USRE31855E - Tear apart cannula - Google Patents

Tear apart cannula Download PDF

Info

Publication number
USRE31855E
USRE31855E US06/443,321 US44332182A USRE31855E US RE31855 E USRE31855 E US RE31855E US 44332182 A US44332182 A US 44332182A US RE31855 E USRE31855 E US RE31855E
Authority
US
United States
Prior art keywords
tube
tubular structure
cannula
slits
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/443,321
Inventor
Thomas A. Osborne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cook Inc
Original Assignee
Cook Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cook Inc filed Critical Cook Inc
Priority to US06443321 priority Critical patent/USRE31855F1/en
Application granted granted Critical
Publication of USRE31855E publication Critical patent/USRE31855E/en
Publication of USRE31855F1 publication Critical patent/USRE31855F1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M25/0668Guide tubes splittable, tear apart

Definitions

  • This invention relates generally to a cannula used as an aid for insertion of catheters and other instruments into the body and more particularly to a cannula that is easily removed after the insertion is completed.
  • removal of the cannula requires gripping both the cannula and the inserted catheter and physically pulling them apart. Applying such a force upon an object that is partially inserted into the body may cause tissue damage. There is also the potential of accidentally pulling the catheter out from its inserted position.
  • the Reilly patent has a further limitation in its collapsibility.
  • the Reilly cannula When the Reilly cannula is empty prior to insertion of the catheter or probe, it collapses upon itself at the puncture site with the purpose of preventing blood loss.
  • this attribute creates a disadvantage in that a stiff catheter with a stiff tapered distal end is required in order to reopen the cannula for reinsertion; therefore, flimsy and flexible leads, such as pacemaker leads and blunted tipped catheters, such as balloon tipped catheters, are unadoptable for use with this device.
  • the present invention is a flexible cannula that readily tears in a longitudinal direction along the length of the structure because it comprises material that has a longitudinal orientation. Because it is flexible and hollow, it acts as a good cannula where devices must be repeatedly inserted, left within the body for a period of time, or advanced along the interior of the vessel.
  • the present invention can readily be removed by tearing the structure along its length along two longitudinal lines thereby splitting it into two halves. This is a particular advantage where the lead or probe is to be permanently inserted and has large fittings or connectors on its proximal end such that the cannula cannot merely be slipped off the end of the probe.
  • the cannula is inserted into a blood vessel about percutaneous needle.
  • the needle is then removed, and a catheter or other probe device is inserted through the sheath and the combination is advanced into position.
  • the cannula can then be slipped out of the body and split by pulling a pair of tabs on the end thereof thus being removed from the probe.
  • FIG. 1A is an enlarged view similar to FIG. 1 of the structure of FIG. 1 with portions broken away to show internal structure.
  • FIG. 3 through FIG. 11 are sections through a blood vessel showing a procedure.
  • FIG. 3 illustrates the needle inserted within the blood vessel.
  • FIG. 4 shows a wire guide inserted into the vessel through the incision needle.
  • FIG. 5 shows the incision withdrawn from the puncture site.
  • FIG. 8 illustrates the guide dilator and splitable cannula assembly advanced into the desired position within the vessel.
  • FIG. 11 shows the cannula after being split into two parts.
  • FIG. 14 illustrates the probe inserted within the cannula.
  • FIG. 15 shows the probe and splitable cannula combination advanced into the desired position within the vessel.
  • FIG. 1B is a cross-sectional view showing a representative one of the tabs 23 attached to one of the knobs 25 which comprises a screw 30 and socket 32 combination.
  • the screw 30 is screwed into the socket 32 with the end 23 in the socket.
  • the force between the screw 30 and socket 32 maintains the end of the tab in position.
  • the knobs 25 and 26 are used to aid in gripping the device when it is split apart.
  • FIGS. 3 through FIG. 11 shows a procedure whereby a probe having relatively large fittings on its proximal end is placed in position.
  • the probe might be, for example, a catheter used to measure the flow of saline solution through the blood vessel.
  • catheters have a balloon at the distal end which operates to close off the flow through the blood vessel. This balloon is inflated by placing air into a fitting such as the fitting 61.
  • Another fitting such as fitting 62 might receive the saline solution.
  • Still another fitting such as the fitting 63 functions to provide a coupling to a thermistor which measures the temperature of the saline solution blood mixture as it moves by the thermistor at still another point along the catheter.
  • the probe elements 61, 62 and 63 are fittings which are permanently mounted on the proximal end of the probe 60.
  • the splittable cannula has been removed from the puncture site and split apart into two portions 70 and 71 and in this manner has been separated from the inserted probe.
  • the splittable cannula 10 may be inserted within the blood vessel 50 directly about the needle 40.
  • FIG. 12 shows this combination inserted within the blood vessel.
  • FIG. 13 illustrates the splitable cannula 10 inserted within the blood vessel after the incision needle 40 has been removed from the puncture site.
  • FIG. 14 illustrates the probe 60 introduced into the blood vessel 51 through the splittable cannula 10.
  • FIG. 15 the probe 60 and cannula 10 combination have been advanced into position.
  • FIG. 16 shows the cannula 10 withdrawn and split off leaving the probe in position.
  • Teflon is the Dupont trademark for polytetrafluoroethylene used in the preferred embodiment is virgin material i.e., has not previously been used, or reground. It is free of foreign matter and dye marks. These characteristics are required to ensure compatibility for insertion into the body. Teflon is the preferred material because it can be longitudinally oriented through extrusion, although other plastics may be useable. It is known, for example, that polyethylene obtains the required longitudinal orientation characteristics if it is stretched after extrusion. However, polyethylene is not used in the preferred embodiment because it is understood that the orientation process for polyethylene is more difficult to perform properly.
  • a standard extrusion process orientates the Teflon and forms it into the tubular shape of the cannula.
  • the Teflon is blended with an extrusion aid or lubricant, preferably naphtha, and a thermally stable pigment.
  • the pigment used may be any stable pigment that is acceptable for insertion within the body.
  • the naphtha normally comprises between 17 and 20% by weight and the concentration of pigment should be less than 2%.
  • the compound mixture is preformed.
  • the object of preforming is to compact the powder into a cylinder which is about one-third of the original volume.
  • the preforming pressure is between 100 and 300 lbs/sq. in.
  • the preform is then extruded through an extrusion die at pressures of approximately 20,000 psi.
  • the Teflon tubing is passed through a drying oven at a graduated temperature increasing from 300° F. to 575° F. The heat from this oven vaporizes the lubricant.
  • the Teflon tubing is next led through a sintering oven, at temperatures of at least 621° F., allowed to cool, and rolled onto spools.
  • the Teflon tubing is cut off radially to define one end of the cannula and slit at that one end with a cutting instrument at opposite ends of the same end to form the two opposed slits 20 and 21.
  • This slitting operation creates the tabs 23 and 24 which are used to pull apart the cannula and the slits define the location of the beginning of the tears when the tabs are pulled.
  • a screw and socket combination 25 and 26 is attached to each tab, as illustrated in FIG. 1B, to facilitate the gripping and pulling of the tabs.
  • the thickness of the structure from the inner surface to the outer surface is 0.010 inch with a tolerance of plus or minus 0.002 inch.
  • the required diameter of the cannula will vary with the diameter of various dilators which are used in combination with the sheath. It is estimated that useful sizes will range from an inner diameter of 0.05 inch to an inner diameter of 0.2 inches; however, there may be applications requiring larger or smaller dimensions.
  • the inner diameter tolerance is plus 0.002 inch and minus 0.000 inch.
  • the cannula is sterilized using ethylene oxide and packaged with a sterilized percutaneous needle, a wire guide, and a dilator in a hermetically sealed plastic bag.

Abstract

This invention relates to a flexible cannula comprising material which tears readily in a longitudinal direction and can thus be easily removed by pulling tabs on opposite sides of the cannula apart after the catheter or other device has been inserted into the body.

Description

This is a continuation, of application Ser. No. 965,703 filed Dec. 1, 1978, now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a cannula used as an aid for insertion of catheters and other instruments into the body and more particularly to a cannula that is easily removed after the insertion is completed.
2. Brief Description of the Prior Art
It is desirable that after a catheter or other body probe device has been inserted into place within a blood vessel that the apparatus used to aid the insertion is easily removable. When sharp devices such as hollow needles are left in place while the catheter or other device is being utilized, there is a danger that the needle may pierce through the vessel, causing tissue damage and rendering the catheter useless. In assemblies where the needle is removable, this problem is alleviated; however, in these cases, the cannula which is used as a passageway into the blood vessel, often cannot itself be easily removed when the probe or catheter that has been inserted has an enlarged proximal end. The inability to easily remove the cannula is a disadvantage in circumstances when the inserted probe or catheter must remain in the body for an extended period of time to be permanently implanted.
Various removable devices have been developed using frangible, hollow needles (see Rubin, U.S. Pat. No. 3,382,872; MacGregor, U.S. Pat. No. 3,550,591; Warren, U.S. Pat. No. 3,598,118 and Nerz, U.S. Pat. No. 3,677,243). In these devices the hollow needle must have a larger diameter to accommodate the catheter within the device. The larger size of the hollow needles can be a cause of additional tissue damage. Because of their rigidity and sharpness, these needles act as poor cannuli in situations where probes must be inserted and removed repeatedly, and they cannot be used at all when the cannula must be used as an aid in advancing the probe along the interior of the blood vessel.
Ansari, U.S. Pat. No. 3,545,443, utilizes dual hollow concentric needles, each having a longitudinal slot. After insertion, the needle assembly is removed and twisted in such a manner that the slots are aligned. The catheter then can pass through the slots thus removing the needle. This non-frangible assembly possesses many of the same disadvantages that the other hollow needle devices have. In addition, because there are two hollow needles, an even larger needle diameter is necessary to accomodate the same size catheter. The slots in the needles may also cause additional tissue damage and potentially may not be able to effectively prevent blood loss and air emboli.
Gauthier, U.S. Pat. No. 3,094,122, uses a percutaneous needle that is inside the catheter. After insertion, the needle is removed lengthwise from the catheter. There are several restrictions upon this method. The needle must be longer than the catheter and the method is only adaptable for insertion of hollow devices or catheters and cannot be used where various probes and leads are to be inserted. Guttman, U.S. Pat. No. 3,225,762, is similar to the Gauthier device except that the catheter has a slot for removal of the needle after insertion. This eliminates the need to have a needle that is longer than the catheter, however, there may be undesirable leakage through the slit, particularly when the catheter is bent at or near the slit. This invention also cannot be used where the probe to be inserted within the vessel is not hollow.
Reilly, U.S. Pat. No. 3,570,485, provides a flexible cannula, placed over the percutaneous needle, that is slotted along its length. After insertion, the needle is removed and the cannula can then act as a sheath for insertion of the catheter or other device. After insertion of the probe, the cannula can be removed by sliding the catheter or other device through the slit in the cannula. Although this invention is flexible and can be adopted for insertion of both catheters and non-hollow probes, the longitudinal slot may not provide a blood or airtight seal. This problem may be reduced by increasing the thickness of the cannula, however this would necessitate either the use of a larger puncture diameter or a smaller probe. Further, removal of the cannula requires gripping both the cannula and the inserted catheter and physically pulling them apart. Applying such a force upon an object that is partially inserted into the body may cause tissue damage. There is also the potential of accidentally pulling the catheter out from its inserted position.
The Reilly patent has a further limitation in its collapsibility. When the Reilly cannula is empty prior to insertion of the catheter or probe, it collapses upon itself at the puncture site with the purpose of preventing blood loss. However, this attribute creates a disadvantage in that a stiff catheter with a stiff tapered distal end is required in order to reopen the cannula for reinsertion; therefore, flimsy and flexible leads, such as pacemaker leads and blunted tipped catheters, such as balloon tipped catheters, are unadoptable for use with this device.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The present invention is a flexible cannula that readily tears in a longitudinal direction along the length of the structure because it comprises material that has a longitudinal orientation. Because it is flexible and hollow, it acts as a good cannula where devices must be repeatedly inserted, left within the body for a period of time, or advanced along the interior of the vessel.
Because of its longitudinal orientation, the present invention can readily be removed by tearing the structure along its length along two longitudinal lines thereby splitting it into two halves. This is a particular advantage where the lead or probe is to be permanently inserted and has large fittings or connectors on its proximal end such that the cannula cannot merely be slipped off the end of the probe.
Because no force needs to be applied to the partially inserted probe when the cannula is split apart, the potential of accidentally pulling the probe out from its desired position is diminished.
There are numerous specific applications in which the present invention can be utilized. One such application is for suprapubic insertion into the bladder. Catheters used in this type of application normally have enlarged proximal ends and remain in the body for prolonged periods of time.
Another application is transvenous insertion of permanent pacemaker leads. Such leads separate into various electrodes at the proximal end, each electrode being significantly larger than the general diameter of the lead. After insertion of the distal end into the desired position within the heart. These leads must themselves be implanted beneath the skin and connected to a power source. In the past, it has been the practice to remove the sheath by slitting it with a scapel, in order to enable the implantation of the electrodes. Reference is made to "Percutaneous Insertion of a Permanent Transvenous Pacemaker Electrode through the Subclavion Vein" in the Canadian Journal of Surgery, vol. 20, pg. 131 which is descriptive of this technique.
There are several existing techniques which can take advantage of the benefits of the present invention. In one method the cannula is inserted into a blood vessel about percutaneous needle. The needle is then removed, and a catheter or other probe device is inserted through the sheath and the combination is advanced into position. The cannula can then be slipped out of the body and split by pulling a pair of tabs on the end thereof thus being removed from the probe.
In another method, a hollow needle is inserted into a vessel. A wire guide is then passed through the needle into the interior portion of the vessel. The needle can then be withdrawn and the cannula with a dilator inserted into the vessel over the wire guide. The assembly is advanced into position and the dilator and wire guide are removed. A catheter or probe can next be passed into the vessel through the cannula. The cannula is withdrawn from the body and split apart thus being removed from about the probe.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of the splitable cannula in combination with a dilator and wire guide.
FIG. 1A is an enlarged view similar to FIG. 1 of the structure of FIG. 1 with portions broken away to show internal structure.
FIG. 1B is an enlarged fragmentary view of a portion of the structure of FIG. 1.
FIG. 2 is a side view of a hollow percutaneous needle.
FIG. 3 through FIG. 11 are sections through a blood vessel showing a procedure.
FIG. 3 illustrates the needle inserted within the blood vessel.
FIG. 4 shows a wire guide inserted into the vessel through the incision needle.
FIG. 5 shows the incision withdrawn from the puncture site.
FIG. 6 shows the wire guide percutaneously positioned within the blood vessel.
FIG. 7 illustrates the splitable sheath and dilator combination inserted into the vessel over the wire guide.
FIG. 8 illustrates the guide dilator and splitable cannula assembly advanced into the desired position within the vessel.
FIG. 9 shows the splitable cannula in position after the wire guide and dilator have been removed.
FIG. 10 illustrates a probe inserted within the splitable cannula.
FIG. 11 shows the cannula after being split into two parts.
FIG. 12 through FIG. 16 are sections through a blood vessel showing a further procedure.
FIG. 12 illustrates a splitable cannula disposed about the incision needle and inserted in this manner into the blood vessel.
FIG. 13 shows the splitable cannula inserted within the vessel after the incision needle has been removed.
FIG. 14 illustrates the probe inserted within the cannula.
FIG. 15 shows the probe and splitable cannula combination advanced into the desired position within the vessel.
FIG. 16 illustrates the cannula split into two parts.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A preferred embodiment of the present invention is shown in combination with a dilator and a wire guide in FIG. 1. The splitable cannula 10 is disposed about the dilator 11 which, in turn, is disposed about the wire guide 12. The distal end 13 of the dilator is tapered for enlarging the puncture site to accommodate the splittable cannula. Where the diameter of the splittable cannula is of a sufficiently large size, the dilator that is used has a second tapered portion 14. The tubular portion 15 of the splittable cannula has approximately uniform thickness and diameter except at its distal end 16 where there is a slight taper to create an appropriately snug fit with the dilator and also to facilitate the enlarging of the puncture site to accommodate the cannula. The proximal end 20 of the cannula is slit longitudinally producing two open ended slits at opposite sides of the tubular structure 21 and 22, thus creating two tabs 23 and 24 which are attached to knobs 25 and 26 by being inserted between the screw 30 and 31 and socket 32 and 33 portions of the knobs. At the proximal end of the dilator 11 is a knob-like clamp 34 which maintains the two telescoping layers of the dilator 11 in position.
FIG. 1B is a cross-sectional view showing a representative one of the tabs 23 attached to one of the knobs 25 which comprises a screw 30 and socket 32 combination. The screw 30 is screwed into the socket 32 with the end 23 in the socket. The force between the screw 30 and socket 32 maintains the end of the tab in position. The knobs 25 and 26 are used to aid in gripping the device when it is split apart.
FIGS. 3 through FIG. 11 shows a procedure whereby a probe having relatively large fittings on its proximal end is placed in position. The probe might be, for example, a catheter used to measure the flow of saline solution through the blood vessel. Such catheters have a balloon at the distal end which operates to close off the flow through the blood vessel. This balloon is inflated by placing air into a fitting such as the fitting 61. Another fitting such as fitting 62 might receive the saline solution. Still another fitting such as the fitting 63 functions to provide a coupling to a thermistor which measures the temperature of the saline solution blood mixture as it moves by the thermistor at still another point along the catheter.
FIG. 3 shows the percutaneous needle 40 inserted through the skin and body tissue 50 and into a blood vessel 51. FIG. 4 shows the subsequent step of inserting the wire guide 12 into the blood vessel 51 through the needle 40. In FIG. 5 the needle 40 has been removed from the puncture site leaving the wire guide as in FIG. 6. In FIG. 7 the splitable cannula 10 and dilator 11 combination is in the process of being inserted into the blood vessel 51 about the wire guide 12. The cannula, dilator and wire guide combination have been advanced into the desired position in FIG. 8. In FIG. 9 the wire guide and dilator have been removed leaving the splittable cannula 10 in its desired position. FIG. 10 shows a probe 60 being inserted into the blood vessel through the splitable cannula 10. The probe elements 61, 62 and 63 are fittings which are permanently mounted on the proximal end of the probe 60. In FIG. 11 the splittable cannula has been removed from the puncture site and split apart into two portions 70 and 71 and in this manner has been separated from the inserted probe.
In an alternative technique, the splittable cannula 10 may be inserted within the blood vessel 50 directly about the needle 40. FIG. 12 shows this combination inserted within the blood vessel. FIG. 13 illustrates the splitable cannula 10 inserted within the blood vessel after the incision needle 40 has been removed from the puncture site. FIG. 14 illustrates the probe 60 introduced into the blood vessel 51 through the splittable cannula 10. In FIG. 15 the probe 60 and cannula 10 combination have been advanced into position. FIG. 16 shows the cannula 10 withdrawn and split off leaving the probe in position.
Teflon (Teflon is the Dupont trademark for polytetrafluoroethylene) used in the preferred embodiment is virgin material i.e., has not previously been used, or reground. It is free of foreign matter and dye marks. These characteristics are required to ensure compatibility for insertion into the body. Teflon is the preferred material because it can be longitudinally oriented through extrusion, although other plastics may be useable. It is known, for example, that polyethylene obtains the required longitudinal orientation characteristics if it is stretched after extrusion. However, polyethylene is not used in the preferred embodiment because it is understood that the orientation process for polyethylene is more difficult to perform properly.
A standard extrusion process orientates the Teflon and forms it into the tubular shape of the cannula. The Teflon is blended with an extrusion aid or lubricant, preferably naphtha, and a thermally stable pigment. The pigment used may be any stable pigment that is acceptable for insertion within the body. The naphtha normally comprises between 17 and 20% by weight and the concentration of pigment should be less than 2%. Then, at temperatures above 75° F., the compound mixture is preformed. The object of preforming is to compact the powder into a cylinder which is about one-third of the original volume. The preforming pressure is between 100 and 300 lbs/sq. in. The preform is then extruded through an extrusion die at pressures of approximately 20,000 psi. After extrusion the Teflon tubing is passed through a drying oven at a graduated temperature increasing from 300° F. to 575° F. The heat from this oven vaporizes the lubricant. The Teflon tubing is next led through a sintering oven, at temperatures of at least 621° F., allowed to cool, and rolled onto spools.
In the manufacturing of the cannula, the Teflon tubing is cut off radially to define one end of the cannula and slit at that one end with a cutting instrument at opposite ends of the same end to form the two opposed slits 20 and 21. This slitting operation creates the tabs 23 and 24 which are used to pull apart the cannula and the slits define the location of the beginning of the tears when the tabs are pulled. A screw and socket combination 25 and 26 is attached to each tab, as illustrated in FIG. 1B, to facilitate the gripping and pulling of the tabs.
An appropriate length is then measured and a heat gun applied to the tubing. Upon application of this heat, the tubing is stretched, yielding a tapered end. The tip is then cut at a point where the inside diameter of the cannula approximates the outside diameter of the dilator which will be used with the particular cannula. This tapering method serves two purposes. First, the outside diameter is tapered to facilitate insertion of the cannula into the body. Second, a tight fit with the probe at this end minimizes blood loss.
In one preferred embodiment of the present invention, the thickness of the structure from the inner surface to the outer surface is 0.010 inch with a tolerance of plus or minus 0.002 inch. The required diameter of the cannula will vary with the diameter of various dilators which are used in combination with the sheath. It is estimated that useful sizes will range from an inner diameter of 0.05 inch to an inner diameter of 0.2 inches; however, there may be applications requiring larger or smaller dimensions. The inner diameter tolerance is plus 0.002 inch and minus 0.000 inch.
In the preferred embodiment, the cannula is sterilized using ethylene oxide and packaged with a sterilized percutaneous needle, a wire guide, and a dilator in a hermetically sealed plastic bag.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only a preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (10)

The invention claimed is:
1. A cannula comprising
a tubular structure having one end which has a pair of open ended slits, said tubular structure being compatible for insertion within the body and having an opposite end adapted to be inserted in the body with said one end extending out of the body, said tubular structure being formed of flexible material having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of said tubular structure, said tubular structure being flexible from its inner diameter to its outer diameter and continuously smooth on its inner surface and outer surface, said slits each having a closed end located between said one end and said opposite end;
a first tab defined by said slits on one side of one end of said tubular structure; and
a second tab defined by said slits on the other side of said one end of said tubular structure whereby when said tabs are pulled apart, said structure tears longitudinally along its length beginning at said closed ends and extending to the opposite end of said tubular structure.
2. The cannula of claim 1 in which the flexible material is a plastic.
3. The cannula of claim 1 in which the flexible material is polytetrafluoroethylene.
4. The cannula of claim 1 in which said opposite end is tapered so as to define a tapered end portion, said tubular structure having an inner surface and an outer surface and having a substantially uniform thickness from the inner surface to the outer surface except at the tapered portion.
5. The cannula of claim 1 in which said tabs are integral with said tubular structure and are separated by said open ended slits.
6. A cannula kit comprising:
a cannula including a tube of flexible material having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of the tube, said tube being soft and flexible from its inner diameter to its outer diameter; a first tab on one side of one end of said tube, a second tab on the other side of said one end of said tube whereby, when said tabs are pulled apart, said tube tears longitudinally separating said tube from any object within said tube;
a percutaneous needle;
a wire guide;
a dilator;
and a bag containing said cannula, guide and dilator.
7. The cannula kit of claim 6 where said bag is hermetically sealed and made of plastic.
8. A cannula comprising:
a tubular structure having one end which has a pair of open ended slits, said tubular structure being compatible for insertion within the body and having an opposite end adapted to be inserted in the body with said one end extending out of the body, said tubular structure being continuously smooth on its inner surface and outer surface,
means for allowing the opposite end to remain continuously smooth on its inner surface and outer surface while the opposite end is within the body, said means for allowing including said tubular structure being formed of flexible material having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of said tubular structure,
a first tab defined by said slits on one side of said one end of said tubular structure; and
a second tab defined by said slits on the other side of said one end of said tubular structure whereby, when said tabs are pulled apart, said structure tears longitudinally along its length beginning at said slit closed ends and extending to the opposite end of said tubular structure.
9. A removable cannula for introducing a member into an internal organ of the body, said cannula comprising:
(a) a tubular structure compatible for insertion within the body, said tubular structure having one end and having an opposite end adopted to be inserted into the body with said one end extending out of the body, said tubular structure being flexible from its inner diameter to its outer diameter, said tubular structure having an internal passageway for passage of a member into an internal organ of the body; and
(b) removal means for removing said cannula from about the member after the introduction of the member into the body through the internal passageway of said tubular system, said removal means including means for providing for the inserted portion of said tubular structure to remain continuously smooth on its inner surface and its outer surface during insertion, said removal means including:
(i) said flexible material having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of said tubular structure,
(ii) said one end of said tubular structure having a pair of open ended slits, said slits having closed ends located between said one end and said opposite end,
(iii) a first tab defined by said slits on one side of said one end of said tubular structure and
(iv) a second tab defined by said slits on the other side of said one end of said tubular structure whereby, when said tabs are pulled apart, said structure tears longitudinally along its length beginning at said closed ends of said slits and extending to the opposite end of said tubular structure. .Iadd.
10. A cannula kit comprising:
a tube of flexible plastic material compatible for insertion within the body and having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of the tube, said tube being soft and flexible from its inner diameter to its outer diameter; a first tab on one side of one end of said tube, and a second tab on the other side of said one end of said tube whereby, when said tabs are pulled apart, said tube tears longitudinally separating said tube from any object within said tube; and a dilator. .Iaddend. .Iadd.11. A cannula comprising:
a tube of flexible material compatible for insertion within the body and having the physical property of molecular orientation allowing a tear in said material to run readily only in a longitudinal direction along the length of the tube, said tube being soft and flexible from its inner diameter to its outer diameter and tapered at one end adapted for insertion within the body; a first tab on one side of the end of said tube opposite said one end and a second tab on the other side of said opposite end of said tube whereby, when said tabs are pulled apart said tube tears longitudinally separating said tube from any object within said tube. .Iaddend. .Iadd.12. The cannula of claim 11 wherein said tube is continuously smooth on its outer surface. .Iaddend. .Iadd.13. The cannula of claim 12 wherein said tube is continuously smooth on its inner surface. .Iaddend. .Iadd.14. A cannula comprising:
a tubular structure having one end which has a pair of open ended slits, said tubular structure being compatible for insertion within the body and having an opposite end adapted to be inserted in the body with said one end extending out of the body, said tubular structure being formed of flexible material having the physical property of molecular orientation allowing a tear in said material to run readily only in a longitudinal direction along the length of said tubular structure, said tubular structure being flexible from its inner diameter to its outer diameter, said slits each having a closed end located between said one end and said opposite end;
a first tab defined by said slits on one side of one end of said tubular structure; and
a second tab defined by said slits on the other side of said one end of said tubular structure whereby when said tabs are pulled apart, said structure tears longitudinally along its length beginning at said closed ends and extending to the opposite end of said tubular structure without the need for any mechanical means for facilitating longitudinal separation of said tube. .Iaddend. .Iadd.15. The cannula of claim 14 in which said tubular structure is continuously smooth on its outer surface. .Iaddend. .Iadd.16. A cannula comprising: a tube of flexible plastic material compatible for insertion within the body and having the physical property of molecular orientation whereby a tear in said material runs readily only in a longitudinal direction along the length of the tube, said tube including a non-mechanical means for longitudinally tearing apart said tube, said tube being soft and flexible from its inner diameter to its outer diameter; a first tab on one side of one end of said tube, and a second tab on the other side of said one end of said tube whereby, when said tabs are pulled apart, said tube tears longitudinally solely due to said non-mechanical means, separating said tube from any object within said tube. .Iaddend.
US06443321 1978-12-01 1982-11-22 Tear apart cannula Expired - Lifetime USRE31855F1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06443321 USRE31855F1 (en) 1978-12-01 1982-11-22 Tear apart cannula

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96570378A 1978-12-01 1978-12-01
US06443321 USRE31855F1 (en) 1978-12-01 1982-11-22 Tear apart cannula

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US96570378A Continuation 1978-12-01 1978-12-01
US06/173,960 Reissue US4306562A (en) 1978-12-01 1980-07-31 Tear apart cannula

Publications (2)

Publication Number Publication Date
USRE31855E true USRE31855E (en) 1985-03-26
USRE31855F1 USRE31855F1 (en) 1986-08-19

Family

ID=27033496

Family Applications (1)

Application Number Title Priority Date Filing Date
US06443321 Expired - Lifetime USRE31855F1 (en) 1978-12-01 1982-11-22 Tear apart cannula

Country Status (1)

Country Link
US (1) USRE31855F1 (en)

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163165A2 (en) * 1984-06-01 1985-12-04 Peter Dr. Ing. Osypka Appliance for the transveinous introduction of pacemaker electrodes or the like
EP0274129A2 (en) * 1987-01-06 1988-07-13 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
EP0279015A2 (en) * 1987-02-06 1988-08-24 Becton, Dickinson and Company Splittable catheter composite material and process
US4865593A (en) * 1987-06-25 1989-09-12 Sherwood Medical Company Splittable cannula
FR2631835A1 (en) * 1988-05-26 1989-12-01 Roudy Gil Sheath and method using such a sheath intended to facilitate replacement of a vascular prosthesis
US4913704A (en) * 1985-12-06 1990-04-03 Sherwood Medical Company Disposable indwelling catheter placement unit into the blood vessel
EP0383426A1 (en) * 1989-01-31 1990-08-22 Cook Incorporated Recessed dilator-sheath assembly and method for making same
US4969875A (en) * 1989-05-22 1990-11-13 Kazuo Ichikawa Drainage device for medical use
US4983168A (en) * 1989-01-05 1991-01-08 Catheter Technology Corporation Medical layered peel away sheath and methods
US4988356A (en) * 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US5024655A (en) * 1989-09-05 1991-06-18 Freeman Andrew B Epidural catheter apparatus and associated method
US5084016A (en) * 1989-09-05 1992-01-28 Freeman Andrew B Epidural catheter apparatus with an inflation fitting
EP0483803A1 (en) * 1990-11-01 1992-05-06 Junkosha Co. Ltd. Tubes for introducing medical devices
US5158545A (en) * 1991-05-02 1992-10-27 Brigham And Women's Hospital Diameter expansion cannula
US5167634A (en) * 1991-08-22 1992-12-01 Datascope Investment Corp. Peelable sheath with hub connector
US5222970A (en) * 1991-09-06 1993-06-29 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
US5250033A (en) * 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US5263932A (en) * 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5281204A (en) * 1989-12-26 1994-01-25 Nissho Corporation Device for forming an inserting hole and method of using and making the same
US5320602A (en) * 1993-05-14 1994-06-14 Wilson-Cook Medical, Inc. Peel-away endoscopic retrograde cholangio pancreatography catheter and a method for using the same
US5342297A (en) * 1992-07-10 1994-08-30 Jang G David Bailout receptacle for angioplasty catheter
US5395335A (en) * 1991-05-24 1995-03-07 Jang; G. David Universal mode vascular catheter system
US5425717A (en) * 1993-05-07 1995-06-20 The Kendall Company Epidural catheter system utilizing splittable needle
US5554118A (en) * 1991-05-24 1996-09-10 Jang; G. David Universal mode vascular catheter system
US5690642A (en) 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US5693030A (en) * 1995-06-28 1997-12-02 Lee, Lee & Beal, Inc. Catheter and method of introduction
WO1998005373A1 (en) 1996-08-02 1998-02-12 Cook Incorporated Grommet positioning device
US5765682A (en) * 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
EP0948970A2 (en) 1991-07-09 1999-10-13 H.L. Medical Inventions, Inc. Splittable sheath assembly
US6210366B1 (en) 1996-10-10 2001-04-03 Sanfilippo, Ii Dominic Joseph Vascular access kit
US6240231B1 (en) 1997-12-22 2001-05-29 Micrus Corporation Variable stiffness fiber optic shaft
US6312404B1 (en) 1996-09-13 2001-11-06 Boston Scientific Corporation Single operator exchange billiary catheter
US6346093B1 (en) 1996-09-13 2002-02-12 Scimed Life Systems, Inc. Single operator exchange biliary catheter with common distal lumen
US6402722B1 (en) 1997-10-01 2002-06-11 Scimed Life Systems, Inc. Apparatus and method for percutaneously placing gastrostomy tubes
US20020133193A1 (en) * 2000-01-05 2002-09-19 Ginn Richard S. Integrated vascular device with puncture site closure component and sealant and methods of use
US6468252B1 (en) 2000-08-03 2002-10-22 Sanfilippo, Ii Dominic J. Clamp for vascular access device
US20020193808A1 (en) * 2000-01-05 2002-12-19 Belef W. Martin Apparatus and methods for delivering a closure device
US6520951B1 (en) 1996-09-13 2003-02-18 Scimed Life Systems, Inc. Rapid exchange catheter with detachable hood
US20030078537A1 (en) * 1991-06-13 2003-04-24 Jang G. David Convertible mode vascular catheter system
US6582401B1 (en) 1996-09-13 2003-06-24 Scimed Life Sytems, Inc. Multi-size convertible catheter
US6599237B1 (en) 2000-01-10 2003-07-29 Errol O. Singh Instrument and method for facilitating endoscopic examination and surgical procedures
US6606515B1 (en) 1996-09-13 2003-08-12 Scimed Life Systems, Inc. Guide wire insertion and re-insertion tools and methods of use
US6641564B1 (en) * 2000-11-06 2003-11-04 Medamicus, Inc. Safety introducer apparatus and method therefor
US20030225393A1 (en) * 2002-05-31 2003-12-04 Kimberly-Clark Worldwide, Inc. Low profile transpyloric jejunostomy system and method to enable
US6663597B1 (en) 1996-09-13 2003-12-16 Boston Scientific Corporation Guidewire and catheter locking device and method
US20040010265A1 (en) * 2002-05-31 2004-01-15 Wilson-Cook Medical, Inc. Stent introducer apparatus
US20040009289A1 (en) * 2000-12-07 2004-01-15 Carley Michael T. Closure device and methods for making and using them
US6685721B1 (en) 1991-06-11 2004-02-03 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US6692464B2 (en) 2002-02-28 2004-02-17 Cook, Incorporated T-fitting for splittable sheath
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US20040092879A1 (en) * 2000-11-06 2004-05-13 Medamicus, Inc. Safety introducer apparatus and method therefor
US6758854B1 (en) 1997-05-09 2004-07-06 St. Jude Medical Splittable occlusion balloon sheath and process of use
US6764484B2 (en) 2001-03-30 2004-07-20 Scimed Life Systems, Inc. C-channel to o-channel converter for a single operator exchange biliary catheter
US20040153123A1 (en) * 2003-01-30 2004-08-05 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20040193112A1 (en) * 2003-03-26 2004-09-30 Medamicus, Inc. Safety introducer assembly and method
US6821287B1 (en) 1991-05-24 2004-11-23 Advanced Cardiovascular Systems, Inc. Multi-mode vascular catheter system
US6827718B2 (en) 2001-08-14 2004-12-07 Scimed Life Systems, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US20050090779A1 (en) * 2002-03-15 2005-04-28 Osypka Thomas P. Locking vascular introducer assembly with adjustable hemostatic seal
US6887417B1 (en) 2001-11-05 2005-05-03 Bectondickinson And Company Catheter sleeve assembly and one step injection molding process for making the same
US20050119695A1 (en) * 2000-12-07 2005-06-02 Carley Michael T. Closure device and methods for making and using them
US20050148820A1 (en) * 2003-02-19 2005-07-07 Boston Scientific Scimed, Inc. Guidewire locking device and method
US20050148929A1 (en) * 2003-11-17 2005-07-07 Bruce Gingles Catheter with centering wire
US20050209584A1 (en) * 2004-03-18 2005-09-22 Guy Rome Multifunction adaptor for an open-ended catheter
US20050267530A1 (en) * 2001-06-07 2005-12-01 Christy Cummins Surgical staple
US20060144479A1 (en) * 2002-12-31 2006-07-06 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
US20060149293A1 (en) * 2004-11-29 2006-07-06 Eric King Reduced-friction catheter introducer and method of manufacturing and using the same
US20060173438A1 (en) * 2005-01-28 2006-08-03 Boston Scientific Scimed, Inc. Universal utility board for use with medical devices and methods of use
US20060184098A1 (en) * 2002-04-19 2006-08-17 Neuron Therapeutic, Inc. Subarachnoid spinal catheter for transporting cerebrospinal fluid
US7094218B2 (en) 2004-03-18 2006-08-22 C. R. Bard, Inc. Valved catheter
US20060190037A1 (en) * 2000-01-05 2006-08-24 Ginn Richard S Integrated vascular device with puncture site closure component and sealant and methods of use
US20060195123A1 (en) * 2000-01-05 2006-08-31 Ginn Richard S Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US20060217664A1 (en) * 2004-11-15 2006-09-28 Hattler Brack G Telescoping vascular dilator
US20060259047A1 (en) * 1992-10-19 2006-11-16 David Hathaway Apparatus and method for positive closure of an internal tissue membrane opening
US7192433B2 (en) 2002-03-15 2007-03-20 Oscor Inc. Locking vascular introducer assembly with adjustable hemostatic seal
US20070123825A1 (en) * 2004-11-29 2007-05-31 Eric King Reduced-friction catheter introducer and method of manufacturing and using the same
US20070260158A1 (en) * 2006-05-03 2007-11-08 Cook Incorporated Tassel tip wire guide
US20070265569A1 (en) * 2006-05-11 2007-11-15 Kourosh Kojouri Nasopharyngeal sheath for nasogastric intubation
US20070287885A1 (en) * 2006-06-09 2007-12-13 Wilson-Cook Medical Inc. Endoscopic apparatus having an expandable balloon delivery system
EP1900391A1 (en) * 2003-01-27 2008-03-19 Richard R. Heuser Catheter Introducer system
US20080103480A1 (en) * 2006-10-26 2008-05-01 Cook Critical Care Incorporated Catheter port configuration
US20080167628A1 (en) * 2007-01-05 2008-07-10 Boston Scientific Scimed, Inc. Stent delivery system
US20080306427A1 (en) * 2007-06-05 2008-12-11 Cook Incorporated Chronic Hemodialysis Catheter with Balloon
US7469458B1 (en) * 2004-08-11 2008-12-30 Proteckt Catheters, Llc Method of assembling a catheter with integrated pre-slit cannula diaphragm
US20090018637A1 (en) * 2007-07-11 2009-01-15 Paul Jr Ram H Tubular devices having reversible components for deployment of endoluminal occluders and related methods and systems
US20090054826A1 (en) * 2007-08-21 2009-02-26 Cook Critical Care Incorporated Multi-lumen catheter
US20090062769A1 (en) * 2007-04-13 2009-03-05 Boston Scientific Scimed, Inc. Rapid exchange catheter converter
US20090093850A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Expanding seal anchor for single incision surgery
US20090105652A1 (en) * 2007-10-19 2009-04-23 C. R. Bard, Inc. Introducer including shaped distal region
US20090157101A1 (en) * 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US20090177163A1 (en) * 2004-11-29 2009-07-09 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US20090192485A1 (en) * 2008-01-28 2009-07-30 Heuser Richard R Snare device
US7578803B2 (en) 2004-03-18 2009-08-25 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US20090287052A1 (en) * 2008-05-19 2009-11-19 Boston Scientific Scimed, Inc. Biopsy Cap Attachment and Integrated Locking Device
US20090318757A1 (en) * 2008-06-23 2009-12-24 Percuvision, Llc Flexible visually directed medical intubation instrument and method
US20090318798A1 (en) * 2008-06-23 2009-12-24 Errol Singh Flexible visually directed medical intubation instrument and method
US7637893B2 (en) 2004-04-30 2009-12-29 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US20100010445A1 (en) * 2004-03-18 2010-01-14 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
USD611144S1 (en) 2006-06-28 2010-03-02 Abbott Laboratories Apparatus for delivering a closure element
US20100081878A1 (en) * 2008-05-19 2010-04-01 Boston Scientific Scimed, Inc. Integrated Locking Device With Active Sealing
US20100145285A1 (en) * 2008-12-09 2010-06-10 Cook Critical Care, Incorporated Multi-lumen catheter configuration
US7803142B2 (en) 2005-02-02 2010-09-28 Summit Access Llc Microtaper needle and method of use
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US7806910B2 (en) 2002-11-26 2010-10-05 Abbott Laboratories Multi-element biased suture clip
US7811303B2 (en) 2003-08-26 2010-10-12 Medicine Lodge Inc Bodily tissue dilation systems and methods
US7811250B1 (en) 2000-02-04 2010-10-12 Boston Scientific Scimed, Inc. Fluid injectable single operator exchange catheters and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US7850709B2 (en) 2002-06-04 2010-12-14 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US7854731B2 (en) 2004-03-18 2010-12-21 C. R. Bard, Inc. Valved catheter
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20100331823A1 (en) * 2009-06-26 2010-12-30 C. R. Bard, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
US7875019B2 (en) 2005-06-20 2011-01-25 C. R. Bard, Inc. Connection system for multi-lumen catheter
US20110137225A1 (en) * 2009-12-04 2011-06-09 Cook Critical Care Incorporated Multi-lumen catheter
US8002729B2 (en) 2007-08-21 2011-08-23 Cook Medical Technologies Llc Multi-lumen catheter assembly
US20110218549A1 (en) * 2010-03-05 2011-09-08 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a trial stimulation system having an electrical connector disposed on a trial stimulation lead
US20110224680A1 (en) * 2010-03-10 2011-09-15 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
US20110224681A1 (en) * 2010-03-15 2011-09-15 Boston Scientific Neuromodulation Corporation System and method for making and using a splitable lead introducer for an implantable electrical stimulation system
US20110224719A1 (en) * 2010-03-15 2011-09-15 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US20110230893A1 (en) * 2010-03-19 2011-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems having multi-lead-element lead bodies
US8048108B2 (en) 2005-08-24 2011-11-01 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8152767B2 (en) 2005-05-27 2012-04-10 Cook Medical Technologies Llc Low profile introducer apparatus
US8177771B2 (en) 2004-03-18 2012-05-15 C. R. Bard, Inc. Catheter connector
US8177770B2 (en) 2004-04-01 2012-05-15 C. R. Bard, Inc. Catheter connector system
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
US20120209284A1 (en) * 2011-02-10 2012-08-16 Westlund Randy W Medical Lead and Implantation
US8262619B2 (en) 2010-09-30 2012-09-11 Tyco Healthcare Group Lp Introducer sheath for catheters
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US8343041B2 (en) 2008-05-19 2013-01-01 Boston Scientific Scimed, Inc. Integrated locking device with passive sealing
US8372000B2 (en) 2007-01-03 2013-02-12 Boston Scientific Scimed, Inc. Method and apparatus for biliary access and stone retrieval
US8398676B2 (en) 2008-10-30 2013-03-19 Abbott Vascular Inc. Closure device
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8480570B2 (en) 2007-02-12 2013-07-09 Boston Scientific Scimed, Inc. Endoscope cap
US8556932B2 (en) 2011-05-19 2013-10-15 Abbott Cardiovascular Systems, Inc. Collapsible plug for tissue closure
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US8590760B2 (en) 2004-05-25 2013-11-26 Abbott Vascular Inc. Surgical stapler
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US8617184B2 (en) 2011-02-15 2013-12-31 Abbott Cardiovascular Systems, Inc. Vessel closure system
WO2014017986A1 (en) * 2012-07-26 2014-01-30 Agency For Science, Technology And Research Vascular access device and guiding portion
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8747428B2 (en) * 2012-01-12 2014-06-10 Fischell Innovations, Llc Carotid sheath with entry and tracking rapid exchange dilators and method of use
US8753313B2 (en) 2011-07-22 2014-06-17 Greatbatch Ltd. Introducer handle notch design/concept
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US8784447B2 (en) 2000-09-08 2014-07-22 Abbott Vascular Inc. Surgical stapler
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US20140343568A1 (en) * 2013-05-15 2014-11-20 Intuitive Surgical Operations, Inc. Guide apparatus for delivery of a flexible instrument and methods of use
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US8926564B2 (en) 2004-11-29 2015-01-06 C. R. Bard, Inc. Catheter introducer including a valve and valve actuator
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US9089674B2 (en) 2000-10-06 2015-07-28 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US20160008583A1 (en) * 2005-04-28 2016-01-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Body for a catheter or sheath
US9248253B2 (en) 2007-08-21 2016-02-02 Cook Medical Technologies Llc Winged catheter assembly
US9272085B2 (en) 2010-08-03 2016-03-01 Cook Medical Technologies Llc Method of introducing a catheter
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US20160228683A1 (en) * 2013-10-22 2016-08-11 Bernd Tietze Catheter puncture device
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US20160235275A1 (en) * 2015-02-13 2016-08-18 University Of Dammam System, method, and apparatus for visualizing and identifying pathological tissue
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US9585647B2 (en) 2009-08-26 2017-03-07 Abbott Laboratories Medical device for repairing a fistula
US9604050B2 (en) 2014-02-20 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for percutaneously implanting into a patient a paddle lead of an electrical stimulation system
US9610434B2 (en) 2013-03-13 2017-04-04 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
US9629658B2 (en) 2013-09-06 2017-04-25 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an implantable electrical stimulation system
US9700350B2 (en) 2013-09-06 2017-07-11 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an implantable electrical stimulation system
US9931109B2 (en) 2015-02-13 2018-04-03 Boston Scientific Neuromodulation Corporation Retractor and tools for implantation of electrical stimulation leads and methods of using and manufacture
US10226616B2 (en) 2015-04-28 2019-03-12 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US20190365208A1 (en) * 2018-06-01 2019-12-05 PatCom Medical Inc. Catheter and tube introducer
US10773010B2 (en) 2009-01-29 2020-09-15 Advent Access Pte. Ltd. Subcutaneous vascular access ports and related systems and methods
US10849771B2 (en) 2011-06-27 2020-12-01 Boston Scientific Scimed, Inc. Stent delivery systems and methods for making and using stent delivery systems
USD905232S1 (en) 2015-03-25 2020-12-15 Orthocision Inc. Surgical cannula
US11064870B2 (en) 2017-08-11 2021-07-20 Boston Scientific Limited Biopsy cap for use with endoscope
US11134950B2 (en) 2008-06-06 2021-10-05 Advent Access Pte. Ltd. Methods of attaching an implant to a vessel
US11197952B2 (en) 2009-01-29 2021-12-14 Advent Access Pte. Ltd. Vascular access ports and related methods
US11471647B2 (en) 2014-11-07 2022-10-18 C. R. Bard, Inc. Connection system for tunneled catheters
US11529510B2 (en) 2019-02-19 2022-12-20 Boston Scientific Neuromodulation Corporation Lead introducers and systems and methods including the lead introducers
US11896782B2 (en) 2017-08-23 2024-02-13 C. R. Bard, Inc. Priming and tunneling system for a retrograde catheter assembly

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094124A (en) * 1960-06-30 1963-06-18 Davol Rubber Co Arterial catheter
US3094122A (en) * 1961-01-18 1963-06-18 Theophile E Gauthier Flexible cannula and intravenous needle combined
US3166688A (en) * 1962-11-14 1965-01-19 Ronald P Rowand Polytetrafluoroethylene tubing having electrically conductive properties
US3225762A (en) * 1963-10-25 1965-12-28 Yolan R Guttman Intravenous stylet catheter
US3382872A (en) * 1965-06-07 1968-05-14 Melvin L. Rubin Venous catheter and needle
US3469579A (en) * 1967-05-05 1969-09-30 Becton Dickinson Co Catheter needle
US3545443A (en) * 1968-09-26 1970-12-08 Amir H Ansari Suprapubic cystostomy needle
US3550591A (en) * 1968-08-19 1970-12-29 George Kessler Intravenous catheter unit
US3570485A (en) * 1968-05-06 1971-03-16 Baxter Laboratories Inc Flexible catheter and inserting apparatus
US3598118A (en) * 1968-11-04 1971-08-10 Joseph E Warren Method of introducing an intravenous catheter into the vascular system
DE2104226B1 (en) * 1971-01-29 1971-12-02 Braun Fa B DEVICE FOR THE INTRODUCTION OF A FLEXIBLE CATHETER
US3677243A (en) * 1971-09-24 1972-07-18 Extracorporeal Med Spec Separable surgical needle
US3877429A (en) * 1973-11-30 1975-04-15 David L Rasumoff Catheter placement device
US4054136A (en) * 1975-03-03 1977-10-18 Zeppelin Dieter Von Cannula for the introduction of a catheter
US4166469A (en) * 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094124A (en) * 1960-06-30 1963-06-18 Davol Rubber Co Arterial catheter
US3094122A (en) * 1961-01-18 1963-06-18 Theophile E Gauthier Flexible cannula and intravenous needle combined
US3166688A (en) * 1962-11-14 1965-01-19 Ronald P Rowand Polytetrafluoroethylene tubing having electrically conductive properties
US3225762A (en) * 1963-10-25 1965-12-28 Yolan R Guttman Intravenous stylet catheter
US3382872A (en) * 1965-06-07 1968-05-14 Melvin L. Rubin Venous catheter and needle
US3469579A (en) * 1967-05-05 1969-09-30 Becton Dickinson Co Catheter needle
US3570485A (en) * 1968-05-06 1971-03-16 Baxter Laboratories Inc Flexible catheter and inserting apparatus
US3550591A (en) * 1968-08-19 1970-12-29 George Kessler Intravenous catheter unit
US3545443A (en) * 1968-09-26 1970-12-08 Amir H Ansari Suprapubic cystostomy needle
US3598118A (en) * 1968-11-04 1971-08-10 Joseph E Warren Method of introducing an intravenous catheter into the vascular system
DE2104226B1 (en) * 1971-01-29 1971-12-02 Braun Fa B DEVICE FOR THE INTRODUCTION OF A FLEXIBLE CATHETER
US3677243A (en) * 1971-09-24 1972-07-18 Extracorporeal Med Spec Separable surgical needle
US3877429A (en) * 1973-11-30 1975-04-15 David L Rasumoff Catheter placement device
US4054136A (en) * 1975-03-03 1977-10-18 Zeppelin Dieter Von Cannula for the introduction of a catheter
US4166469A (en) * 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"High Quality Hose Constructions From Teflon TFE Fluorocarbon Resins", DuPont Tech. Services Laboratory, Ribbans, TR#138.
"Percutaneus Insertion of a Permanent Transvenous Pacemaker Electrode Through the Subclavian Vein" Can. J. Surgery, Friesen et al., 3-77, pp. 131-135.
Article Eine Neue Methode zur Perkutanen Implantation permaneter Herz Schritt Macher , (A New Method for the Percutaneous Implantation of Permanent Pacemakers) by H. Sterz et al. (with translation). *
Article-"Eine Neue Methode zur Perkutanen Implantation permaneter Herz Schritt Macher", (A New Method for the Percutaneous Implantation of Permanent Pacemakers) by H. Sterz et al. (with translation).
High Quality Hose Constructions From Teflon TFE Fluorocarbon Resins , DuPont Tech. Services Laboratory, Ribbans, TR 138. *
Percutaneus Insertion of a Permanent Transvenous Pacemaker Electrode Through the Subclavian Vein Can. J. Surgery, Friesen et al., 3 77, pp. 131 135. *

Cited By (375)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163165A3 (en) * 1984-06-01 1986-08-27 Peter Dr. Ing. Osypka Appliance for the transveinous introduction of pacemaker electrodes or the like
EP0163165A2 (en) * 1984-06-01 1985-12-04 Peter Dr. Ing. Osypka Appliance for the transveinous introduction of pacemaker electrodes or the like
US4913704A (en) * 1985-12-06 1990-04-03 Sherwood Medical Company Disposable indwelling catheter placement unit into the blood vessel
EP0274129A2 (en) * 1987-01-06 1988-07-13 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
EP0274129A3 (en) * 1987-01-06 1989-03-15 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
EP0279015A2 (en) * 1987-02-06 1988-08-24 Becton, Dickinson and Company Splittable catheter composite material and process
EP0279015A3 (en) * 1987-02-06 1989-03-22 Becton, Dickinson And Company Splittable catheter composite material and process
US4988356A (en) * 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US4865593A (en) * 1987-06-25 1989-09-12 Sherwood Medical Company Splittable cannula
FR2631835A1 (en) * 1988-05-26 1989-12-01 Roudy Gil Sheath and method using such a sheath intended to facilitate replacement of a vascular prosthesis
US4983168A (en) * 1989-01-05 1991-01-08 Catheter Technology Corporation Medical layered peel away sheath and methods
EP0383426A1 (en) * 1989-01-31 1990-08-22 Cook Incorporated Recessed dilator-sheath assembly and method for making same
US4969875A (en) * 1989-05-22 1990-11-13 Kazuo Ichikawa Drainage device for medical use
US5084016A (en) * 1989-09-05 1992-01-28 Freeman Andrew B Epidural catheter apparatus with an inflation fitting
US5024655A (en) * 1989-09-05 1991-06-18 Freeman Andrew B Epidural catheter apparatus and associated method
US5281204A (en) * 1989-12-26 1994-01-25 Nissho Corporation Device for forming an inserting hole and method of using and making the same
EP0483803A1 (en) * 1990-11-01 1992-05-06 Junkosha Co. Ltd. Tubes for introducing medical devices
US5158545A (en) * 1991-05-02 1992-10-27 Brigham And Women's Hospital Diameter expansion cannula
US5395335A (en) * 1991-05-24 1995-03-07 Jang; G. David Universal mode vascular catheter system
US5554118A (en) * 1991-05-24 1996-09-10 Jang; G. David Universal mode vascular catheter system
US6824554B1 (en) 1991-05-24 2004-11-30 Advanced Cardiovascular Systems, Inc. Convertible mode vascular catheter system
US6821287B1 (en) 1991-05-24 2004-11-23 Advanced Cardiovascular Systems, Inc. Multi-mode vascular catheter system
US6692465B2 (en) 1991-06-11 2004-02-17 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US20040176793A1 (en) * 1991-06-11 2004-09-09 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US6685721B1 (en) 1991-06-11 2004-02-03 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US7229460B2 (en) 1991-06-11 2007-06-12 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US20030078537A1 (en) * 1991-06-13 2003-04-24 Jang G. David Convertible mode vascular catheter system
US7074231B2 (en) 1991-06-13 2006-07-11 Advanced Cardiovascular Systems, Inc. Convertible mode vascular catheter system
EP0948970A2 (en) 1991-07-09 1999-10-13 H.L. Medical Inventions, Inc. Splittable sheath assembly
US5167634A (en) * 1991-08-22 1992-12-01 Datascope Investment Corp. Peelable sheath with hub connector
US5222970A (en) * 1991-09-06 1993-06-29 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
US5263932A (en) * 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5462530A (en) * 1992-04-09 1995-10-31 Jang; G. David Intravascular catheter with bailout feature
US5342297A (en) * 1992-07-10 1994-08-30 Jang G David Bailout receptacle for angioplasty catheter
US20060259047A1 (en) * 1992-10-19 2006-11-16 David Hathaway Apparatus and method for positive closure of an internal tissue membrane opening
US7686821B2 (en) * 1992-10-19 2010-03-30 Indiana University Research & Technology Corporation Apparatus and method for positive closure of an internal tissue membrane opening
US5250033A (en) * 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US5425717A (en) * 1993-05-07 1995-06-20 The Kendall Company Epidural catheter system utilizing splittable needle
US5320602A (en) * 1993-05-14 1994-06-14 Wilson-Cook Medical, Inc. Peel-away endoscopic retrograde cholangio pancreatography catheter and a method for using the same
US5765682A (en) * 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
US5693030A (en) * 1995-06-28 1997-12-02 Lee, Lee & Beal, Inc. Catheter and method of introduction
US5690642A (en) 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
WO1998005373A1 (en) 1996-08-02 1998-02-12 Cook Incorporated Grommet positioning device
US20030233043A1 (en) * 1996-09-13 2003-12-18 Scimed Life Systems, Inc. Guide wire insertion and re-insertion tools and methods of use
US6312404B1 (en) 1996-09-13 2001-11-06 Boston Scientific Corporation Single operator exchange billiary catheter
US6582401B1 (en) 1996-09-13 2003-06-24 Scimed Life Sytems, Inc. Multi-size convertible catheter
US7179252B2 (en) 1996-09-13 2007-02-20 Boston Scientific Corporation Single operator exchange biliary catheter
US6606515B1 (en) 1996-09-13 2003-08-12 Scimed Life Systems, Inc. Guide wire insertion and re-insertion tools and methods of use
US20030199826A1 (en) * 1996-09-13 2003-10-23 Scimed Life Systems, Inc. Multi-size convertible catheter
US7544193B2 (en) 1996-09-13 2009-06-09 Boston Scientific Corporation Single operator exchange biliary catheter
US7076285B2 (en) 1996-09-13 2006-07-11 Scimed Life Systems, Inc. Guide wire insertion and re-insertion tools and methods of use
US6663597B1 (en) 1996-09-13 2003-12-16 Boston Scientific Corporation Guidewire and catheter locking device and method
US20070149948A1 (en) * 1996-09-13 2007-06-28 Boston Scientific Corporation Single operator exchange biliary catheter
US8206283B2 (en) 1996-09-13 2012-06-26 Boston Scientific Corporation Guidewire and catheter locking device and method
US8343105B2 (en) 1996-09-13 2013-01-01 Boston Scientific Scimed, Inc. Multi-size convertible catheter
US6520951B1 (en) 1996-09-13 2003-02-18 Scimed Life Systems, Inc. Rapid exchange catheter with detachable hood
US8043208B2 (en) 1996-09-13 2011-10-25 Boston Scientific Scimed, Inc. Guide wire insertion and re-insertion tools and methods of use
US7670316B2 (en) 1996-09-13 2010-03-02 Boston Scientific Corporation Guidewire and catheter locking device and method
US8579881B2 (en) 1996-09-13 2013-11-12 Boston Scientific Corporation Single operator exchange biliary catheter
US20030088153A1 (en) * 1996-09-13 2003-05-08 Scimed Life Systems, Inc. Rapid exchange catheter with detachable hood
US7060052B2 (en) 1996-09-13 2006-06-13 Boston Scientific Corporation Guidewire and catheter locking device and method
US6746442B2 (en) 1996-09-13 2004-06-08 Boston Scientific Corporation Single operator exchange biliary catheter
US7909811B2 (en) 1996-09-13 2011-03-22 Boston Scientific Corporation Single operator exchange biliary catheter
US7706861B2 (en) 1996-09-13 2010-04-27 Boston Scientific Scimed, Inc. Guide wire insertion and re-insertion tools and methods of use
US20110060315A1 (en) * 1996-09-13 2011-03-10 Boston Scientific Scimed, Inc. Multi-Size Convertible Catheter
US6997908B2 (en) 1996-09-13 2006-02-14 Scimed Life Systems, Inc. Rapid exchange catheter with detachable hood
US6346093B1 (en) 1996-09-13 2002-02-12 Scimed Life Systems, Inc. Single operator exchange biliary catheter with common distal lumen
US20100160726A1 (en) * 1996-09-13 2010-06-24 Boston Scientific Corporation Guidewire and Catheter Locking Device and Method
US20040193142A1 (en) * 1996-09-13 2004-09-30 Boston Scientific Corporation Single operator exchange biliary catheter
US7846133B2 (en) 1996-09-13 2010-12-07 Boston Scientific Scimed, Inc. Multi-size convertible catheter
US20100174139A1 (en) * 1996-09-13 2010-07-08 Boston Scientific Scimed, Inc. Guide Wire Insertion and Re-Insertion Tools and Methods of Use
US20050148950A1 (en) * 1996-09-13 2005-07-07 Scimed Life Systems, Inc. Multi-size convertible catheter
US6879854B2 (en) 1996-09-13 2005-04-12 Scimed Life Systems, Inc. Guide wire insertion and re-insertion tools and methods of use
US6869416B2 (en) 1996-09-13 2005-03-22 Scimed Life Systems, Inc. Multi-size convertible catheter
US6210366B1 (en) 1996-10-10 2001-04-03 Sanfilippo, Ii Dominic Joseph Vascular access kit
US6258058B1 (en) 1996-10-10 2001-07-10 Sanfilippo, Ii Dominic Joseph Vascular access device
US6758854B1 (en) 1997-05-09 2004-07-06 St. Jude Medical Splittable occlusion balloon sheath and process of use
US6402722B1 (en) 1997-10-01 2002-06-11 Scimed Life Systems, Inc. Apparatus and method for percutaneously placing gastrostomy tubes
US6240231B1 (en) 1997-12-22 2001-05-29 Micrus Corporation Variable stiffness fiber optic shaft
US20020193808A1 (en) * 2000-01-05 2002-12-19 Belef W. Martin Apparatus and methods for delivering a closure device
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US20020133193A1 (en) * 2000-01-05 2002-09-19 Ginn Richard S. Integrated vascular device with puncture site closure component and sealant and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US7828817B2 (en) 2000-01-05 2010-11-09 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
US20050273136A1 (en) * 2000-01-05 2005-12-08 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US7901428B2 (en) 2000-01-05 2011-03-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US20060190037A1 (en) * 2000-01-05 2006-08-24 Ginn Richard S Integrated vascular device with puncture site closure component and sealant and methods of use
US7931669B2 (en) 2000-01-05 2011-04-26 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US8758396B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US20060195123A1 (en) * 2000-01-05 2006-08-31 Ginn Richard S Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7819895B2 (en) 2000-01-05 2010-10-26 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8956388B2 (en) 2000-01-05 2015-02-17 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant
US9050087B2 (en) 2000-01-05 2015-06-09 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US6599237B1 (en) 2000-01-10 2003-07-29 Errol O. Singh Instrument and method for facilitating endoscopic examination and surgical procedures
US8425458B2 (en) 2000-02-04 2013-04-23 Boston Scientific Scimed, Inc. Fluid injectable single operator exchange catheters and methods of use
US7811250B1 (en) 2000-02-04 2010-10-12 Boston Scientific Scimed, Inc. Fluid injectable single operator exchange catheters and methods of use
US20110028895A1 (en) * 2000-02-04 2011-02-03 Boston Scientific Scimed, Inc. Fluid Injectable Single Operator Exchange Catheters and Methods of Use
US6468252B1 (en) 2000-08-03 2002-10-22 Sanfilippo, Ii Dominic J. Clamp for vascular access device
US9060769B2 (en) 2000-09-08 2015-06-23 Abbott Vascular Inc. Surgical stapler
US8784447B2 (en) 2000-09-08 2014-07-22 Abbott Vascular Inc. Surgical stapler
US9402625B2 (en) 2000-09-08 2016-08-02 Abbott Vascular Inc. Surgical stapler
US9089674B2 (en) 2000-10-06 2015-07-28 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US6641564B1 (en) * 2000-11-06 2003-11-04 Medamicus, Inc. Safety introducer apparatus and method therefor
US20040092879A1 (en) * 2000-11-06 2004-05-13 Medamicus, Inc. Safety introducer apparatus and method therefor
US20040009289A1 (en) * 2000-12-07 2004-01-15 Carley Michael T. Closure device and methods for making and using them
US8236026B2 (en) 2000-12-07 2012-08-07 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US20050119695A1 (en) * 2000-12-07 2005-06-02 Carley Michael T. Closure device and methods for making and using them
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US7887555B2 (en) 2000-12-07 2011-02-15 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8128644B2 (en) 2000-12-07 2012-03-06 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7879071B2 (en) 2000-12-07 2011-02-01 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9585646B2 (en) 2000-12-07 2017-03-07 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8182497B2 (en) 2000-12-07 2012-05-22 Integrated Vascular Systems, Inc. Closure device
US8257390B2 (en) 2000-12-07 2012-09-04 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9554786B2 (en) 2000-12-07 2017-01-31 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US8603136B2 (en) 2000-12-07 2013-12-10 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8486092B2 (en) 2000-12-07 2013-07-16 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8486108B2 (en) 2000-12-07 2013-07-16 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8597325B2 (en) 2000-12-07 2013-12-03 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US10245013B2 (en) 2000-12-07 2019-04-02 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US20110137292A1 (en) * 2001-03-30 2011-06-09 Boston Scientific Scimed, Inc. C-Channel to O-Channel Converter for a Single Operator Exchange Biliary Catheter
US7905876B2 (en) 2001-03-30 2011-03-15 Boston Scientific Scimed, Inc. C-channel to O-channel converter for a single operator exchange biliary catheter
US7160283B2 (en) 2001-03-30 2007-01-09 Boston Scientific Scimed, Inc. C-channel to O-channel converter for a single operator exchange biliary catheter
US8721623B2 (en) 2001-03-30 2014-05-13 Boston Scientific Scimed, Inc. C-channel to O-channel converter for a single operator exchange biliary catheter
US6764484B2 (en) 2001-03-30 2004-07-20 Scimed Life Systems, Inc. C-channel to o-channel converter for a single operator exchange biliary catheter
US20070118149A1 (en) * 2001-03-30 2007-05-24 Boston Scientific Scimed, Inc. C-channel to o-channel converter for a single oeprator exchange biliary catheter
US20040186460A1 (en) * 2001-03-30 2004-09-23 Scimed Life Systems, Inc. C-channel to O-channel converter for a single operator exchange biliary catheter
US20050267530A1 (en) * 2001-06-07 2005-12-01 Christy Cummins Surgical staple
US8728119B2 (en) 2001-06-07 2014-05-20 Abbott Vascular Inc. Surgical staple
US7918873B2 (en) 2001-06-07 2011-04-05 Abbott Vascular Inc. Surgical staple
US7887563B2 (en) 2001-06-07 2011-02-15 Abbott Vascular Inc. Surgical staple
US7635363B2 (en) 2001-08-14 2009-12-22 Boston Scientific Scimed, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US20100094087A1 (en) * 2001-08-14 2010-04-15 Boston Scientific Scimed, Inc. Method of and Apparatus for Positioning and Maintaining the Position of Endoscopic Instruments
US20050090847A1 (en) * 2001-08-14 2005-04-28 Scimed Life Systems, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US6827718B2 (en) 2001-08-14 2004-12-07 Scimed Life Systems, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US9352124B2 (en) 2001-08-14 2016-05-31 Boston Scientific Scimed, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US8231621B2 (en) 2001-08-14 2012-07-31 Boston Scientific Scimed, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US8579895B2 (en) 2001-08-14 2013-11-12 Boston Scientific Scimed, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
US6887417B1 (en) 2001-11-05 2005-05-03 Bectondickinson And Company Catheter sleeve assembly and one step injection molding process for making the same
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US20040073255A1 (en) * 2002-02-21 2004-04-15 Ginn Richard S Plunger apparatus and methods for delivering a closure device
US8579932B2 (en) 2002-02-21 2013-11-12 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US10201340B2 (en) 2002-02-21 2019-02-12 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US6749621B2 (en) 2002-02-21 2004-06-15 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US6692464B2 (en) 2002-02-28 2004-02-17 Cook, Incorporated T-fitting for splittable sheath
US7192433B2 (en) 2002-03-15 2007-03-20 Oscor Inc. Locking vascular introducer assembly with adjustable hemostatic seal
US20050090779A1 (en) * 2002-03-15 2005-04-28 Osypka Thomas P. Locking vascular introducer assembly with adjustable hemostatic seal
US8137317B2 (en) 2002-03-15 2012-03-20 Oscor Inc. Locking vascular introducer assembly with adjustable hemostatic seal
US20060184098A1 (en) * 2002-04-19 2006-08-17 Neuron Therapeutic, Inc. Subarachnoid spinal catheter for transporting cerebrospinal fluid
US20030225393A1 (en) * 2002-05-31 2003-12-04 Kimberly-Clark Worldwide, Inc. Low profile transpyloric jejunostomy system and method to enable
US20040010265A1 (en) * 2002-05-31 2004-01-15 Wilson-Cook Medical, Inc. Stent introducer apparatus
US7314481B2 (en) 2002-05-31 2008-01-01 Wilson-Cook Medical Inc. Stent introducer apparatus
US7850709B2 (en) 2002-06-04 2010-12-14 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US8469995B2 (en) 2002-06-04 2013-06-25 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9980728B2 (en) 2002-06-04 2018-05-29 Abbott Vascular Inc Blood vessel closure clip and delivery device
US8192459B2 (en) 2002-06-04 2012-06-05 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US7806910B2 (en) 2002-11-26 2010-10-05 Abbott Laboratories Multi-element biased suture clip
US7854810B2 (en) 2002-12-31 2010-12-21 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
US20090177213A1 (en) * 2002-12-31 2009-07-09 Integrated Vascular Systems, Inc. Methods For Manufacturing A Clip And Clip
US8585836B2 (en) 2002-12-31 2013-11-19 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
US7850797B2 (en) 2002-12-31 2010-12-14 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
US20060144479A1 (en) * 2002-12-31 2006-07-06 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
US8202283B2 (en) 2002-12-31 2012-06-19 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
EP1900391A1 (en) * 2003-01-27 2008-03-19 Richard R. Heuser Catheter Introducer system
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US7905900B2 (en) 2003-01-30 2011-03-15 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9398914B2 (en) 2003-01-30 2016-07-26 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US8529587B2 (en) 2003-01-30 2013-09-10 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US9271707B2 (en) 2003-01-30 2016-03-01 Integrated Vascular Systems, Inc. Clip applier and methods of use
US7867249B2 (en) 2003-01-30 2011-01-11 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8202294B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8926656B2 (en) 2003-01-30 2015-01-06 Integated Vascular Systems, Inc. Clip applier and methods of use
US20040153123A1 (en) * 2003-01-30 2004-08-05 Integrated Vascular Systems, Inc. Clip applier and methods of use
US10398418B2 (en) 2003-01-30 2019-09-03 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20110015482A1 (en) * 2003-02-19 2011-01-20 Boston Scientific Scimed, Inc. Guidewire Locking Device and Method
US7803107B2 (en) 2003-02-19 2010-09-28 Boston Scientific Scimed, Inc. Guidewire locking device and method
US20050148820A1 (en) * 2003-02-19 2005-07-07 Boston Scientific Scimed, Inc. Guidewire locking device and method
US8647256B2 (en) 2003-02-19 2014-02-11 Boston Scientific Scimed, Inc. Guidewire locking device and method
US20040193112A1 (en) * 2003-03-26 2004-09-30 Medamicus, Inc. Safety introducer assembly and method
US7001396B2 (en) 2003-03-26 2006-02-21 Enpath Medical, Inc. Safety introducer assembly and method
US7811303B2 (en) 2003-08-26 2010-10-12 Medicine Lodge Inc Bodily tissue dilation systems and methods
US20050148929A1 (en) * 2003-11-17 2005-07-07 Bruce Gingles Catheter with centering wire
US7922687B2 (en) 2003-11-17 2011-04-12 Cook Medical Technologies Llc Catheter with centering wire
US7883502B2 (en) 2004-03-18 2011-02-08 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US7094218B2 (en) 2004-03-18 2006-08-22 C. R. Bard, Inc. Valved catheter
US8523840B2 (en) 2004-03-18 2013-09-03 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US8177771B2 (en) 2004-03-18 2012-05-15 C. R. Bard, Inc. Catheter connector
US20050209584A1 (en) * 2004-03-18 2005-09-22 Guy Rome Multifunction adaptor for an open-ended catheter
US8083728B2 (en) 2004-03-18 2011-12-27 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US20100010445A1 (en) * 2004-03-18 2010-01-14 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US20110098653A1 (en) * 2004-03-18 2011-04-28 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US7578803B2 (en) 2004-03-18 2009-08-25 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US7854731B2 (en) 2004-03-18 2010-12-21 C. R. Bard, Inc. Valved catheter
US8177770B2 (en) 2004-04-01 2012-05-15 C. R. Bard, Inc. Catheter connector system
US20100101069A1 (en) * 2004-04-30 2010-04-29 C.R. Bard, Inc. Valved sheath introducer for venous cannulation
US10307182B2 (en) 2004-04-30 2019-06-04 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US9108033B2 (en) 2004-04-30 2015-08-18 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US7637893B2 (en) 2004-04-30 2009-12-29 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US8720065B2 (en) 2004-04-30 2014-05-13 C. R. Bard, Inc. Valved sheath introducer for venous cannulation
US8590760B2 (en) 2004-05-25 2013-11-26 Abbott Vascular Inc. Surgical stapler
US7469458B1 (en) * 2004-08-11 2008-12-30 Proteckt Catheters, Llc Method of assembling a catheter with integrated pre-slit cannula diaphragm
US20060217664A1 (en) * 2004-11-15 2006-09-28 Hattler Brack G Telescoping vascular dilator
US8926564B2 (en) 2004-11-29 2015-01-06 C. R. Bard, Inc. Catheter introducer including a valve and valve actuator
US8403890B2 (en) 2004-11-29 2013-03-26 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US10398879B2 (en) 2004-11-29 2019-09-03 C. R. Bard, Inc. Reduced-friction catheter introducer and method of manufacturing and using the same
US9278188B2 (en) 2004-11-29 2016-03-08 C. R. Bard, Inc. Catheter introducer including a valve and valve actuator
US9283351B2 (en) 2004-11-29 2016-03-15 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US8932260B2 (en) 2004-11-29 2015-01-13 C. R. Bard, Inc. Reduced-friction catheter introducer and method of manufacturing and using the same
US9101737B2 (en) 2004-11-29 2015-08-11 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US20090177163A1 (en) * 2004-11-29 2009-07-09 C. R. Bard, Inc. Reduced friction catheter introducer and method of manufacturing and using the same
US9078998B2 (en) 2004-11-29 2015-07-14 C. R. Bard, Inc. Catheter introducer including a valve and valve actuator
US20070123825A1 (en) * 2004-11-29 2007-05-31 Eric King Reduced-friction catheter introducer and method of manufacturing and using the same
US20060149293A1 (en) * 2004-11-29 2006-07-06 Eric King Reduced-friction catheter introducer and method of manufacturing and using the same
US9597483B2 (en) 2004-11-29 2017-03-21 C. R. Bard, Inc. Reduced-friction catheter introducer and method of manufacturing and using the same
US20060173438A1 (en) * 2005-01-28 2006-08-03 Boston Scientific Scimed, Inc. Universal utility board for use with medical devices and methods of use
US8480629B2 (en) 2005-01-28 2013-07-09 Boston Scientific Scimed, Inc. Universal utility board for use with medical devices and methods of use
US7803142B2 (en) 2005-02-02 2010-09-28 Summit Access Llc Microtaper needle and method of use
US20160008583A1 (en) * 2005-04-28 2016-01-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Body for a catheter or sheath
US10076639B2 (en) * 2005-04-28 2018-09-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Body for a catheter or sheath
US9114234B2 (en) 2005-05-27 2015-08-25 Cook Medical Technologies Llc Low profile introducer apparatus
US8628496B2 (en) 2005-05-27 2014-01-14 Cook Medical Technologies Llc Low profile introducer apparatus
US8152767B2 (en) 2005-05-27 2012-04-10 Cook Medical Technologies Llc Low profile introducer apparatus
US9795768B2 (en) 2005-05-27 2017-10-24 Cook Medical Technologies Llc Low profile introducer apparatus
US11638807B2 (en) 2005-05-27 2023-05-02 Cook Medical Technologies Llc Low profile introducer apparatus
US10576252B2 (en) 2005-05-27 2020-03-03 Cook Medical Technologies Llc Low profile introducer apparatus
US8617138B2 (en) 2005-06-20 2013-12-31 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8206376B2 (en) 2005-06-20 2012-06-26 C. R. Bard, Inc. Connection system for multi-lumen catheter
US20110098679A1 (en) * 2005-06-20 2011-04-28 C. R. Bard, Inc. Connection system for multi-lumen catheter
US7875019B2 (en) 2005-06-20 2011-01-25 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8852168B2 (en) 2005-06-20 2014-10-07 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US9050068B2 (en) 2005-07-01 2015-06-09 Abbott Laboratories Clip applier and methods of use
US8518057B2 (en) 2005-07-01 2013-08-27 Abbott Laboratories Clip applier and methods of use
US10085753B2 (en) 2005-07-01 2018-10-02 Abbott Laboratories Clip applier and methods of use
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8048108B2 (en) 2005-08-24 2011-11-01 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8702720B2 (en) 2006-05-03 2014-04-22 Cook Medical Technologies Llc Tassel tip wire guide
US20070260158A1 (en) * 2006-05-03 2007-11-08 Cook Incorporated Tassel tip wire guide
US7604627B2 (en) * 2006-05-11 2009-10-20 Kourosh Kojouri Nasopharyngeal sheath for nasogastric intubation
US20070265569A1 (en) * 2006-05-11 2007-11-15 Kourosh Kojouri Nasopharyngeal sheath for nasogastric intubation
US20070287885A1 (en) * 2006-06-09 2007-12-13 Wilson-Cook Medical Inc. Endoscopic apparatus having an expandable balloon delivery system
US8475360B2 (en) 2006-06-09 2013-07-02 Cook Medical Technologies Llc Endoscopic apparatus having an expandable balloon delivery system
USD611144S1 (en) 2006-06-28 2010-03-02 Abbott Laboratories Apparatus for delivering a closure element
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8545434B2 (en) 2006-10-26 2013-10-01 Cook Medical Technology LLC Catheter port configuration
US20080103480A1 (en) * 2006-10-26 2008-05-01 Cook Critical Care Incorporated Catheter port configuration
US8888681B2 (en) 2007-01-03 2014-11-18 Boston Scientific Scimed, Inc. Method and apparatus for biliary access and stone retrieval
US8372000B2 (en) 2007-01-03 2013-02-12 Boston Scientific Scimed, Inc. Method and apparatus for biliary access and stone retrieval
US20080167628A1 (en) * 2007-01-05 2008-07-10 Boston Scientific Scimed, Inc. Stent delivery system
US8480570B2 (en) 2007-02-12 2013-07-09 Boston Scientific Scimed, Inc. Endoscope cap
US20090062769A1 (en) * 2007-04-13 2009-03-05 Boston Scientific Scimed, Inc. Rapid exchange catheter converter
US20110092876A1 (en) * 2007-06-05 2011-04-21 Wilson-Cook Medical Inc. Chronic Hemodialysis Catheter with Balloon
US20080306427A1 (en) * 2007-06-05 2008-12-11 Cook Incorporated Chronic Hemodialysis Catheter with Balloon
US8900176B2 (en) 2007-06-05 2014-12-02 Cook Medical Technologies Llc Chronic hemodialysis catheter with balloon
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
US20090018637A1 (en) * 2007-07-11 2009-01-15 Paul Jr Ram H Tubular devices having reversible components for deployment of endoluminal occluders and related methods and systems
US8540760B2 (en) 2007-07-11 2013-09-24 Cook Medical Technologies Llc Tubular devices having reversible components for deployment of endoluminal occluders and related methods and systems
US7753868B2 (en) 2007-08-21 2010-07-13 Cook Critical Care Incorporated Multi-lumen catheter
US9248253B2 (en) 2007-08-21 2016-02-02 Cook Medical Technologies Llc Winged catheter assembly
US20090054826A1 (en) * 2007-08-21 2009-02-26 Cook Critical Care Incorporated Multi-lumen catheter
US8002729B2 (en) 2007-08-21 2011-08-23 Cook Medical Technologies Llc Multi-lumen catheter assembly
US8795326B2 (en) 2007-10-05 2014-08-05 Covidien Lp Expanding seal anchor for single incision surgery
US20090093850A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Expanding seal anchor for single incision surgery
US9474518B2 (en) 2007-10-05 2016-10-25 Covidien Lp Expanding seal anchor for single incision surgery
US20090105652A1 (en) * 2007-10-19 2009-04-23 C. R. Bard, Inc. Introducer including shaped distal region
US8608702B2 (en) 2007-10-19 2013-12-17 C. R. Bard, Inc. Introducer including shaped distal region
US8672953B2 (en) 2007-12-17 2014-03-18 Abbott Laboratories Tissue closure system and methods of use
US20090157101A1 (en) * 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US8820602B2 (en) 2007-12-18 2014-09-02 Abbott Laboratories Modular clip applier
US20110077680A1 (en) * 2008-01-28 2011-03-31 Heuser Richard R Large mouth snare device
US20090192485A1 (en) * 2008-01-28 2009-07-30 Heuser Richard R Snare device
US9131831B2 (en) 2008-02-11 2015-09-15 Boston Scientific Scimed, Inc. Integrated locking device with passive sealing
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US10413295B2 (en) 2008-05-16 2019-09-17 Abbott Laboratories Engaging element for engaging tissue
US20090287052A1 (en) * 2008-05-19 2009-11-19 Boston Scientific Scimed, Inc. Biopsy Cap Attachment and Integrated Locking Device
US8343041B2 (en) 2008-05-19 2013-01-01 Boston Scientific Scimed, Inc. Integrated locking device with passive sealing
US20100081878A1 (en) * 2008-05-19 2010-04-01 Boston Scientific Scimed, Inc. Integrated Locking Device With Active Sealing
US8388521B2 (en) 2008-05-19 2013-03-05 Boston Scientific Scimed, Inc. Integrated locking device with active sealing
US11134950B2 (en) 2008-06-06 2021-10-05 Advent Access Pte. Ltd. Methods of attaching an implant to a vessel
US20090318757A1 (en) * 2008-06-23 2009-12-24 Percuvision, Llc Flexible visually directed medical intubation instrument and method
US20090318798A1 (en) * 2008-06-23 2009-12-24 Errol Singh Flexible visually directed medical intubation instrument and method
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US8398676B2 (en) 2008-10-30 2013-03-19 Abbott Vascular Inc. Closure device
US8657852B2 (en) 2008-10-30 2014-02-25 Abbott Vascular Inc. Closure device
US20100145285A1 (en) * 2008-12-09 2010-06-10 Cook Critical Care, Incorporated Multi-lumen catheter configuration
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US10537313B2 (en) 2009-01-09 2020-01-21 Abbott Vascular, Inc. Closure devices and methods
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US11197952B2 (en) 2009-01-29 2021-12-14 Advent Access Pte. Ltd. Vascular access ports and related methods
US10773010B2 (en) 2009-01-29 2020-09-15 Advent Access Pte. Ltd. Subcutaneous vascular access ports and related systems and methods
US10894120B2 (en) 2009-01-29 2021-01-19 Advent Access Pte. Ltd. Vascular access port systems and methods
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US20100331823A1 (en) * 2009-06-26 2010-12-30 C. R. Bard, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
US8337484B2 (en) 2009-06-26 2012-12-25 C. R. Band, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
US9585647B2 (en) 2009-08-26 2017-03-07 Abbott Laboratories Medical device for repairing a fistula
US9192710B2 (en) 2009-12-04 2015-11-24 Cook Medical Technologies Llc Multi-lumen catheter
US8496607B2 (en) 2009-12-04 2013-07-30 Cook Medical Technologies Llc Multi-lumen catheter
US20110137225A1 (en) * 2009-12-04 2011-06-09 Cook Critical Care Incorporated Multi-lumen catheter
US20110218549A1 (en) * 2010-03-05 2011-09-08 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a trial stimulation system having an electrical connector disposed on a trial stimulation lead
US9510857B2 (en) 2010-03-10 2016-12-06 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
US20110224680A1 (en) * 2010-03-10 2011-09-15 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
US20110224719A1 (en) * 2010-03-15 2011-09-15 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US8303624B2 (en) 2010-03-15 2012-11-06 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US20110224681A1 (en) * 2010-03-15 2011-09-15 Boston Scientific Neuromodulation Corporation System and method for making and using a splitable lead introducer for an implantable electrical stimulation system
US20110230893A1 (en) * 2010-03-19 2011-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems having multi-lead-element lead bodies
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US9272085B2 (en) 2010-08-03 2016-03-01 Cook Medical Technologies Llc Method of introducing a catheter
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US9415186B2 (en) 2010-09-30 2016-08-16 Covidien Lp Introducer sheath for catheters
US8262619B2 (en) 2010-09-30 2012-09-11 Tyco Healthcare Group Lp Introducer sheath for catheters
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US9744349B2 (en) * 2011-02-10 2017-08-29 Respicardia, Inc. Medical lead and implantation
US10821280B2 (en) 2011-02-10 2020-11-03 Respicardia, Inc. Medical lead and implantation
US20120209284A1 (en) * 2011-02-10 2012-08-16 Westlund Randy W Medical Lead and Implantation
US8617184B2 (en) 2011-02-15 2013-12-31 Abbott Cardiovascular Systems, Inc. Vessel closure system
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US8556932B2 (en) 2011-05-19 2013-10-15 Abbott Cardiovascular Systems, Inc. Collapsible plug for tissue closure
US10849771B2 (en) 2011-06-27 2020-12-01 Boston Scientific Scimed, Inc. Stent delivery systems and methods for making and using stent delivery systems
US8753313B2 (en) 2011-07-22 2014-06-17 Greatbatch Ltd. Introducer handle notch design/concept
US9517323B2 (en) 2011-07-22 2016-12-13 Greatbatch Ltd. Introducer handle notch design/concept
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US8747428B2 (en) * 2012-01-12 2014-06-10 Fischell Innovations, Llc Carotid sheath with entry and tracking rapid exchange dilators and method of use
US9937296B2 (en) 2012-07-26 2018-04-10 Agency For Science, Technology And Research Vascular access device and guiding portion
WO2014017986A1 (en) * 2012-07-26 2014-01-30 Agency For Science, Technology And Research Vascular access device and guiding portion
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US10537312B2 (en) 2012-12-21 2020-01-21 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9610434B2 (en) 2013-03-13 2017-04-04 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
US20140343568A1 (en) * 2013-05-15 2014-11-20 Intuitive Surgical Operations, Inc. Guide apparatus for delivery of a flexible instrument and methods of use
US20220168054A1 (en) * 2013-05-15 2022-06-02 Intuitive Surgical Operations, Inc. Guide apparatus for delivery of a flexible instrument and methods of use
US10206747B2 (en) * 2013-05-15 2019-02-19 Intuitive Surgical Operations, Inc. Guide apparatus for delivery of a flexible instrument and methods of use
US11284950B2 (en) * 2013-05-15 2022-03-29 Intuitive Surgical Operations, Inc. Guide apparatus for delivery of a flexible instrument and methods of use
US9629658B2 (en) 2013-09-06 2017-04-25 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an implantable electrical stimulation system
US9700350B2 (en) 2013-09-06 2017-07-11 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an implantable electrical stimulation system
US20160228683A1 (en) * 2013-10-22 2016-08-11 Bernd Tietze Catheter puncture device
US9604050B2 (en) 2014-02-20 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for percutaneously implanting into a patient a paddle lead of an electrical stimulation system
US11471647B2 (en) 2014-11-07 2022-10-18 C. R. Bard, Inc. Connection system for tunneled catheters
US10213091B2 (en) * 2015-02-13 2019-02-26 University Of Dammam System, method, and apparatus for visualizing and identifying pathological tissue
US20160235275A1 (en) * 2015-02-13 2016-08-18 University Of Dammam System, method, and apparatus for visualizing and identifying pathological tissue
US9931109B2 (en) 2015-02-13 2018-04-03 Boston Scientific Neuromodulation Corporation Retractor and tools for implantation of electrical stimulation leads and methods of using and manufacture
USD922568S1 (en) 2015-03-25 2021-06-15 Orthocision Inc. Surgical cannula
USD905232S1 (en) 2015-03-25 2020-12-15 Orthocision Inc. Surgical cannula
US10946186B2 (en) 2015-04-28 2021-03-16 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US10226616B2 (en) 2015-04-28 2019-03-12 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US11628295B2 (en) 2015-04-28 2023-04-18 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US11064870B2 (en) 2017-08-11 2021-07-20 Boston Scientific Limited Biopsy cap for use with endoscope
US11896782B2 (en) 2017-08-23 2024-02-13 C. R. Bard, Inc. Priming and tunneling system for a retrograde catheter assembly
US20190365208A1 (en) * 2018-06-01 2019-12-05 PatCom Medical Inc. Catheter and tube introducer
US11737656B2 (en) * 2018-06-01 2023-08-29 PatCom Medical Inc. Catheter and tube introducer
US11529510B2 (en) 2019-02-19 2022-12-20 Boston Scientific Neuromodulation Corporation Lead introducers and systems and methods including the lead introducers

Also Published As

Publication number Publication date
USRE31855F1 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
USRE31855E (en) Tear apart cannula
US4306562A (en) Tear apart cannula
CA1223829A (en) Sheath
US5209741A (en) Surgical access device having variable post-insertion cross-sectional geometry
CA1245526A (en) Catheter introducing device, assembly and method
US4327709A (en) Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body
US5098392A (en) Locking dilator for peel away introducer sheath
US4596559A (en) Break-away handle for a catheter introducer set
EP0652782B1 (en) Catheter emplacement apparatus
US5167634A (en) Peelable sheath with hub connector
EP1028775B1 (en) Medical Introducing device with flared sheath end
US4650472A (en) Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle
US5104388A (en) Membrane splittable tubing
US6613038B2 (en) Method of using expandable cannula
US4710181A (en) Variable diameter catheter
US4738666A (en) Variable diameter catheter
EP0479565B1 (en) Medical apparatus for endoscopic surgery
US6645178B1 (en) Apparatus for inserting medical device
US6592553B2 (en) Introducer assembly and method therefor
JP3889053B2 (en) Introducer system with splittable anti-kink sheath
US3877429A (en) Catheter placement device
US8814832B1 (en) Expandable sheath and system for intravascular insertion of a medical implement using the same
US20060217664A1 (en) Telescoping vascular dilator
US20040030319A1 (en) Catheter introducer having an expandable tip
CA2109416A1 (en) Radially expandable dilator