USRE32431E - System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate - Google Patents

System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate Download PDF

Info

Publication number
USRE32431E
USRE32431E US06/732,033 US73203385A USRE32431E US RE32431 E USRE32431 E US RE32431E US 73203385 A US73203385 A US 73203385A US RE32431 E USRE32431 E US RE32431E
Authority
US
United States
Prior art keywords
speed control
disc
signal
control signal
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/732,033
Inventor
Wayne R. Dakin
Ludwig Ceshkovsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Discovision Associates
Original Assignee
Discovision Associates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/961,404 external-priority patent/US4223349A/en
Application filed by Discovision Associates filed Critical Discovision Associates
Priority to US06/732,033 priority Critical patent/USRE32431E/en
Application granted granted Critical
Publication of USRE32431E publication Critical patent/USRE32431E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/24Arrangements for providing constant relative speed between record carrier and head

Definitions

  • the present invention relates generally to systems for recovering information from a record medium, and, more particularly, to systems for recovering information from an information storage disc that is rotatable at a variable angular velocity.
  • Information storage discs having a plurality of substantially circular and concentrically arranged information tracks are becoming increasingly popular, particularly when used for storing video signals.
  • Each information track on the disc typically stores one complete frame of the video signal, so recovery of the video signal at a prescribed constant rate necessary for proper reception of the signal by a conventional television receiver ordinarily necessitates a rotation of the disc relative to a transducer at a substantially constant angular velocity.
  • the servo apparatus described in the application includes a spindle motor for rotating the disc, a tachometer coupled to the motor for producing a signal having a frequency proportional to its angular velocity, and a phase detector for comparing the phase angle of the tachometer signal with that of a periodic reference signal.
  • the output of the phase detector which is proportional to the phase difference of its two input signals, is suitably amplified and coupled to the motor to rotate the disc at the appropriate constant angular velocity.
  • the amount of information recorded on each information track is thus generally proportional to the length of the track. Since known prior apparatus for recovering information from rotatable information storage discs operate to rotate the disc only at a constant angular velocity relative to a transducer, they are generally incapable of recovering information from discs of the type having such a uniform recording density.
  • the present invention is embodied in apparatus and a related method for controllably rotating an information storage disc relative to transducer means for recovering information stored thereon.
  • the information is stored in a plurality of substantially circular and concentrically arranged information tracks, and the transducer means is radially movable relative to the disc to recover the information from a selected one of the tracks.
  • the recording density of the stored information is such that, to recover the information at a prescribed constant rate, the disc must be rotated at an angular velocity that varies according to the radius of the selected track.
  • the apparatus includes means for producing a coarse speed control signal that varies according to the radius of the selected information track, means responsive to the coarse signal for producing a composite speed control signal representative of the prescribed speed at which the disc is to be rotated, and means responsive to the composite speed control signal for rotating the disc, accordingly.
  • the apparatus further includes means for comparing a periodic signal included in the information recovered from the disc with a periodic reference signal, and for producing a corresponding fine speed control signal that is coupled to the means for producing the composite speed control signal, to adjust such composite signal in a prescribed fashion, accordingly.
  • the angular velocity of the disc is controllably adjusted, such that the information is recovered therefrom by the transducer means at the prescribed constant rate.
  • an apparatus constructed in accordance with the present invention is especially adapted for use in recovering a video signal from an information storage disc having a substantially uniform recording density over its entire information-bearing surface.
  • the angular velocity of the disc relative to the transducer means must be maintained substantially inversely proportional to the radius of the information track from which information is being recovered by the transducer means.
  • the coarse speed control means preferably comprises a potentiometer mechanically coupled to the transducer means, which is movable radially relative to the disc.
  • An electrical signal produced by the potentiometer is substantially proportional to such radius and is coupled to the means for producing the composite speed control signal, which, in the preferred embodiment comprises a voltage-controlled oscillator (VCO).
  • VCO voltage-controlled oscillator
  • the composite speed control signal produced by the VCO has a frequency substantially inversely proportional to the radius of the selected track, and is coupled to a conventional servomechanism for rotating the disc at a corresponding angular velocity.
  • the angular velocity of the disc will be controllably adjusted as the transducer means moves from track to track, and, depending on the linearity of the potentiometer and the VCO, the resultant velocity will be within a prescribed tolerance of the precise velocity necessary for recovering the information at the prescribed constant rate.
  • a fine adjustment of the angular velocity of the disc is accomplished by the fine speed control means, which operates to compare the timing of the video signal recovered from the disc with a periodic reference signal.
  • the fine speed control means preferably includes a phase-locked loop for detecting a pilot signal included in the video signal recovered from the disc and producing a periodic signal having a corresponding frequency, along with a stable reference oscillator for generating the periodic reference signal.
  • the respective periodic signals are suitably frequency divided and compared to each other in a phase detector to produce the fine speed control signal, which has an average voltage proportional to the difference in the phase angles of the respective signals.
  • the fine speed control signal is transmitted to a summing amplifier, where it is combined with the coarse speed control signal, for coupling to the VCO.
  • the frequency of the composite speed control signal produced by the VCO will be adjusted automatically, to cause the servo to rotate the disc at an appropriate angular velocity such that the video signal is recovered from the disc at the prescribed constant rate.
  • the fine speed control means by itself, operated to rotate the disc at too low an angular velocity, the fine speed control means would detect a relative phase lag in the recovered video signal and would adjust the average voltage level of the fine speed control signal it produces, accordingly.
  • the voltage applied to the VCO would thus be controllably adjusted, whereby the frequency of the composite speed control signal would be increased and the angular velocity of the disc increased, accordingly, until the proper speed were achieved.
  • the apparatus would operate in a similar fashion to decrease the angular velocity of the disc if a phase lead in the recovered video signal were detected.
  • FIG. 1 is a plan view of a prior video disc, showing, in schematic form, two information tracks, each extending over one complete circumference and containing one frame of a video signal;
  • FIG. 2 is a plan view of the video disc of FIG. 1, showing, in enlarged form, the successive light-reflective and light-scattering regions forming the two information tracks;
  • FIG. 3 is a simplified block diagram of a prior art apparatus for rotating the video disc of FIG. 1 at a constant angular velocity, to recover the video signal therefrom;
  • FIG. 4 is a plan view of a video disc for use with apparatus of the present invention, showing, in schematic form, a plurality of frames of a video signal recorded on the disc, each of the frames having substantially the same length;
  • FIG. 5 is a plan view of the video disc of FIG. 4, showing, in enlarged form, the successive light-reflective and light-scattering regions for two information tracks, one located near the periphery of the disc and the other near the center of the disc; and
  • FIG. 6 is a simplified block diagram of apparatus of the present invention for rotating the video disc of FIG. 4 at a precisely controllable angular velocity, such that the video signal is recovered from the disc at a prescribed rate.
  • FIGS. 1 and 2 there is shown a typical prior art record disc 10 for storing information, such as a video signal.
  • the signal is recorded in a plurality of substantially circular information tracks forming a spiral pattern on the disc, with each track containing one frame of video information.
  • the even fields for all of the tracks form a sector indicated by the reference numeral 12, while the odd fields form a sector indicated by the numeral 14 and the vertical blanking intervals form sectors indicated at 16 and 18.
  • an information track located at the periphery of the video disc 10 such as the track indicated by the numeral 19, is of considerably longer length than is an information track located nearer the center of the disc, such as the track indicated by the numeral 20.
  • FIG. 2 is another schematic view of the disc shown in FIG. 1, wherein indicia of the recorded video signal are shown in enlarged form.
  • the form of this video disc is described in more detail in a co-pending and commonly assigned application for U.S. patent Ser. No. 890,407, filed in the name of John S. Winslow and entitled "Mastering Machine".
  • the video signal is ordinarily stored on the disc 10 in the form of a frequency modulated carrier and it comprises an alternating sequence of light-reflective and light-scattering regions, 24 and 26, respectively.
  • the light-scattering regions 26 normally have a uniform width in the radial direction, and the lengths of adjacent light-scattering and light-reflective regions are essentially equal, because, together, they represent a single cycle of the frequency modulated signal. Since the same amount of information is recorded on each track, i.e., one video frame, the size of the successive light-scattering regions changes as a function of its radial position. This can be observed in FIG.
  • FIG. 3 is a simplified block diagram of a prior art system utilized in rotating the disc 10 of FIGS. 1 and 2 at a constant angular velocity of 30 revolutions per second.
  • the system includes an oscillator 30 for generating a reference frequency that is frequency divided by a divider circuit 32 to produce a speed reference signal, a spindle motor 28, and an AC tachometer 34 coupled to the spindle motor for producing a signal having a frequency proportional to the actual angular velocity of the disc 10.
  • the system further includes a phase detector circuit 36 for comparing the respective phase angles of the tachometer signal and the speed reference signal and for producing a corresponding control signal.
  • the control signal is, in turn, processed in a lead/lag compensator 38 and an amplifier 40 for coupling to the motor 28 to controllably adjust its angular velocity to properly rotate the disc 10 at 30 revolutions per second.
  • FIG. 4 shows, in schematic form, one frame 112 of a video signal, extending over one complete information track near the center of the disc, along with a plurality of consecutive video signal frames 114, 116, 118, and 120 extending over a pair of tracks located near the periphery of the disc, each of these latter frames extending over substantially less than a complete circumference of the disc.
  • the length of each frame on the disc is substantially the same.
  • FIG. 5 shows, in enlarged form, the successive light-reflective and light-scattering regions 122 and 124 for a portion of the video signal frame designated 118, along with corresponding regions 122' and 124' for a portion of the frame designated 112. It should be noted that, since each video signal frame recorded on the disc is substantially of equal length, the nominal lengths of the respective light-scattering regions 124 and 124' are, likewise, substantially equal.
  • FIG. 6 there is shown a simplified block diagram of apparatus for controllably rotating the disc 110 of FIGS. 4 and 5 at a variable angular velocity relative to an optical transducer 128, such that the video signal is recovered from the disc at a prescribed constant rate.
  • the optical transducer is movable radially relative to the disc to recover the video signal from a selected one of the information tracks, and the apparatus operates to rotate the disc such that the selected track is moved at a substantially constant linear velocity relative to the transducer.
  • the prescribed constant rate at which the video signal is recovered from the disc corresponds to conventional broadcast format standards, whereby the signal can be properly received and displayed by a conventional television receiver (not shown).
  • the apparatus includes a coarse speed control potentiometer 130 mechanically coupled to the transducer 128 for producing a coarse speed control signal, which is generally proportional to the radius of the particular information track from which information is being recovered, a voltage-controlled oscillator (VCO) 132, responsive to the coarse speed control signal, for producing a composite speed control signal having a frequency that corresponds thereto, along with a spindle motor servo 134, responsive to the composite speed control signal, for rotating the disc 110 at the corresponding angular velocity.
  • VCO voltage-controlled oscillator
  • the coarse speed control signal being generally proportional to the radius of the selected track, thus yields a coarse approximation of the particular angular velocity required for recovery of the video signal at the prescribed constant rate.
  • the apparatus further includes fine speed control circuitry 136 for comparing the phase angle of a periodic signal included in the information recovered from the disc 110 with that of a periodic reference signal derived from a crystal oscillator 138.
  • the circuitry 136 produces a fine speed control signal for combination with the coarse speed control signal in a summing amplifier 140 and coupling to the VCO 132.
  • the frequency of the composite speed control signal and, in turn, the angular velocity of the disc 110 are thus properly adjusted such that the periodic signal from the disc and the periodic reference signal from the oscillator have synchronous frequencies, and the video signal is therefore recovered from the disc at the prescribed constant rate.
  • the periodic signal that is recovered from the disc 110 and detected by the fine speed control circuitry 136 preferably comprises a pilot signal, having a predetermined constant frequency, that is additively combined with the video signal.
  • a pilot signal having a predetermined constant frequency
  • many other periodic signals can be utilized, such as, for example, the successive vertical or horizontal synchronization pulses or the successive chrominance bursts in the video signal, itself.
  • the coarse speed control potentiometer 130 is mechanically coupled to the optical transducer 128 and is adapted to produce an electrical current signal substantially directly proportional to the radius of the information track from which the transducer is recovering information.
  • This current signal is transmitted over line 140 to the summing amplifier 140, where it is combined with the fine speed control signal supplied over line 142 from the fine speed control circuitry 136 and converted to a composite voltage signal for transmission over line 144 to the VCO 132.
  • the VCO in turn, produces the composite speed control signal for transmission over line 146 to the spindle motor servo 134, which operates to rotate the information disc 110 at an angular velocity corresponding to the frequency of the composite speed control signal.
  • the potentiometer 130 and the VCO 132 and preferably sufficiently linear that, disregarding the effects of the fine speed control signal, the instantaneous frequency of the composite speed control signal will always be within a tolerance of approximately 5% of the actual frequency necessary for recovery of information from the disc at the prescribed constant rate.
  • the spindle motor servo 134 includes a spindle motor 148 for rotating the disc 110, an AC tachometer 150 coupled to the spindle motor for producing a tachometer signal having a frequency proportional to its angular velocity, and a phase detector 152 for comparing the phase angle of the tachometer signal with that of the composite speed control signal.
  • the phase detector produces a control signal proportional to the detected phase difference, for processing by a lead/lag compensator 154 and amplification by an amplifier 156 and, in turn, coupling to the spindle motor 148 to control its angular velocity.
  • the servo 134 operates in a conventional manner to synchronize the respective frequencies and phase angles of the composite speed control signal and the tachometer signal, whereby the angular velocity of the spindle motor 148, and, therefore, the disc 110, are made to follow the varying frequency of the composite speed control signal.
  • the fine speed control circuitry 136 receives on line 158 the pilot signal included with the video signal recovered from the disc 110, and produces the fine speed control signal for use by the apparatus in precisely adjusting the angular velocity of the disc to result in a recovery of the video signal at the proper rate.
  • the circuitry 136 includes a phase-locked loop circuit 160 for detecting the pilot signal, along with a phase detector 162 for comparing the phase angle of the detected signal with that of the periodic reference signal derived from the crystal oscillator 138.
  • the phase-locked loop 160 operates in a conventional manner to detect the successive cycles of the pilot signal supplied on line 158 and to produce a periodic signal having the same frequency. Use of a phase-locked loop insures that, under ordinary circumstances, spurious pulses or signal dropouts will be eliminated and a substantially noise-free periodic signal will be produced.
  • the "pull-in range" of the phase-locked loop must exceed the maximum range of frequencies over which the frequency of the recovered pilot signal is expected to vary. Since, as previously mentioned, the tolerance on the linearity of the coarse speed control potentiometer 130 and the VCO 132 is 5%, it follows that the pull-in range of the phase-locked loop must exceed 5% of the nominal pilot signal frequency.
  • the periodic signal produced by the phase-locked loop 160 is transmitted over line 164 to a conventional edge detector 166, which produces a short duration pulse for each transition of a particular polarity, for transmission over line 168 to a first input terminal of the phase detector 162.
  • the crystal oscillator 138 produces a periodic clock signal for transmission over line 170 to a divide-by-N circuit 172, where it is frequency divided to produce the periodic reference signal having the same frequency as the nominal frequency of the periodic signal produced by the phase-locked loop circuit 160.
  • This periodic reference signal from the divide-by-N circuit is transmitted over line 174 to a conventional edge detector 176, which produces a short duration pulse for each transition of a particular polarity, for transmission over line 178 to a second input terminal of the phase detector 162.
  • the phase detector 162 compares the respective phase angles of the two input pulse sequences it receives from the two edge detectors 166 and 176, and produces the fine speed control signal, which has an average voltage proportional to the phase difference.
  • the fine speed control signal is transmitted over line 142 to the summing amplifier 140, where it is combined with the coarse speed control signal for transmission to the VCO 132.
  • the average voltage of the fine speed control signal will automatically increase in value, thereby causing a corresponding decrease in the frequency of the composite speed control signal produced by the VCO, and a corresponding decrease in the angular velocity of the disc, to correct for the phase lead.
  • the average voltage of fine speed control signal will automatically decrease in value, thereby causing the angular velocity of the disc to be increased, accordingly, to correct for the phase lag.
  • the phase detector 162 preferably comprises a bidirectional counter in the form of a 3-stage shift register in which the input from one edge detector 166 or 176 is applied to the left stage, the input from the other edge detector is applied to the right stage, and the output (i.e., the fine speed control signal) is produced by the center stage.
  • the output i.e., the fine speed control signal
  • a pulse received on one input will cause a positive-going transition in the output signal
  • a pulse received on the other input will cause a negative-going transition in the output signal.
  • the output will comprise a pulse sequence whose average voltage is proportional to the phase difference of the two inputs.
  • This bidirectional counter is described in more detail in an article written by R. A. Millar, entitled “Digital Control of Shaft Speed and Position", published in IEEE Spectrum, January, 1968.
  • the present invention provides an effective apparatus and related method for recovering information from an information storage disc having a plurality of substantially concentrically arranged information tracks, with the information being recorded on the tracks at a substantially uniform recording density.
  • the apparatus includes both coarse and fine speed control circuitry for effecting a precise control of the angular velocity of the disc, such that the information is recovered from the disc at a prescribed constant rate.

Abstract

Method and apparatus for recovering information at a substantially constant rate from a rotatable information storage disc. The information is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, with a substantially uniform recording density, and it is recovered by controllably rotating the disc, relative to a transducer, at an angular velocity substantially inversely proportional to the radius of the corresponding track. The apparatus includes a coarse speed control potentiometer for producing a measure of the radius of the particular information track from which information is being recovered, and fine speed control means for comparing the relative phase angles of a periodic signal in the recovered information and a periodic reference signal and for producing a fine speed control signal proportional to the phase difference. The measure of radius and the fine speed control signal are summed together and coupled to a voltage-controlled oscillator to produce a composite speed control signal, which is coupled to a servo to rotate the disc at a corresponding angular velocity.

Description

BACKGROUND OF THE INVENTION
The present invention relates generally to systems for recovering information from a record medium, and, more particularly, to systems for recovering information from an information storage disc that is rotatable at a variable angular velocity.
Information storage discs having a plurality of substantially circular and concentrically arranged information tracks are becoming increasingly popular, particularly when used for storing video signals. Each information track on the disc typically stores one complete frame of the video signal, so recovery of the video signal at a prescribed constant rate necessary for proper reception of the signal by a conventional television receiver ordinarily necessitates a rotation of the disc relative to a transducer at a substantially constant angular velocity.
An example of a servo apparatus for recovering a video signal from such a disc is described in a co-pending and commonly assigned application for U.S. patent Ser. No. 890,670, filed in the name of W. R. Dakin et al and entitled "Video Disc Player". The servo apparatus described in the application includes a spindle motor for rotating the disc, a tachometer coupled to the motor for producing a signal having a frequency proportional to its angular velocity, and a phase detector for comparing the phase angle of the tachometer signal with that of a periodic reference signal. The output of the phase detector, which is proportional to the phase difference of its two input signals, is suitably amplified and coupled to the motor to rotate the disc at the appropriate constant angular velocity.
An example of another servo apparatus for recovering a video signal from such a disc is described in a co-pending and commonly assigned application for U.S. patent, Ser. No. 920,701, filed in the name of J. S. Winslow et al and entitled System for Recovering Information from a Movable Information Storage Medium. The servo apparatus described in the application is similar to the apparatus described previously, except that substituted for the tachometer signal is a pilot signal, which has been extracted from the signal recovered from the disc. This system operates more effectively to recover the signal from the disc at a prescribed constant rate, however, since it is not as susceptible to errors caused by relative slippage of the disc and eccentricities of the disc.
Since information is recovered from a disc of the type described above by rotating it at a constant angular velocity, and since each information track extends over a full circumference on the disc, a video signal stored in tracks at the periphery of the disc is less densely recorded than a signal stored nearer the center of the disc. The entire information recording capability of the disc is thus not utilized to its fullest extent, and, as a result, the playing time of the disc is substantially lower than it otherwise could be.
One technique for increasing the playing time of an information storage disc is disclosed in a co-pending and commonly assigned application for U.S. patent Ser. No. 961,405, filed simultaneously herewith by the same inventors and entitled System for Recording Information on a Rotatable Storage Disc, In a Substantially Uniform Recording Density. In that application, a technique is described for recording information onto a storage disc of the aforedescribed type, wherein the the disc is rotated relative to a radially movable transducer at an angular velocity that is varied according to the radius of the particular information track in question. In particular, a substantially uniform recording density over the entire disc can be achieved by rotating the disc at an angular velocity inversely proportional to the radius of the selected track. The amount of information recorded on each information track is thus generally proportional to the length of the track. Since known prior apparatus for recovering information from rotatable information storage discs operate to rotate the disc only at a constant angular velocity relative to a transducer, they are generally incapable of recovering information from discs of the type having such a uniform recording density.
It will thus be appreciated that there is a need for a method and apparatus for rotating an information storage disc of the type described above at a variable angular velocity relative to a transducer, to recover information from the disc at a prescribed constant rate. Moreover, there is a particular need or a method and apparatus for recovering information from a disc having a uniform recording density. The present invention fulfills these needs.
SUMMARY OF THE INVENTION
The present invention is embodied in apparatus and a related method for controllably rotating an information storage disc relative to transducer means for recovering information stored thereon. The information is stored in a plurality of substantially circular and concentrically arranged information tracks, and the transducer means is radially movable relative to the disc to recover the information from a selected one of the tracks. The recording density of the stored information is such that, to recover the information at a prescribed constant rate, the disc must be rotated at an angular velocity that varies according to the radius of the selected track.
The apparatus includes means for producing a coarse speed control signal that varies according to the radius of the selected information track, means responsive to the coarse signal for producing a composite speed control signal representative of the prescribed speed at which the disc is to be rotated, and means responsive to the composite speed control signal for rotating the disc, accordingly. In accordance with the invention, the apparatus further includes means for comparing a periodic signal included in the information recovered from the disc with a periodic reference signal, and for producing a corresponding fine speed control signal that is coupled to the means for producing the composite speed control signal, to adjust such composite signal in a prescribed fashion, accordingly. As a result, the angular velocity of the disc is controllably adjusted, such that the information is recovered therefrom by the transducer means at the prescribed constant rate.
More particularly, an apparatus constructed in accordance with the present invention is especially adapted for use in recovering a video signal from an information storage disc having a substantially uniform recording density over its entire information-bearing surface. To properly recover the video signal, the angular velocity of the disc relative to the transducer means must be maintained substantially inversely proportional to the radius of the information track from which information is being recovered by the transducer means.
The coarse speed control means preferably comprises a potentiometer mechanically coupled to the transducer means, which is movable radially relative to the disc. An electrical signal produced by the potentiometer is substantially proportional to such radius and is coupled to the means for producing the composite speed control signal, which, in the preferred embodiment comprises a voltage-controlled oscillator (VCO). The composite speed control signal produced by the VCO has a frequency substantially inversely proportional to the radius of the selected track, and is coupled to a conventional servomechanism for rotating the disc at a corresponding angular velocity. Thus, as a result of the coarse speed control means, alone, the angular velocity of the disc will be controllably adjusted as the transducer means moves from track to track, and, depending on the linearity of the potentiometer and the VCO, the resultant velocity will be within a prescribed tolerance of the precise velocity necessary for recovering the information at the prescribed constant rate.
A fine adjustment of the angular velocity of the disc is accomplished by the fine speed control means, which operates to compare the timing of the video signal recovered from the disc with a periodic reference signal. The fine speed control means preferably includes a phase-locked loop for detecting a pilot signal included in the video signal recovered from the disc and producing a periodic signal having a corresponding frequency, along with a stable reference oscillator for generating the periodic reference signal. The respective periodic signals are suitably frequency divided and compared to each other in a phase detector to produce the fine speed control signal, which has an average voltage proportional to the difference in the phase angles of the respective signals.
The fine speed control signal is transmitted to a summing amplifier, where it is combined with the coarse speed control signal, for coupling to the VCO. As a result, the frequency of the composite speed control signal produced by the VCO will be adjusted automatically, to cause the servo to rotate the disc at an appropriate angular velocity such that the video signal is recovered from the disc at the prescribed constant rate. By way of example, if the coarse speed control means, by itself, operated to rotate the disc at too low an angular velocity, the fine speed control means would detect a relative phase lag in the recovered video signal and would adjust the average voltage level of the fine speed control signal it produces, accordingly. The voltage applied to the VCO would thus be controllably adjusted, whereby the frequency of the composite speed control signal would be increased and the angular velocity of the disc increased, accordingly, until the proper speed were achieved. The apparatus would operate in a similar fashion to decrease the angular velocity of the disc if a phase lead in the recovered video signal were detected.
Other aspects and advantages of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the accompanying drawings, which disclose, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of a prior video disc, showing, in schematic form, two information tracks, each extending over one complete circumference and containing one frame of a video signal;
FIG. 2 is a plan view of the video disc of FIG. 1, showing, in enlarged form, the successive light-reflective and light-scattering regions forming the two information tracks;
FIG. 3 is a simplified block diagram of a prior art apparatus for rotating the video disc of FIG. 1 at a constant angular velocity, to recover the video signal therefrom;
FIG. 4 is a plan view of a video disc for use with apparatus of the present invention, showing, in schematic form, a plurality of frames of a video signal recorded on the disc, each of the frames having substantially the same length;
FIG. 5 is a plan view of the video disc of FIG. 4, showing, in enlarged form, the successive light-reflective and light-scattering regions for two information tracks, one located near the periphery of the disc and the other near the center of the disc; and
FIG. 6 is a simplified block diagram of apparatus of the present invention for rotating the video disc of FIG. 4 at a precisely controllable angular velocity, such that the video signal is recovered from the disc at a prescribed rate.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings, and particularly to FIGS. 1 and 2, there is shown a typical prior art record disc 10 for storing information, such as a video signal. As shown in FIG. 1, the signal is recorded in a plurality of substantially circular information tracks forming a spiral pattern on the disc, with each track containing one frame of video information. The even fields for all of the tracks form a sector indicated by the reference numeral 12, while the odd fields form a sector indicated by the numeral 14 and the vertical blanking intervals form sectors indicated at 16 and 18. It will be apparent that an information track located at the periphery of the video disc 10, such as the track indicated by the numeral 19, is of considerably longer length than is an information track located nearer the center of the disc, such as the track indicated by the numeral 20.
FIG. 2 is another schematic view of the disc shown in FIG. 1, wherein indicia of the recorded video signal are shown in enlarged form. The form of this video disc is described in more detail in a co-pending and commonly assigned application for U.S. patent Ser. No. 890,407, filed in the name of John S. Winslow and entitled "Mastering Machine". The video signal is ordinarily stored on the disc 10 in the form of a frequency modulated carrier and it comprises an alternating sequence of light-reflective and light-scattering regions, 24 and 26, respectively. The light-scattering regions 26 normally have a uniform width in the radial direction, and the lengths of adjacent light-scattering and light-reflective regions are essentially equal, because, together, they represent a single cycle of the frequency modulated signal. Since the same amount of information is recorded on each track, i.e., one video frame, the size of the successive light-scattering regions changes as a function of its radial position. This can be observed in FIG. 2 by noting the relative sizes of the light-reflective and light-scattering regions, 24 and 26, respectively, for a track near the periphery of the disc 10, and the light-reflective and light-scattering regions, 24' and 26', respectively, for a track near the center of the disc.
FIG. 3 is a simplified block diagram of a prior art system utilized in rotating the disc 10 of FIGS. 1 and 2 at a constant angular velocity of 30 revolutions per second. The system includes an oscillator 30 for generating a reference frequency that is frequency divided by a divider circuit 32 to produce a speed reference signal, a spindle motor 28, and an AC tachometer 34 coupled to the spindle motor for producing a signal having a frequency proportional to the actual angular velocity of the disc 10. The system further includes a phase detector circuit 36 for comparing the respective phase angles of the tachometer signal and the speed reference signal and for producing a corresponding control signal. The control signal is, in turn, processed in a lead/lag compensator 38 and an amplifier 40 for coupling to the motor 28 to controllably adjust its angular velocity to properly rotate the disc 10 at 30 revolutions per second.
Referring now to FIGS. 4 and 5, there is shown a video disc 110 for use with apparatus of the present invention. FIG. 4 shows, in schematic form, one frame 112 of a video signal, extending over one complete information track near the center of the disc, along with a plurality of consecutive video signal frames 114, 116, 118, and 120 extending over a pair of tracks located near the periphery of the disc, each of these latter frames extending over substantially less than a complete circumference of the disc. The length of each frame on the disc is substantially the same.
FIG. 5 shows, in enlarged form, the successive light-reflective and light-scattering regions 122 and 124 for a portion of the video signal frame designated 118, along with corresponding regions 122' and 124' for a portion of the frame designated 112. It should be noted that, since each video signal frame recorded on the disc is substantially of equal length, the nominal lengths of the respective light-scattering regions 124 and 124' are, likewise, substantially equal.
Referring now to FIG. 6, there is shown a simplified block diagram of apparatus for controllably rotating the disc 110 of FIGS. 4 and 5 at a variable angular velocity relative to an optical transducer 128, such that the video signal is recovered from the disc at a prescribed constant rate. The optical transducer is movable radially relative to the disc to recover the video signal from a selected one of the information tracks, and the apparatus operates to rotate the disc such that the selected track is moved at a substantially constant linear velocity relative to the transducer. The prescribed constant rate at which the video signal is recovered from the disc corresponds to conventional broadcast format standards, whereby the signal can be properly received and displayed by a conventional television receiver (not shown).
The apparatus includes a coarse speed control potentiometer 130 mechanically coupled to the transducer 128 for producing a coarse speed control signal, which is generally proportional to the radius of the particular information track from which information is being recovered, a voltage-controlled oscillator (VCO) 132, responsive to the coarse speed control signal, for producing a composite speed control signal having a frequency that corresponds thereto, along with a spindle motor servo 134, responsive to the composite speed control signal, for rotating the disc 110 at the corresponding angular velocity. The coarse speed control signal, being generally proportional to the radius of the selected track, thus yields a coarse approximation of the particular angular velocity required for recovery of the video signal at the prescribed constant rate.
In accordance with the invention, the apparatus further includes fine speed control circuitry 136 for comparing the phase angle of a periodic signal included in the information recovered from the disc 110 with that of a periodic reference signal derived from a crystal oscillator 138. The circuitry 136 produces a fine speed control signal for combination with the coarse speed control signal in a summing amplifier 140 and coupling to the VCO 132. The frequency of the composite speed control signal and, in turn, the angular velocity of the disc 110 are thus properly adjusted such that the periodic signal from the disc and the periodic reference signal from the oscillator have synchronous frequencies, and the video signal is therefore recovered from the disc at the prescribed constant rate.
The periodic signal that is recovered from the disc 110 and detected by the fine speed control circuitry 136, preferably comprises a pilot signal, having a predetermined constant frequency, that is additively combined with the video signal. Alternatively, many other periodic signals can be utilized, such as, for example, the successive vertical or horizontal synchronization pulses or the successive chrominance bursts in the video signal, itself.
The coarse speed control potentiometer 130 is mechanically coupled to the optical transducer 128 and is adapted to produce an electrical current signal substantially directly proportional to the radius of the information track from which the transducer is recovering information. This current signal is transmitted over line 140 to the summing amplifier 140, where it is combined with the fine speed control signal supplied over line 142 from the fine speed control circuitry 136 and converted to a composite voltage signal for transmission over line 144 to the VCO 132. The VCO, in turn, produces the composite speed control signal for transmission over line 146 to the spindle motor servo 134, which operates to rotate the information disc 110 at an angular velocity corresponding to the frequency of the composite speed control signal. For reasons that will become apparent subsequently, the potentiometer 130 and the VCO 132 and preferably sufficiently linear that, disregarding the effects of the fine speed control signal, the instantaneous frequency of the composite speed control signal will always be within a tolerance of approximately 5% of the actual frequency necessary for recovery of information from the disc at the prescribed constant rate.
The spindle motor servo 134 includes a spindle motor 148 for rotating the disc 110, an AC tachometer 150 coupled to the spindle motor for producing a tachometer signal having a frequency proportional to its angular velocity, and a phase detector 152 for comparing the phase angle of the tachometer signal with that of the composite speed control signal. The phase detector produces a control signal proportional to the detected phase difference, for processing by a lead/lag compensator 154 and amplification by an amplifier 156 and, in turn, coupling to the spindle motor 148 to control its angular velocity. The servo 134 operates in a conventional manner to synchronize the respective frequencies and phase angles of the composite speed control signal and the tachometer signal, whereby the angular velocity of the spindle motor 148, and, therefore, the disc 110, are made to follow the varying frequency of the composite speed control signal.
The fine speed control circuitry 136 receives on line 158 the pilot signal included with the video signal recovered from the disc 110, and produces the fine speed control signal for use by the apparatus in precisely adjusting the angular velocity of the disc to result in a recovery of the video signal at the proper rate. The circuitry 136 includes a phase-locked loop circuit 160 for detecting the pilot signal, along with a phase detector 162 for comparing the phase angle of the detected signal with that of the periodic reference signal derived from the crystal oscillator 138.
The phase-locked loop 160 operates in a conventional manner to detect the successive cycles of the pilot signal supplied on line 158 and to produce a periodic signal having the same frequency. Use of a phase-locked loop insures that, under ordinary circumstances, spurious pulses or signal dropouts will be eliminated and a substantially noise-free periodic signal will be produced. The "pull-in range" of the phase-locked loop must exceed the maximum range of frequencies over which the frequency of the recovered pilot signal is expected to vary. Since, as previously mentioned, the tolerance on the linearity of the coarse speed control potentiometer 130 and the VCO 132 is 5%, it follows that the pull-in range of the phase-locked loop must exceed 5% of the nominal pilot signal frequency. The periodic signal produced by the phase-locked loop 160 is transmitted over line 164 to a conventional edge detector 166, which produces a short duration pulse for each transition of a particular polarity, for transmission over line 168 to a first input terminal of the phase detector 162.
The crystal oscillator 138 produces a periodic clock signal for transmission over line 170 to a divide-by-N circuit 172, where it is frequency divided to produce the periodic reference signal having the same frequency as the nominal frequency of the periodic signal produced by the phase-locked loop circuit 160. This periodic reference signal from the divide-by-N circuit is transmitted over line 174 to a conventional edge detector 176, which produces a short duration pulse for each transition of a particular polarity, for transmission over line 178 to a second input terminal of the phase detector 162.
The phase detector 162 compares the respective phase angles of the two input pulse sequences it receives from the two edge detectors 166 and 176, and produces the fine speed control signal, which has an average voltage proportional to the phase difference. The fine speed control signal is transmitted over line 142 to the summing amplifier 140, where it is combined with the coarse speed control signal for transmission to the VCO 132. When a phase lead in the pilot signal is detected by the phase detector, indicating that the video signal is being recovered from the disc 110 at a rate too high, the average voltage of the fine speed control signal will automatically increase in value, thereby causing a corresponding decrease in the frequency of the composite speed control signal produced by the VCO, and a corresponding decrease in the angular velocity of the disc, to correct for the phase lead. Conversely, when a phase lag in the pilot signal is detected, indicating that the video signal is being recovered at a rate too low, the average voltage of fine speed control signal will automatically decrease in value, thereby causing the angular velocity of the disc to be increased, accordingly, to correct for the phase lag.
The phase detector 162 preferably comprises a bidirectional counter in the form of a 3-stage shift register in which the input from one edge detector 166 or 176 is applied to the left stage, the input from the other edge detector is applied to the right stage, and the output (i.e., the fine speed control signal) is produced by the center stage. During normal operation, a pulse received on one input will cause a positive-going transition in the output signal, and a pulse received on the other input will cause a negative-going transition in the output signal. Thus, if the pulses in the two input signals are received in an alternating fashion, indicating that they have the same frequency, the output will comprise a pulse sequence whose average voltage is proportional to the phase difference of the two inputs. This bidirectional counter is described in more detail in an article written by R. A. Millar, entitled "Digital Control of Shaft Speed and Position", published in IEEE Spectrum, January, 1968.
From the foregoing description, it should be apparent that the present invention provides an effective apparatus and related method for recovering information from an information storage disc having a plurality of substantially concentrically arranged information tracks, with the information being recorded on the tracks at a substantially uniform recording density. The apparatus includes both coarse and fine speed control circuitry for effecting a precise control of the angular velocity of the disc, such that the information is recovered from the disc at a prescribed constant rate.
Although the invention has been described in detail with reference to its presently preferred embodiment, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims (20)

We claim:
1. Apparatus for recovering a video signal from a rotatable information storage disc, wherein the video signal is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, each track having a substantially uniform recording density, said video signal being recovered from the disc at a substantially constant rate by a transducer that is movable radially relative to the disc to be in a prescribed relationship with a selected information track, said apparatus comprising:
a potentiometer coupled to the transducer for producing a coarse speed control signal that varies substantially linearly with the radius of the selected information track from which the video signal is being recovered by the transducer;
oscillator means for producing a periodic reference signal having a prescribed constant frequency that corresponds to the rate at which the video signal is to be recovered from the disc;
fine speed control means for comparing the phase angle of a periodic pilot signal included with the video signal recovered from the disc, with the phase angle of the periodic reference signal, and for producing a fine speed control signal having an average value that corresponds to the difference in the respective phase angles, said fine speed control means including a phase-locked loop for detecting the periodic pilot signal;
means for summing together the coarse speed control signal and the fine speed control signal, to produce a composite voltage signal;
voltage-controlled oscillator means for producing a composite speed control signal having a frequency that corresponds to the composite voltage signal; and
means for rotating the disc at an angular velocity corresponding to the frequency of the composite speed control signal;
said .[.coarse speed control means.]. .Iadd.potentiometer .Iaddend.and said voltage-controlled oscillator means being constructed with sufficient linearity that the composite speed control signal will always have a frequency that causes the disc to be rotated at an angular velocity that results in the recovered pilot signal having a frequency within the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine adjustment of the angular velocity of the disc, and whereby the video signal is recovered from the disc substantially at the prescribed constant rate.
2. Apparatus for recovering a video signal from a rotatable information storage disc, wherein the video signal is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, each track having a substantially uniform recording density, said video signal being recovered from the disc at a substantially constant rate by a transducer that is movable radially relative to the disc to be in a prescribed relationship with a selected information track, said apparatus comprising:
a potentiometer coupled to the transducer for producing a coarse speed control signal substantially proportional to the radius of the selected information track from which the video signal is being recovered by the transducer;
oscillator means for producing a periodic reference signal having a prescribed constant frequency that corresponds to the rate at which the video signal is to be recovered from the disc;
fine speed control means for comparing the phase angle of a periodic pilot signal recovered from the disc along with the video signal, with the phase angle of the periodic reference signal, and for producing a fine speed control signal having an average value that corresponds to the difference in the respective phase angles, said fine speed control means including a phase-locked loop for detecting the relative phase angle of the periodic pilot signal;
means for summing together the coarse speed control signal and the fine speed control signal, to produce a composite voltage signal;
voltage-controlled oscillator means for producing a composite speed control signal having a frequency that corresponds to the composite voltage signal; and
means for rotating the disc at an angular velocity corresponding to the frequency of the composite speed control signal;
said .[.coarse speed control means.]. .Iadd.potentiometer .Iaddend.and said voltage-controlled oscillator means being constructed with sufficient linearity that the composite speed control signal will always have a frequency that causes the disc to be rotated at an angular velocity that results in the recovered pilot signal having a frequency within the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine adjustment of the angular velocity of the disc, and whereby the video signal is recovered from the disc substantially at the prescribed constant rate.
3. Apparatus for recovering a video signal from a rotatable information storage disc, wherein the video signal is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, each track having a substantially uniform recording density, said video signal being recovered from the disc at a substantially constant rate by a transducer that is movable radially relative to the disc to be in a prescribed relationship with a selected information track, said apparatus comprising:
coarse speed control means for producing a coarse speed control signal that varies substantially linearly with the radius of the selected information track from which the video signal is being recovered by the transducer;
oscillator means for producing a periodic reference signal having a prescribed constant frequency that corresponds to the rate at which the video signal is to be recovered from the disc;
fine speed control means for comparing the phase angle of a periodic signal included in the video signal recovered from the disc with the phase angle of the periodic reference signal, and for producing a fine speed control signal having an average value that corresponds to the difference in the respective phase angles;
means for summing together the coarse speed control signal and the fine speed control signal, to produce a composite voltage signal;
voltage-controlled oscillator means for producing a composite speed control signal having a frequency that corresponds to the composite voltage signal; and
means for rotating the disc at an angular velocity corresponding to the frequency of the composite speed control signal, whereby the video signal is recovered from the disc substantially at the prescribed constant rate.Iadd.,
wherein said fine speed control means includes a phase-locked loop for detecting the periodic signal recovered from the disc; and
wherein said coarse speed control means and said voltage-controlled oscillator means are constructed with sufficient linearity that the composite speed control signal will always have a frequency that causes the disc to be rotated at an angular velocity that results in the horizontal synchronization pulses in the periodic signal recovered from the disc having a frequency within the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine adjustment of the angular velocity of the disc.Iaddend..
4. Apparatus as defined in claim 3, wherein said coarse speed control means .[.included.]. .Iadd.includes .Iaddend.a potentiometer coupled to the radially movable transducer.
5. Apparatus as defined in claim 3, wherein the transducer is moved radially relative to the disc in a continuous fashion, and the video signal is recovered from the successive information tracks, seriatum. .[.6. Apparatus as defined in claim 3, wherein said fine speed control means includes a phase-locked loop for detecting the relative phase angle of the periodic signal recovered from the disc..]. .[.7. Apparatus as defined in claim 6, wherein said coarse speed control means and said voltage-controlled oscillator means are constructed with sufficient linearity that the composite speed control signal will always have a frequency that causes the disc to be rotated at an angular velocity that results in the horizontal synchronization pulses in the periodic signal recovered from the disc having a frequency within the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine
adjustment of the angular velocity of the disc..]. 8. Apparatus as defined in claim .[.7.]. .Iadd.5.Iaddend., wherein the periodic signal in the video signal recovered from the disc is a pilot signal that is summed with the video signal, said pilot signal having a predetermined constant
frequency. 9. A method for controllably rotating an information storage disc relative to a transducer, to recover information that is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, wherein the information is recovered from the disc at a substantially constant rate, said method comprising the steps of:
determining the radius of the particular information track from which information is being recovered by the transducer, and producing a coarse speed control signal in accordance therewith;
producing a periodic reference signal having a predetermined constant frequency;
comparing a periodic signal included in the information recovered from the disc with the periodic reference signal, to produce a fine speed control signal representative of the comparison;
producing a composite speed control signal in accordance with the coarse speed control signal and the fine speed control signal, said composite signal being representative of the prescribed angular velocity at which the disc is to be rotated; and
rotating the disc at the prescribed angular velocity, in accordance with the composite speed control signal, whereby the information is recovered by the transducer at the prescribed constant rate.Iadd.,
wherein said step of comparing includes the step of detecting the periodic signal recovered from the disc in a phase-locked loop; and
wherein said steps of producing the coarse speed control signal and producing the composite speed control signal are performed with sufficient precision that the resulting composite speed control signal will cause the disc to be rotated at an angular velocity that results in the periodic signal in the recovered information having a frequency within the pull-in range of the phase-locked loop, whereby said step of comparing and producing the fine speed control signal will always effect a fine
adjustment of the angular velocity of the disc.Iaddend.. 10. A method as defined in claim 9, wherein the coarse speed control signal is substantially directly proportional to the radius of the information track
from which information is being recovered. 11. A method as defined in claim 9, wherein:
said step of producing the composite speed control signal includes the steps of
summing together the coarse speed control signal and the fine speed control signal, to produce a composite voltage signal, and
producing the composite speed control signal in a voltage-controlled oscillator, said composite speed control signal having a frequency substantially inversely proportional to the voltage of the composite voltage signal; and
the disc is rotated in said step of rotating at an angular velocity substantially directly proportional to the frequency of said composite
speed control signal. 12. A method as defined in claim 9, wherein the composite speed control signal is substantially inversely proportional to the radius of the selected information track from which information is being recovered, whereby the information storage disc is controllably rotated at an angular velocity substantially inversely proportional to the radius of the selected track and the disc is moved relative to the
transducer at a substantially constant linear velocity. 13. A method as defined in claim 9, wherein:
said step of comparing includes the step of comparing the phase angle of the periodic signal recovered from the disc with the phase angle of the periodic reference signal; and
said fine speed control signal has an average value representative of the
difference in the relative phase angles of the two periodic signals. 14. A method as defined in claim 13, wherein:
the periodic signal recovered from the disc is a separate periodic pilot signal that is summed with a video signal, said pilot signal having a predetermined constant frequency. .[.15. A method as defined in claim 13, wherein said step of comparing includes the step of detecting the periodic signal recovered from the disc in a phase-locked loop..]. .[.16. A method as defined in claim 15, wherein said steps of producing the coarse speed control signal and producing the composite speed control signal are performed with sufficient precision that the resulting composite speed control signal will cause the disc to be rotated at an angular velocity that results in the periodic signal in the recovered information having a frequency within the pull-in range of the phase-locked loop, whereby said step of comparing and producing the fine speed control signal will always
effect a fine adjustment of the angular velocity of the disc..]. 17. Apparatus for controllably rotating an information storage disc relative to a transducer, to recover information that is stored on the disc in a plurality of substantially circular and concentrically arranged information tracks, said apparatus operating to recover the information at a substantially constant rate, said apparatus comprising:
.Iadd.coarse speed control .Iaddend.means for producing a coarse speed control signal that varies according to the radius of the particular information track from which the information is being recovered;
means for producing a periodic reference signal having a predetermined constant frequency;
fine speed control means for comparing a periodic signal included in the information recovered from the disc with the periodic reference signal, and for producing a corresponding fine speed control signal representative of the comparison;
means, responsive to the coarse speed control signal and the fine speed control signal, for producing a composite speed control signal representative of the prescribed angular velocity at which the disc is to be rotated; and
means, responsive to the composite speed control signal, for rotating the disc at the prescribed angular velocity, whereby the information stored thereon is recovered by the transducer at the prescribed constant rate.Iadd.,
wherein the fine speed control means includes phase detector means for comparing the relative phase angles of the periodic signal recovered from the disc and the periodic reference signal;
said fine speed control signal has an average value representative of the difference in the relative phase angles of the two periodic signals;
said fine speed control means includes a phase-locked loop for detecting the periodic signal recovered from the disc; and
said coarse speed control means and said means for producing the composite speed control signal are constructed with sufficient precision that the composite speed control signal produced thereby will cause the disc to be rotated at an angular velocity that results in the periodic signal in the recovered information having a frequency with the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine
adjustment of the angular velocity of the disc.Iaddend.. 18. Apparatus as defined in claim 17, wherein:
said means for producing a composite speed control signal includes
means for summing together the coarse speed control signal and the fine speed control signal, to produce a composite voltage signal, and
voltage-controlled oscillator means, responsive to the composite voltage signal, for producing the composite speed control signal, said composite speed control signal having a frequency substantially inversely proportional to the composite voltage signal; and
said means for rotating the disc is responsive to the frequency of the
composite speed control signal. 19. Apparatus as defined in claim 17, wherein the coarse speed control signal is substantially directly proportional to the radius of the information track from which information
is being recovered. 20. Apparatus as defined in claim 19, wherein:
said transducer is movable radially relative to the disc, to be positioned in a prescribed relationship relative to the information track from which information is being recovered; and
said coarse speed control means includes a potentiometer that is coupled to said transducer and that is adapted to produce the coarse speed control
signal. 21. Apparatus as defined in claim 17, wherein the composite speed control signal is substantially inversely proportional to the radius of the selected information track from which information is being recovered, whereby the apparatus operates to controllably rotate the storage disc at an angular velocity substantially inversely proportional to the radius of the selected track and the disc is moved relative to the transducer at a
substantially constant linear velocity. 22. Apparatus as defined in claim 21, wherein:
said transducer is movable radially relative to the disc, to be positioned in a prescribed relationship relative to the selected information track; and
said coarse speed control means includes a potentiometer coupled to said transducer and adapted to produce the coarse speed control signal. .[.23. Apparatus as defined in claim 17, wherein:
said fine speed control means includes phase detector means for comparing the relative phase angles of the periodic signal recovered from the disc and the periodic reference signal; and
said fine speed control signal has an average value representative of the difference in the relative phase angles of the two periodic signals..].
Apparatus as defined in claim .[.23.]. .Iadd.17.Iaddend., wherein:
the periodic signal recovered from the disc is a separate pilot signal having a predetermined constant frequency. .[.25. Apparatus as defined in claim 23, wherein said fine speed control means includes a phase-locked
loop for detecting the periodic signal recovered from the disc..]. .[.26. Apparatus as defined in claim 25, wherein said coarse speed control means and said means for producing the composite speed control signal are constructed with sufficient precision that the composite speed control signal produced thereby will cause the disc to be rotated at an angular velocity that results in the periodic signal in the recovered information having a frequency within the pull-in range of said phase-locked loop, whereby said fine speed control means is always operable to produce the fine speed control signal for effecting a fine adjustment of the angular velocity of the disc..].
US06/732,033 1978-11-16 1985-05-08 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate Expired - Lifetime USRE32431E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/732,033 USRE32431E (en) 1978-11-16 1985-05-08 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/961,404 US4223349A (en) 1978-11-16 1978-11-16 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate
US06/732,033 USRE32431E (en) 1978-11-16 1985-05-08 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/961,404 Reissue US4223349A (en) 1978-11-16 1978-11-16 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate

Publications (1)

Publication Number Publication Date
USRE32431E true USRE32431E (en) 1987-06-02

Family

ID=27112343

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/732,033 Expired - Lifetime USRE32431E (en) 1978-11-16 1985-05-08 System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate

Country Status (1)

Country Link
US (1) USRE32431E (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766502A (en) 1986-04-14 1988-08-23 Teac Corporation Information signal recording apparatus
EP0332099A2 (en) * 1988-03-07 1989-09-13 Nec Corporation Control circuit for spindle motor
US5590102A (en) * 1995-01-12 1996-12-31 Discovision Associates Recording informatioin on an optical disc without using pre-manufactured tracks
US5659535A (en) * 1994-05-06 1997-08-19 Discovision Associates Method for retrieving data from a storage device
US5677899A (en) 1991-02-15 1997-10-14 Discovision Associates Method for moving carriage assembly from initial position to target position relative to storage medium
US5682367A (en) * 1991-05-10 1997-10-28 Discovision Associates Optical data storage and retrieval system and method
US5689485A (en) 1996-04-01 1997-11-18 Discovision Associates Tracking control apparatus and method
US5729511A (en) * 1991-02-15 1998-03-17 Discovision Associates Optical disc system having servo motor and servo error detection assembly operated relative to monitored quad sum signal
US5748578A (en) 1995-01-25 1998-05-05 Discovision Associates Colpitts type oscillator having reduced ringing and improved optical disc system utilizing same
US5790495A (en) 1994-05-06 1998-08-04 Discovision Associates Data generator assembly for retrieving stored data by comparing threshold signal with preprocessed signal having DC component
US5808980A (en) * 1991-02-15 1998-09-15 Discovision Associates Seek actuator for optical recording
US5920539A (en) 1995-01-25 1999-07-06 Discovision Associates Apparatus and method for suppression of electromagnetic emissions having a groove on an external surface for passing an electrical conductor
US5978329A (en) 1995-06-07 1999-11-02 Discovision Associates Technique for closed loop servo operation in optical disc tracking control
US5978331A (en) 1995-12-06 1999-11-02 Discovision Associates Apparatus and method for focus control
US6069857A (en) 1991-02-15 2000-05-30 Discovision Associates Optical disc system having improved circuitry for performing blank sector check on readable disc
US6091684A (en) 1995-01-25 2000-07-18 Discovision Associates Optical disc system and method for changing the rotational rate of an information storage medium
US6141300A (en) 1989-06-20 2000-10-31 Discovision Associates Optical actuator including lens assembly with optical axis having symmetric suspensory forces acting thereon and optical disc system including same
US6236625B1 (en) 1991-02-15 2001-05-22 Discovision Associates Optical disc system having current monitoring circuit with controller for laser driver and method for operating same
US6434087B1 (en) 1995-01-25 2002-08-13 Discovision Associates Optical disc system and method for controlling bias coil and light source to process information on a storage medium
US6532199B1 (en) 1991-02-15 2003-03-11 Discovision Associates Optical actuator assembly with lens position sensor for recording or playback

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113226A (en) * 1935-05-08 1938-04-05 Rca Corp Sound recording and reproducing system
US2901737A (en) * 1955-11-01 1959-08-25 Sperry Rand Corp Disk recording compensating devices
US3646259A (en) * 1968-02-13 1972-02-29 Telefunken Patent System for recording and scanning video signals on a disc
US3662353A (en) * 1970-06-01 1972-05-09 Eg & G Inc Storing digital data on a recording disk with the data time base proportional to disk angular velocity
US3753067A (en) * 1972-05-17 1973-08-14 Peripheral Systems Corp Motor speed regulation system
JPS4916409A (en) * 1972-05-20 1974-02-13
DE2257817A1 (en) * 1972-11-25 1974-05-30 Hubertus Wentzell RECORDING AND REPRODUCTION METHODS FOR DISC INFORMATION CARRIERS
US3826965A (en) * 1972-11-29 1974-07-30 Ibm Constant tangential velocity motor control for a disc recording system
US3925606A (en) * 1974-06-10 1975-12-09 Westinghouse Electric Corp Scan conversion apparatus
US3939302A (en) * 1973-03-16 1976-02-17 Sony Corporation Method and apparatus for recording and/or reproducing a video signal on a photographic record disc
JPS5240308A (en) * 1975-09-27 1977-03-29 Matsushita Electric Ind Co Ltd Rotary driver
US4123779A (en) * 1976-03-19 1978-10-31 Rca Corporation Turntable rotational speed and phase control system for a video disc play/record apparatus
GB1550915A (en) * 1975-05-27 1979-08-22 Elektrotechnik Eisenach Veb Apparatus for recording or playback of electrical signals
US4236050A (en) * 1978-06-30 1980-11-25 Mca Discovision, Inc. System for recovering information from a movable information storage medium having a pilot signal with an aligned phase angle in adjacent tracks
GB1602893A (en) * 1977-03-24 1981-11-18 Laser File Information storage and retrieval system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113226A (en) * 1935-05-08 1938-04-05 Rca Corp Sound recording and reproducing system
US2901737A (en) * 1955-11-01 1959-08-25 Sperry Rand Corp Disk recording compensating devices
US3646259A (en) * 1968-02-13 1972-02-29 Telefunken Patent System for recording and scanning video signals on a disc
US3662353A (en) * 1970-06-01 1972-05-09 Eg & G Inc Storing digital data on a recording disk with the data time base proportional to disk angular velocity
US3753067A (en) * 1972-05-17 1973-08-14 Peripheral Systems Corp Motor speed regulation system
JPS4916409A (en) * 1972-05-20 1974-02-13
DE2257817A1 (en) * 1972-11-25 1974-05-30 Hubertus Wentzell RECORDING AND REPRODUCTION METHODS FOR DISC INFORMATION CARRIERS
US3826965A (en) * 1972-11-29 1974-07-30 Ibm Constant tangential velocity motor control for a disc recording system
US3939302A (en) * 1973-03-16 1976-02-17 Sony Corporation Method and apparatus for recording and/or reproducing a video signal on a photographic record disc
US3925606A (en) * 1974-06-10 1975-12-09 Westinghouse Electric Corp Scan conversion apparatus
GB1550915A (en) * 1975-05-27 1979-08-22 Elektrotechnik Eisenach Veb Apparatus for recording or playback of electrical signals
JPS5240308A (en) * 1975-09-27 1977-03-29 Matsushita Electric Ind Co Ltd Rotary driver
US4123779A (en) * 1976-03-19 1978-10-31 Rca Corporation Turntable rotational speed and phase control system for a video disc play/record apparatus
GB1602893A (en) * 1977-03-24 1981-11-18 Laser File Information storage and retrieval system
US4236050A (en) * 1978-06-30 1980-11-25 Mca Discovision, Inc. System for recovering information from a movable information storage medium having a pilot signal with an aligned phase angle in adjacent tracks

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766502A (en) 1986-04-14 1988-08-23 Teac Corporation Information signal recording apparatus
EP0332099A2 (en) * 1988-03-07 1989-09-13 Nec Corporation Control circuit for spindle motor
EP0332099A3 (en) * 1988-03-07 1991-01-23 Nec Corporation Control circuit for spindle motor
US6141300A (en) 1989-06-20 2000-10-31 Discovision Associates Optical actuator including lens assembly with optical axis having symmetric suspensory forces acting thereon and optical disc system including same
US5677899A (en) 1991-02-15 1997-10-14 Discovision Associates Method for moving carriage assembly from initial position to target position relative to storage medium
US6532199B1 (en) 1991-02-15 2003-03-11 Discovision Associates Optical actuator assembly with lens position sensor for recording or playback
US6236625B1 (en) 1991-02-15 2001-05-22 Discovision Associates Optical disc system having current monitoring circuit with controller for laser driver and method for operating same
US6069857A (en) 1991-02-15 2000-05-30 Discovision Associates Optical disc system having improved circuitry for performing blank sector check on readable disc
US5808980A (en) * 1991-02-15 1998-09-15 Discovision Associates Seek actuator for optical recording
US5729511A (en) * 1991-02-15 1998-03-17 Discovision Associates Optical disc system having servo motor and servo error detection assembly operated relative to monitored quad sum signal
US5859825A (en) * 1991-05-10 1999-01-12 Discovision Associates Optical data storage and retrieval system and method
US5761170A (en) * 1991-05-10 1998-06-02 Discovision Associates Optical data storage and retrieval system and method
US5774440A (en) * 1991-05-10 1998-06-30 Discovision Associates Optical data storage and retrieval system and method
US5682367A (en) * 1991-05-10 1997-10-28 Discovision Associates Optical data storage and retrieval system and method
US6411580B1 (en) 1993-01-25 2002-06-25 Noboru Kimura Storing data on a medium in an optical system
US6343061B1 (en) 1993-01-25 2002-01-29 Discovision Associates Optical data system and high density optical disk relating thereto
US5790495A (en) 1994-05-06 1998-08-04 Discovision Associates Data generator assembly for retrieving stored data by comparing threshold signal with preprocessed signal having DC component
US5659535A (en) * 1994-05-06 1997-08-19 Discovision Associates Method for retrieving data from a storage device
US5706267A (en) * 1994-05-06 1998-01-06 Discovision Associates Method and apparatus for retrieving data from a storage device
US6542451B1 (en) 1994-05-06 2003-04-01 Discovision Associates Retrieving data from a storage device using programmable filter and equalizer
US5894468A (en) * 1994-05-06 1999-04-13 Discovision Associates Data recovery with differentiation and partial integration stages to eliminate noises and DC offset level
US5590102A (en) * 1995-01-12 1996-12-31 Discovision Associates Recording informatioin on an optical disc without using pre-manufactured tracks
US5748578A (en) 1995-01-25 1998-05-05 Discovision Associates Colpitts type oscillator having reduced ringing and improved optical disc system utilizing same
US6418097B1 (en) 1995-01-25 2002-07-09 Discovision Associates Analog to digital converter assembly for normalizing servo error signals and multiplexing reference voltage inputs and digital outputs and improved optical drive system including same
US6058081A (en) 1995-01-25 2000-05-02 Discovision Associates Optical drive system having servomotor operated relative to maximum quad sum signal
US6741529B1 (en) 1995-01-25 2004-05-25 Discovision Associates Method and apparatus for moving carriage assembly from initial position to target position and optical disc system including same
US6087644A (en) 1995-01-25 2000-07-11 Discovision Associates Focus capture for optical disc system including detection of quad sum signal to close focus
US6091684A (en) 1995-01-25 2000-07-18 Discovision Associates Optical disc system and method for changing the rotational rate of an information storage medium
US5796703A (en) * 1995-01-25 1998-08-18 Discovision Associates Apparatus for controlling an electrical current passed to a writing device in an optical storage system
US6434087B1 (en) 1995-01-25 2002-08-13 Discovision Associates Optical disc system and method for controlling bias coil and light source to process information on a storage medium
US5920539A (en) 1995-01-25 1999-07-06 Discovision Associates Apparatus and method for suppression of electromagnetic emissions having a groove on an external surface for passing an electrical conductor
US6243336B1 (en) 1995-01-25 2001-06-05 Discovision Associates Optical disc system having servo motor and servo error detection assembly operated relative to monitored quad sum signal and focus capture method for use in same
US6266306B1 (en) 1995-01-25 2001-07-24 Discovision Associates Analog to digital converter and assembly for use in optical drive system to normalize servo error signals and multiplex reference voltage inputs and digital outputs
US6278665B1 (en) 1995-01-25 2001-08-21 Discovision Associates Optical disc system including current monitoring circuit assembly having controller with improved optics module and laser driver and method for operating same
US6034364A (en) 1995-01-25 2000-03-07 Discovision Associates Optical disc system including focus capture assembly with focus error signal circuit and method for operating same
US6317391B1 (en) 1995-01-25 2001-11-13 Discovision Associates Optical disc system having current monitoring circuit with improved bias coil assembly and controller for laser driver and method for operating same
US5878015A (en) * 1995-01-25 1999-03-02 Discovision Associates Laser driver for controlling electrical current passed to a laser in an optical disc system
US5828054A (en) * 1995-01-25 1998-10-27 Discovision Associates Focusing method and system for focus capture and focus control in optical disc system including detection of Quad Sum signal to close focus
US5978329A (en) 1995-06-07 1999-11-02 Discovision Associates Technique for closed loop servo operation in optical disc tracking control
US5978331A (en) 1995-12-06 1999-11-02 Discovision Associates Apparatus and method for focus control
US6314069B1 (en) 1996-04-01 2001-11-06 Discovision Associates Apparatus and method for controlling a focused beam
US6134199A (en) 1996-04-01 2000-10-17 Discovision Associates Closed loop servo operation for focus control
US5689485A (en) 1996-04-01 1997-11-18 Discovision Associates Tracking control apparatus and method

Similar Documents

Publication Publication Date Title
US4223349A (en) System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate
USRE32431E (en) System for rotating an information storage disc at a variable angular velocity to recover information therefrom at a prescribed constant rate
US4228326A (en) System for recording information on a rotatable storage disc, in a substantially uniform recording density
JPS6153783B2 (en)
US4313191A (en) Recording medium having a pilot signal with an aligned phase angle in adjacent tracks
US4353089A (en) Apparatus for correcting the time base of information recovered from a movable information storage medium
US4757488A (en) Rotation control apparatus for constant linear velocity system information recording disc
US5036508A (en) Spindle servo unit for disk playing device
US4003090A (en) Magnetic recording and reproducing system with tape-to-head speed control
US5751509A (en) Drum servo system using a PLL with frequency divided reference clock signals as an input
US4697257A (en) Jitter compensation system in a rotary recording medium reproducing apparatus
EP0419370B1 (en) Apparatus for reproducing a digital signal recorded on a magnetic tape
JPH0423258A (en) Automatic tracking device for magnetic recording and reproducing device
JPS6053994B2 (en) Disc-shaped information recording medium reproducing device
JP2506731B2 (en) Synchronization signal detection method using detection window and time axis control method
JPS6350950A (en) Tape recorder
JPH02276065A (en) Spindle servo circuit
JPH0646484B2 (en) Playback device
JPH0136172B2 (en)
JPH0785333B2 (en) Phase synchronization loop for disk playback
JPS6350974A (en) Synchronizing signal identifying device
JPS6226685A (en) Index signal detector
JPH04181553A (en) Servo controller for spindle motor
JPS63308489A (en) Video disk player
JPH01201864A (en) Time base control system