include load request accessor 201, tag memory accessor 203 and cache accessor 205.
Load request accessor 201 accesses a plurality of load requests that seek to access data stored in an L1 data cache (e.g., 103 a in FIG. 1A). In one embodiment, in some cases, more than one load request of the plurality of load requests can seek to access the same data block in the L1 data cache. In such cases, an arbitration is executed to decide which of the load requests will be allowed to access that block of the L1 data cache.
Tag memory accessor 203, in response to the receipt of a plurality of load requests, searches in parallel, respective copies (e.g., 1-N) of the tags of a data cache tag memory (e.g., 103 b in FIG. 1A) that correspond to the entries of an L1 data cache (e.g., 103 a of FIG. 1A). In one embodiment, each load request is accorded a dedicated copy of tags that correspond to the entries of the L1 data cache. This manner of maintaining tag entries facilitates the identification of tags that are associated with the cache line entries within a single clock cycle. In one embodiment, an arbitration involving an access request (e.g., load request) to a block of the L1 data cache for data associated with a tag is executed within the same clock cycle in which an identification of the tag is completed.
Cache accessor 205 accesses a plurality of data blocks of the L1 data cache using the tags that are identified by tag memory accessor 203. In one embodiment, the plurality of data blocks facilitates the accessing of the L1 data cache (e.g. 103 a in FIG. 1A) by multiple access requestors in the same clock cycle. In one embodiment, conflicting requests for access that seek to access the same block of the L1 data cache at the same time can be resolved using arbitration (whose time impact on the “Load Hit” signal, as discussed herein, is negated by the operation of system 101). In one embodiment, the accesses to the data blocks involve a loading of data.
It should be appreciated that the aforementioned components of system 101 can be implemented in hardware or software or in a combination of both. In one embodiment, components and operations of system 101 can be encompassed by components and operations of one or more computer components or programs (e.g., cache controller 103 c in FIG. 1A). In another embodiment, components and operations of system 101 can be separate from the aforementioned one or more computer components or programs but can operate cooperatively with components and operations thereof.
Method for Supporting a Plurality of Load Accesses of a Cache in a Single Cycle According to One Embodiment
FIG. 3 shows a flowchart 300 of a method for supporting a plurality of load accesses of a data cache in a single cycle according to one embodiment. The flowchart includes processes that, in one embodiment can be carried out by processors and electrical components under the control of computer-readable and computer-executable instructions. Although specific steps are disclosed in the flowcharts, such steps are exemplary. That is the present embodiment is well suited to performing various other steps or variations of the steps recited in the flowchart.
Referring to FIG. 3, at 301 a plurality of load requests to access a data cache are accessed. In one embodiment, the data cache can include a plurality of blocks that can accommodate the plurality of load requests. In one embodiment, the plurality of load requests can include a plurality of requests that seek to access the same block of the aforementioned data cache.
At 303, a tag memory is accessed that maintains a plurality of copies of the tags that correspond to the entries of the data cache.
At 305, tags are identified that correspond to individual load requests of the plurality of load requests received by the L1 cache. In one embodiment, each load request is accorded a dedicated copy of the set of tags that correspond to the entries located in the data cache.
At 307, the blocks of the data cache are accessed based on the tags that are identified as corresponding to the individual requests. In one embodiment, the accessing of the plurality of blocks enables a throughput of multiple load accesses in the same clock cycle.
With regard to exemplary embodiments thereof, systems and methods for accessing a data cache is disclosed. A plurality of requests to access the data cache is accessed, and in response, a tag memory is accessed that maintains a plurality of copies of tags for each entry in the load cache. Tags are identified that correspond to individual requests. The data cache is accessed based on the tags that correspond to the individual requests. A plurality of requests to access the same block of the plurality of blocks causes an access arbitration that is executed in the same clock cycle as is the access of the tag memory.
Although many of the components and processes are described above in the singular for convenience, it will be appreciated by one of skill in the art that multiple components and repeated processes can also be used to practice the techniques of the present invention. Further, while the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. For example, embodiments of the present invention may be employed with a variety of components and should not be restricted to the ones mentioned above. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the present invention.

Claims (20)

We claim:
1. A method for supporting a plurality of accesses of a data cache, comprising:
accessing a plurality of requests to access said data cache, wherein said data cache comprises a plurality of blocks;
responsive to said plurality of requests to access said data cache, accessing a tag memory that maintains a plurality of copies of tags for each entry in said data cache and identifying tags that correspond to individual requests of said plurality of requests; and
accessing said data cache based on said tags that correspond to said individual requests, wherein a plurality of requests to access a same block of said plurality of blocks causes an access arbitration that is executed in the same clock cycle as said accessing said tag memory and that determines, based on said requests to access said same block and without considering whether access to particular lines of said same block are requested, which of said individual requests is granted.
2. The method of claim 1 wherein said accessing said data cache based on said tags comprises a plurality of loads that are executed in a single clock cycle.
3. The method of claim 1 wherein each request of said plurality of requests to access said data cache has a dedicated copy of tags that correspond to entries located in said data cache.
4. The method of claim 1 wherein a plurality of said requests to access said data cache seek to access respective blocks.
5. The method of claim 1 wherein a plurality of said plurality of requests to access said data cache seek access to different addresses within a same block of said data cache in the same cycle.
6. The method of claim 1 wherein said plurality of blocks comprise respective parts of a level one data cache and contain cache line entries.
7. The method of claim 1 wherein said tag memory comprises a tag SRAM.
8. A cache system, comprising:
a data cache divided into a plurality of data blocks;
tag memory configured to maintain tags that correspond to a plurality of copies of tags that correspond to entries of said data cache; and
a cache subsystem configured to access said tag memory and said data cache wherein arbitration operations related to a plurality of requests to access said data cache are executed in the same clock cycle as accesses of said tag memory wherein said arbitration operations determine, based on said requests to access a same block of said data cache, and without considering whether access to particular lines of said same block are requested which of said individual requests is granted.
9. The cache system of claim 8 wherein said plurality of data blocks accommodate a plurality of loads that are executed within a single clock cycle.
10. The cache system of claim 8 wherein a plurality of said plurality of requests to access said data cache seek to access respective data blocks.
11. The cache system of claim 8 wherein each request of said plurality of requests has a dedicated copy of tags that correspond to cache line entries located in said data cache.
12. The cache system of claim 8 wherein said data cache is divided into four 8 kilobyte data blocks.
13. The cache system of claim 8 wherein a plurality of load requests access the same block at different addresses in the same cycle.
14. The cache system of claim 8 wherein said tag memory comprises a tag SRAM.
15. A computer system, comprising:
a memory;
a processor; and
a cache system, comprising:
a data cache configured to store units of data;
a tag memory configured to store tags that correspond to said units of data; and
a cache controller comprising a system for supporting a plurality of accesses to said data cache, comprising:
a request accessing component for accessing a plurality of requests to access said data cache, wherein said data cache comprises a plurality of blocks;
a tag memory accessing component for accessing a tag memory that maintains a plurality of copies of tags for each entry in said data cache and identifying tags that correspond to individual requests of said plurality of requests;
and a data cache accessing component for accessing said data cache based on said tags that correspond to said individual requests, wherein a plurality of requests to access a same block of said plurality of blocks causes an access arbitration that is executed in the same clock cycle as said accessing said tag memory wherein said access arbitration determines, based on said requests to access said same block, and without considering whether access to particular lines of said same block are requested which of said individual requests is granted.
16. The computer system of claim 15 wherein said accessing said data cache comprises a plurality of loads that are executed within a single clock cycle.
17. The computer system of claim 15 wherein each request of said plurality of requests to access said data cache has a dedicated copy of tags that correspond to entries located in said data cache.
18. The computer system of claim 15 wherein said plurality of requests to access said data cache seek access to respective blocks.
19. The computer system of claim 15 wherein said plurality of requests to access said data cache seek to access different addresses of the same block in the same cycle.
20. The computer system of claim 15 wherein said plurality of blocks comprise respective parts of a level one data cache and contain cache line entries.
US13/561,528 2012-07-30 2012-07-30 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle Expired - Fee Related US9430410B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/561,528 US9430410B2 (en) 2012-07-30 2012-07-30 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
PCT/US2013/051128 WO2014022115A1 (en) 2012-07-30 2013-07-18 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
TW102127066A TWI537731B (en) 2012-07-30 2013-07-29 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US14/173,602 US9916253B2 (en) 2012-07-30 2014-02-05 Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US14/922,053 US20160041930A1 (en) 2012-07-30 2015-10-23 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US15/881,515 US10698833B2 (en) 2012-07-30 2018-01-26 Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/561,528 US9430410B2 (en) 2012-07-30 2012-07-30 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/173,602 Continuation-In-Part US9916253B2 (en) 2012-07-30 2014-02-05 Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US14/922,053 Continuation US20160041930A1 (en) 2012-07-30 2015-10-23 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle

Publications (2)

Publication Number Publication Date
US20140032845A1 US20140032845A1 (en) 2014-01-30
US9430410B2 true US9430410B2 (en) 2016-08-30

Family

ID=49996080

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/561,528 Expired - Fee Related US9430410B2 (en) 2012-07-30 2012-07-30 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US14/922,053 Abandoned US20160041930A1 (en) 2012-07-30 2015-10-23 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/922,053 Abandoned US20160041930A1 (en) 2012-07-30 2015-10-23 Systems and methods for supporting a plurality of load accesses of a cache in a single cycle

Country Status (1)

Country Link
US (2) US9430410B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477109B1 (en) 2006-04-12 2016-07-13 Soft Machines, Inc. Apparatus and method for processing an instruction matrix specifying parallel and dependent operations
EP2527972A3 (en) 2006-11-14 2014-08-06 Soft Machines, Inc. Apparatus and method for processing complex instruction formats in a multi- threaded architecture supporting various context switch modes and virtualization schemes
EP2616928B1 (en) 2010-09-17 2016-11-02 Soft Machines, Inc. Single cycle multi-branch prediction including shadow cache for early far branch prediction
WO2012135041A2 (en) 2011-03-25 2012-10-04 Soft Machines, Inc. Register file segments for supporting code block execution by using virtual cores instantiated by partitionable engines
EP2689326B1 (en) 2011-03-25 2022-11-16 Intel Corporation Memory fragments for supporting code block execution by using virtual cores instantiated by partitionable engines
EP2689327B1 (en) 2011-03-25 2021-07-28 Intel Corporation Executing instruction sequence code blocks by using virtual cores instantiated by partitionable engines
WO2012162188A2 (en) 2011-05-20 2012-11-29 Soft Machines, Inc. Decentralized allocation of resources and interconnect structures to support the execution of instruction sequences by a plurality of engines
CN103649931B (en) 2011-05-20 2016-10-12 索夫特机械公司 For supporting to be performed the interconnection structure of job sequence by multiple engines
KR101703401B1 (en) 2011-11-22 2017-02-06 소프트 머신즈, 인크. An accelerated code optimizer for a multiengine microprocessor
KR101832679B1 (en) 2011-11-22 2018-02-26 소프트 머신즈, 인크. A microprocessor accelerated code optimizer
US8930674B2 (en) 2012-03-07 2015-01-06 Soft Machines, Inc. Systems and methods for accessing a unified translation lookaside buffer
US9916253B2 (en) 2012-07-30 2018-03-13 Intel Corporation Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US9710399B2 (en) 2012-07-30 2017-07-18 Intel Corporation Systems and methods for flushing a cache with modified data
US9229873B2 (en) 2012-07-30 2016-01-05 Soft Machines, Inc. Systems and methods for supporting a plurality of load and store accesses of a cache
US9740612B2 (en) 2012-07-30 2017-08-22 Intel Corporation Systems and methods for maintaining the coherency of a store coalescing cache and a load cache
US9430410B2 (en) 2012-07-30 2016-08-30 Soft Machines, Inc. Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US20140085320A1 (en) * 2012-09-27 2014-03-27 Apple Inc. Efficient processing of access requests for a shared resource
US9678882B2 (en) 2012-10-11 2017-06-13 Intel Corporation Systems and methods for non-blocking implementation of cache flush instructions
US10140138B2 (en) 2013-03-15 2018-11-27 Intel Corporation Methods, systems and apparatus for supporting wide and efficient front-end operation with guest-architecture emulation
US9904625B2 (en) 2013-03-15 2018-02-27 Intel Corporation Methods, systems and apparatus for predicting the way of a set associative cache
WO2014150971A1 (en) 2013-03-15 2014-09-25 Soft Machines, Inc. A method for dependency broadcasting through a block organized source view data structure
US10275255B2 (en) 2013-03-15 2019-04-30 Intel Corporation Method for dependency broadcasting through a source organized source view data structure
US9891924B2 (en) 2013-03-15 2018-02-13 Intel Corporation Method for implementing a reduced size register view data structure in a microprocessor
US9886279B2 (en) 2013-03-15 2018-02-06 Intel Corporation Method for populating and instruction view data structure by using register template snapshots
US9811342B2 (en) 2013-03-15 2017-11-07 Intel Corporation Method for performing dual dispatch of blocks and half blocks
US9569216B2 (en) 2013-03-15 2017-02-14 Soft Machines, Inc. Method for populating a source view data structure by using register template snapshots
WO2014150991A1 (en) 2013-03-15 2014-09-25 Soft Machines, Inc. A method for implementing a reduced size register view data structure in a microprocessor
WO2014150806A1 (en) 2013-03-15 2014-09-25 Soft Machines, Inc. A method for populating register view data structure by using register template snapshots
KR102063656B1 (en) 2013-03-15 2020-01-09 소프트 머신즈, 인크. A method for executing multithreaded instructions grouped onto blocks
KR20150130510A (en) 2013-03-15 2015-11-23 소프트 머신즈, 인크. A method for emulating a guest centralized flag architecture by using a native distributed flag architecture
US9535832B2 (en) * 2013-04-30 2017-01-03 Mediatek Singapore Pte. Ltd. Multi-hierarchy interconnect system and method for cache system
GB2527087B (en) 2014-06-11 2021-04-14 Advanced Risc Mach Ltd Parallel lookup in first and second value stores
US10073786B2 (en) 2015-05-28 2018-09-11 Micron Technology, Inc. Apparatuses and methods for compute enabled cache
CN106201921A (en) * 2016-07-18 2016-12-07 浪潮(北京)电子信息产业有限公司 The method of adjustment of a kind of cache partitions capacity and device
WO2018090255A1 (en) * 2016-11-16 2018-05-24 华为技术有限公司 Memory access technique
CN112597080B (en) * 2020-12-29 2022-10-21 联芸科技(杭州)股份有限公司 Read request control device and method and memory controller
US20230195640A1 (en) * 2021-12-21 2023-06-22 Advanced Micro Devices, Inc. Cache Associativity Allocation
US11836088B2 (en) 2021-12-21 2023-12-05 Advanced Micro Devices, Inc. Guided cache replacement
US11829190B2 (en) 2021-12-21 2023-11-28 Advanced Micro Devices, Inc. Data routing for efficient decompression of compressed data stored in a cache
US11914518B1 (en) * 2022-09-21 2024-02-27 Arm Limited Apparatus and method for operating a cache storage

Citations (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075704A (en) 1976-07-02 1978-02-21 Floating Point Systems, Inc. Floating point data processor for high speech operation
US4245344A (en) 1979-04-02 1981-01-13 Rockwell International Corporation Processing system with dual buses
US4356550A (en) 1976-09-07 1982-10-26 Tandem Computers Incorporated Multiprocessor system
US4414624A (en) 1980-11-19 1983-11-08 The United States Of America As Represented By The Secretary Of The Navy Multiple-microcomputer processing
US4524415A (en) 1982-12-07 1985-06-18 Motorola, Inc. Virtual machine data processor
US4527237A (en) 1979-10-11 1985-07-02 Nanodata Computer Corporation Data processing system
US4577273A (en) 1983-06-06 1986-03-18 Sperry Corporation Multiple microcomputer system for digital computers
US4597061A (en) 1983-01-03 1986-06-24 Texas Instruments Incorporated Memory system using pipeline circuitry for improved speed
US4600986A (en) 1984-04-02 1986-07-15 Sperry Corporation Pipelined split stack with high performance interleaved decode
US4633434A (en) 1984-04-02 1986-12-30 Sperry Corporation High performance storage unit
US4682281A (en) 1983-08-30 1987-07-21 Amdahl Corporation Data storage unit employing translation lookaside buffer pointer
US4816991A (en) 1986-03-14 1989-03-28 Hitachi, Ltd. Virtual machine system with address translation buffer for holding host and plural guest entries
US4920477A (en) 1987-04-20 1990-04-24 Multiflow Computer, Inc. Virtual address table look aside buffer miss recovery method and apparatus
US5294897A (en) 1992-07-20 1994-03-15 Mitsubishi Denki Kabushiki Kaisha Microwave IC package
US5317705A (en) 1990-10-24 1994-05-31 International Business Machines Corporation Apparatus and method for TLB purge reduction in a multi-level machine system
US5317754A (en) 1990-10-23 1994-05-31 International Business Machines Corporation Method and apparatus for enabling an interpretive execution subset
EP0706133A2 (en) 1994-10-05 1996-04-10 International Business Machines Corporation Method and system for concurrent access in a data cache array utilizing multiple match line selection paths
US5548742A (en) 1994-08-11 1996-08-20 Intel Corporation Method and apparatus for combining a direct-mapped cache and a multiple-way cache in a cache memory
US5559986A (en) * 1991-12-23 1996-09-24 Intel Corporation Interleaved cache for multiple accesses per clock cycle in a microprocessor
US5574878A (en) 1993-09-17 1996-11-12 Hitachi, Ltd. Method of parallel purging of translation lookaside buffer in a multilevel virtual machine system
US5634068A (en) * 1995-03-31 1997-05-27 Sun Microsystems, Inc. Packet switched cache coherent multiprocessor system
EP0596636B1 (en) 1992-11-02 1998-04-01 STMicroelectronics, Inc. Cache tag memory
US5752260A (en) * 1996-04-29 1998-05-12 International Business Machines Corporation High-speed, multiple-port, interleaved cache with arbitration of multiple access addresses
US5754818A (en) 1996-03-22 1998-05-19 Sun Microsystems, Inc. Architecture and method for sharing TLB entries through process IDS
US5787494A (en) 1992-10-06 1998-07-28 Hewlett-Packard Company Software assisted hardware TLB miss handler
US5793941A (en) 1995-12-04 1998-08-11 Advanced Micro Devices, Inc. On-chip primary cache testing circuit and test method
US5802602A (en) 1997-01-17 1998-09-01 Intel Corporation Method and apparatus for performing reads of related data from a set-associative cache memory
US5806085A (en) * 1996-05-01 1998-09-08 Sun Microsystems, Inc. Method for non-volatile caching of network and CD-ROM file accesses using a cache directory, pointers, file name conversion, a local hard disk, and separate small database
US5813031A (en) 1994-09-21 1998-09-22 Industrial Technology Research Institute Caching tag for a large scale cache computer memory system
US5835951A (en) 1994-10-18 1998-11-10 National Semiconductor Branch processing unit with target cache read prioritization protocol for handling multiple hits
US5852738A (en) 1994-06-27 1998-12-22 International Business Machines Corporation Method and apparatus for dynamically controlling address space allocation
US5860146A (en) 1996-06-25 1999-01-12 Sun Microsystems, Inc. Auxiliary translation lookaside buffer for assisting in accessing data in remote address spaces
US5864657A (en) 1995-11-29 1999-01-26 Texas Micro, Inc. Main memory system and checkpointing protocol for fault-tolerant computer system
US5872985A (en) 1994-11-25 1999-02-16 Fujitsu Limited Switching multi-context processor and method overcoming pipeline vacancies
US5905509A (en) 1997-09-30 1999-05-18 Compaq Computer Corp. Accelerated Graphics Port two level Gart cache having distributed first level caches
US5918251A (en) 1996-12-23 1999-06-29 Intel Corporation Method and apparatus for preloading different default address translation attributes
US5956753A (en) 1993-12-30 1999-09-21 Intel Corporation Method and apparatus for handling speculative memory access operations
US5974506A (en) 1996-06-28 1999-10-26 Digital Equipment Corporation Enabling mirror, nonmirror and partial mirror cache modes in a dual cache system
US6016533A (en) 1997-12-16 2000-01-18 Advanced Micro Devices, Inc. Way prediction logic for cache array
US6073230A (en) 1997-06-11 2000-06-06 Advanced Micro Devices, Inc. Instruction fetch unit configured to provide sequential way prediction for sequential instruction fetches
US6075938A (en) 1997-06-10 2000-06-13 The Board Of Trustees Of The Leland Stanford Junior University Virtual machine monitors for scalable multiprocessors
US6088780A (en) 1997-03-31 2000-07-11 Institute For The Development Of Emerging Architecture, L.L.C. Page table walker that uses at least one of a default page size and a page size selected for a virtual address space to position a sliding field in a virtual address
US6092172A (en) 1996-10-16 2000-07-18 Hitachi, Ltd. Data processor and data processing system having two translation lookaside buffers
US6101577A (en) 1997-09-15 2000-08-08 Advanced Micro Devices, Inc. Pipelined instruction cache and branch prediction mechanism therefor
US6134634A (en) 1996-12-20 2000-10-17 Texas Instruments Incorporated Method and apparatus for preemptive cache write-back
US6138226A (en) 1994-04-19 2000-10-24 Hitachi Ltd. Logical cache memory storing logical and physical address information for resolving synonym problems
US6167490A (en) 1996-09-20 2000-12-26 University Of Washington Using global memory information to manage memory in a computer network
US6212613B1 (en) 1999-03-22 2001-04-03 Cisco Technology, Inc. Methods and apparatus for reusing addresses in a computer
WO2001025921A1 (en) 1999-10-01 2001-04-12 Sun Microsystems, Inc. An arbitration protocol for a shared data cache
US6226732B1 (en) 1997-10-02 2001-05-01 Hitachi Micro Systems, Inc. Memory system architecture
US6260131B1 (en) 1997-11-18 2001-07-10 Intrinsity, Inc. Method and apparatus for TLB memory ordering
US6272662B1 (en) 1998-08-04 2001-08-07 International Business Machines Corporation Distributed storage system using front-end and back-end locking
US6275917B1 (en) 1998-08-12 2001-08-14 Fujitsu Limited High-speed address translation system
US6321298B1 (en) 1999-01-25 2001-11-20 International Business Machines Corporation Full cache coherency across multiple raid controllers
US6341324B1 (en) 1995-10-06 2002-01-22 Lsi Logic Corporation Exception processing in superscalar microprocessor
US20020069326A1 (en) 1998-12-04 2002-06-06 Nicholas J. Richardson Pipelined non-blocking level two cache system with inherent transaction collision-avoidance
US20020082824A1 (en) 2000-12-27 2002-06-27 Gilbert Neiger Virtual translation lookaside buffer
US20020099913A1 (en) 2001-01-25 2002-07-25 Steely Simon C. Method and apparatus for adaptively bypassing one or more levels of a cache hierarchy
US6437789B1 (en) 1999-02-19 2002-08-20 Evans & Sutherland Computer Corporation Multi-level cache controller
US6449671B1 (en) 1999-06-09 2002-09-10 Ati International Srl Method and apparatus for busing data elements
US6557083B1 (en) 2000-06-30 2003-04-29 Intel Corporation Memory system for multiple data types
US20030088752A1 (en) 2001-11-07 2003-05-08 Philip Harman Computer system with virtual memory and paging mechanism
US6604187B1 (en) 2000-06-19 2003-08-05 Advanced Micro Devices, Inc. Providing global translations with address space numbers
US6658549B2 (en) 2001-05-22 2003-12-02 Hewlett-Packard Development Company, Lp. Method and system allowing a single entity to manage memory comprising compressed and uncompressed data
US6681395B1 (en) 1998-03-20 2004-01-20 Matsushita Electric Industrial Company, Ltd. Template set for generating a hypertext for displaying a program guide and subscriber terminal with EPG function using such set broadcast from headend
US20040044850A1 (en) 2002-08-28 2004-03-04 George Robert T. Method and apparatus for the synchronization of distributed caches
US20040064668A1 (en) 2002-09-26 2004-04-01 Todd Kjos Memory addressing for a virtual machine implementation on a computer processor supporting virtual hash-page-table searching
US20040117593A1 (en) 2002-12-12 2004-06-17 Richard Uhlig Reclaiming existing fields in address translation data structures to extend control over memory acceses
US20040117594A1 (en) 2002-12-13 2004-06-17 Vanderspek Julius Memory management method
US20040205296A1 (en) 2003-04-14 2004-10-14 Bearden Brian S. Method of adaptive cache partitioning to increase host I/O performance
US20040215886A1 (en) 2003-04-25 2004-10-28 International Business Machines Corporation Data cache scrub mechanism for large L2/L3 data cache structures
US20050027961A1 (en) 2003-07-31 2005-02-03 David Zhang System and method for resolving virtual addresses using a page size tag
US20050060457A1 (en) 2003-08-19 2005-03-17 Sun Microsystems, Inc. Cache crossbar arbitration
US20050108480A1 (en) 2003-11-14 2005-05-19 International Business Machines Corporation Method and system for providing cache set selection which is power optimized
US6912644B1 (en) 2003-03-06 2005-06-28 Intel Corporation Method and apparatus to steer memory access operations in a virtual memory system
US20050154867A1 (en) 2004-01-14 2005-07-14 International Business Machines Corporation Autonomic method and apparatus for counting branch instructions to improve branch predictions
US20060026381A1 (en) 2004-07-29 2006-02-02 Fujitsu Limited Address translation information storing apparatus and address translation information storing method
US7007108B2 (en) 2003-04-30 2006-02-28 Lsi Logic Corporation System method for use of hardware semaphores for resource release notification wherein messages comprises read-modify-write operation and address
US7111145B1 (en) 2003-03-25 2006-09-19 Vmware, Inc. TLB miss fault handler and method for accessing multiple page tables
US20060236074A1 (en) 2005-04-14 2006-10-19 Arm Limited Indicating storage locations within caches
US20060277365A1 (en) 2005-06-07 2006-12-07 Fong Pong Method and system for on-chip configurable data ram for fast memory and pseudo associative caches
US7149872B2 (en) 2003-07-10 2006-12-12 Transmeta Corporation System and method for identifying TLB entries associated with a physical address of a specified range
US7213106B1 (en) 2004-08-09 2007-05-01 Sun Microsystems, Inc. Conservative shadow cache support in a point-to-point connected multiprocessing node
US7278030B1 (en) 2003-03-03 2007-10-02 Vmware, Inc. Virtualization system for computers having multiple protection mechanisms
US20080077813A1 (en) 2006-09-22 2008-03-27 P.A. Semi, Inc. Fast L1 flush mechanism
US20080091880A1 (en) 2006-10-11 2008-04-17 Mips Technologies, Inc. Horizontally-shared cache victims in multiple core processors
US20080126771A1 (en) 2006-07-25 2008-05-29 Lei Chen Branch Target Extension for an Instruction Cache
US7406581B2 (en) 2003-04-24 2008-07-29 Stmicroelectronics Limited Speculative instruction load control
US20080215865A1 (en) 2007-03-02 2008-09-04 Fujitsu Limited Data processor and memory read active control method
US20080270758A1 (en) 2007-04-27 2008-10-30 Arm Limited Multiple thread instruction fetch from different cache levels
US20080282037A1 (en) 2006-02-27 2008-11-13 Fujitsu Limited Method and apparatus for controlling cache
US20090138659A1 (en) 2007-11-26 2009-05-28 Gary Lauterbach Mechanism to accelerate removal of store operations from a queue
US7546420B1 (en) 2005-09-28 2009-06-09 Sun Microsystems, Inc. Efficient trace cache management during self-modifying code processing
US20090157980A1 (en) 2007-12-13 2009-06-18 Arm Limited Memory controller with write data cache and read data cache
US20090164733A1 (en) 2007-12-21 2009-06-25 Mips Technologies, Inc. Apparatus and method for controlling the exclusivity mode of a level-two cache
US20090172344A1 (en) 2007-12-31 2009-07-02 Ed Grochowski Method, system, and apparatus for page sizing extension
US20100138607A1 (en) 2008-12-03 2010-06-03 Hughes Christopher J Increasing concurrency and controlling replication in a multi-core cache hierarchy
US20100169578A1 (en) * 2008-12-31 2010-07-01 Texas Instruments Incorporated Cache tag memory
US20100211746A1 (en) 2009-02-17 2010-08-19 Fujitsu Microelectronics Limited Cache device
US7856530B1 (en) 2007-10-31 2010-12-21 Network Appliance, Inc. System and method for implementing a dynamic cache for a data storage system
US20110010521A1 (en) 2009-07-13 2011-01-13 James Wang TLB Prefetching
US20110082983A1 (en) 2009-10-06 2011-04-07 Alcatel-Lucent Canada, Inc. Cpu instruction and data cache corruption prevention system
US20110153955A1 (en) 2009-12-18 2011-06-23 International Business Machines Corporation Software assisted translation lookaside buffer search mechanism
US20120042126A1 (en) 2010-08-11 2012-02-16 Robert Krick Method for concurrent flush of l1 and l2 caches
US8301847B2 (en) 2010-09-23 2012-10-30 International Business Machines Corporation Managing concurrent accesses to a cache
US20130019047A1 (en) 2011-07-11 2013-01-17 Dmitry Podvalny Memory conflicts learning capability
US20130046934A1 (en) * 2011-08-15 2013-02-21 Robert Nychka System caching using heterogenous memories
US20130086417A1 (en) 2011-09-30 2013-04-04 Ramaswamy Sivaramakrishnan Systems and Methods for Retiring and Unretiring Cache Lines
US20130097369A1 (en) 2010-12-13 2013-04-18 Fusion-Io, Inc. Apparatus, system, and method for auto-commit memory management
US8522253B1 (en) 2005-03-31 2013-08-27 Guillermo Rozas Hardware support for virtual machine and operating system context switching in translation lookaside buffers and virtually tagged caches
US20130238874A1 (en) 2012-03-07 2013-09-12 Soft Machines, Inc. Systems and methods for accessing a unified translation lookaside buffer
US20130346699A1 (en) 2012-06-26 2013-12-26 William L. Walker Concurrent access to cache dirty bits
US20140032844A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for flushing a cache with modified data
US20140032856A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for maintaining the coherency of a store coalescing cache and a load cache
US20140032845A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US20140108730A1 (en) 2012-10-11 2014-04-17 Soft Machines, Inc. Systems and methods for non-blocking implementation of cache flush instructions
US20140156947A1 (en) 2012-07-30 2014-06-05 Soft Machines, Inc. Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US20140281242A1 (en) 2013-03-15 2014-09-18 Soft Machines, Inc. Methods, systems and apparatus for predicting the way of a set associative cache
US8868838B1 (en) 2008-11-21 2014-10-21 Nvidia Corporation Multi-class data cache policies
US20160041913A1 (en) 2012-07-30 2016-02-11 Soft Machines, Inc. Systems and methods for supporting a plurality of load and store accesses of a cache

Patent Citations (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075704A (en) 1976-07-02 1978-02-21 Floating Point Systems, Inc. Floating point data processor for high speech operation
US4356550A (en) 1976-09-07 1982-10-26 Tandem Computers Incorporated Multiprocessor system
US4245344A (en) 1979-04-02 1981-01-13 Rockwell International Corporation Processing system with dual buses
US4527237A (en) 1979-10-11 1985-07-02 Nanodata Computer Corporation Data processing system
US4414624A (en) 1980-11-19 1983-11-08 The United States Of America As Represented By The Secretary Of The Navy Multiple-microcomputer processing
US4524415A (en) 1982-12-07 1985-06-18 Motorola, Inc. Virtual machine data processor
US4597061B1 (en) 1983-01-03 1998-06-09 Texas Instruments Inc Memory system using pipleline circuitry for improved system
US4597061A (en) 1983-01-03 1986-06-24 Texas Instruments Incorporated Memory system using pipeline circuitry for improved speed
US4577273A (en) 1983-06-06 1986-03-18 Sperry Corporation Multiple microcomputer system for digital computers
US4682281A (en) 1983-08-30 1987-07-21 Amdahl Corporation Data storage unit employing translation lookaside buffer pointer
US4633434A (en) 1984-04-02 1986-12-30 Sperry Corporation High performance storage unit
US4600986A (en) 1984-04-02 1986-07-15 Sperry Corporation Pipelined split stack with high performance interleaved decode
US4816991A (en) 1986-03-14 1989-03-28 Hitachi, Ltd. Virtual machine system with address translation buffer for holding host and plural guest entries
US4920477A (en) 1987-04-20 1990-04-24 Multiflow Computer, Inc. Virtual address table look aside buffer miss recovery method and apparatus
US5317754A (en) 1990-10-23 1994-05-31 International Business Machines Corporation Method and apparatus for enabling an interpretive execution subset
US5317705A (en) 1990-10-24 1994-05-31 International Business Machines Corporation Apparatus and method for TLB purge reduction in a multi-level machine system
US5559986A (en) * 1991-12-23 1996-09-24 Intel Corporation Interleaved cache for multiple accesses per clock cycle in a microprocessor
US5294897A (en) 1992-07-20 1994-03-15 Mitsubishi Denki Kabushiki Kaisha Microwave IC package
US5787494A (en) 1992-10-06 1998-07-28 Hewlett-Packard Company Software assisted hardware TLB miss handler
EP0596636B1 (en) 1992-11-02 1998-04-01 STMicroelectronics, Inc. Cache tag memory
US5574878A (en) 1993-09-17 1996-11-12 Hitachi, Ltd. Method of parallel purging of translation lookaside buffer in a multilevel virtual machine system
US5956753A (en) 1993-12-30 1999-09-21 Intel Corporation Method and apparatus for handling speculative memory access operations
US6138226A (en) 1994-04-19 2000-10-24 Hitachi Ltd. Logical cache memory storing logical and physical address information for resolving synonym problems
US5852738A (en) 1994-06-27 1998-12-22 International Business Machines Corporation Method and apparatus for dynamically controlling address space allocation
US5548742A (en) 1994-08-11 1996-08-20 Intel Corporation Method and apparatus for combining a direct-mapped cache and a multiple-way cache in a cache memory
US5813031A (en) 1994-09-21 1998-09-22 Industrial Technology Research Institute Caching tag for a large scale cache computer memory system
EP0706133A2 (en) 1994-10-05 1996-04-10 International Business Machines Corporation Method and system for concurrent access in a data cache array utilizing multiple match line selection paths
US5835951A (en) 1994-10-18 1998-11-10 National Semiconductor Branch processing unit with target cache read prioritization protocol for handling multiple hits
US5872985A (en) 1994-11-25 1999-02-16 Fujitsu Limited Switching multi-context processor and method overcoming pipeline vacancies
US5634068A (en) * 1995-03-31 1997-05-27 Sun Microsystems, Inc. Packet switched cache coherent multiprocessor system
US6341324B1 (en) 1995-10-06 2002-01-22 Lsi Logic Corporation Exception processing in superscalar microprocessor
US5864657A (en) 1995-11-29 1999-01-26 Texas Micro, Inc. Main memory system and checkpointing protocol for fault-tolerant computer system
US5793941A (en) 1995-12-04 1998-08-11 Advanced Micro Devices, Inc. On-chip primary cache testing circuit and test method
US5754818A (en) 1996-03-22 1998-05-19 Sun Microsystems, Inc. Architecture and method for sharing TLB entries through process IDS
US5752260A (en) * 1996-04-29 1998-05-12 International Business Machines Corporation High-speed, multiple-port, interleaved cache with arbitration of multiple access addresses
US5806085A (en) * 1996-05-01 1998-09-08 Sun Microsystems, Inc. Method for non-volatile caching of network and CD-ROM file accesses using a cache directory, pointers, file name conversion, a local hard disk, and separate small database
US5860146A (en) 1996-06-25 1999-01-12 Sun Microsystems, Inc. Auxiliary translation lookaside buffer for assisting in accessing data in remote address spaces
US5974506A (en) 1996-06-28 1999-10-26 Digital Equipment Corporation Enabling mirror, nonmirror and partial mirror cache modes in a dual cache system
US6167490A (en) 1996-09-20 2000-12-26 University Of Washington Using global memory information to manage memory in a computer network
US6092172A (en) 1996-10-16 2000-07-18 Hitachi, Ltd. Data processor and data processing system having two translation lookaside buffers
US6134634A (en) 1996-12-20 2000-10-17 Texas Instruments Incorporated Method and apparatus for preemptive cache write-back
US5918251A (en) 1996-12-23 1999-06-29 Intel Corporation Method and apparatus for preloading different default address translation attributes
US5802602A (en) 1997-01-17 1998-09-01 Intel Corporation Method and apparatus for performing reads of related data from a set-associative cache memory
US6088780A (en) 1997-03-31 2000-07-11 Institute For The Development Of Emerging Architecture, L.L.C. Page table walker that uses at least one of a default page size and a page size selected for a virtual address space to position a sliding field in a virtual address
US6075938A (en) 1997-06-10 2000-06-13 The Board Of Trustees Of The Leland Stanford Junior University Virtual machine monitors for scalable multiprocessors
US6073230A (en) 1997-06-11 2000-06-06 Advanced Micro Devices, Inc. Instruction fetch unit configured to provide sequential way prediction for sequential instruction fetches
US6101577A (en) 1997-09-15 2000-08-08 Advanced Micro Devices, Inc. Pipelined instruction cache and branch prediction mechanism therefor
US5905509A (en) 1997-09-30 1999-05-18 Compaq Computer Corp. Accelerated Graphics Port two level Gart cache having distributed first level caches
US6226732B1 (en) 1997-10-02 2001-05-01 Hitachi Micro Systems, Inc. Memory system architecture
US6260131B1 (en) 1997-11-18 2001-07-10 Intrinsity, Inc. Method and apparatus for TLB memory ordering
US6016533A (en) 1997-12-16 2000-01-18 Advanced Micro Devices, Inc. Way prediction logic for cache array
US6681395B1 (en) 1998-03-20 2004-01-20 Matsushita Electric Industrial Company, Ltd. Template set for generating a hypertext for displaying a program guide and subscriber terminal with EPG function using such set broadcast from headend
US6272662B1 (en) 1998-08-04 2001-08-07 International Business Machines Corporation Distributed storage system using front-end and back-end locking
US6275917B1 (en) 1998-08-12 2001-08-14 Fujitsu Limited High-speed address translation system
US20020069326A1 (en) 1998-12-04 2002-06-06 Nicholas J. Richardson Pipelined non-blocking level two cache system with inherent transaction collision-avoidance
US6321298B1 (en) 1999-01-25 2001-11-20 International Business Machines Corporation Full cache coherency across multiple raid controllers
US6437789B1 (en) 1999-02-19 2002-08-20 Evans & Sutherland Computer Corporation Multi-level cache controller
US6212613B1 (en) 1999-03-22 2001-04-03 Cisco Technology, Inc. Methods and apparatus for reusing addresses in a computer
US6449671B1 (en) 1999-06-09 2002-09-10 Ati International Srl Method and apparatus for busing data elements
WO2001025921A1 (en) 1999-10-01 2001-04-12 Sun Microsystems, Inc. An arbitration protocol for a shared data cache
US6604187B1 (en) 2000-06-19 2003-08-05 Advanced Micro Devices, Inc. Providing global translations with address space numbers
US6557083B1 (en) 2000-06-30 2003-04-29 Intel Corporation Memory system for multiple data types
US20020082824A1 (en) 2000-12-27 2002-06-27 Gilbert Neiger Virtual translation lookaside buffer
US6907600B2 (en) 2000-12-27 2005-06-14 Intel Corporation Virtual translation lookaside buffer
US20020099913A1 (en) 2001-01-25 2002-07-25 Steely Simon C. Method and apparatus for adaptively bypassing one or more levels of a cache hierarchy
US6658549B2 (en) 2001-05-22 2003-12-02 Hewlett-Packard Development Company, Lp. Method and system allowing a single entity to manage memory comprising compressed and uncompressed data
US20030088752A1 (en) 2001-11-07 2003-05-08 Philip Harman Computer system with virtual memory and paging mechanism
US20040044850A1 (en) 2002-08-28 2004-03-04 George Robert T. Method and apparatus for the synchronization of distributed caches
US20040064668A1 (en) 2002-09-26 2004-04-01 Todd Kjos Memory addressing for a virtual machine implementation on a computer processor supporting virtual hash-page-table searching
US20040117593A1 (en) 2002-12-12 2004-06-17 Richard Uhlig Reclaiming existing fields in address translation data structures to extend control over memory acceses
US20040117594A1 (en) 2002-12-13 2004-06-17 Vanderspek Julius Memory management method
US7278030B1 (en) 2003-03-03 2007-10-02 Vmware, Inc. Virtualization system for computers having multiple protection mechanisms
US6912644B1 (en) 2003-03-06 2005-06-28 Intel Corporation Method and apparatus to steer memory access operations in a virtual memory system
US7111145B1 (en) 2003-03-25 2006-09-19 Vmware, Inc. TLB miss fault handler and method for accessing multiple page tables
US20040205296A1 (en) 2003-04-14 2004-10-14 Bearden Brian S. Method of adaptive cache partitioning to increase host I/O performance
US7406581B2 (en) 2003-04-24 2008-07-29 Stmicroelectronics Limited Speculative instruction load control
US20040215886A1 (en) 2003-04-25 2004-10-28 International Business Machines Corporation Data cache scrub mechanism for large L2/L3 data cache structures
US7007108B2 (en) 2003-04-30 2006-02-28 Lsi Logic Corporation System method for use of hardware semaphores for resource release notification wherein messages comprises read-modify-write operation and address
US7380096B1 (en) 2003-07-10 2008-05-27 Transmeta Corporation System and method for identifying TLB entries associated with a physical address of a specified range
US7913058B2 (en) 2003-07-10 2011-03-22 Guillermo Rozas System and method for identifying TLB entries associated with a physical address of a specified range
US7149872B2 (en) 2003-07-10 2006-12-12 Transmeta Corporation System and method for identifying TLB entries associated with a physical address of a specified range
US8239656B2 (en) 2003-07-10 2012-08-07 Guillermo Rozas System and method for identifying TLB entries associated with a physical address of a specified range
US20050027961A1 (en) 2003-07-31 2005-02-03 David Zhang System and method for resolving virtual addresses using a page size tag
US20050060457A1 (en) 2003-08-19 2005-03-17 Sun Microsystems, Inc. Cache crossbar arbitration
US20050108480A1 (en) 2003-11-14 2005-05-19 International Business Machines Corporation Method and system for providing cache set selection which is power optimized
US20050154867A1 (en) 2004-01-14 2005-07-14 International Business Machines Corporation Autonomic method and apparatus for counting branch instructions to improve branch predictions
US20060026381A1 (en) 2004-07-29 2006-02-02 Fujitsu Limited Address translation information storing apparatus and address translation information storing method
US7213106B1 (en) 2004-08-09 2007-05-01 Sun Microsystems, Inc. Conservative shadow cache support in a point-to-point connected multiprocessing node
US8522253B1 (en) 2005-03-31 2013-08-27 Guillermo Rozas Hardware support for virtual machine and operating system context switching in translation lookaside buffers and virtually tagged caches
US20060236074A1 (en) 2005-04-14 2006-10-19 Arm Limited Indicating storage locations within caches
US20060277365A1 (en) 2005-06-07 2006-12-07 Fong Pong Method and system for on-chip configurable data ram for fast memory and pseudo associative caches
US7546420B1 (en) 2005-09-28 2009-06-09 Sun Microsystems, Inc. Efficient trace cache management during self-modifying code processing
US20080282037A1 (en) 2006-02-27 2008-11-13 Fujitsu Limited Method and apparatus for controlling cache
US20080126771A1 (en) 2006-07-25 2008-05-29 Lei Chen Branch Target Extension for an Instruction Cache
US20080077813A1 (en) 2006-09-22 2008-03-27 P.A. Semi, Inc. Fast L1 flush mechanism
US20080091880A1 (en) 2006-10-11 2008-04-17 Mips Technologies, Inc. Horizontally-shared cache victims in multiple core processors
US20080215865A1 (en) 2007-03-02 2008-09-04 Fujitsu Limited Data processor and memory read active control method
US20080270758A1 (en) 2007-04-27 2008-10-30 Arm Limited Multiple thread instruction fetch from different cache levels
US7856530B1 (en) 2007-10-31 2010-12-21 Network Appliance, Inc. System and method for implementing a dynamic cache for a data storage system
US20090138659A1 (en) 2007-11-26 2009-05-28 Gary Lauterbach Mechanism to accelerate removal of store operations from a queue
US8145844B2 (en) 2007-12-13 2012-03-27 Arm Limited Memory controller with write data cache and read data cache
US20090157980A1 (en) 2007-12-13 2009-06-18 Arm Limited Memory controller with write data cache and read data cache
US20090164733A1 (en) 2007-12-21 2009-06-25 Mips Technologies, Inc. Apparatus and method for controlling the exclusivity mode of a level-two cache
US20090172344A1 (en) 2007-12-31 2009-07-02 Ed Grochowski Method, system, and apparatus for page sizing extension
US8868838B1 (en) 2008-11-21 2014-10-21 Nvidia Corporation Multi-class data cache policies
US20100138607A1 (en) 2008-12-03 2010-06-03 Hughes Christopher J Increasing concurrency and controlling replication in a multi-core cache hierarchy
US20100169578A1 (en) * 2008-12-31 2010-07-01 Texas Instruments Incorporated Cache tag memory
US20100211746A1 (en) 2009-02-17 2010-08-19 Fujitsu Microelectronics Limited Cache device
US20110010521A1 (en) 2009-07-13 2011-01-13 James Wang TLB Prefetching
US20110082983A1 (en) 2009-10-06 2011-04-07 Alcatel-Lucent Canada, Inc. Cpu instruction and data cache corruption prevention system
US20110153955A1 (en) 2009-12-18 2011-06-23 International Business Machines Corporation Software assisted translation lookaside buffer search mechanism
US20120042126A1 (en) 2010-08-11 2012-02-16 Robert Krick Method for concurrent flush of l1 and l2 caches
US8301847B2 (en) 2010-09-23 2012-10-30 International Business Machines Corporation Managing concurrent accesses to a cache
US20130097369A1 (en) 2010-12-13 2013-04-18 Fusion-Io, Inc. Apparatus, system, and method for auto-commit memory management
US9047178B2 (en) 2010-12-13 2015-06-02 SanDisk Technologies, Inc. Auto-commit memory synchronization
US20130019047A1 (en) 2011-07-11 2013-01-17 Dmitry Podvalny Memory conflicts learning capability
US20130046934A1 (en) * 2011-08-15 2013-02-21 Robert Nychka System caching using heterogenous memories
US20130086417A1 (en) 2011-09-30 2013-04-04 Ramaswamy Sivaramakrishnan Systems and Methods for Retiring and Unretiring Cache Lines
US20130238874A1 (en) 2012-03-07 2013-09-12 Soft Machines, Inc. Systems and methods for accessing a unified translation lookaside buffer
US8930674B2 (en) 2012-03-07 2015-01-06 Soft Machines, Inc. Systems and methods for accessing a unified translation lookaside buffer
US20130346699A1 (en) 2012-06-26 2013-12-26 William L. Walker Concurrent access to cache dirty bits
US20140032844A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for flushing a cache with modified data
US20140156947A1 (en) 2012-07-30 2014-06-05 Soft Machines, Inc. Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US20140032845A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US20140032856A1 (en) 2012-07-30 2014-01-30 Soft Machines, Inc. Systems and methods for maintaining the coherency of a store coalescing cache and a load cache
US20160041930A1 (en) 2012-07-30 2016-02-11 Soft Machines, Inc. Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US20160041913A1 (en) 2012-07-30 2016-02-11 Soft Machines, Inc. Systems and methods for supporting a plurality of load and store accesses of a cache
US20160041908A1 (en) 2012-07-30 2016-02-11 Soft Machines, Inc. Systems and methods for maintaining the coherency of a store coalescing cache and a load cache
US20140108730A1 (en) 2012-10-11 2014-04-17 Soft Machines, Inc. Systems and methods for non-blocking implementation of cache flush instructions
US20140281242A1 (en) 2013-03-15 2014-09-18 Soft Machines, Inc. Methods, systems and apparatus for predicting the way of a set associative cache

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Barham et al., "Xen and the Art of Virtualization," ACM; Oct. 19, 2003; pp. 164-177.
Gene Cooperman, Cache Basics, 2003, http://www.ccs.neu.edu/course/com3200/parent/Notes/cache-basics.html, pp. 1-3.

Also Published As

Publication number Publication date
US20160041930A1 (en) 2016-02-11
US20140032845A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US9430410B2 (en) Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
US9720839B2 (en) Systems and methods for supporting a plurality of load and store accesses of a cache
US10698833B2 (en) Method and apparatus for supporting a plurality of load accesses of a cache in a single cycle to maintain throughput
US10346302B2 (en) Systems and methods for maintaining the coherency of a store coalescing cache and a load cache
US9858206B2 (en) Systems and methods for flushing a cache with modified data
US11314647B2 (en) Methods and systems for managing synonyms in virtually indexed physically tagged caches
US10474584B2 (en) Storing cache metadata separately from integrated circuit containing cache controller
US8566607B2 (en) Cryptography methods and apparatus used with a processor
US10002076B2 (en) Shared cache protocol for parallel search and replacement
KR20180094469A (en) Hybrid memory module and operating method thereof
US10067709B2 (en) Page migration acceleration using a two-level bloom filter on high bandwidth memory systems
US10831675B2 (en) Adaptive tablewalk translation storage buffer predictor
US20080098178A1 (en) Data storage on a switching system coupling multiple processors of a computer system
US20120173843A1 (en) Translation look-aside buffer including hazard state
US20080016282A1 (en) Cache memory system
CN113515470A (en) Cache addressing
US10565121B2 (en) Method and apparatus for reducing read/write contention to a cache
US9274964B2 (en) Multi-bank cache memory
US20020188805A1 (en) Mechanism for implementing cache line fills
WO2014022115A1 (en) Systems and methods for supporting a plurality of load accesses of a cache in a single cycle
TW202331713A (en) Method for storing and accessing a data operand in a memory unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOFT MACHINES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AVUDAIYAPPAN, KARTHIKEYAN;ABDALLAH, MOHAMMAD;REEL/FRAME:028675/0127

Effective date: 20120720

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOFT MACHINES, INC.;REEL/FRAME:040631/0915

Effective date: 20161107

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200830