USRE40531E1 - Ultrabarrier substrates - Google Patents

Ultrabarrier substrates Download PDF

Info

Publication number
USRE40531E1
USRE40531E1 US10/890,437 US89043704A USRE40531E US RE40531 E1 USRE40531 E1 US RE40531E1 US 89043704 A US89043704 A US 89043704A US RE40531 E USRE40531 E US RE40531E
Authority
US
United States
Prior art keywords
barrier
barrier assembly
layers
assembly
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/890,437
Inventor
Gordon Lee Graff
Mark Edward Gross
Ming Kun Shi
Michael Gene Hall
Peter Maclyn Martin
Eric Sidney Mast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/427,138 external-priority patent/US6522067B1/en
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Priority to US10/890,437 priority Critical patent/USRE40531E1/en
Application granted granted Critical
Publication of USRE40531E1 publication Critical patent/USRE40531E1/en
Assigned to SAMSUNG MOBILE DISPLAY CO., LTD. reassignment SAMSUNG MOBILE DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BATTELLE MEMORIAL INSTITUTE
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SAMSUNG MOBILE DISPLAY CO., LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates generally to barrier coatings, and more particularly to barrier coatings having improved barrier properties.
  • environmentally sensitive means products which are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing, handling, storage, and use of the product.
  • Plastics are often used in product packaging.
  • the gas and liquid permeation resistance of plastics is poor, often several orders of magnitude below what is required for product performance.
  • the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m 2 /day/micron of thickness (or 8.7 cc/m 2 /day for 7 mil thickness PET), and the water vapor transmission rates are also in this range.
  • Certain display applications using environmentally sensitive display devices, such as organic light emitting devices require encapsulation that has a maximum oxygen transmission rate of 10 ⁇ 4 to 10 ⁇ 2 cc/m 2 /day, and a maximum water vapor transmission rate of 10 ⁇ 5 to 10 ⁇ 6 g/m 2 /day.
  • Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability.
  • Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiO x , AlO x , an Si 3 N 4 vacuum deposited on polymeric substrates.
  • a single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m 2 /day, and water vapor permeability to about 0.1 to 1.0 g/m 2 /day, which is insufficient for many display devices.
  • U.S. Pat. Nos. 5,607,789 and 5,681,666 disclose a moisture barrier for an electrochemical cell tester. However, the claimed moisture barrier ranges from 2 to 15 micrograms/in 2 /day which corresponds to a rate of 0.003 to 0.023 g/m 2 /day.
  • U.S. Pat. No. 5,725,909 to Shaw et al. discloses a coating for packaging materials which has an acrylate layer and an oxygen barrier layer. The oxygen transmission rate for the coating was reported to be 0.1 cc/m 2 /day at 23° C. and the water vapor transmission rate was reported to be 0.01 g/m 2 /day in D. G. Shaw and M. G. Langlois, Society of Vacuum Coaters, 37 th Annual Technical Conference Proceedings, p. 240-244, 1994. The oxygen transmission rates for these coatings are inadequate for many display devices.
  • the present invention meets these needs by providing a barrier assembly and a method for making such an assembly.
  • the barrier assembly includes at least one barrier stack having at least one barrier layer and at least one polymer layer.
  • the barrier stack has an oxygen transmission rate of less than 0.005 cc/m 2 /day at 23° C. and 0% relative humidity, and an oxygen transmission rate of less than 0.005 cc/m 2 /day at 38° C. and 90% relative humidity. It also preferably has a water vapor transmission rate of less than 0.005 g/m 2/ day at 38° C. and 100% relative humidity.
  • the barrier layers of the barrier stacks are substantially transparent.
  • At least one of the barrier layers preferably comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
  • the barrier layers can be substantially opaque, if desired.
  • the opaque barrier layers are preferably selected from opaque metals, opaque polymers, and opaque ceramics.
  • the barrier assembly can include a substrate adjacent to the at least one barrier stack.
  • adjacent we mean next to, but not necessarily directly next to. There can be additional layers intervening between the adjacent layers.
  • the substrate can either be flexible or rigid. It is preferably made of a flexible substrate material, such as polymers, metals, paper, fabric, and combinations thereof. If a rigid substrate is used, it is preferably a ceramic (including glasses), a metal, or a semiconductor.
  • the polymer layers of the barrier stacks are preferably acrylate-containing polymers.
  • acrylate-containing polymers includes acrylate-containing polymers, methacrylate-containing polymers, and combinations thereof
  • the polymer layers can be the same or different.
  • the barrier assembly can include additional layers if desired, such as polymer smoothing layers, scratch resistant layers, antireflective coatings, or other functional layers.
  • the present invention also involves a method of making the barrier assembly.
  • the method includes providing a substrate, and placing at least one barrier stack on the substrate.
  • the barrier stack includes at least one barrier layer and at least one polymer layer.
  • the at least one barrier stack can be placed on the substrate by deposition, preferably vacuum deposition, or by laminating the barrier stack over the environmentally sensitive device.
  • the lamination can be performed using an adhesive, solder, ultrasonic welding, pressure, or heat.
  • FIG. 1 is a cross-section of one embodiment of the barrier assembly of the present invention.
  • FIG. 2 is a cross-section of an encapsulated device made using the barrier assembly of the present invention.
  • the barrier assembly is supported by a substrate 105 .
  • the substrate 105 can be either rigid or flexible.
  • a flexible substrate can be any flexible material, including, but not limited to: polymers, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or high temperature polymers, such as polyether sulfone (PES), polyimides, or TransphanTM (a high glass transition temperature cyclic olefin polymer available from Lofo High Tech Film, GMBH or Weil am Rhein, Germany); metal; paper; fabric; and combinations thereof.
  • Rigid substrates are preferably glass, metal, or silicon.
  • scratch resistant layers 110 on either side of the substrate 105 to protect it.
  • a scratch resistant layer it is preferred that both sides of the substrate have a scratch resistant layer. This helps to balance stresses and prevent deformation of a flexible substrate during processing and use.
  • the scratch resistant layer 110 On top of the scratch resistant layer 110 , there is a polymer smoothing layer 115 .
  • the polymer smoothing layer decreases surface roughness, and encapsulates surface defects, such as pits, scratches, and digs. This produces a planarized surface which is ideal for subsequent deposition of layers.
  • there can be additional layers deposited on the substrate 105 such as organic or inorganic layers, planarizing layers, electrode layers, antireflective coatings, and other functional layers. In this way, the substrate can be specifically tailored to different applications.
  • the first barrier stack 120 is adjacent to the polymer smoothing layer 115 .
  • the first barrier stack 120 includes a barrier layer 125 and a polymer layer 130 .
  • the first barrier layer 125 includes barrier layers 135 and 140 .
  • Barrier layers 135 and 140 can be made of the same barrier material or of different barrier materials.
  • FIG. 1 shows a barrier stack with two barrier layers and one polymer layer
  • the barrier stacks can have one or more polymer layers and one or more barrier layers.
  • the important feature is that the barrier stack have at least one polymer layer and at least one barrier layer.
  • the barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material.
  • the barrier layers are typically about 100-400 ⁇ thick, and the polymer layers are typically about 1000-10,000 ⁇ thick.
  • barrier stacks Although only one barrier stack is shown in FIG. 1 , the number of barrier stacks is not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
  • a transparent conductor 145 such as an indium tin oxide layer, adjacent to the first barrier stack 120 .
  • a transparent conductor 145 such as an indium tin oxide layer
  • additional overcoat layers on top of the barrier stack such as organic or inorganic layers, planarizing layers, transparent conductors, antireflective coatings, or other functional layers, if desired. This allows the barrier assembly to be tailored to the application.
  • FIG. 2 shows a barrier assembly being used to encapsulate an environmentally sensitive display device.
  • the substrate 205 has an environmentally sensitive display device 210 on it.
  • the barrier stack 215 includes a barrier layer 220 and a polymer layer 225 .
  • the environmentally sensitive display device 210 can be any display device which is environmentally sensitive.
  • environmentally sensitive display devices include, but are not limited to liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices.
  • LCDs liquid crystal displays
  • LEDs light emitting diodes
  • LEPs light emitting polymers
  • EDs electroluminescent devices
  • phosphorescent devices phosphorescent devices.
  • These display devices can be made using known techniques, such as those described in U.S. Pat. Nos. 6,025,899, 5,995,191, 5,994,174, 5,956,112 (LCDs); U.S. Pat. Nos. 6,005,692, 5,821,688, 5,747,928 (LEDs); U.S. Pat. Nos.
  • a polymer smoothing layer is preferably included to provide a smooth base for the remaining layers. It can be formed by depositing a layer of polymer, for example, an acrylate-containing polymer, onto the substrate or previous layer. The polymer layer can be deposited in vacuum or by using atmospheric processes such as spin coating and/or spraying.
  • an acrylate-containing monomer, oligomer, or resin is deposited and then polymerized in situ to form the polymer layer.
  • the term acrylate-containing monomer, oligomer, or resin includes acrylate-containing monomers, oligomers, and resins, methacrylate-containing monomers, oligomers, and resins, and combinations thereof.
  • the barrier stack is then placed on the substrate.
  • the barrier stack includes at least one barrier layer and at least one polymer layer.
  • the barrier stacks are preferably made by vacuum deposition.
  • the barrier layer can be vacuum deposited onto the polymer smoothing layer, the substrate, or the previous layer.
  • the polymer layer is then deposited on the barrier layer, preferably by flash evaporating acrylate-containing monomers, oligomers, or resins, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber.
  • U.S. Pat. Nos. 5,440,446 and 5,725,909 which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.
  • Vacuum deposition includes flash evaporation of acrylate-containing monomer, oligomer, or resin with in situ polymerization under vacuum, plasma deposition and polymerization of acrylate-containing monomer, oligomer, or resin, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
  • ECR-PECVD electron cyclotron resonance-plasma enhanced vapor deposition
  • the barrier assembly is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
  • the substrate When the barrier stack is being used to encapsulate an environmentally sensitive display device, the substrate can be prepared as described above, and the environmentally sensitive display device placed on the substrate. Alternatively, the environmentally sensitive display device can be placed directly on a substrate (or on a substrate with functional layers, such as planarizing layers, scratch resistant layers, etc.).
  • the environmentally sensitive display device can be placed on the substrate by deposition, such as vacuum deposition. Alternatively it can be placed on the substrate by lamination.
  • the lamination can use an adhesive, glue, or the like, or heat to seal the environmentally sensitive display device to the substrate.
  • a barrier stack is then placed over the environmentally sensitive display device to encapsulate it.
  • the second barrier stack can be placed over the environmentally sensitive display device by deposition or lamination.
  • the barrier layers in the first and second barrier stacks may be any barrier material.
  • the barrier layers in the first and second barrier stacks can be made of the same material or a different material.
  • multiple barrier layers of the same or different barrier materials can be used in a barrier stack.
  • the barrier layers can be transparent or opaque, depending on the design of the packaging, and application for which it is to be used.
  • Preferred transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
  • the metal oxides are preferably selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof.
  • the metal nitrides are preferably selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof.
  • the metal oxynitrides are preferably selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
  • Opaque barrier layers can be also be used in some barrier stacks.
  • Opaque barrier materials include, but are not limited to, metals, ceramics, polymers, and cermets.
  • opaque cermets include, but are not limited to, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.
  • the polymer layers of the first and second barrier stacks are preferably acrylate-containing monomers, oligomers, or resins.
  • the polymer layers in the first and second barrier stacks can be the same or different.
  • the polymer layers within each barrier stack can be the same or different.
  • the barrier stack includes a polymer layer and two barrier layers.
  • the two barrier layers can be made from the same barrier material or from different barrier materials.
  • the thickness of each barrier layer in this embodiment is about one half the thickness of the single barrier layer, or about 50 to 200 ⁇ . There are no limitations on the thickness, however.
  • the barrier layers When the barrier layers are made of the same material, they can be deposited either by sequential deposition using two sources or by the same source using two passes. If two deposition sources are used, deposition conditions can be different for each source, leading to differences in microstructure and defect dimensions. Any type of deposition source can be used. Different types of deposition processes, such as magnetron sputtering and electron beam evaporation, can be used to deposit the two barrier layers.
  • the microstructures of the two barrier layers are mismatched as a result of the differing deposition sources/parameters.
  • the barrier layers can even have different crystal structure.
  • Al 2 O 3 can exist in different phases (alpha, gamma) with different crystal orientations.
  • the mismatched microstructure can help decouple defects in the adjacent barrier layers, enhancing the tortuous path for gases and water vapor permeation.
  • two deposition sources are needed. This can be accomplished by a variety of techniques. For example, if the materials are deposited by sputtering, sputtering targets of different compositions could be used to obtain thin films of different compositions. Alternatively, two sputtering targets of the same composition could be used but with different reactive gases. Two different types of deposition sources could also be used. In this arrangement, the lattices of the two layers are even more mismatched by the different microstructures and lattice parameters of the two materials.
  • a single pass, roll-to-roll, vacuum deposition of a three layer combination on a PET substrate i.e., PET substrate/polymer layer/barrier layer/polymer layer
  • PET substrate/polymer layer/barrier layer/polymer layer can be more than five orders of magnitude less permeable to oxygen and water vapor than a single oxide layer on PET alone.
  • permeation rates in the roll-to-roll coated oxide-only layers were found to be conductance limited by defects in the oxide layer that arose during deposition and when the coated substrate was wound up over system idlers/rollers. Asperities (high points) in the underlying substrate are replicated in the deposited inorganic barrier layer. These features are subject to mechanical damage during web handling/take-up, and can lead to the formation of defects in the deposited film. These defects seriously limit the ultimate barrier performance of the films.
  • the first acrylic layer planarizes the substrate and provides an ideal surface for subsequent deposition of the inorganic barrier thin film.
  • the second polymer layer provides a robust “protective” film that minimizes damage to the barrier layer and also planarizes the structure for subsequent barrier layer (or environmentally sensitive display device) deposition.
  • the intermediate polymer layers also decouple defects that exist in adjacent inorganic barrier layers, thus creating a tortuous path for gas diffusion.
  • the permeability of the barrier stacks used in the present invention is shown in Table 1.
  • the barrier stacks of the present invention on polymeric substrates, such as PET, have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon OxTran 2/20L and Permatran).
  • Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, Minn.) for several barrier stacks on 7 mil PET, along with reported values for other materials.
  • the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET coated with aluminum, silicon oxide, or aluminum oxide.
  • Typical oxygen permeation rates for other barrier coatings range from 1 to about 0.1 cc/m 2 /day.
  • the oxygen transmission rate for the barrier stacks of the present invention is less than 0.005 cc/m 2 /day at 23° C. and 0% relative humidity, and at 38° C. and 90% relative humidity.
  • the water vapor transmission rate is less than 0.005 g/m 2 /day at 38° C. and 100% relative humidity. The actual transmission rates are lower, but cannot be measured with existing equipment.
  • the barrier assemblies were also tested by encapsulating organic light emitting devices using the barrier stacks of the present invention.
  • the organic light emitting devices are extremely sensitive to water vapor, and they are completely destroyed in the presence of micromole quantities of water vapor.
  • Experimentation and calculations suggest that the water vapor transmission rate through the encapsulation film must be on the order of about 10 ⁇ 6 to 10 ⁇ 5 g/m 2 /day to provide sufficient barrier protection for acceptable device lifetimes.
  • the experiments/calculations are based on the detrimental hydrolysis reaction of water vapor with the extremely thin (less than 10 nm), low work function, cathode materials (Ca, Mg, Li, LiF). Hydrolysis of the cathode leads to the formation of non-conductive reaction products (such as hydroxides and oxides) that delaminate or blister away from the electron transport layers of the organic light emitting devices, resulting in the formation of dark spots on the device.
  • non-conductive reaction products such as hydroxides and oxides
  • the organic light emitting devices encapsulated in the barrier stacks of the present invention have been in operation for over six months and without measurable degradation.
  • the extrapolated lifetime for the encapsulated devices exceeds the required 10,000 hours necessary to satisfy industry standards.
  • the barrier stacks are extremely effective in preventing oxygen and water penetration to the underlying components, substantially outperforming other thin-film barrier coatings on the market.
  • the preferred deposition process is compatible with a wide variety of substrates. Because the preferred process involves flash evaporation of a monomer and magnetron sputtering, deposition temperatures are well below 100° C., and stresses in the coating can be minimized. Multilayer coatings can be deposited at high deposition rates. No harsh gases or chemicals are used, and the process can be scaled up to large substrates and wide webs.
  • the barrier properties of the coating can be tailored to the application by controlling the number of layers, the materials, and the layer design.
  • the present invention provides a barrier stack with the exceptional barrier properties necessary for hermetic sealing of an environmentally sensitive display device, or other environmentally sensitive device. It permits the production of an encapsulated environmentally sensitive display device.

Abstract

A barrier assembly. The barrier assembly includes at least one barrier stack having at least one barrier layer and at least one polymer layer. The barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity. The barrier stack also has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity. A method for making a barrier assembly is also disclosed.

Description

This application is a continuation-in-part of U.S. patent application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled “Environmental Barrier Material For Organic Light Emitting Device and Method Of Making,” now U.S. Pat. No. 6,522,067, issued Feb. 18, 2003.
BACKGROUND OF THE INVENTION
The present invention relates generally to barrier coatings, and more particularly to barrier coatings having improved barrier properties.
Many different types of products are sensitive to gas and liquids, which can cause deterioration of the product or render it useless, including electronics, medical devices, and pharmaceuticals. Barrier coatings have been included in the packaging for these environmentally sensitive products to protect them from gas and liquid transmission. As used herein, the term environmentally sensitive means products which are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing, handling, storage, and use of the product.
Plastics are often used in product packaging. However, the gas and liquid permeation resistance of plastics is poor, often several orders of magnitude below what is required for product performance. For example, the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m2/day/micron of thickness (or 8.7 cc/m2/day for 7 mil thickness PET), and the water vapor transmission rates are also in this range. Certain display applications using environmentally sensitive display devices, such as organic light emitting devices, require encapsulation that has a maximum oxygen transmission rate of 10−4 to 10−2 cc/m2/day, and a maximum water vapor transmission rate of 10−5 to 10−6 g/m2/day.
Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability. Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiOx, AlOx, an Si3N4 vacuum deposited on polymeric substrates. A single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m2/day, and water vapor permeability to about 0.1 to 1.0 g/m2/day, which is insufficient for many display devices.
Barrier coatings which include alternating barrier layers and polymeric layers have been developed. For example, U.S. Pat. Nos. 5,607,789 and 5,681,666 disclose a moisture barrier for an electrochemical cell tester. However, the claimed moisture barrier ranges from 2 to 15 micrograms/in2/day which corresponds to a rate of 0.003 to 0.023 g/m2/day. U.S. Pat. No. 5,725,909 to Shaw et al. discloses a coating for packaging materials which has an acrylate layer and an oxygen barrier layer. The oxygen transmission rate for the coating was reported to be 0.1 cc/m2/day at 23° C. and the water vapor transmission rate was reported to be 0.01 g/m2/day in D. G. Shaw and M. G. Langlois, Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, p. 240-244, 1994. The oxygen transmission rates for these coatings are inadequate for many display devices.
Thus, there is a need for an improved, lightweight, barrier coating, and for methods for making such a barrier coating.
SUMMARY OF THE INVENTION
The present invention meets these needs by providing a barrier assembly and a method for making such an assembly. The barrier assembly includes at least one barrier stack having at least one barrier layer and at least one polymer layer. The barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity. It also preferably has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity.
Preferably, the barrier layers of the barrier stacks are substantially transparent. At least one of the barrier layers preferably comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
The barrier layers can be substantially opaque, if desired. The opaque barrier layers are preferably selected from opaque metals, opaque polymers, and opaque ceramics.
The barrier assembly can include a substrate adjacent to the at least one barrier stack. By adjacent, we mean next to, but not necessarily directly next to. There can be additional layers intervening between the adjacent layers. The substrate can either be flexible or rigid. It is preferably made of a flexible substrate material, such as polymers, metals, paper, fabric, and combinations thereof. If a rigid substrate is used, it is preferably a ceramic (including glasses), a metal, or a semiconductor.
The polymer layers of the barrier stacks are preferably acrylate-containing polymers. As used herein, the term acrylate-containing polymers includes acrylate-containing polymers, methacrylate-containing polymers, and combinations thereof The polymer layers can be the same or different.
The barrier assembly can include additional layers if desired, such as polymer smoothing layers, scratch resistant layers, antireflective coatings, or other functional layers.
The present invention also involves a method of making the barrier assembly. The method includes providing a substrate, and placing at least one barrier stack on the substrate. The barrier stack includes at least one barrier layer and at least one polymer layer.
The at least one barrier stack can be placed on the substrate by deposition, preferably vacuum deposition, or by laminating the barrier stack over the environmentally sensitive device. The lamination can be performed using an adhesive, solder, ultrasonic welding, pressure, or heat.
Accordingly, it is an object of the present invention to provide a barrier assembly, and to provide a method of making such a barrier assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-section of one embodiment of the barrier assembly of the present invention.
FIG. 2 is a cross-section of an encapsulated device made using the barrier assembly of the present invention.
DESCRIPTION OF THE INVENTION
One embodiment of the barrier assembly of the present invention is shown in FIG. 1. The barrier assembly is supported by a substrate 105. The substrate 105 can be either rigid or flexible. A flexible substrate can be any flexible material, including, but not limited to: polymers, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or high temperature polymers, such as polyether sulfone (PES), polyimides, or Transphan™ (a high glass transition temperature cyclic olefin polymer available from Lofo High Tech Film, GMBH or Weil am Rhein, Germany); metal; paper; fabric; and combinations thereof. Rigid substrates are preferably glass, metal, or silicon.
There are scratch resistant layers 110 on either side of the substrate 105 to protect it. When a scratch resistant layer is included, it is preferred that both sides of the substrate have a scratch resistant layer. This helps to balance stresses and prevent deformation of a flexible substrate during processing and use.
On top of the scratch resistant layer 110, there is a polymer smoothing layer 115. The polymer smoothing layer decreases surface roughness, and encapsulates surface defects, such as pits, scratches, and digs. This produces a planarized surface which is ideal for subsequent deposition of layers. Depending on the desired application, there can be additional layers deposited on the substrate 105, such as organic or inorganic layers, planarizing layers, electrode layers, antireflective coatings, and other functional layers. In this way, the substrate can be specifically tailored to different applications.
The first barrier stack 120 is adjacent to the polymer smoothing layer 115. The first barrier stack 120 includes a barrier layer 125 and a polymer layer 130. The first barrier layer 125 includes barrier layers 135 and 140. Barrier layers 135 and 140 can be made of the same barrier material or of different barrier materials.
Although FIG. 1 shows a barrier stack with two barrier layers and one polymer layer, the barrier stacks can have one or more polymer layers and one or more barrier layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers. The important feature is that the barrier stack have at least one polymer layer and at least one barrier layer. The barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically about 100-400 Å thick, and the polymer layers are typically about 1000-10,000 Å thick.
Although only one barrier stack is shown in FIG. 1, the number of barrier stacks is not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
There is a transparent conductor 145, such as an indium tin oxide layer, adjacent to the first barrier stack 120. There can be additional overcoat layers on top of the barrier stack, such as organic or inorganic layers, planarizing layers, transparent conductors, antireflective coatings, or other functional layers, if desired. This allows the barrier assembly to be tailored to the application.
FIG. 2 shows a barrier assembly being used to encapsulate an environmentally sensitive display device. The substrate 205 has an environmentally sensitive display device 210 on it. There is a barrier stack 215 over the environmentally sensitive display device 210 encapsulating it. The barrier stack 215 includes a barrier layer 220 and a polymer layer 225.
The environmentally sensitive display device 210 can be any display device which is environmentally sensitive. Examples of environmentally sensitive display devices include, but are not limited to liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. These display devices can be made using known techniques, such as those described in U.S. Pat. Nos. 6,025,899, 5,995,191, 5,994,174, 5,956,112 (LCDs); U.S. Pat. Nos. 6,005,692, 5,821,688, 5,747,928 (LEDs); U.S. Pat. Nos. 5,969,711, 5,961,804, 4,026,713 (E Ink); U.S. Pat. Nos. 6,023,373, 6,023,124, 6,023,125 (LEPs); and U.S. Pat. Nos. 6,023,073, 6,040,812, 6,019,654, 6,018,237, 6,014,119, 6,010,796 (EDs), which are incorporated herein by reference.
The method of making the barrier assembly will be described with reference to FIGS. 1 and 2. Any initial layers which are desired, such as scratch resistant layers, planarizing layers, electrically conductive layers, etc., can be coated, deposited, or otherwise placed on the substrate. A polymer smoothing layer is preferably included to provide a smooth base for the remaining layers. It can be formed by depositing a layer of polymer, for example, an acrylate-containing polymer, onto the substrate or previous layer. The polymer layer can be deposited in vacuum or by using atmospheric processes such as spin coating and/or spraying. Preferably, an acrylate-containing monomer, oligomer, or resin is deposited and then polymerized in situ to form the polymer layer. As used herein, the term acrylate-containing monomer, oligomer, or resin includes acrylate-containing monomers, oligomers, and resins, methacrylate-containing monomers, oligomers, and resins, and combinations thereof.
The barrier stack is then placed on the substrate. The barrier stack includes at least one barrier layer and at least one polymer layer. The barrier stacks are preferably made by vacuum deposition. The barrier layer can be vacuum deposited onto the polymer smoothing layer, the substrate, or the previous layer. The polymer layer is then deposited on the barrier layer, preferably by flash evaporating acrylate-containing monomers, oligomers, or resins, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber. U.S. Pat. Nos. 5,440,446 and 5,725,909, which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.
Vacuum deposition includes flash evaporation of acrylate-containing monomer, oligomer, or resin with in situ polymerization under vacuum, plasma deposition and polymerization of acrylate-containing monomer, oligomer, or resin, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
In order to protect the integrity of the barrier layer, the formation of defects and/or microcracks in the deposited layer subsequent to deposition and prior to downstream processing should be avoided. The barrier assembly is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
When the barrier stack is being used to encapsulate an environmentally sensitive display device, the substrate can be prepared as described above, and the environmentally sensitive display device placed on the substrate. Alternatively, the environmentally sensitive display device can be placed directly on a substrate (or on a substrate with functional layers, such as planarizing layers, scratch resistant layers, etc.).
The environmentally sensitive display device can be placed on the substrate by deposition, such as vacuum deposition. Alternatively it can be placed on the substrate by lamination. The lamination can use an adhesive, glue, or the like, or heat to seal the environmentally sensitive display device to the substrate.
A barrier stack is then placed over the environmentally sensitive display device to encapsulate it. The second barrier stack can be placed over the environmentally sensitive display device by deposition or lamination.
The barrier layers in the first and second barrier stacks may be any barrier material. The barrier layers in the first and second barrier stacks can be made of the same material or a different material. In addition, multiple barrier layers of the same or different barrier materials can be used in a barrier stack.
The barrier layers can be transparent or opaque, depending on the design of the packaging, and application for which it is to be used. Preferred transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The metal oxides are preferably selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The metal nitrides are preferably selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The metal oxynitrides are preferably selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
Opaque barrier layers can be also be used in some barrier stacks. Opaque barrier materials include, but are not limited to, metals, ceramics, polymers, and cermets. Examples of opaque cermets include, but are not limited to, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.
The polymer layers of the first and second barrier stacks are preferably acrylate-containing monomers, oligomers, or resins. The polymer layers in the first and second barrier stacks can be the same or different. In addition, the polymer layers within each barrier stack can be the same or different.
In a preferred embodiment, the barrier stack includes a polymer layer and two barrier layers. The two barrier layers can be made from the same barrier material or from different barrier materials. The thickness of each barrier layer in this embodiment is about one half the thickness of the single barrier layer, or about 50 to 200 Å. There are no limitations on the thickness, however.
When the barrier layers are made of the same material, they can be deposited either by sequential deposition using two sources or by the same source using two passes. If two deposition sources are used, deposition conditions can be different for each source, leading to differences in microstructure and defect dimensions. Any type of deposition source can be used. Different types of deposition processes, such as magnetron sputtering and electron beam evaporation, can be used to deposit the two barrier layers.
The microstructures of the two barrier layers are mismatched as a result of the differing deposition sources/parameters. The barrier layers can even have different crystal structure. For example, Al2O3 can exist in different phases (alpha, gamma) with different crystal orientations. The mismatched microstructure can help decouple defects in the adjacent barrier layers, enhancing the tortuous path for gases and water vapor permeation.
When the barrier layers are made of different materials, two deposition sources are needed. This can be accomplished by a variety of techniques. For example, if the materials are deposited by sputtering, sputtering targets of different compositions could be used to obtain thin films of different compositions. Alternatively, two sputtering targets of the same composition could be used but with different reactive gases. Two different types of deposition sources could also be used. In this arrangement, the lattices of the two layers are even more mismatched by the different microstructures and lattice parameters of the two materials.
A single pass, roll-to-roll, vacuum deposition of a three layer combination on a PET substrate, i.e., PET substrate/polymer layer/barrier layer/polymer layer, can be more than five orders of magnitude less permeable to oxygen and water vapor than a single oxide layer on PET alone. See J. D. Afinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenwell, and P. M. Martin, Polymer-Oxide Transparent Barrier Layers Produced Using PML Process, 39th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Vacuum Web Coating Session, 1996, pages 392-397; J. D. Affinito, S. Eufinger, M. E. Gross, G. L. Graff, and P. M. Martin, PML/Oxide/PML Barrier Layer Performance Difference Arising From Use of UV or Electron Beam Polymerization of the PML Layers, Thin Solid Films, Vol. 308, 1997, pages 19-25. This is in spite of the fact that the effect on the permeation rate of the polymer multilayers (PML) layers alone, without the barrier layer (oxide, metal, nitride, oxynitride) layer, is barely measurable. It is believed that the improvement in barrier properties is due to two factors. First, permeation rates in the roll-to-roll coated oxide-only layers were found to be conductance limited by defects in the oxide layer that arose during deposition and when the coated substrate was wound up over system idlers/rollers. Asperities (high points) in the underlying substrate are replicated in the deposited inorganic barrier layer. These features are subject to mechanical damage during web handling/take-up, and can lead to the formation of defects in the deposited film. These defects seriously limit the ultimate barrier performance of the films. In the single pass, polymer/barrier/polymer process, the first acrylic layer planarizes the substrate and provides an ideal surface for subsequent deposition of the inorganic barrier thin film. The second polymer layer provides a robust “protective” film that minimizes damage to the barrier layer and also planarizes the structure for subsequent barrier layer (or environmentally sensitive display device) deposition. The intermediate polymer layers also decouple defects that exist in adjacent inorganic barrier layers, thus creating a tortuous path for gas diffusion.
The permeability of the barrier stacks used in the present invention is shown in Table 1. The barrier stacks of the present invention on polymeric substrates, such as PET, have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon OxTran 2/20L and Permatran). Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, Minn.) for several barrier stacks on 7 mil PET, along with reported values for other materials.
TABLE 1
Oxygen Water Vapor
Permeation Rate Permeation
(cc/m2/day) (g/m2/day)*
Sample 23° C. 38° C. 23° C. 38° C.
Native 7 mil PET 7.62
1-barrier stack <0.005 <0.005* 0.46*
1-barrier stack <0.005 <0.005* 0.011*
with ITO
2-barrier stacks <0.005 <0.005* <0.005*
2-barrier stacks <0.005 <0.005* <0.005*
with ITO
5-barrier stacks <0.005 <0.005* <0.005*
5-barrier stacks <0.005 <0.005* <0.005*
with ITO
DuPont film1 0.3
(PET/Si3N4 or
PEN/Si3N4)
Polaroid3 <1.0
PET/Al2 0.6 0.17
PET/silicon 0.7-1.5 0.15-0.9
oxide2
Teijin LCD film <2 <5
(HA grade-
TN/STN)3
*38° C., 90% RH, 100% O2
*38° C., 100% RH
1P. F. Carcia, 46th International Symposium of the American Vacuum Society, October 1999
2Langowski, H. C., 39th Annual Technical Conference Proceedings, SVC, pp. 398-401 (1996)
3Technical Data Sheet
As the data in Table 1 shows, the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET coated with aluminum, silicon oxide, or aluminum oxide. Typical oxygen permeation rates for other barrier coatings range from 1 to about 0.1 cc/m2/day. The oxygen transmission rate for the barrier stacks of the present invention is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and at 38° C. and 90% relative humidity. The water vapor transmission rate is less than 0.005 g/m2/day at 38° C. and 100% relative humidity. The actual transmission rates are lower, but cannot be measured with existing equipment.
The barrier assemblies were also tested by encapsulating organic light emitting devices using the barrier stacks of the present invention. The organic light emitting devices are extremely sensitive to water vapor, and they are completely destroyed in the presence of micromole quantities of water vapor. Experimentation and calculations suggest that the water vapor transmission rate through the encapsulation film must be on the order of about 10−6 to 10−5 g/m2/day to provide sufficient barrier protection for acceptable device lifetimes. The experiments/calculations are based on the detrimental hydrolysis reaction of water vapor with the extremely thin (less than 10 nm), low work function, cathode materials (Ca, Mg, Li, LiF). Hydrolysis of the cathode leads to the formation of non-conductive reaction products (such as hydroxides and oxides) that delaminate or blister away from the electron transport layers of the organic light emitting devices, resulting in the formation of dark spots on the device.
The organic light emitting devices encapsulated in the barrier stacks of the present invention have been in operation for over six months and without measurable degradation. The extrapolated lifetime for the encapsulated devices exceeds the required 10,000 hours necessary to satisfy industry standards. The barrier stacks are extremely effective in preventing oxygen and water penetration to the underlying components, substantially outperforming other thin-film barrier coatings on the market.
The preferred deposition process is compatible with a wide variety of substrates. Because the preferred process involves flash evaporation of a monomer and magnetron sputtering, deposition temperatures are well below 100° C., and stresses in the coating can be minimized. Multilayer coatings can be deposited at high deposition rates. No harsh gases or chemicals are used, and the process can be scaled up to large substrates and wide webs. The barrier properties of the coating can be tailored to the application by controlling the number of layers, the materials, and the layer design. Thus, the present invention provides a barrier stack with the exceptional barrier properties necessary for hermetic sealing of an environmentally sensitive display device, or other environmentally sensitive device. It permits the production of an encapsulated environmentally sensitive display device.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claims (25)

1. A barrier assembly comprising:
at least one barrier stack comprising at least one barrier layer and at least one polymer layer, wherein the at least one barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.
2. The barrier assembly of claim 1 wherein the at least one barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity.
3. The barrier assembly of claim 1 wherein the at least one barrier stack has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity.
4. The barrier assembly of claim 1 further comprising a substrate adjacent to the at least one barrier stack.
5. The barrier assembly of claim 1 wherein the at least one barrier layer is substantially transparent.
6. The barrier assembly of claim 1 wherein at least one of the at least one barrier layer comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
7. The barrier assembly of claim 6 wherein the metal oxides are selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof.
8. The barrier assembly of claim 6 wherein the metal nitrides are selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof.
9. The barrier assembly of claim 6 wherein the metal oxynitrides are selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
10. The barrier assembly of claim 1 wherein the at least one barrier layer is substantially opaque.
11. The barrier assembly of claim 1 wherein at least one of the at least one barrier layers is selected from opaque metals, opaque polymers, opaque ceramics, and opaque cermets.
12. The barrier assembly of claim 4 wherein the substrate comprises a flexible substrate material.
13. The barrier assembly of claim 12 wherein the flexible substrate material is selected from polymers, metals, paper, fabric, and combinations thereof.
14. The barrier assembly of claim 4 wherein the substrate comprises a rigid substrate material.
15. The barrier assembly of claim 14 wherein the rigid substrate material is selected from ceramics, metals, and semiconductors.
16. The barrier assembly of claim 1 wherein at least one of the at least one polymer layers comprises an acrylate-containing polymer.
17. The barrier assembly of claim 4 further comprising a polymer smoothing layer adjacent to the substrate.
18. The barrier assembly of claim 4 further comprising a scratch resistant layer adjacent to the substrate.
19. The barrier assembly of claim 4 further comprising an anti-reflective coating adjacent to the substrate.
20. The barrier assembly of claim 4 further comprising an anti-fingerprint coating adjacent to the substrate.
21. The barrier assembly of claim 4 further comprising an anti-static coating adjacent to the substrate.
22. The barrier assembly of claim 1 wherein the at least one barrier layer comprises two barrier layers.
23. The barrier assembly of claim 22 wherein the two barrier layers are made of the same barrier material.
24. The barrier assembly of claim 22 wherein the two barrier layers are made of different barrier materials.
25. The barrier assembly of claim 11 wherein at least one of the at least one barrier layers is opaque cermet selected from zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.
US10/890,437 1999-10-25 2004-07-12 Ultrabarrier substrates Expired - Lifetime USRE40531E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/890,437 USRE40531E1 (en) 1999-10-25 2004-07-12 Ultrabarrier substrates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/427,138 US6522067B1 (en) 1998-12-16 1999-10-25 Environmental barrier material for organic light emitting device and method of making
US09/553,188 US6413645B1 (en) 2000-04-20 2000-04-20 Ultrabarrier substrates
US10/890,437 USRE40531E1 (en) 1999-10-25 2004-07-12 Ultrabarrier substrates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/553,188 Reissue US6413645B1 (en) 1999-10-25 2000-04-20 Ultrabarrier substrates

Publications (1)

Publication Number Publication Date
USRE40531E1 true USRE40531E1 (en) 2008-10-07

Family

ID=24208461

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/553,188 Ceased US6413645B1 (en) 1999-10-25 2000-04-20 Ultrabarrier substrates
US10/890,437 Expired - Lifetime USRE40531E1 (en) 1999-10-25 2004-07-12 Ultrabarrier substrates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/553,188 Ceased US6413645B1 (en) 1999-10-25 2000-04-20 Ultrabarrier substrates

Country Status (4)

Country Link
US (2) US6413645B1 (en)
AU (1) AU2001241893A1 (en)
TW (1) TW575671B (en)
WO (1) WO2001081649A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305360A1 (en) * 2007-06-05 2008-12-11 Dong-Won Han Organic light emitting device and method of manufacturing the same
US7675074B2 (en) 2002-05-15 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device including a lamination layer
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US20120282419A1 (en) * 2010-01-15 2012-11-08 Jonghyun Ahn Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
WO2013161894A1 (en) 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US20150158762A1 (en) * 2013-12-05 2015-06-11 Intermolecular Inc. Simplified Protection Layer for Abrasion Resistant Glass Coatings and Methods for Forming the Same
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US20170062762A1 (en) 2015-08-31 2017-03-02 Kateeva, Inc. Di- and Mono(Meth)Acrylate Based Organic Thin Film Ink Compositions
US9614186B2 (en) 2013-03-13 2017-04-04 Panasonic Corporation Electronic device
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9909022B2 (en) 2014-07-25 2018-03-06 Kateeva, Inc. Organic thin film ink compositions and methods
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
CN108602309A (en) * 2016-02-01 2018-09-28 3M创新有限公司 Stop compound
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11844234B2 (en) 2017-04-21 2023-12-12 Kateeva, Inc. Compositions and techniques for forming organic thin films

Families Citing this family (343)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241454A1 (en) * 1993-10-04 2004-12-02 Shaw David G. Barrier sheet and method of making same
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
WO2000026973A1 (en) 1998-11-02 2000-05-11 Presstek, Inc. Transparent conductive oxides for plastic flat panel displays
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7141821B1 (en) 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US6277679B1 (en) 1998-11-25 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film transistor
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US7697052B1 (en) 1999-02-17 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Electronic view finder utilizing an organic electroluminescence display
JP4261680B2 (en) * 1999-05-07 2009-04-30 株式会社クレハ Moisture-proof multilayer film
US6680487B1 (en) 1999-05-14 2004-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor comprising a TFT provided on a substrate having an insulating surface and method of fabricating the same
US7288420B1 (en) 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
TW527735B (en) 1999-06-04 2003-04-11 Semiconductor Energy Lab Electro-optical device
US8853696B1 (en) * 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
TW516244B (en) 1999-09-17 2003-01-01 Semiconductor Energy Lab EL display device and method for manufacturing the same
JP3942770B2 (en) * 1999-09-22 2007-07-11 株式会社半導体エネルギー研究所 EL display device and electronic device
TW480722B (en) 1999-10-12 2002-03-21 Semiconductor Energy Lab Manufacturing method of electro-optical device
US7198832B2 (en) 1999-10-25 2007-04-03 Vitex Systems, Inc. Method for edge sealing barrier films
US20100330748A1 (en) 1999-10-25 2010-12-30 Xi Chu Method of encapsulating an environmentally sensitive device
US6573652B1 (en) * 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) * 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US6866901B2 (en) 1999-10-25 2005-03-15 Vitex Systems, Inc. Method for edge sealing barrier films
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US7112115B1 (en) 1999-11-09 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US6646287B1 (en) * 1999-11-19 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with tapered gate and insulating film
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US20070221265A1 (en) 2006-03-22 2007-09-27 Sion Power Corporation Rechargeable lithium/water, lithium/air batteries
US20110165471A9 (en) * 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
US20010053559A1 (en) * 2000-01-25 2001-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating display device
TWI226205B (en) * 2000-03-27 2005-01-01 Semiconductor Energy Lab Self-light emitting device and method of manufacturing the same
US7074640B2 (en) * 2000-06-06 2006-07-11 Simon Fraser University Method of making barrier layers
US6605826B2 (en) * 2000-08-18 2003-08-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
SG125891A1 (en) * 2000-09-08 2006-10-30 Semiconductor Energy Lab Light emitting device, method of manufacturing thesame, and thin film forming apparatus
US6924594B2 (en) * 2000-10-03 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7222981B2 (en) * 2001-02-15 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6576351B2 (en) * 2001-02-16 2003-06-10 Universal Display Corporation Barrier region for optoelectronic devices
US6822391B2 (en) * 2001-02-21 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and method of manufacturing thereof
JP4147008B2 (en) * 2001-03-05 2008-09-10 株式会社日立製作所 Film used for organic EL device and organic EL device
US6624568B2 (en) * 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
TWI264244B (en) * 2001-06-18 2006-10-11 Semiconductor Energy Lab Light emitting device and method of fabricating the same
US7211828B2 (en) * 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
TW548860B (en) * 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
TW546857B (en) * 2001-07-03 2003-08-11 Semiconductor Energy Lab Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
US8415208B2 (en) * 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
TW558743B (en) 2001-08-22 2003-10-21 Semiconductor Energy Lab Peeling method and method of manufacturing semiconductor device
JP4166455B2 (en) * 2001-10-01 2008-10-15 株式会社半導体エネルギー研究所 Polarizing film and light emitting device
JP4024510B2 (en) * 2001-10-10 2007-12-19 株式会社半導体エネルギー研究所 Recording medium and substrate
JP4019690B2 (en) * 2001-11-02 2007-12-12 セイコーエプソン株式会社 ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
AU2003219660A1 (en) * 2002-02-14 2003-09-04 Iowa State University Research Foundation, Inc. Novel friction and wear-resistant coatings for tools, dies and microelectromechanical systems
US6884327B2 (en) 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US7378356B2 (en) 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
JP3942017B2 (en) * 2002-03-25 2007-07-11 富士フイルム株式会社 Light emitting element
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8808457B2 (en) * 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US20030203210A1 (en) * 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
DE10318187B4 (en) * 2002-05-02 2010-03-18 Osram Opto Semiconductors Gmbh Encapsulation method for organic light emitting diode devices
US6949389B2 (en) * 2002-05-02 2005-09-27 Osram Opto Semiconductors Gmbh Encapsulation for organic light emitting diodes devices
US6743524B2 (en) 2002-05-23 2004-06-01 General Electric Company Barrier layer for an article and method of making said barrier layer by expanding thermal plasma
US7230271B2 (en) 2002-06-11 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device comprising film having hygroscopic property and transparency and manufacturing method thereof
US7215473B2 (en) * 2002-08-17 2007-05-08 3M Innovative Properties Company Enhanced heat mirror films
US6929864B2 (en) 2002-08-17 2005-08-16 3M Innovative Properties Company Extensible, visible light-transmissive and infrared-reflective film and methods of making and using the film
US6933051B2 (en) * 2002-08-17 2005-08-23 3M Innovative Properties Company Flexible electrically conductive film
WO2004021532A1 (en) 2002-08-27 2004-03-11 Symmorphix, Inc. Optically coupling into highly uniform waveguides
JP3729262B2 (en) * 2002-08-29 2005-12-21 セイコーエプソン株式会社 ELECTROLUMINESCENT DEVICE AND ELECTRONIC DEVICE
US7531377B2 (en) 2002-09-03 2009-05-12 Cambridge Display Technology Limited Optical device
US20040229051A1 (en) * 2003-05-15 2004-11-18 General Electric Company Multilayer coating package on flexible substrates for electro-optical devices
US7015640B2 (en) * 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US20050181212A1 (en) * 2004-02-17 2005-08-18 General Electric Company Composite articles having diffusion barriers and devices incorporating the same
US7449246B2 (en) * 2004-06-30 2008-11-11 General Electric Company Barrier coatings
US20060208634A1 (en) * 2002-09-11 2006-09-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US6994933B1 (en) * 2002-09-16 2006-02-07 Oak Ridge Micro-Energy, Inc. Long life thin film battery and method therefor
JP3997888B2 (en) 2002-10-25 2007-10-24 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
EP1416028A1 (en) 2002-10-30 2004-05-06 Covion Organic Semiconductors GmbH New method for the production of monomers useful in the manufacture of semiconductive polymers
US6804989B2 (en) * 2002-10-31 2004-10-19 General Atomics Method and apparatus for measuring ultralow water permeation
US7710019B2 (en) 2002-12-11 2010-05-04 Samsung Electronics Co., Ltd. Organic light-emitting diode display comprising auxiliary electrodes
US6975067B2 (en) * 2002-12-19 2005-12-13 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
US20040121146A1 (en) * 2002-12-20 2004-06-24 Xiao-Ming He Composite barrier films and method
CN100566480C (en) * 2002-12-20 2009-12-02 伊菲雷知识产权公司 The barrier layer that is used for thick film dielectric electroluminescent display
US20040142203A1 (en) * 2003-01-07 2004-07-22 Woolley Christopher P. Hydrogen storage medium
EP1466997B1 (en) 2003-03-10 2012-02-22 OSRAM Opto Semiconductors GmbH Method for forming and arrangement of barrier layers on a polymeric substrate
GB0306409D0 (en) 2003-03-20 2003-04-23 Cambridge Display Tech Ltd Electroluminescent device
US7018713B2 (en) * 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
US7648925B2 (en) 2003-04-11 2010-01-19 Vitex Systems, Inc. Multilayer barrier stacks and methods of making multilayer barrier stacks
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
CN1768093B (en) 2003-05-30 2010-06-09 默克专利有限公司 Polymer
US7535017B2 (en) 2003-05-30 2009-05-19 Osram Opto Semiconductors Gmbh Flexible multilayer packaging material and electronic devices with the packaging material
EP1491568A1 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
WO2005006441A1 (en) * 2003-07-11 2005-01-20 Koninklijke Philips Electronics N.V. Encapsulation structure for display devices
NL1024090C2 (en) * 2003-08-12 2005-02-15 Otb Group Bv Method for applying a thin film barrier layer assembly to a microstructured device, as well as a device provided with such a thin film barrier layer assembly.
WO2005025853A1 (en) * 2003-09-05 2005-03-24 Helicon Research, L.L.C. Nanophase multilayer barrier and process
US8722160B2 (en) * 2003-10-31 2014-05-13 Aeris Capital Sustainable Ip Ltd. Inorganic/organic hybrid nanolaminate barrier film
JP4233433B2 (en) * 2003-11-06 2009-03-04 シャープ株式会社 Manufacturing method of display device
US8455751B2 (en) * 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US7834263B2 (en) * 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US9281461B2 (en) * 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
US20050139250A1 (en) * 2003-12-02 2005-06-30 Battelle Memorial Institute Thermoelectric devices and applications for the same
GB0329364D0 (en) 2003-12-19 2004-01-21 Cambridge Display Tech Ltd Optical device
US7495644B2 (en) * 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US7178384B2 (en) * 2004-02-04 2007-02-20 General Atomics Method and apparatus for measuring ultralow permeation
JP4313221B2 (en) * 2004-02-17 2009-08-12 富士フイルム株式会社 Gas barrier film
KR100637147B1 (en) * 2004-02-17 2006-10-23 삼성에스디아이 주식회사 OLED whit thin film encapsulation layer, manufacturing method thereof, and forming apparatus for the film
US8642455B2 (en) * 2004-02-19 2014-02-04 Matthew R. Robinson High-throughput printing of semiconductor precursor layer from nanoflake particles
US20050238846A1 (en) * 2004-03-10 2005-10-27 Fuji Photo Film Co., Ltd. Gas barrier laminate film, method for producing the same and image display device utilizing the film
US20050228465A1 (en) * 2004-04-09 2005-10-13 Christa Harris Thermal device for activatable thermochemical compositions
US7202504B2 (en) 2004-05-20 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device
GB0411582D0 (en) 2004-05-24 2004-06-23 Cambridge Display Tech Ltd Metal complex
GB0411572D0 (en) 2004-05-24 2004-06-23 Cambridge Display Tech Ltd Light-emitting device
US8034419B2 (en) * 2004-06-30 2011-10-11 General Electric Company Method for making a graded barrier coating
US20090110892A1 (en) * 2004-06-30 2009-04-30 General Electric Company System and method for making a graded barrier coating
WO2006016153A1 (en) 2004-08-10 2006-02-16 Cambridge Display Technology Limited Light emissive device
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
US7342356B2 (en) * 2004-09-23 2008-03-11 3M Innovative Properties Company Organic electroluminescent device having protective structure with boron oxide layer and inorganic barrier layer
US20060063015A1 (en) * 2004-09-23 2006-03-23 3M Innovative Properties Company Protected polymeric film
KR100637197B1 (en) 2004-11-25 2006-10-23 삼성에스디아이 주식회사 Flat display device and manufacturing method thereof
KR100637198B1 (en) 2004-11-25 2006-10-23 삼성에스디아이 주식회사 Flat display device and manufacturing method thereof
GB0427266D0 (en) 2004-12-13 2005-01-12 Cambridge Display Tech Ltd Phosphorescent OLED
DE102004062770A1 (en) 2004-12-21 2006-06-22 Tesa Ag Single or double-sided adhesive tape for protection of electrochromic layer systems on mirrors
ATE555506T1 (en) 2004-12-24 2012-05-15 Cdt Oxford Ltd LIGHT EMITTING DEVICE
JP2008525608A (en) 2004-12-29 2008-07-17 ケンブリッジ ディスプレイ テクノロジー リミテッド Hard amine
GB0428444D0 (en) 2004-12-29 2005-02-02 Cambridge Display Tech Ltd Conductive polymer compositions in opto-electrical devices
GB0428445D0 (en) 2004-12-29 2005-02-02 Cambridge Display Tech Ltd Blue-shifted triarylamine polymer
US7846579B2 (en) 2005-03-25 2010-12-07 Victor Krasnov Thin film battery with protective packaging
US8679674B2 (en) 2005-03-25 2014-03-25 Front Edge Technology, Inc. Battery with protective packaging
JP4716773B2 (en) * 2005-04-06 2011-07-06 富士フイルム株式会社 Gas barrier film and organic device using the same
GB0507684D0 (en) 2005-04-15 2005-05-25 Cambridge Display Tech Ltd Pulsed driven displays
US7257990B2 (en) * 2005-04-25 2007-08-21 General Atomics Accelerated ultralow moisture permeation measurement
US20060250084A1 (en) * 2005-05-04 2006-11-09 Eastman Kodak Company OLED device with improved light output
GB0514476D0 (en) 2005-07-14 2005-08-17 Cambridge Display Tech Ltd Conductive polymer compositions in opto-electrical devices
US20070020451A1 (en) 2005-07-20 2007-01-25 3M Innovative Properties Company Moisture barrier coatings
US20070040501A1 (en) 2005-08-18 2007-02-22 Aitken Bruce G Method for inhibiting oxygen and moisture degradation of a device and the resulting device
US7722929B2 (en) * 2005-08-18 2010-05-25 Corning Incorporated Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device
US7829147B2 (en) * 2005-08-18 2010-11-09 Corning Incorporated Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device
US20080206589A1 (en) * 2007-02-28 2008-08-28 Bruce Gardiner Aitken Low tempertature sintering using Sn2+ containing inorganic materials to hermetically seal a device
US7767498B2 (en) 2005-08-25 2010-08-03 Vitex Systems, Inc. Encapsulated devices and method of making
US20080317974A1 (en) * 2005-08-26 2008-12-25 Fujifilm Manufacturing Europe B.V. Method and Arrangement for Generating and Controlling a Discharge Plasma
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
GB0518968D0 (en) 2005-09-16 2005-10-26 Cdt Oxford Ltd Organic light-emitting device
GB2432256B (en) 2005-11-14 2009-12-23 Cambridge Display Tech Ltd Organic optoelectrical device
US7508130B2 (en) * 2005-11-18 2009-03-24 Eastman Kodak Company OLED device having improved light output
US8044571B2 (en) * 2005-12-14 2011-10-25 General Electric Company Electrode stacks for electroactive devices and methods of fabricating the same
GB2433509A (en) 2005-12-22 2007-06-27 Cambridge Display Tech Ltd Arylamine polymer
GB0526185D0 (en) 2005-12-22 2006-02-01 Cambridge Display Tech Ltd Electronic device
GB0526393D0 (en) 2005-12-23 2006-02-08 Cdt Oxford Ltd Light emissive device
GB2433833A (en) 2005-12-28 2007-07-04 Cdt Oxford Ltd Micro-cavity OLED layer structure with transparent electrode
GB2434915A (en) 2006-02-03 2007-08-08 Cdt Oxford Ltd Phosphoescent OLED for full colour display
WO2007099476A1 (en) * 2006-03-03 2007-09-07 Philips Intellectual Property & Standards Gmbh Electroluminescent arrangement
GB2440934B (en) 2006-04-28 2009-12-16 Cdt Oxford Ltd Opto-electrical polymers and devices
US8158450B1 (en) * 2006-05-05 2012-04-17 Nanosolar, Inc. Barrier films and high throughput manufacturing processes for photovoltaic devices
EP2024533A1 (en) * 2006-05-30 2009-02-18 Fuji Film Manufacturing Europe B.V. Method and apparatus for deposition using pulsed atmospheric pressure glow discharge
EP2032738A1 (en) * 2006-06-16 2009-03-11 Fuji Film Manufacturing Europe B.V. Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma
US20080006819A1 (en) * 2006-06-19 2008-01-10 3M Innovative Properties Company Moisture barrier coatings for organic light emitting diode devices
US20090263567A1 (en) 2006-08-01 2009-10-22 Cambridge Display Technology Limited Methods of Manufacturing Opto-Electrical Devices
US20080048178A1 (en) * 2006-08-24 2008-02-28 Bruce Gardiner Aitken Tin phosphate barrier film, method, and apparatus
GB0617167D0 (en) 2006-08-31 2006-10-11 Cdt Oxford Ltd Compounds for use in opto-electrical devices
US7552620B2 (en) * 2006-09-07 2009-06-30 3M Innovative Properties Company Fluid permeation testing method employing mass spectrometry
US7555934B2 (en) * 2006-09-07 2009-07-07 3M Innovative Properties Company Fluid permeation testing apparatus employing mass spectrometry
GB0620045D0 (en) 2006-10-10 2006-11-22 Cdt Oxford Ltd Otpo-electrical devices and methods of making the same
US7968146B2 (en) * 2006-11-01 2011-06-28 The Trustees Of Princeton University Hybrid layers for use in coatings on electronic devices or other articles
US20080102223A1 (en) * 2006-11-01 2008-05-01 Sigurd Wagner Hybrid layers for use in coatings on electronic devices or other articles
US20080100202A1 (en) * 2006-11-01 2008-05-01 Cok Ronald S Process for forming oled conductive protective layer
US8115326B2 (en) 2006-11-30 2012-02-14 Corning Incorporated Flexible substrates having a thin-film barrier
WO2008070059A2 (en) * 2006-12-04 2008-06-12 Sion Power Corporation Separation of electrolytes in lithium batteries
US7750558B2 (en) * 2006-12-27 2010-07-06 Global Oled Technology Llc OLED with protective electrode
US7646144B2 (en) * 2006-12-27 2010-01-12 Eastman Kodak Company OLED with protective bi-layer electrode
BRPI0721299B1 (en) 2006-12-28 2018-07-24 3M Innovative Properties Company. METHOD FOR FORMATION OF A CONDUCTIVE FILM ON A FLEXIBLE POLYMER HOLDER, CONDUCTORY FILM AND METHOD FOR THE MANUFACTURE OF A VITRIFICATION ARTICLE
KR20170019491A (en) * 2006-12-29 2017-02-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of making inorganic or inorganic/organic hybrid films
JP5249240B2 (en) * 2006-12-29 2013-07-31 スリーエム イノベイティブ プロパティズ カンパニー Method for curing metal alkoxide-containing film
TW200830565A (en) * 2007-01-10 2008-07-16 Ritek Corp Organic solar cell
US8174187B2 (en) * 2007-01-15 2012-05-08 Global Oled Technology Llc Light-emitting device having improved light output
WO2008100139A1 (en) * 2007-02-13 2008-08-21 Fujifilm Manufacturing Europe B.V. Substrate plasma treatment using magnetic mask device
EP1958981B1 (en) 2007-02-15 2018-04-25 FUJIFILM Corporation Barrier laminate, barrier film substrate, methods for producing them, and device
US8241713B2 (en) * 2007-02-21 2012-08-14 3M Innovative Properties Company Moisture barrier coatings for organic light emitting diode devices
KR101440105B1 (en) * 2007-02-23 2014-09-17 삼성전자주식회사 Multi display apparatus
GB2448175B (en) 2007-04-04 2009-07-22 Cambridge Display Tech Ltd Thin film transistor
US7862627B2 (en) * 2007-04-27 2011-01-04 Front Edge Technology, Inc. Thin film battery substrate cutting and fabrication process
US7560747B2 (en) * 2007-05-01 2009-07-14 Eastman Kodak Company Light-emitting device having improved light output
US20080303431A1 (en) * 2007-06-11 2008-12-11 Satoshi Aiba Gas barrier film and organic device using the same
JP4995137B2 (en) 2007-06-11 2012-08-08 富士フイルム株式会社 Gas barrier film and organic device using the same
JP5208591B2 (en) 2007-06-28 2013-06-12 株式会社半導体エネルギー研究所 Light emitting device and lighting device
KR100830331B1 (en) * 2007-07-23 2008-05-16 삼성에스디아이 주식회사 Organic light emitting display device and method of manufacturing the same
US20090081360A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Oled display encapsulation with the optical property
US20090079328A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Thin film encapsulation containing zinc oxide
US20090081356A1 (en) 2007-09-26 2009-03-26 Fedorovskaya Elena A Process for forming thin film encapsulation layers
US20090084421A1 (en) * 2007-09-28 2009-04-02 Battelle Memorial Institute Thermoelectric devices
KR100906284B1 (en) * 2007-11-02 2009-07-06 주식회사 실트론 Semiconductor single crystal growth method improved in oxygen concentration characteristics
GB2454890B (en) 2007-11-21 2010-08-25 Limited Cambridge Display Technology Light-emitting device and materials therefor
GB2455747B (en) 2007-12-19 2011-02-09 Cambridge Display Tech Ltd Electronic devices and methods of making the same using solution processing techniques
JP2011508062A (en) * 2007-12-28 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Flexible encapsulated film system
DE102008003546A1 (en) 2008-01-09 2009-07-16 Tesa Ag Liner with a barrier layer
GB2456788B (en) 2008-01-23 2011-03-09 Cambridge Display Tech Ltd White light emitting material
EP2235735B1 (en) * 2008-02-01 2015-09-30 Fujifilm Manufacturing Europe B.V. Method and apparatus for plasma surface treatment of a moving substrate
US8445897B2 (en) * 2008-02-08 2013-05-21 Fujifilm Manufacturing Europe B.V. Method for manufacturing a multi-layer stack structure with improved WVTR barrier property
GB0803950D0 (en) 2008-03-03 2008-04-09 Cambridge Display Technology O Solvent for printing composition
GB2458454B (en) 2008-03-14 2011-03-16 Cambridge Display Tech Ltd Electronic devices and methods of making the same using solution processing techniques
JP4912344B2 (en) 2008-03-21 2012-04-11 富士フイルム株式会社 Barrier laminate and production method thereof, barrier film substrate, device and optical member
DE102008019665A1 (en) * 2008-04-18 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparent barrier layer system
US20110041915A1 (en) 2008-05-02 2011-02-24 Peccell Technologies, Inc. Dye-sensitized photoelectric conversion element
GB2459895B (en) 2008-05-09 2011-04-27 Cambridge Display Technology Limited Organic light emissive device
US20090278454A1 (en) * 2008-05-12 2009-11-12 Fedorovskaya Elena A Oled display encapsulated with a filter
US20090305064A1 (en) 2008-05-29 2009-12-10 Jiro Tsukahara Barrier laminate, gas barrier film and device using the same
US8350451B2 (en) 2008-06-05 2013-01-08 3M Innovative Properties Company Ultrathin transparent EMI shielding film comprising a polymer basecoat and crosslinked polymer transparent dielectric layer
JP5281964B2 (en) 2008-06-26 2013-09-04 富士フイルム株式会社 Barrier laminate, gas barrier film, device and laminate production method
EP2304069A4 (en) * 2008-06-30 2012-01-04 3M Innovative Properties Co Method of making inorganic or inorganic/organic hybrid barrier films
GB2462410B (en) 2008-07-21 2011-04-27 Cambridge Display Tech Ltd Compositions and methods for manufacturing light-emissive devices
GB2462122B (en) 2008-07-25 2013-04-03 Cambridge Display Tech Ltd Electroluminescent materials
GB0814161D0 (en) 2008-08-01 2008-09-10 Cambridge Display Tech Ltd Blue-light emitting material
GB2462314B (en) 2008-08-01 2011-03-16 Cambridge Display Tech Ltd Organic light-emiting materials and devices
GB0814971D0 (en) 2008-08-15 2008-09-24 Cambridge Display Tech Ltd Opto-electrical devices and methods of manufacturing the same
GB2462688B (en) 2008-08-22 2012-03-07 Cambridge Display Tech Ltd Opto-electrical devices and methods of manufacturing the same
GB2463040B (en) 2008-08-28 2012-10-31 Cambridge Display Tech Ltd Light-emitting material
GB2463077B (en) 2008-09-02 2012-11-07 Sumitomo Chemical Co Electroluminescent material and device
KR20100028926A (en) * 2008-09-05 2010-03-15 삼성전자주식회사 Display apparatus and method of manuracturing the same
US8241749B2 (en) * 2008-09-11 2012-08-14 Fujifilm Corporation Barrier laminate, gas barrier film, and device using the same
US20100080929A1 (en) * 2008-09-30 2010-04-01 General Electric Company System and method for applying a conformal barrier coating
US8033885B2 (en) * 2008-09-30 2011-10-11 General Electric Company System and method for applying a conformal barrier coating with pretreating
JP2010087339A (en) * 2008-10-01 2010-04-15 Fujifilm Corp Organic solar cell element
JP2010093172A (en) * 2008-10-10 2010-04-22 Fujifilm Corp Sealed device
JP2011003522A (en) 2008-10-16 2011-01-06 Semiconductor Energy Lab Co Ltd Flexible light-emitting device, electronic equipment, and method of manufacturing flexible light-emitting device
GB0819449D0 (en) 2008-10-23 2008-12-03 Cambridge Display Tech Ltd Display drivers
KR20110087318A (en) * 2008-11-17 2011-08-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Gradient composition barrier
EP2192636A1 (en) 2008-11-26 2010-06-02 Rijksuniversiteit Groningen Modulatable light-emitting diode
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US8219408B2 (en) * 2008-12-29 2012-07-10 Motorola Mobility, Inc. Audio signal decoder and method for producing a scaled reconstructed audio signal
GB2466842B (en) 2009-01-12 2011-10-26 Cambridge Display Tech Ltd Interlayer formulation for flat films
GB2466843A (en) 2009-01-12 2010-07-14 Cambridge Display Tech Ltd Interlayer formulation for flat films
JP2010198735A (en) 2009-02-20 2010-09-09 Fujifilm Corp Optical member and organic electroluminescent display device equipped with the same
GB2469498B (en) 2009-04-16 2012-03-07 Cambridge Display Tech Ltd Polymer and polymerisation method
GB0906554D0 (en) 2009-04-16 2009-05-20 Cambridge Display Tech Ltd Organic electroluminescent device
GB2469497B (en) 2009-04-16 2012-04-11 Cambridge Display Tech Ltd Polymers comprising fluorene derivative repeat units and their preparation
GB2469500B (en) 2009-04-16 2012-06-06 Cambridge Display Tech Ltd Method of forming a polymer
DE102009018518A1 (en) 2009-04-24 2010-10-28 Tesa Se Transparent barrier laminates
DE102009003221A1 (en) * 2009-05-19 2010-11-25 Evonik Degussa Gmbh Barrier film, useful e.g. in packaging industry and for organic light-emitting diodes, comprises a weather-resistant carrier layer, a lacquer layer and a barrier layer, where the lacquer layer improves adhesion of the carrier layer
US8450926B2 (en) * 2009-05-21 2013-05-28 General Electric Company OLED lighting devices including electrodes with magnetic material
US20100294526A1 (en) * 2009-05-21 2010-11-25 General Electric Company Hermetic electrical package
US8427845B2 (en) * 2009-05-21 2013-04-23 General Electric Company Electrical connectors for optoelectronic device packaging
US8766269B2 (en) 2009-07-02 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and electronic device
US8502494B2 (en) * 2009-08-28 2013-08-06 Front Edge Technology, Inc. Battery charging apparatus and method
JP5216724B2 (en) * 2009-09-01 2013-06-19 富士フイルム株式会社 Gas barrier film and device
EP2292339A1 (en) 2009-09-07 2011-03-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Coating method and coating apparatus
US9472783B2 (en) * 2009-10-12 2016-10-18 General Electric Company Barrier coating with reduced process time
GB2475247B (en) 2009-11-10 2012-06-13 Cambridge Display Tech Ltd Organic optoelectronic device and method
GB2475246B (en) 2009-11-10 2012-02-29 Cambridge Display Tech Ltd Organic opto-electronic device and method
JP5442030B2 (en) 2009-12-08 2014-03-12 シャープ株式会社 Foreign matter polishing method and foreign matter polishing apparatus for workpiece surface
JP5611812B2 (en) * 2009-12-31 2014-10-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Barrier film composite, display device including the same, and method for manufacturing the display device
US8590338B2 (en) 2009-12-31 2013-11-26 Samsung Mobile Display Co., Ltd. Evaporator with internal restriction
EP2522034A1 (en) * 2010-01-06 2012-11-14 Dow Global Technologies LLC Moisture resistant photovoltaic devices with elastomeric, polysiloxane protection layer
US8097297B2 (en) * 2010-01-15 2012-01-17 Korea Advanced Institute Of Science And Technology (Kaist) Method of manufacturing flexible display substrate having reduced moisture and reduced oxygen permeability
TWI589042B (en) * 2010-01-20 2017-06-21 半導體能源研究所股份有限公司 Light-emitting device, flexible light-emitting device, electronic device, lighting apparatus, and method of manufacturing light-emitting device and flexible-light emitting device
US9000442B2 (en) * 2010-01-20 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, flexible light-emitting device, electronic device, and method for manufacturing light-emitting device and flexible-light emitting device
JP2011202129A (en) 2010-03-26 2011-10-13 Fujifilm Corp Polyester resin, and optical material, film and image display device using the same
GB2487342B (en) 2010-05-14 2013-06-19 Cambridge Display Tech Ltd Host polymer comprising conjugated repeat units and non-conjugated repeat units for light-emitting compositions, and organic light-emitting devices
GB2484253B (en) 2010-05-14 2013-09-11 Cambridge Display Tech Ltd Organic light-emitting composition and device
GB2480323A (en) 2010-05-14 2011-11-16 Cambridge Display Tech Ltd OLED hole transport layer
US9142797B2 (en) 2010-05-31 2015-09-22 Industrial Technology Research Institute Gas barrier substrate and organic electro-luminescent device
GB2499969A (en) 2010-06-25 2013-09-11 Cambridge Display Tech Ltd Composition comprising an organic semiconducting material and a triplet-accepting material
WO2011161417A1 (en) 2010-06-25 2011-12-29 Cambridge Display Technology Limited Organic light-emitting material device and method
WO2012003417A1 (en) * 2010-07-02 2012-01-05 3M Innovative Properties Company Barrier assembly with encapsulant and photovoltaic cell
GB201012226D0 (en) 2010-07-21 2010-09-08 Fujifilm Mfg Europe Bv Method for manufacturing a barrier on a sheet and a sheet for PV modules
GB201012225D0 (en) 2010-07-21 2010-09-08 Fujifilm Mfg Europe Bv Method for manufacturing a barrier layer on a substrate and a multi-layer stack
GB2483269A (en) 2010-09-02 2012-03-07 Cambridge Display Tech Ltd Organic Electroluminescent Device containing Fluorinated Compounds
TWI641287B (en) 2010-09-14 2018-11-11 半導體能源研究所股份有限公司 Solid-state light-emitting element, light-emitting device, and lighting device
GB2484537A (en) 2010-10-15 2012-04-18 Cambridge Display Tech Ltd Light-emitting composition
GB2485001A (en) 2010-10-19 2012-05-02 Cambridge Display Tech Ltd OLEDs
JP5827104B2 (en) 2010-11-19 2015-12-02 株式会社半導体エネルギー研究所 Lighting device
TWI591871B (en) 2010-12-16 2017-07-11 半導體能源研究所股份有限公司 Light-emitting device and lighting device
GB2494096B (en) 2011-01-31 2013-12-18 Cambridge Display Tech Ltd Polymer
US9676900B2 (en) 2011-01-31 2017-06-13 Cambridge Display Technology, Ltd. Fluorene containing copolymer used in light emitting devices
US8735874B2 (en) 2011-02-14 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and method for manufacturing the same
KR101922603B1 (en) 2011-03-04 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, lighting device, substrate, and manufacturing method of substrate
DE102011005234A1 (en) 2011-03-08 2012-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrate with gas barrier layer system, comprises substrate, plasma polymer layer as first barrier layer, plasma polymer intermediate layer, and plasma polymer layer arranged on intermediate layer on the side facing away from substrate
GB201105582D0 (en) 2011-04-01 2011-05-18 Cambridge Display Tech Ltd Organic light-emitting device and method
KR101842586B1 (en) 2011-04-05 2018-03-28 삼성디스플레이 주식회사 Organic light emitting diode display and manufacturing method thereof
KR101873476B1 (en) 2011-04-11 2018-07-03 삼성디스플레이 주식회사 Organic light emitting diode display and manufacturing method thereof
GB201107905D0 (en) 2011-05-12 2011-06-22 Cambridge Display Tech Ltd Light-emitting material, composition and device
TWI450650B (en) 2011-05-16 2014-08-21 Ind Tech Res Inst Flexible base and flexible electronic device
KR101807911B1 (en) 2011-06-17 2017-12-11 시온 파워 코퍼레이션 Plating technique for electrode
GB201110565D0 (en) 2011-06-22 2011-08-03 Cambridge Display Tech Ltd Organic optoelectronic material, device and method
GB2505834A (en) 2011-07-04 2014-03-12 Cambridge Display Tech Ltd Organic light emitting composition, device and method
GB201111742D0 (en) 2011-07-08 2011-08-24 Cambridge Display Tech Ltd Solution
GB201111738D0 (en) 2011-07-08 2011-08-24 Cambridge Display Tech Ltd Display drivers
SG2014007884A (en) 2011-08-04 2014-03-28 3M Innovative Properties Co Edge protected barrier assemblies
CN103988578B (en) 2011-08-04 2017-07-21 3M创新有限公司 The shielded barrier component in edge
KR20140066748A (en) 2011-09-26 2014-06-02 후지필름 가부시키가이샤 Barrier laminate and new polymerizable compound
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US8865340B2 (en) 2011-10-20 2014-10-21 Front Edge Technology Inc. Thin film battery packaging formed by localized heating
GB201210131D0 (en) 2011-11-02 2012-07-25 Cambridge Display Tech Ltd Light emitting composition and device
GB201118997D0 (en) 2011-11-03 2011-12-14 Cambridge Display Tech Ltd Electronic device and method
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US8864954B2 (en) 2011-12-23 2014-10-21 Front Edge Technology Inc. Sputtering lithium-containing material with multiple targets
CN108148186A (en) 2012-01-31 2018-06-12 剑桥显示技术有限公司 Polymer
TWI578842B (en) * 2012-03-19 2017-04-11 群康科技(深圳)有限公司 Display and manufacturing method thereof
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
CN103378259A (en) * 2012-04-23 2013-10-30 欧司朗股份有限公司 Electronic module and lighting device including electronic module
KR102079188B1 (en) 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device
JP6276266B2 (en) 2012-08-08 2018-02-07 スリーエム イノベイティブ プロパティズ カンパニー Photovoltaic device with encapsulated barrier film
EP2882587A4 (en) 2012-08-08 2016-04-13 3M Innovative Properties Co Barrier film constructions and methods of making same
CN104768957B (en) 2012-08-08 2019-01-22 3M创新有限公司 Urea (more)-carbamate (methyl) acrylosilane composition and the product comprising the composition
US10784455B2 (en) 2012-08-08 2020-09-22 3M Innovative Properties Company Coatings for barrier films and methods of making and using the same
TWI610806B (en) 2012-08-08 2018-01-11 3M新設資產公司 Barrier film, method of making the barrier film, and articles including the barrier film
GB2505893A (en) 2012-09-13 2014-03-19 Cambridge Display Tech Ltd Compounds for use in organic optoelectronic devices
US9159964B2 (en) 2012-09-25 2015-10-13 Front Edge Technology, Inc. Solid state battery having mismatched battery cells
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US9356320B2 (en) 2012-10-15 2016-05-31 Front Edge Technology Inc. Lithium battery having low leakage anode
US9005311B2 (en) 2012-11-02 2015-04-14 Sion Power Corporation Electrode active surface pretreatment
CN103904248B (en) * 2012-12-25 2016-08-03 海洋王照明科技股份有限公司 Organic electroluminescence device and preparation method thereof
KR20140097940A (en) * 2013-01-30 2014-08-07 삼성디스플레이 주식회사 TFT substrate including barrier layer including silicon oxide layer and silicon silicon nitride layer, Organic light-emitting device comprising the TFT substrate, and the manufacturing method of the TFT substrate
WO2014129519A1 (en) 2013-02-20 2014-08-28 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
CN104051357B (en) 2013-03-15 2017-04-12 财团法人工业技术研究院 Environmentally sensitive electronic device and packaging method thereof
CN104078579A (en) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 Organic light-emitting diode and preparation method thereof
CN104078607A (en) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 Organic light-emitting diode device and manufacturing method thereof
KR102092706B1 (en) 2013-09-02 2020-04-16 삼성디스플레이 주식회사 Composition, organic light-emitting display apparatus comprising the composition and the manufacturing method of the organic light-emitting display apparatus
CN105793957B (en) 2013-12-12 2019-05-03 株式会社半导体能源研究所 Stripping means and stripping off device
EP2924757A1 (en) 2014-03-28 2015-09-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Barrier film laminate and electronic device comprising such a laminate
US9863618B2 (en) * 2014-05-30 2018-01-09 Abl Ip Holding, Llc Configurable planar lighting system
KR102352288B1 (en) * 2014-06-13 2022-01-18 삼성디스플레이 주식회사 Display apparatus and method for manufacturing display apparatus
CN104377314A (en) 2014-09-26 2015-02-25 京东方科技集团股份有限公司 Packaging layer, electronic packaging device and display device
EP3034548A1 (en) 2014-12-18 2016-06-22 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Barrier film laminate comprising submicron getter particles and electronic device comprising such a laminate
KR102230594B1 (en) * 2014-12-26 2021-03-22 엔에스 마테리얼스 아이엔씨. Wavelength conversion member and method for manufacturing same
KR20160082864A (en) 2014-12-29 2016-07-11 삼성디스플레이 주식회사 Display device and manufacturing method thereof
KR102182521B1 (en) * 2014-12-30 2020-11-24 코오롱글로텍주식회사 Barrier fabric substrate with high flexibility and manufacturing method thereof
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
JP6524702B2 (en) 2015-02-26 2019-06-05 凸版印刷株式会社 Process for producing gas barrier film and gas barrier film
JP6507309B2 (en) 2015-08-19 2019-04-24 スリーエム イノベイティブ プロパティズ カンパニー Composite article and method for producing the same
TW201726411A (en) 2015-08-19 2017-08-01 3M新設資產公司 Composite article including a multilayer barrier assembly and methods of making the same
CN107921753B (en) 2015-08-19 2020-09-11 3M创新有限公司 Composite article comprising a multilayer barrier component and method of making the same
US9786790B2 (en) 2015-12-10 2017-10-10 Industrial Technology Research Institute Flexible device
KR101994836B1 (en) * 2016-02-01 2019-07-02 삼성디스플레이 주식회사 TFT substrate including barrier layer including silicon oxide layer and silicon silicon nitride layer, Organic light-emitting device comprising the TFT substrate, and the manufacturing method of the TFT substrate
KR102541448B1 (en) 2016-03-08 2023-06-09 삼성디스플레이 주식회사 Display apparatus
US10287400B2 (en) 2016-04-14 2019-05-14 Momentive Performance Materials Inc. Curable silicone composition and applications and uses thereof
JP6897682B2 (en) 2016-08-02 2021-07-07 日本ゼオン株式会社 Solar cell module
KR20190027835A (en) 2016-08-02 2019-03-15 니폰 제온 가부시키가이샤 Solar cell module
US10923609B2 (en) 2016-09-06 2021-02-16 Zeon Corporation Solar cell module
US11751426B2 (en) 2016-10-18 2023-09-05 Universal Display Corporation Hybrid thin film permeation barrier and method of making the same
US10385210B2 (en) 2017-06-20 2019-08-20 Momentive Performance Materials Inc. Curable silicone composition and applications and uses thereof
GB2567873A (en) * 2017-10-27 2019-05-01 Flexenable Ltd Air species barriers in liquid crystal display devices
US10957886B2 (en) 2018-03-14 2021-03-23 Front Edge Technology, Inc. Battery having multilayer protective casing
GB2575089A (en) 2018-06-28 2020-01-01 Sumitomo Chemical Co Phosphorescent light-emitting compound
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
GB2598919A (en) * 2020-09-18 2022-03-23 Pa Knowledge Ltd Method

Citations (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382432A (en) 1940-08-02 1945-08-14 Crown Cork & Seal Co Method and apparatus for depositing vaporized metal coatings
US2384500A (en) 1942-07-08 1945-09-11 Crown Cork & Seal Co Apparatus and method of coating
BE704297A (en) * 1965-09-13 1968-02-01
US3475307A (en) * 1965-02-04 1969-10-28 Continental Can Co Condensation of monomer vapors to increase polymerization rates in a glow discharge
US3607365A (en) * 1969-05-12 1971-09-21 Minnesota Mining & Mfg Vapor phase method of coating substrates with polymeric coating
US3941630A (en) * 1974-04-29 1976-03-02 Rca Corporation Method of fabricating a charged couple radiation sensing device
US4061835A (en) 1975-02-27 1977-12-06 Standard Oil Company (Indiana) Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles
US4098965A (en) * 1977-01-24 1978-07-04 Polaroid Corporation Flat batteries and method of making the same
US4266223A (en) 1978-12-08 1981-05-05 W. H. Brady Co. Thin panel display
US4283482A (en) * 1979-03-29 1981-08-11 Nihon Shinku Gijutsu Kabushiki Kaisha Dry Lithographic Process
US4313254A (en) 1979-10-30 1982-02-02 The Johns Hopkins University Thin-film silicon solar cell with metal boride bottom electrode
US4426275A (en) 1981-11-27 1984-01-17 Deposition Technology, Inc. Sputtering device adaptable for coating heat-sensitive substrates
US4521458A (en) 1983-04-01 1985-06-04 Nelson Richard C Process for coating material with water resistant composition
US4537814A (en) 1983-01-27 1985-08-27 Toyoda Gosei Co., Ltd. Resin article having a ceramics coating layer
US4555274A (en) 1982-03-15 1985-11-26 Fuji Photo Film Co., Ltd. Ion selective electrode and process of preparing the same
US4557978A (en) 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
US4572842A (en) 1983-09-02 1986-02-25 Leybold-Heraeus Gmbh Method and apparatus for reactive vapor deposition of compounds of metal and semi-conductors
US4581337A (en) * 1983-07-07 1986-04-08 E. I. Du Pont De Nemours And Company Polyether polyamines as linking agents for particle reagents useful in immunoassays
US4624867A (en) * 1984-03-21 1986-11-25 Nihon Shinku Gijutsu Kabushiki Kaisha Process for forming a synthetic resin film on a substrate and apparatus therefor
US4695618A (en) * 1986-05-23 1987-09-22 Ameron, Inc. Solventless polyurethane spray compositions and method for applying them
US4710426A (en) 1983-11-28 1987-12-01 Polaroid Corporation, Patent Dept. Solar radiation-control articles with protective overlayer
US4722515A (en) 1984-11-06 1988-02-02 Spectrum Control, Inc. Atomizing device for vaporization
JPS63136316A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Magnetic recording body
US4768666A (en) 1987-05-26 1988-09-06 Milton Kessler Tamper proof container closure
EP0299753A2 (en) * 1987-07-15 1989-01-18 The BOC Group, Inc. Controlled flow vaporizer
US4843036A (en) 1987-06-29 1989-06-27 Eastman Kodak Company Method for encapsulating electronic devices
US4842893A (en) * 1983-12-19 1989-06-27 Spectrum Control, Inc. High speed process for coating substrates
US4855186A (en) 1987-03-06 1989-08-08 Hoechst Aktiengesellschaft Coated plastic film and plastic laminate prepared therefrom
US4889609A (en) 1988-09-06 1989-12-26 Ovonic Imaging Systems, Inc. Continuous dry etching system
US4913090A (en) 1987-10-02 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
US4931158A (en) 1988-03-22 1990-06-05 The Regents Of The Univ. Of Calif. Deposition of films onto large area substrates using modified reactive magnetron sputtering
US4934315A (en) 1984-07-23 1990-06-19 Alcatel N.V. System for producing semicondutor layer structures by way of epitaxial growth
US4954371A (en) * 1986-06-23 1990-09-04 Spectrum Control, Inc. Flash evaporation of monomer fluids
EP0390540A2 (en) * 1989-03-30 1990-10-03 Sharp Kabushiki Kaisha Process for preparing an organic compound thin film for an optical device
US4977013A (en) 1988-06-03 1990-12-11 Andus Corporation Tranparent conductive coatings
US5032461A (en) * 1983-12-19 1991-07-16 Spectrum Control, Inc. Method of making a multi-layered article
US5036249A (en) * 1989-12-11 1991-07-30 Molex Incorporated Electroluminescent lamp panel and method of fabricating same
US5047131A (en) 1989-11-08 1991-09-10 The Boc Group, Inc. Method for coating substrates with silicon based compounds
US5059861A (en) 1990-07-26 1991-10-22 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
US5124204A (en) * 1988-07-14 1992-06-23 Sharp Kabushiki Kaisha Thin film electroluminescent (EL) panel
US5189405A (en) * 1989-01-26 1993-02-23 Sharp Kabushiki Kaisha Thin film electroluminescent panel
US5203898A (en) 1991-12-16 1993-04-20 Corning Incorporated Method of making fluorine/boron doped silica tubes
US5204314A (en) 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor
EP0547550A1 (en) * 1991-12-16 1993-06-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a chemically adsorbed film
US5237439A (en) * 1991-09-30 1993-08-17 Sharp Kabushiki Kaisha Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide
US5260095A (en) * 1992-08-21 1993-11-09 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
EP0590467A1 (en) * 1992-09-26 1994-04-06 Röhm Gmbh Process for forming scratch-resistant silicon oxide layers on plastics by plasma-coating
US5336324A (en) 1991-12-04 1994-08-09 Emcore Corporation Apparatus for depositing a coating on a substrate
US5354497A (en) * 1992-04-20 1994-10-11 Sharp Kabushiki Kaisha Liquid crystal display
US5356947A (en) 1990-03-29 1994-10-18 Minnesota Mining And Manufacturing Company Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith
US5393607A (en) 1992-01-13 1995-02-28 Mitsui Toatsu Chemiclas, Inc. Laminated transparent plastic material and polymerizable monomer
US5402314A (en) 1992-02-10 1995-03-28 Sony Corporation Printed circuit board having through-hole stopped with photo-curable solder resist
US5427638A (en) * 1992-06-04 1995-06-27 Alliedsignal Inc. Low temperature reaction bonding
US5440446A (en) * 1993-10-04 1995-08-08 Catalina Coatings, Inc. Acrylate coating material
US5451449A (en) 1994-05-11 1995-09-19 The Mearl Corporation Colored iridescent film
US5461545A (en) 1990-08-24 1995-10-24 Thomson-Csf Process and device for hermetic encapsulation of electronic components
US5464667A (en) 1994-08-16 1995-11-07 Minnesota Mining And Manufacturing Company Jet plasma process and apparatus
US5510173A (en) 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
US5512320A (en) 1993-01-28 1996-04-30 Applied Materials, Inc. Vacuum processing apparatus having improved throughput
US5536323A (en) * 1990-07-06 1996-07-16 Advanced Technology Materials, Inc. Apparatus for flash vaporization delivery of reagents
EP0722787A2 (en) * 1993-10-04 1996-07-24 Catalina Coatings, Inc. Process for making an acrylate coating
US5554220A (en) * 1995-05-19 1996-09-10 The Trustees Of Princeton University Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
US5576101A (en) * 1992-12-18 1996-11-19 Bridgestone Corporation Gas barrier rubber laminate for minimizing refrigerant leakage
US5578141A (en) 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
JPH08325713A (en) * 1995-05-30 1996-12-10 Matsushita Electric Works Ltd Formation of metallic film on organic substrate surface
US5607789A (en) * 1995-01-23 1997-03-04 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
US5620524A (en) * 1995-02-27 1997-04-15 Fan; Chiko Apparatus for fluid delivery in chemical vapor deposition systems
DE19603746A1 (en) * 1995-10-20 1997-04-24 Bosch Gmbh Robert Electroluminescent layer system
US5629389A (en) * 1995-06-06 1997-05-13 Hewlett-Packard Company Polymer-based electroluminescent device with improved stability
US5652192A (en) 1992-07-10 1997-07-29 Battelle Memorial Institute Catalyst material and method of making
US5654084A (en) * 1994-07-22 1997-08-05 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
EP0787826A1 (en) * 1996-01-30 1997-08-06 Becton, Dickinson and Company Blood collection tube assembly
US5660961A (en) 1996-01-11 1997-08-26 Xerox Corporation Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference
US5665280A (en) 1996-01-30 1997-09-09 Becton Dickinson Co Blood collection tube assembly
US5681615A (en) * 1995-07-27 1997-10-28 Battelle Memorial Institute Vacuum flash evaporated polymer composites
US5684084A (en) * 1995-12-21 1997-11-04 E. I. Du Pont De Nemours And Company Coating containing acrylosilane polymer to improve mar and acid etch resistance
US5686360A (en) * 1995-11-30 1997-11-11 Motorola Passivation of organic devices
US5693956A (en) * 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
US5695564A (en) 1994-08-19 1997-12-09 Tokyo Electron Limited Semiconductor processing system
US5711816A (en) * 1990-07-06 1998-01-27 Advanced Technolgy Materials, Inc. Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
US5731661A (en) * 1996-07-15 1998-03-24 Motorola, Inc. Passivation of electroluminescent organic devices
US5736207A (en) 1994-10-27 1998-04-07 Schott Glaswerke Vessel of plastic having a barrier coating and a method of producing the vessel
US5747182A (en) * 1992-07-27 1998-05-05 Cambridge Display Technology Limited Manufacture of electroluminescent devices
US5759329A (en) * 1992-01-06 1998-06-02 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
US5771177A (en) 1993-05-17 1998-06-23 Kyoei Automatic Control Technology Co., Ltd. Method and apparatus for measuring dynamic load
US5771562A (en) * 1995-05-02 1998-06-30 Motorola, Inc. Passivation of organic devices
US5782355A (en) 1994-09-30 1998-07-21 Fuji Photo Film Co., Ltd. Cassette case
US5792550A (en) * 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
US5795399A (en) 1994-06-30 1998-08-18 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
US5811177A (en) * 1995-11-30 1998-09-22 Motorola, Inc. Passivation of electroluminescent organic devices
US5811183A (en) * 1995-04-06 1998-09-22 Shaw; David G. Acrylate polymer release coated sheet materials and method of production thereof
US5821692A (en) * 1996-11-26 1998-10-13 Motorola, Inc. Organic electroluminescent device hermetic encapsulation package
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US5869791A (en) 1995-04-18 1999-02-09 U.S. Philips Corporation Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element
US5872355A (en) * 1997-04-09 1999-02-16 Hewlett-Packard Company Electroluminescent device and fabrication method for a light detection system
US5891554A (en) 1994-02-25 1999-04-06 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5895228A (en) 1996-11-14 1999-04-20 International Business Machines Corporation Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives
US5902641A (en) * 1997-09-29 1999-05-11 Battelle Memorial Institute Flash evaporation of liquid monomer particle mixture
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
US5904958A (en) * 1998-03-20 1999-05-18 Rexam Industries Corp. Adjustable nozzle for evaporation or organic monomers
EP0916394A2 (en) * 1997-11-14 1999-05-19 Sharp Kabushiki Kaisha Method of manufacturing modified particles and manufacturing device therefor
US5912069A (en) * 1996-12-19 1999-06-15 Sigma Laboratories Of Arizona Metal nanolaminate composite
US5919328A (en) 1996-01-30 1999-07-06 Becton Dickinson And Company Blood collection tube assembly
US5920080A (en) 1997-06-23 1999-07-06 Fed Corporation Emissive display using organic light emitting diodes
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers
US5929562A (en) 1995-04-18 1999-07-27 Cambridge Display Technology Limited Organic light-emitting devices
EP0931850A1 (en) * 1998-01-26 1999-07-28 Leybold Systems GmbH Method for treating the surfaces of plastic substrates
US5934856A (en) 1994-05-23 1999-08-10 Tokyo Electron Limited Multi-chamber treatment system
US5948552A (en) * 1996-08-27 1999-09-07 Hewlett-Packard Company Heat-resistant organic electroluminescent device
US5952778A (en) * 1997-03-18 1999-09-14 International Business Machines Corporation Encapsulated organic light emitting device
US5965907A (en) * 1997-09-29 1999-10-12 Motorola, Inc. Full color organic light emitting backlight device for liquid crystal display applications
US5968620A (en) 1996-01-30 1999-10-19 Becton Dickinson And Company Blood collection tube assembly
US5994174A (en) 1997-09-29 1999-11-30 The Regents Of The University Of California Method of fabrication of display pixels driven by silicon thin film transistors
US5996498A (en) * 1998-03-12 1999-12-07 Presstek, Inc. Method of lithographic imaging with reduced debris-generated performance degradation and related constructions
US6013337A (en) 1996-01-30 2000-01-11 Becton Dickinson And Company Blood collection tube assembly
EP0977469A2 (en) * 1998-07-30 2000-02-02 Hewlett-Packard Company Improved transparent, flexible permeability barrier for organic electroluminescent devices
US6040017A (en) 1998-10-02 2000-03-21 Sigma Laboratories, Inc. Formation of multilayered photonic polymer composites
US6045864A (en) * 1997-12-01 2000-04-04 3M Innovative Properties Company Vapor coating method
US6066826A (en) 1998-03-16 2000-05-23 Yializis; Angelo Apparatus for plasma treatment of moving webs
US6083628A (en) * 1994-11-04 2000-07-04 Sigma Laboratories Of Arizona, Inc. Hybrid polymer film
US6083313A (en) 1999-07-27 2000-07-04 Advanced Refractory Technologies, Inc. Hardcoats for flat panel display substrates
US6084702A (en) 1998-10-15 2000-07-04 Pleotint, L.L.C. Thermochromic devices
US6087007A (en) 1994-09-30 2000-07-11 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-Resistant optical plastic laminated sheet and its producing method
US6092269A (en) 1996-04-04 2000-07-25 Sigma Laboratories Of Arizona, Inc. High energy density capacitor
US6106627A (en) 1996-04-04 2000-08-22 Sigma Laboratories Of Arizona, Inc. Apparatus for producing metal coated polymers
US6117266A (en) 1997-12-19 2000-09-12 Interuniversifair Micro-Elektronica Cenirum (Imec Vzw) Furnace for continuous, high throughput diffusion processes from various diffusion sources
US6118218A (en) 1999-02-01 2000-09-12 Sigma Technologies International, Inc. Steady-state glow-discharge plasma at atmospheric pressure
US6137221A (en) 1998-07-08 2000-10-24 Agilent Technologies, Inc. Organic electroluminescent device with full color characteristics
US6146462A (en) 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6150187A (en) 1997-11-20 2000-11-21 Electronics And Telecommunications Research Institute Encapsulation method of a polymer or organic light emitting device
US6178082B1 (en) * 1998-02-26 2001-01-23 International Business Machines Corporation High temperature, conductive thin film diffusion barrier for ceramic/metal systems
US6195142B1 (en) 1995-12-28 2001-02-27 Matsushita Electrical Industrial Company, Ltd. Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
US6198220B1 (en) 1997-07-11 2001-03-06 Emagin Corporation Sealing structure for organic light emitting devices
US6198217B1 (en) 1997-05-12 2001-03-06 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device having a protective covering comprising organic and inorganic layers
US6203898B1 (en) 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6264747B1 (en) 1995-03-20 2001-07-24 3M Innovative Properties Company Apparatus for forming multicolor interference coating
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6322860B1 (en) 1998-11-02 2001-11-27 Rohm And Haas Company Plastic substrates for electronic display applications
US6333065B1 (en) 1997-07-25 2001-12-25 Tdk Corporation Process for the production of an organic electroluminescent device
US6350034B1 (en) 1999-02-26 2002-02-26 3M Innovative Properties Company Retroreflective articles having polymer multilayer reflective coatings
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6361885B1 (en) 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
US6387732B1 (en) 1999-06-18 2002-05-14 Micron Technology, Inc. Methods of attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip and packages formed thereby
US6397776B1 (en) 2001-06-11 2002-06-04 General Electric Company Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6416872B1 (en) 2000-08-30 2002-07-09 Cp Films, Inc. Heat reflecting film with low visible reflectance
US6436544B1 (en) 1997-07-17 2002-08-20 Toray Plastics Europe S.A. Composite metal-coated polyester films with barrier properties
US6460369B2 (en) 1999-11-03 2002-10-08 Applied Materials, Inc. Consecutive deposition system
US6465953B1 (en) 2000-06-12 2002-10-15 General Electric Company Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices
US6468595B1 (en) 2001-02-13 2002-10-22 Sigma Technologies International, Inc. Vaccum deposition of cationic polymer systems
US6492026B1 (en) * 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6548912B1 (en) * 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6570325B2 (en) * 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6573652B1 (en) * 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6720203B2 (en) * 1999-04-28 2004-04-13 E. I. Du Pont De Nemours And Company Flexible organic electronic device with improved resistance to oxygen and moisture degradation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3786063T2 (en) 1986-06-23 1993-09-09 Spectrum Control Inc STEAMING LIQUID MONOMERS.
JP2627619B2 (en) 1987-07-13 1997-07-09 日本電信電話株式会社 Organic amorphous film preparation method
GB2210826B (en) * 1987-10-19 1992-08-12 Bowater Packaging Ltd Barrier packaging materials
JPH02183230A (en) 1989-01-09 1990-07-17 Sharp Corp Organic nonlinear optical material and production thereof
JP3203623B2 (en) * 1992-03-06 2001-08-27 ソニー株式会社 Organic electrolyte battery
JPH0959763A (en) 1995-08-25 1997-03-04 Matsushita Electric Works Ltd Formation of metallic film on surface of organic substrate
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
TW434301B (en) * 1996-01-30 2001-05-16 Becton Dickinson Co Non-ideal barrier coating composition comprising organic and inorganic materials
WO1998010116A1 (en) 1996-09-05 1998-03-12 Talison Research Ultrasonic nozzle feed for plasma deposited film networks
KR19980033213A (en) 1996-10-31 1998-07-25 조셉제이.스위니 How to reduce the generation of particulate matter in the sputtering chamber
WO2000026973A1 (en) * 1998-11-02 2000-05-11 Presstek, Inc. Transparent conductive oxides for plastic flat panel displays

Patent Citations (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382432A (en) 1940-08-02 1945-08-14 Crown Cork & Seal Co Method and apparatus for depositing vaporized metal coatings
US2384500A (en) 1942-07-08 1945-09-11 Crown Cork & Seal Co Apparatus and method of coating
US3475307A (en) * 1965-02-04 1969-10-28 Continental Can Co Condensation of monomer vapors to increase polymerization rates in a glow discharge
BE704297A (en) * 1965-09-13 1968-02-01
US3607365A (en) * 1969-05-12 1971-09-21 Minnesota Mining & Mfg Vapor phase method of coating substrates with polymeric coating
US3941630A (en) * 1974-04-29 1976-03-02 Rca Corporation Method of fabricating a charged couple radiation sensing device
US4061835A (en) 1975-02-27 1977-12-06 Standard Oil Company (Indiana) Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles
US4098965A (en) * 1977-01-24 1978-07-04 Polaroid Corporation Flat batteries and method of making the same
US4266223A (en) 1978-12-08 1981-05-05 W. H. Brady Co. Thin panel display
US4283482A (en) * 1979-03-29 1981-08-11 Nihon Shinku Gijutsu Kabushiki Kaisha Dry Lithographic Process
US4313254A (en) 1979-10-30 1982-02-02 The Johns Hopkins University Thin-film silicon solar cell with metal boride bottom electrode
US4426275A (en) 1981-11-27 1984-01-17 Deposition Technology, Inc. Sputtering device adaptable for coating heat-sensitive substrates
US4555274A (en) 1982-03-15 1985-11-26 Fuji Photo Film Co., Ltd. Ion selective electrode and process of preparing the same
US4537814A (en) 1983-01-27 1985-08-27 Toyoda Gosei Co., Ltd. Resin article having a ceramics coating layer
US4521458A (en) 1983-04-01 1985-06-04 Nelson Richard C Process for coating material with water resistant composition
US4581337A (en) * 1983-07-07 1986-04-08 E. I. Du Pont De Nemours And Company Polyether polyamines as linking agents for particle reagents useful in immunoassays
US4572842A (en) 1983-09-02 1986-02-25 Leybold-Heraeus Gmbh Method and apparatus for reactive vapor deposition of compounds of metal and semi-conductors
US4710426A (en) 1983-11-28 1987-12-01 Polaroid Corporation, Patent Dept. Solar radiation-control articles with protective overlayer
US4557978A (en) 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
US4842893A (en) * 1983-12-19 1989-06-27 Spectrum Control, Inc. High speed process for coating substrates
US5032461A (en) * 1983-12-19 1991-07-16 Spectrum Control, Inc. Method of making a multi-layered article
US4624867A (en) * 1984-03-21 1986-11-25 Nihon Shinku Gijutsu Kabushiki Kaisha Process for forming a synthetic resin film on a substrate and apparatus therefor
US4934315A (en) 1984-07-23 1990-06-19 Alcatel N.V. System for producing semicondutor layer structures by way of epitaxial growth
US4722515A (en) 1984-11-06 1988-02-02 Spectrum Control, Inc. Atomizing device for vaporization
US4695618A (en) * 1986-05-23 1987-09-22 Ameron, Inc. Solventless polyurethane spray compositions and method for applying them
US4954371A (en) * 1986-06-23 1990-09-04 Spectrum Control, Inc. Flash evaporation of monomer fluids
JPS63136316A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Magnetic recording body
US4855186A (en) 1987-03-06 1989-08-08 Hoechst Aktiengesellschaft Coated plastic film and plastic laminate prepared therefrom
US4768666A (en) 1987-05-26 1988-09-06 Milton Kessler Tamper proof container closure
US4843036A (en) 1987-06-29 1989-06-27 Eastman Kodak Company Method for encapsulating electronic devices
EP0299753A2 (en) * 1987-07-15 1989-01-18 The BOC Group, Inc. Controlled flow vaporizer
US4913090A (en) 1987-10-02 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
US4931158A (en) 1988-03-22 1990-06-05 The Regents Of The Univ. Of Calif. Deposition of films onto large area substrates using modified reactive magnetron sputtering
EP0340935A2 (en) * 1988-04-29 1989-11-08 SPECTRUM CONTROL, INC. (a Delaware corporation) High speed process for coating substrates
US4977013A (en) 1988-06-03 1990-12-11 Andus Corporation Tranparent conductive coatings
US5124204A (en) * 1988-07-14 1992-06-23 Sharp Kabushiki Kaisha Thin film electroluminescent (EL) panel
US4889609A (en) 1988-09-06 1989-12-26 Ovonic Imaging Systems, Inc. Continuous dry etching system
US5189405A (en) * 1989-01-26 1993-02-23 Sharp Kabushiki Kaisha Thin film electroluminescent panel
EP0390540A2 (en) * 1989-03-30 1990-10-03 Sharp Kabushiki Kaisha Process for preparing an organic compound thin film for an optical device
US5792550A (en) * 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
US5047131A (en) 1989-11-08 1991-09-10 The Boc Group, Inc. Method for coating substrates with silicon based compounds
US5036249A (en) * 1989-12-11 1991-07-30 Molex Incorporated Electroluminescent lamp panel and method of fabricating same
US5356947A (en) 1990-03-29 1994-10-18 Minnesota Mining And Manufacturing Company Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith
US5204314A (en) 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor
US5711816A (en) * 1990-07-06 1998-01-27 Advanced Technolgy Materials, Inc. Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
US5536323A (en) * 1990-07-06 1996-07-16 Advanced Technology Materials, Inc. Apparatus for flash vaporization delivery of reagents
US5059861A (en) 1990-07-26 1991-10-22 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
US5461545A (en) 1990-08-24 1995-10-24 Thomson-Csf Process and device for hermetic encapsulation of electronic components
US5237439A (en) * 1991-09-30 1993-08-17 Sharp Kabushiki Kaisha Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide
US5336324A (en) 1991-12-04 1994-08-09 Emcore Corporation Apparatus for depositing a coating on a substrate
EP0547550A1 (en) * 1991-12-16 1993-06-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a chemically adsorbed film
US5203898A (en) 1991-12-16 1993-04-20 Corning Incorporated Method of making fluorine/boron doped silica tubes
US5759329A (en) * 1992-01-06 1998-06-02 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
US5393607A (en) 1992-01-13 1995-02-28 Mitsui Toatsu Chemiclas, Inc. Laminated transparent plastic material and polymerizable monomer
US5402314A (en) 1992-02-10 1995-03-28 Sony Corporation Printed circuit board having through-hole stopped with photo-curable solder resist
US5354497A (en) * 1992-04-20 1994-10-11 Sharp Kabushiki Kaisha Liquid crystal display
US5427638A (en) * 1992-06-04 1995-06-27 Alliedsignal Inc. Low temperature reaction bonding
US5652192A (en) 1992-07-10 1997-07-29 Battelle Memorial Institute Catalyst material and method of making
US5747182A (en) * 1992-07-27 1998-05-05 Cambridge Display Technology Limited Manufacture of electroluminescent devices
US5260095A (en) * 1992-08-21 1993-11-09 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
US5395644A (en) * 1992-08-21 1995-03-07 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
US5547508A (en) * 1992-08-21 1996-08-20 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers apparatus
EP0590467A1 (en) * 1992-09-26 1994-04-06 Röhm Gmbh Process for forming scratch-resistant silicon oxide layers on plastics by plasma-coating
US5576101A (en) * 1992-12-18 1996-11-19 Bridgestone Corporation Gas barrier rubber laminate for minimizing refrigerant leakage
US5512320A (en) 1993-01-28 1996-04-30 Applied Materials, Inc. Vacuum processing apparatus having improved throughput
US5771177A (en) 1993-05-17 1998-06-23 Kyoei Automatic Control Technology Co., Ltd. Method and apparatus for measuring dynamic load
US5578141A (en) 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
US5510173A (en) 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
US6231939B1 (en) 1993-10-04 2001-05-15 Presstek, Inc. Acrylate composite barrier coating
US6420003B2 (en) 1993-10-04 2002-07-16 3M Innovative Properties Company Acrylate composite barrier coating
EP0722787A2 (en) * 1993-10-04 1996-07-24 Catalina Coatings, Inc. Process for making an acrylate coating
US5725909A (en) 1993-10-04 1998-03-10 Catalina Coatings, Inc. Acrylate composite barrier coating process
US5440446A (en) * 1993-10-04 1995-08-08 Catalina Coatings, Inc. Acrylate coating material
US5891554A (en) 1994-02-25 1999-04-06 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5451449A (en) 1994-05-11 1995-09-19 The Mearl Corporation Colored iridescent film
US5934856A (en) 1994-05-23 1999-08-10 Tokyo Electron Limited Multi-chamber treatment system
US5795399A (en) 1994-06-30 1998-08-18 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
US5654084A (en) * 1994-07-22 1997-08-05 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
US5464667A (en) 1994-08-16 1995-11-07 Minnesota Mining And Manufacturing Company Jet plasma process and apparatus
US5695564A (en) 1994-08-19 1997-12-09 Tokyo Electron Limited Semiconductor processing system
US5782355A (en) 1994-09-30 1998-07-21 Fuji Photo Film Co., Ltd. Cassette case
US6087007A (en) 1994-09-30 2000-07-11 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-Resistant optical plastic laminated sheet and its producing method
US5736207A (en) 1994-10-27 1998-04-07 Schott Glaswerke Vessel of plastic having a barrier coating and a method of producing the vessel
US6214422B1 (en) 1994-11-04 2001-04-10 Sigma Laboratories Of Arizona, Inc. Method of forming a hybrid polymer film
US6083628A (en) * 1994-11-04 2000-07-04 Sigma Laboratories Of Arizona, Inc. Hybrid polymer film
US5607789A (en) * 1995-01-23 1997-03-04 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
US5681666A (en) * 1995-01-23 1997-10-28 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same
US5620524A (en) * 1995-02-27 1997-04-15 Fan; Chiko Apparatus for fluid delivery in chemical vapor deposition systems
US6264747B1 (en) 1995-03-20 2001-07-24 3M Innovative Properties Company Apparatus for forming multicolor interference coating
US5945174A (en) * 1995-04-06 1999-08-31 Delta V Technologies, Inc. Acrylate polymer release coated sheet materials and method of production thereof
US5811183A (en) * 1995-04-06 1998-09-22 Shaw; David G. Acrylate polymer release coated sheet materials and method of production thereof
US5869791A (en) 1995-04-18 1999-02-09 U.S. Philips Corporation Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element
US5929562A (en) 1995-04-18 1999-07-27 Cambridge Display Technology Limited Organic light-emitting devices
US5771562A (en) * 1995-05-02 1998-06-30 Motorola, Inc. Passivation of organic devices
US5554220A (en) * 1995-05-19 1996-09-10 The Trustees Of Princeton University Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
JPH08325713A (en) * 1995-05-30 1996-12-10 Matsushita Electric Works Ltd Formation of metallic film on organic substrate surface
US5629389A (en) * 1995-06-06 1997-05-13 Hewlett-Packard Company Polymer-based electroluminescent device with improved stability
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers
US5681615A (en) * 1995-07-27 1997-10-28 Battelle Memorial Institute Vacuum flash evaporated polymer composites
DE19603746A1 (en) * 1995-10-20 1997-04-24 Bosch Gmbh Robert Electroluminescent layer system
US5757126A (en) * 1995-11-30 1998-05-26 Motorola, Inc. Passivated organic device having alternating layers of polymer and dielectric
US5811177A (en) * 1995-11-30 1998-09-22 Motorola, Inc. Passivation of electroluminescent organic devices
US5686360A (en) * 1995-11-30 1997-11-11 Motorola Passivation of organic devices
US5684084A (en) * 1995-12-21 1997-11-04 E. I. Du Pont De Nemours And Company Coating containing acrylosilane polymer to improve mar and acid etch resistance
US6195142B1 (en) 1995-12-28 2001-02-27 Matsushita Electrical Industrial Company, Ltd. Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
US5660961A (en) 1996-01-11 1997-08-26 Xerox Corporation Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference
EP0787826A1 (en) * 1996-01-30 1997-08-06 Becton, Dickinson and Company Blood collection tube assembly
US5919328A (en) 1996-01-30 1999-07-06 Becton Dickinson And Company Blood collection tube assembly
US6013337A (en) 1996-01-30 2000-01-11 Becton Dickinson And Company Blood collection tube assembly
US5665280A (en) 1996-01-30 1997-09-09 Becton Dickinson Co Blood collection tube assembly
US6165566A (en) 1996-01-30 2000-12-26 Becton Dickinson And Company Method for depositing a multilayer barrier coating on a plastic substrate
US5968620A (en) 1996-01-30 1999-10-19 Becton Dickinson And Company Blood collection tube assembly
US5955161A (en) 1996-01-30 1999-09-21 Becton Dickinson And Company Blood collection tube assembly
US6106627A (en) 1996-04-04 2000-08-22 Sigma Laboratories Of Arizona, Inc. Apparatus for producing metal coated polymers
US6092269A (en) 1996-04-04 2000-07-25 Sigma Laboratories Of Arizona, Inc. High energy density capacitor
US5731661A (en) * 1996-07-15 1998-03-24 Motorola, Inc. Passivation of electroluminescent organic devices
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
US5693956A (en) * 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
US5948552A (en) * 1996-08-27 1999-09-07 Hewlett-Packard Company Heat-resistant organic electroluminescent device
US5895228A (en) 1996-11-14 1999-04-20 International Business Machines Corporation Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives
US5821692A (en) * 1996-11-26 1998-10-13 Motorola, Inc. Organic electroluminescent device hermetic encapsulation package
US5912069A (en) * 1996-12-19 1999-06-15 Sigma Laboratories Of Arizona Metal nanolaminate composite
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US5952778A (en) * 1997-03-18 1999-09-14 International Business Machines Corporation Encapsulated organic light emitting device
US5872355A (en) * 1997-04-09 1999-02-16 Hewlett-Packard Company Electroluminescent device and fabrication method for a light detection system
US6198217B1 (en) 1997-05-12 2001-03-06 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device having a protective covering comprising organic and inorganic layers
US5920080A (en) 1997-06-23 1999-07-06 Fed Corporation Emissive display using organic light emitting diodes
US6198220B1 (en) 1997-07-11 2001-03-06 Emagin Corporation Sealing structure for organic light emitting devices
US6436544B1 (en) 1997-07-17 2002-08-20 Toray Plastics Europe S.A. Composite metal-coated polyester films with barrier properties
US6333065B1 (en) 1997-07-25 2001-12-25 Tdk Corporation Process for the production of an organic electroluminescent device
US6203898B1 (en) 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating
US6348237B2 (en) 1997-08-29 2002-02-19 3M Innovative Properties Company Jet plasma process for deposition of coatings
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US5965907A (en) * 1997-09-29 1999-10-12 Motorola, Inc. Full color organic light emitting backlight device for liquid crystal display applications
US5994174A (en) 1997-09-29 1999-11-30 The Regents Of The University Of California Method of fabrication of display pixels driven by silicon thin film transistors
US5902641A (en) * 1997-09-29 1999-05-11 Battelle Memorial Institute Flash evaporation of liquid monomer particle mixture
EP0916394A2 (en) * 1997-11-14 1999-05-19 Sharp Kabushiki Kaisha Method of manufacturing modified particles and manufacturing device therefor
US6150187A (en) 1997-11-20 2000-11-21 Electronics And Telecommunications Research Institute Encapsulation method of a polymer or organic light emitting device
US6045864A (en) * 1997-12-01 2000-04-04 3M Innovative Properties Company Vapor coating method
US6117266A (en) 1997-12-19 2000-09-12 Interuniversifair Micro-Elektronica Cenirum (Imec Vzw) Furnace for continuous, high throughput diffusion processes from various diffusion sources
EP0931850A1 (en) * 1998-01-26 1999-07-28 Leybold Systems GmbH Method for treating the surfaces of plastic substrates
US6178082B1 (en) * 1998-02-26 2001-01-23 International Business Machines Corporation High temperature, conductive thin film diffusion barrier for ceramic/metal systems
US5996498A (en) * 1998-03-12 1999-12-07 Presstek, Inc. Method of lithographic imaging with reduced debris-generated performance degradation and related constructions
US6066826A (en) 1998-03-16 2000-05-23 Yializis; Angelo Apparatus for plasma treatment of moving webs
US5904958A (en) * 1998-03-20 1999-05-18 Rexam Industries Corp. Adjustable nozzle for evaporation or organic monomers
US6361885B1 (en) 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
US6146462A (en) 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6137221A (en) 1998-07-08 2000-10-24 Agilent Technologies, Inc. Organic electroluminescent device with full color characteristics
US6146225A (en) * 1998-07-30 2000-11-14 Agilent Technologies, Inc. Transparent, flexible permeability barrier for organic electroluminescent devices
EP0977469A2 (en) * 1998-07-30 2000-02-02 Hewlett-Packard Company Improved transparent, flexible permeability barrier for organic electroluminescent devices
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6040017A (en) 1998-10-02 2000-03-21 Sigma Laboratories, Inc. Formation of multilayered photonic polymer composites
US6084702A (en) 1998-10-15 2000-07-04 Pleotint, L.L.C. Thermochromic devices
US6322860B1 (en) 1998-11-02 2001-11-27 Rohm And Haas Company Plastic substrates for electronic display applications
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6570325B2 (en) * 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6118218A (en) 1999-02-01 2000-09-12 Sigma Technologies International, Inc. Steady-state glow-discharge plasma at atmospheric pressure
US6350034B1 (en) 1999-02-26 2002-02-26 3M Innovative Properties Company Retroreflective articles having polymer multilayer reflective coatings
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6720203B2 (en) * 1999-04-28 2004-04-13 E. I. Du Pont De Nemours And Company Flexible organic electronic device with improved resistance to oxygen and moisture degradation
US6387732B1 (en) 1999-06-18 2002-05-14 Micron Technology, Inc. Methods of attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip and packages formed thereby
US6083313A (en) 1999-07-27 2000-07-04 Advanced Refractory Technologies, Inc. Hardcoats for flat panel display substrates
US6923702B2 (en) * 1999-10-25 2005-08-02 Battelle Memorial Institute Method of making encapsulated display devices
US6573652B1 (en) * 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6548912B1 (en) * 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6460369B2 (en) 1999-11-03 2002-10-08 Applied Materials, Inc. Consecutive deposition system
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6492026B1 (en) * 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6465953B1 (en) 2000-06-12 2002-10-15 General Electric Company Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices
US6416872B1 (en) 2000-08-30 2002-07-09 Cp Films, Inc. Heat reflecting film with low visible reflectance
US6468595B1 (en) 2001-02-13 2002-10-22 Sigma Technologies International, Inc. Vaccum deposition of cationic polymer systems
US6397776B1 (en) 2001-06-11 2002-06-04 General Electric Company Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators

Non-Patent Citations (57)

* Cited by examiner, † Cited by third party
Title
Affinito, J. D. et al., "Molecularly Doped Polymer Composite Films for Light Emitting Polymer Applications Fabricated by the PML Process" 41st Technical Conference of Society of Vacuum Coaters, Apr. 1998, pp. 1-6.
Affinito, J. D. et al., "Vacuum Deposited Conductive Polymer Films" The Eleventh International Conference on Vacuum Web Coating, no earlier than Feb. 1998, pp. 200-212.
Affinito, J. D., Energy Res. Abstr. 18(6), #17171, 1993.
Affinito, J.D. et al, Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; 45<SUP>th </SUP>International Symposium of the American Vacuum Society; Nov. 2-6, 1998, pp. 0-26.
Affinito, J.D. et al., "Vacuum Deposition of Polymer Electrolytes on Flexible Susbtrates" The Ninth International Conference on Vacuum Web Coating, 1995, pp. 0-16.
Affinito, J.D. et al., Molecularly Doped Polymer Composite Films for Light Emitting Polymer Application Fabricated by the PML Process; 41<SUP>st </SUP>Technical Conference of the Society of Vacuum Coaters; Apr. 1998; pp. 220-225.
Affinito, J.D. et al., PML/Oxide/PML Barrier Layer Performance Differences Arising From Use Of UV Or Electron Beam Polymerization Of The PML Layers, SVC 40<SUP>th </SUP>Annual Technical Conference, Apr. 12-17, 1997, 4 pages only.
Affinito, J.D. et al., Polymer/polymer, Polymer/Oxide, and Polymer/Metal Vacuum Deposited Interference Filters; Tenth International Vacuum Web Coating Conference; Nov. 1996; pp. 0-14.
Affinito, J.D. et al., Vacuum Deposited Polymer/metal Multilayer Films for Optical Applications; Paper No. C1.13; International Conference on Metallurgical Coatings; Apr. 15-21, 1995, pp. 1-14.
Affinito, J.D. et al.; A new method for fabricating transparent barrier layers, Thin Solid Films 290-291; 1996; pp. 63-67.
Affinito, J.D. et al.; Molecularly Doped Polymer Composit Films for Light Emitting Polymer Application Fabricated by the PML Process; 41st Technical Conference of the Society of Vacuum Coaters; 1998; pp. 220-225.
Affinito, J.D. et al.; PML/Oxide/PML Barrier Layer Performance Differences Arising From Use Of UV or Electron Beam Polymerization of the PML Layers; Thin Solid Films; Elsevier Science S.A.; vol. 308-309; Oct. 31, 1997; pp. 19-25.
Affinito, J.D. et al.; Polymer-Oxide Transparent Barrier Layers; SVC 39th Annual Technical Conference; Vacuum Web Coating Session; 1996; pp. 392-397.
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Liquid/Solid Suspension Monomer Precursors; MRS Conference; Nov. 29-Dec. 3, 1998; Paper No. Y12.1.
Affinito, J.D. et al.; Ultrahigh Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; Journal Vacuum Science Technology A 17(4); Jul./Aug. 1999; pp. 1974-1981; American Vacuum Society.
Affinito, J.D. et al.; Vacuum Deposited Polymer/Metal Multilayer Films for Optical Application; Thin Solid Films 270, 1995; pp. 43-48.
Affinito, J.D. et al.; Vacuum Deposition of Polymer Electrolytes On Flexible Substrates, The Ninth International Conference on Vacuum Web Coating; pp. 20-37.
Affinito, J.D., et al.; High Rate Vacuum Deposition of Polymer Electrolytes: Journal Vacuum Science Technology A 14(3), May/Jun. 1996.
Affinito, J.D., Vacuum Deposited Conductive Polymer Films; The Eleventh International Conference on Vacuum Web Coatings, Nov. 9-11, 1997, pp. 1-13.
Affinito, J.F., et al., "Vacuum Deposition of Polymer Electrolytes On Flexible Substrates", "Proceedings of the Ninth International Conference on Vacuum Web Coating", Nov. 1995 ed R. Bakish, Bakish Press 1995, pp. 20-36. *
Akedo et al., "LP-5: Lake-News Poster: Plasma-CVD SiNx/Plasma-Polymerized CNx:H Multi-layer Passivation Films for Organic Light Emmitting Diods", SID 03 Digest.
Bright, Clark I., Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 247-255.
Bunshah, R. F. et al., "Deposition Technologies for Films and Coatings" Noyes Publications, Park Ridge, New Jersey, 1982, p. 339.
Chahroudi, D.; Transparent Glass Barrier Coatings for Flexible Film Packaging; 1991; pp. 130-133; Society of Vacuum Coaters.
Chwang et al., "Thin Film encapsulated flexible organic electroluminescent displays", American Institute of Physics, 2003.
Clark I. Bright, et al., Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays, Oct. 17-19, 1999, pp. 247-264, Tucson, Arizona.
Czeremuszkin, G. et al.; Permeation Through Defects in Transparent Barrier Coated Plastic Films; 43rd Annual Technical Conference Proceedings; Apr. 15, 2000; pp. 408-413.
De Gryse, R. et al., "Sputtered Transparent Barrier Layers," Tenth International Conference on Vacuum Web Coating, Nov. 1996, pp. 190-198.
F.M. Penning; Electrical Discharges in Gases; 1965; pp. 1-51; Gordon and Breach, Science Publishers, New York-London-Paris.
Felts, J.T., Transparent Barrier Coatings Update: Flexible Substrates; Society of Vacuum Coaters; 36<SUP>th </SUP>Annual Technical Conference Proceedings; Apr. 25-30, 1993; pp. 324-331.
Felts, J.T.; Transparent Barrier Coatings Update: Flexible Substrates; pp. 324-331.
Finson, E. et al.; Transparent SiO2 Barrier Coatings: Conversion and Production Status; 1994; pp. 139-143; Society of Vacuum Coaters.
G. Gustafason, et al.; Flexible light-emitting diodes made from soluble conducting polymers; Letters to Nature; vol. 357; Jun. 11, 1992; pp. 477-479.
Graupner, W. et al.; "High Resolution Color Organic Light Emitting Diode Microdisplay Fabrication Method", SPIE Proceedings; Nov. 6, 2000; pp. 1-9.
Henry, B.M. et al., Microstructural and Gas Barrier Properties of Transparent Aluminum Oxide and Indium Tin Oxide Films; Denver, Apr. 15-20, 2000; pp. 373-378; Society of Vacuum Coaters.
Henry, B.M. et al., Microstructural Studies of Transparent Gas Barrier Coatings on Polymer Substrates; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 265-273.
Hibino, N. et al., Transparent Barrier Al<SUB>2</SUB>0<SUB>3 </SUB>Coating By Activated Reactive Evaporation; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 234-246.
Hoffmann, G. et al.; Transparent Barrier Coatings by Reactive Evaporation; 1994; pp. 155-160; Society of Vacuum Coaters.
Inoue et al., Proc. Jpn. Congr. Mater. Res., vol. 33, p. 177-9, 1990. *
Klemberg-Sapieha, J.E. et al.; Transparent Gas Barrier Coatings Produced by Dual-Frequency PECVD; 1993; pp. 445-449; Society of Vacuum Coaters.
Krug, T. et al.; New Developments in Transparent Barrier Coatings; 1993; pp. 302-305; Society Vacuum Coaters.
Kukla, R. et al., Transparent Barrier Coatings with EB-Evaporation, an Update; Section Five; Transparent Barrier Coating Papers; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999 pp. 222-233.
Mahon, J.K. et al, Requirements of Flexible Substrates for Organic Light Emitting Devices in Flat Panel Display Applications, Society of Vacuum Coaters, 42<SUP>nd </SUP>Annual Technical Conference Proceedings, Apr. 1999, pp. 456-459.
Norenberg, H. et al., Comparative Study of Oxygen Permeation Through Polymers and Gas Barrier Films, Denver, Apr. 15-20, 2000; pp. 347-351; Society of Vacuum Coaters.
Notification of Transmittal of the International Search Report Or The Declaration, Mar. 3, 2000, PCT/US99/29853. *
Penning, F.M., Electrical Discharges in Gasses, Gordon and Breach Science Publishers, 1965, Chapters 5-6, pp. 19-35, and Chapter 8, pp. 41-50. *
Phillips, R.W.; Evaporated Dielectric Colorless Films on PET and Opp Exhibiting High Barriers Toward Moisture and Oxygen; Society of Vacuum Coaters; 36th Annual Technical Conference Proceedings; 1993; pp. 293-300.
Shaw, D.G. et al.; Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film; 1994; pp. 240-244; Society of Vacuum Coaters.
Shi, M.K. et al.; In situ and real-time monitoring of plasma-induced etching PET and acrylic films, Plasmas and Polymers; Dec. 1999, 494); pp. 1-25.
Shi, M.K., et al., Plasma treatment of PET and acrylic coating surfaces-I, In situ XPS measurements, Journal of Adhesion Science and Technology, Mar. 2000, 14(12), pp. 1-28.
Tropsha et al., Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terphthalate) Composite Barrier Structures; J. Phys. Chem B Mar. 1997; pp. 2259-2266.
Tropsha et al., Combinatorial Barrier Effect of the Multilayer SiOx Coatings on Polymer Substrates; 1997 Society of Vacuum Coaters, 40<SUP>th </SUP>Annual Technical Conferences Proceedings; Apr. 12-17, 1997; pp. 64-69.
Vossen, J.L. et al.; Thin Film Processes; Academic Press, 1978, Part II, Chapter II-1, Glow Discharge Sputter Deposition, pp. 12-63; Part IV, Chapter IV-1 Plasma Deposition of Inorganic Compounds and Chapter IV-2 Glow Discharge Polymerization, pp. 335-397.
Wong, C.P., "Recent Advances in IC Passivation and Encapsulation: Process Techniques and Materials," Polymers for Electronic and Photonic Applications, AT&T Bell Laboratories, 1993, pp. 167-209.
Yamada, Y. et al.; The Properties of a New Transparent and Colorless Barrier Film; 1995; pp. 28-31; Society of Vacuum Coaters.
Yializis, A. et al., Ultra High Barrier Films; Denver, Apr. 15-20, 2000, pp. 404-407; Society of Vacuum Coaters.
Yializis, A. et al.; High Oxygen Barrier Polypropylene Films Using Transparent Acrylate-A2O3 and Opaque Al-Acrylate Coatings; 1995; pp. 95-102; Society of Vacuum Coaters.

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129715B2 (en) 2002-05-15 2012-03-06 Semiconductor Energy Labratory Co., Ltd. Light emitting device
US7675074B2 (en) 2002-05-15 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device including a lamination layer
US20100156287A1 (en) * 2002-05-15 2010-06-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8659012B2 (en) 2002-05-15 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9118025B2 (en) 2002-05-15 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8476623B2 (en) 2002-05-15 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20080305360A1 (en) * 2007-06-05 2008-12-11 Dong-Won Han Organic light emitting device and method of manufacturing the same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US10886501B2 (en) * 2010-01-15 2021-01-05 Graphene Square, Inc. Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
US20120282419A1 (en) * 2010-01-15 2012-11-08 Jonghyun Ahn Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
WO2013161894A1 (en) 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US9614186B2 (en) 2013-03-13 2017-04-04 Panasonic Corporation Electronic device
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9394198B2 (en) * 2013-12-05 2016-07-19 Intermolecular, Inc. Simplified protection layer for abrasion resistant glass coatings and methods for forming the same
US20150158762A1 (en) * 2013-12-05 2015-06-11 Intermolecular Inc. Simplified Protection Layer for Abrasion Resistant Glass Coatings and Methods for Forming the Same
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US9909022B2 (en) 2014-07-25 2018-03-06 Kateeva, Inc. Organic thin film ink compositions and methods
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US20170062762A1 (en) 2015-08-31 2017-03-02 Kateeva, Inc. Di- and Mono(Meth)Acrylate Based Organic Thin Film Ink Compositions
US10190018B2 (en) 2015-08-31 2019-01-29 Kateeva, Inc. Di- and mono(meth)acrylate based organic thin film ink compositions
CN108602309A (en) * 2016-02-01 2018-09-28 3M创新有限公司 Stop compound
US11844234B2 (en) 2017-04-21 2023-12-12 Kateeva, Inc. Compositions and techniques for forming organic thin films

Also Published As

Publication number Publication date
US6413645B1 (en) 2002-07-02
WO2001081649A1 (en) 2001-11-01
AU2001241893A1 (en) 2001-11-07
TW575671B (en) 2004-02-11

Similar Documents

Publication Publication Date Title
USRE40531E1 (en) Ultrabarrier substrates
US6573652B1 (en) Encapsulated display devices
EP1284835B1 (en) Laminate comprising barrier layers on a substrate
US6570325B2 (en) Environmental barrier material for organic light emitting device and method of making
US6548912B1 (en) Semicoductor passivation using barrier coatings
US6522067B1 (en) Environmental barrier material for organic light emitting device and method of making
US7198832B2 (en) Method for edge sealing barrier films

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATTELLE MEMORIAL INSTITUTE;REEL/FRAME:025516/0773

Effective date: 20101028

AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028912/0083

Effective date: 20120702

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12