USRE38127E1 - Portable hybrid communication system and methods - Google Patents

Portable hybrid communication system and methods Download PDF

Info

Publication number
USRE38127E1
USRE38127E1 US07/831,671 US83167192A USRE38127E US RE38127 E1 USRE38127 E1 US RE38127E1 US 83167192 A US83167192 A US 83167192A US RE38127 E USRE38127 E US RE38127E
Authority
US
United States
Prior art keywords
cellular
signals
tru
computer
interface means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/831,671
Inventor
Harry Michael O'Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MLR (A OF VIRGINIA) LLC LLC
SITI-SITESCOM Inc
Original Assignee
MLR LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23163744&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE38127(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US07/831,671 priority Critical patent/USRE38127E1/en
Application filed by MLR LLC filed Critical MLR LLC
Assigned to ROBINSON, ERIC J., LEEDOM, CHARLES M., JR., MLR PATNERS - SALVATORE MARINO reassignment ROBINSON, ERIC J. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECTRUM INFORMATION TECHNOLOGIES, INC.
Assigned to MLR, LLC reassignment MLR, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MLR PARTNERS
Priority to US10/141,880 priority patent/USRE38645E1/en
Priority claimed from US10/141,880 external-priority patent/USRE38645E1/en
Publication of USRE38127E1 publication Critical patent/USRE38127E1/en
Application granted granted Critical
Assigned to MLR, LLC (A LIMITED LIABILITY COMPANY OF VIRGINIA) reassignment MLR, LLC (A LIMITED LIABILITY COMPANY OF VIRGINIA) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SITI-SITES.COM, INC. (A CORPORATION OF DELAWARE)
Assigned to SITI-SITES.COM, INC. reassignment SITI-SITES.COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MLR, LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/738Interface circuits for coupling substations to external telephone lines
    • H04M1/76Compensating for differences in line impedance

Definitions

  • microfiche appendix is attached.
  • the total number of microfiche is 1 and the total number of frames is 79.
  • Technology offers the consumer many choices in communications hardware, allowing both data and voice transmission. These choices include portable computers with internal modems, hands-free speakerphones, landline telephones, and cellular telephones.
  • Modern portable computers may be equipped with an internal modem and data access arrangement that allows the internal modem to be connected through an RJ-11 connector to the Public Switched Telephone Network.
  • Examples of this technology include portable computers manufactured by Zenith and NEC. These portable computers generally include a speaker used for call progress monitoring; and this speaker is used strictly as an analog output device.
  • the internal modems are used only for sending and receiving modulated digital information through the public switched telephone network. Methods of modulation include the Bell 212, Bell 103 CCITT V.21, CCITT V.22 and CCITT v.22 bis standards.
  • Hands-free speakerphones can be found in many offices and homes. Generally, these speakerphones are used as an adjunct to a classical telephone which consists of a cradle and handset, and these speakerphones are used for analog voice communications over the public switched telephone network. Digital switching techniques are sometimes used within the speaker phone circuits to prevent analog feedback from microphone pickup of the speaker output.
  • Cellular telephones as currently manufactured by Motorola (USA), OKI (Japan) and others consist of a radio transceiver unit (TRU) and a control unit (CU), analogous to the cradle and handset of a conventional landline telephone.
  • the transceiver unit is connected to the control unit with numerous wires, these wires transferring the analog information as in a conventional landline telephone, and also transferring digital information not used in a conventional landline telephone.
  • This digital information may contain key press, display, and monitoring information, as well as cellular call set-up instructions.
  • An example of this digital and analog connection can be found in AMPS based cellular telephones, as well as other functionally similar specifications.
  • a complete description of the AMPS system is provided in “The Bell System Technical Journal”, 1979, V.1 58, No. 1, pages 1-269.
  • Cellular phones may also provide a hands-free speakerphone, similar to speakerphones available for landline phones.
  • Landline and cellular telephones generally provide means of indicating to the user their current operating state. For example, when a key is pressed, an audible tone is heard, providing audio feedback, or, when an incoming call is sensed, an audible tone (RING) is heard.
  • a key is pressed, an audible tone is heard, providing audio feedback, or, when an incoming call is sensed, an audible tone (RING) is heard.
  • RING audible tone
  • U.S. Pat. No. 4,718,080 shows a device which connects a standard landline telephone or modem to a cellular car phone, while U.S. Pat. No. 4,578,537 shows an interface which may connect a personal computer, a speakerphone, and a modem to one or more landlines.
  • U.S. Pat. No. 4,685,123 teaches a method of adapting one or more telephone lines for either data or voice communications.
  • the invention further includes a novel and improved method and apparatus to switch the numerous analog and digital parts of landline telephones, cellular telephones and modems so that any parts of this unit may be used together. This is all accomplished with a control system mounted on a circuit card which fits in a modem slot or similar card receiving slot in a portable computer.
  • Another object of the present invention is to provide a novel and improved portable hybrid communication system which provides a personal computer with the means to command a specific pairing of a cellular transmitter, modem, and speakerphone, as well as external connections to a headset, cellular control unit and landline telephone line. This command may be sent by an automated program, or at the interactive request of the person using the personal computer.
  • Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can switch a modem onto either a landline or cellular telephone network.
  • a further object of the present invention is to provide a novel and improved portable hybrid communication system which controls the power to a cellular control unit as necessary, so that power to the control unit is available only when the control unit is to be used.
  • Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can sense the ON or OFF condition of the power to a transceiver unit.
  • a further object of the present invention is to provide a novel portable hybrid communication system which has complete control of a transceiver unit, providing the necessary signals to the transceiver unit for the transceiver unit to function properly, and sensing all of the signals generated by the transceiver unit, said control being possible without the need of a cellular control unit.
  • Yet another object of the present invention is to provide a novel portable hybrid communication system with complete control of a cellular control unit, providing the necessary signals to the control unit for the control unit to function properly, and sensing all of the signals generated by the control unit, allowing use of the cellular control unit.
  • a further object of the present invention is to provide a novel portable hybrid communication system that can sense whether of not a headset, cellular control unit, landline, or other device is connected to the invention.
  • a further object of the invention is to provide a novel portable hybrid communication system that selectively provides suitable control signals and data transfer protocols depending on the devices used and depending on whether cellular or land lines are being used.
  • a further object of the invention is to provide a novel portable hybrid communication control system that performs analog signal conditioning so that the analog signals of the speakerphone, headset, control unit, modem, tone generator, transceiver, and landline are matched in impedance and level according to definite standards.
  • a further object of the invention is to provide a novel portable hybrid communication system that can relay a cellular call over a land line or a land line call over a cellular network.
  • a further object of the invention is to provide a novel portable hybrid communication system that can simultaneously connect a modem or voice terminal device to the cellular network, while connecting another device (modem or terminal) to a landline, permitting simultaneous voice and data communications.
  • a further object of the invention is to provide a novel portable hybrid communication system which integrates a modem, portable computer, and cellular transmitter into a case, the case having a retractable cellular antenna.
  • a novel and improved portable hybrid communication system which is a laptop device including a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit.
  • the device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones.
  • the hybrid communications control unit is microprocessor controlled and includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches.
  • the hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/-microphone, or cellular control unit to the landline or to the cellular network via the transceiver.
  • the unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. Finally, the device is capable of connecting plural calls at the same time over different networks.
  • the hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.
  • FIG. 1 is a block diagram of a typical cellular telephone, with reference to appropriate external connections;
  • FIG. 2 is a block diagram of a typical landline telephone, with reference to appropriate external connections;
  • FIG. 3 is a block diagram of a typical speakerphone system; speakerphone,.
  • FIG. 4 is a block diagram of the invention, with typical externally connected devices shown;
  • FIG. 5 is a schematic diagram showing examples of the level and impedance matching circuitry associated with the analog switch of the present invention.
  • FIG. 6 is a cutaway view showing the installation of the hybrid communication control unit in the computer case
  • FIG. 7 is a flow diagram showing the procedure for relaying an incoming cellular call to a landline
  • FIG. 8 is a schematic diagram of a port of the digital switch
  • FIG. 9 is a schematic diagram of a typical method of digitally .sensing an analog signal.
  • FIG. 10 is a schematic diagram showing how a toggle switch may simultaneously provide power to an external device and generate a digital logic signal.
  • FIGS. 1, 2 and 3 show the inputs, outputs, and components of prior art cellular telephones, landline telephone and speakerphones.
  • a conventional cellular telephone is shown generally at 2 .
  • the cellular telephone includes a transceiver unit 4 , with an external power line 6 which obtains power from an external power supply 8 .
  • the transceiver unit 4 uses an external antenna 10 to send and receive analog voice and modulated digital instructions relative to a cellular network 12 having an antenna 32 .
  • These cellular network instructions include call set-up instructions, incoming call instructions and other cellular network control instructions.
  • a cellular control unit 14 comprises a display 16 , a keypad 18 , a speaker 20 , and a microphone 22 .
  • the transceiver unit 4 communicates with the cellular control unit 14 using a bus 24 consisting of numerous wires including analog wires 26 , digital wires 28 , and power wires 30 .
  • the analog voice signals present at the control unit 14 can be obtained from the analog wires 26 , or can be generated by the microphone 22 to be sent through the analog wires.
  • the digital information that occurs when a key is pressed on the key pad 18 is sent through the digital wires 28 . Also digital information may be received over the digital wires 28 .
  • the power that is necessary to the proper functioning of the control unit 14 is obtained from the transceiver unit 4 through the power wires 30 .
  • the transceiver unit 4 communicates with the cellular telephone network 12 using radio waves, these waves being transmitted and received using antennas 10 and 32 .
  • a conventional landline telephone is shown generally at 34 .
  • This telephone 34 consists of a cradle 36 and a handset 38 .
  • the telephone 34 is connected to a public switched telephone network 40 by analog wires 41 which carry analog telephone signals.
  • the cradle 36 includes Data Access Arrangement (DAA) section 42 , keypad 44 , and ringer circuit 46 , while the handset 38 includes speaker 48 and microphone 50 .
  • Data Access Arrangement section 42 contains the analog filters and protection devices required to connect to the public switched telephone network 40 .
  • the key pad 44 is used to provide the number to be called to the public switched telephone network 40 , and ringer circuit 46 and associated signalling means are provided to inform the user when there is an incoming call.
  • FIG. 3 is a block diagram of a conventional speakerphone, shown generally at 52 . It consists of a microphone 54 and speaker 56 connected respectively by analog transmitting lines 58 and analog receiving lines 60 to an analog feedback prevention switch 62 . Analog signals are sent via analog wires 64 between the speakerphone 52 and other devices and networks (not shown). If the speakerphone 52 needs a power source, it is provided through power wires 66 .
  • the hybrid communications control unit of the present invention is shown generally at 68 .
  • the hybrid communications control unit contains a microprocessor 70 with RAM and ROM memory and input and output ports, an analog switch 72 , a digital switch 74 , a power arbitration unit 76 , a computer interface 78 , a tone generator 80 , a modem 82 , a data access arrangement 42 , and end user accessible toggle switches 86 . All power to the unit and its parts is obtained from an external power supply 88 .
  • a portable personal computer 90 is connected to the unit 60 through the computer interface 78 .
  • the power supply 88 is preferably the battery of the portable computer 90 , or an external power supply for the portable computer, but the power supply 88 may also be any other source of power.
  • the microprocessor 70 may preferably be a Toshiba Z84—C15, which incorporates a Zilog Z80 processor, Z80—PI0 parallel port, Z80—SIO serial port, and Z80—CTC. As explained previously, both random access and readonly memories are connected to the microprocessor for data and software storage.
  • the read-only memory preferably contains operating software which is the machine-code equivalent of the source code contained in the microfiche appendix attached to this specification.
  • the portable personal computer 90 may be any programmable computing device, such as a hand-held calculator or portable computer.
  • a hand-held calculator or portable computer is an ITC CAT 286 which uses the MS-DOS operating system and is compatible with the IBM personal computer AT.
  • the hybrid communications control unit 68 connects to the public switched telephone network 40 using wires 41 and data access arrangement circuit 42 , which are the essential components of the landline telephone 34 of FIG. 2 .
  • the physical connection is preferably by means of a conventional RJ-11 modular telephone connector.
  • Analog lines 92 connect from the data access arrangement 42 to analog switch 72 , where the analog signals may be switched or conditioned using methods which will be described later in more detail. This switching and conditioning allows the analog lines from the data access arrangement 42 to be selectively connected by the analog switch with the analog lines of any other connected device, such as speakerphone 52 .
  • This selective connections is controlled by the microprocessor 70 , either as a result of a user request made known to the microprocessor 70 through toggle switches 86 or because of a request from the portable personal computer 90 transmitted through the computer interface 78 .
  • the toggle switches 86 are connected to input ports of microprocessor 70 . They may be of the type that can be sensed directly by the microprocessor 70 , that is of a 5 volt DC logic level, or they may require debouncing or other conditioning before being sensed by the microprocessor 70 . Preferably, four toggle switches are provided. The first switch can be manually actuated to signal the microprocessor 70 that the cellular control unit 14 is inserted. The second toggle switch, when manually activated, signals the microprocessor that the user wishes to mute the output of a microphone 103 in use during a voice communication.
  • the third toggle switch provides power to the cellular control unit 14
  • the last toggle switch both controls power to the cellular transceiver 4 and provides a logic signal to the microprocessor 70 in the manner explained below.
  • the power control functions of these last two toggle switches may occur directly, with the toggle switch making or breaking a connection between the power supply and the controlled unit as shown in FIG. 10, or the toggle switch may cause the microprocessor to control the provision of power to the controlled unit.
  • any of the toggle switches may be used to provide high current 12V DC power to an external device.
  • power is provided to control unit 14 .
  • External power supply 88 producing 12 VDC is connected to one of the toggle switches 86 , which is connected to control unit 14 by power line 85 .
  • a conventional emitter follower voltage regulator circuit 87 is connected between power line 85 and an input port of microprocessor 70 .
  • Voltage regulator circuit 87 provides approximately 5 volts DC to microprocessor 70 when toggle switch 86 is closed, and zero volts when toggle switch 86 is open.
  • any other voltage regulator circuit could be used in place of the circuit shown. In this way, high current 12V DC power may be switched and at the same time presented to the microprocessor as a low current, 5 volt logic level so that the microprocessor can sense the position of toggle switch 86 .
  • toggle switches may be provided depending on the preference of the end user. These additional switches might initiate any function performed by the present invention.
  • the hybrid communication control unit 68 is preferably constructed on a circuit card about four inches wide by five inches long. In the preferred embodiment, as shown in FIG. 6, this card containing the hybrid communications control unit is of an appropriate configuration to fit in a modem slot 89 of personal computer 90 .
  • the card is provided with an appropriate conventional connector 95 which mates with a conventional modem card connector 91 mounted on the motherboard 93 of computer 90 , allowing transfer of signals between the computer interface 78 of hybrid communication control unit 68 and portable computer 90 .
  • the type of connector 95 used depends on the computer selected for construction of the present invention.
  • the connector might be any multi-pin male, multi-pin female, or EIA connector.
  • the card containing hybrid communication control unit 68 might be provided with edge contacts to mate with a printed circuit board edge connector in the computer 90 . While the most common and desirable connection means have been described herein, those skilled in the art will recognize that other known connections means could be used.
  • the card of hybrid communications control unit 68 could be installed in computer 90 in many locations other than modem slot 89 .
  • the card could be installed in a memory expansion or other expansion slot of computer 90 .
  • the card could also be located externally to the case of computer 90 , either mounted on the case or designed as a separate unit to be cabled to computer 90 .
  • the card could be located in any available space inside the computer case and connected by cable to the modem connector, an expansion connector, or another connector provided on the motherboard 93 of computer 90 .
  • the hybrid communications control unit 68 may be installed in the computer 90 , it should be recognized that, for so me applications, the microprocessor 70 can be eliminated and its functions can then be performed by the computer 90 .
  • the computer interface 78 would be connected back into an input port of the computer 90 and the input-output ports of the computer 90 would be connected to other components in the hybrid communications control unit 68 in the same manner as are the input-output ports of the microprocessors 70 .
  • the computer 90 must have RAM and ROM memory and the capability to operate in response to a program which performs the functions of the program in Appendix A.
  • a cellular antenna 10 may be extended from or retracted into a compartment 97 of the portable computer case so as to protect the antenna when not in use and so as to increase the functionality and aesthetic appeal of the computer case when the system is used but cellular access is not desired.
  • the antenna moves in a linear fashion in and out of the compartment.
  • Locking means may hold the antenna in a fixed position.
  • ball-and-socket or frictional locks could be used.
  • the antenna could be retracted by folding about a hinge into a recess in the portable computer case.
  • an external jack for connection of a roof-mount or other antenna could be provided.
  • the card bearing the hybrid communication control unit 68 is also provided with several other connectors.
  • a first of these connectors on the card forms a connector for the speakerphone 52 and has three pins which provide transmit, receive, and signal ground lines.
  • a second connector on the card is for the cellular transceiver and provides a pin for each line in the cellular bus 24 (shown in FIG. 1 ). This connector must be compatible with the cellular control unit jack of the cellular transceiver selected, and may be provided with an extension cable to facilitate the connection.
  • a third connector of the card allows external connection of the cellular control unit 14 to the card, and is of the type that mates with the second connector previously described.
  • a fourth connector allows external connection of additional speakers and microphones. This connector preferably takes the form of a headset jack.
  • a final connector accepts the RJ-11 plug of the public switched telephone network as described previously. Additional connectors may be provided for additional speakers or other known telephone and computing equipment.
  • the computer interface 78 is preferably of the type that converses directly with a central logic bus of the portable computer 90 , using the Signetics INS 8250 universal asynchronous receiver and transmitter and conventional techniques.
  • the device might also converse with the portable computer using RS- 232 C or another known standard.
  • the data access arrangement 42 may be a standalone DAA, such as Midcom part number 681—0012. A slight reduction in construction costs can be obtained by assembling a DAA out of components using techniques well-known in the art, so as to provide the protection required to connect to the public switched telephone network. This method is preferred.
  • Digital DAA control lines 94 connect the DAA 42 to the input/output ports of microprocessor 70 , and the control lines include a ringing line.
  • the DAA 42 may be controlled directly by the microprocessor 70 using the DAA digital control lines 94 . This control prompts the data access arrangement to issue appropriate signaling directions to, and relay directions from, the public switched telephone network.
  • Such signalling directions include Dual Tone Multi-Frequency (DTMF) dialing, on-hook and off-hook conditions, timed on/off hook sequences used for pulse dialing, and ringing sense.
  • DTMF Dual Tone Multi-Frequency
  • the DAA preferably causes an interrupt in the program sequence of microprocessor 70 .
  • the ringing line of the DAA control lines 94 can be latched and then polled by the microprocessor periodically.
  • the DTMF signals are obtained from the tone generator 80 which is shown as a separate entity but may also be located either within the data access arrangement 42 or within the modem 82 .
  • the tone generator 80 is connected to the analog switch by analog lines 96 and to the microprocessor 70 by tone control lines 98 .
  • the tone generator operates in response to control signals from the microprocessor transmitted through the tone control lines 98 .
  • the microprocessor may obtain the sequence of tones to be transmitted from control unit 14 or portable computer 90 in a manner that will be explained further.
  • Analog signals of the tone generator may be passed to the data access arrangement 42 through the analog switch 72 .
  • the analog switch 72 may be a 4053 manufactured by Toshiba, and a number of devices are connected to this analog switch 72 .
  • the connections internal to the hybrid communications control unit 68 will be described first.
  • DAA 42 is connected to analog switch 72 by analog line 92 .
  • Tone generator 80 is connected to the analog switch 72 by analog lines 96
  • modem 82 is connected to analog switch 72 by analog lines 102 .
  • Analog switch control lines 100 connect the analog switch 72 to microprocessor 70 .
  • the analog switch 72 accepts digital commands from the microprocessor 70 through analog switch control lines 100 to connect and disconnect the attached devices.
  • An optional microphone 103 may be connected to analog switch 72 by analog lines 104
  • an optional speaker 105 may be connected to the analog switch by analog lines 106 .
  • the speakerphone 52 may be connected to the analog switch by analog lines 64
  • the cellular transceiver 4 is connected to the analog switch by analog lines 108 .
  • the cellular control unit 14 is connected to the analog switch by analog lines 110 .
  • additional components connected at the analog switch 72 provide the level conditioning (amplification or attenuation) and impedence matching appropriate to each device.
  • These components comprise operational amplifiers with associated resistors and capacitors.
  • a similar circuit is used for each input and output connection of the analog switch 72 , the only variation being the valves of the components, which are selected depending on the signal characteristics of the devices connected to the analog switch 72 .
  • the output and input signals are standardized according to a unique and novel scheme. This standardization is essential if the system is to be capable of operably connecting any two devices.
  • terminal devices and line devices the terminal devices being the DTMF tone generator 80 , modem 82 , control unit 14 , speakerphone 52 , microphone 103 , and speaker 105 .
  • the line devices are the DAA 42 and transceiver 4 .
  • the output signals of all terminal devices are converted to a low-impedance, ⁇ 10 DbV signal as part of the connection to analog switch 72 .
  • This signal is suitable for direct input to DAA 42 , and is converted appropriately at the analog switch connection for input to other line devices, such as the cellular transceiver.
  • the input signals of all connected terminal devices, such as the external speaker input are provided at the analog switch connection with circuitry which converts a medium-impedance ⁇ 10 DbV signal, as produced by DAA 42 , to a signal with the characteristics required for input to the individual terminal device.
  • the analog outputs of other line devices, such as transceiver 4 are converted at their analog switch connections to produce a signal with the same level and impedance characteristics as the signal produced by DAA 42 .
  • standards for terminal and line devices could be made the same to facilitate implementation of call relaying and connection of terminal devices to other terminal devices.
  • FIG. 5 shows two examples of the level and impedance matching circuits used in the preferred embodiments of the device of the present invention.
  • the output of microphone 103 which may be a high-impedance (greater than 10 K Ohms), ⁇ 40 DbV signal, is converted by op-amp circuit 112 to a low-impedance (less than 1K Ohms), ⁇ 10 DbV signal suitable for direct switching to the DAA 42 .
  • O-amp circuit 114 converts this same low-impedance, ⁇ 10 dBV signal to a ⁇ 20 dBV low-impedance signal suitable for input to cellular transceiver 4 .
  • the medium impedance (1-10 K Ohms), ⁇ 10 dBV output signal of DAA 42 is converted by op amp circuit 116 to a low-impedance, 0 dBV signal appropriate for input to speaker 105 .
  • the analog output of cellular transceiver 4 is converted by op-amp circuit 118 to produce a signal with the same level and impedance characteristics as the analog output signal of DAA 42 .
  • the following chart shows typical input and output impedance and level values for devices included in the present invention. Naturally, these values will vary depending on the specific devices selected.
  • FIG. 9 shows how this service request is generated in response to an analog transmission from any of the lines noted above, and for purposes of explanation, an analog signal from cellular transceiver 4 will be used in FIG. 9, Referring now to FIG. 9, the transceiver 4 is connected to analog line 108 , which is connected to an input of an amplifier 120 which has an output 121 . The output 121 of amplifier 120 is connected to a capacitor and resistor circuit 122 having an output 123 .
  • This output 123 is connected to the base of a transistor 124 having an emitter tied to ground and a collector 126 which provides an output.
  • Collector 126 is connected to an RC network 128 having a resistor connected between collector 126 and +5 VDC, and a capacitor connected between collector 126 and ground.
  • the RC network 128 is connected to a sensing line of the analog switch control lines 100 .
  • the service request is created by taking the low level analog signal provided at analog line 108 and amplifying it to a very high level voltage with the amplifier 120 . This high level signal will alternately charge and discharge the capacitor and resistor circuit 122 in accordance with the period of the analog signal on analog line 108 .
  • This charging and discharging of the circuit 122 will turn the transistor 124 off and on, and this transistor switching can be used to provide a digital level signal directly to the microprocessor.
  • the signal is further conditioned by the RC network 128 to provide a signal which is easily sensed by the microprocessor.
  • the microprocessor can record in RAM memory the condition of signals received in this manner, or the processor can poll the outputs 100 when it is necessary to know which devices are connected.
  • the circuit of FIG. 9 thus allows the microprocessor to keep track of the devices that are connected to the portable hybrid communications system in an unique and novel manner.
  • the analog switch 72 acts as a cross-point switch, so that it is possible for more than one pair of analog signals to be connected at once without interference.
  • the cellular transceiver 4 could be connected to the speakerphone 52 while the data access arrangement 42 is connected to the modem 82 , allowing simultaneous voice and data communications. This operation is made possible in part by the unique circuit disclosed and the standardization of analog levels of the present invention.
  • the modem 82 is directed by the microprocessor 70 using a modem control line 129 . These directives include turning on and off the various stages of the modem's modulation and demodulation circuits.
  • the analog signals produced by modem 82 are connected to the analog switch 72 so that the analog signals are available for switching, in a manner similar to the analog connection of the data access arrangement 42 to the analog switch 72 .
  • the microprocessor preferably receives and retransmits data to and from modem 82 and computer interface 78 . Alternatively, a direct data connection or connection switchable manually or under the control of microprocessor 70 may be provided.
  • the operation of the power arbitration unit 76 will now be described. Input/output ports of microprocessor 70 are connected by power arbitration control lines 94 to the power arbitration unit 76 .
  • the power arbitration unit 76 contains circuitry which responds to the digital signals of microprocessor 70 to connect and disconnect external power from external power supply 88 to control unit 14 and transceiver 4 . This power arbitration uses conventional microprocessor controlled switching units and techniques and the microprocessor signals are used at the request of the user or by the microprocessor's own internal program. Power wires 162 are provided between the control unit 14 and power arbitration unit 76 .
  • These wires provide the control unit 14 with power for operation, and are controlled by the microprocessor 70 using the power arbitration unit 76 , thus giving the microprocessor 70 control of signal and power availability to the control unit 14 .
  • Power line 132 and external power line 134 connect power arbitration 76 and transceiver 4 so that the power arbitration unit 76 can control power to transceiver 4 in response to signals from microprocessor 70 .
  • the microprocessor 70 may store the status of power to the control unit and transceiver in random access memory for use as described later.
  • Digital switch 74 is connected to microprocessor 70 by digital switch control line 135 and digital data line 136 .
  • the digital switch is also connected to the cellular transceiver 4 by digital lines 130 and to the control unit 14 by digital lines 131 .
  • the digital signals provided by the transceiver unit 4 and control unit 14 are presented to the digital switch 74 of the hybrid control unit where they may be conditioned as necessary before being presented to the microprocessor 70 .
  • FIG. 8 is a schematic diagram of a portion of digital switch 74 . Only the circuit for one pair of digital data lines 131 and 130 is shown. There are actually a plurality of digital data lines 131 and 130 , so that a plurality of the circuits illustrated in FIG. 8 are used in the system, one for each digital data line pair 130 and 131 . Depending on the control unit and transceiver selected, some of the digital lines 130 and 131 may need only some of the digital switch functions. For example, a line may only require sensing by the processor. Those skilled in the art will appreciate that the entire circuit shown need not be provided for such lines.
  • the circuit shown consists of a control unit pull down transistor 138 , a control unit-to-transceiver pass thru transistor 140 , a transceiver pull down transistor 142 , each transistor having a base, emitter, and collector, and associated resistors.
  • Transistors 138 , 140 and 142 may preferably be Motorola 2N2222A types.
  • the digital switch control line 135 is connected to a control unit-to-transceiver pass thru control line 148 which is connected through a resistor to the base of the control-unit to-transceiver pass thru transistor 140 .
  • the collector of transistor 140 is connected to digital data line 131 , while the emitter of transistor 140 is connected to digital data line 130 .
  • Digital data line 131 is connected through a resistor to a control unit sense line 156 , which is connected through an internal input/output bus 160 to one of the digital data lines 136 .
  • digital data line 130 is connected through a resistor to a transceiver sense line 158 , which is also connected through the bus 160 to a different digital data line 136 .
  • Control unit assert line 152 is connected through a resistor to the base of the control unit pulldown transistor 138 .
  • the collector of this transistor 138 is connected directly to digital data line 131 , while its emitter is connected directly to ground.
  • transceiver assert line 154 is connected through a resistor to this base of the transceiver pulldown transistor 142 .
  • the collector of the transistor 142 is connected directly to digital data line 130 , while its emitter is connected directly to ground.
  • the digital lines 131 of the control unit 14 and digital lines 130 of the transceiver 4 are, in the preferred embodiment, open-collector type lines. Inside the transceiver 4 and control unit 14 are pull-up resistors 144 and 146 that provide the voltage used to sense the logic level when the digital lines 131 and 130 are in their open collector state. These pull-ups may be placed within the digital switch 74 when not provided by the control unit 14 and transceiver 4 .
  • control unit-to-transceiver pass thru control line 148 When the microprocessor asserts digital switch and control 135 , the control unit-to-transceiver pass thru control line 148 is asserted, turning on the control unit-to-receiver pass thru transistor 140 thus connecting the control unit digital line 131 to the transceiver digital line 130 and allowing data to flow between the control unit 14 and transceiver 4 .
  • control unit-to-transceiver pass thru transistor 140 is turned off, the control unit 14 and transceiver 4 cannot exchange digital information.
  • the control unit and transceiver may be used independent of each other if proper digital information is provided to them.
  • the microprocessor can provide the proper digital information by using its digital data lines 166 .
  • a plurality of digital lines 136 are used to enable assertion and sensing of each pair of digital data lines 130 and 131 . These asserting and sensing lines are bussed internally to the digital switch 74 on the internal Input/Output Bus 160 .
  • the appropriate digital data line 136 asserts the control unit assert line 152 or transceiver assert line 154 to turn on respectively control unit pull down transistor 138 or transceiver pull down transistor 142 .
  • control unit digital line 131 or transceiver digital line 130 This will change the state respectively of the control unit digital line 131 or transceiver digital line 130 from their open collector pulled up (high) condition to an asserted pulled down (ground) condition, thus allowing transmission of digital signals between the microprocessor 70 and the control unit 14 or transceiver 4 respectively.
  • Any digital signals present on the digital lines 131 or 130 are sensed by the microprocessor through the control unit sense line 156 or the transceiver sense line 158 , which are connected through bus 160 to appropriate digital data lines 136 .
  • individual digital switch control lines 135 and digital data lines 136 are provided from the input/output ports of the microprocessor. If sufficient ports are not available, additional multiplexing circuits may be interposed between microprocessor 70 and digital switch 74 in a manner well known in the art.
  • all required digital signals necessary to the proper functioning of the transceiver unit 4 are provided by directives issued from the microprocessor 70 through digital data lines 136 , through the digital switch 74 , through the digital wires 130 to the transceiver unit 4 .
  • An example of a necessary digital signal of this type is an ON/OFF signal, this signal being conventionally given to the transceiver unit 4 by user keystrokes on the key pad of the cellular control unit.
  • These necessary signals may be directed by the microprocessor 70 as a result of its own internal program, or at the request of the user. User requests may be obtained through the portable computer 90 and computer interface 78 or by the user setting one of the toggle switches 86 .
  • the speakerphone 52 is preferably built into a case holding the portable computer 90 .
  • the hybrid communications control unit obtains access to the analog signals of the speakerphone 52 using the analog wires 64 included in the speakerphone 80 , which terminate in a three-pin connector which mates with the speakerphone connector on the hybrid communications control unit board.
  • the microprocessor 70 controls switching and conditioning of the analog signals using the analog switch 72 , in a manner similar to the switching of the data access arrangement signals by analog switch 72 .
  • the invention may incorporate other optional speakers 105 and microphones 103 , with their analog signals connected to the analog switch 72 using analog wires 106 and 104 , respectively, in a manner similar to that used with the analog signals of the data access arrangement 42 or speakerphone 52 .
  • An external speaker and microphone in the form of a telephone headset is preferably used in the present invention.
  • the cellular transceiver unit 4 is preferably built into the personal computer case in a space which might otherwise be occupied by a disk drive.
  • the transceiver is connected to the invention by wires similar to those in the transceiver unit bus 24 (shown in FIG. 1 ), specifically analog wires 108 , digital wires 130 , power wires 132 and external power wires 134 . All analog signals present at the transceiver unit 4 are switched and conditioned by the analog switch 72 .
  • the total operating condition of the transceiver unit 4 is known and may be controlled by the microprocessor 70 .
  • Control signals may be initiated through the microprocessor's internal program or by user interaction with the microprocessor, either through the toggle switches 86 or through the portable computer 90 .
  • the microprocessor 70 can switch the analog signals of the transceiver unit 4 onto any of the remaining analog paths by controlling the operating state of the analog switch 72 .
  • the microprocessor 70 can selectively apply or remove external power to the transceiver unit 4 using the power arbitration unit 76 .
  • the cellular control unit 14 preferably connects to a jack on the portable computer case, this jack being connected to the hybrid communications control unit board through a cable and connector which mates with the appropriate connector on the board (previously described).
  • the analog wires 110 are connected to the analog switch 72 , thus providing the microprocessor with the ability to switch the analog signals of the control unit as required.
  • the digital wires 131 are connected to the digital switch 74 , thus providing the microprocessor 70 with status sense and digital control of the control unit 14 as described previously, and the power wires 162 are connected to the power arbitration unit 76 , providing the microprocessor with the ability to control the power to the control unit 14 as explained previously.
  • the microprocessor 70 has complete control of the functioning of the control unit 14 as it has with the transceiver unit 4 .
  • voice calls can be placed and received on the public switched telephone network.
  • the microprocessor 70 instructs the data access arrangement 42 through the digital control lines 94 to take the public line off-hook.
  • the microprocessor directs the analog switch 72 to connect data access arrangement 42 and tone generator 80 , whereupon the microprocessor transmits tone commands for the number to be dialed to tone generator 80 through tone control line s 98 . If pulse dialing is desired, the microprocessor transmits the proper series of on- and off- hook signals to the data access arrangement 42 using DAA control lines 94 .
  • the microprocessor commands the analog switch 72 to connect the analog wires 92 of the data access arrangement 42 to the analog wires 64 of the speakerphone 52 thus providing the user with speakerphone access to the public switched telephone network 40 .
  • the user can instruct the microprocessor to disconnect the public telephone line using the switch or computer means previously described.
  • the microprocessor will then instruct the data access arrangement to place the landline on-hook, and instruct the analog switch to disconnect the voice device and data access arrangement.
  • the microprocessor makes the user or portable computer aware of this condition by sending a message through the computer interface 78 or by placing an audible tone generated by the data access arrangement 42 or elsewhere (such as the tone generator 80 ) on any speaker analog path (such as an optional speaker 105 by means of wires 106 ). The user may then elect to answer or ignore the call. This decision is sent to the microprocessor 70 by the user using the portable computer 90 . Alternatively, a toggle switch could be provided for this purpose. In addition, the microprocessor 70 may be instructed any time prior to the ringing condition to always answer the call (auto-answer mode).
  • the microprocessor 70 selects the device to be connected in a novel manner, based on the devices connected and programmed priorities.
  • the microprocessor knows the present power-on condition of the transceiver unit 4 and control unit 14 by monitoring the power arbitration unit 76 .
  • the presence of optional speakers 105 can be sensed at the optional speaker connection, using the toggle switch method similar to that previously described for the high current external power switch for the transceiver unit.
  • the presence of public switched telephone network 40 can be sensed using the data access arrangement 86 and analog switch 72 as described previously with reference to FIG. 9 .
  • the microprocessor can then choose, based on the availability of speakers and microphones and based on its preprogrammed priorities, the most appropriate analog path to use for all analog signals.
  • the microprocessor will first check for the presence of a headset, connecting the incoming call thereto if the headset is present. If there is no headset present, the microprocessor will direct that the incoming call be connected to the speakerphone.
  • these priorities could be modified and that other devices could be included in the priority. While the priority is preferably built into the firmware, priorities could also be modifiable by the end user, either by sending a command from the personal computer or by adjusting toggle or dual-inline-pin switches.
  • the device of the present invention may also place and answer calls over the public switched telephone network 40 using analog devices that are not part of the speakerphone 52 , such as speaker 105 and microphone 103 which are preferably embodied in a unitary headset which plugs into the hybrid communications control unit board.
  • analog devices that are not part of the speakerphone 52 , such as speaker 105 and microphone 103 which are preferably embodied in a unitary headset which plugs into the hybrid communications control unit board.
  • the modem 82 can be used to send and receive data over the public switched telephone network 40 using the data access arrangement 42 in a manner similar to that previously described using the speakerphone 52 , except that the analog switch 72 connects the modem 82 to the data access arrangement 42 rather than connecting the speakerphone.
  • the microprocessor 70 directs modem 82 to transmit data using standard protocols and error checking that are well-known in the art. Data is transmitted to and received from the microprocessor 70 by the portable computer 90 through computer interface 78 .
  • the microprocessor 70 retransmits the transmitted data to the modem 82 , where the digital data is converted to a modulated analog signal and transmitted over the public switched telephone network.
  • the microprocessor receives incoming data from the modem and retransmits this received data to the portable computer 90 .
  • the system can place and receive calls over the cellular telephone network.
  • Cellular calls may be placed using the speakerphone 52 or the headset comprising speaker 105 and microphone 103 , but in a manner different from that previously described for placing and receiving speakerphone calls over the public switched telephone network.
  • Microprocessor 70 first sends the proper digital signals to transceiver 4 through digital data lines 136 , digital switch 74 , and digital data lines 130 , instructing the transceiver to initiate a call to the desired number.
  • the microprocessor then instructs analog switch 72 to connect the analog wires 108 of the transceiver unit 4 and the analog wires 64 of the speakerphone 52 .
  • disconnect instructions are transmitted to the transceiver and analog switch.
  • the system processes the incoming call in a novel and unique manner.
  • the processing required depends on the type of transceiver used. For example, Motorola brand transceivers generate a digital signal to alert the user to ringing, while OKI brand transceivers generate an alternating series of analog tones.
  • the OKI transceiver also uses analog tones to indicate busy, ringing, and out-of-service area signals. These signals differ from the incoming call signal.
  • an incoming call will be signalled on digital line 130 , causing the digital switch 74 to request service from the microprocessor 70 .
  • the microprocessor will read the data from the transceiver; if the data indicates an incoming call, the microprocessor will inform the user and may connect the call to the speakerphone, headset, or other device.
  • Analog switch 72 will generate a service request to microprocessor 70 using the circuitry described earlier and shown in FIG. 9 .
  • the microprocessor will evaluate the cadence or period of the signal to determine whether it is actually an incoming call signal, rather than one of the other signals described previously. On confirmation of an incoming call condition, the microprocessor will inform the user and take action as described previously.
  • the invention allows the modem 82 to be used during a cellular telephone network call placed using the transceiver unit 4 .
  • the microprocessor first signals the transceiver 4 to initiate the call as described in the procedure for placing a cellular voice call.
  • the processor directs analog switch 72 to connect transceiver 4 to modem 82 using analog lines 108 and analog lines 102 , respectively.
  • the microprocessor 70 accepts data from the portable computer 90 through interface 78 for retransmission.
  • the microprocessor selects a special protocol for use on the cellular network, this automatic protocol selection being novel and unique.
  • the microprocessor will preferably retransmit the data through the modem in variable-sized packets with special protocols and error checking appropriate to a cellular environment. These methods are described in detail in the inventor's U.S. Pat. No. 4,697,281, which disclosure is incorporated herein by reference. Data received from the cellular link will be demodulated by the modem 82 and checked by the processor, which will remove the overhead bits needed for error checking and then retransmit the data to the portable computer 90 . As in the other operating modes described, the setup process is reversed when the call is complete.
  • the microprocessor 70 can cause the control unit 14 to assume its “original” function of placing and receiving calls over the cellular telephone network.
  • the microprocessor 70 sends controlling information to the power arbitration unit, analog switch 72 , and digital switch 74 directing these devices to connect all control unit wires and paths to their corresponding transceiver unit ires and paths. Transceiver functions can then be controlled directly by the control unit.
  • the cellular control unit 14 can be used to place calls on the public telephone network.
  • This mode of operation provides novel and unique functionality since cellular control units cannot normally be used with public telephone network lines.
  • the speaker and microphone of the cellular control unit are used in conjunction with the data access arrangement 42 to place and receive calls over the public switched telephone network 40 in a manner similar to that shown for placing and receiving calls over the public switched telephone network using the speakerphone 52 .
  • the keypad 18 (shown in FIG. 1) of control unit 14 can be used to direct the microprocessor 70 , rather than using the toggle switches 86 or portable computer 90 .
  • the digital switch 74 makes data available to the microprocessor when a connected device transmits. This signal can be used as an interrupt or can be latched and polled by the processor.
  • the microprocessor can then accept data representative of the keys pressed on the control unit. Thus, dialing instructions may be obtained from the key pad 18 of the control unit 14 .
  • the control unit 14 does not provide any internally generated audible feedback when a key is pressed on the key pad 18 .
  • This audible feedback is normally provided by the transceiver unit 4 when the control unit 14 is used with the transceiver unit 4 as in FIG. 1 . Therefore, audible feedback must be provided by other means.
  • the microprocessor may instruct the tone generator 80 to produce a specific frequency and cadence analog signal that is transmitted through the analog switch to any available speaker, such as the optional speaker 105 .
  • control unit 14 contains a display
  • audible signals and digital messages previously described that originate from microprocessor 70 may be augmented by a visual message on that display, shown at 16 in FIG. 1 .
  • the microprocessor 70 produces the visual message by sending the appropriate digital commands through the digital switch 74 means to the control unit 14 and thus to its display 16 .
  • control unit may not always have its microphone 22 and speaker 20 enabled
  • the microprocessor 70 ma issue appropriate directives to the control unit 14 through digital data line 136 to enable the control unit's microphone and speaker. Disabling of the speaker and microphone can be directed in a like manner.
  • said switch may be used as a toggle switch 86 in a manner similar to that of the previously described high current power switch for the transceiver unit 4 .
  • the present device can also relay calls in a novel and unique manner by connecting the data access arrangement to the transceiver unit. While the software in the attached microfiche appendix does not implement this feature, the flow diagram of FIG. 7 shows the required steps for relaying a cellular call to a landline.
  • a cellular ringing condition initiates the process.
  • the microprocessor sends signals to the transceiver, directing the transceiver to answer the cellular call.
  • the microprocessor determines whether the user would like the call connected to the speakerphone or headset, or to the modem. The user can give instructions at the time of call receipt, or the instructions may have been given at an earlier time. If no connection to a terminal device is desired, the microprocessor waits for a landline phone number. This number can be entered from the personal computer 90 , from the control unit 14 , or may have been entered at an earlier time.
  • the microprocessor When the number is ready, the microprocessor follows the steps required to place a landline call, including taking the line off hook, connecting tone generator 80 to DAA 42 , and generating DT MF t ones. The microprocessor then instructs the analog switch to connect the transceiver 4 and DAA 42 . The microprocessor then waits until the cellular call is terminated, either by the caller or by the user. The microprocessor then signals the DAA to place the landline on-hook and signals the analog switch to disconnect the TRU and DAA.
  • This same general procedure can be used to relay calls from landline to cellular.
  • the system can either provide voice and data channels at the same time, or provide two voice channels at the same time, one channel being over the public telephone network and one channel being over the cellular network.
  • the present invention relates to communications in the portable environment generally, and more specifically to the cellular and landline telephone networks, and their access using both voice and data methods a well as portable computer control of that access.

Abstract

A laptop device includes a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones. The micro-processor-controlled hybrid communications control unit includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/microphone, or cellular control unit to the landline or to the cellular network via the transceiver. Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. The device is capable of connecting plural calls at the same time. The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.

Description

A microfiche appendix is attached. The total number of microfiche is 1 and the total number of frames is 79.
BACKGROUND ART
Technology offers the consumer many choices in communications hardware, allowing both data and voice transmission. These choices include portable computers with internal modems, hands-free speakerphones, landline telephones, and cellular telephones.
Modern portable computers may be equipped with an internal modem and data access arrangement that allows the internal modem to be connected through an RJ-11 connector to the Public Switched Telephone Network. Examples of this technology include portable computers manufactured by Zenith and NEC. These portable computers generally include a speaker used for call progress monitoring; and this speaker is used strictly as an analog output device. The internal modems are used only for sending and receiving modulated digital information through the public switched telephone network. Methods of modulation include the Bell 212, Bell 103 CCITT V.21, CCITT V.22 and CCITT v.22 bis standards.
Hands-free speakerphones can be found in many offices and homes. Generally, these speakerphones are used as an adjunct to a classical telephone which consists of a cradle and handset, and these speakerphones are used for analog voice communications over the public switched telephone network. Digital switching techniques are sometimes used within the speaker phone circuits to prevent analog feedback from microphone pickup of the speaker output.
Cellular telephones as currently manufactured by Motorola (USA), OKI (Japan) and others consist of a radio transceiver unit (TRU) and a control unit (CU), analogous to the cradle and handset of a conventional landline telephone. The transceiver unit is connected to the control unit with numerous wires, these wires transferring the analog information as in a conventional landline telephone, and also transferring digital information not used in a conventional landline telephone. This digital information may contain key press, display, and monitoring information, as well as cellular call set-up instructions. An example of this digital and analog connection can be found in AMPS based cellular telephones, as well as other functionally similar specifications. A complete description of the AMPS system is provided in “The Bell System Technical Journal”, 1979, V.1 58, No. 1, pages 1-269. Cellular phones may also provide a hands-free speakerphone, similar to speakerphones available for landline phones.
Landline and cellular telephones generally provide means of indicating to the user their current operating state. For example, when a key is pressed, an audible tone is heard, providing audio feedback, or, when an incoming call is sensed, an audible tone (RING) is heard.
There have been attempts in the prior art to combine some of the devices described above. For example, the addition of a modem to a cellular phone and means for controlling a cellular phone was disclosed by the present inventor in his U.S. Pat. No. 4,697,281. Although this patent provides for modem, transceiver unit and control unit analog and digital control, it does not provide a method for connecting numerous communication devices selectively to both land line and cellular telephone networks.
U.S. Pat. No. 4,718,080 shows a device which connects a standard landline telephone or modem to a cellular car phone, while U.S. Pat. No. 4,578,537 shows an interface which may connect a personal computer, a speakerphone, and a modem to one or more landlines. As a final example, U.S. Pat. No. 4,685,123 teaches a method of adapting one or more telephone lines for either data or voice communications.
None of these known devices or methods succeeds in achieving the functionality ultimately possible from the combination of a modem, portable computer, cellular phone, speakerphone, headset, and landline connection. Were these devices combined within a compact, portable package, the user could use the computer, transmit data, and/or place a cellular voice call, using speakerphone or headset, from any location served by a cellular network. Further, the user could bring the unit into home or office and connect it to the public switched telephone network. With both cellular and landline connections available, the user could place two calls at once, transmitting voice or data over either line. Significantly, the portable computer could initiate all these operations under program control. If all these devices could be combined in an integrated unit so that any pair of devices could function together, the result would be an uniquely valuable business and personal tool.
Prior to the invention disclosed herein, this combination was not conceived of in the art for a number of reasons, but primarily because the devices described were considered to be incompatible. For example, as explained in the inventor's prior U.S. Pat. No. 4,697,281, an ordinary modem loses data during cell handoffs, when operated over a cellular link. As another example, ordinary telephones do not provide the correct control signals to place calls on the cellular network, and cellular control units cannot be used as landline handsets. Thus, an integrated portable unit which combines a personal computer, cellular transmitter, modem and speaker phone with headset, cellular control unit, and land telephone connections could not be implemented by merely wiring known devices together.
SUMMARY OF THE INVENTION
It is a primary object of the present invention to provide a novel and improved portable hybrid communication system incorporating an integrated, portable unit which includes a personal computer, cellular transmitter, modem, and speakerphone, and which has external connections for a headset, cellular control unit, and land telephone line, such that any of these devices may be used with any other device. The invention further includes a novel and improved method and apparatus to switch the numerous analog and digital parts of landline telephones, cellular telephones and modems so that any parts of this unit may be used together. This is all accomplished with a control system mounted on a circuit card which fits in a modem slot or similar card receiving slot in a portable computer.
Another object of the present invention is to provide a novel and improved portable hybrid communication system which provides a personal computer with the means to command a specific pairing of a cellular transmitter, modem, and speakerphone, as well as external connections to a headset, cellular control unit and landline telephone line. This command may be sent by an automated program, or at the interactive request of the person using the personal computer.
Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can switch a modem onto either a landline or cellular telephone network.
A further object of the present invention is to provide a novel and improved portable hybrid communication system which controls the power to a cellular control unit as necessary, so that power to the control unit is available only when the control unit is to be used.
Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can sense the ON or OFF condition of the power to a transceiver unit.
A further object of the present invention is to provide a novel portable hybrid communication system which has complete control of a transceiver unit, providing the necessary signals to the transceiver unit for the transceiver unit to function properly, and sensing all of the signals generated by the transceiver unit, said control being possible without the need of a cellular control unit.
Yet another object of the present invention is to provide a novel portable hybrid communication system with complete control of a cellular control unit, providing the necessary signals to the control unit for the control unit to function properly, and sensing all of the signals generated by the control unit, allowing use of the cellular control unit.
A further object of the present invention is to provide a novel portable hybrid communication system that can sense whether of not a headset, cellular control unit, landline, or other device is connected to the invention.
A further object of the invention is to provide a novel portable hybrid communication system that selectively provides suitable control signals and data transfer protocols depending on the devices used and depending on whether cellular or land lines are being used.
A further object of the invention is to provide a novel portable hybrid communication control system that performs analog signal conditioning so that the analog signals of the speakerphone, headset, control unit, modem, tone generator, transceiver, and landline are matched in impedance and level according to definite standards.
A further object of the invention is to provide a novel portable hybrid communication system that can relay a cellular call over a land line or a land line call over a cellular network.
A further object of the invention is to provide a novel portable hybrid communication system that can simultaneously connect a modem or voice terminal device to the cellular network, while connecting another device (modem or terminal) to a landline, permitting simultaneous voice and data communications.
A further object of the invention is to provide a novel portable hybrid communication system which integrates a modem, portable computer, and cellular transmitter into a case, the case having a retractable cellular antenna.
These objects and others are achieved by providing a novel and improved portable hybrid communication system which is a laptop device including a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones.
The hybrid communications control unit is microprocessor controlled and includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/-microphone, or cellular control unit to the landline or to the cellular network via the transceiver.
Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. Finally, the device is capable of connecting plural calls at the same time over different networks.
The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.
Other objects and advantages of the invention will be apparent to those skilled in the art from the drawings, description, and claims herein.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a typical cellular telephone, with reference to appropriate external connections;
FIG. 2 is a block diagram of a typical landline telephone, with reference to appropriate external connections;
FIG. 3,., is a block diagram of a typical speakerphone system; speakerphone,.
FIG. 4 is a block diagram of the invention, with typical externally connected devices shown;
FIG. 5 is a schematic diagram showing examples of the level and impedance matching circuitry associated with the analog switch of the present invention;
FIG. 6 is a cutaway view showing the installation of the hybrid communication control unit in the computer case;
FIG. 7 is a flow diagram showing the procedure for relaying an incoming cellular call to a landline;
FIG. 8 is a schematic diagram of a port of the digital switch;
FIG. 9 is a schematic diagram of a typical method of digitally .sensing an analog signal; and
FIG. 10 is a schematic diagram showing how a toggle switch may simultaneously provide power to an external device and generate a digital logic signal.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The drawings of FIGS. 1, 2 and 3 show the inputs, outputs, and components of prior art cellular telephones, landline telephone and speakerphones.
In FIG. 1, a conventional cellular telephone is shown generally at 2. The cellular telephone includes a transceiver unit 4, with an external power line 6 which obtains power from an external power supply 8. The transceiver unit 4 uses an external antenna 10 to send and receive analog voice and modulated digital instructions relative to a cellular network 12 having an antenna 32. These cellular network instructions include call set-up instructions, incoming call instructions and other cellular network control instructions. A cellular control unit 14 comprises a display 16, a keypad 18, a speaker 20, and a microphone 22. The transceiver unit 4 communicates with the cellular control unit 14 using a bus 24 consisting of numerous wires including analog wires 26, digital wires 28, and power wires 30. It is important to note that without this bus (collection of numerous wires) between the transceiver unit and the control unit, neither the transceiver unit nor the control unit will function properly. The analog voice signals present at the control unit 14 can be obtained from the analog wires 26, or can be generated by the microphone 22 to be sent through the analog wires. The digital information that occurs when a key is pressed on the key pad 18 is sent through the digital wires 28. Also digital information may be received over the digital wires 28. The power that is necessary to the proper functioning of the control unit 14 is obtained from the transceiver unit 4 through the power wires 30. The transceiver unit 4 communicates with the cellular telephone network 12 using radio waves, these waves being transmitted and received using antennas 10 and 32.
In FIG. 2 a conventional landline telephone is shown generally at 34. This telephone 34 consists of a cradle 36 and a handset 38. The telephone 34 is connected to a public switched telephone network 40 by analog wires 41 which carry analog telephone signals. The cradle 36 includes Data Access Arrangement (DAA) section 42, keypad 44, and ringer circuit 46, while the handset 38 includes speaker 48 and microphone 50. Data Access Arrangement section 42 contains the analog filters and protection devices required to connect to the public switched telephone network 40. The key pad 44 is used to provide the number to be called to the public switched telephone network 40, and ringer circuit 46 and associated signalling means are provided to inform the user when there is an incoming call.
FIG. 3 is a block diagram of a conventional speakerphone, shown generally at 52. It consists of a microphone 54 and speaker 56 connected respectively by analog transmitting lines 58 and analog receiving lines 60 to an analog feedback prevention switch 62. Analog signals are sent via analog wires 64 between the speakerphone 52 and other devices and networks (not shown). If the speakerphone 52 needs a power source, it is provided through power wires 66.
The novel means for connecting and controlling these prior art devices will now be described with particular reference to FIG. 4. In this figure, units previously described are given like reference numerals. The hybrid communications control unit of the present invention is shown generally at 68. The hybrid communications control unit contains a microprocessor 70 with RAM and ROM memory and input and output ports, an analog switch 72, a digital switch 74, a power arbitration unit 76, a computer interface 78, a tone generator 80, a modem 82, a data access arrangement 42, and end user accessible toggle switches 86. All power to the unit and its parts is obtained from an external power supply 88. A portable personal computer 90 is connected to the unit 60 through the computer interface 78.
The power supply 88 is preferably the battery of the portable computer 90, or an external power supply for the portable computer, but the power supply 88 may also be any other source of power.
The microprocessor 70 may preferably be a Toshiba Z84—C15, which incorporates a Zilog Z80 processor, Z80—PI0 parallel port, Z80—SIO serial port, and Z80—CTC. As explained previously, both random access and readonly memories are connected to the microprocessor for data and software storage. The read-only memory preferably contains operating software which is the machine-code equivalent of the source code contained in the microfiche appendix attached to this specification.
The portable personal computer 90 may be any programmable computing device, such as a hand-held calculator or portable computer. One suitable model is an ITC CAT 286 which uses the MS-DOS operating system and is compatible with the IBM personal computer AT.
The hybrid communications control unit 68 connects to the public switched telephone network 40 using wires 41 and data access arrangement circuit 42, which are the essential components of the landline telephone 34 of FIG. 2. The physical connection is preferably by means of a conventional RJ-11 modular telephone connector. Analog lines 92 connect from the data access arrangement 42 to analog switch 72, where the analog signals may be switched or conditioned using methods which will be described later in more detail. This switching and conditioning allows the analog lines from the data access arrangement 42 to be selectively connected by the analog switch with the analog lines of any other connected device, such as speakerphone 52. This selective connections is controlled by the microprocessor 70, either as a result of a user request made known to the microprocessor 70 through toggle switches 86 or because of a request from the portable personal computer 90 transmitted through the computer interface 78.
The toggle switches 86 are connected to input ports of microprocessor 70. They may be of the type that can be sensed directly by the microprocessor 70, that is of a 5 volt DC logic level, or they may require debouncing or other conditioning before being sensed by the microprocessor 70. Preferably, four toggle switches are provided. The first switch can be manually actuated to signal the microprocessor 70 that the cellular control unit 14 is inserted. The second toggle switch, when manually activated, signals the microprocessor that the user wishes to mute the output of a microphone 103 in use during a voice communication. The third toggle switch provides power to the cellular control unit 14, and the last toggle switch both controls power to the cellular transceiver 4 and provides a logic signal to the microprocessor 70 in the manner explained below. The power control functions of these last two toggle switches may occur directly, with the toggle switch making or breaking a connection between the power supply and the controlled unit as shown in FIG. 10, or the toggle switch may cause the microprocessor to control the provision of power to the controlled unit.
As shown in FIG. 10, any of the toggle switches may be used to provide high current 12V DC power to an external device. In this figure, power is provided to control unit 14. External power supply 88 producing 12 VDC is connected to one of the toggle switches 86, which is connected to control unit 14 by power line 85. A conventional emitter follower voltage regulator circuit 87 is connected between power line 85 and an input port of microprocessor 70. Voltage regulator circuit 87 provides approximately 5 volts DC to microprocessor 70 when toggle switch 86 is closed, and zero volts when toggle switch 86 is open. Of course, any other voltage regulator circuit could be used in place of the circuit shown. In this way, high current 12V DC power may be switched and at the same time presented to the microprocessor as a low current, 5 volt logic level so that the microprocessor can sense the position of toggle switch 86.
Of course, a larger number of toggle switches may be provided depending on the preference of the end user. These additional switches might initiate any function performed by the present invention.
The hybrid communication control unit 68 is preferably constructed on a circuit card about four inches wide by five inches long. In the preferred embodiment, as shown in FIG. 6, this card containing the hybrid communications control unit is of an appropriate configuration to fit in a modem slot 89 of personal computer 90. The card is provided with an appropriate conventional connector 95 which mates with a conventional modem card connector 91 mounted on the motherboard 93 of computer 90, allowing transfer of signals between the computer interface 78 of hybrid communication control unit 68 and portable computer 90.
The type of connector 95 used depends on the computer selected for construction of the present invention. The connector might be any multi-pin male, multi-pin female, or EIA connector. Alternatively, the card containing hybrid communication control unit 68 might be provided with edge contacts to mate with a printed circuit board edge connector in the computer 90. While the most common and desirable connection means have been described herein, those skilled in the art will recognize that other known connections means could be used.
In addition, the card of hybrid communications control unit 68 could be installed in computer 90 in many locations other than modem slot 89. For example, the card could be installed in a memory expansion or other expansion slot of computer 90. The card could also be located externally to the case of computer 90, either mounted on the case or designed as a separate unit to be cabled to computer 90. Similarly, the card could be located in any available space inside the computer case and connected by cable to the modem connector, an expansion connector, or another connector provided on the motherboard 93 of computer 90.
Since the hybrid communications control unit 68 may be installed in the computer 90, it should be recognized that, for so me applications, the microprocessor 70 can be eliminated and its functions can then be performed by the computer 90. For this type of operation, the computer interface 78 would be connected back into an input port of the computer 90 and the input-output ports of the computer 90 would be connected to other components in the hybrid communications control unit 68 in the same manner as are the input-output ports of the microprocessors 70. For this type of operation, the computer 90 must have RAM and ROM memory and the capability to operate in response to a program which performs the functions of the program in Appendix A.
A cellular antenna 10 may be extended from or retracted into a compartment 97 of the portable computer case so as to protect the antenna when not in use and so as to increase the functionality and aesthetic appeal of the computer case when the system is used but cellular access is not desired. In the embodiment shown, the antenna moves in a linear fashion in and out of the compartment. Locking means (not shown) may hold the antenna in a fixed position. For example, ball-and-socket or frictional locks could be used. Alternatively, the antenna could be retracted by folding about a hinge into a recess in the portable computer case. In another embodiment, an external jack for connection of a roof-mount or other antenna could be provided.
The card bearing the hybrid communication control unit 68 is also provided with several other connectors. A first of these connectors on the card forms a connector for the speakerphone 52 and has three pins which provide transmit, receive, and signal ground lines. A second connector on the card is for the cellular transceiver and provides a pin for each line in the cellular bus 24 (shown in FIG. 1). This connector must be compatible with the cellular control unit jack of the cellular transceiver selected, and may be provided with an extension cable to facilitate the connection. A third connector of the card allows external connection of the cellular control unit 14 to the card, and is of the type that mates with the second connector previously described. A fourth connector allows external connection of additional speakers and microphones. This connector preferably takes the form of a headset jack. A final connector accepts the RJ-11 plug of the public switched telephone network as described previously. Additional connectors may be provided for additional speakers or other known telephone and computing equipment.
The computer interface 78 is preferably of the type that converses directly with a central logic bus of the portable computer 90, using the Signetics INS 8250 universal asynchronous receiver and transmitter and conventional techniques. Of course, the device might also converse with the portable computer using RS-232 C or another known standard.
The data access arrangement 42 (DAA) may be a standalone DAA, such as Midcom part number 681—0012. A slight reduction in construction costs can be obtained by assembling a DAA out of components using techniques well-known in the art, so as to provide the protection required to connect to the public switched telephone network. This method is preferred. Digital DAA control lines 94 connect the DAA 42 to the input/output ports of microprocessor 70, and the control lines include a ringing line. The DAA 42 may be controlled directly by the microprocessor 70 using the DAA digital control lines 94. This control prompts the data access arrangement to issue appropriate signaling directions to, and relay directions from, the public switched telephone network. Such signalling directions include Dual Tone Multi-Frequency (DTMF) dialing, on-hook and off-hook conditions, timed on/off hook sequences used for pulse dialing, and ringing sense. When ringing on the public switched telephone network line 41 is detected by the DAA 42, the DAA preferably causes an interrupt in the program sequence of microprocessor 70. Alternatively, the ringing line of the DAA control lines 94 can be latched and then polled by the microprocessor periodically.
The DTMF signals are obtained from the tone generator 80 which is shown as a separate entity but may also be located either within the data access arrangement 42 or within the modem 82. The tone generator 80 is connected to the analog switch by analog lines 96 and to the microprocessor 70 by tone control lines 98. The tone generator operates in response to control signals from the microprocessor transmitted through the tone control lines 98. The microprocessor may obtain the sequence of tones to be transmitted from control unit 14 or portable computer 90 in a manner that will be explained further. Analog signals of the tone generator may be passed to the data access arrangement 42 through the analog switch 72.
The analog switch 72 may be a 4053 manufactured by Toshiba, and a number of devices are connected to this analog switch 72. The connections internal to the hybrid communications control unit 68 will be described first. As explained previously, DAA 42 is connected to analog switch 72 by analog line 92. Tone generator 80 is connected to the analog switch 72 by analog lines 96, and modem 82 is connected to analog switch 72 by analog lines 102. Analog switch control lines 100 connect the analog switch 72 to microprocessor 70. The analog switch 72 accepts digital commands from the microprocessor 70 through analog switch control lines 100 to connect and disconnect the attached devices.
Next, the connections of the analog switch to devices external to the hybrid communications control unit 68 will be described. An optional microphone 103 may be connected to analog switch 72 by analog lines 104, while an optional speaker 105 may be connected to the analog switch by analog lines 106. The speakerphone 52 may be connected to the analog switch by analog lines 64, and the cellular transceiver 4 is connected to the analog switch by analog lines 108. The cellular control unit 14 is connected to the analog switch by analog lines 110.
As shown in FIG. 5, additional components connected at the analog switch 72 provide the level conditioning (amplification or attenuation) and impedence matching appropriate to each device. These components comprise operational amplifiers with associated resistors and capacitors. A similar circuit is used for each input and output connection of the analog switch 72, the only variation being the valves of the components, which are selected depending on the signal characteristics of the devices connected to the analog switch 72. The output and input signals are standardized according to a unique and novel scheme. This standardization is essential if the system is to be capable of operably connecting any two devices. In explaining these standards, reference will be made to terminal devices and line devices, the terminal devices being the DTMF tone generator 80, modem 82, control unit 14, speakerphone 52, microphone 103, and speaker 105. The line devices are the DAA 42 and transceiver 4.
Preferably, the output signals of all terminal devices, such as the microphone signal, are converted to a low-impedance, −10 DbV signal as part of the connection to analog switch 72. This signal is suitable for direct input to DAA 42, and is converted appropriately at the analog switch connection for input to other line devices, such as the cellular transceiver. The input signals of all connected terminal devices, such as the external speaker input, are provided at the analog switch connection with circuitry which converts a medium-impedance −10 DbV signal, as produced by DAA 42, to a signal with the characteristics required for input to the individual terminal device. The analog outputs of other line devices, such as transceiver 4, are converted at their analog switch connections to produce a signal with the same level and impedance characteristics as the signal produced by DAA 42.
Of course, other standard impedances and signal levels could be chosen within the scope of the invention. In another preferred embodiment, standards for terminal and line devices could be made the same to facilitate implementation of call relaying and connection of terminal devices to other terminal devices.
FIG. 5 shows two examples of the level and impedance matching circuits used in the preferred embodiments of the device of the present invention.
In the first example, the output of microphone 103, which may be a high-impedance (greater than 10 K Ohms), −40 DbV signal, is converted by op-amp circuit 112 to a low-impedance (less than 1K Ohms), −10 DbV signal suitable for direct switching to the DAA 42. O-amp circuit 114 converts this same low-impedance, −10 dBV signal to a −20 dBV low-impedance signal suitable for input to cellular transceiver 4.
In the second example shown in FIG. 5, the medium impedance (1-10 K Ohms), −10 dBV output signal of DAA 42 is converted by op amp circuit 116 to a low-impedance, 0 dBV signal appropriate for input to speaker 105. The analog output of cellular transceiver 4 is converted by op-amp circuit 118 to produce a signal with the same level and impedance characteristics as the analog output signal of DAA 42.
The following chart shows typical input and output impedance and level values for devices included in the present invention. Naturally, these values will vary depending on the specific devices selected.
IMPEDANCE
ITEM DIRECTION LEVEL (DBV) (KILO OHMS)
DTMF OUTPUT −6 1-10
MODEM OUTPUT −9 >10
MODEM INPUT −10 TO −40 >10
DAA OUTPUT −10 TO −40 1-10
DAA INPUT −9 MAXIMUM <1
TRU OUTPUT −20 1-10
TRU INPUT −20 >10
CU OUTPUT −20 1-10
CU INPUT −20 >10
SPEAKER- OUTPUT −40 >1
PHONE
SPEAKER- INPUT 0 <10
PHONE
MICRO- OUTPUT −40 >100
PHONE
SPEAKER INPUT −0 <0.01
Referring again to FIG. 4, when a signal appears on one of the lines 104, 106, 64, 108, or 110, circuitry parallel to with the analog switch 72 generates a service request to the microprocessor 70. FIG. 9 shows how this service request is generated in response to an analog transmission from any of the lines noted above, and for purposes of explanation, an analog signal from cellular transceiver 4 will be used in FIG. 9, Referring now to FIG. 9, the transceiver 4 is connected to analog line 108, which is connected to an input of an amplifier 120 which has an output 121. The output 121 of amplifier 120 is connected to a capacitor and resistor circuit 122 having an output 123. This output 123 is connected to the base of a transistor 124 having an emitter tied to ground and a collector 126 which provides an output. Collector 126 is connected to an RC network 128 having a resistor connected between collector 126 and +5 VDC, and a capacitor connected between collector 126 and ground. The RC network 128 is connected to a sensing line of the analog switch control lines 100. The service request is created by taking the low level analog signal provided at analog line 108 and amplifying it to a very high level voltage with the amplifier 120. This high level signal will alternately charge and discharge the capacitor and resistor circuit 122 in accordance with the period of the analog signal on analog line 108. This charging and discharging of the circuit 122 will turn the transistor 124 off and on, and this transistor switching can be used to provide a digital level signal directly to the microprocessor. Preferably, however, the signal is further conditioned by the RC network 128 to provide a signal which is easily sensed by the microprocessor. The microprocessor can record in RAM memory the condition of signals received in this manner, or the processor can poll the outputs 100 when it is necessary to know which devices are connected. The circuit of FIG. 9 thus allows the microprocessor to keep track of the devices that are connected to the portable hybrid communications system in an unique and novel manner.
The analog switch 72 acts as a cross-point switch, so that it is possible for more than one pair of analog signals to be connected at once without interference. For example, the cellular transceiver 4 could be connected to the speakerphone 52 while the data access arrangement 42 is connected to the modem 82, allowing simultaneous voice and data communications. This operation is made possible in part by the unique circuit disclosed and the standardization of analog levels of the present invention.
The modem 82 is directed by the microprocessor 70 using a modem control line 129. These directives include turning on and off the various stages of the modem's modulation and demodulation circuits. The analog signals produced by modem 82 are connected to the analog switch 72 so that the analog signals are available for switching, in a manner similar to the analog connection of the data access arrangement 42 to the analog switch 72. The microprocessor preferably receives and retransmits data to and from modem 82 and computer interface 78. Alternatively, a direct data connection or connection switchable manually or under the control of microprocessor 70 may be provided.
The operation of the power arbitration unit 76 will now be described. Input/output ports of microprocessor 70 are connected by power arbitration control lines 94 to the power arbitration unit 76. The power arbitration unit 76 contains circuitry which responds to the digital signals of microprocessor 70 to connect and disconnect external power from external power supply 88 to control unit 14 and transceiver 4. This power arbitration uses conventional microprocessor controlled switching units and techniques and the microprocessor signals are used at the request of the user or by the microprocessor's own internal program. Power wires 162 are provided between the control unit 14 and power arbitration unit 76. These wires provide the control unit 14 with power for operation, and are controlled by the microprocessor 70 using the power arbitration unit 76, thus giving the microprocessor 70 control of signal and power availability to the control unit 14. Power line 132 and external power line 134 connect power arbitration 76 and transceiver 4 so that the power arbitration unit 76 can control power to transceiver 4 in response to signals from microprocessor 70. The microprocessor 70 may store the status of power to the control unit and transceiver in random access memory for use as described later.
Digital switch 74 is connected to microprocessor 70 by digital switch control line 135 and digital data line 136. The digital switch is also connected to the cellular transceiver 4 by digital lines 130 and to the control unit 14 by digital lines 131. The digital signals provided by the transceiver unit 4 and control unit 14 are presented to the digital switch 74 of the hybrid control unit where they may be conditioned as necessary before being presented to the microprocessor 70.
FIG. 8 is a schematic diagram of a portion of digital switch 74. Only the circuit for one pair of digital data lines 131 and 130 is shown. There are actually a plurality of digital data lines 131 and 130, so that a plurality of the circuits illustrated in FIG. 8 are used in the system, one for each digital data line pair 130 and 131. Depending on the control unit and transceiver selected, some of the digital lines 130 and 131 may need only some of the digital switch functions. For example, a line may only require sensing by the processor. Those skilled in the art will appreciate that the entire circuit shown need not be provided for such lines. The circuit shown consists of a control unit pull down transistor 138, a control unit-to-transceiver pass thru transistor 140, a transceiver pull down transistor 142, each transistor having a base, emitter, and collector, and associated resistors. Transistors 138, 140 and 142 may preferably be Motorola 2N2222A types.
Specifically, the digital switch control line 135 is connected to a control unit-to-transceiver pass thru control line 148 which is connected through a resistor to the base of the control-unit to-transceiver pass thru transistor 140. The collector of transistor 140 is connected to digital data line 131, while the emitter of transistor 140 is connected to digital data line 130.
Digital data line 131 is connected through a resistor to a control unit sense line 156, which is connected through an internal input/output bus 160 to one of the digital data lines 136. Likewise, digital data line 130 is connected through a resistor to a transceiver sense line 158, which is also connected through the bus 160 to a different digital data line 136.
Two additional digital data lines 136 are connected through bus 160 to a control unit assert line 152 and a transceiver assert line 154 respectively. Control unit assert line 152 is connected through a resistor to the base of the control unit pulldown transistor 138. The collector of this transistor 138 is connected directly to digital data line 131, while its emitter is connected directly to ground. Likewise, transceiver assert line 154 is connected through a resistor to this base of the transceiver pulldown transistor 142. The collector of the transistor 142 is connected directly to digital data line 130, while its emitter is connected directly to ground.
The digital lines 131 of the control unit 14 and digital lines 130 of the transceiver 4 are, in the preferred embodiment, open-collector type lines. Inside the transceiver 4 and control unit 14 are pull-up resistors 144 and 146 that provide the voltage used to sense the logic level when the digital lines 131 and 130 are in their open collector state. These pull-ups may be placed within the digital switch 74 when not provided by the control unit 14 and transceiver 4. When the microprocessor asserts digital switch and control 135, the control unit-to-transceiver pass thru control line 148 is asserted, turning on the control unit-to-receiver pass thru transistor 140 thus connecting the control unit digital line 131 to the transceiver digital line 130 and allowing data to flow between the control unit 14 and transceiver 4. When the control unit-to-transceiver pass thru transistor 140 is turned off, the control unit 14 and transceiver 4 cannot exchange digital information.
The control unit and transceiver may be used independent of each other if proper digital information is provided to them. The microprocessor can provide the proper digital information by using its digital data lines 166. A plurality of digital lines 136 are used to enable assertion and sensing of each pair of digital data lines 130 and 131. These asserting and sensing lines are bussed internally to the digital switch 74 on the internal Input/Output Bus 160. When asserted, the appropriate digital data line 136 asserts the control unit assert line 152 or transceiver assert line 154 to turn on respectively control unit pull down transistor 138 or transceiver pull down transistor 142. This will change the state respectively of the control unit digital line 131 or transceiver digital line 130 from their open collector pulled up (high) condition to an asserted pulled down (ground) condition, thus allowing transmission of digital signals between the microprocessor 70 and the control unit 14 or transceiver 4 respectively. Any digital signals present on the digital lines 131 or 130 are sensed by the microprocessor through the control unit sense line 156 or the transceiver sense line 158, which are connected through bus 160 to appropriate digital data lines 136. Preferably, individual digital switch control lines 135 and digital data lines 136 are provided from the input/output ports of the microprocessor. If sufficient ports are not available, additional multiplexing circuits may be interposed between microprocessor 70 and digital switch 74 in a manner well known in the art.
Of course, methods of digital signaling other than the open collector method could have been chosen for the signaling used between the control unit 4 and transceiver 4, such as open-emitter, with pulldown resistors and pullup transistors, or methods where no open circuit conditions exist.
Referring again to FIG. 4, all required digital signals necessary to the proper functioning of the transceiver unit 4 are provided by directives issued from the microprocessor 70 through digital data lines 136, through the digital switch 74, through the digital wires 130 to the transceiver unit 4. An example of a necessary digital signal of this type is an ON/OFF signal, this signal being conventionally given to the transceiver unit 4 by user keystrokes on the key pad of the cellular control unit. These necessary signals may be directed by the microprocessor 70 as a result of its own internal program, or at the request of the user. User requests may be obtained through the portable computer 90 and computer interface 78 or by the user setting one of the toggle switches 86.
The relationship and connections of conventional devices to the hybrid communications control unit will now be described. The speakerphone 52 is preferably built into a case holding the portable computer 90. The hybrid communications control unit obtains access to the analog signals of the speakerphone 52 using the analog wires 64 included in the speakerphone 80, which terminate in a three-pin connector which mates with the speakerphone connector on the hybrid communications control unit board. The microprocessor 70 controls switching and conditioning of the analog signals using the analog switch 72, in a manner similar to the switching of the data access arrangement signals by analog switch 72.
The invention may incorporate other optional speakers 105 and microphones 103, with their analog signals connected to the analog switch 72 using analog wires 106 and 104, respectively, in a manner similar to that used with the analog signals of the data access arrangement 42 or speakerphone 52. An external speaker and microphone in the form of a telephone headset is preferably used in the present invention.
The cellular transceiver unit 4 is preferably built into the personal computer case in a space which might otherwise be occupied by a disk drive. The transceiver is connected to the invention by wires similar to those in the transceiver unit bus 24 (shown in FIG. 1), specifically analog wires 108, digital wires 130, power wires 132 and external power wires 134. All analog signals present at the transceiver unit 4 are switched and conditioned by the analog switch 72.
Thus, the total operating condition of the transceiver unit 4 is known and may be controlled by the microprocessor 70. Control signals may be initiated through the microprocessor's internal program or by user interaction with the microprocessor, either through the toggle switches 86 or through the portable computer 90. The microprocessor 70 can switch the analog signals of the transceiver unit 4 onto any of the remaining analog paths by controlling the operating state of the analog switch 72. The microprocessor 70 can selectively apply or remove external power to the transceiver unit 4 using the power arbitration unit 76.
The cellular control unit 14 preferably connects to a jack on the portable computer case, this jack being connected to the hybrid communications control unit board through a cable and connector which mates with the appropriate connector on the board (previously described). The analog wires 110 are connected to the analog switch 72, thus providing the microprocessor with the ability to switch the analog signals of the control unit as required. The digital wires 131 are connected to the digital switch 74, thus providing the microprocessor 70 with status sense and digital control of the control unit 14 as described previously, and the power wires 162 are connected to the power arbitration unit 76, providing the microprocessor with the ability to control the power to the control unit 14 as explained previously. Thus, the microprocessor 70 has complete control of the functioning of the control unit 14 as it has with the transceiver unit 4.
OPERATION
In the first mode of operation, voice calls can be placed and received on the public switched telephone network. At the request of the user communicated by toggle switches 86 or as a result of a user- or software-generated signal from the portable computer 90 sensed through computer interface 78, the microprocessor 70 instructs the data access arrangement 42 through the digital control lines 94 to take the public line off-hook.
If tone dialing is to be used, the microprocessor directs the analog switch 72 to connect data access arrangement 42 and tone generator 80, whereupon the microprocessor transmits tone commands for the number to be dialed to tone generator 80 through tone control line s 98. If pulse dialing is desired, the microprocessor transmits the proper series of on- and off- hook signals to the data access arrangement 42 using DAA control lines 94.
After dialing, the microprocessor commands the analog switch 72 to connect the analog wires 92 of the data access arrangement 42 to the analog wires 64 of the speakerphone 52 thus providing the user with speakerphone access to the public switched telephone network 40.
On completion of the call, the user can instruct the microprocessor to disconnect the public telephone line using the switch or computer means previously described. The microprocessor will then instruct the data access arrangement to place the landline on-hook, and instruct the analog switch to disconnect the voice device and data access arrangement.
When the public switched telephone network signals to the data access arrangement 42 that an incoming call is present, that condition (ringing) is sensed by the microprocessor through the ringing line of data access arrangement control lines 94, either through an interrupt or by polling the circuit. The microprocessor makes the user or portable computer aware of this condition by sending a message through the computer interface 78 or by placing an audible tone generated by the data access arrangement 42 or elsewhere (such as the tone generator 80) on any speaker analog path (such as an optional speaker 105 by means of wires 106). The user may then elect to answer or ignore the call. This decision is sent to the microprocessor 70 by the user using the portable computer 90. Alternatively, a toggle switch could be provided for this purpose. In addition, the microprocessor 70 may be instructed any time prior to the ringing condition to always answer the call (auto-answer mode).
For incoming calls, the microprocessor 70 selects the device to be connected in a novel manner, based on the devices connected and programmed priorities. The microprocessor knows the present power-on condition of the transceiver unit 4 and control unit 14 by monitoring the power arbitration unit 76. The presence of optional speakers 105 can be sensed at the optional speaker connection, using the toggle switch method similar to that previously described for the high current external power switch for the transceiver unit. The presence of public switched telephone network 40 can be sensed using the data access arrangement 86 and analog switch 72 as described previously with reference to FIG. 9. The microprocessor can then choose, based on the availability of speakers and microphones and based on its preprogrammed priorities, the most appropriate analog path to use for all analog signals. Preferably, the microprocessor will first check for the presence of a headset, connecting the incoming call thereto if the headset is present. If there is no headset present, the microprocessor will direct that the incoming call be connected to the speakerphone. Those skilled in the art will appreciate that these priorities could be modified and that other devices could be included in the priority. While the priority is preferably built into the firmware, priorities could also be modifiable by the end user, either by sending a command from the personal computer or by adjusting toggle or dual-inline-pin switches.
The device of the present invention may also place and answer calls over the public switched telephone network 40 using analog devices that are not part of the speakerphone 52, such as speaker 105 and microphone 103 which are preferably embodied in a unitary headset which plugs into the hybrid communications control unit board.
In a second mode of operation, the modem 82 can be used to send and receive data over the public switched telephone network 40 using the data access arrangement 42 in a manner similar to that previously described using the speakerphone 52, except that the analog switch 72 connects the modem 82 to the data access arrangement 42 rather than connecting the speakerphone. After the call is set up, the microprocessor 70 directs modem 82 to transmit data using standard protocols and error checking that are well-known in the art. Data is transmitted to and received from the microprocessor 70 by the portable computer 90 through computer interface 78. The microprocessor 70 retransmits the transmitted data to the modem 82, where the digital data is converted to a modulated analog signal and transmitted over the public switched telephone network. The microprocessor receives incoming data from the modem and retransmits this received data to the portable computer 90.
In a third mode of operation, the system can place and receive calls over the cellular telephone network. Cellular calls may be placed using the speakerphone 52 or the headset comprising speaker 105 and microphone 103, but in a manner different from that previously described for placing and receiving speakerphone calls over the public switched telephone network. Microprocessor 70 first sends the proper digital signals to transceiver 4 through digital data lines 136, digital switch 74, and digital data lines 130, instructing the transceiver to initiate a call to the desired number. The microprocessor then instructs analog switch 72 to connect the analog wires 108 of the transceiver unit 4 and the analog wires 64 of the speakerphone 52. When the user indicates to the microprocessor that the call is complete, disconnect instructions are transmitted to the transceiver and analog switch.
When there is an incoming call on the cellular network, the system processes the incoming call in a novel and unique manner. The processing required depends on the type of transceiver used. For example, Motorola brand transceivers generate a digital signal to alert the user to ringing, while OKI brand transceivers generate an alternating series of analog tones. The OKI transceiver also uses analog tones to indicate busy, ringing, and out-of-service area signals. These signals differ from the incoming call signal.
If the transceiver used produces digital signals, an incoming call will be signalled on digital line 130, causing the digital switch 74 to request service from the microprocessor 70. The microprocessor will read the data from the transceiver; if the data indicates an incoming call, the microprocessor will inform the user and may connect the call to the speakerphone, headset, or other device.
If the transceiver produces an analog signal to announce an incoming call, this signal will appear on analog data line 108. Analog switch 72 will generate a service request to microprocessor 70 using the circuitry described earlier and shown in FIG. 9. The microprocessor will evaluate the cadence or period of the signal to determine whether it is actually an incoming call signal, rather than one of the other signals described previously. On confirmation of an incoming call condition, the microprocessor will inform the user and take action as described previously.
In a fourth mode of operation, the invention allows the modem 82 to be used during a cellular telephone network call placed using the transceiver unit 4. The microprocessor first signals the transceiver 4 to initiate the call as described in the procedure for placing a cellular voice call. Next, the processor directs analog switch 72 to connect transceiver 4 to modem 82 using analog lines 108 and analog lines 102, respectively. The microprocessor 70 then accepts data from the portable computer 90 through interface 78 for retransmission. The microprocessor then selects a special protocol for use on the cellular network, this automatic protocol selection being novel and unique. Rather than using standard data transfer methods as with the landline, the microprocessor will preferably retransmit the data through the modem in variable-sized packets with special protocols and error checking appropriate to a cellular environment. These methods are described in detail in the inventor's U.S. Pat. No. 4,697,281, which disclosure is incorporated herein by reference. Data received from the cellular link will be demodulated by the modem 82 and checked by the processor, which will remove the overhead bits needed for error checking and then retransmit the data to the portable computer 90. As in the other operating modes described, the setup process is reversed when the call is complete.
In a fifth mode of operation, the microprocessor 70 can cause the control unit 14 to assume its “original” function of placing and receiving calls over the cellular telephone network. The microprocessor 70 sends controlling information to the power arbitration unit, analog switch 72, and digital switch 74 directing these devices to connect all control unit wires and paths to their corresponding transceiver unit ires and paths. Transceiver functions can then be controlled directly by the control unit.
In a sixth mode of operation, the cellular control unit 14 can be used to place calls on the public telephone network. This mode of operation provides novel and unique functionality since cellular control units cannot normally be used with public telephone network lines. In this operation mode, the speaker and microphone of the cellular control unit are used in conjunction with the data access arrangement 42 to place and receive calls over the public switched telephone network 40 in a manner similar to that shown for placing and receiving calls over the public switched telephone network using the speakerphone 52.
The keypad 18 (shown in FIG. 1) of control unit 14 can be used to direct the microprocessor 70, rather than using the toggle switches 86 or portable computer 90. As described previously, the digital switch 74 makes data available to the microprocessor when a connected device transmits. This signal can be used as an interrupt or can be latched and polled by the processor. Through digital data line 131, digital switch 74, and digital data line 136, the microprocessor can then accept data representative of the keys pressed on the control unit. Thus, dialing instructions may be obtained from the key pad 18 of the control unit 14. Note that the control unit 14 does not provide any internally generated audible feedback when a key is pressed on the key pad 18. This audible feedback is normally provided by the transceiver unit 4 when the control unit 14 is used with the transceiver unit 4 as in FIG. 1. Therefore, audible feedback must be provided by other means. When a key is pressed on the key pad 18 of the control unit 14, the microprocessor may instruct the tone generator 80 to produce a specific frequency and cadence analog signal that is transmitted through the analog switch to any available speaker, such as the optional speaker 105.
Further, as the control unit 14 contains a display, audible signals and digital messages previously described that originate from microprocessor 70 may be augmented by a visual message on that display, shown at 16 in FIG. 1. The microprocessor 70 produces the visual message by sending the appropriate digital commands through the digital switch 74 means to the control unit 14 and thus to its display 16.
Also, as the control unit may not always have its microphone 22 and speaker 20 enabled, the microprocessor 70 ma issue appropriate directives to the control unit 14 through digital data line 136 to enable the control unit's microphone and speaker. Disabling of the speaker and microphone can be directed in a like manner.
As the key pad of the control unit 14 contains an ON/OFF switch, said switch may be used as a toggle switch 86 in a manner similar to that of the previously described high current power switch for the transceiver unit 4.
Additional functions possible with minor modifications to the preferred embodiment include connections that are not commonly desired such as speakerphone to control unit.
The present device can also relay calls in a novel and unique manner by connecting the data access arrangement to the transceiver unit. While the software in the attached microfiche appendix does not implement this feature, the flow diagram of FIG. 7 shows the required steps for relaying a cellular call to a landline.
Referring now to FIG. 7, a cellular ringing condition initiates the process. The microprocessor sends signals to the transceiver, directing the transceiver to answer the cellular call. The microprocessor then determines whether the user would like the call connected to the speakerphone or headset, or to the modem. The user can give instructions at the time of call receipt, or the instructions may have been given at an earlier time. If no connection to a terminal device is desired, the microprocessor waits for a landline phone number. This number can be entered from the personal computer 90, from the control unit 14, or may have been entered at an earlier time. When the number is ready, the microprocessor follows the steps required to place a landline call, including taking the line off hook, connecting tone generator 80 to DAA 42, and generating DT MF t ones. The microprocessor then instructs the analog switch to connect the transceiver 4 and DAA 42. The microprocessor then waits until the cellular call is terminated, either by the caller or by the user. The microprocessor then signals the DAA to place the landline on-hook and signals the analog switch to disconnect the TRU and DAA.
This same general procedure can be used to relay calls from landline to cellular.
In addition, those skilled in the art will appreciate that more than one of the functions described hereto can be performed simultaneously so long as the analog switch chosen is capable of connecting more than a single pair of devices. Thus, in a novel and unique manner, the system can either provide voice and data channels at the same time, or provide two voice channels at the same time, one channel being over the public telephone network and one channel being over the cellular network.
INDUSTRIAL APPLICABILITY
The present invention relates to communications in the portable environment generally, and more specifically to the cellular and landline telephone networks, and their access using both voice and data methods a well as portable computer control of that access.

Claims (55)

I claim:
1. A portable hybrid communications system comprising:
(a) entry means for entering a data signal;
(b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing control signals;
(c) modem means for modulating and demodulating data signals;
(d) cellular transceiving means for accessing a cellular network in response to cellular network accessing control signals;
(e) analog switch means connected to the public telephone network connection means, to the cellular transceiving means, and to the modem means;
(f) digital data connecting means for selectively creating a digital data transmission connection with the cellular transceiving means;
(g) central processing means connected with said entry means, said public telephone network connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network so that the central processing means may transmit or receive information over the public or cellular network.
2. The system of claim 1 wherein the entry means is a personal computer interfaced to the central processing means.
3. The system of claim 1 having means to selectively control power application to the cellular transceiving means.
4. The system of claim 1 wherein signal sensing means responsive to incoming cellular or public telephone network calls signals the user that an incoming call condition exists.
5. The system of claim 1 wherein the central processing means may selectively operably connect an active cellular network line to an active public telephone network line for call relaying.
6. The system of claim 1 wherein a cellular antenna associated with the cellular radiotelephone transceiving means is retractable into a case housing the system.
7. The system of claim 1 wherein the central processing means resides on a circuit board which fits in a card slot of the personal computing means.
8. The system of claim 7 wherein the card slot is a modem card slot.
9. The system of claim 1 further including voice signalling means for generating and receiving voice signals connected to the central processing means, wherein the central processing means selectively operably connects said voice signalling means to either the public telephone network connection means or the cellular transceiving means.
10. The system of claim 9 wherein the central processing means may selectively operably connect the modem means to either the cellular transceiving means or the public telephone network connection means, while the central processing means may operably connect the voice signal generating and receiving means to the other of the cellular transceiving means or public telephone network connection means, permitting simultaneous voice and data communications.
11. The system of claim 9 wherein the central processing means selectively produces a first processing method when data signals are transmitted or received using the public telephone network and a second processing method when data signals are transmitted or received using the cellular transceiving means.
12. The system of claim 9 wherein signal sensing means responsive to an incoming cellular or public telephone network call cause the central processing means to connect the call selectively to a data or voice terminal means associated with the system.
13. The system of claim 9 wherein the voice signalling means is a speakerphone built into a case housing the personal computing means.
14. The system of claim 9 having means for connecting one or more external voice signal generating and receiving devices which the central processing means may selectively operably connect to either the cellular transceiving means or the public telephone network connection means.
15. The system of claim 14 wherein one of the external voice signal generating and receiving devices is a telephone headset.
16. The system of claim 14 wherein the central processing means generates all the signals which cause the cellular transceiving means to transmit and receive voice signals over the cellular network.
17. The system of claim 14 having sensing means to sense the connective status of the external voice signal generating and receiving devices.
18. The system of claim 17 wherein signal sensing means responsive to incoming cellular or public telephone network calls cause these calls to be connected selectively to a data or voice terminal means associated with the system, where the choice of terminal means to be connected depends on the terminal means available and on a preselected priority when a plurality of terminal means are available.
19. The system of claim 14 wherein one of the external voice signal generating and receiving devices is a cellular control unit.
20. The system of claim 19 including means to selectively control the application of power to the cellular control unit and cellular transceiving means.
21. The system of claim 19 wherein the cellular control unit has means for information display or audio signalling, and wherein the central processing means transmit signals to the cellular control unit, causing the control unit to display information or signal audibly.
22. The system of claim 19 wherein the cellular control unit has input means for accepting user input and wherein the central processing means accepts signals from the control unit representative of the user input.
23. The system of claim 19 wherein the cellular control unit has a microphone and speaker, and wherein means are provided for selectively transmitting signals from the central processing means to the cellular control unit to enable or disable the microphone and speaker.
24. The system of claim 19 wherein the central processing means may control operation of the system such that the cellular control unit functions to transmit and receive signals over the public telephone network while the cellular transceiver is disabled.
25. Apparatus for controlling the path of voice and data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU), a cellular (CU) handset and a computer having at least a communications software program, a keyboard and an I/O port for communications, said apparatus for controlling comprising:
analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means;
landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline;
TRU interface means operatively connected to said analog switching means, said TRU interface means being structured to be connected to the cellular transmit/receive unit;
cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset;
speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone;
a modem operatively connected to said analog switching means; and
a central processing unit operatively connected to said analog switching means, landline interface means, TRU interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer.
26. The apparatus of claims 25 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the microphone of the cellular (CU) handset through the cellular interface means, the microphone of the speaker phone through the speaker phone interface means and the output of the modem, said different predetermined selectable destinations comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means.
27. The apparatus of claim 25 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means, said different predetermined selectable destinations comprises the speaker of the cellular (CU) handset through the cellular interface means, the speaker of the speaker phone through the speaker phone interface means and the input of the modem.
28. The apparatus of claim 25 wherein said cellular interface means comprises amplifier means to amplify the signals from the microphone of said cellular (CU) handset to the analog switching means and to amplify the signals from the analog switching means to the speaker of said cellular (CU) handset.
29. The apparatus of claim 25 wherein said TRU interface means comprises amplifiers means to amplify the signals from the analog switching means to the cellular transmit/receive unit and to amplify the signals to the analog switching means from the cellular transmit/receive unit.
30. The apparatus of claim 25 wherein said landline interface means comprises amplifier means to amplify the signals from the landline to the analog switching means and to amplify the signals to the landline from the analog switching means.
31. The apparatus of claim 25 wherein said computer, said speaker phone, said cellular transmit/receive unit, said cellular (CU) handset and said apparatus for controlling are built into a single portable unit.
32. In combination:
a computer having at least a communications software program, a keyboard and an I/O port for communications;
a speaker phone having at least a speaker and a microphone;
a cellular transmit/receive unit (TRU) and a cellular (CU) handset, sand cellular (CU) handset including a microphone and a speaker;
apparatus for controlling the path of voice and data signals from and to said computer, said speaker phone, said cellular transmit/receive unit (TRU) and said cellular (CU) handset, said apparatus for controlling comprising:
analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means;
landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline;
TRU interface means operatively connected to said analog switching means, said TRU interface means being structured to be connected to the cellular transmit/receive unit;
cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset;
speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone;
a modem operatively connected to said analog switching means; and
a central processing unit operatively connected to said analog switching means, landline interface means, TRU interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer.
33. The apparatus of claim 32 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the microphone of the cellular (CU) handset through the cellular interface means, the microphone of the speaker phone through the speaker phone interface means and the output of the modem, said different predetermined selectable destinations comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means.
34. The combination of claim 32 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to received an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means, said different predetermined selectable destinations comprises the speaker of the cellular (CU) handset through the cellular interface means, the speaker of the speaker phone through the speaker phone interface means and the input of the modem.
35. The combination of claim 32 wherein said cellular interface means comprises amplifier means to amplify the signals from the microphone of said cellular (CU) handset to the analog switching means and to amplify the signals from the analog switching means to the speaker of said cellular (CU) handset.
36. The combination of claim 32 wherein said TRU interface means comprises amplifier means to amplify the signals from the analog switching means to the cellular transmit/receive unit and to amplify the signals to the analog switching means from the cellular transmit/receive unit.
37. The combination of claim 32 wherein said landline interface means comprises amplifier means to amplify the signals from the landline to the analog switching means and to amplify the signals to the landline from the analog switching means.
38. The combination of claim 32 wherein said computer, said speaker phone, said cellular transmit/receive unit, said cellular (CU) handset and said apparatus for controlling are built into a single portable unit.
39. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU;
sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position;
placing the power switch of the cellular (CU) handset to the ON position;
sending a sense signal to the CPU indicating the power switch of the cellular (CU) handset has been placed to the ON position;
sending a control signal from the CPU to the cellular interface means to cause power to be applied to the cellular (CU) handset; and
sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the cellular (CU) handset to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the cellular (CU) handset through the TRU interface means;
thereby allowing voice signals to be transmitted to and received from a location whose telephone number has been dialed on the cellular (CU) handset and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular TRU and the cellular (CU) handset.
40. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU;
sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position;
placing the power switch of the computer to the ON position applying power to the computer;
activating the speaker phone;
sending a sense signal to the CPU indicating the speaker phone has been activated;
sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the speaker phone through the TRU interface means; and
activating the communications software program in the computer;
thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
41. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (TRU) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communication, said method comprising the steps of:
placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU;
sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position;
placing the power switch of the computer to the ON position applying power to the computer;
activating the telephone-type headset;
sending a sense signal to the CPU indicating the telephone-type headset has been activated;
sending control signals to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the telephone-type headset through the TRU interface means; and
activating the communications software program in the computer;
thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
42. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer;
activating the speaker phone;
sending a sense signal to the CPU indicating the speaker phone has been activated;
sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the speaker phone; and
activating the communications software program in the computer;
thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer.
43. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer;
activating the telephone-type headset;
sending a sense signal to the CPU indicating the telephone-type headset has been activated;
sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the landline through the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the telephone-type headset; and
activating the communications software program in the computer;
thereby allowing voice signals to be transmitted to and receive from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer.
44. A method of controlling the path of data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU;
sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position;
placing the power switch of the computer to the ON position applying power to the computer;
sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the modem to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the input of the modem through the TRU interface means; and
activating the communications software program in the computer;
thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
45. A method of controlling the path of data signals in a communications systems which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer;
sending a control signal from the CPU to the analog switching means to cause the analog switching mean to switch the output of the modem to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the input of the modem; and
activating the communications software program in the computer;
thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of-the computer.
46. A portable hybrid communications control unit for selectively transmitting and receiving data over different telephone networks including a cellular network using a cellular transceiver, comprising
(a) entry means for entering a data signal;
(b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing signals;
(c) modem means for modulating and demodulating data signals;
(d) cellular transceiving connection means adapted to be connected with a cellular transceiver for accessing a cellular network in response to cellular network accessing control signals;
(e) analog switch means connected to the public telephone network connection means, to the cellular transceiving connection means, and to the modem means;
(f) digital data connecting means for selectively creating a digital and data transmission connection with the cellular transceiving means; and
(g) central processing means connected with said entry means, said public telephone network connection means, said cellular transceiver connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network through the cellular transceiver so that the central processing means may transmit or receive information over the public or cellular network.
47. The system of claim 46 wherein the entry means is a personal computer interfaced to the central processing means.
48. The system of claim 46 having means to selectively control power application to the cellular transceiver.
49. The system of claim 46 wherein the central processing means may selectively operably connect an active cellular network line to an active public telephone network line for call relaying.
50. The system of claim 46 wherein a cellular antenna associated with the cellular radiotelephone transceiver is retractable into a case housing the system.
51. The system of claim 46 wherein the central processing means resides on a circuit board which fits in a card slot of the personal computing means.
52. The system of claim 51 wherein the card slot is a modem card slot.
53. The system of claim 46 further including voice signalling means for generating and receiving voice signals connected to the central processing means, wherein the central processing means selectively operably connects said voice signalling means to either the public telephone network connection means or the cellular transceiving connection means.
54. The system of claim 53 wherein the central processing means may selectively operably connect the modem means to either the cellular transceiving connection means or the public telephone network connection means, while the central processing means may operably connect the voice signalling means to the other of the cellular transceiving connection means and public telephone network connection means, permitting simultaneous voice and data communications.
55. The system of claim 46 wherein the central processing means selectively produces a first processing method when data signals are transmitted or received using the public telephone network and a second processing method when data signals are transmitted or received using the cellular transceiving connection means.
US07/831,671 1989-01-19 1992-02-05 Portable hybrid communication system and methods Expired - Lifetime USRE38127E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/831,671 USRE38127E1 (en) 1989-01-19 1992-02-05 Portable hybrid communication system and methods
US10/141,880 USRE38645E1 (en) 1989-01-19 2002-05-10 Portable hybrid communication system and methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/301,521 US4972457A (en) 1989-01-19 1989-01-19 Portable hybrid communication system and methods
US07/831,671 USRE38127E1 (en) 1989-01-19 1992-02-05 Portable hybrid communication system and methods
US10/141,880 USRE38645E1 (en) 1989-01-19 2002-05-10 Portable hybrid communication system and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/301,521 Reissue US4972457A (en) 1989-01-19 1989-01-19 Portable hybrid communication system and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/301,521 Division US4972457A (en) 1989-01-19 1989-01-19 Portable hybrid communication system and methods

Publications (1)

Publication Number Publication Date
USRE38127E1 true USRE38127E1 (en) 2003-05-27

Family

ID=23163744

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/301,521 Ceased US4972457A (en) 1989-01-19 1989-01-19 Portable hybrid communication system and methods
US07/831,671 Expired - Lifetime USRE38127E1 (en) 1989-01-19 1992-02-05 Portable hybrid communication system and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/301,521 Ceased US4972457A (en) 1989-01-19 1989-01-19 Portable hybrid communication system and methods

Country Status (1)

Country Link
US (2) US4972457A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010037471A1 (en) * 2000-03-01 2001-11-01 Ming-Kang Liu System and method for internal operation of multiple-port xDSL communications systems
US20020023086A1 (en) * 2000-06-30 2002-02-21 Ponzio, Jr. Frank J. System and method for providing signaling quality and integrity of data content
US20030122882A1 (en) * 2001-12-28 2003-07-03 Samuel Kho Menu navigation and operation feature for a handheld computer
US20050179654A1 (en) * 2001-06-11 2005-08-18 Hawkins Jeffrey C. Interface for processing of an alternate symbol in a computer device
US20060132832A1 (en) * 2004-12-17 2006-06-22 Sap Aktiengesellschaft Automated telephone number transfer
US7123906B1 (en) * 2003-10-17 2006-10-17 Verizon Communications Inc. Integrated telephony service
US20090034514A1 (en) * 1999-08-12 2009-02-05 Palm, Inc. Integrated Mobile Computing and Telephony Device and Services
US20100015965A1 (en) * 1999-08-12 2010-01-21 Palm, Inc. Integrated handheld computing and telephony device
US7725127B2 (en) 2001-06-11 2010-05-25 Palm, Inc. Hand-held device
US20110230234A1 (en) * 2001-06-11 2011-09-22 Hawkins Jeffrey C Integrated personal digital assistant device
US8103313B2 (en) 1992-11-09 2012-01-24 Adc Technology Inc. Portable communicator
US8174993B2 (en) 2003-10-03 2012-05-08 Dell Products L.P. System, method and device for tuning a switched transmission line for ethernet local area network-on-motherboard (LOM)
US8677286B2 (en) 2003-05-01 2014-03-18 Hewlett-Packard Development Company, L.P. Dynamic sizing user interface method and system for data display
US8774375B2 (en) * 2007-04-27 2014-07-08 Padmanabhan Mahalingam System and methods for establishing a telephony session from a remote dialing unit
US20140370881A1 (en) * 2000-12-19 2014-12-18 At&T Intellectual Property I, L.P. System and Method for Remote Control of Appliances Utilizing Mobile Location-Based Applications
US9466076B2 (en) 2000-12-19 2016-10-11 At&T Intellectual Property I, L.P. Location blocking service from a web advertiser
US9501780B2 (en) 2000-12-19 2016-11-22 At&T Intellectual Property I, L.P. Surveying wireless device users by location
US9571958B2 (en) 2000-06-30 2017-02-14 At&T Intellectual Propery I, L.P. Anonymous location service for wireless networks
US9763091B2 (en) 2000-12-19 2017-09-12 At&T Intellectual Property I, L.P. Location blocking service from a wireless service provider
US10354079B2 (en) 2000-12-19 2019-07-16 Google Llc Location-based security rules

Families Citing this family (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697281A (en) 1986-03-14 1987-09-29 Spectrum Cellular Communications Corporation, Inc. Cellular telephone data communication system and method
USRE37141E1 (en) 1984-09-10 2001-04-17 Spectrum Information Technologies, Inc. Cellular telephone data communication system and method
US5485370A (en) 1988-05-05 1996-01-16 Transaction Technology, Inc. Home services delivery system with intelligent terminal emulator
US5572572A (en) 1988-05-05 1996-11-05 Transaction Technology, Inc. Computer and telephone apparatus with user friendly interface and enhanced integrity features
US4991197A (en) * 1988-09-01 1991-02-05 Intelligence Technology Corporation Method and apparatus for controlling transmission of voice and data signals
JP2886869B2 (en) * 1988-10-14 1999-04-26 株式会社日立製作所 Information equipment
USRE38645E1 (en) 1989-01-19 2004-11-02 Mlr, Llc Portable hybrid communication system and methods
US5128981A (en) * 1989-05-24 1992-07-07 Hitachi, Ltd. Radio communication system and a portable wireless terminal
JPH0756529Y2 (en) * 1989-10-21 1995-12-25 株式会社東芝 Desktop / wall-mounted phone
US5793843A (en) * 1989-10-31 1998-08-11 Intelligence Technology Corporation Method and apparatus for transmission of data and voice
EP0450062A4 (en) * 1989-10-31 1992-09-23 Intelligence Technology Corporation Data and voice transmission over a cellular telephone system
USRE39989E1 (en) * 1989-10-31 2008-01-01 Morris Walker C Method and apparatus for transmission of analog and digital
WO1991011889A1 (en) * 1990-02-02 1991-08-08 At&E Corporation Pager equipped computer
US5127041A (en) * 1990-06-01 1992-06-30 Spectrum Information Technologies, Inc. System and method for interfacing computers to diverse telephone networks
US5251257A (en) * 1990-09-12 1993-10-05 Sharp Kabushiki Kaisha 2-wire/3-wire converting apparatus
US5297191A (en) * 1990-09-28 1994-03-22 At&T Bell Laboratories Method and apparatus for remotely programming a wireless telephone set
US5191602A (en) * 1991-01-09 1993-03-02 Plantronics, Inc. Cellular telephone headset
US5734981A (en) * 1991-01-17 1998-03-31 Highwaymaster Communications, Inc. Method and apparatus for call delivery to a mobile unit
US5754960A (en) * 1991-02-22 1998-05-19 Ericsson Inc. Display console and user interface for multisite RF trunked system
US5134651A (en) * 1991-04-18 1992-07-28 Codecom Rural Communications, Inc. Method and apparatus for providing answer supervision and an autonomous pay telephone incorporating the same
US5436960A (en) * 1991-05-20 1995-07-25 Campana, Jr.; Thomas J. Electronic mail system with RF communications to mobile processors and method of operation thereof
US5659890A (en) * 1991-07-25 1997-08-19 Casio Computer Co., Ltd. Portable radio apparatus equipped with function to display received message information
US5488653A (en) * 1991-09-04 1996-01-30 Comsat Corporation Facsimile interface unit (FIU) enhanced capabilities negotiation
US5479479A (en) * 1991-10-19 1995-12-26 Cell Port Labs, Inc. Method and apparatus for transmission of and receiving signals having digital information using an air link
US5444768A (en) * 1991-12-31 1995-08-22 International Business Machines Corporation Portable computer device for audible processing of remotely stored messages
US5826198A (en) * 1992-01-13 1998-10-20 Microcom Systems, Inc. Transmission of data over a radio frequency channel
US6009330A (en) * 1992-01-27 1999-12-28 Highwaymaster Communications, Inc. Method and apparatus for call delivery to a mobile unit
US5384854A (en) * 1992-02-14 1995-01-24 Ericsson Ge Mobile Communications Inc. Co-processor controlled switching apparatus and method for dispatching console
CA2086854C (en) * 1992-03-30 1998-03-31 David Joseph Brigida Method and system for automatic modem protocol selection in a cellular communications system
US5249218A (en) * 1992-04-06 1993-09-28 Spectrum Information Technologies, Inc. Programmable universal interface system
US5754655A (en) * 1992-05-26 1998-05-19 Hughes; Thomas S. System for remote purchase payment and remote bill payment transactions
US5365227A (en) * 1992-07-06 1994-11-15 Motorola, Inc. Method and apparatus for transmitting status information from a selective call receiver to an external electronic device
US5302947A (en) * 1992-07-31 1994-04-12 Motorola, Inc. Method and apparatus for loading a software program from a radio modem into an external computer
US5285494A (en) * 1992-07-31 1994-02-08 Pactel Corporation Network management system
US5512886A (en) * 1992-10-19 1996-04-30 Motorola, Inc. Selective call receiver with computer interface
US5521589A (en) * 1992-10-19 1996-05-28 Motorola, Inc. Method and apparatus for receiving and selectively announcing time-activated messages
US5455572A (en) * 1992-10-19 1995-10-03 Motorola, Inc. Selective call receiver with computer interface message notification
US6295460B1 (en) 1992-11-06 2001-09-25 Compaq Computer Corporation Modem for selectively connecting to a land line or to a cellular telephone
US5428671A (en) * 1992-11-09 1995-06-27 Compaq Computer Corporation Modem for tight coupling between a computer and a cellular telephone
US5666530A (en) * 1992-12-02 1997-09-09 Compaq Computer Corporation System for automatic synchronization of common file between portable computer and host computer via communication channel selected from a plurality of usable channels there between
US5535204A (en) * 1993-01-08 1996-07-09 Multi-Tech Systems, Inc. Ringdown and ringback signalling for a computer-based multifunction personal communications system
US5812534A (en) * 1993-01-08 1998-09-22 Multi-Tech Systems, Inc. Voice over data conferencing for a computer-based personal communications system
US5546395A (en) * 1993-01-08 1996-08-13 Multi-Tech Systems, Inc. Dynamic selection of compression rate for a voice compression algorithm in a voice over data modem
US5452289A (en) * 1993-01-08 1995-09-19 Multi-Tech Systems, Inc. Computer-based multifunction personal communications system
US5754589A (en) * 1993-01-08 1998-05-19 Multi-Tech Systems, Inc. Noncompressed voice and data communication over modem for a computer-based multifunction personal communications system
US5617423A (en) * 1993-01-08 1997-04-01 Multi-Tech Systems, Inc. Voice over data modem with selectable voice compression
US6009082A (en) * 1993-01-08 1999-12-28 Multi-Tech Systems, Inc. Computer-based multifunction personal communication system with caller ID
US5864560A (en) * 1993-01-08 1999-01-26 Multi-Tech Systems, Inc. Method and apparatus for mode switching in a voice over data computer-based personal communications system
US5453986A (en) * 1993-01-08 1995-09-26 Multi-Tech Systems, Inc. Dual port interface for a computer-based multifunction personal communication system
TW226510B (en) * 1993-01-19 1994-07-11 Novatel Comm Ltd Wireline interface for cellular telephone
US5495234A (en) * 1993-01-21 1996-02-27 Motorola, Inc. Method and apparatus for length dependent selective call message handling
US5311197A (en) * 1993-02-01 1994-05-10 Trimble Navigation Limited Event-activated reporting of vehicle location
CZ267794A3 (en) * 1993-02-10 1995-05-17 Spectrum Information Tech Radio-telephone set for transmission of phone signal or data
CA2132026C (en) * 1993-03-04 2007-10-30 Per Anders Lennart Stein Modular radio communications system
US5890074A (en) * 1993-03-04 1999-03-30 Telefonaktiebolaget L M Ericsson Modular unit headset
US5963872A (en) * 1993-03-04 1999-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Electronic equipment audio system
US6016432A (en) * 1993-03-04 2000-01-18 Telefonaktiebolaget L/M Ericsson (Publ) Electronic metering equipment system
US5905947A (en) * 1993-03-04 1999-05-18 Telefonaktiebolaget Lm Ericsson Electronic audio system capable of communicating data signals over wireless networks
AU7095294A (en) * 1993-06-08 1995-01-03 Mitsui Comtek Corporation Pcmcia cellular card adaptable to a portable computer or a cellular phone handset
SE518649C2 (en) * 1993-06-22 2002-11-05 Ericsson Telefon Ab L M Procedure for telecommunications access in a multi-network environment
AU7210894A (en) * 1993-06-25 1995-01-17 Xircom, Inc. Virtual carrier detection for wireless local area network with distributed control
WO1995001698A1 (en) * 1993-07-02 1995-01-12 Tommyca Freadman Computer communications device
GB2282906B (en) * 1993-10-13 1996-11-06 Dataquill Ltd Data enty systems
ZA948428B (en) * 1993-11-15 1995-06-30 Qualcomm Inc Method for providing a voice request in a wireless environment
US5487175A (en) * 1993-11-15 1996-01-23 Qualcomm Incorporated Method of invoking and canceling voice or data service from a mobile unit
AU1175595A (en) * 1993-11-15 1995-06-06 Qualcomm Incorporated Data communication using a dual mode radiotelephone
FI110833B (en) * 1993-11-30 2003-03-31 Nokia Corp Method and apparatus for data transfer between a digital mobile phone and an external data terminal connected to it
FI935838A (en) * 1993-12-23 1995-06-24 Nokia Mobile Phones Ltd Anslutning av en mobil telefon till ett traodtelefonnaet
US7765039B1 (en) * 1994-02-15 2010-07-27 Hagenbuch Leroy G Apparatus for tracking and recording vital signs and task-related information of a vehicle to identify operating patterns
NZ281061A (en) 1994-02-24 1997-12-19 Gte Mobile Comm Servinc Cellular wireless telephone system equipped with remote program mobile station
US5594782A (en) 1994-02-24 1997-01-14 Gte Mobile Communications Service Corporation Multiple mode personal wireless communications system
EP0670650A1 (en) * 1994-03-04 1995-09-06 Motorola, Inc. Portable communications interface network
JP3893621B2 (en) * 1994-03-29 2007-03-14 モーリス,ウォーカー、シー Data and voice transmission method and apparatus
US5510778A (en) * 1994-04-01 1996-04-23 Krieter; Marcus A. Paging receiver system for receiving a paging communication signal
US5682386A (en) * 1994-04-19 1997-10-28 Multi-Tech Systems, Inc. Data/voice/fax compression multiplexer
US5757801A (en) 1994-04-19 1998-05-26 Multi-Tech Systems, Inc. Advanced priority statistical multiplexer
US5664231A (en) 1994-04-29 1997-09-02 Tps Electronics PCMCIA interface card for coupling input devices such as barcode scanning engines to personal digital assistants and palmtop computers
IT1271627B (en) * 1994-04-29 1997-06-04 Ibm Semea Spa INTEGRATION BETWEEN VOICE RADIO COMMUNICATION AND RADIO DATA COMMUNICATION.
CA2148179A1 (en) * 1994-05-13 1995-11-14 Said S. Saadeh Cordless modem system having multiple base and remote stations which are interusable and secure
AU683561B2 (en) * 1994-06-27 1997-11-13 Nec Corporation Cellular telephone with wire connection function
NL9401078A (en) * 1994-06-28 1996-02-01 Nederland Ptt System for establishing a wireless connection for exchanging information with another system, the system comprising a transmit / receive device for transmitting and receiving information wirelessly, as well as a modulator / demodulator device.
US5644320A (en) * 1994-06-30 1997-07-01 Compaq Computer Corporation Antenna system for a notebook computer
US5561705A (en) * 1994-07-25 1996-10-01 International Business Machines Corporation Apparatus for auto dialing telephone numbers and DTMF tones in a personal communication device
JP2986374B2 (en) * 1994-07-25 1999-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Ringing signal detection device
GB2292046B (en) * 1994-07-26 1999-03-03 Nokia Mobile Phones Ltd Automatic NAM programmer
CA2151868C (en) * 1994-08-01 1999-08-03 Mark Jeffrey Foladare Personal mobile communication system
TW325204U (en) * 1994-08-01 1998-01-11 At & T Corp A simultaneous voice/data modem
US5711012A (en) * 1994-08-01 1998-01-20 Paradyne Corporation Cellular phone interface for a simultaneous voice/data modem
JP3046500B2 (en) * 1994-08-02 2000-05-29 シャープ株式会社 Communication device
US5581366A (en) * 1994-08-08 1996-12-03 Motorola, Inc. Method and apparatus for originating a facsimile message in a selective call receiver
CN1097353C (en) 1994-09-14 2002-12-25 艾利森公司 Satellite communications adapter for cellular handset
US5946616A (en) * 1994-09-20 1999-08-31 Telular Corp. Concurrent wireless/landline interface apparatus and method
US5617102A (en) * 1994-11-18 1997-04-01 At&T Global Information Solutions Company Communications transceiver using an adaptive directional antenna
US6035191A (en) * 1994-11-30 2000-03-07 Motorola, Inc. Standby operation in a wireless communication device
US5722066A (en) * 1995-01-30 1998-02-24 Wireless Transactions Corporation PSTN transaction processing network employing wireless transceivers
US5852773A (en) * 1995-01-30 1998-12-22 Wireless Transactions Corporation PSTN transaction processing network employing wireless concentrator/controller
US6073030A (en) * 1995-02-13 2000-06-06 Intel Corporation Use of RSSI indication for improved data transmission over amps network
US5696699A (en) * 1995-02-13 1997-12-09 Intel Corporation Integrated cellular data/voice communication system working under one operating system
US5862491A (en) * 1995-02-13 1999-01-19 Intel Corporation Use of control channel information to enhance data throughput of an integrated cellular communication system
WO1996029831A1 (en) * 1995-03-17 1996-09-26 Highwaymaster Communications, Inc. Method and apparatus for call delivery to a mobile unit
US5602902A (en) * 1995-03-24 1997-02-11 Intel Corporation Four wire modem signal switching for voice and data applications
US5911115A (en) * 1995-03-31 1999-06-08 Intel Corporation Data transmission over amps networks
US6308371B1 (en) * 1995-04-19 2001-10-30 Royal Sovereign Limited Silicone paint brush artist's tool
US5822512A (en) * 1995-05-19 1998-10-13 Compaq Computer Corporartion Switching control in a fault tolerant system
US5717737A (en) * 1995-06-01 1998-02-10 Padcom, Inc. Apparatus and method for transparent wireless communication between a remote device and a host system
US6418324B1 (en) 1995-06-01 2002-07-09 Padcom, Incorporated Apparatus and method for transparent wireless communication between a remote device and host system
US5799036A (en) * 1995-06-29 1998-08-25 Staples; Leven E. Computer system which provides analog audio communication between a PC card and the computer's sound system
US5752082A (en) * 1995-06-29 1998-05-12 Data Race System for multiplexing pins of a PC card socket and PC card bus adapter for providing audio communication between PC card and computer sound system
US6049711A (en) * 1995-08-23 2000-04-11 Teletrac, Inc. Method and apparatus for providing location-based information services
US5797089A (en) * 1995-09-07 1998-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Personal communications terminal having switches which independently energize a mobile telephone and a personal digital assistant
US5937348A (en) 1995-10-05 1999-08-10 International Business Machines Corporation Cordless communication system for a portable computer modem
US5796832A (en) 1995-11-13 1998-08-18 Transaction Technology, Inc. Wireless transaction and information system
US7549007B1 (en) * 1995-12-07 2009-06-16 Texas Instruments Incorporated Portable computer having an interface for direct connection to a mobile telephone
FI111309B (en) * 1996-01-03 2003-06-30 Nokia Corp A terminal connected to a telecommunications network by radio
US5769643A (en) * 1996-02-07 1998-06-23 Ncr Corporation Instruction communication system
US5838798A (en) * 1996-02-07 1998-11-17 Ncr Corporation Restaurant transaction processing system and method
US5758293A (en) * 1996-03-06 1998-05-26 Motorola Inc. Subscriber unit and delivery system for wireless information retrieval
US5913163A (en) * 1996-03-14 1999-06-15 Telefonaktiebolaget Lm Ericsson Integrated local communication system
US5819177A (en) * 1996-03-20 1998-10-06 Dynamic Telecommunications, Inc. Fixed wireless terminals with network management method and apparatus
KR0167727B1 (en) * 1996-05-07 1999-02-01 김광호 Wireless data communication system using mike head phone of a cellular phone
US6032271A (en) * 1996-06-05 2000-02-29 Compaq Computer Corporation Method and apparatus for identifying faulty devices in a computer system
US5923705A (en) * 1996-07-18 1999-07-13 Qualcomm Incorporated UART based autobauding without data loss
US6009151A (en) * 1996-08-27 1999-12-28 Data Race, Inc. PC card modem with microphone and speaker connectivity
US5884191A (en) * 1996-09-06 1999-03-16 Ericsson Inc. Interface system for providing hands-free operation of a radiotelephone and accessories in a mobile office environment
US5822405A (en) * 1996-09-16 1998-10-13 Toshiba America Information Systems, Inc. Automated retrieval of voice mail using speech recognition
US6002937A (en) * 1996-10-31 1999-12-14 Motorola, Inc. Method of and apparatus for communicating information signals
US20060195595A1 (en) 2003-12-19 2006-08-31 Mendez Daniel J System and method for globally and securely accessing unified information in a computer network
US5825855A (en) * 1997-01-30 1998-10-20 Toshiba America Information Systems, Inc. Method of recognizing pre-recorded announcements
US6324592B1 (en) 1997-02-25 2001-11-27 Keystone Aerospace Apparatus and method for a mobile computer architecture and input/output management system
US5913176A (en) * 1997-04-14 1999-06-15 Jrc Canada Inc. System for virtual connection to dedicated PSTN lines
US6192236B1 (en) * 1997-05-08 2001-02-20 Ericsson Inc. Apparatus and methods for remote control of accessory devices using a radiotelephone as a receiver
US6418203B1 (en) 1997-06-06 2002-07-09 Data Race, Inc. System and method for communicating audio information between a computer and a duplex speakerphone modem
KR100238581B1 (en) * 1997-07-02 2000-01-15 윤종용 Method and apparatus for controlling a power of display apparatus using a tact switch
US6173352B1 (en) * 1997-08-21 2001-01-09 Ericsson Inc. Mobile computer mounted apparatus for controlling enablement and indicating operational status of a wireless communication device associated with the mobile computer
US6131136A (en) * 1997-12-12 2000-10-10 Gateway 2000, Inc. Dual mode modem for automatically selecting between wireless and wire-based communication modes
US7197575B2 (en) * 1997-12-17 2007-03-27 Src Computers, Inc. Switch/network adapter port coupling a reconfigurable processing element to one or more microprocessors for use with interleaved memory controllers
US20040236877A1 (en) * 1997-12-17 2004-11-25 Lee A. Burton Switch/network adapter port incorporating shared memory resources selectively accessible by a direct execution logic element and one or more dense logic devices in a fully buffered dual in-line memory module format (FB-DIMM)
US7424552B2 (en) * 1997-12-17 2008-09-09 Src Computers, Inc. Switch/network adapter port incorporating shared memory resources selectively accessible by a direct execution logic element and one or more dense logic devices
US7373440B2 (en) * 1997-12-17 2008-05-13 Src Computers, Inc. Switch/network adapter port for clustered computers employing a chain of multi-adaptive processors in a dual in-line memory module format
US7565461B2 (en) * 1997-12-17 2009-07-21 Src Computers, Inc. Switch/network adapter port coupling a reconfigurable processing element to one or more microprocessors for use with interleaved memory controllers
US6172985B1 (en) 1998-01-28 2001-01-09 Gateway 2000, Inc. Automatic detection of pots line
US6522640B2 (en) 1998-01-28 2003-02-18 Gateway, Inc. Distributed modem for non-cellular cordless/wireless data communication for portable computers
US5877565A (en) * 1998-02-24 1999-03-02 Lucent Technologies, Inc. Communication card with telephone line interlock and cellular interconnect
US6438585B2 (en) 1998-05-29 2002-08-20 Research In Motion Limited System and method for redirecting message attachments between a host system and a mobile data communication device
US8516055B2 (en) 1998-05-29 2013-08-20 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device in a wireless data network
US7606936B2 (en) 1998-05-29 2009-10-20 Research In Motion Limited System and method for redirecting data to a wireless device over a plurality of communication paths
US6779019B1 (en) 1998-05-29 2004-08-17 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device
US6219694B1 (en) 1998-05-29 2001-04-17 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device having a shared electronic address
US7266365B2 (en) 1998-05-29 2007-09-04 Research In Motion Limited System and method for delayed transmission of bundled command messages
US7209949B2 (en) 1998-05-29 2007-04-24 Research In Motion Limited System and method for synchronizing information between a host system and a mobile data communication device
JP3458894B2 (en) * 1998-09-09 2003-10-20 ソニー株式会社 Data transmission terminal device and data communication method
US6690948B1 (en) 1998-09-09 2004-02-10 Sony Corporation Data transmission terminal apparatus, data communicating method, and data communication system
US8060656B2 (en) 1998-10-09 2011-11-15 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
US7136645B2 (en) 1998-10-09 2006-11-14 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
US7778260B2 (en) 1998-10-09 2010-08-17 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
US7293107B1 (en) 1998-10-09 2007-11-06 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
US8078727B2 (en) 1998-10-09 2011-12-13 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
US6285890B1 (en) * 1999-01-26 2001-09-04 Ericsson, Inc. Automatic sensing of communication or accessories for mobile terminals
US6466799B1 (en) * 1999-04-30 2002-10-15 Sprint Communications Company L.P. Premises telephonic interface system for communicating using a hand-held wireless device
KR100313514B1 (en) * 1999-05-11 2001-11-17 김영환 Hybrid memory device
US7882247B2 (en) 1999-06-11 2011-02-01 Netmotion Wireless, Inc. Method and apparatus for providing secure connectivity in mobile and other intermittent computing environments
US7162020B1 (en) 1999-06-14 2007-01-09 Ascendent Telecommunications, Inc. Method and apparatus for selectively establishing communication with one of plural devices associated with a single telephone number
US7305079B1 (en) 1999-06-14 2007-12-04 Ascendent Telecommunications, Inc. Method and apparatus for communicating with one of plural devices associated with a single telephone number
US7292858B2 (en) 1999-06-14 2007-11-06 Ascendent Telecommunications, Inc. Method and apparatus for communicating with one of plural devices associated with a single telephone number during a disaster and disaster recovery
WO2001031930A2 (en) * 1999-10-25 2001-05-03 Hunter Charles P Modular phone system for laptop computer
US6728779B1 (en) * 1999-12-01 2004-04-27 Lucent Technologies Inc. Method and apparatus for exchanging routing information in a packet-based data network
US20020160753A1 (en) * 1999-12-06 2002-10-31 Campana Thomas J. Electronic mail system with RF communications to mobile processors
JP2002032150A (en) * 2000-05-09 2002-01-31 Sony Corp Information processor
US6603965B1 (en) * 2000-05-11 2003-08-05 International Business Machines Corporation Pervasive voice handset system
JP2001318847A (en) * 2000-05-11 2001-11-16 Sony Corp Update notifying system, update monitoring device, portable communication terminal, information processor, contents acquisition instructing method, contents acquiring method and program storing medium
US7216177B1 (en) 2000-06-16 2007-05-08 Palm, Inc. Apparatus and method for supplying electronic content to network appliances
US6427011B1 (en) * 2000-07-14 2002-07-30 Conexant Systems, Inc. Modem data access arrangement without diode bridge
GB2366691B (en) * 2000-08-31 2002-11-06 F Secure Oyj Wireless device management
US7248864B1 (en) * 2000-09-29 2007-07-24 Palmsource, Inc. System and method of managing incoming calls on a mobile device having an earplug
US7356351B1 (en) 2000-12-22 2008-04-08 Durham Logistics, Llc Method and apparatus for disabling the RF functionality of a multi-function wireless communication device while maintaining local functionality
WO2002052798A2 (en) 2000-12-22 2002-07-04 Research In Motion Limited Wireless router system and method
US7283808B2 (en) 2001-01-18 2007-10-16 Research In Motion Limited System, method and mobile device for remote control of a voice mail system
JP2002237873A (en) * 2001-02-09 2002-08-23 Sony Corp Portable radio terminal, sound sending-out method and sound taking-in method
US7103656B2 (en) 2001-02-20 2006-09-05 Research In Motion Limited System and method for administrating a wireless communication network
CA2641610C (en) 2001-03-09 2010-09-14 Research In Motion Limited Advanced voice and data operations in a mobile data communication device
US20020159612A1 (en) * 2001-04-27 2002-10-31 Stan Kosciuk Personal computer audio interface device and method of using the same
US6950988B1 (en) 2001-06-11 2005-09-27 Handspring, Inc. Multi-context iterative directory filter
US6957397B1 (en) 2001-06-11 2005-10-18 Palm, Inc. Navigating through a menu of a handheld computer using a keyboard
US6976226B1 (en) 2001-07-06 2005-12-13 Palm, Inc. Translating tabular data formatted for one display device to a format for display on other display devices
US7644171B2 (en) 2001-09-12 2010-01-05 Netmotion Wireless, Inc. Mobile networking system and method using IPv4 and IPv6
US7317699B2 (en) 2001-10-26 2008-01-08 Research In Motion Limited System and method for controlling configuration settings for mobile communication devices and services
DE10153747A1 (en) * 2001-10-31 2003-05-28 Siemens Ag Mobile end device and communication system with integrated mobile end device
WO2003049384A1 (en) 2001-12-07 2003-06-12 Research In Motion Limited System and method of managing information distribution to mobile stations
JP4386732B2 (en) 2002-01-08 2009-12-16 セブン ネットワークス, インコーポレイテッド Mobile network connection architecture
US7212520B2 (en) * 2002-02-13 2007-05-01 International Business Machines For Corporation Net-aware telephone switch
JP2003256090A (en) * 2002-02-26 2003-09-10 Murata Mfg Co Ltd Communication connecting adapter and network system using this adapter
US7912668B2 (en) * 2002-06-24 2011-03-22 Analog Devices, Inc. System for determining the true electrical characteristics of a device
US7783058B2 (en) * 2002-06-24 2010-08-24 Analog Devices, Inc. System for verifying the identification of a device
US7890284B2 (en) * 2002-06-24 2011-02-15 Analog Devices, Inc. Identification system and method for recognizing any one of a number of different types of devices
US20080046592A1 (en) 2002-06-26 2008-02-21 Research In Motion Limited System and Method for Pushing Information Between a Host System and a Mobile Data Communication Device
US7565115B2 (en) * 2002-07-09 2009-07-21 Xcelis Communications, Llc Communication system for landline and wireless calls
US20060128376A1 (en) * 2002-07-09 2006-06-15 Alexis Glenroy J Communication systems and methods
WO2004006512A1 (en) * 2002-07-09 2004-01-15 Xcelis Communications Communication systems and methods
US20080261633A1 (en) 2002-10-22 2008-10-23 Research In Motion Limited System and Method for Pushing Information from a Host System to a Mobile Data Communication Device
ATE410017T1 (en) * 2002-11-08 2008-10-15 Research In Motion Ltd SYSTEM AND DEVICE FOR CONNECTION CONTROL FOR CORDLESS MOBILE COMMUNICATION DEVICES
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
ATE492085T1 (en) 2003-01-28 2011-01-15 Cellport Systems Inc A SYSTEM AND METHOD FOR CONTROLLING APPLICATIONS' ACCESS TO PROTECTED RESOURCES WITHIN A SECURE VEHICLE TELEMATICS SYSTEM
US20040198464A1 (en) * 2003-03-04 2004-10-07 Jim Panian Wireless communication systems for vehicle-based private and conference calling and methods of operating same
US7346370B2 (en) 2004-04-29 2008-03-18 Cellport Systems, Inc. Enabling interoperability between distributed devices using different communication link technologies
AU2005239005A1 (en) 2004-04-30 2005-11-10 Research In Motion Limited System and method for handling data transfers
US8010092B2 (en) * 2004-06-23 2011-08-30 Genesys Telecommunications Laboratories, Inc. System for facilitating parallel data transfer from a wireless caller into a communications center
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
US7441271B2 (en) 2004-10-20 2008-10-21 Seven Networks Method and apparatus for intercepting events in a communication system
US8099060B2 (en) 2004-10-29 2012-01-17 Research In Motion Limited Wireless/wired mobile communication device with option to automatically block wireless communication when connected for wired communication
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful
US7752633B1 (en) 2005-03-14 2010-07-06 Seven Networks, Inc. Cross-platform event engine
US8365240B2 (en) 2005-04-18 2013-01-29 Research In Motion Limited Method for providing wireless application privilege management
US7796742B1 (en) 2005-04-21 2010-09-14 Seven Networks, Inc. Systems and methods for simplified provisioning
US8438633B1 (en) 2005-04-21 2013-05-07 Seven Networks, Inc. Flexible real-time inbox access
US8832561B2 (en) * 2005-05-26 2014-09-09 Nokia Corporation Automatic initiation of communications
WO2006136660A1 (en) 2005-06-21 2006-12-28 Seven Networks International Oy Maintaining an ip connection in a mobile network
US7614082B2 (en) 2005-06-29 2009-11-03 Research In Motion Limited System and method for privilege management and revocation
US8069166B2 (en) 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
US7742758B2 (en) * 2005-08-19 2010-06-22 Callpod, Inc. Mobile conferencing and audio sharing technology
US7660587B2 (en) * 2005-10-26 2010-02-09 Nokia Corporation Communications from hypertext documents
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
US7707250B2 (en) * 2006-05-02 2010-04-27 Callpod, Inc. Wireless communications connection device
CN101226766B (en) * 2007-01-19 2012-06-20 鸿富锦精密工业(深圳)有限公司 Audio play device automatically adjusting play parameter
US8179872B2 (en) 2007-05-09 2012-05-15 Research In Motion Limited Wireless router system and method
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8027293B2 (en) 2007-07-16 2011-09-27 Cellport Systems, Inc. Communication channel selection and use
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US8793305B2 (en) 2007-12-13 2014-07-29 Seven Networks, Inc. Content delivery to a mobile device from a content service
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US20090193338A1 (en) 2008-01-28 2009-07-30 Trevor Fiatal Reducing network and battery consumption during content delivery and playback
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
US8259075B2 (en) 2009-01-06 2012-09-04 Hewlett-Packard Development Company, L.P. Secondary key group layout for keyboard
TW201209697A (en) 2010-03-30 2012-03-01 Michael Luna 3D mobile user interface with configurable workspace management
CA2857458A1 (en) 2010-07-26 2012-02-09 Michael Luna Mobile application traffic optimization
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
US9043433B2 (en) 2010-07-26 2015-05-26 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US8190701B2 (en) 2010-11-01 2012-05-29 Seven Networks, Inc. Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
WO2012060995A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
GB2499534B (en) 2010-11-01 2018-09-19 Seven Networks Llc Caching adapted for mobile application behavior and network conditions
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
US8166164B1 (en) 2010-11-01 2012-04-24 Seven Networks, Inc. Application and network-based long poll request detection and cacheability assessment therefor
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
WO2012061430A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
CN103404193B (en) 2010-11-22 2018-06-05 七网络有限责任公司 The connection that adjustment data transmission is established with the transmission being optimized for through wireless network
GB2500327B (en) 2010-11-22 2019-11-06 Seven Networks Llc Optimization of resource polling intervals to satisfy mobile device requests
US9325662B2 (en) 2011-01-07 2016-04-26 Seven Networks, Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
WO2012145541A2 (en) 2011-04-19 2012-10-26 Seven Networks, Inc. Social caching for device resource sharing and management
CA2797631C (en) 2011-04-27 2013-11-19 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
GB2505585B (en) 2011-04-27 2015-08-12 Seven Networks Inc Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US8984581B2 (en) 2011-07-27 2015-03-17 Seven Networks, Inc. Monitoring mobile application activities for malicious traffic on a mobile device
US9497220B2 (en) 2011-10-17 2016-11-15 Blackberry Limited Dynamically generating perimeters
US9161226B2 (en) 2011-10-17 2015-10-13 Blackberry Limited Associating services to perimeters
US9613219B2 (en) 2011-11-10 2017-04-04 Blackberry Limited Managing cross perimeter access
US8799227B2 (en) 2011-11-11 2014-08-05 Blackberry Limited Presenting metadata from multiple perimeters
US8934414B2 (en) 2011-12-06 2015-01-13 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
US8868753B2 (en) 2011-12-06 2014-10-21 Seven Networks, Inc. System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
WO2013086447A1 (en) 2011-12-07 2013-06-13 Seven Networks, Inc. Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US9009250B2 (en) 2011-12-07 2015-04-14 Seven Networks, Inc. Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
WO2013090821A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
US20130159511A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. System and method for generating a report to a network operator by distributing aggregation of data
US9832095B2 (en) 2011-12-14 2017-11-28 Seven Networks, Llc Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
WO2013103988A1 (en) 2012-01-05 2013-07-11 Seven Networks, Inc. Detection and management of user interactions with foreground applications on a mobile device in distributed caching
US9203864B2 (en) 2012-02-02 2015-12-01 Seven Networks, Llc Dynamic categorization of applications for network access in a mobile network
WO2013116852A1 (en) 2012-02-03 2013-08-08 Seven Networks, Inc. User as an end point for profiling and optimizing the delivery of content and data in a wireless network
EP2629478B1 (en) 2012-02-16 2018-05-16 BlackBerry Limited Method and apparatus for separation of connection data by perimeter type
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
US20130268656A1 (en) 2012-04-10 2013-10-10 Seven Networks, Inc. Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network
US9369466B2 (en) 2012-06-21 2016-06-14 Blackberry Limited Managing use of network resources
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US8656016B1 (en) 2012-10-24 2014-02-18 Blackberry Limited Managing application execution and data access on a device
US9075955B2 (en) 2012-10-24 2015-07-07 Blackberry Limited Managing permission settings applied to applications
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
US9307493B2 (en) 2012-12-20 2016-04-05 Seven Networks, Llc Systems and methods for application management of mobile device radio state promotion and demotion
US9271238B2 (en) 2013-01-23 2016-02-23 Seven Networks, Llc Application or context aware fast dormancy
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US8750123B1 (en) 2013-03-11 2014-06-10 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
US9167669B2 (en) 2013-03-14 2015-10-20 Lutron Electronic Co., Inc. State change devices for switched electrical receptacles
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
US10317923B2 (en) 2013-12-26 2019-06-11 Lutron Technology Company Llc Load-sensing remote control device for use in a load control system
US10806010B2 (en) 2013-12-26 2020-10-13 Lutron Technology Company Llc Control device for use with a three-way lamp socket
US9848479B2 (en) 2013-12-26 2017-12-19 Lutron Electronics Co., Inc. Faceplate remote control device for use in a load control system
US10924847B2 (en) 2019-01-14 2021-02-16 Yamaha Guitar Group, Inc. Microphone that functions as either a digital wireless microphone or a wired passive microphone
US11347272B2 (en) * 2020-10-30 2022-05-31 Dell Products L.P. Display chassis design for narrow border portable information handling system
US11909904B2 (en) * 2022-03-07 2024-02-20 William Thielman Selectively handsfree communications module

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613004A (en) 1964-03-09 1971-10-12 Keith H Wycoff Sequential tone selective calling communication system and components thereof
US3674935A (en) 1970-10-07 1972-07-04 Bell Telephone Labor Inc Digital circuit demodulator for frequency-shift data signals
US3711777A (en) 1971-09-16 1973-01-16 Ncr Latching and control circuit for carrier detection
US3714586A (en) 1971-05-18 1973-01-30 E Mason Modem carrier detecting circuit
US3714650A (en) 1970-07-30 1973-01-30 Raytheon Co Vehicle command and control system
US3745251A (en) 1972-01-03 1973-07-10 Design Elements Inc Data terminal automatic control circuit
US3766479A (en) 1971-10-04 1973-10-16 Ncr Carrier detection circuit
US3878333A (en) 1972-12-12 1975-04-15 Oki Electric Ind Co Ltd Simplex ARQ system
US3899772A (en) 1973-04-23 1975-08-12 Kustom Electronics Mobile computer terminal and system
US3974343A (en) 1975-01-10 1976-08-10 North Electric Company Small modular communications switching system with distributed programmable control
US4025853A (en) 1976-02-12 1977-05-24 Bell Telephone Laboratories, Incorporated Method and apparatus for radio system cochannel interference suppression
US4109283A (en) 1976-05-21 1978-08-22 Rca Corporation Frequency counter for a television tuning system
US4284849A (en) 1979-11-14 1981-08-18 Gte Products Corporation Monitoring and signalling system
US4415774A (en) 1981-11-25 1983-11-15 Universal Data Systems, Inc. Line powered modem automatic answer device powered from equipment
US4419756A (en) 1980-06-05 1983-12-06 Bell Telephone Laboratories, Incorporated Voiceband data set
US4425665A (en) 1981-09-24 1984-01-10 Advanced Micro Devices, Inc. FSK Voiceband modem using digital filters
US4503288A (en) * 1981-08-31 1985-03-05 Novation, Inc. Intelligent telephone
US4519068A (en) 1983-07-11 1985-05-21 Motorola, Inc. Method and apparatus for communicating variable length messages between a primary station and remote stations of a data communications system
US4577182A (en) 1984-04-10 1986-03-18 Peter Miller Alarm system
US4578537A (en) * 1983-08-05 1986-03-25 International Remote Imaging Systems, Inc. Telecommunication apparatus serving as an interface between a digital computer and an analog communication medium
US4578796A (en) 1983-11-03 1986-03-25 Bell Telephone Laboratories, Incorporated Programmable multiple type data set
DE3433900A1 (en) 1984-09-14 1986-03-27 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for a data connection for mobile radio subscribers
US4591661A (en) * 1984-08-15 1986-05-27 Joseph A. Benedetto Portable cordless telephone transceiver-radio receiver
GB2170977A (en) 1985-02-08 1986-08-13 Oki Electric Ind Co Ltd Mobile radio telephone
WO1987000718A1 (en) 1985-07-19 1987-01-29 Custom Product Development Pty. Ltd. Mobile telephone system
US4677656A (en) 1984-06-19 1987-06-30 Motorola, Inc. Telephone-radio interconnect system
US4694473A (en) * 1985-03-08 1987-09-15 Oki Electric Industry Co., Ltd. Data communication system with block synchronization data in mobile radio
US4697281A (en) * 1986-03-14 1987-09-29 Spectrum Cellular Communications Corporation, Inc. Cellular telephone data communication system and method
US4718080A (en) * 1985-12-16 1988-01-05 Serrano Arthur L Microprocessor controlled interface for cellular system
US4775997A (en) 1984-09-18 1988-10-04 Metrofone, Inc. System for interfacing a standard telephone set with a radio transceiver
EP0295146A2 (en) 1987-06-12 1988-12-14 Versus Technology, Inc. Supervised, interactive alarm reporting system
US4823373A (en) * 1986-10-16 1989-04-18 Oki Electric Industry Co., Ltd. Line switching control system for mobile communication
US4837812A (en) * 1985-12-21 1989-06-06 Ricoh Company, Ltd. Dual connection mode equipped communication control apparatus
WO1989005553A1 (en) 1987-12-07 1989-06-15 Bt Telecom, Inc. System for interfacing an alarm reporting device with a cellular radio transceiver
US4887290A (en) 1987-08-05 1989-12-12 Norbert W. Zawacki Cellular alarm backup system
WO1990003076A1 (en) 1988-09-01 1990-03-22 Intelligence Technology Corporation Method and apparatus for controlling transmission of voice and data signals
WO1991007044A1 (en) 1989-10-31 1991-05-16 Intelligence Technology Corporation Data and voice transmission over a cellular telephone system
US5046082A (en) 1990-05-02 1991-09-03 Gte Mobile Communications Service Corporation Remote accessing system for cellular telephones
US5170470A (en) 1988-05-02 1992-12-08 National Semiconductor Corp. Integrated modem which employs a host processor as its controller
EP0309627B1 (en) 1987-09-30 1993-06-16 International Business Machines Corporation Apparatus for connecting data processing equipment to a telephone network

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613004A (en) 1964-03-09 1971-10-12 Keith H Wycoff Sequential tone selective calling communication system and components thereof
US3714650A (en) 1970-07-30 1973-01-30 Raytheon Co Vehicle command and control system
US3674935A (en) 1970-10-07 1972-07-04 Bell Telephone Labor Inc Digital circuit demodulator for frequency-shift data signals
US3714586A (en) 1971-05-18 1973-01-30 E Mason Modem carrier detecting circuit
US3711777A (en) 1971-09-16 1973-01-16 Ncr Latching and control circuit for carrier detection
US3766479A (en) 1971-10-04 1973-10-16 Ncr Carrier detection circuit
US3745251A (en) 1972-01-03 1973-07-10 Design Elements Inc Data terminal automatic control circuit
US3878333A (en) 1972-12-12 1975-04-15 Oki Electric Ind Co Ltd Simplex ARQ system
US3899772A (en) 1973-04-23 1975-08-12 Kustom Electronics Mobile computer terminal and system
US3974343A (en) 1975-01-10 1976-08-10 North Electric Company Small modular communications switching system with distributed programmable control
US4025853A (en) 1976-02-12 1977-05-24 Bell Telephone Laboratories, Incorporated Method and apparatus for radio system cochannel interference suppression
US4109283A (en) 1976-05-21 1978-08-22 Rca Corporation Frequency counter for a television tuning system
US4284849A (en) 1979-11-14 1981-08-18 Gte Products Corporation Monitoring and signalling system
US4419756A (en) 1980-06-05 1983-12-06 Bell Telephone Laboratories, Incorporated Voiceband data set
US4503288A (en) * 1981-08-31 1985-03-05 Novation, Inc. Intelligent telephone
US4425665A (en) 1981-09-24 1984-01-10 Advanced Micro Devices, Inc. FSK Voiceband modem using digital filters
US4415774A (en) 1981-11-25 1983-11-15 Universal Data Systems, Inc. Line powered modem automatic answer device powered from equipment
US4519068A (en) 1983-07-11 1985-05-21 Motorola, Inc. Method and apparatus for communicating variable length messages between a primary station and remote stations of a data communications system
US4578537A (en) * 1983-08-05 1986-03-25 International Remote Imaging Systems, Inc. Telecommunication apparatus serving as an interface between a digital computer and an analog communication medium
US4578796A (en) 1983-11-03 1986-03-25 Bell Telephone Laboratories, Incorporated Programmable multiple type data set
US4577182A (en) 1984-04-10 1986-03-18 Peter Miller Alarm system
US4677656A (en) 1984-06-19 1987-06-30 Motorola, Inc. Telephone-radio interconnect system
US4591661A (en) * 1984-08-15 1986-05-27 Joseph A. Benedetto Portable cordless telephone transceiver-radio receiver
DE3433900A1 (en) 1984-09-14 1986-03-27 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for a data connection for mobile radio subscribers
US4775997A (en) 1984-09-18 1988-10-04 Metrofone, Inc. System for interfacing a standard telephone set with a radio transceiver
GB2170977A (en) 1985-02-08 1986-08-13 Oki Electric Ind Co Ltd Mobile radio telephone
US4694473A (en) * 1985-03-08 1987-09-15 Oki Electric Industry Co., Ltd. Data communication system with block synchronization data in mobile radio
WO1987000718A1 (en) 1985-07-19 1987-01-29 Custom Product Development Pty. Ltd. Mobile telephone system
US4718080A (en) * 1985-12-16 1988-01-05 Serrano Arthur L Microprocessor controlled interface for cellular system
US4837812A (en) * 1985-12-21 1989-06-06 Ricoh Company, Ltd. Dual connection mode equipped communication control apparatus
US4697281A (en) * 1986-03-14 1987-09-29 Spectrum Cellular Communications Corporation, Inc. Cellular telephone data communication system and method
US4823373B1 (en) * 1986-10-16 1999-08-24 Oki Electric Ind Co Ltd Line switching control system for mobile communication
US4823373A (en) * 1986-10-16 1989-04-18 Oki Electric Industry Co., Ltd. Line switching control system for mobile communication
EP0295146A2 (en) 1987-06-12 1988-12-14 Versus Technology, Inc. Supervised, interactive alarm reporting system
US4887290A (en) 1987-08-05 1989-12-12 Norbert W. Zawacki Cellular alarm backup system
EP0309627B1 (en) 1987-09-30 1993-06-16 International Business Machines Corporation Apparatus for connecting data processing equipment to a telephone network
WO1989005553A1 (en) 1987-12-07 1989-06-15 Bt Telecom, Inc. System for interfacing an alarm reporting device with a cellular radio transceiver
US5170470A (en) 1988-05-02 1992-12-08 National Semiconductor Corp. Integrated modem which employs a host processor as its controller
WO1990003076A1 (en) 1988-09-01 1990-03-22 Intelligence Technology Corporation Method and apparatus for controlling transmission of voice and data signals
US4991197A (en) * 1988-09-01 1991-02-05 Intelligence Technology Corporation Method and apparatus for controlling transmission of voice and data signals
WO1991007044A1 (en) 1989-10-31 1991-05-16 Intelligence Technology Corporation Data and voice transmission over a cellular telephone system
US5046082A (en) 1990-05-02 1991-09-03 Gte Mobile Communications Service Corporation Remote accessing system for cellular telephones

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"A Tale of Two Modems," F.R. Derfler Jr., Aug. 21, 1984, PC Magazine.
"Advance Mobile PhoneService," F.H. Blecher, IEEE, vol. VT-29 No. 2, May 1980.
"Advanced Mobile Phone Service: A Subscriber Set for the Equipment Test," R.E. Fisher, Bell System Technical Journal, vol. 58, No. 1, Jan. 1979.
"Advanced Mobile PhoneService: Control Architecture," Z.C. Fluhr & P.T. Porter, Bell System Technical Journal, vol. 58, No. 1, Jan. 1979.
"An 800Mhz Approach to Underground Data Communications," T.M. Caridi and P. Mighdoll, IEEE 1981 Industry Applications.
"ARQ Schemes for Data Transmission in Mobile Radio Systems," R.A. Comroe and D.J. Costello, Jr., IEEE Transactions on Vehicular Technology, vol. VT-33, Aug. 1984.
"Celldata launched," British Telecom Journal, No. 3, (1985), vol. 6, Autumn.
"Cellnet adds data to cellular service," International News Telephone Engineer and Management, Nov. 1, 1985.
"Dailing Data Via Mobile Telephones" Ira Brodsky, pp. 103-110, Data Communications International, Oct. 1989.
"Data Signaling Functions for a Cellular Mobile Telephone System," V. Hachenburg, B.D. Holm, and J.I. Smith, IEEE Transactions on Vehicular Technology, vol. VT-26, No. 1, Feb. 1977.
"Data Transmission for Mobile Radio," T. Brenig, IEEE Transactions on Vehicular Technology, VT-27, No. 3, Aug. '78.
"Data Transmissions Over VHF and UHF Land Mobile Radio Channels," P.J. Cadman and R.L. Brewster, IEEE Proceedings vol. 130, Part F, No. 6, Oct. 1983.
"Optimal Blocklengths for ARQ Error Control Schemes," Joel M. Morris, IEEE Transactions on Communications, vol. COM-27, No. 2, Feb. 1979.
"Portable Computer And Host Talk Over Radio-Frequency Link", Electronic vol. 56, Aug. 25, 1983, J. Krebs.
"Quality of Service and Bandwidth Efficiency of Cellular Mobile Radio with Variable Bit-Rate Speech Transmission," D.J. Goodman and C.E.W. Sundberg, IEEE Transactions on Vehicular Technology, vol. VT-32, Aug. 1983.
"R/F Linked Portable Digital Communications System System Overview", Proceedings Of The National Electronics Conference (1984), Sep. 24-26 Rosemont, Illinois, USA, J. Krebs, pp. 402-407.
"Technical Aspects of Data Communication," John E. McNamara, Jul. 1979, Digital Press.
AT&T 208A Data Set product, Jul. 1975, Circuit Description, CD-1D232-01.
AT&T's Dimension PBX described in AT&T publication Bell System Practice Section 503-100-103, Issue 3, published Mar. 1981, whichrelates to a multi-button electronic telephone set.
Overview of AMPS Mobile Call Processing System, Robert M. Fuller and Fred A. Epler, 1980 Annual Conference of the IEEE Vehicular Technology Society.
Stone, P. S., "286 Laptop" Info World Pews, May 25, 1988, p. 5. *
Supplementary European Search Report dated Feb. 3, 1995.

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103313B2 (en) 1992-11-09 2012-01-24 Adc Technology Inc. Portable communicator
US8855722B2 (en) 1999-08-12 2014-10-07 Hewlett-Packard Development Company, L.P. Integrated handheld computing and telephony device
US20100015965A1 (en) * 1999-08-12 2010-01-21 Palm, Inc. Integrated handheld computing and telephony device
US20090034514A1 (en) * 1999-08-12 2009-02-05 Palm, Inc. Integrated Mobile Computing and Telephony Device and Services
US20020049581A1 (en) * 2000-03-01 2002-04-25 Ming-Kang Liu Physical medium dependent sub-system with shared resources for multiport xDSL system
US20010037443A1 (en) * 2000-03-01 2001-11-01 Ming-Kang Liu Logical pipeline for data communications system
US7818748B2 (en) 2000-03-01 2010-10-19 Realtek Semiconductor Corporation Programmable task scheduler
US20020010810A1 (en) * 2000-03-01 2002-01-24 Ming-Kang Liu xDSL function ASIC processor & method of operation
US8325751B2 (en) 2000-03-01 2012-12-04 Realtek Semiconductor Corp. Mixed hardware/software architecture and method for processing communications
US6839830B2 (en) * 2000-03-01 2005-01-04 Realtek Semiconductor Corporation Logical pipeline for data communications system
US20050071800A1 (en) * 2000-03-01 2005-03-31 Realtek Semiconductor Corporation Mixed hardware/sofware architecture and method for processing xDSL communications
US20010037471A1 (en) * 2000-03-01 2001-11-01 Ming-Kang Liu System and method for internal operation of multiple-port xDSL communications systems
US7032223B2 (en) 2000-03-01 2006-04-18 Realtek Semiconductor Corp. Transport convergence sub-system with shared resources for multiport xDSL system
US20010047434A1 (en) * 2000-03-01 2001-11-29 Ming-Kang Liu xDSL communications systems using shared/multi-function task blocks
US7075941B2 (en) 2000-03-01 2006-07-11 Real Communications, Inc. Scaleable architecture for multiple-port, system-on-chip ADSL communications systems
US7085285B2 (en) 2000-03-01 2006-08-01 Realtek Semiconductor Corp. xDSL communications systems using shared/multi-function task blocks
US20060203843A1 (en) * 2000-03-01 2006-09-14 Realtek Semiconductor Corp. xDSL function ASIC processor & method of operation
US20020008256A1 (en) * 2000-03-01 2002-01-24 Ming-Kang Liu Scaleable architecture for multiple-port, system-on-chip ADSL communications systems
US7200138B2 (en) 2000-03-01 2007-04-03 Realtek Semiconductor Corporation Physical medium dependent sub-system with shared resources for multiport xDSL system
US7295571B2 (en) 2000-03-01 2007-11-13 Realtek Semiconductor Corp. xDSL function ASIC processor and method of operation
US20010049757A1 (en) * 2000-03-01 2001-12-06 Ming-Kang Liu Programmable task scheduler for use with multiport xDSL processing system
US9571958B2 (en) 2000-06-30 2017-02-14 At&T Intellectual Propery I, L.P. Anonymous location service for wireless networks
US20020023086A1 (en) * 2000-06-30 2002-02-21 Ponzio, Jr. Frank J. System and method for providing signaling quality and integrity of data content
US9852450B2 (en) 2000-12-19 2017-12-26 At&T Intellectual Property I, L.P. Location blocking service from a web advertiser
US9584647B2 (en) * 2000-12-19 2017-02-28 At&T Intellectual Property I, L.P. System and method for remote control of appliances utilizing mobile location-based applications
US9763091B2 (en) 2000-12-19 2017-09-12 At&T Intellectual Property I, L.P. Location blocking service from a wireless service provider
US9501780B2 (en) 2000-12-19 2016-11-22 At&T Intellectual Property I, L.P. Surveying wireless device users by location
US10217137B2 (en) 2000-12-19 2019-02-26 Google Llc Location blocking service from a web advertiser
US9466076B2 (en) 2000-12-19 2016-10-11 At&T Intellectual Property I, L.P. Location blocking service from a web advertiser
US10354079B2 (en) 2000-12-19 2019-07-16 Google Llc Location-based security rules
US20140370881A1 (en) * 2000-12-19 2014-12-18 At&T Intellectual Property I, L.P. System and Method for Remote Control of Appliances Utilizing Mobile Location-Based Applications
US20050179654A1 (en) * 2001-06-11 2005-08-18 Hawkins Jeffrey C. Interface for processing of an alternate symbol in a computer device
US9696905B2 (en) 2001-06-11 2017-07-04 Qualcomm Incorporated Interface for processing of an alternate symbol in a computer device
US10326871B2 (en) 2001-06-11 2019-06-18 Qualcomm Incorporated Integrated personal digital assistant device
US8976108B2 (en) 2001-06-11 2015-03-10 Qualcomm Incorporated Interface for processing of an alternate symbol in a computer device
US10097679B2 (en) 2001-06-11 2018-10-09 Qualcomm Incorporated Integrated personal digital assistant device
US20110230234A1 (en) * 2001-06-11 2011-09-22 Hawkins Jeffrey C Integrated personal digital assistant device
US9549056B2 (en) 2001-06-11 2017-01-17 Qualcomm Incorporated Integrated personal digital assistant device
US7725127B2 (en) 2001-06-11 2010-05-25 Palm, Inc. Hand-held device
US7665043B2 (en) 2001-12-28 2010-02-16 Palm, Inc. Menu navigation and operation feature for a handheld computer
US20100070918A1 (en) * 2001-12-28 2010-03-18 Samuel Kho Menu navigation and operation feature for a handheld computer
US20030122882A1 (en) * 2001-12-28 2003-07-03 Samuel Kho Menu navigation and operation feature for a handheld computer
US8677286B2 (en) 2003-05-01 2014-03-18 Hewlett-Packard Development Company, L.P. Dynamic sizing user interface method and system for data display
US8174993B2 (en) 2003-10-03 2012-05-08 Dell Products L.P. System, method and device for tuning a switched transmission line for ethernet local area network-on-motherboard (LOM)
US7123906B1 (en) * 2003-10-17 2006-10-17 Verizon Communications Inc. Integrated telephony service
US20060132832A1 (en) * 2004-12-17 2006-06-22 Sap Aktiengesellschaft Automated telephone number transfer
US8774375B2 (en) * 2007-04-27 2014-07-08 Padmanabhan Mahalingam System and methods for establishing a telephony session from a remote dialing unit

Also Published As

Publication number Publication date
US4972457A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
USRE38127E1 (en) Portable hybrid communication system and methods
US6223029B1 (en) Combined mobile telephone and remote control terminal
US4807225A (en) Telephone line carrier system
US6285890B1 (en) Automatic sensing of communication or accessories for mobile terminals
CA1282506C (en) Multiplexed data channel controlled telephone system
JP3359570B2 (en) Mobile telephone with call forwarding function and call forwarding method
USRE38645E1 (en) Portable hybrid communication system and methods
US5357558A (en) Radio communication apparatus for ISDN
EP0660628A2 (en) A radio telephone adaptor
JP2958112B2 (en) Multiplexed synchronous / asynchronous data bus
JPH10174175A (en) Mutual network system for special ground mobile radio network
EP0416598A2 (en) Facsimile apparatus
KR100244851B1 (en) Method for connecting a portable phone to the wire telephone network
JPH01282930A (en) Facsimile communication system using automobile telephone set
JP3004855B2 (en) Key telephone equipment
JPH05110718A (en) Modem
JP3061982B2 (en) Digital portable radio telephone equipment
JP2963023B2 (en) Wireless communication device
JP3192870B2 (en) Cordless telephone
JP2615104B2 (en) Interface device for data transmission equipment
WO1992017988A1 (en) Telephone set
JPS6226938A (en) Automobile telephone set
JP3351607B2 (en) Intercom equipment
JP2648128B2 (en) Exchanger connection device for MCA
JP3104614B2 (en) Simple repeater with PHS

Legal Events

Date Code Title Description
AS Assignment

Owner name: MLR PATNERS - SALVATORE MARINO, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTRUM INFORMATION TECHNOLOGIES, INC.;REEL/FRAME:010327/0981

Effective date: 19990927

Owner name: LEEDOM, CHARLES M., JR., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTRUM INFORMATION TECHNOLOGIES, INC.;REEL/FRAME:010327/0981

Effective date: 19990927

Owner name: ROBINSON, ERIC J., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTRUM INFORMATION TECHNOLOGIES, INC.;REEL/FRAME:010327/0981

Effective date: 19990927

AS Assignment

Owner name: MLR, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MLR PARTNERS;REEL/FRAME:011213/0268

Effective date: 20000920

AS Assignment

Owner name: MLR, LLC (A LIMITED LIABILITY COMPANY OF VIRGINIA)

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SITI-SITES.COM, INC. (A CORPORATION OF DELAWARE);REEL/FRAME:017931/0798

Effective date: 20060221

AS Assignment

Owner name: SITI-SITES.COM, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MLR, LLC;REEL/FRAME:017303/0308

Effective date: 20060221

CC Certificate of correction