USH1525H - Method and system for high speed photolithography - Google Patents

Method and system for high speed photolithography Download PDF

Info

Publication number
USH1525H
USH1525H US08/045,341 US4534193A USH1525H US H1525 H USH1525 H US H1525H US 4534193 A US4534193 A US 4534193A US H1525 H USH1525 H US H1525H
Authority
US
United States
Prior art keywords
mask
computer
programmable mask
programmable
work piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US08/045,341
Inventor
Bruce Geil
Tim Mermagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US08/045,341 priority Critical patent/USH1525H/en
Application granted granted Critical
Publication of USH1525H publication Critical patent/USH1525H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices

Definitions

  • This invention relates to a method and system for the patterning wafers at high speed without the generation of a photomask.
  • the first method uses a glass plate with chrome and photosensitive layer on it. After the pattern is designed on the computer, a special camera is used to expose the photosensitive layer. The photosensitive layer is then developed and the chrome is etched away in the exposed area.
  • This mask is then used to pattern the intergrated circuit through the use of another camera.
  • the camera aligns the photomask with the wafer and then floods the mask with light, allowing light only to pass through area where the chrome is removed, thus exposing the wafer. In this way the entire circuit is patterned all at one time.
  • the advantage of this method is the speed in which the wafer can be exposed. In a production fabrication facility over 40 wafer are treated each hour for each for each patterning system.
  • a disadvantage of this system is that a new mask must be produced for each level of the circuit. This adds up to thousands of masks for a production facility. An other disadvantage is that the a new mask must be produced for any change of mask set.
  • Another method for patterning an integrated circuit is through the use of a beam writing tool.
  • This tool uses a focused scan of particles, such as an electron beam, or an ion beam to expose the photosensitive material on the wafer.
  • each circuit is exposed using a beam that is millions of times smaller than the area of the circuit.
  • the beam then has to scan the entire surface area of the circuit.
  • the advantage of this method is that the pattern being exposed on the wafer can be changed by varying the data fed into the beam writing tool.
  • the need for creating a photomask first is eliminated.
  • the disadvantage of the method is the speed at which the tool writes the patterns. With these systems, i.e., 6 wafers per hour can be run through the system. This is a problem in production where a level of 60 wafers per hour would be desirable.
  • the present invention relates to a system and method for patterning wafer at high speed without the generation of a photomask.
  • the method uses a liquid crystal display (LCD) which is positioned between the layers of a plastic material.
  • a series of wires extend from the plastic material into the LCD.
  • a series of pixels are positioned at the bottom of the lower crystal materials.
  • the pixels are controlled by a computer.
  • the mask can either be contact printed directly on the circuit, or the image can be optically controlled.
  • FIG. 1 is schematic view of the system utilized to carry out the invention.
  • FIG. 2 is a plan view of the LCD component of FIG. 1.
  • FIG. 3 is a sectional view 3'--3' of FIG. 2.
  • FIG. 4 is a plan view of the bottom component 16 of the LCD.
  • the present invention proposes the use of a modifiable mask for the production of intergrated circuits.
  • This method uses a computer to change the mask as required.
  • the mask can be changed as often as needed.
  • the present invention comprises LCD 10 which consists essentially of encased liquid 12 sandwiched between top section 14, and bottom section 16. A series of pixels 18 are positioned on the interior bottom section of component 16. Each of the pixels are individually responsive to the signal from the computer.
  • the LCD IS commercially available from Sharp Electronics. The liquid emcompassed in the LCD is proprietary.
  • Clear wire 20 runs through the crystal. When a current is applied to the pixels the liquid becomes opaque along the wire.
  • a computer or controller By connecting the wire to a computer or controller, specific areas of the LCD can be turned on or off.
  • the computer controls which areas of the LCD are opaque, thus creating a mask. If a change is to be made to the mask, the computer turns off certain areas of the LCD and/or turns on other areas. This will allow rapid change in the design, while allowing the high speed patterning available with the photomask method of patterning .
  • the alignments system comprises light source 26 positioned above LCD means 14.
  • the light source may have shade means 28 to direct and restrict the light to the LCD means.
  • the LCD means are suitable connected to power and computer means 30.
  • the work piece 32 (wafer) is positioned a suitable distance beneath the LCD means.
  • the mask design is entered into computer controller 30.
  • Work piece 32 (substrate) is aligned into the system.
  • the mask from the computer is fed into programmable mask 14.
  • the programmable mask is aligned with the work piece using alignment marks programmed into the pattern data.
  • the work piece is exposed through the programmable mask by means of lamp 26.
  • the workpiece is removed, and the above steps are repeated for each different mask required to complete the mask.

Abstract

A method and system for modification of a pattern on a semiconductor subste, comprising the application of an electrical current through a liquid medium having a series of individual pixels controlled by a computer, thereby causing the clear liquid to change to opaque in selected areas.

Description

The invention described herein may be manufactured, used, and licensed by or for the Government for Governmental purposes without the payment to us of any royalties thereon.
BACKGROUND OF INVENTION
1. Field of Invention
This invention relates to a method and system for the patterning wafers at high speed without the generation of a photomask.
2. Brief description of the Prior Art
In the production of integrated circuits, computer designed patterns are used to delineate areas on the circuit. For each item produced, up to twenty or more different patterns are used, i.e., one for each level of the circuit. There are currently two methods for transferring patterns onto semiconductor substrates.
The first method uses a glass plate with chrome and photosensitive layer on it. After the pattern is designed on the computer, a special camera is used to expose the photosensitive layer. The photosensitive layer is then developed and the chrome is etched away in the exposed area.
This mask is then used to pattern the intergrated circuit through the use of another camera. The camera aligns the photomask with the wafer and then floods the mask with light, allowing light only to pass through area where the chrome is removed, thus exposing the wafer. In this way the entire circuit is patterned all at one time. The advantage of this method is the speed in which the wafer can be exposed. In a production fabrication facility over 40 wafer are treated each hour for each for each patterning system.
A disadvantage of this system is that a new mask must be produced for each level of the circuit. This adds up to thousands of masks for a production facility. An other disadvantage is that the a new mask must be produced for any change of mask set.
Another method for patterning an integrated circuit is through the use of a beam writing tool. This tool uses a focused scan of particles, such as an electron beam, or an ion beam to expose the photosensitive material on the wafer. In this method, each circuit is exposed using a beam that is millions of times smaller than the area of the circuit. The beam then has to scan the entire surface area of the circuit. The advantage of this method is that the pattern being exposed on the wafer can be changed by varying the data fed into the beam writing tool. The need for creating a photomask first is eliminated. The disadvantage of the method is the speed at which the tool writes the patterns. With these systems, i.e., 6 wafers per hour can be run through the system. This is a problem in production where a level of 60 wafers per hour would be desirable.
SUMMARY OF INVENTION
The present invention relates to a system and method for patterning wafer at high speed without the generation of a photomask. The method uses a liquid crystal display (LCD) which is positioned between the layers of a plastic material. A series of wires extend from the plastic material into the LCD. A series of pixels are positioned at the bottom of the lower crystal materials. The pixels are controlled by a computer. The mask can either be contact printed directly on the circuit, or the image can be optically controlled.
OBJECTS OF THE INVENTION
It is an object of the invention to provide and disclose a method for the fabrication of semiconductor.
It is a further object of this invention to provide and disclose a system for the fabrication of semiconductors obviating the need for a different pattern for each level of the circuit.
It is a further object of this invention to provide and disclose a method for the fabrication of a semicoductor wherein the mask can be contact printed directly on the circuit.
It is a further object of the invention to provide and disclose a method for the fabrication of a semiconductor wherein the image can be optically controlled.
Other objects and a fuller understanding of the invention may be ascertained from the following drawings, description and claims.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is schematic view of the system utilized to carry out the invention.
FIG. 2 is a plan view of the LCD component of FIG. 1.
FIG. 3 is a sectional view 3'--3' of FIG. 2.
FIG. 4 is a plan view of the bottom component 16 of the LCD.
DESCRIPTION OF PREFERRED EMBODIMENT
The present invention proposes the use of a modifiable mask for the production of intergrated circuits. This method uses a computer to change the mask as required. The mask can be changed as often as needed.
Referring now to FIG. 2 of the drawings, the present invention comprises LCD 10 which consists essentially of encased liquid 12 sandwiched between top section 14, and bottom section 16. A series of pixels 18 are positioned on the interior bottom section of component 16. Each of the pixels are individually responsive to the signal from the computer. The LCD IS commercially available from Sharp Electronics. The liquid emcompassed in the LCD is proprietary.
Clear wire 20 runs through the crystal. When a current is applied to the pixels the liquid becomes opaque along the wire. By connecting the wire to a computer or controller, specific areas of the LCD can be turned on or off. The computer controls which areas of the LCD are opaque, thus creating a mask. If a change is to be made to the mask, the computer turns off certain areas of the LCD and/or turns on other areas. This will allow rapid change in the design, while allowing the high speed patterning available with the photomask method of patterning .
The alignments system comprises light source 26 positioned above LCD means 14. The light source may have shade means 28 to direct and restrict the light to the LCD means. The LCD means are suitable connected to power and computer means 30. The work piece 32 (wafer) is positioned a suitable distance beneath the LCD means.
In operation, the mask design is entered into computer controller 30. Work piece 32 (substrate) is aligned into the system. The mask from the computer is fed into programmable mask 14. The programmable mask is aligned with the work piece using alignment marks programmed into the pattern data. The work piece is exposed through the programmable mask by means of lamp 26. The workpiece is removed, and the above steps are repeated for each different mask required to complete the mask.
There are several advantages in the utilization of the present invention. It is possible to perform several different chip design designs on one mask, thereby eliminating the need to produce a mask for layer of the circuit. Further, the mask can be printed directly on the individually controlled circurity. Although we have described our invention with a certain degree of particularity, it is understood that modification may be made without departing from the spirit and scope of the present invention as herein claimed.

Claims (3)

Having described our invention, we claim:
1. A system for the production of an intergrated circuit comprising:
a computer,
a programmable mask,
a computer controller designed to feed a mask design into the programmable mask,
a work piece aligned with the programmable mask, and
means for exposing the work piece through the programmable mask.
2. A system in accordance with claim 1, wherein the programmable mask comprises
a top and bottom component composed of a clear plastic,
a clear liquid encompassed within the programmable mask at the midsection thereof,
a series of pixels positioned in the interior of the bottom component of the programmable mask so as to react with the liquid on command from the computer.
3. A method for the production of intergrated circuits for the production of intergrated circuits comprising the steps of:
entering a mask design into a computer controller,
feeding mask from the computer controller into a programmable mask,
aligning the programmable mask with a work piece, and
exposing the work piece through the programmable mask.
US08/045,341 1993-04-08 1993-04-08 Method and system for high speed photolithography Abandoned USH1525H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/045,341 USH1525H (en) 1993-04-08 1993-04-08 Method and system for high speed photolithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/045,341 USH1525H (en) 1993-04-08 1993-04-08 Method and system for high speed photolithography

Publications (1)

Publication Number Publication Date
USH1525H true USH1525H (en) 1996-04-02

Family

ID=21937337

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/045,341 Abandoned USH1525H (en) 1993-04-08 1993-04-08 Method and system for high speed photolithography

Country Status (1)

Country Link
US (1) USH1525H (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004950A1 (en) * 1996-07-25 1998-02-05 Anvik Corporation Seamless, maskless lithography system using spatial light modulator
WO1998029767A1 (en) * 1997-01-04 1998-07-09 Munday Robert A Method and apparatus for creating holographic patterns
US6042973A (en) * 1998-01-08 2000-03-28 Micron Technology, Inc. Subresolution grating for attenuated phase shifting mask fabrication
US6096457A (en) * 1998-02-27 2000-08-01 Micron Technology, Inc. Method for optimizing printing of a phase shift mask having a phase shift error
US6106979A (en) * 1997-12-30 2000-08-22 Micron Technology, Inc. Use of attenuating phase-shifting mask for improved printability of clear-field patterns
US6177980B1 (en) * 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
US6291110B1 (en) 1997-06-27 2001-09-18 Pixelligent Technologies Llc Methods for transferring a two-dimensional programmable exposure pattern for photolithography
US6379847B2 (en) 1998-02-27 2002-04-30 Micron Technology, Inc. Electrically programmable photolithography mask
US20030061958A1 (en) * 2001-10-02 2003-04-03 Guobiao Zhang Low-cost lithography
WO2003052515A1 (en) * 2001-12-17 2003-06-26 Koninklijke Philips Electronics N.V. Method of forming optical images, diffraction element for use with this method, apparatus for carrying out this method
US20060147845A1 (en) * 2005-01-05 2006-07-06 Flanigan Kyle Y Electrically reconfigurable photolithography mask for semiconductor and micromechanical substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653860A (en) * 1985-01-07 1987-03-31 Thomson Components-Mostek Corporation Programable mask or reticle with opaque portions on electrodes
US5045419A (en) * 1986-11-20 1991-09-03 Kabushiki Kaisha Toshiba Pattern exposure/transfer method and pattern exposure/transfer mask apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653860A (en) * 1985-01-07 1987-03-31 Thomson Components-Mostek Corporation Programable mask or reticle with opaque portions on electrodes
US5045419A (en) * 1986-11-20 1991-09-03 Kabushiki Kaisha Toshiba Pattern exposure/transfer method and pattern exposure/transfer mask apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004950A1 (en) * 1996-07-25 1998-02-05 Anvik Corporation Seamless, maskless lithography system using spatial light modulator
WO1998029767A1 (en) * 1997-01-04 1998-07-09 Munday Robert A Method and apparatus for creating holographic patterns
US6177980B1 (en) * 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
US6480261B2 (en) 1997-06-27 2002-11-12 Pixelligent Technologies Llc Photolithographic system for exposing a wafer using a programmable mask
US6888616B2 (en) 1997-06-27 2005-05-03 Pixelligent Technologies Llc Programmable photolithographic mask system and method
US20040051855A1 (en) * 1997-06-27 2004-03-18 Pixelligent Technologies Llc. Programmable photolithographic mask system and method
US6600551B2 (en) 1997-06-27 2003-07-29 Pixelligent Technologies Llc Programmable photolithographic mask system and method
US6291110B1 (en) 1997-06-27 2001-09-18 Pixelligent Technologies Llc Methods for transferring a two-dimensional programmable exposure pattern for photolithography
US6106979A (en) * 1997-12-30 2000-08-22 Micron Technology, Inc. Use of attenuating phase-shifting mask for improved printability of clear-field patterns
US6255024B1 (en) 1997-12-30 2001-07-03 Micron Technology, Inc. Use of attenuating phase-shifting mask for improved printability of clear-field patterns
US6558856B2 (en) 1998-01-08 2003-05-06 Micron Technology, Inc. Subresolution grating for attenuated phase shifting mask fabrication
US6268091B1 (en) 1998-01-08 2001-07-31 Micron Subresolution grating for attenuated phase shifting mask fabrication
US6077630A (en) * 1998-01-08 2000-06-20 Micron Technology, Inc. Subresolution grating for attenuated phase shifting mask fabrication
US6042973A (en) * 1998-01-08 2000-03-28 Micron Technology, Inc. Subresolution grating for attenuated phase shifting mask fabrication
US6379847B2 (en) 1998-02-27 2002-04-30 Micron Technology, Inc. Electrically programmable photolithography mask
US6528217B2 (en) 1998-02-27 2003-03-04 Micron Technology, Inc. Electrically programmable photolithography mask
US6537710B2 (en) 1998-02-27 2003-03-25 Micron Technology, Inc. Electrically programmable photolithography mask
US6096457A (en) * 1998-02-27 2000-08-01 Micron Technology, Inc. Method for optimizing printing of a phase shift mask having a phase shift error
US6917411B1 (en) 1998-02-27 2005-07-12 Micron Technology, Inc. Method for optimizing printing of an alternating phase shift mask having a phase shift error
US20030061958A1 (en) * 2001-10-02 2003-04-03 Guobiao Zhang Low-cost lithography
US6989603B2 (en) 2001-10-02 2006-01-24 Guobiao Zhang nF-Opening Aiv Structures
WO2003052515A1 (en) * 2001-12-17 2003-06-26 Koninklijke Philips Electronics N.V. Method of forming optical images, diffraction element for use with this method, apparatus for carrying out this method
US20060147845A1 (en) * 2005-01-05 2006-07-06 Flanigan Kyle Y Electrically reconfigurable photolithography mask for semiconductor and micromechanical substrates

Similar Documents

Publication Publication Date Title
USH1525H (en) Method and system for high speed photolithography
US5705299A (en) Large die photolithography
KR19990088024A (en) Semiconductor device and alignment method
US20020115021A1 (en) Configurable patterning device and a method of making integrated circuits using such a device
KR20040048856A (en) Integrated circuit identification
US5843831A (en) Process independent alignment system
US5105215A (en) Liquid crystal programmable photoresist exposure system
US6861186B1 (en) Method for backside alignment of photo-processes using standard front side alignment tools
CN114631060A (en) Smart mask, exposure apparatus, exposure method and exposure pattern forming method
US6954272B2 (en) Apparatus and method for die placement using transparent plate with fiducials
US5919605A (en) Semiconductor substrate exposure method
JP2886408B2 (en) Double-sided pattern forming method
JP3434593B2 (en) Method for manufacturing semiconductor device
CN1188328A (en) Process for manufacturing optical shade of zero level of integrated circuit
JPH10261559A (en) Manufacture of semiconductor device and aligner
US20060147845A1 (en) Electrically reconfigurable photolithography mask for semiconductor and micromechanical substrates
JPH07219209A (en) Photomask
KR100230377B1 (en) Photomask with aligning key
JPH03191348A (en) Reticle for reduction stepper
JPS60224224A (en) Mask aligning method
GB2105858A (en) Registered writing beam
KR0147641B1 (en) Reticle and method for forming align-key pattern using it
JPH0750242A (en) Phototransfer beam exposure device
US5796468A (en) Apparatus used to align and mark wafers
JPH02237011A (en) Reticle for reduction projection aligner, reduction projection aligner, large-scale ic manufacture and large-scale ic

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE