USRE36978E - Dual display system - Google Patents

Dual display system Download PDF

Info

Publication number
USRE36978E
USRE36978E US09/172,193 US17219398A USRE36978E US RE36978 E USRE36978 E US RE36978E US 17219398 A US17219398 A US 17219398A US RE36978 E USRE36978 E US RE36978E
Authority
US
United States
Prior art keywords
displays
arm
arm assembly
display
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/172,193
Inventor
Jerry Moscovitch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24558874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE36978(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
PTAB case IPR2015-00127 filed (Not Instituted - Merits) litigation https://portal.unifiedpatents.com/ptab/case/IPR2015-00127 Petitioner: "Unified Patents PTAB Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/172,193 priority Critical patent/USRE36978E/en
Application granted granted Critical
Publication of USRE36978E publication Critical patent/USRE36978E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/14Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction with ball-joint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/02Locking means
    • F16M2200/021Locking means for rotational movement
    • F16M2200/024Locking means for rotational movement by positive interaction, e.g. male-female connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/161Indexing scheme relating to constructional details of the monitor
    • G06F2200/1612Flat panel monitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S248/00Supports
    • Y10S248/917Video display screen support
    • Y10S248/919Adjustably orientable video screen support
    • Y10S248/921Plural angular

Definitions

  • the invention relates generally to electronic displays used with computers, and more particularly, to a display system permitting convenient positioning of dual displays.
  • Paired monitors are useful when large amounts of related information, such as data or graphics, must be compared. Paired monitors can be inconvenient, however, where limited desk space is available. Also, in some instances information may be best presented with the monitors horizontally aligned, and in other instances, with the monitors vertically aligned. Conventional practices do not permit such selection or changing of monitor orientations.
  • the invention provides a display system comprising a base, a pair of electronic displays, and means for positioning the displays selectively in vertically registered relationship and in horizontally registered relationship.
  • the positioning means comprise an arm assembly which supports the displays and which may comprise a single rotary arm, a pair of arms rotating about separate axes, a single arm locatable in two desired orientation or interchangeable arms of different length.
  • the positioning means support the arm assembly from the base selectively in a first orientation relative to the base in which the displays are positioned in vertically registered relationship and in a second orientation in which the displays are positioned in a horizontally registered relationship.
  • Each display has an operative angular orientation relative to horizontal (neglecting tilting which is normally permitted about a horizontal or vertical axis).
  • a landscape display is normally operated with its lengthwise axis oriented horizontal as the video board operating the display will normally align text or other displayed matter with the display's lengthwise axis.
  • the positioning means thus include means for adjusting the angular orientation of each of the displays relative to the arm assembly to orient each display in its operative angular orientation when the arm assembly is in either of its orientations with the displays either vertically or horizontally registered.
  • the arm assembly rotates about a generally horizontal axis relative to the base, and each display rotates relative to the arm assembly.
  • the arm assembly may be releasably locked in either of its pair of orientations, typically vertical or horizontal, and each display is permitted to rotate only between a pair of extreme angular positions relative to the arm assembly.
  • Each extreme angular positions corresponds to a different orientation of the arm assembly relative to the base so that each display is oriented in its operative angular orientation whenever the arm assembly is locked to the base in either of the orientations and the display is rotated to its corresponding angular position.
  • the arm assembly and the displays are coupled so that the angular orientation of each display relative to the arm assembly changes as the arm assembly displaces between its pair of orientations, ensuring that each display automatically orients in its operative angular orientation whenever the displays are vertically or horizontally registered.
  • the displays will often be horizontally elongate in their operative angular orientation. It will generally be desirable to minimize the spacing between edges of the displays whether vertically registered or horizontally registered. To that end, the center-to-center spacing between the displays is preferably reduced when the displaces are vertically registered and increased when the displays are horizontally registered.
  • the arm assembly may be a telescopic member that permits telescopic adjustment of display spacing.
  • one display may mounted to the arm assembly in different positions spaced apart along the arm. In a particularly robust arrangement, the one display has a plug that interlocks with either of a pair of sockets located proximate to one end of the arm assembly and spaced apart axially along the arm assembly.
  • the spacing between horizontally elongate displays is automatically adjusted as the arm assembly is displaced between orientations that place the displays in horizontal and vertical registration.
  • the arm assembly comprises a pair of horizontally spaced apart arms rotating in parallel planes.
  • Means supporting the arm assembly from the base comprise upper and lower rotary shafts in parallel relationship.
  • One arm has its fixed end fixed to the upper shaft such that the arm rotates in a plane perpendicular to the upper shaft.
  • the other arm has a fixed end fixed to the lower shaft such that the other arm rotates in a plane perpendicular to the lower shaft in response to rotation of the upper shaft.
  • a predetermined one of the displays is located below the other display.
  • the one display (lower when vertically registered) is mounted to the free end of the one arm fixed to the upper shaft, and the other display (upper when vertically registered) is mounted to the free end of the other arm fixed to the lower shaft. Since one arm extends downwardly to support the lower display and the other arm extends upwardly to support the upper display, the center-to-center spacing between the displays is effectively reduced when registered. However, when the arms are rotated outwardly to position the displays in horizontal registration, the center-to-center spacing increases.
  • FIGS. 1-6 illustrate a first display system with dual displays in various orientations
  • FIG. 7 is a partially exploded, fragmented perspective view detailing the mounting of an arm to a base of the display system
  • FIGS. 8 and 9 are exploded perspective views detailing how one display is mounted to the arm with a novel ball and socket joint
  • FIGS. 10 and 11 fragmented elevational views, partially cross-sectioned, illustrating how rotation of one display relative to the arm is restricted to a 90 degree range between two well-defined positions;
  • FIG. 12 is a rear elevation, partially sectioned, showing a second display system in which dual displays rotate in response to rotation of an arm assembly about a base;
  • FIG. 13 is a plan view of the second display system from above showing linkage coupling the/arm and displays;
  • FIGS. 14-16 are front elevations showing different relative orientations of the displays of the second system
  • FIG. 17 is a side elevation showing a third display system with an arm vertical and supporting dual displays in vertical registration;
  • FIG. 18 is a plan view from above showing the third display system with the arm horizontal and supporting the display in horizontal registration;
  • FIG. 19 is an exploded perspective view, extensively fragmented, detailing how the arm mounts to a base and how the displays mount to the arm;
  • FIG. 20 is a perspective view of the a ball and socket joint used to mount one of the displays of the third display system.
  • FIGS. 1-6 illustrate a first display system 10 which includes a base 12 configured to stand on a horizontal surface and a pair of landscape displays 14, 16 (preferably liquid crystal displays).
  • the displays 14, 16 are mounted to opposing ends of a telescopic arm 18, and a hollow upright 20 associated with the base 12 supports the arm 18 for rotation.
  • Each display 14 or 16 has a conventional port 22 permitting coupling to a computer (not illustrated) through a conventional video board (not illustrated).
  • a rotary joint (detailed in the exploded view of FIG. 7) couples the arm 18 to the upright 20.
  • the rotary joint is configured to perform two functions: to support the arm 18 for rotation about a generally horizontal axis 26 through the upright 20, and to define distinct vertical and horizontal arm positions.
  • the rotary joint includes a connector 28 fixed centrally to the rear of the arm 18, which includes a circular track 30 and a generally circular central projection 32.
  • the upright 20 carries a complementary connecting structure comprising a circular recess 34 that receives the projection 32, a washer 36, and a bolt 38 that fastens to the projection 32.
  • the washer 36 extends radially beyond the circular recess 34 and abuts the inner surface of the upright 20 to retain the projection, and rotates with the projection about the generally horizontal axis 26.
  • a detent mechanism releasably locks the arm 18 in vertical and horizontal positions.
  • Two indentations 40, 42 are formed in the circular track 30 at positions spaced circumferentially by 90 degrees.
  • a cylindrical recess 44 in the upright 20 contains a ball 46 and a biasing spring 48 that urges the ball 46 against the track 30.
  • the ball 46 seats in either indentation 40 or 42 to lock the arm 18 in its vertical or horizontal position but releases from either indentation 40 or 42 in response to manual rotation of the arm 18.
  • Mounting structure 50 that mounts one display 16 to the arm 18 is detailed in FIGS. 8-11.
  • the mounting structure 50 is configured to perform two principal functions: to permit limited tilting of the display 16 about two mutually perpendicular axes, and to allow rotation of the display 16 relative to the arm 18 through a limited angle between two well-defined positions.
  • the mounting structure 52 coupling the other display 14 to the arm 18 is substantially identical and will not be described.
  • the mounting structure 50 includes a ball joint comprising a steel ball 56 formed on a steel shaft 58 supported from the arm 18 and a plastic socket 60 supported from the rear of the display 16.
  • the socket 60 is formed with four slots that are oriented parallel to the socket's receiving axis and appearing generally horizontal in the operative orientation of the socket 60.
  • One pair of slots 62 is vertically registered, and another pair of slots 64 is horizontally registered.
  • the ball 56 carries four cylindrical projections oriented in a common plane.
  • One pair of projections 66 are aligned with a vertical axis (not shown) and extend from the ball 56 in opposite axial directions.
  • Another pair of projections 68 are aligned with a horizontal axis (not shown) and extend from the ball 56 in opposite axial directions.
  • the vertical projections 66 are received in the vertically registered slots 62, permitting free rotation of the display 16 about the vertical axis, but only limited rotation of the display 16 about the horizontal axis.
  • the horizontal projections 68 are received in the horizontally registered slots 64, permitting free rotation of the display 16 about the horizontal axis, but only limited rotation of the display 16 about the vertical axis.
  • This arrangement effectively permits only limited degree of tilting of the display 16 about two mutually perpendicular axes, in this implementation about vertical and horizontal axes.
  • the slots might be formed on the exterior of the ball 56, and the projections might be fixed to the socket 60 and extend inwardly to engage the slots.
  • the arrangement illustrated in which the projections 66, 68 are fixed to the ball 56 and the slots 62, 64 are formed in the socket 60, permits easy manufacture and assembly.
  • the slots 62, 64 extend rearward from the display 16 and terminate open-ended, facilitating insertion of the projections 66, 68 into the slots 62, 64 as the socket 60 receives the ball 56.
  • the shaft 58 is mounted for rotation relative to the arm 18 about a rotational axis 70 parallel to the generally horizontal axis 26 about which the arm 18 rotates.
  • the arm 18 has a clearance hole 72 in its forward surface surrounded by a circular seating surface 74, and a cylindrical socket 76 within the arm 18 that is aligned with the rotational axis 70 and the clearance hole 72.
  • the shaft 58 has an annular flange 78 that presses a split washer 79 against the circular seating surface 74 as the shaft 58 is inserted centrally through the clearance hole 72 into the socket 76.
  • the shaft 58 has three projections or tabs oriented in a common plane and extending radially from the shaft 58.
  • One pair of tabs 80 is closely spaced and a single tab 82 is positioned diametrically opposite the pair of tabs 80.
  • the clearance hole 72 is configured to receive the tabs 80, 82 in a particular angular orientation as the shaft 58 is inserted into the socket 76, and rotation of the tabs 80, 82 from that particular angular orientation prevents removal of the shaft 58 from the arm 18.
  • the tabs 80, 82 also function as stop structures cooperating with stop structures in the arm 18 to restrict rotation of the display 16, as explained below.
  • Rotation of the shaft 58 is restricted by two stops: a rotatable stop 84 that threads into a socket 88 within the arm 18 (complementary threads not shown), and a generally triangular fixed stop 90 formed on an inner surface of the arm 18.
  • the rotatable stop 84 has a hexagonal key slot 92 to permit rotation of the stop 84 between a clearance position shown in FIG. 10 and an operative position shown in FIG. 11 in which the stop 84 engages an abutment molded with the cylindrical socket 76.
  • the shaft 58 is manually rotated clockwise until the single tab 82 passes the stop 84, for example, to one extreme angular position in which the single tab 82 abuts the fixed stop 90 as in FIG. 10.
  • the rotatable stop 84 can then be placed in its operative position as shown in FIG. 11.
  • the single tab 82 engages the rotatable stop 84 as shown in FIG. 11. Rotation of the shaft 58 and thus the display 16 relative to the arm 18 is restricted to 90 degrees between two extreme angular positions well-defined by the stops.
  • the two well-defined positions of the display 16 relative to the arm 18 correspond to the two well-defined positions of the arm 18 relative to the base 12.
  • the display 16 position (relative to the arm 18) defined in FIG. 11 corresponds to the horizontal orientation of the arm 18 and preserves the landscape orientation of the display 16.
  • the overall arrangement is apparent in FIGS. 3 and 4 where the arm 18 is horizontal and the displays 14, 16 are oriented in horizontally side-by-side relationship with their lengthwise axes (not illustrated) in an absolute horizontal orientation.
  • the display 16 position (relative to the arm 18) defined in FIG. 10 corresponds to the vertical orientation of the arm 18 and once again preserves the landscape orientation of the display 16.
  • the overall arrangement is apparent in FIGS. 5 and 6 where the arm 18 is vertical and the displays 14, 16 are vertically registered.
  • the telescopic arm 18 is extended in its horizontal orientation to increase the spacing between the displays 14, 16, and contracted in its vertical orientation to decrease the spacing between the displays 14, 16, effectively accommodating the horizontal elongation of the displays 14, 16.
  • a conventional detent mechanism may be mounted in the arm 18 to fix its different vertical and horizontal lengths.
  • FIGS. 12 and 13 illustrate a second display system 100 comprising a base 102, an arm assembly 104 that rotates about a generally horizontal axis from an upright 105 associated with the base 102, and a pair of landscape displays 106, 108 mounted to opposing ends of the arm assembly 104.
  • the arms 110, 112 have not been shown in FIG. 12 to better illustrate linkage rotating the displays 106, 108 with the arm assembly 104.
  • the arm assembly 104 comprises a pair of distinct arms 110, 112 (apparent in FIG. 13), one arm 110 in front of the upright 105 and the other arm 112 behind the upright 105.
  • the upright 105 supports a central shaft 114 for rotation about a generally horizontal central axis and a central toothed gear 116 is fixed to the central shaft 114.
  • the arms 110, 112 are fixed to parallel rotary shafts 118, 120 mounted for rotation to the upright 105 about their lengthwise horizontal axes, one rotary shaft 118 above the central shaft 114 and the other rotary shaft 120 below the central shaft 114.
  • Each arm 110 or 112 has a fixed end fixed to its respective rotary shaft 118 or 120 such that each rotates in a plane perpendicular to the lengthwise axis of the associated shaft 118 or 112, the two arms 110, 112 being horizontally spaced to avoid contact during such rotation.
  • the upper and lower rotary shafts 118, 120 carry toothed part-circular gears 122, 124 (spanning 90 degree sectors) that are meshed with the circular central gear 116.
  • the central shaft 114 and the meshed gears 116, 122, 124 constrain the upper and lower rotary shafts 118, 120 to rotate together in the same angular direction.
  • end teeth of the upper and lower part-circular gears 122, 124 are shaped to limit rotation of the gears 122, 124 relative to the central gear 116.
  • One display 106 is mounted with a ball joint 126 to a horizontal shaft 128, and the shaft 128 is mounted for rotation about its central horizontal axis to a free end of the rear arm 112.
  • the ball joint 126 is preferably configured with pins and slots like the ball joint described above, to provide limited tilting of the display 106, but such a configuration has not been illustrated in FIG. 13.
  • the rotary shafts 120, 128 associated with the rear arm 112 are coupled with a toothed belt 130 running on pulleys fixed to the shafts so that the display 106 rotates in response to rotation of the rotary shaft 120 and thus rotates relative to the rear arm 112.
  • the other display 108 is mounted with a similar ball joint 132 to a shorter horizontal shaft 134, and the shorter shaft 134 is mounted for rotation about its horizontal central axis to the free end of the forward arm 110.
  • the rotary shafts 118, 134 associated with the forward arm 110 are similarly coupled with a toothed belt 136 to coordinate rotation of the other display 108 in response to rotation of the rotary shaft 118 and thus rotates relative to the forward arm 110.
  • FIGS. 14-16 Various orientations of the second display system 100 are shown in FIGS. 14-16.
  • the "diagonal" orientation of the two displays 106, 108 in FIG. 14 corresponds to the orientation of the arm assembly 104 and various gears in FIGS. 12 and 13. This is an intermediate orientation from which the arm assembly 104 can be rotated through about 45 degrees counterclockwise to achieve the vertically spaced orientation of the displays 106, 108 in FIG. 15 or about 45 degree clockwise to achieve the horizontally side-by-side orientation of the displays 106, 108 shown in FIG. 16.
  • the arm assembly 104 is effectively coupled to each of the displays 106, 108 so that the absolute landscape orientation of the two displays 106, 108 is, for practical purposes, maintained as the arm assembly 104 rotates.
  • the displays 106, 108 must be titled to orient one effectively behind the other to allow rotation of the arm assembly 104. This can be avoided by lengthening the arms 110, 112 to increase the separation of the displays 106, 108.
  • the center-to-center spacing between the displays 106, 108 is automatically adjusted when the displays 106, 108 are placed in vertical or horizontal registration. When vertically registered, one display 108 is always located below the other display 106. From examination of FIG. 12, it will be apparent that the lower display 108 would then be supported by the arm 110 extending downward from the upper rotary shaft 120, and the upper display 106 would be supported with the arm 112 extending upward from the lower rotary shaft 118. The arms 110, 112 then overlap for a large portion of their length and the distance between their free ends and thus the centers of the displays 106, 108 is minimized. From the orientation of FIG.
  • the arms 110 would swing upward and outward to one side of the upright 105 and the arm 112 would swing downward and outward on an opposing side of the upright 105, increasing the separation of their free ends and thus the center-to-center spacing of the displays 106, 108.
  • the automatic adjusting of the orientation of the displays 106, 108 can be implemented with a simpler arm assembly comprising just a single arm centrally mounted to a supporting base on a central rotary shaft. Belts or other linkages can be used to couple the central rotary shaft to rotary shafts supporting the displays 106, 108 to opposing ends of the single arm. However, use of two arms 110, 112 pivoting about separate axes permits simultaneous adjustment of display spacing.
  • FIGS. 17 and 18 illustrate a third display system 150 which includes a pair of landscape displays 152, 154 and a base 156 with an upright 158.
  • the third display system 150 uses an arm 162 that mounts to the upright 158 in only two orientations.
  • the arm 162 is mounted to the upright 158 in a vertical orientation, and the displays 152, 154 are mounted to opposing ends of the arm 162 with a pair of identical connectors 164, 166.
  • the arm 162 is mounted to the upright 158 in a horizontal orientation, and the displays 152, 154 are mounted to opposing ends of the longer arm 162 using the same connectors 164, 166.
  • the lengthwise axes of the displays 153, 154 are kept horizontal.
  • the connector 164 associated with one display 152 is shown in FIG. 20.
  • the connector 164 includes a ball joint comprising a molded plastic socket 170 and an aluminum ball 172 formed with a shaft 174.
  • the socket 170 is formed with slots 178 and the ball 172 is formed with projections 180, comparable to those above, which interlock to permit only limited tilting of the display 152 along two mutually perpendicular axes.
  • a press is used to insert the ball 172 into the socket 170, and a housing comprising a plate 182 and a shell 184 closely conforming to the exterior of the socket 170 is mounted with screws 186 around the assembled ball 172 and socket 170.
  • the plate 182 is then fastened with screws (such as the screw 188) to the back of the display 152.
  • a flat 190 formed at the top of the socket 170 seats against a corresponding flat 192 in the shell 184 to prevent rotation of the socket 170 relative to the display 152.
  • the shaft 174 is terminated with a plug 194 with a tapering square transverse cross-section and with a central threaded hole 196.
  • the arm 162 has a connector, specifically, a socket 198 which conforms in shape to and interlocks with the plug 194 to support the display 152 and to prevent rotation of the display 152.
  • the socket 198 is arranged on the arm 162 to receive the plug 194 in two distinct relative angular orientations spaced by 90 degrees, one in which the lengthwise axis of the display 152 is aligned with the length of the arm 162 (as in FIG. 18 where the arm 162 is horizontal) and another in which the lengthwise axis is perpendicular to the length of the arm 162 (as in FIG. 17 where the arm 162 is vertical).
  • a bolt 200 (shown in FIG. 19) inserts through the socket 198 into the plug 194 to prevent separation.
  • the other display 154 is mounted to the arm 162 in a manner permitting adjustment of the spacing between the displays 152, 154.
  • the connector 166 associated with the other display 154 is identical to the connector 164.
  • the arm 162 has a pair of sockets 202, 204 identical to the socket 198 but mounted in an opposing end portion of the arm 162.
  • the two sockets 202, 204 are axially spaced along the arm 162, one socket 204 located substantially at one end of the arm 162 and the other socket 202, inset from that end.
  • Both sockets 202, 204 are shaped to interlock with the connector 166 to prevent relative rotation and to permit the lengthwise axis of the display 154 to be aligned with or oriented perpendicular to the length of the arm 162 according to whether the arm 162 is horizontally or vertically oriented.
  • the connectors used to join the arm 162 to the upright 158 are apparent in FIG. 19.
  • the upright 158 has a socket 206 with a tapered square chamber aligned with a circular cylindrical chamber.
  • the arm 162 carries a plug 208 which has a tapered square section and a circular cylindrical section, conforming to the socket 206.
  • the socket 206 receives the plug 208 in two distinct relative angular orientations spaced by 90 degrees, which correspond to vertical and horizontal orientations of the arm 162.
  • a bolt 210 inserts through a clearance hole (not illustrated) in the rear of the socket 206 and threads into the plug 208 to prevent relative axial separation of the socket 206 and plug 208.
  • the display system 150 is used will be largely apparent from the foregoing description of its components. If the displays 152, 154 are to be horizontally registered (as in FIG. 18), the arm 162 is mounted to the upright 158 in a horizontal position, and the displays 152, 154 are mounted to the arm 162 with their lengthwise axes aligned with the length of the arm 162. The display 152 is mounted to the socket 204 at the end of the arm 162 to increase the spacing between the displays, accommodating their horizontal elongation. If the displays 152, 154 are to be vertically registered (as in FIG.
  • the arm 162 is mounted to the upright 158 in a vertical position, and the displays 152, 154 are mounted to the arm 162 with their lengthwise axes perpendicular to the length of the arm 162.
  • the spacing between the displays 152, 154 is reduced by mounting the display 152 is mounted to the socket 202 inset from the end of the arm 162.
  • the display 152 may be mounted appropriate connection means that permit the display 152 for sliding between various axially spaced-apart positions along the arm 162.
  • twin sockets 202, 204 are simple, adequate and comparatively inexpensive.
  • Another alternative is to provide an arm assembly comprising two interchangeable arms of different length. Each arm may carry a pair of sockets (substantially identical to the socket 198) for mounting of the displays 152, 154 at opposing ends of the arm. Each arm may be fitted with a connector comparable to the plug 208 for mounting to the upright 158.
  • the short armer may be mounted to the upright 158 in a vertical position for vertical registration of the displays 152, 154, and the longer arm may be mounted to the upright 158 in a horizontal orientation for mounting for horizontal registration of the displays 152, 154.

Abstract

A display system includes a base, a pair of electronic displays, and an arm assembly that supports the displays from the base in vertical or horizontal registration. In one implementation, the arm assembly is a single telescopic member that rotates relative to the base and locks in vertical and horizontal orientations, the displays rotate relative to the member between corresponding extreme angular positions in which the operative angular orientation of the displays relative to horizontal is maintained, and the length of the member is adjusted to minimize separation of the displays. In another implementation, the arm assembly has separate arms rotating about vertically spaced axes and linked to minimize the separation of the displays automatically when vertically or horizontally registered. In a simple implementation, the arm assembly is a rigid arm that releasably attaches to the base only in vertical and horizontal orientations, the displays mounted releasably to the arm in pre-defined angular orientations that preserve their operative angular orientation, and one display can be connected to the arm at spaced apart position to adjust separation of the displays.

Description

FIELD OF THE INVENTION
The invention relates generally to electronic displays used with computers, and more particularly, to a display system permitting convenient positioning of dual displays.
BACKGROUND OF THE INVENTION
Computers are readily adapted to operate multiple displays. Paired monitors are useful when large amounts of related information, such as data or graphics, must be compared. Paired monitors can be inconvenient, however, where limited desk space is available. Also, in some instances information may be best presented with the monitors horizontally aligned, and in other instances, with the monitors vertically aligned. Conventional practices do not permit such selection or changing of monitor orientations.
SUMMARY OF THE INVENTION
In one aspect, the invention provides a display system comprising a base, a pair of electronic displays, and means for positioning the displays selectively in vertically registered relationship and in horizontally registered relationship. The positioning means comprise an arm assembly which supports the displays and which may comprise a single rotary arm, a pair of arms rotating about separate axes, a single arm locatable in two desired orientation or interchangeable arms of different length. The positioning means support the arm assembly from the base selectively in a first orientation relative to the base in which the displays are positioned in vertically registered relationship and in a second orientation in which the displays are positioned in a horizontally registered relationship. Each display has an operative angular orientation relative to horizontal (neglecting tilting which is normally permitted about a horizontal or vertical axis). For example, a landscape display is normally operated with its lengthwise axis oriented horizontal as the video board operating the display will normally align text or other displayed matter with the display's lengthwise axis. The positioning means thus include means for adjusting the angular orientation of each of the displays relative to the arm assembly to orient each display in its operative angular orientation when the arm assembly is in either of its orientations with the displays either vertically or horizontally registered.
In one implementation of the invention, the arm assembly rotates about a generally horizontal axis relative to the base, and each display rotates relative to the arm assembly. The arm assembly may be releasably locked in either of its pair of orientations, typically vertical or horizontal, and each display is permitted to rotate only between a pair of extreme angular positions relative to the arm assembly. Each extreme angular positions corresponds to a different orientation of the arm assembly relative to the base so that each display is oriented in its operative angular orientation whenever the arm assembly is locked to the base in either of the orientations and the display is rotated to its corresponding angular position. In another implementation, the arm assembly and the displays are coupled so that the angular orientation of each display relative to the arm assembly changes as the arm assembly displaces between its pair of orientations, ensuring that each display automatically orients in its operative angular orientation whenever the displays are vertically or horizontally registered.
The displays will often be horizontally elongate in their operative angular orientation. It will generally be desirable to minimize the spacing between edges of the displays whether vertically registered or horizontally registered. To that end, the center-to-center spacing between the displays is preferably reduced when the displaces are vertically registered and increased when the displays are horizontally registered. In one approach, the arm assembly may be a telescopic member that permits telescopic adjustment of display spacing. In another approach, one display may mounted to the arm assembly in different positions spaced apart along the arm. In a particularly robust arrangement, the one display has a plug that interlocks with either of a pair of sockets located proximate to one end of the arm assembly and spaced apart axially along the arm assembly.
In yet another implementation, the spacing between horizontally elongate displays is automatically adjusted as the arm assembly is displaced between orientations that place the displays in horizontal and vertical registration. The arm assembly comprises a pair of horizontally spaced apart arms rotating in parallel planes. Means supporting the arm assembly from the base comprise upper and lower rotary shafts in parallel relationship. One arm has its fixed end fixed to the upper shaft such that the arm rotates in a plane perpendicular to the upper shaft. The other arm has a fixed end fixed to the lower shaft such that the other arm rotates in a plane perpendicular to the lower shaft in response to rotation of the upper shaft. In their vertically registered relationship, a predetermined one of the displays is located below the other display. The one display (lower when vertically registered) is mounted to the free end of the one arm fixed to the upper shaft, and the other display (upper when vertically registered) is mounted to the free end of the other arm fixed to the lower shaft. Since one arm extends downwardly to support the lower display and the other arm extends upwardly to support the upper display, the center-to-center spacing between the displays is effectively reduced when registered. However, when the arms are rotated outwardly to position the displays in horizontal registration, the center-to-center spacing increases.
Various aspects of the invention will be apparent from a description below of a preferred embodiment and will be more specifically defined in the appended claims.
DESCRIPTION OF THE DRAWINGS
The invention will be better understood with reference to drawings in which:
FIGS. 1-6 illustrate a first display system with dual displays in various orientations;
FIG. 7 is a partially exploded, fragmented perspective view detailing the mounting of an arm to a base of the display system;
FIGS. 8 and 9 are exploded perspective views detailing how one display is mounted to the arm with a novel ball and socket joint;
FIGS. 10 and 11 fragmented elevational views, partially cross-sectioned, illustrating how rotation of one display relative to the arm is restricted to a 90 degree range between two well-defined positions;
FIG. 12 is a rear elevation, partially sectioned, showing a second display system in which dual displays rotate in response to rotation of an arm assembly about a base;
FIG. 13 is a plan view of the second display system from above showing linkage coupling the/arm and displays;
FIGS. 14-16 are front elevations showing different relative orientations of the displays of the second system;
FIG. 17 is a side elevation showing a third display system with an arm vertical and supporting dual displays in vertical registration;
FIG. 18 is a plan view from above showing the third display system with the arm horizontal and supporting the display in horizontal registration;
FIG. 19 is an exploded perspective view, extensively fragmented, detailing how the arm mounts to a base and how the displays mount to the arm; and,
FIG. 20 is a perspective view of the a ball and socket joint used to mount one of the displays of the third display system.
DESCRIPTION OF PREFERRED EMBODIMENTS
Reference is made to FIGS. 1-6 which illustrate a first display system 10 which includes a base 12 configured to stand on a horizontal surface and a pair of landscape displays 14, 16 (preferably liquid crystal displays). The displays 14, 16 are mounted to opposing ends of a telescopic arm 18, and a hollow upright 20 associated with the base 12 supports the arm 18 for rotation. Each display 14 or 16 has a conventional port 22 permitting coupling to a computer (not illustrated) through a conventional video board (not illustrated).
A rotary joint (detailed in the exploded view of FIG. 7) couples the arm 18 to the upright 20. The rotary joint is configured to perform two functions: to support the arm 18 for rotation about a generally horizontal axis 26 through the upright 20, and to define distinct vertical and horizontal arm positions. The rotary joint includes a connector 28 fixed centrally to the rear of the arm 18, which includes a circular track 30 and a generally circular central projection 32. The upright 20 carries a complementary connecting structure comprising a circular recess 34 that receives the projection 32, a washer 36, and a bolt 38 that fastens to the projection 32. The washer 36 extends radially beyond the circular recess 34 and abuts the inner surface of the upright 20 to retain the projection, and rotates with the projection about the generally horizontal axis 26.
A detent mechanism releasably locks the arm 18 in vertical and horizontal positions. Two indentations 40, 42 are formed in the circular track 30 at positions spaced circumferentially by 90 degrees. A cylindrical recess 44 in the upright 20 contains a ball 46 and a biasing spring 48 that urges the ball 46 against the track 30. The ball 46 seats in either indentation 40 or 42 to lock the arm 18 in its vertical or horizontal position but releases from either indentation 40 or 42 in response to manual rotation of the arm 18.
Mounting structure 50 that mounts one display 16 to the arm 18 is detailed in FIGS. 8-11. The mounting structure 50 is configured to perform two principal functions: to permit limited tilting of the display 16 about two mutually perpendicular axes, and to allow rotation of the display 16 relative to the arm 18 through a limited angle between two well-defined positions. The mounting structure 52 coupling the other display 14 to the arm 18 is substantially identical and will not be described.
The mounting structure 50 includes a ball joint comprising a steel ball 56 formed on a steel shaft 58 supported from the arm 18 and a plastic socket 60 supported from the rear of the display 16. The socket 60 is formed with four slots that are oriented parallel to the socket's receiving axis and appearing generally horizontal in the operative orientation of the socket 60. One pair of slots 62 is vertically registered, and another pair of slots 64 is horizontally registered. The ball 56 carries four cylindrical projections oriented in a common plane. One pair of projections 66 are aligned with a vertical axis (not shown) and extend from the ball 56 in opposite axial directions. Another pair of projections 68 are aligned with a horizontal axis (not shown) and extend from the ball 56 in opposite axial directions. The vertical projections 66 are received in the vertically registered slots 62, permitting free rotation of the display 16 about the vertical axis, but only limited rotation of the display 16 about the horizontal axis. The horizontal projections 68 are received in the horizontally registered slots 64, permitting free rotation of the display 16 about the horizontal axis, but only limited rotation of the display 16 about the vertical axis. This arrangement effectively permits only limited degree of tilting of the display 16 about two mutually perpendicular axes, in this implementation about vertical and horizontal axes. It should be noted that the slots might be formed on the exterior of the ball 56, and the projections might be fixed to the socket 60 and extend inwardly to engage the slots. The arrangement illustrated, in which the projections 66, 68 are fixed to the ball 56 and the slots 62, 64 are formed in the socket 60, permits easy manufacture and assembly. The slots 62, 64 extend rearward from the display 16 and terminate open-ended, facilitating insertion of the projections 66, 68 into the slots 62, 64 as the socket 60 receives the ball 56.
The shaft 58 is mounted for rotation relative to the arm 18 about a rotational axis 70 parallel to the generally horizontal axis 26 about which the arm 18 rotates. The arm 18 has a clearance hole 72 in its forward surface surrounded by a circular seating surface 74, and a cylindrical socket 76 within the arm 18 that is aligned with the rotational axis 70 and the clearance hole 72. The shaft 58 has an annular flange 78 that presses a split washer 79 against the circular seating surface 74 as the shaft 58 is inserted centrally through the clearance hole 72 into the socket 76. The shaft 58 has three projections or tabs oriented in a common plane and extending radially from the shaft 58. One pair of tabs 80 is closely spaced and a single tab 82 is positioned diametrically opposite the pair of tabs 80. The clearance hole 72 is configured to receive the tabs 80, 82 in a particular angular orientation as the shaft 58 is inserted into the socket 76, and rotation of the tabs 80, 82 from that particular angular orientation prevents removal of the shaft 58 from the arm 18. The tabs 80, 82 also function as stop structures cooperating with stop structures in the arm 18 to restrict rotation of the display 16, as explained below.
Rotation of the shaft 58 is restricted by two stops: a rotatable stop 84 that threads into a socket 88 within the arm 18 (complementary threads not shown), and a generally triangular fixed stop 90 formed on an inner surface of the arm 18. The rotatable stop 84 has a hexagonal key slot 92 to permit rotation of the stop 84 between a clearance position shown in FIG. 10 and an operative position shown in FIG. 11 in which the stop 84 engages an abutment molded with the cylindrical socket 76. After insertion into the socket 76, the shaft 58 is manually rotated clockwise until the single tab 82 passes the stop 84, for example, to one extreme angular position in which the single tab 82 abuts the fixed stop 90 as in FIG. 10. The rotatable stop 84 can then be placed in its operative position as shown in FIG. 11. When the shaft 58 is then rotated counterclockwise, the single tab 82 engages the rotatable stop 84 as shown in FIG. 11. Rotation of the shaft 58 and thus the display 16 relative to the arm 18 is restricted to 90 degrees between two extreme angular positions well-defined by the stops.
The two well-defined positions of the display 16 relative to the arm 18 correspond to the two well-defined positions of the arm 18 relative to the base 12. The display 16 position (relative to the arm 18) defined in FIG. 11 corresponds to the horizontal orientation of the arm 18 and preserves the landscape orientation of the display 16. The overall arrangement is apparent in FIGS. 3 and 4 where the arm 18 is horizontal and the displays 14, 16 are oriented in horizontally side-by-side relationship with their lengthwise axes (not illustrated) in an absolute horizontal orientation. The display 16 position (relative to the arm 18) defined in FIG. 10 corresponds to the vertical orientation of the arm 18 and once again preserves the landscape orientation of the display 16. The overall arrangement is apparent in FIGS. 5 and 6 where the arm 18 is vertical and the displays 14, 16 are vertically registered. The telescopic arm 18 is extended in its horizontal orientation to increase the spacing between the displays 14, 16, and contracted in its vertical orientation to decrease the spacing between the displays 14, 16, effectively accommodating the horizontal elongation of the displays 14, 16. A conventional detent mechanism may be mounted in the arm 18 to fix its different vertical and horizontal lengths.
Reference is made to FIGS. 12 and 13 which illustrate a second display system 100 comprising a base 102, an arm assembly 104 that rotates about a generally horizontal axis from an upright 105 associated with the base 102, and a pair of landscape displays 106, 108 mounted to opposing ends of the arm assembly 104. The arms 110, 112 have not been shown in FIG. 12 to better illustrate linkage rotating the displays 106, 108 with the arm assembly 104.
The arm assembly 104 comprises a pair of distinct arms 110, 112 (apparent in FIG. 13), one arm 110 in front of the upright 105 and the other arm 112 behind the upright 105. The upright 105 supports a central shaft 114 for rotation about a generally horizontal central axis and a central toothed gear 116 is fixed to the central shaft 114. The arms 110, 112 are fixed to parallel rotary shafts 118, 120 mounted for rotation to the upright 105 about their lengthwise horizontal axes, one rotary shaft 118 above the central shaft 114 and the other rotary shaft 120 below the central shaft 114. Each arm 110 or 112 has a fixed end fixed to its respective rotary shaft 118 or 120 such that each rotates in a plane perpendicular to the lengthwise axis of the associated shaft 118 or 112, the two arms 110, 112 being horizontally spaced to avoid contact during such rotation. The upper and lower rotary shafts 118, 120 carry toothed part-circular gears 122, 124 (spanning 90 degree sectors) that are meshed with the circular central gear 116. The central shaft 114 and the meshed gears 116, 122, 124 constrain the upper and lower rotary shafts 118, 120 to rotate together in the same angular direction. Although not apparent, end teeth of the upper and lower part- circular gears 122, 124 are shaped to limit rotation of the gears 122, 124 relative to the central gear 116.
One display 106 is mounted with a ball joint 126 to a horizontal shaft 128, and the shaft 128 is mounted for rotation about its central horizontal axis to a free end of the rear arm 112. The ball joint 126 is preferably configured with pins and slots like the ball joint described above, to provide limited tilting of the display 106, but such a configuration has not been illustrated in FIG. 13. The rotary shafts 120, 128 associated with the rear arm 112 are coupled with a toothed belt 130 running on pulleys fixed to the shafts so that the display 106 rotates in response to rotation of the rotary shaft 120 and thus rotates relative to the rear arm 112. The other display 108 is mounted with a similar ball joint 132 to a shorter horizontal shaft 134, and the shorter shaft 134 is mounted for rotation about its horizontal central axis to the free end of the forward arm 110. The rotary shafts 118, 134 associated with the forward arm 110 are similarly coupled with a toothed belt 136 to coordinate rotation of the other display 108 in response to rotation of the rotary shaft 118 and thus rotates relative to the forward arm 110.
Various orientations of the second display system 100 are shown in FIGS. 14-16. The "diagonal" orientation of the two displays 106, 108 in FIG. 14 corresponds to the orientation of the arm assembly 104 and various gears in FIGS. 12 and 13. This is an intermediate orientation from which the arm assembly 104 can be rotated through about 45 degrees counterclockwise to achieve the vertically spaced orientation of the displays 106, 108 in FIG. 15 or about 45 degree clockwise to achieve the horizontally side-by-side orientation of the displays 106, 108 shown in FIG. 16. The arm assembly 104 is effectively coupled to each of the displays 106, 108 so that the absolute landscape orientation of the two displays 106, 108 is, for practical purposes, maintained as the arm assembly 104 rotates. In this embodiment, the displays 106, 108 must be titled to orient one effectively behind the other to allow rotation of the arm assembly 104. This can be avoided by lengthening the arms 110, 112 to increase the separation of the displays 106, 108.
The center-to-center spacing between the displays 106, 108 is automatically adjusted when the displays 106, 108 are placed in vertical or horizontal registration. When vertically registered, one display 108 is always located below the other display 106. From examination of FIG. 12, it will be apparent that the lower display 108 would then be supported by the arm 110 extending downward from the upper rotary shaft 120, and the upper display 106 would be supported with the arm 112 extending upward from the lower rotary shaft 118. The arms 110, 112 then overlap for a large portion of their length and the distance between their free ends and thus the centers of the displays 106, 108 is minimized. From the orientation of FIG. 12, to place the displays in horizontal registration, the arms 110 would swing upward and outward to one side of the upright 105 and the arm 112 would swing downward and outward on an opposing side of the upright 105, increasing the separation of their free ends and thus the center-to-center spacing of the displays 106, 108.
The automatic adjusting of the orientation of the displays 106, 108 can be implemented with a simpler arm assembly comprising just a single arm centrally mounted to a supporting base on a central rotary shaft. Belts or other linkages can be used to couple the central rotary shaft to rotary shafts supporting the displays 106, 108 to opposing ends of the single arm. However, use of two arms 110, 112 pivoting about separate axes permits simultaneous adjustment of display spacing.
Reference is made to FIGS. 17 and 18 which illustrate a third display system 150 which includes a pair of landscape displays 152, 154 and a base 156 with an upright 158. The third display system 150 uses an arm 162 that mounts to the upright 158 in only two orientations. In FIG. 17, the arm 162 is mounted to the upright 158 in a vertical orientation, and the displays 152, 154 are mounted to opposing ends of the arm 162 with a pair of identical connectors 164, 166. In FIG. 18, the arm 162 is mounted to the upright 158 in a horizontal orientation, and the displays 152, 154 are mounted to opposing ends of the longer arm 162 using the same connectors 164, 166. In each instance, the lengthwise axes of the displays 153, 154 are kept horizontal.
The connector 164 associated with one display 152 is shown in FIG. 20. The connector 164 includes a ball joint comprising a molded plastic socket 170 and an aluminum ball 172 formed with a shaft 174. The socket 170 is formed with slots 178 and the ball 172 is formed with projections 180, comparable to those above, which interlock to permit only limited tilting of the display 152 along two mutually perpendicular axes. A press is used to insert the ball 172 into the socket 170, and a housing comprising a plate 182 and a shell 184 closely conforming to the exterior of the socket 170 is mounted with screws 186 around the assembled ball 172 and socket 170. The plate 182 is then fastened with screws (such as the screw 188) to the back of the display 152. A flat 190 formed at the top of the socket 170 seats against a corresponding flat 192 in the shell 184 to prevent rotation of the socket 170 relative to the display 152. The shaft 174 is terminated with a plug 194 with a tapering square transverse cross-section and with a central threaded hole 196. As apparent in FIG. 19, the arm 162 has a connector, specifically, a socket 198 which conforms in shape to and interlocks with the plug 194 to support the display 152 and to prevent rotation of the display 152. The socket 198 is arranged on the arm 162 to receive the plug 194 in two distinct relative angular orientations spaced by 90 degrees, one in which the lengthwise axis of the display 152 is aligned with the length of the arm 162 (as in FIG. 18 where the arm 162 is horizontal) and another in which the lengthwise axis is perpendicular to the length of the arm 162 (as in FIG. 17 where the arm 162 is vertical). A bolt 200 (shown in FIG. 19) inserts through the socket 198 into the plug 194 to prevent separation.
The other display 154 is mounted to the arm 162 in a manner permitting adjustment of the spacing between the displays 152, 154. The connector 166 associated with the other display 154 is identical to the connector 164. The arm 162 has a pair of sockets 202, 204 identical to the socket 198 but mounted in an opposing end portion of the arm 162. The two sockets 202, 204 are axially spaced along the arm 162, one socket 204 located substantially at one end of the arm 162 and the other socket 202, inset from that end. Both sockets 202, 204 are shaped to interlock with the connector 166 to prevent relative rotation and to permit the lengthwise axis of the display 154 to be aligned with or oriented perpendicular to the length of the arm 162 according to whether the arm 162 is horizontally or vertically oriented.
The connectors used to join the arm 162 to the upright 158 are apparent in FIG. 19. The upright 158 has a socket 206 with a tapered square chamber aligned with a circular cylindrical chamber. The arm 162 carries a plug 208 which has a tapered square section and a circular cylindrical section, conforming to the socket 206. The socket 206 receives the plug 208 in two distinct relative angular orientations spaced by 90 degrees, which correspond to vertical and horizontal orientations of the arm 162. A bolt 210 inserts through a clearance hole (not illustrated) in the rear of the socket 206 and threads into the plug 208 to prevent relative axial separation of the socket 206 and plug 208.
How the display system 150 is used will be largely apparent from the foregoing description of its components. If the displays 152, 154 are to be horizontally registered (as in FIG. 18), the arm 162 is mounted to the upright 158 in a horizontal position, and the displays 152, 154 are mounted to the arm 162 with their lengthwise axes aligned with the length of the arm 162. The display 152 is mounted to the socket 204 at the end of the arm 162 to increase the spacing between the displays, accommodating their horizontal elongation. If the displays 152, 154 are to be vertically registered (as in FIG. 17), the arm 162 is mounted to the upright 158 in a vertical position, and the displays 152, 154 are mounted to the arm 162 with their lengthwise axes perpendicular to the length of the arm 162. The spacing between the displays 152, 154 is reduced by mounting the display 152 is mounted to the socket 202 inset from the end of the arm 162.
The display 152 may be mounted appropriate connection means that permit the display 152 for sliding between various axially spaced-apart positions along the arm 162. However, twin sockets 202, 204 are simple, adequate and comparatively inexpensive. Another alternative is to provide an arm assembly comprising two interchangeable arms of different length. Each arm may carry a pair of sockets (substantially identical to the socket 198) for mounting of the displays 152, 154 at opposing ends of the arm. Each arm may be fitted with a connector comparable to the plug 208 for mounting to the upright 158. The short armer may be mounted to the upright 158 in a vertical position for vertical registration of the displays 152, 154, and the longer arm may be mounted to the upright 158 in a horizontal orientation for mounting for horizontal registration of the displays 152, 154.
It will be appreciated that particular embodiments of the invention have been described and that modifications may be made therein without departing from the spirit of the invention or necessarily departing from the scope of the appended claims.

Claims (17)

I claim:
1. A display system comprising:
a base;
a pair of electronic displays, each of the displays having an operative angular orientation relative to horizontal;
positioning means for positioning the displays selectively in vertically registered relationship and in horizontally registered relationship, the positioning means comprising:
(a) an arm assembly supporting the displays;
(b) support means for supporting the arm assembly from the base selectively in a first orientation relative to the base in which the displays are in their vertically registered relationship and in a second orientation in which the displays are in their horizontally registered relationship; and,
(c) mounting means for mounting the displays to the arm assembly, the mounting means comprising means for adjusting the angular orientation of each of the displays relative to the arm assembly thereby to orient each of the displays in its operative angular orientation when the arm assembly is in either one of its first and second orientations.
2. The display system of claim 1 in which:
the support means support the arm assembly for rotation about a generally horizontal axis; and,
the mounting means mount each of the displays to the arm assembly for relative rotation about a rotational axis substantially parallel to the generally horizontal axis.
3. The display system of claim 2 in which:
the support means comprise means for releasably locking the arm assembly to the base in its first and second orientations; and,
the mounting means comprise means permitting rotation of each of the electronic displays only between a pair of extreme angular positions relative to the arm assembly, each of the angular positions corresponding to a different one of the first and second orientations of the arm assembly such that the display is oriented in its operative angular orientation whenever the arm assembly is locked to the base in either of the first and second positions and the display is rotated to its corresponding angular position.
4. The display system of claim 3 in which the mounting means comprise:
a shaft fixed to one of the displays and aligned with the rotational axis of the one display;
means fixed to the arm assembly and supporting the shaft for rotation about the rotational axis of the one display; and,
complementary stop structures fixed to the shaft and to the arm assembly and positioned to engage as the shaft rotates relative to the arm assembly.
5. The display system of claim 2 in which:
the support means permit displacement of the arm assembly on the base between the first and second orientations; and,
the means for adjusting the angular orientation of the displays comprise means supporting each of the displays for rotation relative to the arm assembly and means coupling each of the displays to the arm assembly for rotation in response to displacement of the arm assembly between the first and second orientations.
6. The display system of claim 1 in which:
each of the displays is horizontally elongate in its operative angular orientation; and,
the arm assembly is an elongate telescopic member and the displays are mounted to opposing ends of the arm assembly such that the spacing of the displays in their horizontally and vertically registered relationships can be adjusted.
7. The display system of claim 1 in which the mounting means are adapted to permit tilting of one of the displays about a pair of mutually perpendicular axes, the mounting means comprising:
a ball supported from one of the display and the arm assembly;
a socket supported from the other of the display and the arm assembly and containing the ball;
a multiplicity of projections fixed to one of the ball and the socket, the multiplicity of projections comprising one pair of projections extending in opposite directions along one of the mutually perpendicular axes and another pair of projections extending in opposite directions along the other of the mutually perpendicular axes; and,
a multiplicity of slots formed in the other of the ball and the socket, the multiplicity of slots comprising a pair of opposing slots each of which receives a different one of the one pair of projections and another pair of opposing slots each of which receives a different one of the other pair of projections.
8. The display system of claim 7 in which the projections are fixed to the ball and the slots are formed in the socket.
9. The display system of claim 1 in which:
each of the displays is horizontally elongate in its operative angular orientation;
a predetermined one of the displays is below the other of the displays in their vertically registered relationship;
the support means comprise upper and lower rotary shafts in parallel relationship and means mounting the shafts to the base for rotation about their respective lengthwise axes;
the arm assembly comprises a pair of horizontally spaced-apart arms, each of the arms has a fixed end and a free end, one of the arms has its fixed end fixed to the upper shaft such that the one arm rotates in a plane perpendicular to the upper shaft in response to rotation of the upper shaft, the other of the arms has its fixed end fixed to the lower shaft such that the other arm rotates in a plane perpendicular to the lower shaft in response to rotation of the upper shaft; and,
the one display is mounted to the free end of the one arm and the other display is mounted to the free end of the other arm.
10. The display system of claim 9 comprising constraining means constraining the rotary shafts to rotate together in opposite angular directions.
11. The display system of claim 10 in which the means for adjusting the angular orientation of the displays comprise:
means supporting each of the displays for rotation about a generally horizontal rotational axis relative to the arm to which the display is mounted; and,
coupling means coupling the one display to the upper shaft and the other display to the lower shaft such that the displays rotate in response to rotation of the rotary shafts.
12. The display system of claim 11 in which:
the constraining means comprise an upper gear fixed to the upper shaft, a lower gear fixed to the lower shaft, a central rotary shaft mounted for rotation to the base between the upper and lower shafts, and a gear fixed to the central rotary shaft and meshed with the upper and lower gears;
the means supporting each of the displays for rotation comprise a pair of rotary shafts each mounted for rotation to a different one of the arms and each supporting a different one of the displays; and,
the coupling means comprise a pair of belts, each of the belts couples a different one of the pair of rotary shafts supporting the displays to a different one of the upper and lower rotary shafts.
13. The display system of claim 1 in which:
each of the displays is elongate along a horizontal axis of the display when oriented in its operative angular orientation;
the arm assembly comprises an elongate arm; and,
the mounting means comprise connector means for connecting one of the displays to the arm at positions spaced along the arm, whereby, the spacing between the displays can be adjusted.
14. The display system of claim 13 in which the connector means for connecting the one display to the arm comprise:
a first socket mounted to the arm proximate to one end thereof;
a plug mounted to the one display and shaped to interlock with the socket to prevent rotation of the plug relative to the socket, the socket being shaped to receive the plug in either of a pair of orientations that are rotated substantially by 90 degrees, the socket being positioned on the arm such that the horizontal axis of the one display is aligned with the length of the arm when the plug is in one of the orientations and the horizontal axis of the one display is perpendicular to the length of the arm in the other of the relative angular positions; and,
a second plug socket mounted to the arm proximate to the one end thereof and substantially identical to the first plug, the first and second plugs being spaced apart along the arm.
15. The display system of claim 14 in which the support means comprise:
a plug fixed to the arm; and,
a socket fixed to the base and shaped to interlock with the plug fixed to the arm when the arm is in a vertical orientation and when the arm is in a horizontal orientation, the plug fixed to the arm and the socket fixed to the base being shaped to prevent rotation of the arm relative to the base when interlocked. .Iadd.
16. A display system comprising:
a base member;
a pair of electronic displays;
positioning means for positioning the displays, the positioning means comprising:
(a) an arm assembly for supporting the displays;
(b) support means for supporting the arm assembly from the base member; and
(c) mounting means for mounting the displays to the arm assembly, the mounting means comprising means for adjusting the angular orientation of each of the displays relative to the arm assembly to thereby permit said displays to be angled toward each other to a desired degree..Iaddend..Iadd.
17. A display system comprising:
a pair of electronic displays;
positioning means for positioning the displays, the positioning means comprising:
(a) an arm assembly for supporting the displays;
(b) support means having a base for supporting the arm assembly above a support surface; and
(c) mounting means for mounting the displays to the arm assembly, the mounting means comprising means for adjusting the angular orientation of each of the displays relative to the arm assembly about a generally vertical axis to thereby permit said displays to be angled relative to each other to a desired degree..Iaddend.
US09/172,193 1996-04-26 1998-10-13 Dual display system Expired - Lifetime USRE36978E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/172,193 USRE36978E (en) 1996-04-26 1998-10-13 Dual display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/638,158 US5687939A (en) 1996-04-26 1996-04-26 Dual display system
US09/172,193 USRE36978E (en) 1996-04-26 1998-10-13 Dual display system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/638,158 Reissue US5687939A (en) 1996-04-26 1996-04-26 Dual display system

Publications (1)

Publication Number Publication Date
USRE36978E true USRE36978E (en) 2000-12-05

Family

ID=24558874

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/638,158 Ceased US5687939A (en) 1996-04-26 1996-04-26 Dual display system
US09/172,193 Expired - Lifetime USRE36978E (en) 1996-04-26 1998-10-13 Dual display system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/638,158 Ceased US5687939A (en) 1996-04-26 1996-04-26 Dual display system

Country Status (2)

Country Link
US (2) US5687939A (en)
CA (1) CA2203859C (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009269A2 (en) * 2001-07-18 2003-01-30 Daniel Dunn Multiple flat panel display system
US6532146B1 (en) 2002-01-23 2003-03-11 Slide View Corp. Computer display device with dual lateral slide-out screens
US6554238B1 (en) * 1999-11-18 2003-04-29 Claiteal Pty. Limited Support arm for visual display unit
US6655645B1 (en) * 2002-12-31 2003-12-02 Shin Zu Shing Co., Ltd. Automatically adjusting support for an LCD monitor
US20030231460A1 (en) * 2002-06-13 2003-12-18 Gerald Moscovitch LDC system having integrated CPU
US6667877B2 (en) 2001-11-20 2003-12-23 Slide View Corp. Dual display device with lateral withdrawal for side-by-side viewing
US20040011938A1 (en) * 2002-04-24 2004-01-22 Innovative Office Products, Inc. Multiple electronic device reorienting support
WO2004023273A2 (en) * 2002-09-03 2004-03-18 Bloomberg Lp Support for one or more flat panel displays
USD500037S1 (en) 2002-09-03 2004-12-21 Bloomberg Lp Bezel-less flat panel display
US6919678B2 (en) 2002-09-03 2005-07-19 Bloomberg Lp Bezel-less electric display
US20050162583A1 (en) * 2002-09-03 2005-07-28 Bloomberg Lp Bezel-less electronic display
US20050258319A1 (en) * 2004-05-21 2005-11-24 Jeong Jun-Su Monitor apparatus
US20050284991A1 (en) * 2004-06-10 2005-12-29 Humanscale Corporation Mechanism for positional adjustment of an attached device
US20060022102A1 (en) * 2003-05-30 2006-02-02 Jay Dittmer Self-balancing adjustable mounting system with friction adjustment
US20060065795A1 (en) * 2004-09-30 2006-03-30 Compx International Support for flat monitors
US20060082518A1 (en) * 2004-10-19 2006-04-20 Pranil Ram Multiple monitor display apparatus
US20060181637A1 (en) * 2005-02-16 2006-08-17 Innovative Office Products, Inc. Quick release assembly for an electronic device
US20060186295A1 (en) * 2003-05-30 2006-08-24 Chief Manufacturing Inc. Self-balancing adjustable flat panel mounting system
US20060214871A1 (en) * 2005-03-23 2006-09-28 Ryuichi Iwamura Additional thin display device for supplementing a primary display
US20060268500A1 (en) * 2005-05-31 2006-11-30 Microsoft Corporation Notebook computers configured to provide enhanced display features for a user
US20070084978A1 (en) * 2005-10-17 2007-04-19 Martin Randall W Multiple-display mount
US7237202B2 (en) 2004-05-11 2007-06-26 Cynthia Joanne Gage Multiple document viewing apparatus and user interface
US20070181762A1 (en) * 2002-06-11 2007-08-09 Jay Dittmer Adjustable self-balancing flat panel display mounting system
US20080158801A1 (en) * 2005-02-15 2008-07-03 Mathews Mark O Display Device and Stand Therefor
US7438269B2 (en) 2003-01-09 2008-10-21 Csav, Inc. Adjustable tilt mount
US20090001238A1 (en) * 2007-06-29 2009-01-01 Draeger Medical Systems, Inc. Tilt and swivel mounting for monitors and other devices
US20090057502A1 (en) * 2007-08-28 2009-03-05 Sony Corporation L-character stand
US20090237873A1 (en) * 2006-01-31 2009-09-24 Andy Flessas Robotically controlled display
US7677182B2 (en) 2004-05-27 2010-03-16 Steelcase Development Corporation Two person work environment
US7679520B2 (en) 2001-08-03 2010-03-16 Hill-Rom Services, Inc. Patient point-of-care computer system
USD620943S1 (en) 2009-01-07 2010-08-03 Milestone Av Technologies Llc Single arm display mount
USD627787S1 (en) 2009-01-07 2010-11-23 Milestone Av Technologies Llc Display mount with single articulating arm
US7866622B2 (en) 2007-01-05 2011-01-11 Milestone Av Technologies Llc In-wall mount
USRE42091E1 (en) 1998-11-20 2011-02-01 Jerry Moscovitch Computer display screen system and adjustable screen mount, and swinging screens therefor
US20110050541A1 (en) * 2009-08-26 2011-03-03 Shin Joung-Hun Dual display device
US20110147546A1 (en) * 2009-12-23 2011-06-23 Humanscale Corporation Adjustable Display Arm
US20110149510A1 (en) * 2009-12-23 2011-06-23 Humanscale Corporation Adjustable Laptop Holder
US8072739B2 (en) 2007-01-03 2011-12-06 Milestone Av Technologies Llc Device mount with selectively positionable tilt axis
US8094438B2 (en) 2007-01-05 2012-01-10 Milestone Av Technologies Llc Wall-avoiding self-balancing mount for tilt positioning of a flat panel electronic display
US8102331B1 (en) 1999-11-12 2012-01-24 Jerry Moscovitch Horizontal three screen LCD display system
US20120280892A1 (en) * 2006-01-11 2012-11-08 Jerry Moscovitch Multi-Directional Multi-Screen Display System
USD684982S1 (en) 2010-08-11 2013-06-25 Colebrook Bosson Saunders (Products) Limited Display support with indicator window
US8618918B2 (en) 2010-04-09 2013-12-31 Hill-Rom Services, Inc. Patient support, communication, and computing apparatus including movement of the support and connection to the hospital network
US8794579B2 (en) 2005-06-03 2014-08-05 Steelcase, Inc. Support arm assembly
US8891249B2 (en) 2009-01-07 2014-11-18 Milestone Av Technologies Llc Display mount with adjustable position tilt axis
US8896242B2 (en) 2006-01-31 2014-11-25 Andrew Flessas Robotically controlled entertainment elements
US8955905B2 (en) 2013-06-07 2015-02-17 Neutral Posture, Inc. Seating assembly having a seat-mounted attachment assembly for adjustable extension arm
US9074721B2 (en) 2010-06-09 2015-07-07 Alex Lau Support system
US9109742B2 (en) 2008-09-02 2015-08-18 Milestone Av Technologies Llc Low profile mount for flat panel electronic display
US20150305503A1 (en) * 2014-04-23 2015-10-29 Hon Hai Precision Industry Co., Ltd. Mounting device for multiple screens
US9316346B2 (en) 2010-06-09 2016-04-19 Colebrook Bosson Saunders (Products) Limited Support system
US9657889B1 (en) 2013-03-15 2017-05-23 Humanscale Corporation Adjustable support arm
US9794533B2 (en) 2006-01-31 2017-10-17 Andrew Flessas Robotically controlled entertainment elements
US9823693B2 (en) 2014-08-26 2017-11-21 Andrew Flessas Robotically controlled convertible display
USD830370S1 (en) 2017-06-08 2018-10-09 Steelcase Inc. Monitor support
US10344911B2 (en) 2016-09-20 2019-07-09 Colebrook Bosson Saunders (Products) Limited Tilt mechanism
US10474808B2 (en) 2013-03-29 2019-11-12 Hill-Rom Services, Inc. Hospital bed compatibility with third party application software
US10851938B2 (en) 2018-04-02 2020-12-01 Humanscale Corporation Adjustable support arm
US11284048B2 (en) 2006-01-31 2022-03-22 Andrew Flessas Robotically controlled display
US11350064B2 (en) 2019-08-29 2022-05-31 Andrew Flessas Method and system for moving cameras using robotic mounts
US11425308B2 (en) 2020-12-02 2022-08-23 Andrew Flessas Robotically movable display synchronously movable with robotically movable camera for displaying captured images in identical orientation

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29710833U1 (en) * 1996-11-16 1997-08-28 Adi Corp Tai Ping Shiang LCD support structure
US5949643A (en) * 1996-11-18 1999-09-07 Batio; Jeffry Portable computer having split keyboard and pivotal display screen halves
FI104658B (en) * 1997-05-26 2000-03-15 Nokia Mobile Phones Ltd Display arrangement and terminal with two displays
KR100224306B1 (en) * 1997-05-27 1999-10-15 윤종용 Liquid crystal panel combining method of liquid crystal display device and the device
US5904328A (en) * 1997-06-23 1999-05-18 Stb Systems, Inc. Articulating computer monitor
TW378830U (en) * 1997-08-09 2000-01-01 Mitac Int Corp Sliding and revolving structure for LCD screens
US6088220A (en) * 1997-10-02 2000-07-11 Katz; Michael Pocket computer with full-size keyboard
US6081207A (en) * 1997-11-12 2000-06-27 Batio; Jeffry Multipurpose, folding, portable computer
KR19990024492U (en) * 1997-12-12 1999-07-05 윤종용 Flat panel display device with hinged device for tilt operation
US6302612B1 (en) * 1998-03-16 2001-10-16 International Business Machines Corporation Pivotally extensible display device
US6212068B1 (en) * 1998-10-01 2001-04-03 The Foxboro Company Operator workstation
JP2000181423A (en) * 1998-12-18 2000-06-30 Kyocera Corp Multimonitor
GB2384611B (en) * 1998-12-23 2003-12-17 Jerry Moscovitch Computer display screen system and adjustable screen mount and swinging screens therefor
JP4531263B2 (en) * 1998-12-23 2010-08-25 モスコヴィッチ,ジェリー Computer display screen system, adjustable display screen mount and swivel display screen for display screen system
IT247912Y1 (en) * 1999-02-18 2002-09-16 Merloni Elettrodomestici Spa DISPLAY DEVICE FOR DATA ADJUSTABLE IN THE SPACE.
US6189842B1 (en) * 1999-06-21 2001-02-20 Palo Alto Design Group Tilt and swivel adjustment of flat panel display having detents for landscape and portrait positions and kickout for preventing contact between flat panel display and base
US6346698B1 (en) 1999-07-22 2002-02-12 Gentex Corporation Low EMI multiplexed dual display
US6844865B2 (en) * 1999-08-09 2005-01-18 Michael Stasko Multiple screen computer monitor
EP1489704B1 (en) * 1999-08-23 2007-10-10 Jerry Moscovitch Universal quick connector apparatus for an LCD monitor
US6702604B1 (en) 1999-08-23 2004-03-09 Jerry Moscovitch Universal quick connector apparatus for an LCD monitor
EP1208620B1 (en) 1999-08-23 2004-10-27 Jerry Moscovitch Universal quick connector apparatus for an lcd monitor
AU1168101A (en) * 1999-11-12 2001-06-06 Mass Engineered Design Modular lcd display system
KR200189482Y1 (en) * 1999-12-17 2000-07-15 주식회사글로네트 Bilateral monitor
GB2360894B (en) * 2000-03-30 2004-11-10 Peter Thomas Bosson Display device support system
FR2807530A1 (en) * 2000-04-07 2001-10-12 Patrick Feuillette Multiple display screens allowing user dialogue with a computer or network server, uses base unit housing interface and peripherals and carrying three screens, with the side screens hinged from the edge of the central screen
US6919864B1 (en) * 2000-07-27 2005-07-19 Avaya Technology Corp. Display monitor
US6700773B1 (en) 2000-11-03 2004-03-02 Revolutionary Learning Systems, Inc. Method and apparatus for implementing a configurable personal computing device
DE20118841U1 (en) * 2001-11-19 2003-04-03 Novus Straeter Gmbh System for forming a stand wall for flat screen devices
JP3943921B2 (en) * 2001-12-10 2007-07-11 シャープ株式会社 Liquid crystal display
US6667878B2 (en) 2002-01-30 2003-12-23 David A. Ponx Double screen laptop
US7180489B2 (en) * 2002-02-06 2007-02-20 Andersen Corporation Automated multi-task window assembly
US7109959B2 (en) 2002-02-06 2006-09-19 Andersen Corporation Multi-task window
DE10205869B4 (en) * 2002-02-13 2010-04-15 Mavig Gmbh Carrier for carrying at least one display device
US6874744B2 (en) * 2002-02-25 2005-04-05 Wacom Co., Ltd. Stand for supporting a display in multiple orientations and a display used in combination with said stand
US9164538B2 (en) * 2002-06-13 2015-10-20 Jerry Moscovitch Graphics and monitor controller assemblies in multi-screen display systems
US7652876B2 (en) * 2002-06-13 2010-01-26 Gerald Moscovitch Graphics and monitor controller assemblies in multi-screen display systems
US6695270B1 (en) * 2002-08-15 2004-02-24 Ole Falk Smed Flat panel display system
JP4167506B2 (en) * 2003-02-03 2008-10-15 株式会社村上開明堂 Display orientation adjustment device
US20040262474A1 (en) * 2003-04-22 2004-12-30 Boks Michael J. Flat screen monitor support system
US6930881B2 (en) * 2003-06-30 2005-08-16 International Business Machines Corporation Portable computer having a split screen and a multi-purpose hinge
TWI224927B (en) * 2003-08-21 2004-12-01 Benq Corp Liquid crystal display and extractable base thereof
SE527011C2 (en) * 2003-12-30 2005-12-06 Zetadisplay Ab Display Stand
US7414831B1 (en) * 2004-04-01 2008-08-19 Fergason Patent Properties, Llc Adjustable display system
US7665699B2 (en) * 2004-06-18 2010-02-23 Innovative Office Products, Inc. Electronic device mounting bracket for a horizontal support
US7708240B2 (en) * 2004-07-29 2010-05-04 Hewlett-Packard Development Company, L.P. Computer docking system
CN100399260C (en) * 2004-09-30 2008-07-02 南京Lg同创彩色显示系统有限责任公司 Image displaying apparatus with dual pictures
WO2006044030A2 (en) * 2004-10-14 2006-04-27 Starbucks Corporation Media display device
KR100630973B1 (en) * 2004-10-25 2006-10-02 삼성전자주식회사 Display Device
JP4766865B2 (en) * 2004-11-04 2011-09-07 富士通株式会社 Display support device and display device
FR2877710A1 (en) * 2004-11-09 2006-05-12 Craie Sarl SCREEN SUPPORT DEVICE
US7540806B2 (en) * 2005-01-10 2009-06-02 Wms Gaming Inc. Releasable display mounting system and method
CN1933031B (en) * 2005-09-13 2012-03-21 三星电子株式会社 Display apparatus having a swiveling structure
CA2634827C (en) * 2005-11-07 2013-04-23 Jerry Moscovitch Controller and graphics assemblies in multi-screen display systems
US20080285213A1 (en) * 2005-12-07 2008-11-20 Min-Liang Tan Keyboard With Media Device Docking Station
US20070153459A1 (en) * 2006-01-04 2007-07-05 Jim Wohlford Mounting system for flat panel electronic display
US7623342B2 (en) * 2006-08-16 2009-11-24 Bloomberg Finance L.P. Support structure for two or more flat panel display devices
US7445189B2 (en) * 2006-08-25 2008-11-04 International Business Machines Corporation Apparatus and method for automatically maintaining the viewing angle of a customer display
US8000090B2 (en) * 2006-11-16 2011-08-16 Jerry Moscovitch Multi-monitor support structure
US20090173847A1 (en) * 2007-01-24 2009-07-09 Wolfgang Dittmer Accessory Holder
US7922132B2 (en) * 2007-01-24 2011-04-12 Humanscale Corporation Accessory holder
DE102007036827A1 (en) * 2007-03-09 2008-09-11 Stegemann, René Monitor with a housing and with a display, housing a monitor and computer or mobile computer
CN101266842B (en) * 2007-03-12 2010-05-26 明基电通股份有限公司 Dual-screen display device
TWI323861B (en) * 2007-03-13 2010-04-21 Benq Corp Dual display devices
US8317146B2 (en) * 2007-10-05 2012-11-27 Samsung Electronics Co., Ltd. Supporting device and dual display unit having the same
US7804679B2 (en) * 2008-02-18 2010-09-28 A T Systems, Inc. Computer display accessory
US20100177473A1 (en) * 2008-07-31 2010-07-15 Advanpos Technology Co. Ltd. Computer device
US8448906B2 (en) 2008-08-21 2013-05-28 Knoll, Inc. Support apparatus
US20100053027A1 (en) * 2008-08-29 2010-03-04 James Ian Tonnison Multiple monitors
US20100224744A1 (en) * 2009-03-09 2010-09-09 C & C Designs Technology, LLC Universal Portable Device Stand and Holder Apparatus
US8479424B1 (en) 2009-05-04 2013-07-09 C-M GLO, Inc. Variable position sign
CN101996522A (en) * 2009-08-11 2011-03-30 瀚斯宝丽股份有限公司 Display with multi-directional rotary double-screen structure
US8109020B2 (en) 2009-09-16 2012-02-07 Everbrite, Llc Illuminated sign
CN102042468A (en) * 2009-10-20 2011-05-04 鸿富锦精密工业(深圳)有限公司 Display supporting device
US8342462B2 (en) 2010-06-11 2013-01-01 Knoll, Inc. Support apparatus
USD634745S1 (en) * 2010-08-05 2011-03-22 Samsung Electronics Co., Ltd. LCD monitor
US8360878B2 (en) * 2010-10-19 2013-01-29 Petri Keith A Bifurcated electronic display gaming system, apparatus, and method for displaying a primary game when closed and for displaying a secondary game when opened
US20130112828A1 (en) 2011-06-07 2013-05-09 Knoll, Inc. Support Apparatus for Display Devices and Other Objects
JP1463812S (en) * 2012-04-27 2016-02-29
CN202939922U (en) * 2012-10-16 2013-05-15 深圳市奥拓电子股份有限公司 Quick splicing device for display screen
US9215428B2 (en) 2013-01-07 2015-12-15 Dorel Juvenile Group, Inc. Child-monitoring system
US9529464B2 (en) 2013-01-21 2016-12-27 U-See 2 Limited Dual display assembly
EP2961294B1 (en) * 2013-03-01 2019-06-12 TouchPoint Medical, Inc. Mobile computer workstation
USD778249S1 (en) * 2013-04-08 2017-02-07 Lg Electronics Inc. Television receiver
USD778248S1 (en) * 2013-04-08 2017-02-07 Lg Electronics Inc. Television receiver
WO2015106207A1 (en) 2014-01-13 2015-07-16 Endochoice, Inc. Compact monitor stand
USD742342S1 (en) * 2014-02-05 2015-11-03 Cisco Technology, Inc. Video conference system endpoint
USD742845S1 (en) * 2014-02-05 2015-11-10 Cisco Technology, Inc. Video conference system endpoint
US9204723B2 (en) * 2014-04-15 2015-12-08 Target Brands, Inc. Accessories support bracket
US9400083B2 (en) 2014-04-24 2016-07-26 Knoll, Inc. Support apparatus for multiple display devices
TWI547172B (en) * 2014-09-03 2016-08-21 鴻海精密工業股份有限公司 Mounting apparatus for screens
US9452718B1 (en) * 2015-04-20 2016-09-27 Ford Global Technologies, Llc Headrest electronic device holder
US10117353B2 (en) * 2016-05-23 2018-10-30 Vantage Point Products Corp. Stand
US10208891B2 (en) * 2016-05-25 2019-02-19 Myerchin Enterprises, Inc. Multi-arm display anti-toppling mechanism
KR102515715B1 (en) * 2016-06-10 2023-03-30 엘지전자 주식회사 Display apparatus
USD880474S1 (en) * 2016-06-22 2020-04-07 modinice GmbH Computer
TWI685826B (en) * 2018-05-16 2020-02-21 明基電通股份有限公司 Display device
TWD205543S (en) * 2019-10-31 2020-07-01 廣達電腦股份有限公司 Laptop computer
TWD204681S (en) * 2019-10-31 2020-05-11 廣達電腦股份有限公司 Laptop computer
TWI715484B (en) * 2020-04-16 2021-01-01 富世達股份有限公司 Screen frame and display device
US11740664B2 (en) * 2021-06-10 2023-08-29 Mobile Pixels Inc. Auxiliary monitors with articulated hinge
US20230209013A1 (en) * 2021-12-23 2023-06-29 Lenovo (Singapore) Pte. Ltd Computing device with adjustable camera
CN114791069A (en) * 2022-01-20 2022-07-26 岳喜柱 Liquid crystal display screen capable of being freely combined
USD1001798S1 (en) * 2022-11-23 2023-10-17 Guangzhou Wantuo Information Technology Co., Ltd. Dual screen display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112423A (en) * 1976-09-13 1978-09-05 Kelsey-Hayes Co. Dual-screen data display terminal for data processing units
US4159417A (en) * 1977-10-28 1979-06-26 Rubincam David P Electronic book
USD278820S (en) 1982-06-04 1985-05-14 Crosfield Electronics Limited Page planning table with display monitor
USD340235S (en) 1991-02-21 1993-10-12 Sony Trans Com, Inc. Monitor pop-up display unit for a seat in the passenger compartment of an aircraft
US5467102A (en) * 1992-08-31 1995-11-14 Kabushiki Kaisha Toshiba Portable display device with at least two display screens controllable collectively or separately
US5534888A (en) * 1994-02-03 1996-07-09 Motorola Electronic book
US5673170A (en) * 1993-07-16 1997-09-30 Dell U.S.A., L.P. Secondary display system for computer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112423A (en) * 1976-09-13 1978-09-05 Kelsey-Hayes Co. Dual-screen data display terminal for data processing units
US4159417A (en) * 1977-10-28 1979-06-26 Rubincam David P Electronic book
USD278820S (en) 1982-06-04 1985-05-14 Crosfield Electronics Limited Page planning table with display monitor
USD340235S (en) 1991-02-21 1993-10-12 Sony Trans Com, Inc. Monitor pop-up display unit for a seat in the passenger compartment of an aircraft
US5467102A (en) * 1992-08-31 1995-11-14 Kabushiki Kaisha Toshiba Portable display device with at least two display screens controllable collectively or separately
US5673170A (en) * 1993-07-16 1997-09-30 Dell U.S.A., L.P. Secondary display system for computer
US5534888A (en) * 1994-02-03 1996-07-09 Motorola Electronic book

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42091E1 (en) 1998-11-20 2011-02-01 Jerry Moscovitch Computer display screen system and adjustable screen mount, and swinging screens therefor
US8102331B1 (en) 1999-11-12 2012-01-24 Jerry Moscovitch Horizontal three screen LCD display system
US6554238B1 (en) * 1999-11-18 2003-04-29 Claiteal Pty. Limited Support arm for visual display unit
WO2003009269A2 (en) * 2001-07-18 2003-01-30 Daniel Dunn Multiple flat panel display system
WO2003009269A3 (en) * 2001-07-18 2003-10-30 Daniel Dunn Multiple flat panel display system
US10176297B2 (en) 2001-08-03 2019-01-08 Hill-Rom Services, Inc. Hospital bed computer system having EMR charting capability
US10381116B2 (en) 2001-08-03 2019-08-13 Hill-Rom Services, Inc. Hospital bed computer system
US8674839B2 (en) 2001-08-03 2014-03-18 Hill-Rom Services, Inc. Hospital bed computer system for control of patient room environment
US8368545B2 (en) 2001-08-03 2013-02-05 Hill-Rom Services, Inc. Hospital bed computer system with pharmacy interaction
US8334779B2 (en) 2001-08-03 2012-12-18 Hill-Rom Services, Inc. Touch screen control of a hospital bed
US7679520B2 (en) 2001-08-03 2010-03-16 Hill-Rom Services, Inc. Patient point-of-care computer system
US7911349B2 (en) 2001-08-03 2011-03-22 Hill-Rom Services, Inc. Hospital bed computer system
US6667877B2 (en) 2001-11-20 2003-12-23 Slide View Corp. Dual display device with lateral withdrawal for side-by-side viewing
US6532146B1 (en) 2002-01-23 2003-03-11 Slide View Corp. Computer display device with dual lateral slide-out screens
US20040011938A1 (en) * 2002-04-24 2004-01-22 Innovative Office Products, Inc. Multiple electronic device reorienting support
US7331551B2 (en) 2002-04-24 2008-02-19 Innovative Office Products, Inc. Multiple electronic device reorienting support
US8490934B2 (en) 2002-06-11 2013-07-23 Milestone Av Technologies Llc Adjustable, self-balancing flat panel display mounting system
US7954780B2 (en) 2002-06-11 2011-06-07 Milestone Av Technologies Llc Adjustable self-balancing flat panel display mounting system
US7395996B2 (en) 2002-06-11 2008-07-08 Csav, Inc. Adjustable, self-balancing flat panel display mounting system
US20070181762A1 (en) * 2002-06-11 2007-08-09 Jay Dittmer Adjustable self-balancing flat panel display mounting system
US7061754B2 (en) * 2002-06-13 2006-06-13 Gerald Moscovitch LCD system having integrated CPU
US20030231460A1 (en) * 2002-06-13 2003-12-18 Gerald Moscovitch LDC system having integrated CPU
US7298076B2 (en) 2002-09-03 2007-11-20 Bloomberg Lp Bezel-less electronic display
US8710728B2 (en) 2002-09-03 2014-04-29 Bloomerg Finance L.P. Bezel-less electronic display
GB2408679B (en) * 2002-09-03 2007-07-25 Bloomberg Lp Support for one or more flat panel displays
US6919678B2 (en) 2002-09-03 2005-07-19 Bloomberg Lp Bezel-less electric display
US7859181B2 (en) 2002-09-03 2010-12-28 Bloomberg Finance L.P. Bezel-less electronic display
USD500037S1 (en) 2002-09-03 2004-12-21 Bloomberg Lp Bezel-less flat panel display
US20050162583A1 (en) * 2002-09-03 2005-07-28 Bloomberg Lp Bezel-less electronic display
US7607620B2 (en) 2002-09-03 2009-10-27 Bloomberg Finance L.P. Support for one or more flat panel displays
WO2004023273A2 (en) * 2002-09-03 2004-03-18 Bloomberg Lp Support for one or more flat panel displays
WO2004023273A3 (en) * 2002-09-03 2009-06-18 Bloomberg Lp Support for one or more flat panel displays
US9241414B2 (en) 2002-09-03 2016-01-19 Bloomberg Finance L.P. Bezel-less electronic display
US6655645B1 (en) * 2002-12-31 2003-12-02 Shin Zu Shing Co., Ltd. Automatically adjusting support for an LCD monitor
US20110102984A1 (en) * 2003-01-09 2011-05-05 Pfister Joel W Adjustable tilt mount
US7438269B2 (en) 2003-01-09 2008-10-21 Csav, Inc. Adjustable tilt mount
US8235342B2 (en) 2003-01-09 2012-08-07 Milestone AV Techonologies LLC Adjustable tilt mount
US20100214729A1 (en) * 2003-05-30 2010-08-26 Jay Dittmer Self-balancing adjustable flat panel mounting system
US20060186295A1 (en) * 2003-05-30 2006-08-24 Chief Manufacturing Inc. Self-balancing adjustable flat panel mounting system
US7387286B2 (en) 2003-05-30 2008-06-17 Csav, Inc. Self-balancing adjustable flat panel mounting system
US7380760B2 (en) 2003-05-30 2008-06-03 Csav, Inc. Self-balancing adjustable mounting system with friction adjustment
US20080117580A1 (en) * 2003-05-30 2008-05-22 Jay Dittmer Self-balancing adjustable flat panel mounting system
US20060022102A1 (en) * 2003-05-30 2006-02-02 Jay Dittmer Self-balancing adjustable mounting system with friction adjustment
US9279536B2 (en) 2003-05-30 2016-03-08 Milestone Av Technologies Llc Self-balancing adjustable flat panel mounting system
US7823849B2 (en) 2003-05-30 2010-11-02 Milestone Av Technologies Llc Self-balancing adjustable flat panel mounting system
US8473853B2 (en) 2004-05-11 2013-06-25 S.F. Ip Properties 56 Llc Multiple document viewing apparatus and user interface
US7237202B2 (en) 2004-05-11 2007-06-26 Cynthia Joanne Gage Multiple document viewing apparatus and user interface
US20070240033A1 (en) * 2004-05-11 2007-10-11 Gage Cynthia J Multiple document viewing apparatus and user interface
US20050258319A1 (en) * 2004-05-21 2005-11-24 Jeong Jun-Su Monitor apparatus
US7529083B2 (en) 2004-05-21 2009-05-05 Samsung Electronics Co., Ltd Supporting apparatus and monitor apparatus with the same
US7677182B2 (en) 2004-05-27 2010-03-16 Steelcase Development Corporation Two person work environment
US20100123059A1 (en) * 2004-06-10 2010-05-20 Humanscale Corporation Mechanism for Positional Adjustment of an Attached Device
US20050284991A1 (en) * 2004-06-10 2005-12-29 Humanscale Corporation Mechanism for positional adjustment of an attached device
US20080265107A1 (en) * 2004-06-10 2008-10-30 Manuel Saez Mechanism for Positional Adjustment of an Attached Device
US20060065795A1 (en) * 2004-09-30 2006-03-30 Compx International Support for flat monitors
US20060082518A1 (en) * 2004-10-19 2006-04-20 Pranil Ram Multiple monitor display apparatus
US20080158801A1 (en) * 2005-02-15 2008-07-03 Mathews Mark O Display Device and Stand Therefor
US8300393B2 (en) * 2005-02-15 2012-10-30 Mathews Mark O Display device and stand therefor
US20060181637A1 (en) * 2005-02-16 2006-08-17 Innovative Office Products, Inc. Quick release assembly for an electronic device
US7673838B2 (en) 2005-02-16 2010-03-09 Innovative Office Products, Inc. Quick release assembly for an electronic device
US20060214871A1 (en) * 2005-03-23 2006-09-28 Ryuichi Iwamura Additional thin display device for supplementing a primary display
US7633744B2 (en) * 2005-05-31 2009-12-15 Microsoft Corporation Notebook computers configured to provide enhanced display features for a user
US20060268500A1 (en) * 2005-05-31 2006-11-30 Microsoft Corporation Notebook computers configured to provide enhanced display features for a user
US8794579B2 (en) 2005-06-03 2014-08-05 Steelcase, Inc. Support arm assembly
US20070084978A1 (en) * 2005-10-17 2007-04-19 Martin Randall W Multiple-display mount
US20120280892A1 (en) * 2006-01-11 2012-11-08 Jerry Moscovitch Multi-Directional Multi-Screen Display System
US11683456B2 (en) 2006-01-31 2023-06-20 Andrew Flessas Robotically controlled display
US9497431B2 (en) 2006-01-31 2016-11-15 Andrew Flessas Robotically controlled video projectors
US8896242B2 (en) 2006-01-31 2014-11-25 Andrew Flessas Robotically controlled entertainment elements
US10257479B2 (en) 2006-01-31 2019-04-09 Andrew Flessas Robotically controlled entertainment elements
US9794533B2 (en) 2006-01-31 2017-10-17 Andrew Flessas Robotically controlled entertainment elements
US20090237873A1 (en) * 2006-01-31 2009-09-24 Andy Flessas Robotically controlled display
US11284048B2 (en) 2006-01-31 2022-03-22 Andrew Flessas Robotically controlled display
US10764544B2 (en) 2006-01-31 2020-09-01 Andrew Flessas Robotically controlled entertainment elements
US8072739B2 (en) 2007-01-03 2011-12-06 Milestone Av Technologies Llc Device mount with selectively positionable tilt axis
US8094438B2 (en) 2007-01-05 2012-01-10 Milestone Av Technologies Llc Wall-avoiding self-balancing mount for tilt positioning of a flat panel electronic display
US8508918B2 (en) 2007-01-05 2013-08-13 Milestone Av Technologies Llc Wall-avoiding self-balancing mount for tilt positioning of a flat panel electronic display
US7866622B2 (en) 2007-01-05 2011-01-11 Milestone Av Technologies Llc In-wall mount
US8632042B2 (en) 2007-06-29 2014-01-21 Draeger Medical Systems, Inc. Tilt and swivel mounting for monitors and other devices
US20090001238A1 (en) * 2007-06-29 2009-01-01 Draeger Medical Systems, Inc. Tilt and swivel mounting for monitors and other devices
US8403273B2 (en) * 2007-08-28 2013-03-26 Sony Corporation L-character stand
US20090057502A1 (en) * 2007-08-28 2009-03-05 Sony Corporation L-character stand
US9109742B2 (en) 2008-09-02 2015-08-18 Milestone Av Technologies Llc Low profile mount for flat panel electronic display
USD620943S1 (en) 2009-01-07 2010-08-03 Milestone Av Technologies Llc Single arm display mount
US8891249B2 (en) 2009-01-07 2014-11-18 Milestone Av Technologies Llc Display mount with adjustable position tilt axis
USD627787S1 (en) 2009-01-07 2010-11-23 Milestone Av Technologies Llc Display mount with single articulating arm
US20110050541A1 (en) * 2009-08-26 2011-03-03 Shin Joung-Hun Dual display device
US20110149510A1 (en) * 2009-12-23 2011-06-23 Humanscale Corporation Adjustable Laptop Holder
US20110147546A1 (en) * 2009-12-23 2011-06-23 Humanscale Corporation Adjustable Display Arm
US9253259B2 (en) 2010-04-09 2016-02-02 Hill-Rom Services, Inc. Patient support, communication, and computing apparatus
US8618918B2 (en) 2010-04-09 2013-12-31 Hill-Rom Services, Inc. Patient support, communication, and computing apparatus including movement of the support and connection to the hospital network
US9316346B2 (en) 2010-06-09 2016-04-19 Colebrook Bosson Saunders (Products) Limited Support system
US9074721B2 (en) 2010-06-09 2015-07-07 Alex Lau Support system
US9572269B2 (en) 2010-06-09 2017-02-14 Colebrook Bosson Saunders (Products) Limited Support system
USD684982S1 (en) 2010-08-11 2013-06-25 Colebrook Bosson Saunders (Products) Limited Display support with indicator window
USD1005984S1 (en) 2010-08-11 2023-11-28 Colebrook Bosson & Saunders (Products) Limited Indicator window for a display support
US11300241B1 (en) 2013-03-15 2022-04-12 Humanscale Corporation Adjustable support arm
US10480709B1 (en) 2013-03-15 2019-11-19 Humanscale Corporation Adjustable support arm
US11725772B1 (en) 2013-03-15 2023-08-15 Humanscale Corporation Adjustable support arm
US9657889B1 (en) 2013-03-15 2017-05-23 Humanscale Corporation Adjustable support arm
US11869649B2 (en) 2013-03-29 2024-01-09 Hill-Rom Services, Inc. Universal interface operable with multiple patient support apparatuses
US10474808B2 (en) 2013-03-29 2019-11-12 Hill-Rom Services, Inc. Hospital bed compatibility with third party application software
US8955905B2 (en) 2013-06-07 2015-02-17 Neutral Posture, Inc. Seating assembly having a seat-mounted attachment assembly for adjustable extension arm
US9625090B2 (en) * 2014-04-23 2017-04-18 Hon Hai Precision Industry Co., Ltd. Mounting device for multiple screens
US20150305503A1 (en) * 2014-04-23 2015-10-29 Hon Hai Precision Industry Co., Ltd. Mounting device for multiple screens
US10684643B2 (en) 2014-08-26 2020-06-16 Andrew Flessas Robotically controlled convertible display
US11520373B2 (en) 2014-08-26 2022-12-06 Andrew Flessas Robotically controlled, convertible staircase
US9823693B2 (en) 2014-08-26 2017-11-21 Andrew Flessas Robotically controlled convertible display
US10344911B2 (en) 2016-09-20 2019-07-09 Colebrook Bosson Saunders (Products) Limited Tilt mechanism
USD830370S1 (en) 2017-06-08 2018-10-09 Steelcase Inc. Monitor support
US11486537B2 (en) 2018-04-02 2022-11-01 Humanscale Corporation Adjustable support arm
US10851938B2 (en) 2018-04-02 2020-12-01 Humanscale Corporation Adjustable support arm
US11867355B2 (en) 2018-04-02 2024-01-09 Humanscale Corporation Adjustable support arm
US11350064B2 (en) 2019-08-29 2022-05-31 Andrew Flessas Method and system for moving cameras using robotic mounts
US11425308B2 (en) 2020-12-02 2022-08-23 Andrew Flessas Robotically movable display synchronously movable with robotically movable camera for displaying captured images in identical orientation

Also Published As

Publication number Publication date
CA2203859A1 (en) 1997-10-26
CA2203859C (en) 2007-07-31
US5687939A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
USRE36978E (en) Dual display system
US7564682B2 (en) Display with multiple adjustable positions and angles
CN1983456B (en) Supporting apparatus for display
US7600728B2 (en) Universal mounting system for a flat panel display
US7726617B2 (en) Flat panel display mounting system
US20050258319A1 (en) Monitor apparatus
KR100512718B1 (en) Monitor
US8047488B2 (en) Support stand and flat-panel display monitor using the same
US8640998B2 (en) Assembly to attach a display device to a display device support
US6915996B2 (en) Pivotal shaft assembly for plane displays
CN1236419A (en) Fitting as well as table and table system with such fitting
US6918562B2 (en) Device for combining electronic appliances and displaying apparatuses employing the same
EP2149865A1 (en) Display device
US20040135050A1 (en) Display supporting apparatus
US20090020672A1 (en) Supporting apparatus
US6859356B2 (en) Apparatus for supporting a monitor
US20070019370A1 (en) Portable computer
CN218767748U (en) Support mechanism and lighting device
US20230320483A1 (en) Audiovisual device rack
TW202012823A (en) Monitor connection module
CN218095237U (en) Cradle head support convenient to adjust
CN217736021U (en) Multi-angle direction regulator and adjustable support
KR100339357B1 (en) An adapter for connecting a video display to its stand
US20220412397A1 (en) Device with adjusted pause-type hinge
CN114110320A (en) Carry formula multi freedom display screen

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

RR Request for reexamination filed

Effective date: 20100304

RR Request for reexamination filed

Effective date: 20100319

B1 Reexamination certificate first reexamination

Free format text: THE PATENTABILITY OF CLAIMS 1-8, 13, 16 AND 17 IS CONFIRMED. NEW CLAIMS 18-38 ARE ADDED AND DETERMINED TO BE PATENTABLE. CLAIMS 9-12, 14 AND 15 WERE NOT REEXAMINED.

IPR Aia trial proceeding filed before the patent and appeal board: inter partes review

Free format text: TRIAL NO: IPR2015-00127

Opponent name: SPACECO BUSINESS SOLUTIONS, INC.

Effective date: 20141024