USRE26501E - Multi-channel rotary transformer - Google Patents

Multi-channel rotary transformer Download PDF

Info

Publication number
USRE26501E
USRE26501E US26501DE USRE26501E US RE26501 E USRE26501 E US RE26501E US 26501D E US26501D E US 26501DE US RE26501 E USRE26501 E US RE26501E
Authority
US
United States
Prior art keywords
rotor
stator
core
shaft
side walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE26501E publication Critical patent/USRE26501E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers

Definitions

  • a rotary transformer having a frame with spaced bearings therein, a shaft journalled in the bearings, a plurality of U-shaped rotor cores affixed to the shaft in axiallyspaced relation, each rotor core having radially extending side walls confining a rotor coil, and a U-shaped stator core on the frame for each rotor, the stator core also having radially extending side walls confining a stator coil, each stator coil further including two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with the stator core side walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, the stator cores each being mounted on the frame to dispose the side walls thereof in radially overlapping relation to the side walls of the associated rotor core.
  • This invention relates to a rotary transformer, and, more particularly, to a device that is capable of transferring one or several channels of either or both data and power in electrical form, between a rotating shaft and a stationary member, and the provision of such constitutes an object of this invention.
  • FIG. 1 is a longitudinal sectional view of a multichannel rotary transformer constructed according to the teachings of the invention
  • F IG. 2 is a transverse sectional view such as would be seen along the sight line 22 applied to FIG. 1;
  • FIG. 3 is an enlarged fragmentary view of the details of a single transformer section showing rotor and stator, windings, and cores;
  • FlG. 4 is a schematic picturization of a portion of FIG. 3 and showing the lines of flux developed by the rotor and stator.
  • FIG. 3 contains the details of a single transformer section, and FIG. 1 shows several transformer sections assembled into a multi-channel unit.
  • the rotor and stator core geometries shown in FIG. 3 minimizes the total leakage flux and, in addition, minimize the external leakage; i.c., that portion of the total leakage flux which finds its way outside of the external or stator structure.
  • FIG. 4 The major flux paths are shown schematically in FIG. 4. It will be seen that the air gap (necessary to accomplish rotation without mechanical contact) reluctance is minimized by the design of the rotor and stator core structures. There are two important air gap reluctanccs in this Re. 26,501 Reissued Dec. 10, 1968 "ice magnetic circuit; i.e., those between the two parallel sides of rotor and stator. Because the flux path is parallel to the gap between the two halves of the stator, that gap has no important effect on the magnetic circuit.
  • this core design permits operation at higher flux levels for a given core volume and results in the achievement of very high volts per turn ratios and power levels for a given volume.
  • Still another advantage of this core geometry is that it inherently cancels the effect of radial run-out.
  • the net air gap is maintained constant even if the rotor assembly should have appreciable run-out. Stated in other words, as the clearance in one sector of the figure of rotation increases, it decreases in the other sector, and, because the coils are wound to produce radially symmetrical fields, the net coupling, as the rotor shaft turns with radial run-out, remains constant.
  • these core structures provide, by virtue of their geometrical configuration, low reluctance air gaps between rotor and stator, very small external flux leakage, and air gap symmetry both with respect to the axis of rotation and in the plane perpendicular to the axis of rotation.
  • the low reluctance results from favorable use of areas of rotation in the design of the core sections.
  • the air gap symmetry provides transformer electrical characteristics with inherent immunity from the effects of radial run-out and shaft end play.
  • the numeral 20 designates generally a casing or cylindrical housing for the rotary transformer and is equipped with end closures as at 21 and 22 suitably secured thereto.
  • end closure 22 radially extending bolts 23 are employed to secure the end closure 22 to the cylindrical housing 20.
  • the end closure 22 is apcrtured for the extension of the rotor shaft 24 and also is recessed as at 25 to support one bearing 26.
  • the other end closure 21 is apertured as at 27 for the extension of the shaft 24.
  • the shaft extension 24a is seen to be equipped with the gear 28 which provides rotational power for the shaft 24.
  • the shaft 24 is equipped with a hollow bore as at 24b for the purpose of supplying the electrical connections 29 (see FIG. 3) to the rotor winding 30.
  • the end closure 21 is seen to be bolted to a bearing support member 31 (the bolts being designated 32). Additionally the bearing carrying member provides one support for the alignment bars 33 (see also FIG. 2) which support and align the various stators 34.
  • shields 35 Interposed between adjacent stators are laminated shields 35 (see also FIG. 3), and the shields are supported on a ground rod 36 extending between the end plates 21 and 22.
  • the numeral 37 designates a terminal board carrying terminals 38 and 39 which are in turn connected by means of Wires 40 and 41 to the stator winding 42.
  • the stator 34 is seen to be apertured as at 43 to permit access of the wires 40 and 41.
  • An additional access is provided at 44 for the purpose of carrying a shield ground wire 45.
  • the wire 4-5 is seen to be connected to the ground rod or boss 36.
  • stator 34 is divided into portions 3421 which are identical hemicylinders, mating along a diametral plane 34b. Supporting the hemi-cylinders 34a are the alignment bars 33 previously mentioned.
  • the shaft 24 is supported at one end by means of duplex bearings 46.
  • the bearings constrain the rotor shaft 24 at one end.
  • the duplex bearings are designed with a fixed pre-load that eliminates axial shaft movement at the reference end, i.e., the end equipped with the driving means 28, until the axial shaft load reaches the fixed pre-load. This pre-load may be made greater than the expected rotor axial load.
  • the other end of the rotor shaft is not constrained in the axial direction.
  • the stator core 34 is positioned by the four slotted alignment bars 33.
  • the alignment bars 33 advantageously have controlled dimensions from the shaft reference end (R in FIG. 1) to a reference surface on each stator face. The stator cores are then held in position against these reference surfaces for accurate alignment and are cemented or otherwise fastened to them.
  • FIG. 3 shows a method for making electrical connections to both the rotating and stationary coils. It also shows one method of insulating the coils from the core structures and additionally depicts one method of providing electrostatic shield between the rotor and stator winding.
  • planar shields 35 are a lamination of highly permeable magnetic material (such as Mumetal alloy) with highly conducting material, or, alternatively, they are Mumetal or equivalent plated with a highly conducting material such as silver or copper.
  • highly permeable magnetic material such as Mumetal alloy
  • highly conducting material such as silver or copper.
  • the purpose of these inter-channel shields is twofold; first, the presence of the conductor which is electrically connected to ground provides for electrostatic shielding between adjacent transformer channels. Second, the planar shield provides further magnetic shielding between adjacent channels both at extremely low frequencies (by virtue of the presence of highly permeable magnetic materials) and at extremely high frequencies (by virtue of the 4 presfnce of highly P b e magnetic materials and good electrical conductors).
  • FIG. 1 it will be seen how several of these transformer core sections and shields are combined in a complete assembly.
  • One practical method for making electrical connetcions is shown in FIG. 3.
  • twisted wires could be substituted for the coaxial cables shown (29 In FIG. 3); coaxial connectors could be used in lieu of the terminals indicated on FIG. 3; but none of these changes are significant, nor, in fact, will they affect the overall performance except in a trivial and well known manner.
  • the alignment bars 33 may be advantageously made of the same metal as the rotor shaft 24. Thus, they have the same temperature coefficient of expansion as the shaft. The net result of such an arrangement is that, as the temperature varies over a wide range, the rotor and stator cores remain in fixed relation to one another and, in particular, the net magnetic reluctance of the air gaps remains fixed. Therefore, the leakage 1nductance of the transformer remains constant over wide ranges of temperature and its electrical characteristics are constant.
  • a multi-channel rotary transformer comprising a frame providing spaced bearings, a shaft jollfl'ltlllCd ll'l said bearings, means coupled to said shaft for rotating the same, a plurality of U-shaped rotor cores affixed to said shaft in axially-spaced relation, each rotor core having radially-extending side walls confinmg a rotor C011, and a U-shaped stator core on said frame for each rotolr, said stator core also having radially-extending s de wal s confining a stator coil, each stator core further ncluding two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with said stator core side Walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, said stator cores each being mounted on said frame to dispose
  • stator core being mounted on said frame to dispose the stator core side walls in overlapping relation to the rotor core side walls so as to position said rotor core outer faces in confronting spaced relatio i h id state" Core Mlle" l ws whereby said rotor core is received within the stator core to provide a minimumrelucrance rotary mansfomwr Characterized by gaps existing axial/y between the side wullr of said rotor and stator cores and annularly between the segmentally annular members.
  • stator core side walls are radially substantially longer than the radial dimension of said rotor core.
  • stator core side walls extend substantially to said shaft whereby said 'stator core cooperates with said shaft to effectively envelop said rotor core.
  • stator core side walls are spaced apart a distance greater than the axial dimension of the stator coil.
  • a grounded permeable shield is disposed adjacent one of said stator core side walls and is arranged to extend radially a distance substantially greater than the radial dimension of said transformer.
  • stator core members comprise substantially identical members.
  • stator core members comprise substantially identical hemicylindrical members.

Description

1963 s. HIMMELSTEIN ETAL R 26,501
MULTI'CHANNEL ROTARY TRANSFORMER Original Filed May 1. 1964 Fig l INVENTQRS Sydney HI els? em 0rdd SS. T mick or va or J 2 al -9 (144/ nrmmvsvs Fig. 4
United States Patent 26,501 MULTI-CHANNEL ROTARY TRANSFORMER Sydney Himmelstein, Park Ridge, Howard S. Knaack,
Lake Bluff, and Richard S. Tveter, Glenview, Ill., assignors, by direct and mesne assignments, to S. Himmelstein and Company, Elk Grove Village, "L, a corporation of Illinois Original No. 3,317,873, dated May 2, 1967, Ser. No. 364,129, May 1, 1964. Application for reissue Jan. 5, 1968, Ser. No. 698,981
9 Claims. (Cl. 336-120) Matter enclosed in heavy brackets II appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A rotary transformer having a frame with spaced bearings therein, a shaft journalled in the bearings, a plurality of U-shaped rotor cores affixed to the shaft in axiallyspaced relation, each rotor core having radially extending side walls confining a rotor coil, and a U-shaped stator core on the frame for each rotor, the stator core also having radially extending side walls confining a stator coil, each stator coil further including two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with the stator core side walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, the stator cores each being mounted on the frame to dispose the side walls thereof in radially overlapping relation to the side walls of the associated rotor core.
This invention relates to a rotary transformer, and, more particularly, to a device that is capable of transferring one or several channels of either or both data and power in electrical form, between a rotating shaft and a stationary member, and the provision of such constitutes an object of this invention.
Other objects and advantages of the invention may be seen in the details of operation and construction set down in this specification.
The invention is explained in conjunction with the accompanying drawing, in which FIG. 1 is a longitudinal sectional view of a multichannel rotary transformer constructed according to the teachings of the invention;
F IG. 2 is a transverse sectional view such as would be seen along the sight line 22 applied to FIG. 1;
FIG. 3 is an enlarged fragmentary view of the details of a single transformer section showing rotor and stator, windings, and cores; and
FlG. 4 is a schematic picturization of a portion of FIG. 3 and showing the lines of flux developed by the rotor and stator.
FIG. 3 contains the details of a single transformer section, and FIG. 1 shows several transformer sections assembled into a multi-channel unit. The rotor and stator core geometries shown in FIG. 3 minimizes the total leakage flux and, in addition, minimize the external leakage; i.c., that portion of the total leakage flux which finds its way outside of the external or stator structure.
The major flux paths are shown schematically in FIG. 4. It will be seen that the air gap (necessary to accomplish rotation without mechanical contact) reluctance is minimized by the design of the rotor and stator core structures. There are two important air gap reluctanccs in this Re. 26,501 Reissued Dec. 10, 1968 "ice magnetic circuit; i.e., those between the two parallel sides of rotor and stator. Because the flux path is parallel to the gap between the two halves of the stator, that gap has no important effect on the magnetic circuit.
Returning to the two significant gaps, their magnetic reluctance is directly proportional to the gap length (distance between rotor and stator sides) and inversely proportional to the area of the parallel surfaces formed by the sides of rotor and stator cores. Because these areas are both figures of rotation, for small linear dimensions the resultant area becomes large so that practical (from a manufacturing viewpoint) air gaps can be used while maintaining very high magnetic circuit efficiency. Furthermore, with this configuration, as already noted, the total leakage flux (because the air gap reluctance has been minimized) is small. Thus, as in the case of any transformer, with leakage inductance minimized, it is possible to design a transformer that has extremely wide bandwidth; i.e., very high resonant frequency. Another important advantage of this core design is that by far the greatest portion of the small residual leakage occurs inside of the stator assembly where it cannot cause crosstalk; i.c., magnetic coupling from one transformer section to another.
Another advantage of this core configuration is that the cross-sectional area offered to the useful flux path has been maximized; i.e., the cross-sectional areas even in the relatively thin radial sections (because they are figures of rotation), are quite large. Therefore, this core design permits operation at higher flux levels for a given core volume and results in the achievement of very high volts per turn ratios and power levels for a given volume.
Still another advantage of this core geometry is that it inherently cancels the effect of radial run-out. Thus, it is seen that the net air gap is maintained constant even if the rotor assembly should have appreciable run-out. Stated in other words, as the clearance in one sector of the figure of rotation increases, it decreases in the other sector, and, because the coils are wound to produce radially symmetrical fields, the net coupling, as the rotor shaft turns with radial run-out, remains constant.
This same result obtains for any residual axial play. If there is residual axial play, the net reluctance between rotor and stator remains constant because as the clearance increases (and therefore the reluctance increases) on one side, it decreases (and therefore the reluctance decreases) by an equal amount on the other side-the net effect being inherent immunity to such variations. It will be recognized that the essential core characteristics described above may be obtained with minor variations in core geometry. However, the structure delineated in FIG. 3 is our preferred arrangement.
By way of emphasis, the essential features of these core structures are that they provide, by virtue of their geometrical configuration, low reluctance air gaps between rotor and stator, very small external flux leakage, and air gap symmetry both with respect to the axis of rotation and in the plane perpendicular to the axis of rotation. The low reluctance results from favorable use of areas of rotation in the design of the core sections. The air gap symmetry provides transformer electrical characteristics with inherent immunity from the effects of radial run-out and shaft end play.
Other advantages which accure from this design are high resultant volumetric cfliciency for any given power and harmonic distortion requirement as well as unusually low total leakage (results in wide bandwidth) and outside leakage (results in low crosstalk). Furthermore, because the stator cores are split along their diameter, the resultant air gap is not critical and assembly of multichannel units is facilitated.
In FIG. 1 the numeral 20 designates generally a casing or cylindrical housing for the rotary transformer and is equipped with end closures as at 21 and 22 suitably secured thereto. In the case of the end closure 22, radially extending bolts 23 are employed to secure the end closure 22 to the cylindrical housing 20. The end closure 22 is apcrtured for the extension of the rotor shaft 24 and also is recessed as at 25 to support one bearing 26.
The other end closure 21 is apertured as at 27 for the extension of the shaft 24. The shaft extension 24a is seen to be equipped with the gear 28 which provides rotational power for the shaft 24. Additionally, the shaft 24 is equipped with a hollow bore as at 24b for the purpose of supplying the electrical connections 29 (see FIG. 3) to the rotor winding 30.
Returning again to FIG. 1, the end closure 21 is seen to be bolted to a bearing support member 31 (the bolts being designated 32). Additionally the bearing carrying member provides one support for the alignment bars 33 (see also FIG. 2) which support and align the various stators 34.
Interposed between adjacent stators are laminated shields 35 (see also FIG. 3), and the shields are supported on a ground rod 36 extending between the end plates 21 and 22.
Referring particularly to FIG. 3, the numeral 37 designates a terminal board carrying terminals 38 and 39 which are in turn connected by means of Wires 40 and 41 to the stator winding 42. The stator 34 is seen to be apertured as at 43 to permit access of the wires 40 and 41. An additional access is provided at 44 for the purpose of carrying a shield ground wire 45. The wire 4-5 is seen to be connected to the ground rod or boss 36.
Turning now to FIG. 2, it will be seen that the stator 34 is divided into portions 3421 which are identical hemicylinders, mating along a diametral plane 34b. Supporting the hemi-cylinders 34a are the alignment bars 33 previously mentioned.
Turning now to FIG. 1, it is seen that the shaft 24 is supported at one end by means of duplex bearings 46. The bearings constrain the rotor shaft 24 at one end. The duplex bearings are designed with a fixed pre-load that eliminates axial shaft movement at the reference end, i.e., the end equipped with the driving means 28, until the axial shaft load reaches the fixed pre-load. This pre-load may be made greater than the expected rotor axial load. The other end of the rotor shaft is not constrained in the axial direction. The stator core 34 is positioned by the four slotted alignment bars 33. The alignment bars 33 advantageously have controlled dimensions from the shaft reference end (R in FIG. 1) to a reference surface on each stator face. The stator cores are then held in position against these reference surfaces for accurate alignment and are cemented or otherwise fastened to them.
FIG. 3 shows a method for making electrical connections to both the rotating and stationary coils. It also shows one method of insulating the coils from the core structures and additionally depicts one method of providing electrostatic shield between the rotor and stator winding.
These planar shields 35 are a lamination of highly permeable magnetic material (such as Mumetal alloy) with highly conducting material, or, alternatively, they are Mumetal or equivalent plated with a highly conducting material such as silver or copper. The purpose of these inter-channel shields is twofold; first, the presence of the conductor which is electrically connected to ground provides for electrostatic shielding between adjacent transformer channels. Second, the planar shield provides further magnetic shielding between adjacent channels both at extremely low frequencies (by virtue of the presence of highly permeable magnetic materials) and at extremely high frequencies (by virtue of the 4 presfnce of highly P b e magnetic materials and good electrical conductors).
Referring to FIG. 1, it will be seen how several of these transformer core sections and shields are combined in a complete assembly. One practical method for making electrical connetcions is shown in FIG. 3. However, it will be obvious to those skilled in the art that many variations are possible; for instance, twisted wires could be substituted for the coaxial cables shown (29 In FIG. 3); coaxial connectors could be used in lieu of the terminals indicated on FIG. 3; but none of these changes are significant, nor, in fact, will they affect the overall performance except in a trivial and well known manner.
The alignment bars 33 may be advantageously made of the same metal as the rotor shaft 24. Thus, they have the same temperature coefficient of expansion as the shaft. The net result of such an arrangement is that, as the temperature varies over a wide range, the rotor and stator cores remain in fixed relation to one another and, in particular, the net magnetic reluctance of the air gaps remains fixed. Therefore, the leakage 1nductance of the transformer remains constant over wide ranges of temperature and its electrical characteristics are constant.
We claim:
1. A multi-channel rotary transformer comprisinga frame providing spaced bearings, a shaft jollfl'ltlllCd ll'l said bearings, means coupled to said shaft for rotating the same, a plurality of U-shaped rotor cores affixed to said shaft in axially-spaced relation, each rotor core having radially-extending side walls confinmg a rotor C011, and a U-shaped stator core on said frame for each rotolr, said stator core also having radially-extending s de wal s confining a stator coil, each stator core further ncluding two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with said stator core side Walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, said stator cores each being mounted on said frame to dispose the side walls thereof in radially-over: lapping relation to the side walls of the associated rotor core so as to position said outer faces of said rotor core in confronting relation with said inner faces of said stator core whereby said rotor core is received within the hentr cylinders constituting the associated stator core to provide a minimum-reluctance rotor transformer charac; terized by air gaps existing only between the side wallslo said rotor and stator cores and between the dimetral yarranged hemicylinders.
2. A rotary transformer for use Will! a frame proweing spaced bearings, a shaft journallcd in said bearings, and means coupled to said shaft for rotatmg the same, said transformer comprising:
a radially outwardly opcnirrt, U-rlmperl rotor (ore ajfixed to said shaft and having radial/y extending Sltlc walls confining a rotor coil, and radially inwardly opening U-slzaperl stator core on said frame defined by a plurality of segmcntallv mnular unitary gapless members cooperatively defining an annular core arrangement confining a stator coil, each said member having a bight portion and radial- 1)! extending side walls integral therewith, the distance between the inner faces of said stator corc side walls being greater than the distance between the outer faces of the rotor core side walls, said stator core being mounted on said frame to dispose the stator core side walls in overlapping relation to the rotor core side walls so as to position said rotor core outer faces in confronting spaced relatio i h id state" Core Mlle" l ws whereby said rotor core is received within the stator core to provide a minimumrelucrance rotary mansfomwr Characterized by gaps existing axial/y between the side wullr of said rotor and stator cores and annularly between the segmentally annular members.
3. The rotary transformer of claim 2 wherein said stator core side walls are radially substantially longer than the radial dimension of said rotor core.
4. The rotary transformer of claim 2 wherein said stator core side walls extend substantially to said shaft whereby said 'stator core cooperates with said shaft to effectively envelop said rotor core.
5. The rotary transformer of claim 2 wherein said stator core side walls are spaced apart a distance greater than the axial dimension of the stator coil.
6. The rotary transformer of claim 2 wherein a grounded permeable shield is disposed adjacent one of said stator core side walls and is arranged to extend radially a distance substantially greater than the radial dimension of said transformer.
7. The rotary transformer of claim 2 wherein said stator core members comprise substantially identical members.
8. The rotary transformer of claim 2 wherein said stator core members comprise substantially identical hemicylindrical members.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,298,216 10/1942 Lamberger et a1. 73141 XR 2,432,982 12/1947 Braddon et a1. 336123 XR 3,179,909 4/1965 Cheney 336120 LEWIS H. MYERS, Primary Examiner.
T. I KOZMA, Assistant Examiner.
US. Cl. X.R.
US26501D Multi-channel rotary transformer Expired USRE26501E (en)

Publications (1)

Publication Number Publication Date
USRE26501E true USRE26501E (en) 1968-12-10

Family

ID=2096159

Family Applications (1)

Application Number Title Priority Date Filing Date
US26501D Expired USRE26501E (en) Multi-channel rotary transformer

Country Status (1)

Country Link
US (1) USRE26501E (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492618A (en) * 1968-05-07 1970-01-27 Breeze Corp Split rotary electric transformer
US4563905A (en) * 1984-08-27 1986-01-14 S. Himmelstein And Company Shaft torquemeter
US7068015B1 (en) * 1999-10-07 2006-06-27 Vestas Wind Systems A/S Wind power plant having magnetic field adjustment according to rotation speed
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US7608098B1 (en) 2004-11-09 2009-10-27 Biomet Sports Medicine, Llc Bone fixation device
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8273106B2 (en) 2006-02-03 2012-09-25 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8337525B2 (en) 2006-02-03 2012-12-25 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8409253B2 (en) 2006-02-03 2013-04-02 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9681940B2 (en) 2006-09-29 2017-06-20 Biomet Sports Medicine, Llc Ligament system for knee joint
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9833230B2 (en) 2006-09-29 2017-12-05 Biomet Sports Medicine, Llc Fracture fixation device
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US9993241B2 (en) 2006-02-03 2018-06-12 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492618A (en) * 1968-05-07 1970-01-27 Breeze Corp Split rotary electric transformer
US4563905A (en) * 1984-08-27 1986-01-14 S. Himmelstein And Company Shaft torquemeter
US7068015B1 (en) * 1999-10-07 2006-06-27 Vestas Wind Systems A/S Wind power plant having magnetic field adjustment according to rotation speed
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US11109857B2 (en) 2004-11-05 2021-09-07 Biomet Sports Medicine, Llc Soft tissue repair device and method
US10265064B2 (en) 2004-11-05 2019-04-23 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8551140B2 (en) 2004-11-05 2013-10-08 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9504460B2 (en) 2004-11-05 2016-11-29 Biomet Sports Medicine, LLC. Soft tissue repair device and method
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9572655B2 (en) 2004-11-05 2017-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7608098B1 (en) 2004-11-09 2009-10-27 Biomet Sports Medicine, Llc Bone fixation device
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US9801620B2 (en) 2006-02-03 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US10973507B2 (en) 2006-02-03 2021-04-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8337525B2 (en) 2006-02-03 2012-12-25 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11896210B2 (en) 2006-02-03 2024-02-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8409253B2 (en) 2006-02-03 2013-04-02 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11819205B2 (en) 2006-02-03 2023-11-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11786236B2 (en) 2006-02-03 2023-10-17 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8292921B2 (en) 2006-02-03 2012-10-23 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11730464B2 (en) 2006-02-03 2023-08-22 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11723648B2 (en) 2006-02-03 2023-08-15 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US11617572B2 (en) 2006-02-03 2023-04-04 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11589859B2 (en) 2006-02-03 2023-02-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8721684B2 (en) 2006-02-03 2014-05-13 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11471147B2 (en) 2006-02-03 2022-10-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8771316B2 (en) 2006-02-03 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8273106B2 (en) 2006-02-03 2012-09-25 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US11446019B2 (en) 2006-02-03 2022-09-20 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9005287B2 (en) 2006-02-03 2015-04-14 Biomet Sports Medicine, Llc Method for bone reattachment
US11317907B2 (en) 2006-02-03 2022-05-03 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9173651B2 (en) 2006-02-03 2015-11-03 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11284884B2 (en) 2006-02-03 2022-03-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11116495B2 (en) 2006-02-03 2021-09-14 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11065103B2 (en) 2006-02-03 2021-07-20 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US11039826B2 (en) 2006-02-03 2021-06-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10987099B2 (en) 2006-02-03 2021-04-27 Biomet Sports Medicine, Llc Method for tissue fixation
US9402621B2 (en) 2006-02-03 2016-08-02 Biomet Sports Medicine, LLC. Method for tissue fixation
US10098629B2 (en) 2006-02-03 2018-10-16 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10004489B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10932770B2 (en) 2006-02-03 2021-03-02 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10729421B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10729430B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9498204B2 (en) 2006-02-03 2016-11-22 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10716557B2 (en) 2006-02-03 2020-07-21 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9510821B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9510819B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9532777B2 (en) 2006-02-03 2017-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US10702259B2 (en) 2006-02-03 2020-07-07 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9561025B2 (en) 2006-02-03 2017-02-07 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9603591B2 (en) 2006-02-03 2017-03-28 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US10695052B2 (en) 2006-02-03 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9622736B2 (en) 2006-02-03 2017-04-18 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9642661B2 (en) 2006-02-03 2017-05-09 Biomet Sports Medicine, Llc Method and Apparatus for Sternal Closure
US10687803B2 (en) 2006-02-03 2020-06-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10675073B2 (en) 2006-02-03 2020-06-09 Biomet Sports Medicine, Llc Method and apparatus for sternal closure
US10603029B2 (en) 2006-02-03 2020-03-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US10595851B2 (en) 2006-02-03 2020-03-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9763656B2 (en) 2006-02-03 2017-09-19 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10542967B2 (en) 2006-02-03 2020-01-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10441264B2 (en) 2006-02-03 2019-10-15 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10398428B2 (en) 2006-02-03 2019-09-03 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10321906B2 (en) 2006-02-03 2019-06-18 Biomet Sports Medicine, Llc Method for tissue fixation
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US10251637B2 (en) 2006-02-03 2019-04-09 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9993241B2 (en) 2006-02-03 2018-06-12 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9414833B2 (en) 2006-02-03 2016-08-16 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US10154837B2 (en) 2006-02-03 2018-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10022118B2 (en) 2006-02-03 2018-07-17 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10004588B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US10610217B2 (en) 2006-09-29 2020-04-07 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9414925B2 (en) 2006-09-29 2016-08-16 Biomet Manufacturing, Llc Method of implanting a knee prosthesis assembly with a ligament link
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10004493B2 (en) 2006-09-29 2018-06-26 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10349931B2 (en) 2006-09-29 2019-07-16 Biomet Sports Medicine, Llc Fracture fixation device
US11672527B2 (en) 2006-09-29 2023-06-13 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8672968B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10835232B2 (en) 2006-09-29 2020-11-17 Biomet Sports Medicine, Llc Fracture fixation device
US10398430B2 (en) 2006-09-29 2019-09-03 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9833230B2 (en) 2006-09-29 2017-12-05 Biomet Sports Medicine, Llc Fracture fixation device
US10517714B2 (en) 2006-09-29 2019-12-31 Biomet Sports Medicine, Llc Ligament system for knee joint
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US9788876B2 (en) 2006-09-29 2017-10-17 Biomet Sports Medicine, Llc Fracture fixation device
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9724090B2 (en) 2006-09-29 2017-08-08 Biomet Manufacturing, Llc Method and apparatus for attaching soft tissue to bone
US11096684B2 (en) 2006-09-29 2021-08-24 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US9681940B2 (en) 2006-09-29 2017-06-20 Biomet Sports Medicine, Llc Ligament system for knee joint
US10695045B2 (en) 2006-09-29 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for attaching soft tissue to bone
US10743925B2 (en) 2006-09-29 2020-08-18 Biomet Sports Medicine, Llc Fracture fixation device
US9539003B2 (en) 2006-09-29 2017-01-10 Biomet Sports Medicine, LLC. Method and apparatus for forming a self-locking adjustable loop
US8231654B2 (en) 2006-09-29 2012-07-31 Biomet Sports Medicine, Llc Adjustable knotless loops
US9486211B2 (en) 2006-09-29 2016-11-08 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11376115B2 (en) 2006-09-29 2022-07-05 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US11612391B2 (en) 2007-01-16 2023-03-28 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10729423B2 (en) 2007-04-10 2020-08-04 Biomet Sports Medicine, Llc Adjustable knotless loops
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US9861351B2 (en) 2007-04-10 2018-01-09 Biomet Sports Medicine, Llc Adjustable knotless loops
US11185320B2 (en) 2007-04-10 2021-11-30 Biomet Sports Medicine, Llc Adjustable knotless loops
US11534159B2 (en) 2008-08-22 2022-12-27 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8900314B2 (en) 2009-05-28 2014-12-02 Biomet Manufacturing, Llc Method of implanting a prosthetic knee joint assembly
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US10149767B2 (en) 2009-05-28 2018-12-11 Biomet Manufacturing, Llc Method of implanting knee prosthesis assembly with ligament link
US9216078B2 (en) 2011-05-17 2015-12-22 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US9445827B2 (en) 2011-10-25 2016-09-20 Biomet Sports Medicine, Llc Method and apparatus for intraosseous membrane reconstruction
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US11241305B2 (en) 2011-11-03 2022-02-08 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US10265159B2 (en) 2011-11-03 2019-04-23 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US10363028B2 (en) 2011-11-10 2019-07-30 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10368856B2 (en) 2011-11-10 2019-08-06 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US11534157B2 (en) 2011-11-10 2022-12-27 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9433407B2 (en) 2012-01-03 2016-09-06 Biomet Manufacturing, Llc Method of implanting a bone fixation assembly
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10758221B2 (en) 2013-03-14 2020-09-01 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US11648004B2 (en) 2013-12-20 2023-05-16 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10806443B2 (en) 2013-12-20 2020-10-20 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10743856B2 (en) 2014-08-22 2020-08-18 Biomet Sports Medicine, Llc Non-sliding soft anchor
US11219443B2 (en) 2014-08-22 2022-01-11 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers

Similar Documents

Publication Publication Date Title
USRE26501E (en) Multi-channel rotary transformer
US9154020B2 (en) Axial gap rotating-electric machine
US4549042A (en) Litz wire for degreasing skin effect at high frequency
US2508479A (en) High-frequency electromagneticwave translating arrangement
US3244960A (en) Electrical circuitry employing an isolation transformer
US3890515A (en) Magnetic coupler for coupling rotary shafts
US3317873A (en) Multi-channel rotary transformer
US4230961A (en) Magnetic flux sensor for laminated cores
KR940704077A (en) LIGHTWEIGHT HIGH POWER ELECTROMOTIVE DEVICE
US3611230A (en) Rotary transformer structure
US3149254A (en) Linear motor or generator
US4447750A (en) Electromagnetic device construction
JPS5866433A (en) Device for transmitting information between structure sections rotating relatively without contact
US20020125978A1 (en) Three-phase current transformer
KR102547570B1 (en) Motor
US2993131A (en) Small electric motor
GB1076365A (en) A miniature low frequency transformer
US3999093A (en) Rotating electric machine having a controlled gradient winding and a circumferentially segmented magnetic core armature
US3091715A (en) Axial airgap rotary machines
EP0626109B1 (en) Ferromagnetic wire electromagnetic actuator
US3066266A (en) Radio frequency transformer
US4307364A (en) Electrical reactor with foil windings
US3195087A (en) Electrical shunt reactor
US3555382A (en) Capacitor motor
US4869647A (en) Circular electromagnetic flow coupler