Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicke auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit deinem Reader.

Patentsuche

  1. Erweiterte Patentsuche
VeröffentlichungsnummerUSRE38614 E1
PublikationstypErteilung
AnmeldenummerUS 10/225,282
Veröffentlichungsdatum5. Okt. 2004
Eingetragen22. Aug. 2002
Prioritätsdatum30. Jan. 1998
GebührenstatusBezahlt
Veröffentlichungsnummer10225282, 225282, US RE38614 E1, US RE38614E1, US-E1-RE38614, USRE38614 E1, USRE38614E1
ErfinderDavid C. Paul, Hansjuerg W. Emch, Beat Schenk
Ursprünglich BevollmächtigterSynthes (U.S.A.)
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links: USPTO, USPTO-Zuordnung, Espacenet
Intervertebral allograft spacer
US RE38614 E1
Zusammenfassung
An allogenic intervertebral implant for fusing vertebrae is disclosed. The implant is a piece of allogenic bone conforming in size and shape with a portion of an end plate of a vertebra. The implant has a wedge-shaped profile to restore disc height and the natural curvature of the spine. The top and bottom surfaces of the implant have a plurality of teeth to resist expulsion and provide initial stability. The implant according to the present invention provides initial stability need for fusion without stress shielding.
Bilder(8)
Previous page
Next page
Ansprüche(12)
What is claimed is:
1. An intervertebral implant comprising a piece of allogenic bone conforming in size and shape with a portion of an end plate of a vertebra and having a wedge-shaped profile, wherein top and bottom surfaces of the implant have a plurality of teeth in combination with a discrete spacer comprising a piece of allogenic bone conforming in size and shape with a second portion of an end plate of a vertebra and having a wedge-shaped profile, wherein top and bottom surfaces of the second member discrete spacer are substantially smooth and regions between top and bottom surfaces and anterior and lateral sides of the spacer have curved edges to facilitate implantation of the spacer.
2. The implant of claim 1, wherein at least one side has a channel for receiving a surgical instrument.
3. The implant of claim 1, wherein the channel runs in an anterior-posterior direction.
4. The implant of claim 1, wherein the teeth have a pyramid shape.
5. The implant of claim 1, wherein the teeth have a saw tooth shape.
6. The implant of claim 1, wherein at least one side of the implant has at least one hole for attachment of an inserter.
7. The implant of claim 6, wherein the at least one hole is threaded.
8. The implant of claim 6, wherein the at least one hole is provided in an anterior, posterior, posterior-lateral, or lateral side.
9. The implant of claim 1, wherein the top and bottom surfaces are defined by flat planar surfaces.
10. The implant of claim 9, wherein a region between the top and bottom surfaces and an anterior side of the implant is a curved edge to facilitate implantation of the implant.
11. The implant of claim 1, wherein the top and bottom surfaces are defined by curved surfaces, said curved surfaces contoured to mimic surfaces of the end plates of the vertebrae.
12. The implant of claim 1, wherein the implant has an interior space for receiving an osteoconductive material.
Beschreibung
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a reissue application of U.S. patent application Ser. No. 09/363,844, filed on Jul. 30, 1999, which is now U.S. Pat. No. 6,258,125 B1, which application is, in turn, a continuation-in-part of U.S. patent application Ser. No. 09/219,439, filed on Dec. 23, 1998, which is now U.S. Pat. No. 6,143,033. U.S. patent application Ser. No. 09/363,844 claims benefit to Provisional Application No. 60/095,209, filed on Aug. 3, 1998, under 35 U.S.C. § 119 (e). U.S. patent application Ser. No. 09/219,439 claims benefit to Provisional Application No. 60/095,425, filed on Aug. 5, 1998, and claims benefit to Provisional Application No. 60/073,271, filed on Jan. 30, 1998, under 35 U.S.C. § 119 (e).

FIELD OF THE INVENTION

The present invention is directed to an allogenic implant and, more particularly, to an allogenic intervertebral implant.

BACKGROUND OF THE INVENTION

A number of medical conditions such as compression of spinal cord nerve roots, degenerative disc disease, and spondylolisthesis can cause severe low back pain. Intervertebral fusion is a surgical method of alleviating low back pain. In posterior lumbar interbody fusion (“PLIF”), two adjacent vertebral bodies are fused together by removing the affected disc and inserting an implant that would allow for bone to grow between the two vertebral bodies to bridge the gap left by the disc removal.

A number of different implants and implant materials have been used in PLIF with varying success. Current implants used for PLIF include threaded titanium cages and allografts. Threaded titanium cages suffer from the disadvantage of requiring drilling and tapping of the vertebral end plates for insertion. In addition, the incidence of subsidence in long term use is not known. Due to MRI incompatibility of titanium, determining fusion is problematic. Finally, restoration of lordosis, i.e., the natural curvature of the lumbar spine is very difficult when a cylindrical titanium cage is used.

Allografts are sections of bone taken from a long bone of a donor. A cross section of the bone is taken and processed using known techniques to preserve the allograft until implantation and reduce the risk of an adverse immunological response when implanted. For example, U.S. Pat. No. 4,678,470 discloses a method for processing a bone grafting material which uses glutaraldehyde tanning to produce a non-antigenic, biocompatible material. Allografts have mechanical properties which are similar to the mechanical properties of vertebrae even after processing. This prevents stress shielding that occurs with metallic implants. They are also MRI compatible so that fusion can be more accurately ascertained and promote the formation of bone, i.e., osteo-conductive. Although the osteoconductive nature of the allograft provides a biological interlocking between the allograft and the vertebrae for long term mechanical strength, initial and short term mechanical strength of the interface between the allograft and the vertebrae are lacking as evidenced by the possibility of the allograft being expelled after implantation.

Currently commercially available allografts are simply sections of bone not specifically designed for use in PLIF. As a result, the fusion of the vertebral bodies does not occur in optimal anatomical position. A surgeon may do some minimal intraoperative shaping and sizing to customize the allograft for the patient's spinal anatomy. However, significant shaping and sizing of the allograft is not possible due to the nature of the allograft. Even if extensive shaping and sizing were possible, a surgeon's ability to manually shape and size the allograft to the desired dimensions is severely limited.

Most PLIF implants, whether threaded cages or allograft, are available in different sizes and have widths that vary with the implant height. For example, the width of a cylindrical cages will be substantially equivalent to the height. Although larger heights may be clinically indicated, wider implants are generally not desirable since increased width requires removal of more of the facet, which can lead to decreases stability, and more retraction of nerve roots, which can lead to temporary or permanent nerve damage.

As the discussion above illustrates, there is a need for an improved implant for fusing vertebrae.

SUMMARY OF THE INVENTION

The present invention relates to an allogenic intervertebral implant for use when surgical fusion of vertebral bodies is indicated. The implant comprises a piece of allogenic bone conforming in size and shape with a portion of an end plates of the vertebrae and has a wedge-shaped profile with a plurality of teeth located on top and bottom surfaces. The top and bottom surfaces can be flat planar surfaces or curved surfaces to mimic the topography of the end plates. The implant has a channel on at least one side for receiving a surgical tool. This channel runs in the anterior direction to accommodate a variety of surgical approaches. A threaded hole on the anterior, posterior, posterior-lateral, or lateral side can be provided for receiving a threaded arm of an insertion tool.

In another embodiment, the implant has an interior space for receiving an osteoconductive material to promote the formation of new bone.

In another embodiment, the implant is made of a plurality of interconnecting sections with mating sections. Preferably, the implant is made in two halves: a top portion having a top connecting surface and a bottom portion having a bottom connecting surface. The top connecting surface mates with the bottom connecting surface when the top and bottom portions are joined. The top and bottom portions have holes that align for receiving a pin to secure the top and bottom portions together. The pin can be made of allogenic bone.

In a different embodiment, the medial side of the implant has a scalloped edge such that when a first implant is implanted with a second implant with the medial sides facing each other, the scalloped edges define a cylindrical space.

The present invention also relates to a discrete spacer used in conjunction with any of the other embodiments of the implant. The spacer comprises a piece of allogenic bone conforming in size and shape with a portion of an end plates of the vertebrae and has a wedge-shaped profile with substantially smooth top and bottom surfaces. The intersecting regions between the top and bottom surfaces and at least one of the lateral sides and the intersecting regions between the anterior and posterior sides and the same lateral side are curved surfaces to facilitate implantation of the spacer. Thus, the spacer can be implanted through an opening on one side of the spinal canal and moved with a surgical instrument to the contralateral side.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top view of a first embodiment of the implant according to the present invention;

FIG. 2 is a side view of the implant of FIG. 1;

FIG. 3 is a back view of the implant of FIG. 1;

FIG. 4 is a top view of a second embodiment of the implant;

FIG. 5 is a side view of the implant of FIG. 4;

FIG. 6 is a top view of a third embodiment of the implant;

FIG. 7 is a side view of the implant of FIG. 6;

FIG. 8A is a top view of a top connecting surface of a top portion of the implant of FIG. 6;

FIG. 8B is a top view of a bottom connecting surface of a bottom portion of the implant of FIG. 6;

FIG. 9 is a perspective view of a fourth embodiment of the implant;

FIG. 10A is a side view of one embodiment of the teeth on the implant;

FIG. 10B is a side view of a second embodiment of the teeth of the implant;

FIG. 11 is a side view of an embodiment of the implant similar to the embodiment of FIGS. 6-8;

FIG. 12 is a top view of a vertebral bone characteristic of those of the cervical, thoracic, and lumbar spine;

FIG. 13 is a side view of sequentially aligned vertebral bones, such as are found in the cervical, thoracic, or lumbar spine;

FIG. 14 is a posterior view of a sequence of vertebrae; and

FIG. 15 is an end view of another embodiment of the implant.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 shows a top view of a first embodiment of intervertebral allograft spacer or implant 10 according to the present invention. Implant 10 conforms in size and shape with a portion of end plants of the vertebrae between which implant 10 is to be implanted. Because implant 10 is an allograft, implant 10 promotes the formation of new bone to fuse the two vertebral bodies together. Although implant 10 will probably be predominantly used in the lumbar region of the spine, implant 10 can be configured for implantation in any region of the spine. Implant 10 has a plurality of teeth 12 on superior and inferior surfaces 14, 16 which provide a mechanical interlock between implant 10 and the end plates. Teeth 12 provide the mechanical interlock by penetrating the end plates. The initial mechanical stability afforded by teeth 12 minimizes the risk of post-operative expulsion of implant 10. Teeth 12 can be pyramid-shaped (FIG. 10A). Preferably, the angle formed from the tip of the base is approximately 60°. Alternatively, teeth 12 have a saw tooth shape with the saw tooth running in the anterior-posterior direction (FIG. 10B).

As shown in FIG. 2 and FIG. 3, a first lateral side 18 has a channel 20 and a second lateral side 22 also has a channel 20. Channels 20 are sized to receive a surgical instrument such as an inserter for implantation of implant 10. If the inserter has a threaded arm, implant 10 can be provided with a threaded hole 24. In FIG. 2, channel 20 is shown extended only partially along first lateral side 18. Channel 20 can extend along the entire length of first lateral side 18 as shown in the embodiment of FIG. 5. In FIG. 3, channels 20 are shown on both first and second lateral sides 18, 22. It should be noted that implant 10 can also have no channels or channels on one lateral side only as shown in the embodiment of FIG. 9.

The dimensions of implant 10 can be varied to accommodate a patient's anatomy. Typically, implant 10 would have a width between 6-15 mm (in the medial-lateral direction), a length between 15-30 mm (in the anterior-posterior direction), and a height between 4-30 mm (maximum height in the superior-inferior direction). The size of implant 10 allows implant 10 to be implanted using conventional open surgical procedures or minimally invasive procedures, such as laparoscopic surgery. Additionally, because the width is kept to a restricted size range and does not necessarily increase with implant height, taller implants can be used without requiring wider implants. Thus, facet removal and retraction of nerve roots can remain minimal.

In order to restore the natural curvature of the spine after the affected disc has been removed, implant 10 has a wedge-shaped profile. As shown in FIG. 2, this wedge shape results from a gradual decrease in height from an anterior side 26 to a posterior side 28. In anatomical terms, the natural curvature of the lumbar spine is referred to as lordosis. When implant 10 is to be used in the lumbar region, the angle formed by the wedge should be approximately between 4.2° and 15° so that the wedge shape is a lordotic shape which mimics the anatomy of the lumbar spine.

In order to facilitate insertion of implant 10, anterior side 26 transitions to superior and inferior surfaces 14, 16 with rounded edges 30. Rounded edges 30 enable implant 10 to slide between the end plates while minimizing the necessary distraction of the end plates.

Although implant 10 is typically a solid piece of allogenic bone, implant 10 can be provided with a hollow interior to form an interior space. This interior space can be filled with bone chips or any other osteoconductive material to further promote the formation of new bone.

FIG. 4 shows a top view of a second embodiment of an implant 40 according to the present invention. In general, most of the structure of implant 40 is like or comparable to the structure of implant 10. Accordingly, discussion of the like components is not believed necessary. The superior and inferior surfaces 14, 16 of implant 10 are flat planar surfaces. As seen best in FIG. 5, superior and inferior surfaces 14, 16 of implant 40 are curved surfaces which still retain the wedge-shaped profile. The curved surfaces of superior and inferior surfaces 14, 16 of implant 40 are a mirror-image of the topography of the vertebral end plates. Thus, the curved surfaces conform to the contours of the end plates.

FIG. 6 shows a top view of a third embodiment of an implant 50 according to the present invention. In general, most of the structure of implant 50 is like or comparable to the structure of implants 10, 40. Accordingly, discussion of the like components is not believed necessary. As best seen in FIG. 7, implant 50 comprises a top portion 52 joined to a bottom portion 54. As it may be difficult to obtain a single section of allogenic bone from which implant 50 is to be made, fabricating implant 50 in two pieces, i.e. top and bottom portions 52, 54, allows smaller sections of allogenic bone to be used. A top connecting surface 56 and a bottom connecting surface 58 define the interface between top and bottom portions 52, 54. As shown in FIGS. 8A and 8B, top and bottom surfaces 56, 58 have ridges 60 that mate with grooves 62 to interlock top and bottom portions 52, 54. Preferably, ridges 60 and grooves 62 are formed by milling top and bottom surfaces 56, 58 in a first direction and then milling a second time with top and bottom surfaces 56, 58 oriented 90° with respect to the first direction.

A pin 64 passing through aligned holes 66 in top and bottom portions 52, 54 serves to retain top and bottom portions 52, 54 together. Although pin 64 can be made of any biocompatible material, pin 64 is preferably made of allogenic bone. The number and orientation of pins 64 can be varied.

FIG. 11 shows an embodiment of an implant 80 which, like implant 50, is made in multiple pieces. In general, most of the structure of implant 80 is like or comparable to the structure of implants 10, 40, 50. Accordingly, discussion of the like components is not believed necessary. Implant 80 has a top portion 82, a middle portion 84, and a bottom portion 86. As was the case for implant 80, the surfaces between the portions are mating surfaces with interlocking surface features, such as ridges and grooves. One or more pins preferably hold top, middle, and bottom portions 82, 84, 86 together.

FIG. 9 shows a perspective view of a fourth embodiment of a first implant 70 according to the present invention. A second implant 70′, which is substantially similar to first implant 70, is also shown. In general, most of the structure of first and second implants 70, 70′ is like or comparable to the structure of implants 10, 40, 50. Accordingly, discussion of the like components is not believed necessary. First lateral sides 18 of first and second implants 70, 70′ are scalloped to have a C-shape. When first and second implants 70, 70′ are placed side by side with the first lateral sides 18 facing each other, a cylindrical space 72 is formed. When first and second implants 70, 70′ are implanted together, cylindrical space 72 can be filled with osteoconductive material to help promote the formation of new bone. First and second implants 70, 70′ can be provided with locking pins 74 which engage apertures 76 to maintain the spatial relationship between first and second implants 70, 70′.

The use of the implant according to the present invention will now be described with reference to FIGS. 12-14 and using posterior lumbar interbody fusion as an example. As the implant according to the present invention conforms in size and shape to a portion of end plates 100, preoperative planning is recommended for proper sizing. Determine the appropriate implant height by measuring adjacent intervertebral discs 102 on a lateral radiograph. The implant must be seated firmly with a tight fit between end plates 100 when the segment is fully distracted. The tallest possible implant should be used to maximize segmental stability. Due to variability in degrees of magnification from radiographs, the measurements are only an estimate.

With the patient in a prone position on a lumbar frame, radiographic equipment can assist in confirming the precise intraoperative position of the implant. The surgeon incises and dissects the skin from the midline laterally and locates spinous process 104, lamina 106, dura 108, and nerve roots of the appropriate level(s). As much as facets 110 as possible should be preserved to provide stability to the intervertebral segment. The surgeon performs a laminotomy to the medial aspect of facet 110 and reflects dura 108 to expose an approximately 13 mm window to the disc space. Disc 102 is removed through the window until only anterior 112 and lateral 114 annulus remain. The superficial layers of the entire cartilaginous end plates 100 are also removed to expose bleeding bone. Excessive removal of the subchondral bone may weaken the anterior column. Furthermore, if the entire end plate is removed, this may result in subsidence and a loss of segmental stability.

Distraction can be done with either a surgical distractor or a trial spacer implant. In the first method, the distractor blades are placed into the disc space lateral to dura 108. The curve on the neck of the distractor should be oriented toward the midline. The distractor blades should be completely inserted into the disc space so that the ridges at the end of the blades rest on vertebral body 116. Fluoroscopy can assist in confirming that the distractor blades are parallel to end plates 100. Correct placement will angle the handles of the distractor cranially, particularly at L5-S1. The handle of the distractor is squeezed to distract the innerspace. The distraction is secured by tightening the speed nut on the handle.

Using the preoperatively determined size, a trial spacer is inserted in the contralateral disc space with gentle impaction. Fluoroscopy and tactile judgement can assist in confirming the fit of the trial spacer until a secure fit is achieved. Using either the slots or threader hole on the implant, the selected implant is inserted in the contralateral disc space. Alternatively, the channels on the implant allow distraction and insertion to occur on the same side. Regardless of the side the implant is inserted in, autogenous cancellous bone or a bone substitute should be placed in the anterior and medial aspect of the vertebral disc space prior to placement of the second implant. The distractor is removed and a second implant of the same height as the first implant is inserted into the space, using gentle impaction as before. Preferably, the implants are recessed 2-4 mm beyond the posterior rim of the vertebral body.

As previously noted, the implant according to the present invention can be inserted using minimally invasive procedures. In some of these procedures, only one side of the spinal cord needs to be approached. This minimizes muscle stripping, scar tissue in the canal, and nerve root retraction and handling. In clinical situations in which bilateral implant placement is required, proper implantation on the side opposite the incision can be difficult. FIG. 15 shows a beveled spacer 120 that facilitates placement on the side contralateral to the incision. In general and unless otherwise described, most of the structure of beveled spacer 120 is like or comparable to the structure of implants 10, 40, 50, and 80. Accordingly, discussion of the like components is not believed necessary. First lateral side 18 transitions to superior and inferior surfaces 14, 16 with rounded edges 30. First lateral side 18 also transitions to anterior and posterior sides 26, 28 with rounded edges 30. Additionally, spacer 120 has no teeth. The lack of teeth and rounded edges 30 enable spacer 120 to slide between the end plate and across the evacuated disc space (from one lateral annulus to the other) to the contralateral side. As first lateral side 18 is the side that must promote movement of spacer 120, the use of rounded edges 30 on second lateral side 22 is optionally. Once spacer 120 has been placed on the side contralateral to the single incision using a surgical instrument to push spacer 120, bone graft on other osteoconductive material is packed in the disc space. Finally, an implant (any of implant 10, 40, 50, 70, or 70′ can be used) is implanted in the side proximal to the incision.

While it is apparent that the illustrative embodiments of the invention herein disclosed fulfill the objectives stated above, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments which come within the spirit and scope of the present invention.

Patentzitate
Zitiertes PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US384860114. Juni 197219. Nov. 1974G MaMethod for interbody fusion of the spine
US405911514. Juni 197622. Nov. 1977Georgy Stepanovich JumashevSurgical instrument for operation of anterior fenestrated spondylodessis in vertebral osteochondrosis
US4627853 *29. Mai 19859. Dez. 1986American Hospital Supply CorporationMethod of producing prostheses for replacement of articular cartilage and prostheses so produced
US4678470 *29. Mai 19857. Juli 1987American Hospital Supply CorporationBone-grafting material
US478172119. Mai 19861. Nov. 1988S+G ImplantsBone-graft material and method of manufacture
US483475728. März 198830. Mai 1989Brantigan John WProsthetic implant
US48586036. Juni 198822. Aug. 1989Johnson & Johnson Orthopaedics, Inc.Bone pin
US487702024. Mai 198831. Okt. 1989Vich Jose M OApparatus for bone graft
US493297321. Apr. 198812. Juni 1990El GendlerCartilage and bone induction by artificially perforated organic bone matrix
US493684822. Sept. 198926. Juni 1990Bagby George WImplant for vertebrae
US4950296 *13. Juni 198921. Aug. 1990Mcintyre Jonathan LBone grafting units
US496174017. Okt. 19889. Okt. 1990Surgical Dynamics, Inc.V-thread fusion cage and method of fusing a bone joint
US50263736. Nov. 198925. Juni 1991Surgical Dynamics, Inc.Surgical method and apparatus for fusing adjacent bone structures
US5053049 *29. Mai 19851. Okt. 1991Baxter InternationalFlexible prostheses of predetermined shapes and process for making same
US506285016. Jan. 19905. Nov. 1991University Of FloridaAxially-fixed vertebral body prosthesis and method of fixation
US5092893 *4. Sept. 19903. März 1992Smith Thomas EHuman orthopedic vertebra implant
US511235416. Nov. 198912. Mai 1992Northwestern UniversityBone allograft material and method
US514151029. Mai 198925. Aug. 1992Shigehide TakagiStructure of artificial bone material for use in implantation
US519232722. März 19919. März 1993Brantigan John WSurgical prosthetic implant for vertebrae
US5275954 *5. März 19914. Jan. 1994LifenetProcess for demineralization of bone using column extraction
US529825417. Dez. 199129. März 1994Osteotech, Inc.Shaped, swollen demineralized bone and its use in bone repair
US5306303 *19. Nov. 199126. Apr. 1994The Medical College Of Wisconsin, Inc.Bone induction method
US5306308 *23. Okt. 199026. Apr. 1994Ulrich GrossIntervertebral implant
US5306309 *4. Mai 199226. Apr. 1994Calcitek, Inc.Spinal disk implant and implantation kit
US532064430. Juli 199214. Juni 1994Sulzer Brothers LimitedIntervertebral disk prosthesis
US540126910. März 199328. März 1995Waldemar Link Gmbh & Co.Intervertebral disc endoprosthesis
US540539116. Febr. 199311. Apr. 1995Hednerson; Fraser C.Fusion stabilization chamber
US5425772 *20. Sept. 199320. Juni 1995Brantigan; John W.Prosthetic implant for intervertebral spinal fusion
US543968421. Jan. 19948. Aug. 1995Osteotech, Inc.Shaped, swollen demineralized bone and its use in bone repair
US5443514 *1. Okt. 199322. Aug. 1995Acromed CorporationMethod for using spinal implants
US54586386. Nov. 199217. Okt. 1995Spine-Tech, Inc.Non-threaded spinal implant
US548443710. Juni 199316. Jan. 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US54893071. Sept. 19946. Febr. 1996Spine-Tech, Inc.Spinal stabilization surgical method
US54893081. Sept. 19946. Febr. 1996Spine-Tech, Inc.Spinal implant
US5514180 *14. Jan. 19947. Mai 1996Heggeness; Michael H.Prosthetic intervertebral devices
US55228997. Juni 19954. Juni 1996Sofamor Danek Properties, Inc.Artificial spinal fusion implants
US5534030 *25. Apr. 19949. Juli 1996Acromed CorporationSpine disc
US555419123. Jan. 199510. Sept. 1996BiomatIntersomatic vertebral cage
US5556379 *27. Febr. 199517. Sept. 1996Lifenet Research FoundationProcess for cleaning large bone grafts and bone grafts produced thereby
US557119011. Aug. 19945. Nov. 1996Heinrich UlrichImplant for the replacement of vertebrae and/or stabilization and fixing of the spinal column
US55711923. Juli 19955. Nov. 1996Heinrich UlrichProsthetic vertebral implant
US559123515. März 19957. Jan. 1997Kuslich; Stephen D.Spinal fixation device
US559340917. Febr. 199514. Jan. 1997Sofamor Danek Group, Inc.Interbody spinal fusion implants
US56096357. Juni 199511. März 1997Michelson; Gary K.Lordotic interbody spinal fusion implants
US560963611. Jan. 199611. März 1997Spine-Tech, Inc.Spinal implant
US5609637 *17. Apr. 199611. März 1997Biedermann; LutzSpace keeper, in particular for an intervertebral disk
US564559815. Apr. 19968. Juli 1997Smith & Nephew, Inc.Spinal fusion device with porous material
US5658337 *17. Apr. 199619. Aug. 1997Spine-Tech, Inc.Intervertebral fusion implant
US568339429. Sept. 19954. Nov. 1997Advanced Spine Fixation Systems, Inc.Fusion mass constrainer
US568346327. Juli 19944. Nov. 1997Advanced Technical FabricationIntersomatic vertebral column implant
US5683464 *7. Juni 19954. Nov. 1997Sulzer Calcitek Inc.Spinal disk implantation kit
US5702449 *7. Juni 199530. Dez. 1997Danek Medical, Inc.Reinforced porous spinal implants
US5702455 *3. Juli 199630. Dez. 1997Saggar; RahulExpandable prosthesis for spinal fusion
US570968319. Dez. 199520. Jan. 1998Spine-Tech, Inc.Interbody bone implant having conjoining stabilization features for bony fusion
US5716415 *8. März 199610. Febr. 1998Acromed CorporationSpinal implant
US5722977 *24. Jan. 19963. März 1998Danek Medical, Inc.Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5725579 *6. Dez. 199510. März 1998BiolandProcess for treating bone tissue and corresponding implantable biomaterials
US5728159 *2. Jan. 199717. März 1998Musculoskeletal Transplant FoundationSerrated bone graft
US5741253 *29. Okt. 199221. Apr. 1998Michelson; Gary KarlinMethod for inserting spinal implants
US576625224. Jan. 199516. Juni 1998Osteonics Corp.Interbody spinal prosthetic implant and method
US5766253 *16. Jan. 199616. Juni 1998Surgical Dynamics, Inc.Spinal fusion device
US5776199 *2. Mai 19977. Juli 1998Sofamor Danek PropertiesArtificial spinal fusion implants
US578283010. Juli 199621. Juli 1998Sdgi Holdings, Inc.Implant insertion device
US5785710 *7. Juni 199528. Juli 1998Sofamor Danek Group, Inc.Interbody spinal fusion implants
US5797871 *7. Mai 199625. Aug. 1998Lifenet Research FoundationUltrasonic cleaning of allograft bone
US579809612. Aug. 199425. Aug. 1998Maloe Vnedrencheskoe Predpriyatie "Interfall"Biocompatible hydrogel
US5814084 *16. Jan. 199629. Sept. 1998University Of Florida Tissue Bank, Inc.Diaphysial cortical dowel
US5820581 *21. März 199613. Okt. 1998Lifenet Research FoundationProcess for cleaning large bone grafts and bone grafts produced thereby
US5865845 *5. März 19962. Febr. 1999Thalgott; John S.Prosthetic intervertebral disc
US5865848 *12. Sept. 19972. Febr. 1999Artifex, Ltd.Dynamic intervertebral spacer and method of use
US588529914. März 199623. März 1999Surgical Dynamics, Inc.Apparatus and method for implant insertion
US5888222 *9. Okt. 199730. März 1999Sdgi Holding, Inc.Intervertebral spacers
US58882245. Sept. 199730. März 1999Synthesis (U.S.A.)Implant for intervertebral space
US5888227 *3. Okt. 199630. März 1999Synthes (U.S.A.)Inter-vertebral implant
US58954266. Sept. 199620. Apr. 1999Osteotech, Inc.Fusion implant device and method of use
US5897593 *29. Juli 199727. Apr. 1999Sulzer Spine-Tech Inc.Lordotic spinal implant
US5899939 *21. Jan. 19984. Mai 1999Osteotech, Inc.Bone-derived implant for load-supporting applications
US5899941 *9. Dez. 19974. Mai 1999Chubu Bearing Kabushiki KaishaArtificial intervertebral disk
US590471924. Juli 199718. Mai 1999Techsys Medical, LlcInterbody fusion device having partial circular section cross-sectional segments
US591031518. Juli 19978. Juni 1999Stevenson; SharonAllograft tissue material for filling spinal fusion cages or related surgical spaces
US596809822. Okt. 199619. Okt. 1999Surgical Dynamics, Inc.Apparatus for fusing adjacent bone structures
US5972368 *11. Juni 199726. Okt. 1999Sdgi Holdings, Inc.Bone graft composites and spacers
US59761876. Okt. 19972. Nov. 1999Spinal Innovations, L.L.C.Fusion implant
US598492216. Dez. 199616. Nov. 1999Mckay; Douglas WilliamSpinal fixation device and method
US598496719. Febr. 199616. Nov. 1999Sdgi Holdings, Inc.Osteogenic fusion devices
US59892899. Okt. 199723. Nov. 1999Sdgi Holdings, Inc.Bone grafts
US600843323. Apr. 199828. Dez. 1999Stone; Kevin R.Osteotomy wedge device, kit and methods for realignment of a varus angulated knee
US6025538 *20. Nov. 199815. Febr. 2000Musculoskeletal Transplant FoundationCompound bone structure fabricated from allograft tissue
US6033438 *3. Juni 19977. März 2000Sdgi Holdings, Inc.Open intervertebral spacer
US603976211. Juni 199721. März 2000Sdgi Holdings, Inc.Reinforced bone graft substitutes
US6045579 *1. Mai 19974. Apr. 2000Spinal Concepts, Inc.Adjustable height fusion device
US60455809. Okt. 19984. Apr. 2000Osteotech, Inc.Fusion implant device and method of use
US605979016. Juli 19989. Mai 2000Sulzer Spine-Tech Inc.Apparatus and method for spinal stabilization
US6080158 *23. Aug. 199927. Juni 2000Lin; Chih-IIntervertebral fusion device
US6080193 *15. Sept. 199827. Juni 2000Spinal Concepts, Inc.Adjustable height fusion device
US609099827. Okt. 199718. Juli 2000University Of FloridaSegmentally demineralized bone implant
US6096080 *10. Febr. 19991. Aug. 2000Cortek, Inc.Apparatus for spinal fusion using implanted devices
US609608116. Jan. 19971. Aug. 2000University Of Florida Tissue Bank, Inc.Diaphysial cortical dowel
US61111642. Jan. 199729. Aug. 2000Musculoskeletal Transplant FoundationBone graft insert
US614303323. Dez. 19987. Nov. 2000Synthes (Usa)Allogenic intervertebral implant
US618732923. Dez. 199713. Febr. 2001Board Of Regents Of The University Of Texas SystemVariable permeability bone implants, methods for their preparation and use
US62003473. Aug. 199913. März 2001LifenetComposite bone graft, method of making and using same
US62069238. Jan. 199927. März 2001Sdgi Holdings, Inc.Flexible implant using partially demineralized bone
US62417696. Mai 19985. Juni 2001Cortek, Inc.Implant for spinal fusion
US624510831. Jan. 200012. Juni 2001SpinecoSpinal fusion implant
US625812530. Juli 199910. Juli 2001Synthes (U.S.A.)Intervertebral allograft spacer
US626158631. Aug. 199917. Juli 2001Sdgi Holdings, Inc.Bone graft composites and spacers
US62705286. Aug. 19997. Aug. 2001Sdgi Holdings, Inc.Composited intervertebral bone spacers
US62771498. Juni 199921. Aug. 2001Osteotech, Inc.Ramp-shaped intervertebral implant
US637198818. Jan. 200016. Apr. 2002Sdgi Holdings, Inc.Bone grafts
US65115097. Mai 199828. Jan. 2003LifenetTextured bone allograft, method of making and using same
US200100011295. Dez. 200010. Mai 2001Mckay William F.Osteogenic fusion device
US200100100212. Febr. 200126. Juli 2001Boyd Lawrence M.Flexible implant using partially demineralized bone
US2001001483116. März 200116. Aug. 2001Scarborough Nelson L.Bone graft, method of making bone graft and guided bone regeneration method
US200100167758. Juni 199923. Aug. 2001Nelson ScarboroughIntervertebral implant
US2001001677725. Apr. 200123. Aug. 2001SpinecoSpinal fusion implant
US200200914475. Nov. 200111. Juli 2002Osteotech, Inc.Spinal intervertebral implant and method of making
US2002010639327. Aug. 20018. Aug. 2002Bianchi John R.Assembled implant, including mixed-composition segment
US200201075708. Dez. 20008. Aug. 2002Sybert Daryl R.Biocompatible osteogenic band for repair of spinal disorders
DE2910627A117. März 197925. Sept. 1980Schuett & Grundei SanitaetImplant which can be used as replacement for spongy bones - is built up from tolerated fibres which are implanted in bone cut=out
DE4242889A118. Dez. 199223. Juni 1994Merck Patent GmbhHohlendoprothesen mit Knochenwachstumsfördernder Füllung
DE4423257A12. Juli 19944. Jan. 1996Ulrich HeinrichImplantat zum Einsetzen zwischen Wirbelkörper der Wirbelsäule als Platzhalter
DE29913200U128. Juli 199923. Sept. 1999Tutogen Medical GmbhImplantat aus Knochenmaterial
EP0505634A126. Apr. 199130. Sept. 1992Kyocera CorporationA prosthesis
EP0517030A219. Mai 19929. Dez. 1992MAN Ceramics GmbHVertebral implant
EP538183A1 Titel nicht verfügbar
EP0577178A118. Juni 19935. Jan. 1994ESKA Implants GmbH & Co.An implant having an open-cell or open-pore metal structure
EP0639351A217. Juni 199422. Febr. 1995ULRICH, HeinrichImplant for the replacement of a vertebra and/or stabilisation and fixation of the spinal column
EP0646366A1 *4. Okt. 19945. Apr. 1995Acromed CorporationSpinal implant
EP0966930A123. Juni 199929. Dez. 1999Biomet Merck LimitedVertebral body replacement
FR2552659A3 Titel nicht verfügbar
FR2717068A1 * Titel nicht verfügbar
JPH0614947A Titel nicht verfügbar
WO1994026213A1 *9. März 199424. Nov. 1994Plus Endoprothetik AgVertebral body implant
WO1995008964A2 *7. Sept. 19946. Apr. 1995Brantigan John WProsthetic implant for intervertebral spinal fusion
WO1995015133A1 *2. Dez. 19948. Juni 1995Calcitek, Inc.Spinal disk implant and kit
WO1996011642A117. Okt. 199525. Apr. 1996Raymedica, Inc.Prosthetic spinal disc nucleus
WO1996039988A26. Juni 199619. Dez. 1996Michelson Gary KTranslateral spinal implant
WO1997014378A2 *8. Okt. 199624. Apr. 1997Sdgi Holdings, Inc.Intervertebral spacers
WO1997015248A1 *3. Okt. 19961. Mai 1997Synthes Ag ChurInter-vertebral implant
WO1997025945A1 *16. Jan. 199724. Juli 1997University Of Florida, Tissue Bank, Inc.Diaphysial cortical dowel
WO1997032547A1 *5. März 199712. Sept. 1997Thalgott John SProsthetic intervertebral disc
WO1998017209A2 *21. Okt. 199730. Apr. 1998Sdgi Holdings, Inc.Spinal spacer
WO1998055052A1 *3. Juni 199810. Dez. 1998Sdgi Holdings, Inc.Open intervertebral spacer
WO1998056319A1 *11. Juni 199817. Dez. 1998Sdgi Holdings, Inc.Reinforced bone graft sustitutes
WO1998056433A1 *11. Juni 199817. Dez. 1998Sdgi Holdings, Inc.Bone graft composites and spacers
WO1999009914A1 *27. Aug. 19984. März 1999University Of Florida Tissue Bank, Inc.Cortical bone cervical smith-robinson fusion implant
WO1999013806A1 *10. Sept. 199825. März 1999Bhc Engineering, L.P.Dynamic intervertebral spacer
WO1999029271A110. Dez. 199817. Juni 1999Sdgi Holdings, Inc.Osteogenic fusion device
WO1999032055A123. Dez. 19981. Juli 1999Depuy Acromed, Inc.Spacer assembly for use in spinal surgeries
WO1999038461A222. Jan. 19995. Aug. 1999Synthes Ag ChurAllogenic intervertebral implant
WO2000007527A130. Juli 199917. Febr. 2000Synthes Ag ChurIntervertebral allograft spacer
WO2000007528A16. Aug. 199917. Febr. 2000Sdgi Holdings, Inc.Composited intervertebral bone spacers
WO2000030568A119. Nov. 19992. Juni 2000Musculoskeletal Transplant Foundation Edison Corporate CenterCompound bone structure fabricated from allograft tissue
WO2000040177A118. Dez. 199913. Juli 2000LifenetComposite bone graft, method of making and using same
WO2000040179A15. Jan. 200013. Juli 2000Sdgi Holdings, Inc.Flexible implant using partially demineralized bone
WO2000041654A211. Jan. 200020. Juli 2000Sdgi Holdings, Inc.Truncated open intervertebral spacers
WO2000042954A224. Jan. 200027. Juli 2000Osteotech, Inc.Intervertebral implant
WO2000059412A14. Apr. 200012. Okt. 2000Raymedica, Inc.Prosthetic spinal disc nucleus having a shape change characteristic
WO2001008611A121. Juni 20008. Febr. 2001Tutogen Medical GmbhImplant from osseous material
Nichtpatentzitate
Referenz
1Fred H. Albee, "Bone Surgery With Machine Tools," Scientific American, Apr. 1936, pp. 178-181.
2Fred H. Albee, Bone Graft Surgery in Disease, Injury and Deformity, D. Appleton-Century Company, Inc., New York, 1940, pp. 22, 30, 114, 151, 155, 164, 212, 256-257, 311-313.
3Fred H. Albee, Bone-Graft Surgery, W. B. Saunders Company, Philadelphia, Pennsylvania, 1915, pp. 145, 165-166, 171, 368-369.
Referenziert von
Zitiert von PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US779908114. Sept. 200421. Sept. 2010Aeolin, LlcSystem and method for spinal fusion
US790145816. Dez. 20058. März 2011Warsaw Orthopedic, Inc.Intervertebral spacer and insertion tool
US791887624. März 20045. Apr. 2011Theken Spine, LlcSpinal implant adjustment device
US8128700 *12. Sept. 20076. März 2012Synthes Usa, LlcAllograft intervertebral implant and method of manufacturing the same
US824135915. Febr. 200714. Aug. 2012Ldr MedicalTransforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US83432196. Juni 20081. Jan. 2013Ldr MedicalIntersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US840928817. März 20062. Apr. 2013Ldr MedicalTransforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US84092902. Apr. 20102. Apr. 2013Seaspine, Inc.Interbody device for spinal applications
US846038927. Jan. 201211. Juni 2013DePuy Synthes Products, LLCAllograft intervertebral implant and method of manufacturing the same
US856268316. Juli 201022. Okt. 2013Aeolin LlcSystem and method for spinal fusion
US85799802. Okt. 201212. Nov. 2013DePuy Synthes Products, LLCAllograft intervertebral implant and method of manufacturing the same
US862308722. Juni 20077. Jan. 2014Ldr MedicalIntersomatic cage with unified grafts
US890062012. Okt. 20062. Dez. 2014DePuy Synthes Products, LLCDrug-impregnated encasement
US89267019. Okt. 20136. Jan. 2015DePuy Synthes Products, LLCAllograft intervertebral implant and method of manufacturing the same
US896160627. Juli 201224. Febr. 2015Globus Medical, Inc.Multi-piece intervertebral implants
US902310816. Juli 20135. Mai 2015Globus Medical IncExpandable vertebral prosthesis
US903977422. Febr. 201326. Mai 2015Ldr MedicalAnchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US904433729. Juni 20122. Juni 2015Ldr MedicalAnchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US91493655. März 20136. Okt. 2015Globus Medical, Inc.Low profile plate
US92049755. März 20138. Dez. 2015Globus Medical, Inc.Multi-piece intervertebral implants
US921609623. Apr. 201522. Dez. 2015Pinnacle Spine Group, LlcIntervertebral implants and related tools
US923795726. Febr. 201419. Jan. 2016Globus Medical, Inc.Low profile plate
US93643401. Sept. 201514. Juni 2016Globus Medical, Inc.Low profile plate
US93809321. Nov. 20125. Juli 2016Pinnacle Spine Group, LlcRetractor devices for minimally invasive access to the spine
US938168327. Dez. 20125. Juli 2016DePuy Synthes Products, Inc.Films and methods of manufacture
US93931287. Apr. 201519. Juli 2016Globus Medical, Inc.Expandable vertebral prosthesis
US939896020. Nov. 201326. Juli 2016Globus Medical, Inc.Multi-piece intervertebral implants
US946309112. Jan. 201511. Okt. 2016Ldr MedicalIntervertebral implant having extendable bone fixation members
US95266309. Dez. 201527. Dez. 2016Globus Medical, Inc.Low profile plate
US953910923. Okt. 201510. Jan. 2017Globus Medical, Inc.Low profile plate
US95792601. Okt. 201428. Febr. 2017DePuy Synthes Products, Inc.Drug-impregnated encasement
US959719416. März 201521. März 2017Ldr MedicalIntervertebral disc prosthesis
US964920323. Apr. 201516. Mai 2017Pinnacle Spine Group, LlcMethods of post-filling an intervertebral implant
US96819591. Juni 201520. Juni 2017Globus Medical, Inc.Low profile plate
US971353514. Aug. 201225. Juli 2017Ldr MedicalTransforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US97703406. Okt. 201126. Sept. 2017Globus Medical, Inc.Multi-piece intervertebral implants
US978897321. Dez. 201217. Okt. 2017Pinnacle Spine Group, LlcSpinal implant
US20050119751 *28. Nov. 20032. Juni 2005Lawson Kevin J.Intervertebral bone fusion device
US20050177245 *7. Febr. 200511. Aug. 2005Leatherbury Neil C.Absorbable orthopedic implants
US20060178752 *3. Apr. 200610. Aug. 2006Yaccarino Joseph A IiiCompound bone structure of allograft tissue with threaded fasteners
US20070162128 *16. Dez. 200512. Juli 2007Sdgi Holdings, Inc.Intervertebral spacer and insertion tool
US20080082173 *12. Sept. 20073. Apr. 2008Delurio Robert JAllograft intervertebral implant and method of manufacturing the same
US20080234822 *26. Jan. 200725. Sept. 2008Tutogen Medical, U.S., Inc.Method and Apparatus for Stabilization and Fusion of Adjacent Bone Segments
US20100191337 *2. Apr. 201029. Juli 2010Seaspine, Inc.Interbody device for spinal applications
Klassifizierungen
US-Klassifikation623/17.11, 623/23.63, 623/925
Internationale KlassifikationA61F2/00, B29C43/00, A61F2/28, A61F2/30, B29C33/26, A61F2/46, A61F2/44, A61F2/02
UnternehmensklassifikationA61F2002/30909, A61F2310/00011, A61F2002/3082, A61F2/30942, A61F2230/0015, A61F2220/005, A61F2002/30714, A61F2/4611, A61F2/3094, A61F2002/30057, A61F2002/30472, A61F2002/30382, A61F2250/0063, A61F2002/30434, A61F2/447, A61F2002/30787, A61F2002/30957, A61F2002/4475, A61F2220/0041, A61F2002/30387, A61F2002/30599, A61F2230/0008, A61F2310/00353, A61F2002/30593, A61F2002/3024, A61F2002/3028, A61F2250/0036, A61F2002/30604, A61F2002/30011, A61F2002/30971, A61F2002/30329, A61F2230/0069, A61F2002/4635, A61F2220/0033, A61F2002/3051, A61F2002/30354, A61F2002/30133, A61F2002/30492, B29C43/006, A61F2002/30477, A61F2002/30481, A61F2002/30383, A61F2002/30153, A61F2002/30843, A61F2002/30075, A61F2230/0063, A61F2/30724, A61F2002/30112, A61F2220/0075, A61F2002/30126, A61F2002/30462, A61F2002/30327, A61F2002/30441, A61F2002/30494, A61F2002/2835, A61F2002/30841, A61F2002/30062, A61F2/4644, A61F2/4465, A61F2250/0089, A61F2002/30892, A61F2/30965, A61F2002/30616, A61F2002/30904, A61F2002/4649, A61F2002/30433, A61F2002/30377, A61F2002/30448, A61F2002/30436, A61F2/4455, A61F2250/0023, A61F2002/30158, A61F2002/30233, A61F2002/30894, A61F2002/30733, A61F2230/0026, A61F2002/30459, A61F2002/2839, A61F2002/30782, A61F2002/3038, A61F2220/0025, A61F2002/30828, A61F2002/2817, B29L2031/3041, A61F2002/30331, A61F2/28, A61F2230/0065, A61F2210/0004, A61F2230/0019, A61F2002/30515, A61F2002/30324, A61F2002/30785, A61F2002/30772, A61F2002/30507, A61F2310/00293, A61F2002/30617, A61F2002/30774, A61F2/442, A61F2002/30238, A61F2002/30975, B29C33/26, A61F2310/00179, A61F2210/0061, A61F2002/30228, A61F2230/0004, A61F2220/0066, A61F2250/0039, A61F2/30744, A61F2250/0097, A61F2002/302
Europäische KlassifikationA61F2/30M2, A61F2/28, A61F2/44F, B29C43/00C, A61F2/44F6, A61F2/44F4
Juristische Ereignisse
DatumCodeEreignisBeschreibung
3. Jan. 2005FPAYFee payment
Year of fee payment: 4
11. Dez. 2008FPAYFee payment
Year of fee payment: 8
12. Juni 2009ASAssignment
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC,PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC,PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
Owner name: SYNTHES USA, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:022826/0140
Effective date: 20081223
12. Dez. 2012FPAYFee payment
Year of fee payment: 12