USRE44735E1 - Multi-channel non-invasive tissue oximeter - Google Patents

Multi-channel non-invasive tissue oximeter Download PDF

Info

Publication number
USRE44735E1
USRE44735E1 US11/219,298 US21929805A USRE44735E US RE44735 E1 USRE44735 E1 US RE44735E1 US 21929805 A US21929805 A US 21929805A US RE44735 E USRE44735 E US RE44735E
Authority
US
United States
Prior art keywords
separate
sensors
controller
test subject
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/219,298
Inventor
Bruce J. Barrett
Oleg Gonopolsky
Richard S. Scheuing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nellcor Puritan Bennett LLC
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22298080&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE44735(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Covidien LP filed Critical Covidien LP
Priority to US11/219,298 priority Critical patent/USRE44735E1/en
Assigned to SOMANETICS LLC reassignment SOMANETICS LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SOMANETICS CORPORATION
Assigned to NELLCOR PURITAN BENNETT LLC reassignment NELLCOR PURITAN BENNETT LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOMANETICS LLC
Application granted granted Critical
Publication of USRE44735E1 publication Critical patent/USRE44735E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Definitions

  • This invention relates generally to in vivo spectrophotometric examination and monitoring of selected blood metabolites or constituents in human and/or other living subjects, e.g., medical patients, and more particularly to spectrophotometric oximetry, by transmitting selected wavelengths (spectra) of light into a given area of the test subject, receiving the resulting light as it leaves the subject at predetermined locations, and analyzing the received light to determine the desired constituent data based on the spectral absorption which has occurred, from which metabolic information such as blood oxygen saturation may be computed for the particular volume of tissue through which the light spectra have passed.
  • 5,902,235 which is related to and commonly owned with the present application and directed to a non-invasive spectrophotometric cerebral oximeter, by which blood oxygen saturation in the brain may be non-invasively determined through the use of an optical sensor having light emitters and detectors that is applied to the forehead of the patient.
  • Earlier patents commonly owned with the '235 patent and the present one pertaining to various attributes of and applications for the underlying technology include U.S. Pat. Nos. 5,139,025; 5,217,013; 5,465,714; 5,482,034; and 5,584,296.
  • the cerebral oximeter of the aforementioned '235 patent has proved to be an effective and highly desirable clinical instrument, since it provides uniquely important medical information with respect to brain condition (hemoglobin oxygen saturation within the brain, which is directly indicative of the single most basic and important life parameter, i.e. brain vitality).
  • This information was not previously available, despite its great importance, since there really is no detectable arterial pulse within brain tissue itself with respect to which pulse oximetry could be utilized even if it could be effectively utilized in such an interior location (which is very doubtful), and this determination therefore requires a substantially different kind of apparatus and determination analysis.
  • the overall blood supply within the skull and the brain itself consists of a composite of arterial, venous, and capillary blood, as well as some pooled blood, and each of these are differently oxygenated.
  • the absorption and scatter effects on the examination light spectra are much greater in the brain and its environment than in ordinary tissue, and this tends to result in extremely low-level electrical signal outputs from the detectors for analysis, producing difficult signal-to-noise problems.
  • the cerebral oximeter embodying the technology of the aforementioned issued patents has provided a new type of clinical instrument by which new information has been gained relative to the operation and functioning of the human brain, particularly during surgical procedures and/or injury or trauma, and this has yielded greater insight into the functioning and state of the brain during such conditions.
  • This insight and knowledge has greatly assisted surgeons performing such relatively extreme procedures as carotid endarterectomy, brain surgery, and other complex procedures, including open-heart surgery, etc.
  • the present invention results from the new insights into and increased understanding of the human brain referred to in the preceding paragraph, and provides a methodology and apparatus for separately (and preferably simultaneously) sensing and quantitatively determining brain oxygenation at a plurality of specifically different locations or regions of the brain, particularly during surgical or other such traumatic conditions, and visually displaying such determinations in a directly comparative manner.
  • the invention may also be used to monitor oxygenation (or other such metabolite concentrations or parameters) in other organs or at other body locations, where mere arterial pulse oximetry is a far too general and imprecise examination technique.
  • the invention provides a method and apparatus for making and displaying determinations of internal metabolic substance, as referred to in the preceding paragraph, at a plurality of particular and differing sites, and doing so on a substantially simultaneous and continuing basis, as well as displaying the determinations for each such site in a directly comparative manner, for immediate assessment by the surgeon or other attending clinician, on a real-time basis, for direct support and guidance during surgery or other such course of treatment.
  • the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors.
  • the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors to the test subject at each of a corresponding plurality of testing sites, coupling each such sensor to a control and processing station, operating each such sensor to spectrophotometrically irradiate a particular region within the test subject associated with that sensor, detecting and receiving the light energy resulting from such spectrophotometric irradiation for each such region, conveying signals corresponding to the light energy so received to the control and processing station, analyzing the conveyed signals to determine preselected blood metabolite data, and displaying the data so obtained from each of a plurality of such testing sites and for each of a plurality of such regions, in a region-comparative manner.
  • FIG. 1 is a pictorial representation of a patient on whom apparatus in accordance with the invention is being used;
  • FIG. 2 is a fragmentary plan view of a typical sensor used in accordance with the invention.
  • FIG. 3 is an enlarged, fragmentary, pictorial cross-sectional view of a human cranium, showing the sensors of FIG. 2 applied and in place, generally illustrating both structural and functional aspects of the invention;
  • FIG. 4 is a front view of a typical control and processing unit for use in the invention, illustrating a preferred display of data determined in accordance with the invention
  • FIGS, 5 , 6 , and 7 are graphs representing data displays obtained in accordance with the invention which represent actual surgical procedure results from actual patients;
  • FIG. 8 is a pictorialized cross-sectional view representing a test subject on which a multiplicity of sensors are placed in sequence, further illustrating the multi-channel capability of the present invention
  • FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization representative of a typical implementation of the invention.
  • FIG. 10 is a pictorialized cross-sectional view similar to FIG. 8 , but still further illustrating the multi-channel capability of the present invention.
  • FIG. 1 depicts an illustrative patient 10 on whom an instrument 12 in accordance with the present invention is being employed.
  • the forehead 14 of patient 10 has a pair of sensors 16 , 116 secured to it in a bilateral configuration, i.e., one such sensor on each side of the forehead, where each may monitor a different brain hermisphere.
  • Each of the sensors 16 , 116 is connected to a processor and display unit 20 which provides a central control and processing station (sometimes hereinafter, referred to as the “oximeter”) by a corresponding electrical cable 16 A, 116 A, which join one another at a dual-channel coupler/pre-amp 18 , 118 and then (preferably) proceed to the control and processor 20 as an integrated, multiple-conductor cable 22 .
  • the electrical cables just noted include individual conductors for energizing light emitters and operating the related light detectors contained in sensors 16 , 116 , all as referred to further hereinafter and explained in detail in the various prior patents.
  • FIG. 2 The general nature of a typical structure and arrangement for the sensors 16 , 116 (which are identical in nature and which may if desired be incorporated into a single physical unit) is illustrated in FIG. 2 , and comprises the subject matter of certain of the earlier patents, in particular U.S. Pat. Nos. 5,465,714; 5,482,034; 5,584,296; and 5,795,292, wherein the structure and componentry of preferred sensors are set forth in detail.
  • the sensors 16 , 116 include an electrically actuated light source 24 for emitting the selected examination spectra (e.g., two or more narrow-bandwidth LEDs, whose center output wavelengths correspond to the selected examination spectra), together with a pair of light detectors 26 , 28 (e.g., photodiodes) which are preferably located at selected and mutually different distances from the source 24 .
  • These electro-optical (i.e., “optode”) components are precisely positioned upon and secured to, or within, a sensor body having a foam or other such soft and conformable outer layer which is adhesively secured to the forehead (or other desired anatomical portion) of the patient 10 , as generally illustrated in FIG.
  • FIG. 3 generally illustrates, by way of a pictorialized cross-sectional view, the sensors 16 , 116 in place upon the forehead 14 of the patient 12 .
  • the cranial structure of patient 12 generally comprises an outer layer of skin 30 , an inner layer of tissue 32 , and the frontal shell 34 of the skull, which is of course bone.
  • the Periosteal Dura Mater designated by the numeral 36 , and inside that is the brain tissue 38 itself, which is comprised of two distinct hemispheres 38 ′, 38 ′′ that are separated at the center of the forehead inwardly of the superior sagital sinus by a thin, inwardly-projecting portion 36 a of the Dura 36 .
  • sensor 16 accesses and examines brain hemisphere 38 ′′, while sensor 116 does the same to brain hemisphere 38 ′.
  • the preferred configuration of sensors 16 , 116 includes both a “near” detector 26 , which principally receives light from source 24 whose mean path length is primarily confined to the layers of skin, tissue, skull, etc., outside brain 38 , and a “far” detector 28 , which receives light spectra that have followed a longer mean path length and traversed a substantial amount of brain tissue in addition to the bone and tissue traversed by the “near” detector 26 .
  • a resultant may be obtained which principally characterizes conditions within the brain tissue itself, without effects attributable to the overlying adjacent tissue, etc.
  • This enables the apparatus to obtain metabolic information on a selective basis, for particular regions within the test subject, and by spectral analysis of this resultant information, employing appropriate extinction coefficients, etc.
  • a numerical value, or relative quantified value may be obtained which characterizes metabolites or other metabolic data (e.g., the hemoglobin oxygen saturation) within only the particular region or volume of tissue actually examined, i.e., the region or zone generally defined by the curved mean path extending from source 24 to the “far” or “deep” detector 28 , and between this path and the outer periphery of the test subject but excluding the analogous region or zone defined by the mean path extending from source 24 to “near” detector 26 .
  • metabolic data e.g., the hemoglobin oxygen saturation
  • control and processing unit 20 is accomplished by use if an appropriately programmed digital computer, as is now known by those skilled in the art (exemplified in particular by the Somanetics® model 4100 cerebral oximeter).
  • the present invention takes advantage of the primarily regional oxygen saturation value produced by each of the two (or more) sensors 16 , 116 , together with the natural hemispheric structure of brain 38 , by use of a comparative dual or other multi-channel examination paradigm that in the preferred embodiment or principal example set forth herein provides a separate but preferably comparatively displayed oxygen saturation value for each of the two brain hemispheres 38 ′, 38 ′′.
  • each such regional index or value of oxygen saturation is actually representative of the particular region within a hemisphere actually subjected to the examining light spectra, and while each such regional value may reasonably be assumed to be generally representative of the entire brain hemisphere in which it is located, and therefor useful in showing and contrasting the differing conditions between the two such hemispheres of the brain 38 , the specific nature and understanding of these hemispheric interrelationships and of interrelationships between other and different possible sensor locations relative to each different hemisphere 38 ′, 38 ′′ are not believed to be fully known and appreciated as of yet. Consequently, it may be useful or advantageous in at least some cases, and perhaps in many, to employ a more extensive distribution and array of sensors and corresponding inputs to the oximeter 20 , such as is illustrated for example in FIG. 8 .
  • a more extensive array of sensors 16 , 116 , 216 , etc. may be deployed around the entire circumference of the head or other such patient extremity, for example, each such sensor sampling a different regional area of each brain hemisphere or other such organ or test site and outputting corresponding data which may be contrasted in various ways with the analogous data obtained from the other such sensors for other test site regions.
  • each such regional area subjected to examination is a function of a number of different factors, particularly including the distance between the emitter or source 24 and detectors 26 , 28 of each such set and the amount of light intensity which is utilized, the greater the emitter/sensor distance and corresponding light intensity, the greater the area effectively traversed by the examining light spectra and the larger the size of the “region” whose oximetric or other metabolic value is being determined.
  • each such single source would actually illuminate the entire brain since the photons so introduced would scatter throughout the interior of the skull (even though being subject to increased absorption as a function of distance traversed), and each such emitter/detector pair (including long-range pairs) could produce information characterizing deeper interior regions than is true of the arrays illustrated in FIGS. 3 and 8 , for example.
  • the smaller-region arrays shown in these figures are desirable in many instances, for a number of reasons.
  • each sensor output is separately processed to provide a particular regional oxygen saturation value, and these regional values are separately displayed on a video screen 40 as both a numeric or other such quantified value, constituting a basically instantaneous real-time value, and as a point in a graphical plot 42 , 44 , representing a succession of such values taken over time.
  • the plots or graphs 42 , 44 may advantageously be disposed one above the other in direct alignment, for convenient examination and comparison. While the instantaneous numeric displays will almost always be found useful and desirable, particularly when arranged in the directly adjacent and immediately comparable manner illustrated, the graphical trace displays 42 , 44 directly show the ongoing trend, and do so in a contrasting, comparative manner, as well as showing the actual or relative values, and thus are also highly useful.
  • Graphic displays 42 , 44 may also advantageously be arranged in the form shown in FIGS. 5 , 6 , and 7 , in which the two such individual traces are directly superimposed upon one another, for more immediate and readily apparent comparison and contrast.
  • FIGS. 5 , 6 , and 7 does in fact represent the record from an actual surgical procedure in which the present invention was utilized, and in each of these the vertical axis (labeled rSO 2 ) is indicative of regional oxygen saturation values which have been determined, while the horizontal axis is, as labeled, “real time,” i.e., ongoing clock time during the surgical procedure involved.
  • the trace from the “left” sensor (number 16 as shown in FIGS.
  • the sensors may be placed on any region of their respective test areas (e.g., brain hemispheres) provided that any underlying hair is first removed, since hair is basically opaque to the applied light spectra and thus greatly reduces the amount of light energy actually introduced to the underlying tissue, etc.
  • test areas e.g., brain hemispheres
  • FIGS. 5 , 6 , and 7 the various differences in cerebral blood oxygenation shown by the superimposed traces of FIGS. 5 , 6 , and 7 occur as a result of measures taken during the corresponding surgical procedures, which in these cases are carotid endarterectomies and/or coronary artery bypass graft (CABG), which are sometimes undertaken as a continuing sequence.
  • CABG coronary artery bypass graft
  • index line 46 represents the time of the carotid arterial incision
  • line 48 represent the time the arterial clamp was applied and the shunt opened (resulting in reduced arterial blood flow to the left brain hemisphere)
  • index line 50 represents a time shortly after the shunt was removed and the clamp taken off
  • the area from about real time 17:43 to the end of the graph was when the hypothermic brain surgery actually took place, the lowest point (just prior to time 18:23) occurring when the heart-lung machine pump was turned on, and the indices at time 19:43 and 20:23 generally show the time for blood rewarming and pump off, respectively.
  • FIGS. 6 and 7 While illustrative and perhaps enlightening, it is not considered necessary to give the specifics of the surgical procedures portrayed by the graphical presentations of FIGS. 6 and 7 , although it may be noted that the procedure of FIG. 6 was a carotid endarterectomy of the left side and that of FIG. 7 was a similar endarterectomy on the right side of a different patient. Sufficient to say that these graphs represent other such surgical procedures and show comparable states of differing hemispheric oxygenation.
  • FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization making up a typical implementation of the invention, as shown pictorially in FIG. 1 (to which reference is also made).
  • the oximeter 20 comprises a digital computer 50 which provides a central processing unit, with a processor, data buffers, and timing signal generation for the system, together with a keypad interface (shown along the bottom of the unit 20 in FIG.
  • display generator and display 40 (preferably implemented by use of a flat electro-luminescent unit, at least in applications where a sharp monochromatic display is sufficient), as well as an audible alarm 52 including a speaker, and a data output interface 54 by which the computer may be interconnected to a remote personal computer, disk drive, printer, or the like for downloading data, etc.
  • each of the sensors 16 , 116 receives timing signals from the CPU 50 and is coupled to an LED excitation current source ( 56 , 156 ) which drives the emitters 24 of each sensor.
  • the analog output signals from the detectors (photodiodes) 26 , 28 of each sensor are conveyed to the coupler/pre-amp 18 , 118 for signal conditioning (filtering and amplification), under the control of additional timing signals from the CPU.
  • each sensor 16 , 116 , etc.
  • each sensor preferably has its own signal-processing circuitry (pre-amp, etc.) upstream of CPU 50 , and each such sensor circuit is preferably the same.
  • the light emitters 24 i.e., LEDs
  • the light emitters 24 of each of the different sensors 16 , 116 etc. be driven out-of-phase, sequentially and alternatingly with one another (i.e., only a single such LED or other emitter being driven during the same time interval, and the emitters on the respective different sensors are alternatingly actuated, so as to ensure that the detectors 26 , 28 of the particular sensor 16 , 116 then being actuated receive only resultant light spectra emanating from a particular emitter located on that particular sensor, and no cross-talk between sensors takes place (even though significant levels of cross-talk are unlikely in any event due to the substantial attenuation of light intensity as it passes through tissue, which is on the order of about ten times for each centimeter of optical path length through tissue).
  • the “on” time of the detectors 26 , 28 it is desirable to carefully window the “on” time of the detectors 26 , 28 so that each is only active during a selected minor portion (for example, 10% or less) of the time that the related emitter is activated (and, preferably, during the center part of each emitter actuation period).
  • a selected minor portion for example, 10% or less
  • the overall process may be carried on at a very fast rate.
  • a prioritized sequential emitter actuation and data detection timing format in which more than one emitter may be operated at the same time, or some particular operational sequence is followed, with appropriate signal timing and buffering, particularly if signal cross-talk is not a matter of serious consideration due to the particular circumstances involved (detector location, size and nature of test subject, physiology, signal strength, etc.).
  • a multi-sensor or multiple sector-emitter array may be so operated, by using a number of different emitter-detector pair groupings, with some detectors used in conjunction with a series of different emitters to monitor a number of differing internal sectors or regions.
  • a system as described above may readily be implemented to obtain on the order of about fifteen data samples per second even with the minimal detector “on” time noted, and a further point to note is that the preferred processing involves windowing of the detector “on” time so that data samples are taken alternatingly during times when the emitters are actuated and the ensuing time when they are not actuated (i.e., “dark time”), so that the applicable background signal level may be computed and utilized in analyzing the data taken during the emitter “on” time.
  • a fairly large number e.g., 50
  • processing that group of signals to obtain an average from which each updated rSO 2 value is computed, whereby the numeric value displayed on the video screen 40 is updated each five seconds (or less).
  • This progression of computed values is preferably stored in computer memory over the entire length of the surgical procedure involved, and used to generate the graphical traces 42 , 44 on a time-related basis as discussed above.
  • non-volatile memory is utilized so that this data will not be readily lost, and may in fact be downloaded at a convenient time through the data output interface 54 of CPU 50 noted above in connection with FIG. 9 .

Abstract

A method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration at a plurality of different areas or regions on the same organ or test site on an ongoing basis, by applying a plurality of spectrophotometric sensors to a test subject at each of a corresponding plurality of testing sites and coupling each such sensor to a control and processing station, operating each of said sensors to spectrophotometrically irradiate a particular region within the test subject; detecting and receiving the light energy resulting from said spectrophotometric irradiation for each such region and conveying corresponding signals to said control and processing station, analyzing said conveyed signals to determine preselected blood metabolite data, and visually displaying the data so determined for each of a plurality of said areas or regions in a comparative manner.
REEXAMINATION RESULTS
The questions raised in reexamination proceeding No. 90/010,128, filed Mar. 31, 2008, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e) for ex parte reexaminations, or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.

Description

This application is a national stage of International Application No. PCT/US99/22940, filed Oct. 13, 1999, which claims the benefit of U.S. Provisional Application Ser. No. 60/103,985, filed Oct. 13, 1998.
This invention relates generally to in vivo spectrophotometric examination and monitoring of selected blood metabolites or constituents in human and/or other living subjects, e.g., medical patients, and more particularly to spectrophotometric oximetry, by transmitting selected wavelengths (spectra) of light into a given area of the test subject, receiving the resulting light as it leaves the subject at predetermined locations, and analyzing the received light to determine the desired constituent data based on the spectral absorption which has occurred, from which metabolic information such as blood oxygen saturation may be computed for the particular volume of tissue through which the light spectra have passed.
A considerable amount of scientific data and writings, as well as prior patents, now exist which is/are based on research and clinical studies done in the above-noted area of investigation, validating the underlying technology and describing or commenting on various attributes and proposed or actual applications of such technology. One such application and field of use is the widespread clinical usage of pulse oximeters as of the present point in time, which typically utilize sensors applied to body extremities such as fingers, toes, earlobes, etc., where arterial vasculature is in close proximity, from which arterial hemoglobin oxygenation may be determined non-invasively. A further and important extension of such technology is disclosed and discussed in U.S. Pat. No. 5,902,235, which is related to and commonly owned with the present application and directed to a non-invasive spectrophotometric cerebral oximeter, by which blood oxygen saturation in the brain may be non-invasively determined through the use of an optical sensor having light emitters and detectors that is applied to the forehead of the patient. Earlier patents commonly owned with the '235 patent and the present one pertaining to various attributes of and applications for the underlying technology include U.S. Pat. Nos. 5,139,025; 5,217,013; 5,465,714; 5,482,034; and 5,584,296.
The cerebral oximeter of the aforementioned '235 patent has proved to be an effective and highly desirable clinical instrument, since it provides uniquely important medical information with respect to brain condition (hemoglobin oxygen saturation within the brain, which is directly indicative of the single most basic and important life parameter, i.e. brain vitality). This information was not previously available, despite its great importance, since there really is no detectable arterial pulse within brain tissue itself with respect to which pulse oximetry could be utilized even if it could be effectively utilized in such an interior location (which is very doubtful), and this determination therefore requires a substantially different kind of apparatus and determination analysis. In addition, there are a number of uniquely complicating factors, including the fact that there is both arterial and venous vasculature present in the skin and underlying tissue through which the examining light spectra must pass during both entry to and exit from the brain, and this would distort and/or obscure the brain examination data if excluded in some way. Furthermore, the overall blood supply within the skull and the brain itself consists of a composite of arterial, venous, and capillary blood, as well as some pooled blood, and each of these are differently oxygenated. In addition, the absorption and scatter effects on the examination light spectra are much greater in the brain and its environment than in ordinary tissue, and this tends to result in extremely low-level electrical signal outputs from the detectors for analysis, producing difficult signal-to-noise problems.
Notwithstanding these and other such problems, the cerebral oximeter embodying the technology of the aforementioned issued patents (now available commercially from Somanetics Corporation, of Troy, Mich.) has provided a new type of clinical instrument by which new information has been gained relative to the operation and functioning of the human brain, particularly during surgical procedures and/or injury or trauma, and this has yielded greater insight into the functioning and state of the brain during such conditions. This insight and knowledge has greatly assisted surgeons performing such relatively extreme procedures as carotid endarterectomy, brain surgery, and other complex procedures, including open-heart surgery, etc. and has led to a greater understanding and awareness of conditions and effects attributable to the hemispheric structure of the human brain, including the functional inter-relationship of the two cerebral hemispheres, which are subtly interconnected from the standpoint of blood perfusion as well as that of electrical impulses and impulse transfer.
BRIEF SUMMARY OF INVENTION
The present invention results from the new insights into and increased understanding of the human brain referred to in the preceding paragraph, and provides a methodology and apparatus for separately (and preferably simultaneously) sensing and quantitatively determining brain oxygenation at a plurality of specifically different locations or regions of the brain, particularly during surgical or other such traumatic conditions, and visually displaying such determinations in a directly comparative manner. In a larger sense, the invention may also be used to monitor oxygenation (or other such metabolite concentrations or parameters) in other organs or at other body locations, where mere arterial pulse oximetry is a far too general and imprecise examination technique.
Further, and of considerable moment, the invention provides a method and apparatus for making and displaying determinations of internal metabolic substance, as referred to in the preceding paragraph, at a plurality of particular and differing sites, and doing so on a substantially simultaneous and continuing basis, as well as displaying the determinations for each such site in a directly comparative manner, for immediate assessment by the surgeon or other attending clinician, on a real-time basis, for direct support and guidance during surgery or other such course of treatment.
In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors. In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors to the test subject at each of a corresponding plurality of testing sites, coupling each such sensor to a control and processing station, operating each such sensor to spectrophotometrically irradiate a particular region within the test subject associated with that sensor, detecting and receiving the light energy resulting from such spectrophotometric irradiation for each such region, conveying signals corresponding to the light energy so received to the control and processing station, analyzing the conveyed signals to determine preselected blood metabolite data, and displaying the data so obtained from each of a plurality of such testing sites and for each of a plurality of such regions, in a region-comparative manner.
The foregoing principal aspects and features of the invention will become better understood upon review of the ensuing specification and the attached drawings, describing and illustrating preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a pictorial representation of a patient on whom apparatus in accordance with the invention is being used;
FIG. 2 is a fragmentary plan view of a typical sensor used in accordance with the invention;
FIG. 3 is an enlarged, fragmentary, pictorial cross-sectional view of a human cranium, showing the sensors of FIG. 2 applied and in place, generally illustrating both structural and functional aspects of the invention;
FIG. 4 is a front view of a typical control and processing unit for use in the invention, illustrating a preferred display of data determined in accordance with the invention;
FIGS, 5, 6, and 7 are graphs representing data displays obtained in accordance with the invention which represent actual surgical procedure results from actual patients;
FIG. 8 is a pictorialized cross-sectional view representing a test subject on which a multiplicity of sensors are placed in sequence, further illustrating the multi-channel capability of the present invention;
FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization representative of a typical implementation of the invention; and
FIG. 10 is a pictorialized cross-sectional view similar to FIG. 8, but still further illustrating the multi-channel capability of the present invention.
DESCRIPTION OF PREFERRED EMBODIMENT
FIG. 1 depicts an illustrative patient 10 on whom an instrument 12 in accordance with the present invention is being employed. As illustrated, the forehead 14 of patient 10 has a pair of sensors 16, 116 secured to it in a bilateral configuration, i.e., one such sensor on each side of the forehead, where each may monitor a different brain hermisphere. Each of the sensors 16, 116 is connected to a processor and display unit 20 which provides a central control and processing station (sometimes hereinafter, referred to as the “oximeter”) by a corresponding electrical cable 16A, 116A, which join one another at a dual-channel coupler/pre-amp 18, 118 and then (preferably) proceed to the control and processor 20 as an integrated, multiple-conductor cable 22. As will be understood, the electrical cables just noted include individual conductors for energizing light emitters and operating the related light detectors contained in sensors 16, 116, all as referred to further hereinafter and explained in detail in the various prior patents.
The general nature of a typical structure and arrangement for the sensors 16,116 (which are identical in nature and which may if desired be incorporated into a single physical unit) is illustrated in FIG. 2, and comprises the subject matter of certain of the earlier patents, in particular U.S. Pat. Nos. 5,465,714; 5,482,034; 5,584,296; and 5,795,292, wherein the structure and componentry of preferred sensors are set forth in detail. For present purposes, it is sufficient to note that the sensors 16, 116 include an electrically actuated light source 24 for emitting the selected examination spectra (e.g., two or more narrow-bandwidth LEDs, whose center output wavelengths correspond to the selected examination spectra), together with a pair of light detectors 26, 28 (e.g., photodiodes) which are preferably located at selected and mutually different distances from the source 24. These electro-optical (i.e., “optode”) components are precisely positioned upon and secured to, or within, a sensor body having a foam or other such soft and conformable outer layer which is adhesively secured to the forehead (or other desired anatomical portion) of the patient 10, as generally illustrated in FIG. 1, and individual electrical conductors in cables 16A, 116A provide operating power to the sources 24 while others carry output signals from the detectors 26, 28, which are representative of detected light intensities received at the respective detector locations and must be conveyed to the processor unit 20, where processing takes place.
FIG. 3 generally illustrates, by way of a pictorialized cross-sectional view, the sensors 16, 116 in place upon the forehead 14 of the patient 12. As illustrated in this figure, the cranial structure of patient 12 generally comprises an outer layer of skin 30, an inner layer of tissue 32, and the frontal shell 34 of the skull, which is of course bone.
Inside the skull 34 is the Periosteal Dura Mater, designated by the numeral 36, and inside that is the brain tissue 38 itself, which is comprised of two distinct hemispheres 38′, 38″ that are separated at the center of the forehead inwardly of the superior sagital sinus by a thin, inwardly-projecting portion 36a of the Dura 36. Thus, in the arrangement illustrated in FIG. 3, sensor 16 accesses and examines brain hemisphere 38″, while sensor 116 does the same to brain hemisphere 38′.
As explained at length in various of the above-identified prior patents, the preferred configuration of sensors 16, 116 includes both a “near” detector 26, which principally receives light from source 24 whose mean path length is primarily confined to the layers of skin, tissue, skull, etc., outside brain 38, and a “far” detector 28, which receives light spectra that have followed a longer mean path length and traversed a substantial amount of brain tissue in addition to the bone and tissue traversed by the “near” detector 26. Accordingly, by appropriately differentiating the information from the “near” (or “shallow”) detector 26 (which may be considered a first data set) from information obtained from the “far” (or “deep”) detector 28 (providing a second such data set), a resultant may be obtained which principally characterizes conditions within the brain tissue itself, without effects attributable to the overlying adjacent tissue, etc. This enables the apparatus to obtain metabolic information on a selective basis, for particular regions within the test subject, and by spectral analysis of this resultant information, employing appropriate extinction coefficients, etc. (as set forth in certain of the above-identified patents), a numerical value, or relative quantified value, may be obtained which characterizes metabolites or other metabolic data (e.g., the hemoglobin oxygen saturation) within only the particular region or volume of tissue actually examined, i.e., the region or zone generally defined by the curved mean path extending from source 24 to the “far” or “deep” detector 28, and between this path and the outer periphery of the test subject but excluding the analogous region or zone defined by the mean path extending from source 24 to “near” detector 26. As will be understood, particularly in view of Applicants' above-identified prior patents as well as is explained further hereinafter, this data analysis carried out by the “control and processing unit” 20 is accomplished by use if an appropriately programmed digital computer, as is now known by those skilled in the art (exemplified in particular by the Somanetics® model 4100 cerebral oximeter).
The present invention takes advantage of the primarily regional oxygen saturation value produced by each of the two (or more) sensors 16, 116, together with the natural hemispheric structure of brain 38, by use of a comparative dual or other multi-channel examination paradigm that in the preferred embodiment or principal example set forth herein provides a separate but preferably comparatively displayed oxygen saturation value for each of the two brain hemispheres 38′, 38″. Of course, it will be understood that each such regional index or value of oxygen saturation is actually representative of the particular region within a hemisphere actually subjected to the examining light spectra, and while each such regional value may reasonably be assumed to be generally representative of the entire brain hemisphere in which it is located, and therefor useful in showing and contrasting the differing conditions between the two such hemispheres of the brain 38, the specific nature and understanding of these hemispheric interrelationships and of interrelationships between other and different possible sensor locations relative to each different hemisphere 38′, 38″ are not believed to be fully known and appreciated as of yet. Consequently, it may be useful or advantageous in at least some cases, and perhaps in many, to employ a more extensive distribution and array of sensors and corresponding inputs to the oximeter 20, such as is illustrated for example in FIG. 8.
Thus, as seen in FIG. 8, a more extensive array of sensors 16, 116, 216, etc., may be deployed around the entire circumference of the head or other such patient extremity, for example, each such sensor sampling a different regional area of each brain hemisphere or other such organ or test site and outputting corresponding data which may be contrasted in various ways with the analogous data obtained from the other such sensors for other test site regions. In this regard, it will be appreciated that the extent of each such regional area subjected to examination is a function of a number of different factors, particularly including the distance between the emitter or source 24 and detectors 26, 28 of each such set and the amount of light intensity which is utilized, the greater the emitter/sensor distance and corresponding light intensity, the greater the area effectively traversed by the examining light spectra and the larger the size of the “region” whose oximetric or other metabolic value is being determined.
It may also be possible to use only a single source position and employ a series of mutually spaced detector sets, or individual detectors, disposed at various selected distances from the single source around all or a portion of the perimeter of the subject. Each such single source would actually illuminate the entire brain since the photons so introduced would scatter throughout the interior of the skull (even though being subject to increased absorption as a function of distance traversed), and each such emitter/detector pair (including long-range pairs) could produce information characterizing deeper interior regions than is true of the arrays illustrated in FIGS. 3 and 8, for example. Of course, the smaller-region arrays shown in these figures are desirable in many instances, for a number of reasons. For example, the comparative analysis of information corresponding to a number of differing such regions, as represented by the array of FIG. 8, lends itself readily to very meaningful comparative displays, including for example computer-produced mapping displays which (preferably by use of differing colors and a color monitor screen) could be used to present an ongoing real-time model which would illustrate blood or even tissue oxygenation state around the inside perimeter of and for an appreciable distance within a given anatomical area or part. The multiple detector outputs from such a single-source arrangement, on the other hand, would contain information relative to regions or areas deep within the brain, and might enable the determination of rSO2 values (or other parameters) for deep internal regions as well as the production of whole-brain mapping, by differentially or additively combining the outputs from various selected detectors located at particular points.
The dual or bilateral examination arrangement depicted in FIGS. 1 and 3 will provide the highly useful comparative display formats illustrated in FIGS. 4, 5, 6, and 7 (as well as on the face of the oximeter 20 shown at the right in FIG. 1), for example. In the arrangement shown in FIGS. 1 and 4, each sensor output is separately processed to provide a particular regional oxygen saturation value, and these regional values are separately displayed on a video screen 40 as both a numeric or other such quantified value, constituting a basically instantaneous real-time value, and as a point in a graphical plot 42, 44, representing a succession of such values taken over time. As illustrated, the plots or graphs 42, 44 may advantageously be disposed one above the other in direct alignment, for convenient examination and comparison. While the instantaneous numeric displays will almost always be found useful and desirable, particularly when arranged in the directly adjacent and immediately comparable manner illustrated, the graphical trace displays 42, 44 directly show the ongoing trend, and do so in a contrasting, comparative manner, as well as showing the actual or relative values, and thus are also highly useful.
Graphic displays 42, 44 may also advantageously be arranged in the form shown in FIGS. 5, 6, and 7, in which the two such individual traces are directly superimposed upon one another, for more immediate and readily apparent comparison and contrast. Each of the examples shown in FIGS. 5, 6, and 7 does in fact represent the record from an actual surgical procedure in which the present invention was utilized, and in each of these the vertical axis (labeled rSO2) is indicative of regional oxygen saturation values which have been determined, while the horizontal axis is, as labeled, “real time,” i.e., ongoing clock time during the surgical procedure involved. The trace from the “left” sensor (number 16 as shown in FIGS. 1 and 3), designated by the numeral 42 for convenience, is shown in solid lines in these graphs, whereas the trace 44 from the right-band sensor 116 is shown in dashed lines. The sensors may be placed on any region of their respective test areas (e.g., brain hemispheres) provided that any underlying hair is first removed, since hair is basically opaque to the applied light spectra and thus greatly reduces the amount of light energy actually introduced to the underlying tissue, etc.
With further reference to FIGS. 5, 6, and 7, and also inferentially to FIG. 4, it will be seen that at certain times, (e.g., the beginning and end of each procedure, when the patient's condition is at least relatively normal) there is a certain amount of direct correspondence between the two different hemispheric traces 42, 44, and that in at least these time increments the shape of the two traces is reasonably symmetrical and convergent. An idealized such normal result is shown in FIG. 1, wherein both the numeric values and the curves are basically the same. In each of the procedures shown in FIGS. 5, 6, and 7, however, there are times when the detected regional cerebral oxygen saturation differs markedly from one brain hemisphere to the other. This is particularly noticeable in FIG. 6, in which it may be observed that the left band trace 42 is at times only about one half the height (i.e., value) of the right hand trace 44, reaching a minimal value in the neighborhood of about 35% slightly before real time point 12:21 as compared to the initial level, at time 10:50-11:00, of more than 75%, which is approximately the level of saturation in the right hemisphere at the 12:21 time just noted, when the oxygenation of the left hemisphere bad decreased to approximately 35%.
As will be understood, the various differences in cerebral blood oxygenation shown by the superimposed traces of FIGS. 5, 6, and 7 occur as a result of measures taken during the corresponding surgical procedures, which in these cases are carotid endarterectomies and/or coronary artery bypass graft (CABG), which are sometimes undertaken as a continuing sequence. In the illustrated examples, FIG. 5 represents a sequential carotid endarterectomy and hypothermic CABG, in which the vertical lines along the time axis characterize certain events during surgery, i.e., index line 46 represents the time of the carotid arterial incision, line 48 represent the time the arterial clamp was applied and the shunt opened (resulting in reduced arterial blood flow to the left brain hemisphere), index line 50 represents a time shortly after the shunt was removed and the clamp taken off, and the area from about real time 17:43 to the end of the graph was when the hypothermic brain surgery actually took place, the lowest point (just prior to time 18:23) occurring when the heart-lung machine pump was turned on, and the indices at time 19:43 and 20:23 generally show the time for blood rewarming and pump off, respectively. While illustrative and perhaps enlightening, it is not considered necessary to give the specifics of the surgical procedures portrayed by the graphical presentations of FIGS. 6 and 7, although it may be noted that the procedure of FIG. 6 was a carotid endarterectomy of the left side and that of FIG. 7 was a similar endarterectomy on the right side of a different patient. Sufficient to say that these graphs represent other such surgical procedures and show comparable states of differing hemispheric oxygenation.
The importance and value of the information provided in accordance with the present invention is believed self-apparent from the foregoing, particularly the graphical presentations of and comments provided with respect to FIGS. 5, 6, and 7. Prior to the advent of the present invention, no such comparative or hemispheric-specific information was available to the surgeon, who did not in fact have any quantified or accurately representative data to illustrate the prevailing hemispheric brain oxygenation conditions during a surgery. Thus, even the use of a single such sensor (16, 116) on the side of the brain on which a procedure is to be done is highly useful and, as of the present time, rapidly being recognized as essential. Of course, it is considerably more useful to have at least the bilateral array illustrated in FIG. 1, to provide comparative data such as that seen in FIGS. 4-7 inclusive.
FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization making up a typical implementation of the invention, as shown pictorially in FIG. 1 (to which reference is also made). As shown in FIG. 9, the oximeter 20 comprises a digital computer 50 which provides a central processing unit, with a processor, data buffers, and timing signal generation for the system, together with a keypad interface (shown along the bottom of the unit 20 in FIG. 1), display generator and display 40 (preferably implemented by use of a flat electro-luminescent unit, at least in applications where a sharp monochromatic display is sufficient), as well as an audible alarm 52 including a speaker, and a data output interface 54 by which the computer may be interconnected to a remote personal computer, disk drive, printer, or the like for downloading data, etc.
As also shown in FIG. 9, each of the sensors 16, 116 (and/or others, in the multi-site configuration illustrated in FIG. 8) receives timing signals from the CPU 50 and is coupled to an LED excitation current source (56,156) which drives the emitters 24 of each sensor. The analog output signals from the detectors (photodiodes) 26, 28 of each sensor are conveyed to the coupler/ pre-amp 18, 118 for signal conditioning (filtering and amplification), under the control of additional timing signals from the CPU. Following that, these signals undergo A-to-D conversion and synchronization (for synchronized demodulation, as noted hereinafter), also under the control of timing signals from CPU 50, and they are then coupled to the CPU for computation of regional oxygen saturation rSO2 data, storage of the computed data, and display thereof, preferably in the format discussed above in conjunction with FIGS. 4, 5, 6, and 7. As will be apparent, each sensor (16, 116, etc.) preferably has its own signal-processing circuitry (pre-amp, etc.) upstream of CPU 50, and each such sensor circuit is preferably the same.
While implementation of a system such as that shown in FIG. 9 is as a general matter well within the general skill of the art once the nature and purpose of the system and the basic requirements of its components, together with the overall operation (as set forth above and hereinafter) have become known, at least certain aspects of the preferred such system implementation are as follows. First, it is preferable that the light emitters 24 (i.e., LEDs) of each of the different sensors 16, 116 etc., be driven out-of-phase, sequentially and alternatingly with one another (i.e., only a single such LED or other emitter being driven during the same time interval, and the emitters on the respective different sensors are alternatingly actuated, so as to ensure that the detectors 26, 28 of the particular sensor 16, 116 then being actuated receive only resultant light spectra emanating from a particular emitter located on that particular sensor, and no cross-talk between sensors takes place (even though significant levels of cross-talk are unlikely in any event due to the substantial attenuation of light intensity as it passes through tissue, which is on the order of about ten times for each centimeter of optical path length through tissue). Further, it is desirable to carefully window the “on” time of the detectors 26, 28 so that each is only active during a selected minor portion (for example, 10% or less) of the time that the related emitter is activated (and, preferably, during the center part of each emitter actuation period). Of course, under computer control such accurate and intricate timing is readily accomplished, and in addition, the overall process may be carried on at a very fast rate.
In a multi-site (multiple sensor) system, such as that shown in FIG. 8, the preferred implementation and system operation would also be in accordance with that shown in FIG. 9, and the foregoing comments regarding system performance, data sampling, etc., would also apply, although there would of course be a greater number of sensors and sensor circuit branches interfacing with computer 50. The same would also be basically true of a single-source multi-site detector configuration or grouping such as that referred to above, taking into consideration the fact that the detectors would not necessarily be grouped in specific or dedicated “near-far” pairs and bearing in mind that one or more detectors located nearer a source than another detector, or detectors, located further from the source could be paired with or otherwise deemed a “near” detector relative to any such farther detector. In any such multiple-site configuration, it may be advantageous to implement a prioritized sequential emitter actuation and data detection timing format, in which more than one emitter may be operated at the same time, or some particular operational sequence is followed, with appropriate signal timing and buffering, particularly if signal cross-talk is not a matter of serious consideration due to the particular circumstances involved (detector location, size and nature of test subject, physiology, signal strength, etc.). As illustrated in FIG. 10, a multi-sensor or multiple sector-emitter array may be so operated, by using a number of different emitter-detector pair groupings, with some detectors used in conjunction with a series of different emitters to monitor a number of differing internal sectors or regions.
A system as described above may readily be implemented to obtain on the order of about fifteen data samples per second even with the minimal detector “on” time noted, and a further point to note is that the preferred processing involves windowing of the detector “on” time so that data samples are taken alternatingly during times when the emitters are actuated and the ensuing time when they are not actuated (i.e., “dark time”), so that the applicable background signal level may be computed and utilized in analyzing the data taken during the emitter “on” time. Other features of the preferred processing include the taking of a fairly large number (e.g., 50) of data samples during emitter “on” time within a period of not more than about five seconds, and processing that group of signals to obtain an average from which each updated rSO2 value is computed, whereby the numeric value displayed on the video screen 40 is updated each five seconds (or less). This progression of computed values is preferably stored in computer memory over the entire length of the surgical procedure involved, and used to generate the graphical traces 42,44 on a time-related basis as discussed above. Preferably, non-volatile memory is utilized so that this data will not be readily lost, and may in fact be downloaded at a convenient time through the data output interface 54 of CPU 50 noted above in connection with FIG. 9.
As will be understood, the foregoing disclosure and attached drawings are directed to a single preferred embodiment of the invention for purposes of illustration; however, it should be understood that variations and modifications of this particular embodiment may well occur to those skilled in the art after considering this disclosure, and that all such variations etc., should be considered an integral part of the underlying invention, especially in regard to particular shapes, configurations, component choices and variations in structural and system features. Accordingly, it is to be understood that the particular components and structures, etc. shown in the drawings and described above are merely for illustrative purposes and should not be used to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

Claims (174)

The invention claimed is:
1. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially concurrent basis, comprising the steps of:
applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites and coupling each of said sensors to a control and processing station;
operating a selected number of said sensors on a substantially concurrent basis to spectrophotometrically irradiate at least two separate internal regions of the test subject during a common time interval, each of said regions being associated with a different of said testing sites;
separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
separately and concurrently analyzing said conveyed separate sets of signals to separately determine quantified data representative of a blood metabolite in each of said at least two separate internal regions; and
concurrently visually displaying said separately determined quantified data for each of said at least two separate internal regions for direct concurrent mutual comparison, wherein said sensors are applied to a head of the test subject and are used to monitor two mutually separate regions within a brain of the test subject.
2. The method of claim 1, wherein said step of analyzing comprises quantitative determination of blood oxygenation levels within each of said at least two separate internal regions.
3. The method of claim 2, wherein said analyzing step includes producing separate quantitative value determinations for hemoglobin oxygen saturation for each of said at least two separate internal regions.
4. The method of claim 3, wherein said analyzing step includes production of ongoing graphical traces representing a plurality of said quantitative value determinations made at successive points in time.
5. The method of claim 4 including the step of visually displaying a plurality of said graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
6. The method of claim 5, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
7. The method of claim 3, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
8. The method of claim 1, wherein said metabolite comprises hemoglobin oxygen.
9. The method of claim 1, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.
10. The method of claim 9, wherein said metabolite comprises cerebral blood hemoglobin oxygenation.
11. An apparatus for concurrent comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations and adapted to separately but concurrently spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;
a controller and circuitry coupling each of said sensors to said controller for separately and individually but concurrently operating certain of said sensors to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations;
said sensors each further adapted to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two different internal regions on a substantially concurrent basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;
said controller adapted to analytically process said conveyed signals separately and determine separate quantified blood metabolite data therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
a visual display coupled to said controller and adapted to separately but concurrently display the quantified blood metabolite data determined for each of said sensors in a mutually-comparative manner, wherein said sensors are adapted to be applied to a head of the test subject and to monitor a brain of the test subject.
12. The apparatus of claim 11, wherein said controller is adapted to analyze said data to quantitatively determine blood oxygenation within said at least two different internal regions.
13. The apparatus of claim 12, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different internal regions.
14. The apparatus of claim 13, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time.
15. The apparatus of claim 14, wherein said controller and said display are adapted to visually display at least two of said graphical traces on a substantially concurrent basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
16. The apparatus of claim 15, wherein said controller and said display are adapted to visually display at least two of said numeric value designations as well as at least two of said graphical traces on a substantially concurrent basis and in proximity to one another to facilitate rapid and accurate visual comparison.
17. The apparatus of claim 13, wherein said controller and said display are adapted to visually display at least two of said numeric value designations on a substantially concurrent basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
18. The apparatus of claim 11, wherein said sensors are adapted to provide signals to said controller which comprise at least two separate data sets that cooperatively define at least portions of a particular area within a given one of said at least two different internal regions.
19. The apparatus of claim 18, wherein said data sets provided by said sensors include a first set characterizing a first part of said particular area and a second set characterizing a second part of said particular area.
20. The apparatus of claim 19, wherein said second part of said particular area characterized by said second set includes at least part of said first part of said area.
21. The apparatus of claim 11, wherein said controller is adapted to determine blood oxygenation saturation in said brain.
22. The apparatus of claim 11, wherein at least two of said sensors are adapted to be positioned in locations associated with mutually different hemispheres of the brain and each of said sensors is operable to separately monitor at least portions of each of said different hemispheres.
23. The apparatus of claim 22, wherein said controller is adapted to determine cerebral blood oxygenation saturation within each of said different hemispheres.
24. The apparatus of claim 22, wherein said sensors are adapted to provide signals to said controller which comprise at least two data sets that cooperatively define at least portions of a particular area within the same hemisphere of said brain.
25. The apparatus of claim 11, wherein said sensors are adapted to be applied to the outside periphery of the test subject and to operate non-invasively.
26. A method for concurrent comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:
spectrophotometrically irradiating each of a plurality of different testing sites on said test subject;
detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions;
analyzing said separate signals to determine quantified blood metabolite data representative of at least one defined region within said at least one test subject associated with each of at least two different of said testing sites, each said defined region being different from the other; and
concurrently displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison, wherein said at least two different internal regions are located within different brain hemispheres of said test subject.
27. The method of claim 26, wherein said data sets include a first set which characterizes a first zone within one of said at least two different internal regions and a second set which characterizes a second zone that is at least partially within the same one of said at least two different internal regions.
28. The method of claim 26, wherein said spectrophotometric irradiation comprises application of at least two different wavelengths applied in an alternating sequence of timed pulses, and wherein detection of light energy corresponding to each of said at least two different wavelengths is done on a timed periodic basis using detection periods whose occurrence generally corresponds to that of said applied spectrophotometric irradiation.
29. The method of claim 28, wherein the duration of each of said detection periods is limited to a length which is less than that of each pulse of applied spectrophotometric irradiation.
30. The method of claim 29, wherein the duration of each of said detection periods is less than half that of a pulse of said applied spectrophotometric irradiation.
31. The method of claim 30, wherein a plurality of said detection periods are used during pulses of said applied spectrophotometric irradiation, and a corresponding energy detection occurs during each of a plurality of said detection periods.
32. The method of claim 31, further including the steps of averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant value to compute a metabolite value which is representative thereof.
33. The method of claim 32, wherein said display includes said computed representative metabolite value.
34. The method of claim 33, wherein said display is refreshed periodically by using a sequence of computed representative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.
35. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially concurrent basis, comprising:
a plurality of spectrophotometric emitters, each adapted to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;
a controller and circuitry coupling each of said emitters to said controller for individually operating selected ones of said emitters to spectrophotometrically irradiate at least two particular regions within the test subject;
a plurality of detectors, each adapted to separately receive light energy resulting from the spectrophotometric irradiation of said at least two particular regions, and to produce at least one separate set of signals for each one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
said controller adapted to analytically process said at least one separate set of signals to determine separate sets of quantified data representative of a metabolic condition in said at least two particular regions; and
a visual display coupled to said controller and adapted to display separate representations of said separate sets of quantified data for each of said at least two particular regions in a mutually-comparative manner and on a substantially concurrent basis, wherein at least two of said at least two particular regions are located in mutually separate regions of a brain of said test subject.
36. The apparatus of claim 35, wherein said controller includes a computer programmed to analyze said signals to separately determine a blood oxygenation state within each of said at least two particular regions.
37. The apparatus of claim 36, wherein said computer comprises a processor, data buffers, and a timing signal generator, said data buffers adapted to store data representative of said blood oxygenation state and said timing signal generator adapted to control actuation of said emitters and detectors.
38. The apparatus of claim 36, wherein said controller comprises a unitary device which includes said computer and said display.
39. The apparatus of claim 38, wherein said unitary device further includes a keyboard interface to said computer.
40. The apparatus of claim 38, wherein said unitary device further includes a data output interface.
41. The apparatus of claim 40, wherein said unitary device further includes an integral keyboard interface to said computer.
42. The apparatus of claim 38, wherein said display comprises a flat electroluminescent visual display screen.
43. The apparatus of claim 42, wherein said unitary device further includes an integral keyboard interface to said computer.
44. The apparatus of claim 35, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational pairs in predetermined timed relationship while maintaining the emitters and detectors of other of said operational pairs in a non-operating condition.
45. The apparatus of claim 44, wherein said controller is adapted to sequence the operation of said at least certain of said operational pairs.
46. The apparatus of claim 45, wherein at least one of said operational pairs include a plurality of said detectors arranged at mutually spaced locations which are spaced at differing distances from the emitter of said at least one of said operational pairs.
47. The apparatus of claim 46, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a non-operating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating condition.
48. The apparatus of claim 44, wherein at least one of said operational pairs includes a first detector and a second detector, and wherein the first detector is located nearer the emitter than the second detector to thereby provide near and far detector groupings for said at least one of said operational pairs.
49. The apparatus of claim 48, wherein said controller is adapted to sequence the operation of said at least one of said operational pairs.
50. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:
applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites on a head of said test subject and coupling each of said sensors to a control and processing station;
electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis to spectrophotometrically irradiate at least two separate internal regions within a brain of the test subject during a common time interval in a manner that reduces cross-talk between said sensors, each of said regions being associated with different ones of said testing sites;
separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said at least two separate internal regions; and
substantially simultaneously visually displaying said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison.
51. The method of claim 50, wherein said step of analyzing comprises quantitative determination of blood oxygenation levels within each of said at least two separate internal regions.
52. The method of claim 51, wherein said analyzing step includes producing separate quantitative value determinations for hemoglobin oxygen saturation for each of said at least two separate internal regions.
53. The method of claim 52, wherein said analyzing step includes production of ongoing graphical traces representing a plurality of said quantitative value determinations made at successive points in time.
54. The method of claim 53 including the step of visually displaying a plurality of said graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
55. The method of claim 54, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
56. The method of claim 52, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
57. The method of claim 50, wherein said metabolite comprises hemoglobin oxygen.
58. The method of claim 50, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.
59. The method of claim 58, wherein said metabolite comprises cerebral blood hemoglobin oxygenation.
60. The method of claim 50, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.
61. The method of claim 50, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
62. The method of claim 50, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.
63. The method of claim 50, wherein said data is determined so as to principally characterize blood metabolite within each of the separate internal regions without effects attributable to adjacent tissue overlying said separate internal regions.
64. The method of claim 63, wherein said effects attributable to said adjacent tissue are minimized by comparing spectrophotometric irradiation that penetrates different depths into said test subject.
65. An apparatus for substantially simultaneous comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations on a head of said subject and configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within a brain of the test subject associated with each of said test locations;
a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;
said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two different internal regions on a substantially simultaneous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;
said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
a visual display coupled to said controller and configured to separately but substantially simultaneously display the blood metabolite levels determined for each of said sensors in a mutually-comparative manner.
66. The apparatus of claim 65, wherein said controller is adapted to analyze said data to quantitatively determine blood oxygenation within said at least two different internal regions.
67. The apparatus of claim 66, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different internal regions.
68. The apparatus of claim 67, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time.
69. The apparatus of claim 68, wherein said controller and said display are adapted to visually display at least two of said graphical traces on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
70. The apparatus of claim 69, wherein said controller and said display are adapted to visually display at least two of said numeric value designations as well as at least two of said graphical traces on a substantially simultaneous basis and in proximity to one another to facilitate rapid and accurate visual comparison.
71. The apparatus of claim 67, wherein said controller and said display are adapted to visually display at least two of said numeric value designations on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
72. The apparatus of claim 65, wherein said sensors are adapted to provide signals to said controller which comprise at least two separate data sets that cooperatively define at least portions of a particular area within a given one of said at least two different internal regions.
73. The apparatus of claim 72, wherein said data sets provided by said sensors include a first set characterizing a first part of said particular area and a second set characterizing a second part of said particular area.
74. The apparatus of claim 73, wherein said second part of said particular area characterized by said second set includes at least part of said first part of said area.
75. The apparatus of claim 65, wherein said controller is adapted to determine blood oxygenation saturation in said brain.
76. The apparatus of claim 65, wherein at least two of said different test locations are associated with mutually different hemispheres of the brain and at least two of said plurality of sensors are operable to separately monitor at least portions of each of said different hemispheres.
77. The apparatus of claim 76, wherein said controller is adapted to determine cerebral blood oxygenation saturation within each of said different hemispheres.
78. The apparatus of claim 77, wherein said sensors are adapted to provide signals to said controller which comprise at least two data sets that cooperatively define at least portions of a particular area within the same hemisphere of said brain.
79. The apparatus of claim 78, wherein said sensors are adapted to be applied to the outside periphery of the test subject and to operate non-invasively.
80. The apparatus of claim 65, wherein said blood metabolite levels represent regional blood oxygen saturation.
81. The apparatus of claim 65, wherein said sensors are adapted to receive light energy that has traveled each of at least two different distances through tissue of the test subject.
82. The apparatus of claim 65, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.
83. The apparatus of claim 65, wherein said blood metabolite levels are determined by said controller so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.
84. The apparatus of claim 83, wherein said effects attributable to said adjacent tissue are minimized by said controller comparing signals for spectrophotometric irradiation that penetrates different depths into said test subject.
85. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:
spectrophotometrically irradiating, in sequence on a substantially simultaneous basis, each of a plurality of different testing sites on said test subject via electronic control in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites;
detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions located within different brain hemispheres of said test subject;
analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined region being different from the other; and
substantially simultaneously displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison.
86. The method of claim 85, wherein said data sets include a first set which characterizes a first zone within one of said at least two different internal regions and a second set which characterizes a second zone that is at least partially within the same one of said at least two different internal regions.
87. The method of claim 85, wherein said spectrophotometric irradiation comprises application of at least two different wavelengths applied in an alternating sequence of timed pulses, and wherein detection of light energy corresponding to each of said at least two different wavelengths is done on a timed periodic basis using detection periods whose occurrence generally corresponds to that of said applied spectrophotometric irradiation.
88. The method of claim 87, wherein the duration of each of said detection periods is limited to a length which is less than that of each pulse of applied spectrophotometric irradiation.
89. The method of claim 88, wherein the duration of each of said detection periods is less than half that of a pulse of said applied spectrophotometric irradiation.
90. The method of claim 89, wherein a plurality of said detection periods are used during pulses of said applied spectrophotometric irradiation, and a corresponding energy detection occurs during each of a plurality of said detection periods.
91. The method of claim 90, further including the steps of averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant value to compute a metabolite value which is representative thereof.
92. The method of claim 91, wherein said display includes said computed representative metabolite value.
93. The method of claim 92, wherein said display is refreshed periodically by using a sequence of computed representative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.
94. The method of claim 85, wherein said determining of blood metabolite levels includes determining regional blood oxygen saturation.
95. The method of claim 85, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
96. The method of claim 85, wherein said spectrophotometrically irradiating comprises emitting light at said testing sites where said emitting at one of said testing sights is out of phase with said emitting at another of said testing sites.
97. The method of claim 85, wherein said blood metabolite levels are determined so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.
98. The method of claim 97, wherein said effects attributable to said adjacent tissue are minimized by comparing spectrophotometric irradiation that penetrates different depths into said test subject.
99. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:
a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;
a controller and circuitry coupling each of said emitters to said controller configured for individually operating selected ones of said emitters in sequence on a substantially simultaneous basis to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces cross-talk between said spectrophotometric irradiation of said at least two particular regions;
a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and
a visual display coupled to said controller and configured to display separate representations of said separate sets of data for each of said at least two particular regions in a mutually-comparative manner and on a substantially simultaneous basis, wherein at least two of said at least two particular regions are located in mutually separate regions of a brain of said test subject.
100. The apparatus of claim 99, wherein said controller includes a computer programmed to analyze said signals to separately determine a blood oxygenation state within each of said at least two particular regions.
101. The apparatus of claim 100, wherein said computer comprises a processor, data buffers, and a timing signal generator, said data buffers adapted to store data representative of said blood oxygenation state and said timing signal generator adapted to control actuation of said emitters and detectors.
102. The apparatus of claim 101, wherein said controller comprises a unitary device which includes said computer and said display.
103. The apparatus of claim 102, wherein said unitary device further includes a keyboard interface to said computer.
104. The apparatus of claim 102, wherein said unitary device further includes a data output interface.
105. The apparatus of claim 104, wherein said unitary device further includes an integral keyboard interface to said computer.
106. The apparatus of claim 102, wherein said display comprises a flat electroluminescent visual display screen.
107. The apparatus of claim 106, wherein said unitary device further includes an integral keyboard interface to said computer.
108. The apparatus of claim 99, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational pairs in predetermined timed relationship while maintaining the emitters and detectors of other of said operational pairs in a non-operating condition.
109. The apparatus of claim 108, wherein said controller is adapted to sequence the operation of said at least certain of said operational pairs.
110. The apparatus of claim 109, wherein at least one of said operational pairs include a plurality of said detectors arranged at mutually spaced locations which are spaced at differing distances from the emitter of said at least one of said operational pairs.
111. The apparatus of claim 110, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a non-operating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating condition.
112. The apparatus of claim 108, wherein at least one of said operational pairs includes a first detector and a second detector, and wherein the first detector is located nearer the emitter than the second detector to thereby provide near and far detector groupings for said at least one of said operational pairs.
113. The apparatus of claim 112, wherein said controller is adapted to sequence the operation of said at least one of said operational pairs.
114. The apparatus of claim 99, wherein said blood metabolite levels represent regional blood oxygen saturation.
115. The apparatus of claim 99, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.
116. The apparatus of claim 99, wherein said data is determined by said controller so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.
117. The apparatus of claim 116, wherein said effects attributable to said adjacent tissue are minimized by said controller comparing signals for spectrophotometric irradiation that penetrates different depths into said test subject.
118. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:
applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites on the body at which blood metabolite measurements may be made and coupling each of said sensors to a control and processing station;
electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis to spectrophotometrically irradiate at least two separate internal regions of the test subject during a common time interval in a manner that reduces cross-talk between said sensors, each of said regions being associated with different ones of said testing sites;
separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said at least two separate internal regions; and
substantially simultaneously visually displaying said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison and observation of relative changes.
119. The method of claim 118, including the step of visually displaying a plurality of graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
120. The method of claim 118, including the step of visually displaying a plurality of quantified value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
121. The method of claim 118, wherein said analyzing step includes producing separate quantitative value determinations for regional hemoglobin oxygen saturation for each of said at least two separate internal regions.
122. The method of claim 121, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
123. The method of claim 118, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.
124. The method of claim 118, wherein said two separate regions are hemispheres within said brain of the test subject.
125. The method of claim 118, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
126. The method of claim 118, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.
127. An apparatus for substantially simultaneous comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations on the body at which blood metabolite measurements may be made and configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;
a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;
said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two different internal regions on a substantially simultaneous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;
said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
a visual display coupled to said controller and configured to separately but substantially simultaneously display the blood metabolite levels determined for each of said sensors in a mutually-comparative manner through direct simultaneous mutual comparison and observation of relative changes.
128. The apparatus of claim 127, wherein said controller and said display are adapted to visually display at least two graphical traces representative of said levels on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
129. The apparatus of claim 128, wherein said controller and said display are adapted to visually display at least two numeric value designations representative of said levels as well as said at least two graphical traces on a substantially simultaneous basis and in proximity to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
130. The apparatus of claim 127, wherein said controller is adapted to produce separate numeric value designations for regional hemoglobin oxygen saturation for said at least two different internal regions.
131. The apparatus of claim 130, wherein said controller and said display are adapted to visually display at least two of said numeric value designations on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.
132. The apparatus of claim 127, wherein said blood metabolite levels represent regional blood oxygen saturation.
133. The apparatus of claim 127, wherein said sensors are adapted to receive light energy that has traveled each of at least two different distances through tissue of the test subject.
134. The apparatus of claim 127, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.
135. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:
spectrophotometrically irradiating each of a plurality of different testing sites on said test subject via electronic control, in sequence on a substantially simultaneous basis, in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites, said sites being locations on the body at which blood metabolite measurements are made;
detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions;
analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined region being different from the other; and
substantially simultaneously displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison and observation of relative changes.
136. The method of claim 135, wherein said determining of quantified blood metabolite levels includes determining regional blood oxygen saturation.
137. The method of claim 135, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
138. The method of claim 135, wherein said spectrophotometrically irradiating comprises emitting light at said testing sites where said emitting at one of said testing sights is out of phase with said emitting at another of said testing sites.
139. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:
a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject, said test location being a site on the body at which a blood metabolite measurement may be made;
a controller and circuitry coupling each of said emitters to said controller configured for individually operating, in sequence on a substantially simultaneous basis, selected ones of said emitters to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces cross-talk between said spectrophotometric irradiation of said at least two particular regions;
a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and
a visual display coupled to said controller and configured to display separate representations of said separate sets of data for each of said at least two particular regions in a mutually-comparative manner and on substantially simultaneous basis through direct simultaneous mutual comparison and observation of relative changes.
140. The apparatus of claim 139, wherein said blood metabolite levels represent regional blood oxygen saturation.
141. The apparatus of claim 139, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.
142. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:
applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites and coupling each of said sensors to a control and processing station;
electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis to spectrophotometrically irradiate at least two separate internal regions of the test subject during a common time interval in a manner that reduces cross-talk between said sensors, each of said regions being associated with different ones of said testing sites;
separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said at least two separate internal regions; and
substantially simultaneously visually displaying information reflecting said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison.
143. The method of claim 142, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.
144. The method of claim 142, wherein said two separate regions are hemispheres within said brain of the test subject.
145. The method of claim 142, further comprising visually displaying a plurality of graphical traces representing a plurality of quantitative value determinations made at successive points in time, said displaying of said plurality of graphical traces occurring at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
146. The method of claim 142, further comprising visually displaying a plurality of quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
147. The method of claim 142, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.
148. The method of claim 142, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
149. The method of claim 142, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.
150. The method of claim 142, wherein said step of applying separate spectrophotometric sensors to the test subject further comprises individually applying said separate spectrophotometric sensors.
151. An apparatus for substantially simultaneous comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations in the body and configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;
a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;
said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two different internal regions on a substantially simultaneous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;
said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
a visual display coupled to said controller and configured to separately but substantially simultaneously display information reflecting the blood metabolite levels determined for each of said sensors in a mutually-comparative manner.
152. The apparatus of claim 151, wherein said blood metabolite levels represent regional blood oxygen saturation.
153. The apparatus of claim 151, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different internal regions.
154. The apparatus of claim 151, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time, and wherein said controller and said display are adapted to visually display at least two of said graphical traces on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
155. The apparatus of claim 151, wherein at least two of said sensors are adapted to be positioned in locations associated with mutually different hemispheres of the brain and each of said sensors is operable to separately monitor at least portions of each of said different hemispheres.
156. The apparatus of claim 151, wherein said sensors are adapted to receive light energy that has traveled each of at least two different distances through tissue of the test subject.
157. The apparatus of claim 151, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.
158. The apparatus of claim 151, wherein said spectrophotometric sensors attachable to the test subject at different test locations in the body are each configured to be attached individually to said test subject.
159. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:
spectrophotometrically irradiating each of a plurality of different testing sites on said test subject via electronic control, in sequence on a substantially simultaneous basis, in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites;
detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions;
analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined region being different from the other; and
substantially simultaneously displaying information determined from data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison.
160. The method of claim 159, wherein said determining of blood metabolite levels includes determining regional blood oxygen saturation.
161. The method of claim 159, wherein said testing sites are selected as being proximate to different brain hemispheres and said defined regions are two mutually separate regions located in different brain hemispheres of the test subject.
162. The method of claim 159, further comprising averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant value to compute a metabolite value which is representative thereof, and wherein said display includes said computed representative metabolite value.
163. The method of claim 162, wherein said display is refreshed periodically by using a sequence of computed representative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.
164. The method of claim 159, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
165. The method of claim 159, wherein said irradiating and said detecting is performed by a plurality of spectrophotometric sensors, and wherein said spectrophotometric sensors are each applied individually to said test subject.
166. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:
a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;
a controller and circuitry coupling each of said emitters to said controller configured for individually operating selected ones of said emitters in sequence on a substantially simultaneous basis to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces cross-talk between said spectrophotometric irradiation of said at least two particular regions;
a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and
a visual display coupled to said controller and configured to display separate representations of said separate sets of data for each of said at least two particular regions in a mutually-comparative manner and on a substantially simultaneous basis.
167. The apparatus of claim 166, wherein said blood metabolite levels represent regional blood oxygen saturation.
168. The apparatus of claim 166, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational pairs in predetermined timed relationship while maintaining the emitters and detectors of other of said operational pairs in a non-operating condition.
169. The apparatus of claim 166, wherein said controller is adapted to sequence the operation of said at least certain of said operational pairs.
170. The apparatus of claim 169, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a non-operating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating condition.
171. The apparatus of claim 166, wherein at least two of said emitters are adapted to be positioned in locations associated with mutually different hemispheres of the brain such that said apparatus is operable to separately monitor at least portions of each of said different hemispheres.
172. The apparatus of claim 166, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.
173. The apparatus of claim 166, wherein said separate representations comprise actual or relative values corresponding to said quantified data.
174. The apparatus of claim 166, wherein a plurality of spectrophotometric sensors are formed by said emitters and said detectors, and wherein said spectrophotometric sensors are each configured to be attached individually to said test subject.
US11/219,298 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter Expired - Lifetime USRE44735E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/219,298 USRE44735E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10398598P 1998-10-13 1998-10-13
US80767699A 1999-10-13 1999-10-13
PCT/US1999/022940 WO2000021435A1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US11/219,298 USRE44735E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US80767699A Reissue 1998-10-13 1999-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US80767699A Continuation 1998-10-13 1999-10-13

Publications (1)

Publication Number Publication Date
USRE44735E1 true USRE44735E1 (en) 2014-01-28

Family

ID=22298080

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/780,314 Expired - Lifetime USRE45609E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US13/780,300 Expired - Lifetime USRE45608E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US11/219,298 Expired - Lifetime USRE44735E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US13/780,326 Expired - Lifetime USRE45616E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US13/780,269 Expired - Lifetime USRE45607E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US09/807,676 Ceased US6615065B1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/780,314 Expired - Lifetime USRE45609E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US13/780,300 Expired - Lifetime USRE45608E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/780,326 Expired - Lifetime USRE45616E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US13/780,269 Expired - Lifetime USRE45607E1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter
US09/807,676 Ceased US6615065B1 (en) 1998-10-13 1999-10-13 Multi-channel non-invasive tissue oximeter

Country Status (8)

Country Link
US (6) USRE45609E1 (en)
EP (2) EP2044885B3 (en)
JP (2) JP2002527134A (en)
AU (1) AU760195B2 (en)
CA (1) CA2346971C (en)
ES (1) ES2402233T7 (en)
HK (1) HK1130651A1 (en)
WO (1) WO2000021435A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090259117A1 (en) * 2008-04-11 2009-10-15 Wider Michael D System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
USRE45608E1 (en) * 1998-10-13 2015-07-14 Covidien Lp Multi-channel non-invasive tissue oximeter
US20170023468A1 (en) * 2015-07-23 2017-01-26 Advantest Corporation Infrared optical biosensing apparatus and probe thereof

Families Citing this family (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803909A (en) * 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US7047054B2 (en) * 1999-03-12 2006-05-16 Cas Medical Systems, Inc. Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
ES2392818T3 (en) 2000-04-17 2012-12-14 Nellcor Puritan Bennett Llc Pulse oximeter sensor with section function
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7236831B2 (en) * 2000-07-13 2007-06-26 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
CA2475726C (en) * 2002-02-14 2010-02-09 Toshinori Kato Apparatus for evaluating biological function
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US20050107709A1 (en) * 2002-04-02 2005-05-19 Technische Universitat Dresden Method and arrangement for optically measuring swelling of the nose
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
WO2004000114A1 (en) 2002-06-20 2003-12-31 University Of Florida Perfusion monitor and system, including specifically configured oximeter probes and covers for oximeter probes
AU2003254135B2 (en) 2002-07-26 2006-11-16 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US6717804B1 (en) * 2002-09-30 2004-04-06 Hewlett-Packard Development Company, L.P. Light-emitting lock device control element and electronic device including the same
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US20050075680A1 (en) 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
CA2534363A1 (en) 2003-08-01 2005-02-10 Brad Fowler Apparatus and methods for applying neural stimulation to a patient
WO2005025399A2 (en) 2003-09-12 2005-03-24 Or-Nim Medical Ltd. Noninvasive optical monitoring of region of interest
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
EP2486850B1 (en) 2003-12-30 2014-09-17 University of Florida Research Foundation, Inc. Specially configured nasal pulse oximeter
JP2005198788A (en) * 2004-01-14 2005-07-28 National Institute Of Information & Communication Technology Biological activity measuring device
JP4517666B2 (en) * 2004-02-12 2010-08-04 トヨタ自動車株式会社 Driving support device
AU2005223738B2 (en) 2004-03-09 2011-08-11 Boehringer Ingelheim Pharmaceuticals, Inc. 3-'4-heterocyclyl -1,2,3,-triazol-1-yl-n-aryl-benzamides as inhibitors of the cytokines production for the treatment of chronic inflammatory diseases
US7570979B2 (en) * 2004-03-30 2009-08-04 Philip George Cooper Methods and apparatus for patient monitoring
US20070208269A1 (en) * 2004-05-18 2007-09-06 Mumford John R Mask assembly, system and method for determining the occurrence of respiratory events using frontal electrode array
JP4517111B2 (en) * 2004-06-07 2010-08-04 独立行政法人情報通信研究機構 Brain function measuring device, brain function measuring method, and brain function measuring program
WO2005120349A1 (en) * 2004-06-14 2005-12-22 Hitachi Medical Corporation Biophotometer, biophotometry, and program
US7483747B2 (en) 2004-07-15 2009-01-27 Northstar Neuroscience, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
CA2593538C (en) * 2005-01-14 2013-01-08 Edward C. Ii Brainard Bilateral differential pulse method for measuring brain activity
US8137110B2 (en) 2005-02-03 2012-03-20 Christopher Sakezles Dielectric properties models and methods of using same
US7706853B2 (en) * 2005-02-10 2010-04-27 Terumo Cardiovascular Systems Corporation Near infrared spectroscopy device with reusable portion
US7865223B1 (en) * 2005-03-14 2011-01-04 Peter Bernreuter In vivo blood spectrometry
US8055321B2 (en) * 2005-03-14 2011-11-08 Peter Bernreuter Tissue oximetry apparatus and method
DK1863387T3 (en) 2005-03-16 2013-09-16 Or Nim Medical Ltd NON-INVASIVE MEASUREMENTS IN A HUMAN BODY
JP4663387B2 (en) * 2005-04-22 2011-04-06 株式会社日立製作所 Biological light measurement device
US20060270919A1 (en) * 2005-05-11 2006-11-30 Mytek, Llc Biomarkers sensing
EP1885235B1 (en) 2005-05-12 2013-12-18 Cas Medical Systems, Inc. Improved method for spectrophotometric blood oxygenation monitoring
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US20070093717A1 (en) * 2005-10-20 2007-04-26 Glucon Inc. Wearable glucometer configurations
US8761851B2 (en) * 2005-12-06 2014-06-24 Cas Medical Systems, Inc. Indicators for a spectrophotometric system
US20070149864A1 (en) * 2005-12-27 2007-06-28 Marko Laakkonen Monitoring device for multiple tissue sites
US7606606B2 (en) * 2005-12-27 2009-10-20 General Electric Company Patient monitoring device with multiple sensors
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8433384B2 (en) * 2006-05-03 2013-04-30 Covidien Lp Method and apparatus for cerebral oximetry
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US8123695B2 (en) * 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US11903682B2 (en) * 2007-02-27 2024-02-20 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of a compartment for detecting conditions of a compartment syndrome
US8100834B2 (en) * 2007-02-27 2012-01-24 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of a compartment for detecting conditions of a compartment syndrome
US8639309B2 (en) * 2007-07-31 2014-01-28 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of compartments and tissue
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8229530B2 (en) * 2007-03-09 2012-07-24 Nellcor Puritan Bennett Llc System and method for detection of venous pulsation
US8221326B2 (en) 2007-03-09 2012-07-17 Nellcor Puritan Bennett Llc Detection of oximetry sensor sites based on waveform characteristics
US8109882B2 (en) 2007-03-09 2012-02-07 Nellcor Puritan Bennett Llc System and method for venous pulsation detection using near infrared wavelengths
WO2008113024A1 (en) * 2007-03-14 2008-09-18 Spectros Corporation Metabolism-or biochemical-based anti-spoofing biometrics devices, systems, and methods
US7541602B2 (en) 2007-06-04 2009-06-02 Or-Nim Medical Ltd. System and method for noninvasively monitoring conditions of a subject
US9622694B2 (en) 2007-06-20 2017-04-18 Vioptix, Inc. Measuring cerebral oxygen saturation
US20090108205A1 (en) * 2007-10-10 2009-04-30 Cas Medical Systems, Inc. Nirs sensor mounting apparatus
JP5262102B2 (en) * 2007-12-20 2013-08-14 株式会社島津製作所 Optical measuring device
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US9027412B2 (en) 2008-07-06 2015-05-12 Or-Nim Medical Ltd. Method and system for non-invasively monitoring fluid flow in a subject
US8336391B2 (en) * 2008-07-06 2012-12-25 Or-Nim Medical Ltd. Method and system for non-invasively monitoring fluid flow in a subject
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100081904A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Device And Method For Securing A Medical Sensor to An Infant's Head
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8798701B2 (en) * 2008-09-30 2014-08-05 Drexel University Functional near-infrared spectroscopy as a monitor for depth of anesthesia
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8391942B2 (en) * 2008-10-06 2013-03-05 Cas Medical Systems, Inc. Method and apparatus for determining cerebral desaturation in patients undergoing deep hypothermic circulatory arrest
US20100105998A1 (en) * 2008-10-28 2010-04-29 Cas Medical Systems, Inc. Method and apparatus for spectrophotometric based oximetry of spinal tissue
WO2010056973A1 (en) 2008-11-14 2010-05-20 Nonin Medical, Inc. Optical sensor path selection
US7741592B1 (en) * 2008-12-09 2010-06-22 Somanetics Corporation Physiological sensor with booster circuit
US8938279B1 (en) 2009-01-26 2015-01-20 VioOptix, Inc. Multidepth tissue oximeter
US20100198029A1 (en) * 2009-02-05 2010-08-05 O2 Medtech, Inc. Patient Monitoring Using Combination of Continuous Wave Spectrophotometry and Phase Modulation Spectrophotometry
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8460196B2 (en) * 2009-05-29 2013-06-11 Atlantis Limited Partnership Method and apparatus for monitoring brain activity
US20110046459A1 (en) * 2009-06-15 2011-02-24 O2 Medtech, Inc. Non-Invasive Patient Monitoring Using Near Infrared Spectrophotometry
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US20110060197A1 (en) * 2009-06-30 2011-03-10 O2 Medtech, Inc. Near infrared spectrophotometry with enhanced signal to noise performance
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8588878B2 (en) 2009-11-12 2013-11-19 Covidien Lp Simultaneous measurement of pulse and regional blood oxygen saturation
US8838226B2 (en) * 2009-12-01 2014-09-16 Neuro Wave Systems Inc Multi-channel brain or cortical activity monitoring and method
US20110190613A1 (en) * 2010-01-11 2011-08-04 O2 Medtech, Inc., Hybrid spectrophotometric monitoring of biological constituents
CA2787471C (en) 2010-02-03 2016-02-02 Nellcor Puritan Bennett Llc Combined physiological sensor systems and methods
US20110237910A1 (en) * 2010-03-23 2011-09-29 Cas Medical Systems, Inc. Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
US9326725B2 (en) 2010-03-30 2016-05-03 Children's National Medical Center Apparatus and method for human algometry
US20130317367A1 (en) * 2010-05-04 2013-11-28 Michael Simms Shuler Method and system for providing versatile nirs sensors
US7884933B1 (en) 2010-05-05 2011-02-08 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
CN103153198B (en) 2010-07-06 2015-11-25 株式会社日立医疗器械 Optical measurement instrument for living body and its biological light measuring method of use
US9763606B2 (en) 2010-08-23 2017-09-19 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Foot pulse oximeter for screening congenital heart disease before newborn discharge
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
JP5710767B2 (en) 2010-09-28 2015-04-30 マシモ コーポレイション Depth of consciousness monitor including oximeter
EP2635185A4 (en) 2010-11-03 2014-12-24 Univ Washington Through Its Ct For Com Ization Determination of tissue oxygenation in vivo
US9049893B2 (en) 2011-02-25 2015-06-09 Covidien Lp Device for securing a medical sensor
US10349844B2 (en) 2012-01-16 2019-07-16 Valencell, Inc. Reduction of physiological metric error due to inertial cadence
WO2013109389A1 (en) 2012-01-16 2013-07-25 Valencell, Inc. Physiological metric estimation rise and fall limiting
US9192330B2 (en) 2012-02-27 2015-11-24 Covidien Lp System and method for storing and providing patient-related data
US9044595B2 (en) * 2012-03-05 2015-06-02 Heidi Araya System and method for reducing lipid content of adipocytes in a body
US9907494B2 (en) 2012-04-18 2018-03-06 Hutchinson Technology Incorporated NIRS device with optical wavelength and path length correction
CN104969035B (en) 2013-01-09 2019-05-10 瓦伦赛尔公司 Step detection method and system based on inertia harmonic wave
US9848808B2 (en) 2013-07-18 2017-12-26 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US20150038810A1 (en) * 2013-08-05 2015-02-05 Richard J. Melker Sensors for photoplethysmography at the ophthalmic artery region
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US9877671B2 (en) * 2013-10-21 2018-01-30 Los Angeles Biomedical Research Institute at Harbor—UCLA Medical Center Apparatus, systems, and methods for detecting congenital heart disease in newborns
US20160296174A1 (en) * 2013-12-05 2016-10-13 Apple Inc. Method of reducing motion artifacts on wearable optical sensor devices
US10213550B2 (en) 2014-01-23 2019-02-26 Covidien Lp Systems and methods for monitoring clinical procedures using regional blood oxygen saturation
US9867561B2 (en) 2014-01-27 2018-01-16 Covidien Lp Systems and methods for determining whether regional oximetry sensors are properly positioned
US9861317B2 (en) 2014-02-20 2018-01-09 Covidien Lp Methods and systems for determining regional blood oxygen saturation
US9788794B2 (en) 2014-02-28 2017-10-17 Valencell, Inc. Method and apparatus for generating assessments using physical activity and biometric parameters
USD763938S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array
USD763939S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array liner with optical sensor array pad
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US10328202B2 (en) 2015-02-04 2019-06-25 Covidien Lp Methods and systems for determining fluid administration
US10317200B1 (en) 2015-09-30 2019-06-11 Apple Inc. Multi-mode sensor for surface orientation
KR101801473B1 (en) * 2016-06-30 2017-11-27 부산대학교 산학협력단 Apparatus for brain imaging using bundled light elements
AU2018244596B2 (en) * 2017-03-29 2022-03-31 Alio, Inc. Wearable device with multimodal diagnostics
EP3682239B1 (en) 2017-09-13 2023-03-22 Alio, Inc. Systems and methods for detecting a periprosthetic infection
KR20190046368A (en) * 2017-10-26 2019-05-07 와이에이치케이 주식회사 Spectroscopy apparatus
US11864909B2 (en) 2018-07-16 2024-01-09 Bbi Medical Innovations, Llc Perfusion and oxygenation measurement
CN109222994A (en) * 2018-10-12 2019-01-18 深圳迈瑞生物医疗电子股份有限公司 Oxygen saturation monitor display methods and custodial care facility
CN111568440A (en) * 2020-04-03 2020-08-25 中科搏锐(北京)科技有限公司 Wireless wearable detection system and method for brain blood oxygen in multiple brain areas

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570638A (en) 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US4725147A (en) 1984-09-17 1988-02-16 Somanetics Corporation Calibration method and apparatus for optical-response tissue-examination instrument
US4768516A (en) 1983-10-14 1988-09-06 Somanetics Corporation Method and apparatus for in vivo evaluation of tissue composition
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US4910404A (en) 1988-02-17 1990-03-20 Sumitomo Electric Industries, Ltd. CT computed tomograph
US5088493A (en) 1984-08-07 1992-02-18 Sclavo, S.P.A. Multiple wavelength light photometer for non-invasive monitoring
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
WO1992020273A2 (en) 1991-05-16 1992-11-26 Nim Incorporated Measuring metabolic conditions with hemoglobinometers
WO1992021283A1 (en) 1991-06-06 1992-12-10 Somanetics Corporation Optical cerebral oximeter
US5190039A (en) 1989-12-08 1993-03-02 Hitachi, Ltd. Apparatus and method for monitoring body organs
US5217013A (en) * 1983-10-14 1993-06-08 Somanetics Corporation Patient sensor for optical cerebral oximeter and the like
US5465714A (en) 1993-05-20 1995-11-14 Somanetics Corporation Electro-optical sensor for spectrophotometric medical devices
US5477853A (en) 1992-12-01 1995-12-26 Somanetics Corporation Temperature compensation method and apparatus for spectroscopic devices
US5482034A (en) * 1993-05-28 1996-01-09 Somanetics Corporation Method and apparatus for spectrophotometric cerebral oximetry and the like
US5539201A (en) * 1994-03-14 1996-07-23 Pro-Optical Technologies, Inc. Multiple channel driver for fiber optic coupled sensors and switches
US5542421A (en) 1992-07-31 1996-08-06 Frederick Erdman Association Method and apparatus for cardiovascular diagnosis
JPH08322821A (en) 1995-05-31 1996-12-10 Shimadzu Corp Optical measurement instrument for light absorber
US5584296A (en) * 1992-12-01 1996-12-17 Somanetics Corporation Patient sensor for optical cerebral oximeters and the like
WO1997018755A1 (en) 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
US5661302A (en) 1995-08-24 1997-08-26 Johnson & Johnson Medical, Inc. Method of quatitatively determining one or more characteristics of a substance
US5697367A (en) 1994-10-14 1997-12-16 Somanetics Corporation Specially grounded sensor for clinical spectrophotometric procedures
US5779631A (en) * 1988-11-02 1998-07-14 Non-Invasive Technology, Inc. Spectrophotometer for measuring the metabolic condition of a subject
US5787887A (en) 1993-11-24 1998-08-04 Siemens Aktiengesellschaft Apparatus for tissue examination using bidirectional transirradiation with light
US5803909A (en) 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US5853370A (en) 1996-09-13 1998-12-29 Non-Invasive Technology, Inc. Optical system and method for non-invasive imaging of biological tissue
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
EP0942260A1 (en) 1996-11-26 1999-09-15 Omron Corporation Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
US5954053A (en) * 1995-06-06 1999-09-21 Non-Invasive Technology, Inc. Detection of brain hematoma
US5974337A (en) 1995-05-23 1999-10-26 Kaffka; Karoly Method and apparatus for rapid non-invasive determination of blood composition parameters
US5987351A (en) 1995-01-03 1999-11-16 Non-Invasive Technology, Inc. Optical coupler for in vivo examination of biological tissue
US5995858A (en) 1997-11-07 1999-11-30 Datascope Investment Corp. Pulse oximeter
WO1999062399A1 (en) 1998-06-03 1999-12-09 Masimo Corporation Stereo pulse oximeter
US6240309B1 (en) * 1995-10-06 2001-05-29 Hitachi, Ltd. Optical measurement instrument for living body
US6397099B1 (en) * 1992-05-18 2002-05-28 Non-Invasive Technology, Inc. Non-invasive imaging of biological tissue

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281645A (en) * 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
US6549795B1 (en) * 1991-05-16 2003-04-15 Non-Invasive Technology, Inc. Spectrophotometer for tissue examination
US5404222A (en) * 1994-01-14 1995-04-04 Sparta, Inc. Interferametric measuring system with air turbulence compensation
JP3325145B2 (en) * 1995-02-20 2002-09-17 株式会社日立製作所 Biological light measurement device
JP3662376B2 (en) * 1996-05-10 2005-06-22 浜松ホトニクス株式会社 Internal characteristic distribution measuring method and apparatus
JP2002527134A (en) * 1998-10-13 2002-08-27 ソマネティクス コーポレイション Multi-channel non-invasive tissue oximeter

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4768516A (en) 1983-10-14 1988-09-06 Somanetics Corporation Method and apparatus for in vivo evaluation of tissue composition
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US4570638A (en) 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US5217013A (en) * 1983-10-14 1993-06-08 Somanetics Corporation Patient sensor for optical cerebral oximeter and the like
US5088493A (en) 1984-08-07 1992-02-18 Sclavo, S.P.A. Multiple wavelength light photometer for non-invasive monitoring
US4725147A (en) 1984-09-17 1988-02-16 Somanetics Corporation Calibration method and apparatus for optical-response tissue-examination instrument
US4910404A (en) 1988-02-17 1990-03-20 Sumitomo Electric Industries, Ltd. CT computed tomograph
US5779631A (en) * 1988-11-02 1998-07-14 Non-Invasive Technology, Inc. Spectrophotometer for measuring the metabolic condition of a subject
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
US5190039A (en) 1989-12-08 1993-03-02 Hitachi, Ltd. Apparatus and method for monitoring body organs
WO1992020273A2 (en) 1991-05-16 1992-11-26 Nim Incorporated Measuring metabolic conditions with hemoglobinometers
WO1992021283A1 (en) 1991-06-06 1992-12-10 Somanetics Corporation Optical cerebral oximeter
US5873821A (en) * 1992-05-18 1999-02-23 Non-Invasive Technology, Inc. Lateralization spectrophotometer
US6397099B1 (en) * 1992-05-18 2002-05-28 Non-Invasive Technology, Inc. Non-invasive imaging of biological tissue
US5542421A (en) 1992-07-31 1996-08-06 Frederick Erdman Association Method and apparatus for cardiovascular diagnosis
US5584296A (en) * 1992-12-01 1996-12-17 Somanetics Corporation Patient sensor for optical cerebral oximeters and the like
US5477853A (en) 1992-12-01 1995-12-26 Somanetics Corporation Temperature compensation method and apparatus for spectroscopic devices
US5465714A (en) 1993-05-20 1995-11-14 Somanetics Corporation Electro-optical sensor for spectrophotometric medical devices
US5482034A (en) * 1993-05-28 1996-01-09 Somanetics Corporation Method and apparatus for spectrophotometric cerebral oximetry and the like
US5787887A (en) 1993-11-24 1998-08-04 Siemens Aktiengesellschaft Apparatus for tissue examination using bidirectional transirradiation with light
US5539201A (en) * 1994-03-14 1996-07-23 Pro-Optical Technologies, Inc. Multiple channel driver for fiber optic coupled sensors and switches
US5803909A (en) 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US5697367A (en) 1994-10-14 1997-12-16 Somanetics Corporation Specially grounded sensor for clinical spectrophotometric procedures
US5987351A (en) 1995-01-03 1999-11-16 Non-Invasive Technology, Inc. Optical coupler for in vivo examination of biological tissue
US5974337A (en) 1995-05-23 1999-10-26 Kaffka; Karoly Method and apparatus for rapid non-invasive determination of blood composition parameters
JPH08322821A (en) 1995-05-31 1996-12-10 Shimadzu Corp Optical measurement instrument for light absorber
US5954053A (en) * 1995-06-06 1999-09-21 Non-Invasive Technology, Inc. Detection of brain hematoma
US5661302A (en) 1995-08-24 1997-08-26 Johnson & Johnson Medical, Inc. Method of quatitatively determining one or more characteristics of a substance
US6240309B1 (en) * 1995-10-06 2001-05-29 Hitachi, Ltd. Optical measurement instrument for living body
WO1997018755A1 (en) 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
US5853370A (en) 1996-09-13 1998-12-29 Non-Invasive Technology, Inc. Optical system and method for non-invasive imaging of biological tissue
EP0942260A1 (en) 1996-11-26 1999-09-15 Omron Corporation Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
US5995858A (en) 1997-11-07 1999-11-30 Datascope Investment Corp. Pulse oximeter
WO1999062399A1 (en) 1998-06-03 1999-12-09 Masimo Corporation Stereo pulse oximeter
US6334065B1 (en) * 1998-06-03 2001-12-25 Masimo Corporation Stereo pulse oximeter

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
"NIRO 300-Near Infrared Oxygenation Monitor-Niro Monitor" Product Brochure, published by Hamamatsu Photonics K.K., Hamamatsu City, Japan, Jan. 1998. *
"NIRO 300—Near Infrared Oxygenation Monitor—Niro Monitor" Product Brochure, published by Hamamatsu Photonics K.K., Hamamatsu City, Japan, Jan. 1998. *
"Transcranial Optical Spectroscopy-A comparison of the TOS 96 and INVOS 3100 cerebral oximeters"Biomedizinische Technik May 1998, Transcranial optical spectroscopy, pp. 133-136.
"Transcranial Optical Spectroscopy—A comparison of the TOS 96 and INVOS 3100 cerebral oximeters"Biomedizinische Technik May 1998, Transcranial optical spectroscopy, pp. 133-136.
19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago IL. USA Oct. 30 to Nov. 2, 1997, "Magnificent Milestones and Emerging Opportunities in Medical Engineering." CAS-00003251-00003253.
David J. Weaver, "Report on the Filing or Determination of an Action regarding a Patent or Trademark," Aug. 7, 2009, Case 2:09-cv-13110-SFC-VMM; Filed Aug. 7, 2009, pp. 1-2.
Deeb, G Michael et al.' "Retrograde Cerebral Perfusion During Hypothermic Circulatory Arrest Reduces Neurological Morbidity", The Journal of Thoracic and Cardiovascular Surgery, Feb. 1995. *
Emiko Nakagawa et al., "Noninvasive Measurement of Oxygen Saturation and Hemoglobin Index by Reflectance Near-infrared Oximeter;" Faculty of Science and Technology, Keio University, CAS-00003235, Date: 1996.
Emiko Nakagawa, et al., "A New System for Noninvasive Measurement of Cerebral Regional Oxygen Supply", 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996 1.4.1: Lasers and Optics I, pp. 194-195.
Group One, Ltd. v. Hallmark Cards, Inc., 254 F.3d 1041, 1048 (Fed. Cir. 2001).
Hye-won Lee, M.D. et al., "The Carbon Dioxide Responsiveness of Cerebral Oxygen Saturation: Comparison with its Responsiveness of Jugular Venous Saturation and the Middle Cerebral Blood Flow Velocity." Department of Anesthesia, Department of Neurosurgery, College of Medicine, Korea University. CAS-0003220-CAS 0003234, Publication Date: Dec. 31, 2000.
In Ihe United States District Court for the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. "Complaint"; Case:2:09-cv-13110, Filed Aug. 7, 2009, pp. 1-12, Exhibits A-C.
In The United States District Court For The Eastern District Of Michigan Southern Division, Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. Case No. 09-cv-13110, "CAS Medical System, Inc.'s Invalidity Contentions", pp. 1-166.
In The United States District Court for the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff v. CAS Medical Systems, Inc., Defendant. "Reply in Support of Plaintiff's Motion to Strike and to Dismiss". Case 2:09-cv-13110-SFC-VMM; Filed Jan. 14, 2010, pp. 1-6.
In The United States District Court for the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. "CAS Medical Systems, Inc.'s ("CAS") Brief in Opposition to Plaintiff's Motion to Strike and Motion to Dismiss"; Case 2:09-cv-13110-SFC-VMM, Filed Dec. 31, 2009, pp. 1-26.
In The United States District Court for the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. "Plaintiff's Answer and Affirmative Defenses to Defendant's Declaratory Judgment Counterclaims", Case 2:09-cv-13110-SFC-VMM; Filed Nov. 19, 2009, pp. 1-5.
In The United States District Court for the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. "Plaintiff's Motion to Strike Defendant's Affirmative Defenses of Unenforceability, Patent Misuse and Unclean Hands, and to Dismiss Defendant's Antitrust Counterclaims"; Case 2:09-cv-13110-SFC-VMM, Filed Date: Nov. 19, 2009.
In United States District Court Eastern District of Michigan Southern Division; Somanetics Corps., Plaintiff, v. CAS Medical Systems, Inc., Defendant. "Opinion & Order Denying Defendant's Motion to Strike or Dismiss [Doc. No. 22]"; Case 2:09-cv-13110-SFC-VMM, Filed Feb. 25, 2010, pp. 1-17.
Journal of Japanese Congress of Neurological Emergencies, vol. 12. CAS-00003258-CAS-00003262, Date: 1999.
Medanco Master-File TOS-96, Transcranial Optical Spectroscopy TOS-96 User's Manual, Ausdruck vom: Sep. 24, 2009, CAS-00001137-00001227.
Reexamination Request for U.S. Patent No. 6,615,065, dated on Mar. 25, 2008, including Request for Ex Parte Reexamination Transmittal Form, Submission of Prior Art and Request for Reexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.501 and 1.510, Patents and Non-Patent References Relied Upon, Exhibits, Entire patent for which reexamination is requested, and Certificate of Service.
S. Samra et al., "Cerebral Oximetry in Patients Undergoing Carotid Endarterectomy Under Regional Anesthesia," Stroke, 1996; 27:49-55.
Somanetics Press Release, "Somanetics Announces Distribution Agreement with China Equities Ltd. and Order for 50 Cerebral Oximeters" (Oct. 9, 1997).
Somanetics Press Release, "Somanetics Announces International Introduction of the Next Generation Cerebral Oximeter Patient Monitoring System" (Oct. 7, 1997).
Somenetics Corporation v. CAS Medical Systems, Inc., Videotaped Deposition of Haruo Yamamura transcript, pp. 1-198 (Redacted), Exhibits 1-19 (Redacted).
Standard International Distribution Agreement No. 97002 between Somanetics Corporation and China Equities, Ltd. with Addendum dated Sep. 22, 1997.
United States District Court in the Eastern District of Michigan Southern Division; Somanetics Corporation, Plaintiff, v. CAS Medical Systems, Inc., Defendant. "Answer, Affirmative Defenses, and Counterclaims"; Case No. 2:09-cv-13110-SFC-VMM, Filed Oct. 19, 2009, pp. 1-25.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45608E1 (en) * 1998-10-13 2015-07-14 Covidien Lp Multi-channel non-invasive tissue oximeter
USRE45607E1 (en) * 1998-10-13 2015-07-14 Covidien Lp Multi-channel non-invasive tissue oximeter
USRE45609E1 (en) * 1998-10-13 2015-07-14 Covidien Lp Multi-channel non-invasive tissue oximeter
USRE45616E1 (en) * 1998-10-13 2015-07-21 Covidien Lp Multi-channel non-invasive tissue oximeter
US20090259117A1 (en) * 2008-04-11 2009-10-15 Wider Michael D System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
US8781546B2 (en) * 2008-04-11 2014-07-15 Covidien Lp System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
US20140323833A1 (en) * 2008-04-11 2014-10-30 Covidien Lp System and Method for Differentiating Between Tissue-Specific and Systemic Causes of Changes in Oxygen Saturation in Tissue and Organs
US20170023468A1 (en) * 2015-07-23 2017-01-26 Advantest Corporation Infrared optical biosensing apparatus and probe thereof

Also Published As

Publication number Publication date
USRE45616E1 (en) 2015-07-21
USRE45608E1 (en) 2015-07-14
WO2000021435A1 (en) 2000-04-20
USRE45607E1 (en) 2015-07-14
EP1121048A4 (en) 2003-06-25
ES2402233T3 (en) 2013-04-30
CA2346971A1 (en) 2000-04-20
CA2346971C (en) 2011-02-08
JP4542121B2 (en) 2010-09-08
EP1121048A1 (en) 2001-08-08
US6615065B1 (en) 2003-09-02
ES2402233T7 (en) 2015-04-23
AU760195B2 (en) 2003-05-08
JP2002527134A (en) 2002-08-27
EP2044885B3 (en) 2014-11-19
JP2007313343A (en) 2007-12-06
AU6411399A (en) 2000-05-01
USRE45609E1 (en) 2015-07-14
HK1130651A1 (en) 2010-01-08
EP2044885B1 (en) 2013-01-30
EP2044885A1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
USRE44735E1 (en) Multi-channel non-invasive tissue oximeter
US6805673B2 (en) Monitoring mayer wave effects based on a photoplethysmographic signal
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
US5685313A (en) Tissue monitor
US5995857A (en) Biofeedback of human central nervous system activity using radiation detection
EP1818016B1 (en) Biofunction diagnosis device, biofunction diagnosis method, bioprobe, bioprobe wearing tool, bioprobe support tool, and bioprobe wearing assisting tool
US5954053A (en) Detection of brain hematoma
Schmitt et al. Optical determination of dental pulp vitality
JP5433772B2 (en) Biological light measurement device
JP3797454B2 (en) Brain oxygen saturation measuring device
JPH06510920A (en) Instruments such as hemoglobin meters for measuring the metabolic status of subjects
FR2482443A1 (en) DEVICE FOR CONTROLLING METABOLISM IN BODY ORGANS
Dunaev et al. Laser reflectance oximetry and Doppler flowmetry in assessment of complex physiological parameters of cutaneous blood microcirculation
CN109924987A (en) Scaling method, system and the readable storage medium storing program for executing of reflectance oximetry
JPH07500259A (en) Optical cerebral oximeter
Kyriacou Introduction to photoplethysmography
JP2002228579A (en) Hemoglobin concentration measurement system
US20210386308A1 (en) Sensor device to mitigate the effects of unwanted signals made in optical measurements of biological properties
El-Khoury et al. Portable spo2 monitor: A fast response approach
Mazing et al. Development of a Hardware and Software Complex for Functional Diagnostics of the Microvasculature
WO2022113084A1 (en) Oxymetry device and method for measuring fetus oxygen levels during labor
Zaman Optical sensors for the in vivo assessment of flap perfusion in plastic surgery
Zabolotskikh et al. Portable photoplethysmography system for biomedical research
Cohen Ph D et al. Paper Session III-B-Measurements of Oxygen in Biological & Medical Experiments
Abdollahi et al. Permanent City Research Online URL: http://openaccess. city. ac. uk/11710

Legal Events

Date Code Title Description
AS Assignment

Owner name: NELLCOR PURITAN BENNETT LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOMANETICS LLC;REEL/FRAME:025597/0088

Effective date: 20100927

Owner name: SOMANETICS LLC, MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:SOMANETICS CORPORATION;REEL/FRAME:025597/0018

Effective date: 20100923

FPAY Fee payment

Year of fee payment: 12