USRE45463E1 - Stacked microelectronic assemblies with central contacts - Google Patents

Stacked microelectronic assemblies with central contacts Download PDF

Info

Publication number
USRE45463E1
USRE45463E1 US13/847,269 US201313847269A USRE45463E US RE45463 E1 USRE45463 E1 US RE45463E1 US 201313847269 A US201313847269 A US 201313847269A US RE45463 E USRE45463 E US RE45463E
Authority
US
United States
Prior art keywords
microelectronic
microelectronic element
assembly
contacts
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/847,269
Inventor
Belgacem Haba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeia Semiconductor Solutions LLC
Original Assignee
Tessera LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tessera LLC filed Critical Tessera LLC
Priority to US13/847,269 priority Critical patent/USRE45463E1/en
Application granted granted Critical
Publication of USRE45463E1 publication Critical patent/USRE45463E1/en
Assigned to ROYAL BANK OF CANADA, AS COLLATERAL AGENT reassignment ROYAL BANK OF CANADA, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIGITALOPTICS CORPORATION, DigitalOptics Corporation MEMS, DTS, INC., DTS, LLC, IBIQUITY DIGITAL CORPORATION, INVENSAS CORPORATION, PHORUS, INC., TESSERA ADVANCED TECHNOLOGIES, INC., TESSERA, INC., ZIPTRONIX, INC.
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DTS, INC., IBIQUITY DIGITAL CORPORATION, INVENSAS BONDING TECHNOLOGIES, INC., INVENSAS CORPORATION, PHORUS, INC., ROVI GUIDES, INC., ROVI SOLUTIONS CORPORATION, ROVI TECHNOLOGIES CORPORATION, TESSERA ADVANCED TECHNOLOGIES, INC., TESSERA, INC., TIVO SOLUTIONS INC., VEVEO, INC.
Assigned to TESSERA, INC., INVENSAS CORPORATION, FOTONATION CORPORATION (F/K/A DIGITALOPTICS CORPORATION AND F/K/A DIGITALOPTICS CORPORATION MEMS), INVENSAS BONDING TECHNOLOGIES, INC. (F/K/A ZIPTRONIX, INC.), TESSERA ADVANCED TECHNOLOGIES, INC, DTS, INC., DTS LLC, IBIQUITY DIGITAL CORPORATION, PHORUS, INC. reassignment TESSERA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ROYAL BANK OF CANADA
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06136Covering only the central area of the surface to be connected, i.e. central arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to stacked microelectronic assemblies and methods of making such assemblies, to methods of forming such assemblies and to components useful in such assemblies.
  • a standard chip has a flat, rectangular body with a large front face having contacts connected to the internal circuitry of the chip.
  • Each individual chip typically is mounted in a package which, in turn, is mounted on a circuit panel such as a printed circuit board and which connects the contacts of the chip to conductors of the circuit panel.
  • the chip package occupies an area of the circuit panel considerably larger than the area of the chip itself.
  • the “area of the chip” should be understood as referring to the area of the front face.
  • flip chip designs, the front face of the chip confronts the face of the circuit panel and the contacts on the chip are bonded directly to the circuit panel by solder balls or other connecting elements.
  • the “flip chip” design provides a relatively compact arrangement; each chip occupies an area of the circuit panel equal to or slightly larger than the area of the chip's front face.
  • this approach suffers from cost and reliability problems.
  • U.S. Pat. Nos. 5,148,265; 5,148,266; and 5,679,977 the disclosures of which are incorporated herein by reference.
  • Chip-sized packages which can accommodate a single chip in an area of the circuit panel equal to or slightly larger than the area of the chip itself are commonly referred to as “chip-sized packages.”
  • a chip package that presents a low, overall height or dimension perpendicular to the plane of the circuit panel.
  • Such thin microelectronic packages allow for placement of a circuit panel having the packages mounted therein in close proximity to neighboring structures, thus producing the overall size of the product incorporating the circuit panel.
  • Various proposals have been advanced for providing plural chips in a single package or module. In the conventional “multi-chip module”, the chips are mounted side-by-side on a single package substrate, which in turn can be mounted to the circuit panel. This approach offers only limited reduction in the aggregate area of the circuit panel occupied by the chips. The aggregate area is still greater than the total surface area of the individual chips in the module.
  • microelectronic assemblies including at least two microelectronic element elements having central contacts.
  • a first microelectronic element faces downward and underlies a portion of the second microelectronic element.
  • the first and second microelectronic elements are provided with contacts located on front surfaces on the microelectronic elements.
  • the contacts are disposed on a central region of the microelectronic elements.
  • One or both of the microelectronic elements are electrically connected to terminals on the dielectric elements. Apertures may be included with the dielectric elements wherein the apertures underlie central regions of the microelectronic elements so that the dielectric element does not obstruct the contacts on the microelectronic elements.
  • terminals on the dielectric element are mobile relative to the first and second microelectronic element elements.
  • a spacer may be provided so as to underlie a second portion of the second microelectronic element.
  • the spacer layer is placed on an opposing side of the second microelectronic element as compared to the first microelectronic element with the central region of the second microelectronic element being located between the spacer and the first microelectronic element.
  • An adhesive layer may be used to connect the spacer layer or the first microelectronic element or both to the second microelectronic element.
  • a stacked assembly includes a first microelectronic element, a second microelectronic element and a third microelectronic element.
  • Each microelectronic element has contacts disposed on its front surface about a central region of the element.
  • the second microelectronic element overlies a portion of the first microelectronic element and the third microelectronic element; however, the central region of the second microelectronic element is unencumbered by either of the two.
  • the first microelectronic element and the second microelectronic element may have substantially similar structures.
  • an adhesive layer may be provided so as to connect the first and/or third microelectronic elements to the second microelectronic element.
  • a dielectric element may be provided so as to underlie all of the microelectronic elements; however, apertures in the dielectric element are provided underlying central regions of the microelectronic elements so as to not encumber contacts disposed on these elements.
  • wire leads connect the microelectronic elements to conductive features located on the dielectric element. In either of the embodiments, wire bonds connecting contacts on the microelectronic elements to conductive elements on the dielectric element may also take the form of wire leads, frangible leads, strip-like leads or the like.
  • a stacked assembly may include a first microelectronic element and a second microelectronic element. Both microelectronic elements having contacts disposed along their central regions may be directly connected to a circuit board or other microelectronic element via a mass of conductive material. Examples of this massive conductive material include solder, solder-core ball mass, a spring with solder fill, lands solder or the like. As is consistent with the stacked assemblies of the present invention, the second microelectronic element overlies at least a portion of the first microelectronic element.
  • a spacer layer may be provided so as to underline a portion of the second microelectronic element opposite the first microelectronic element. Furthermore, the spacer layer may take the form of a third microelectronic element also being directly connected to a circuit board or the like.
  • underlying microelectronic elements may include bond ribbons.
  • Bond ribbons may be used for connecting contacts disposed on the front surface of the microelectronic elements to terminals on the front surface of a dielectric element. Bond ribbons may be connected to the contacts of the underlying microelectronic elements and may be deformed to a vertical extensive position by moving the microelectronic elements and the dielectric element away from one another.
  • an encapsulant material may be provided so as to cover and protect components of the microelectronic elements.
  • FIG. 1 is a diagrammatic sectional elevational view of the stacked assembly according to a first embodiment of the present invention
  • FIG. 2 is a bottom view of the stacked assembly according to a first embodiment of the present invention
  • FIG. 3 is a view similar to FIG. 1 but depicting another embodiment of the present invention.
  • FIG. 4 is a side view similar to FIG. 1 but depicting another embodiment of the present invention.
  • FIG. 5 is a block diagram side view depicting a basic design concept of the present invention.
  • FIGS. 6 , 7 , and 8 are similar to FIG. 1 but depicting further embodiments of the present invention.
  • a stacked microelectronic assembly 10 includes a first microelectronic element 12 and a second microelectronic element 14 .
  • Microelectronic element 12 has a front surface 16 and a back surface 18 opposite the front surface 16 .
  • Microelectronic element 12 further includes central region 13 and first and second end regions 15 and 17 , adjacent to central region 13 .
  • Electrical contacts 20 are exposed on front surface 16 .
  • a statement that a conductive feature such as a terminal, contact, bonding pad or the like is “exposed on” a surface or structure means that it is accessible to be electrically connected with another conductive element which approaches the surface.
  • the conductive feature may be flush with the specified surface, may project outwardly from such surface, or may be recessed relative to such surface.
  • each microelectronic element 12 and 14 is a conventional semiconductor chip.
  • contacts 26 of second microelectronic element 14 are disposed within central region 19 of front surface 22 and may also be formed as one or two parallel rows adjacent the center of front surface 22 .
  • the front surface 16 of the first microelectronic element faces downwardly.
  • Second microelectronic element 14 overlies first microelectronic element 12 with the front surface 22 of the second microelectronic element also facing downwardly.
  • Front surface 22 of second microelectronic element 14 and back surface 18 of first microelectronic element 12 confront each other in a “front-to-back” configuration.
  • terms such as “downwardly” or “upwardly” are used to describe directions that are opposed to each other without regard to any gravitational frame of reference.
  • terms such as “over” and “under”, or “above” and “below” are used to describe the relative position to elements or assembly within the frame of reference of the assembly itself.
  • Second end region 23 of microelectronic element 14 overlies first end region 15 of microelectronic element 12 .
  • the actual percentage of microelectronic element 14 which overlies microelectronic element 12 is not important but what is important is that the portion of front surface 22 of microelectronic element 14 which has disposed within in it contacts 26 , i.e. central region 19 , does not overlie microelectronic element 12 .
  • specific dimensions of central region 19 and first and second end regions 21 and 23 may fluctuate depending on where and how many contacts 26 are disposed on front surface 22 .
  • a sufficient area of front surface 22 should overlie microelectronic element 12 so as to support microelectronic element 14 .
  • the assembly also includes a dielectric element 30 having a first surface 32 and a second surface 34 with electrically conductive terminals 36 exposed on second surface 34 .
  • Dielectric element 30 includes aperture 33 located substantially under central region 13 of microelectronic element 12 so as not to obstruct contacts 20 .
  • Microelectronic element 12 is disposed over first surface 32 of dielectric element 30 in a downwardly-facing orientation with front surface 16 confronting upwardly-facing first surface 32 .
  • dielectric element 30 comprises a layer of flexible material, such as a layer of polyimide, BT resin or other dielectric material of the type commonly utilized for making tape automated bonding (“TAB”) tapes, or a relatively rigid, board-like material such as a thick layer of fiber-reinforced epoxy as, for example, an Fr-4 or Fr-5 board and a layer of a die attach adhesive 31 defining the first surface 32 .
  • Dielectric element 30 also includes additional conductive features including bond pads 40 exposed on second surface 34 and conductive traces 42 connecting bond pads 40 to terminals 36 .
  • leads 50 are in the form of wire bonds, and are used to connect contacts 20 of first microelectronic element 12 to some of the bond pads 40 .
  • Other leads in the form of wire bonds 70 are used to connect contacts 26 of second microelectronic element 14 to other bond pads 40 .
  • the dielectric element may further include a solder-mask layer 52 defining the second surface 34 , with apertures or holes at bond pads 40 .
  • at least some of the wire bonds 50 , 70 are connected through bond pads 40 and traces 42 to at least some of the terminals 36 .
  • all of the conductive features on the dielectric element are formed from a single layer of metal. This avoids the need for precise registration between multiple layers of metallic features and formation of interconnections between such layers during manufacture of the dielectric element. Additional metallic features (not shown) such as conductive planes for use as ground planes or power distribution planes may be provided.
  • Adhesive layer 60 may connect microelectronic elements 12 and 14 .
  • Adhesive layer 60 may be a die-attach adhesive, and may be comprised of low elastic modulus material such as a silicone elastomer.
  • low elastic modulus material such as a silicone elastomer.
  • the two microelectronic elements are conventional semiconductor chips formed from the same material, they will tend to expand and contract in unison in response to temperature changes and, accordingly, a relatively rigid attachment as, for example, a thin layer of a high elastic modulus adhesive or solder can be employed.
  • At least some of the terminals 36 are disposed beneath front surface 16 of microelectronic element 12 . At least some of the terminals 36 are movable with respect to the first electronic element 12 and hence with respect to at least some of contacts 20 .
  • Assembly 10 may further include an encapsulant 80 that covers leads 50 , 70 and protects the microelectronic elements 12 , 14 .
  • the encapsulant may also be provided between the front surfaces 16 , 22 and the first surface 32 , thoroughly surrounding leads 50 , 70 , and may fill open spaces between microelectronic elements 12 and 14 .
  • Preferred encapsulants comprise flexibilized epoxies or silicone elastomers.
  • Assembly 10 may further include a plurality of joining units, such as eutectic solder balls 81 , as shown in FIG. 1 .
  • Solder balls 81 are attached to terminals 36 and hence are electrically interconnected to at least some of the bond pads 40 , leads 50 and 70 and contacts 20 and 26 .
  • Other types of joining units such as solid-core solid balls or masses or balls of a diffusion-bonding or eutectic bonding alloy, masses of conductive polymer composition, or the like may be employed.
  • the assembly is mounted on a circuit panel such as circuit board 95 having contact pads 94 .
  • the second surface 34 of the dielectric element 30 faces downwardly towards the circuit board, and solder balls 81 are bonded to the contact pads of the circuit board, thus connecting the contact pads to the microelectronic elements.
  • the contact pads on the circuit board are connected by traces on or in the circuit board to the other elements of an electrical circuit which must co-act with microelectronic elements 12 and 14 .
  • differential thermal expansion and contraction of the circuit board and chips may occur. This may be caused by the difference between the coefficient of expansion of the microelectronic elements and circuit board; by difference in temperature between the microelectronic elements and the circuit board; or by combinations of these factors.
  • dielectric element 30 may include a compliant layer.
  • die attach adhesive 31 may be a compliant die attach adhesive.
  • movement of terminals allows for easier testability. This is due to the fact that if either terminals 36 or contact pads located on a tester are not in exact planer alignment, terminals 36 are sufficiently flexible so as to be able to align most terminals with a corresponding contact pad. In other words, movement of terminals 36 enhance the engageability of a test fixture to the microelectronic assembly.
  • Preferred combinations of the features described above allow the manufacture of a two-chip center stack assembly having a thickness of less than 1.2 mm above the terminals 36 . More preferably, such a thickness will be 0.7 mm (700 microns) or less.
  • joining units or solder balls 81 have a height of about 300 microns or less; more preferably, about 200 microns or less, and most preferably about 100 microns or less.
  • the overall height of the assembly above the circuit panel after assembly, including the height of the joining units most preferably is about 1.5 mm or less, and most preferably about 1.3 mm or less.
  • Joining units having such low heights also know as “fine pitch” joining units, may be used to beneficially affect the assemblies wherein the terminals are moveable with respect to the microelectronic elements and relative to the contacts on the microelectronic elements. As discussed above, this moveability relieves the mechanical strain or deformation generated by differential thermal expansion of the microelectronic elements.
  • Some of the deformation may also be relieved by flexure of the joining units connecting the assembly to a circuit panel, such as a printed circuit board. Larger joining units can flex to a greater extent than smaller ones and, therefore, relieve a greater amount of deformation without failure due to fatigue of the joining units.
  • the movement of the terminals relative to microelectronic elements relieves a significant portion of such deformation, allowing the use of relatively small joining units while still maintaining acceptable levels of reliability.
  • moveability is not essential in all embodiments.
  • Microelectronic assembly 100 is similar to microelectronic element assembly 10 but also includes a spacer layer 164 disposed beneath first end region 121 of second microelectronic element 114 and may overlay a portion of dielectric element 130 . Also, dielectric element 130 includes a second aperture aligned with the central region of the second microelectronic element. Spacer layer 164 is designed to balance and support microelectronic element 114 in conjunction with microelectronic element 112 . Desirably, spacer layer 164 is made of a compliant material that allows movement of dielectric element 130 , and hence movement of terminals 136 , relative to contacts 120 and 126 . Preferred materials for such compliant layers include epoxies and silicones, with flexibilized epoxies and silicone elastomers being particularly preferred.
  • the leads 150 , 170 are flexible to permit such movement.
  • Encapsulant 180 may be provided so as to protect and seal assembly 100 , similar to assembly 10 .
  • the encapsulant may also be provided between the front surfaces 116 , 122 and the first surface 132 , thoroughly surrounding leads 150 , 170 , and may fill open spaces between microelectronic elements 112 and 114 .
  • microelectronic elements 112 and 114 are attached to each other by means such as adhesive layer 160 . It is also preferred that microelectronic element 114 and spacer layer 164 are attached to each other by adhesive layer 160 .
  • assembly 200 includes a third microelectronic element 202 , along with first and second microelectronic elements 212 , 214 .
  • Third microelectronic element 202 includes front surface 203 , rear surface 204 , central region 205 and first and second end regions 206 and 207 .
  • Electrical contacts 208 are disposed on front surface 203 .
  • Assembly 200 may be substantially similar to assembly 100 discussed above with reference to FIG. 3 . The one significant difference is that microelectronic element 202 replaces spacer layer 164 underlying microelectronic element 214 .
  • second end region 207 of microelectronic element 202 underlies first end region 221 of microelectronic element 214 .
  • the percentage of front surface 222 overlying microelectronic element 202 may fluctuate depending on the number of contacts 226 located on front surface 222 of microelectronic element 214 .
  • central region 219 of microelectronic element 214 must not overlie second end region 207 of microelectronic element 202 .
  • the amount of front surface 222 of microelectronic element 214 overlying second end region 207 of microelectronic element 202 should be sufficient to support microelectronic element 214 in conjunction with microelectronic element 212 .
  • contacts 208 disposed on front surface 203 of microelectronic element 202 have wire bonds 250 in the form of leads for connecting contacts 208 to bond pads 240 of dielectric element 230 .
  • Dielectric element 230 may include solder mass layer 252 defining second surface 234 of dielectric element 230 with apertures or holes at bond pads 240 .
  • Dielectric element 230 can be seen as just a larger version of dielectric element 30 of assembly 10 .
  • Apertures 233 are provided in dielectric element 230 so that dielectric element 230 does not obstruct leads 250 or 270 . The apertures are aligned with the central regions of each microelectronic element.
  • Traces 242 connect the various conductive features to each other, as discussed in conjunction with the first embodiment of the present invention.
  • the leads 250 and 270 associated with microelectronic elements 202 , 212 and 214 are connected to at least some of the terminals 236
  • at least some bond pads 240 are also connected to at least some of the terminals 236 .
  • Some or all of the bonds pads 240 may be connected with some or all of the leads 250 and 270 .
  • Assembly 200 may further include an encapsulant 280 that covers the leads 250 , and 270 and protects the microelectronic element 212 , 214 and 202 .
  • Encapsulant 280 is similar to encapsulant 80 and can be employed for similar purposes.
  • the assembly 200 can be thought of as a brick wall having an A-B-A configuration wherein A designates a lower tier element such as first microelectronic element 212 or third microelectronic element 202 , and B designates an upper tier microelectronic element such as second microelectronic element 214 , and with the contact-bearing central regions arranged in the order indicated. Each upper tier element B overlies a portion of at least one lower tier element A and A′ so as to form the structure shown in FIG. 4 .
  • FIG. 5 is a skeletal depiction of a B-A-B-A-B configuration.
  • the structure may have a configuration of A-B-A-B-A or A-B-A-B or B-A-B-A-B, or any other combination of the two where a structure A and a structure B are adjacent to one another.
  • These structures could be extended out indefinitely until a required amount of microelectronics elements are met.
  • structures that follow varying designs such as having a plurality of A structures adjacent to one another without an overlying B structure may be employed.
  • assembly 300 includes microelectronic elements denoted by the structure A altered so as to include a substantially continuous dielectric element 330 underlying at least one microelectronic element denoted A.
  • microelectronic element 312 will represent microelectronic elements having a structure equal to A.
  • Contacts 320 are electrically connected to bond ribbons leads 390 .
  • the bond ribbons may be of the type described in U.S. Pat. No. 5,518,964, the disclosure of which is incorporated by reference herein. As disclosed in certain embodiments of the '964 patent, the bond ribbons may be initially formed in place on the first surface of the dielectric element, and may initially extend in the plane of such surface.
  • the bond ribbons may be connected to the contacts 320 of the first microelectronic element 312 and may be deformed to the vertical-extensive position depicted in FIG. 6 by moving the first microelectronic element 312 and the dielectric element 330 away from one another after bonding the ribbons to the contacts of the first microelectronic element.
  • Related bond ribbon configurations and methods of forming bond ribbons embodiments are discussed in U.S. Pat. Nos. 6,329,607; 6,228,686; 6,191,368; 5,976,913; and 5,859,472, the disclosures of which are also incorporated by reference herein.
  • assembly 400 includes first microelectronic element 412 and second microelectronic element 414 .
  • the microelectronic elements in assembly 400 may be substantially similar to the first and second microelectronic elements employed with assembly 10 of FIG. 1 .
  • assembly 400 differs from the previous assemblies in that the dielectric layer has not been included in the assembly.
  • masses of conductive material preferably solder balls 481 , are employed for conductively connecting contacts 420 of first microelectronic element 412 to the circuit board. Similar masses 483 connect contacts 426 of second microelectronic element 414 directly to contacts 494 of circuit board 495 .
  • the masses 481 associated with the contacts 420 of the first microelectronic element have a lesser height than masses 483 associated with the second microelectronic element.
  • the conductive material may be comprised of other material as, for example, polymeric conductive materials, solid core solder balls, solder filled springs, solder land or the like. A combination of options may also be employed.
  • an adhesive layer (not shown) may connect microelectronic elements 412 and 414 .
  • an encapsulant also not shown as with all embodiments of the present invention may be included with assembly 400 .
  • the dielectric layer may be also eliminated from other embodiments described herein.
  • conductively connecting contacts on microelectronic elements directly to contacts on a circuit board, as shown in FIG. 7 may be incorporated with other embodiments described within the present application.
  • microelectronic element 412 may be preassembled to microelectronic element 414 .
  • the entire assembly may then be surface mounted to circuit board 495 using solder balls 481 with standard surface mount techniques known in the art.
  • microelectronic element 412 may be surface mounted to circuit board 495 first and in a next step, microelectronic element 414 is surface mounted to the circuit board.
  • FIG. 8 shows assembly 500 employing alternate conducting leads connecting contacts 520 and 526 to other conductive features of the assembly.
  • Assembly 500 may include any or all of the features previously described in this reference herein in conjunction with other embodiments of the present invention.
  • the one significant modification to assembly 500 is that strip-like leads 550 formed integrally with traces 542 are used to connect contacts 520 and 526 to conductive features of the microelectronic elements.
  • strip-like leads 550 formed integrally with traces 542 are used to connect contacts 520 and 526 to conductive features of the microelectronic elements.
  • the construction of such strip-like leads is described, for example, in commonly assigned U.S. Pat. No. 5,915,752, which is hereby incorporated by reference herein.
  • assembly 500 may include a spacer layer 564 underlying second microelectronic element 514 .
  • spacer layer 564 may be made of a compliant material or additionally, spacer layer 564 may be comprised of a small microelectronic element. In the case where spacer layer 564 is a small microelectronic element, the small microelectronic element may either not extend horizontally past second microelectronic element 514 or only extend slightly past the edge of microelectronic element 514 .
  • Various adhesive layers and encapsulants may be included with assembly 500 , as described throughout this disclosure.

Abstract

A stacked microelectronic assembly includes a dielectric element and a first and second microelectronic element stacked one on top of the other with the first microelectronic element underlying at least a portion of the second microelectronic element. The first microelectronic element and the second microelectronic element have front surfaces on which exposed on a central region of the front surface are contacts. A spacer layer may be provided under a portion of the second microelectronic element opposite a portion of the second microelectronic element overlying the first microelectronic element. Additionally, a third microelectronic element may be substituted in for the spacer layer so that the first microelectronic element and the third microelectronic element are underlying opposing sides of the second microelectronic element.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/519,130 filed Nov. 12, 2003, the disclosure of which is hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to stacked microelectronic assemblies and methods of making such assemblies, to methods of forming such assemblies and to components useful in such assemblies.
Semiconductor chips are commonly provided as individual, prepackaged units. A standard chip has a flat, rectangular body with a large front face having contacts connected to the internal circuitry of the chip. Each individual chip typically is mounted in a package which, in turn, is mounted on a circuit panel such as a printed circuit board and which connects the contacts of the chip to conductors of the circuit panel. In many conventional designs, the chip package occupies an area of the circuit panel considerably larger than the area of the chip itself. As used in this disclosure with reference to a flat chip having a front face, the “area of the chip” should be understood as referring to the area of the front face. In “flip chip” designs, the front face of the chip confronts the face of the circuit panel and the contacts on the chip are bonded directly to the circuit panel by solder balls or other connecting elements. The “flip chip” design provides a relatively compact arrangement; each chip occupies an area of the circuit panel equal to or slightly larger than the area of the chip's front face. However, this approach suffers from cost and reliability problems. As disclosed, for example, in certain embodiments of commonly-assigned U.S. Pat. Nos. 5,148,265; 5,148,266; and 5,679,977 the disclosures of which are incorporated herein by reference.
Certain innovative mounting techniques offer compactness approaching or equal to that of conventional flip-chip bonding without the reliability and testing problems commonly encountered in that approach. Packages which can accommodate a single chip in an area of the circuit panel equal to or slightly larger than the area of the chip itself are commonly referred to as “chip-sized packages.”
Besides minimizing the planar area of the circuit panel occupied by microelectronic assembly, it is also desirable to produce a chip package that presents a low, overall height or dimension perpendicular to the plane of the circuit panel. Such thin microelectronic packages allow for placement of a circuit panel having the packages mounted therein in close proximity to neighboring structures, thus producing the overall size of the product incorporating the circuit panel. Various proposals have been advanced for providing plural chips in a single package or module. In the conventional “multi-chip module”, the chips are mounted side-by-side on a single package substrate, which in turn can be mounted to the circuit panel. This approach offers only limited reduction in the aggregate area of the circuit panel occupied by the chips. The aggregate area is still greater than the total surface area of the individual chips in the module.
It has also been proposed to package plural chips in a “stack” arrangement i.e., an arrangement where plural chips are placed one on top of another. In a stacked arrangement, several chips can be mounted in an area of the circuit panel that is less than the total area of the chips. Certain stacked chip arrangements are disclosed, for example, in certain embodiments of the aforementioned U.S. Pat. Nos. 5,679,977 and 5,148,265 patents, and U.S. Pat. No. 5,347,159, the disclosure of which is incorporated herein by reference. U.S. Pat. No. 4,941,033, also incorporated herein by reference, discloses an arrangement in which chips are stacked on top of another and interconnected with one another by conductors on so-called “wiring films” associated with the chips.
Despite these efforts in the art, further improvements would be desirable in the case of multi-chip packages for chips having contacts located substantially in central regions of the chips. Certain semiconductor chips, such as some memory chips, are commonly made with the contacts in one or two rows located substantially along a central axis of the chip.
SUMMARY OF THE INVENTION
One aspect of the present invention provides microelectronic assemblies including at least two microelectronic element elements having central contacts. A first microelectronic element faces downward and underlies a portion of the second microelectronic element. In the preferred embodiments, according to this aspect of the invention, the first and second microelectronic elements are provided with contacts located on front surfaces on the microelectronic elements. The contacts are disposed on a central region of the microelectronic elements. One or both of the microelectronic elements are electrically connected to terminals on the dielectric elements. Apertures may be included with the dielectric elements wherein the apertures underlie central regions of the microelectronic elements so that the dielectric element does not obstruct the contacts on the microelectronic elements. In certain, more preferred embodiments, terminals on the dielectric element are mobile relative to the first and second microelectronic element elements. In certain, more preferred embodiments, a spacer may be provided so as to underlie a second portion of the second microelectronic element. The spacer layer is placed on an opposing side of the second microelectronic element as compared to the first microelectronic element with the central region of the second microelectronic element being located between the spacer and the first microelectronic element. An adhesive layer may be used to connect the spacer layer or the first microelectronic element or both to the second microelectronic element.
A stacked assembly, according to a further aspect of the present invention, includes a first microelectronic element, a second microelectronic element and a third microelectronic element. Each microelectronic element has contacts disposed on its front surface about a central region of the element. The second microelectronic element overlies a portion of the first microelectronic element and the third microelectronic element; however, the central region of the second microelectronic element is unencumbered by either of the two. The first microelectronic element and the second microelectronic element may have substantially similar structures. As with the previous embodiment of the present invention, an adhesive layer may be provided so as to connect the first and/or third microelectronic elements to the second microelectronic element. A dielectric element may be provided so as to underlie all of the microelectronic elements; however, apertures in the dielectric element are provided underlying central regions of the microelectronic elements so as to not encumber contacts disposed on these elements. As with the first embodiment of the present invention, wire leads connect the microelectronic elements to conductive features located on the dielectric element. In either of the embodiments, wire bonds connecting contacts on the microelectronic elements to conductive elements on the dielectric element may also take the form of wire leads, frangible leads, strip-like leads or the like.
A stacked assembly, according to even still a further aspect of the present invention, may include a first microelectronic element and a second microelectronic element. Both microelectronic elements having contacts disposed along their central regions may be directly connected to a circuit board or other microelectronic element via a mass of conductive material. Examples of this massive conductive material include solder, solder-core ball mass, a spring with solder fill, lands solder or the like. As is consistent with the stacked assemblies of the present invention, the second microelectronic element overlies at least a portion of the first microelectronic element. A spacer layer may be provided so as to underline a portion of the second microelectronic element opposite the first microelectronic element. Furthermore, the spacer layer may take the form of a third microelectronic element also being directly connected to a circuit board or the like.
In yet a still further aspect of the present invention, underlying microelectronic elements, such as the first microelectronic element and the third microelectronic element of any of the four described assemblies, may include bond ribbons. Bond ribbons may be used for connecting contacts disposed on the front surface of the microelectronic elements to terminals on the front surface of a dielectric element. Bond ribbons may be connected to the contacts of the underlying microelectronic elements and may be deformed to a vertical extensive position by moving the microelectronic elements and the dielectric element away from one another.
As with all embodiments of the present invention, an encapsulant material may be provided so as to cover and protect components of the microelectronic elements.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic sectional elevational view of the stacked assembly according to a first embodiment of the present invention;
FIG. 2 is a bottom view of the stacked assembly according to a first embodiment of the present invention;
FIG. 3 is a view similar to FIG. 1 but depicting another embodiment of the present invention;
FIG. 4 is a side view similar to FIG. 1 but depicting another embodiment of the present invention;
FIG. 5 is a block diagram side view depicting a basic design concept of the present invention; and
FIGS. 6, 7, and 8 are similar to FIG. 1 but depicting further embodiments of the present invention.
DETAILED DESCRIPTION
As shown in FIG. 1, a stacked microelectronic assembly 10 according to one embodiment of the present invention includes a first microelectronic element 12 and a second microelectronic element 14. Microelectronic element 12 has a front surface 16 and a back surface 18 opposite the front surface 16. Microelectronic element 12 further includes central region 13 and first and second end regions 15 and 17, adjacent to central region 13. Electrical contacts 20 are exposed on front surface 16. As used in this disclosure, a statement that a conductive feature such as a terminal, contact, bonding pad or the like is “exposed on” a surface or structure means that it is accessible to be electrically connected with another conductive element which approaches the surface. The conductive feature may be flush with the specified surface, may project outwardly from such surface, or may be recessed relative to such surface.
Contacts 20 on the first microelectronic element 12 are exposed within central region 13 of front surface 16. For example, contacts 20 may be formed as one or two parallel rows adjacent to the center of surface 16. Microelectronic element 14 is arranged similarly to microelectronic element 12, in that it has a front surface 22, a back surface 24 opposite the front surface and electrical contacts 26 are exposed on the front surface 22. Microelectronic element 14 also includes a central region 19 and first and second end regions 21 and 23 adjacent to central region 19. In the first embodiment of the invention, as shown in FIG. 1, each microelectronic element 12 and 14 is a conventional semiconductor chip. Similarly, contacts 26 of second microelectronic element 14 are disposed within central region 19 of front surface 22 and may also be formed as one or two parallel rows adjacent the center of front surface 22.
The front surface 16 of the first microelectronic element faces downwardly. Second microelectronic element 14 overlies first microelectronic element 12 with the front surface 22 of the second microelectronic element also facing downwardly. Front surface 22 of second microelectronic element 14 and back surface 18 of first microelectronic element 12 confront each other in a “front-to-back” configuration. With regard to the present disclosure, terms such as “downwardly” or “upwardly” are used to describe directions that are opposed to each other without regard to any gravitational frame of reference. Similarly, terms such as “over” and “under”, or “above” and “below” are used to describe the relative position to elements or assembly within the frame of reference of the assembly itself.
Second end region 23 of microelectronic element 14 overlies first end region 15 of microelectronic element 12. The actual percentage of microelectronic element 14 which overlies microelectronic element 12 is not important but what is important is that the portion of front surface 22 of microelectronic element 14 which has disposed within in it contacts 26, i.e. central region 19, does not overlie microelectronic element 12. Thus specific dimensions of central region 19 and first and second end regions 21 and 23 may fluctuate depending on where and how many contacts 26 are disposed on front surface 22. Furthermore, a sufficient area of front surface 22 should overlie microelectronic element 12 so as to support microelectronic element 14.
The assembly also includes a dielectric element 30 having a first surface 32 and a second surface 34 with electrically conductive terminals 36 exposed on second surface 34. Dielectric element 30 includes aperture 33 located substantially under central region 13 of microelectronic element 12 so as not to obstruct contacts 20. Microelectronic element 12 is disposed over first surface 32 of dielectric element 30 in a downwardly-facing orientation with front surface 16 confronting upwardly-facing first surface 32. Preferably, dielectric element 30 comprises a layer of flexible material, such as a layer of polyimide, BT resin or other dielectric material of the type commonly utilized for making tape automated bonding (“TAB”) tapes, or a relatively rigid, board-like material such as a thick layer of fiber-reinforced epoxy as, for example, an Fr-4 or Fr-5 board and a layer of a die attach adhesive 31 defining the first surface 32. Dielectric element 30 also includes additional conductive features including bond pads 40 exposed on second surface 34 and conductive traces 42 connecting bond pads 40 to terminals 36.
As shown in FIGS. 1 and 2, leads 50 are in the form of wire bonds, and are used to connect contacts 20 of first microelectronic element 12 to some of the bond pads 40. Other leads in the form of wire bonds 70 are used to connect contacts 26 of second microelectronic element 14 to other bond pads 40. The dielectric element may further include a solder-mask layer 52 defining the second surface 34, with apertures or holes at bond pads 40. Preferably, at least some of the wire bonds 50, 70 are connected through bond pads 40 and traces 42 to at least some of the terminals 36.
Most preferably, all of the conductive features on the dielectric element are formed from a single layer of metal. This avoids the need for precise registration between multiple layers of metallic features and formation of interconnections between such layers during manufacture of the dielectric element. Additional metallic features (not shown) such as conductive planes for use as ground planes or power distribution planes may be provided.
An adhesive layer 60 may connect microelectronic elements 12 and 14. Adhesive layer 60 may be a die-attach adhesive, and may be comprised of low elastic modulus material such as a silicone elastomer. However, where the two microelectronic elements are conventional semiconductor chips formed from the same material, they will tend to expand and contract in unison in response to temperature changes and, accordingly, a relatively rigid attachment as, for example, a thin layer of a high elastic modulus adhesive or solder can be employed.
As illustrated in FIG. 1, at least some of the terminals 36 are disposed beneath front surface 16 of microelectronic element 12. At least some of the terminals 36 are movable with respect to the first electronic element 12 and hence with respect to at least some of contacts 20.
Assembly 10 may further include an encapsulant 80 that covers leads 50, 70 and protects the microelectronic elements 12, 14. The encapsulant may also be provided between the front surfaces 16, 22 and the first surface 32, thoroughly surrounding leads 50, 70, and may fill open spaces between microelectronic elements 12 and 14. Preferred encapsulants comprise flexibilized epoxies or silicone elastomers.
Assembly 10 may further include a plurality of joining units, such as eutectic solder balls 81, as shown in FIG. 1. Solder balls 81 are attached to terminals 36 and hence are electrically interconnected to at least some of the bond pads 40, leads 50 and 70 and contacts 20 and 26. Other types of joining units such as solid-core solid balls or masses or balls of a diffusion-bonding or eutectic bonding alloy, masses of conductive polymer composition, or the like may be employed. In use, the assembly is mounted on a circuit panel such as circuit board 95 having contact pads 94. The second surface 34 of the dielectric element 30 faces downwardly towards the circuit board, and solder balls 81 are bonded to the contact pads of the circuit board, thus connecting the contact pads to the microelectronic elements. The contact pads on the circuit board are connected by traces on or in the circuit board to the other elements of an electrical circuit which must co-act with microelectronic elements 12 and 14. During the bonding operation, and during operation of the completed circuit board and circuit, differential thermal expansion and contraction of the circuit board and chips may occur. This may be caused by the difference between the coefficient of expansion of the microelectronic elements and circuit board; by difference in temperature between the microelectronic elements and the circuit board; or by combinations of these factors. Such differential thermal expansion causes some or all of the contact pads 95 to move relative to the microelectronic element and contacts 20 and 26. Desirably, movement of terminals 36 relative to microelectronic elements relieves some or all of the stress which would otherwise be imposed on solder balls 81 by relative movement of the terminals and contact pads. To enhance moveability of terminals 36 relative to the microelectronic elements, dielectric element 30 may include a compliant layer. For example, die attach adhesive 31 may be a compliant die attach adhesive. Additionally, movement of terminals allows for easier testability. This is due to the fact that if either terminals 36 or contact pads located on a tester are not in exact planer alignment, terminals 36 are sufficiently flexible so as to be able to align most terminals with a corresponding contact pad. In other words, movement of terminals 36 enhance the engageability of a test fixture to the microelectronic assembly.
Preferred combinations of the features described above allow the manufacture of a two-chip center stack assembly having a thickness of less than 1.2 mm above the terminals 36. More preferably, such a thickness will be 0.7 mm (700 microns) or less.
In preferred embodiments of the present invention, joining units or solder balls 81 have a height of about 300 microns or less; more preferably, about 200 microns or less, and most preferably about 100 microns or less. Thus the overall height of the assembly above the circuit panel after assembly, including the height of the joining units, most preferably is about 1.5 mm or less, and most preferably about 1.3 mm or less. Joining units having such low heights, also know as “fine pitch” joining units, may be used to beneficially affect the assemblies wherein the terminals are moveable with respect to the microelectronic elements and relative to the contacts on the microelectronic elements. As discussed above, this moveability relieves the mechanical strain or deformation generated by differential thermal expansion of the microelectronic elements. Some of the deformation may also be relieved by flexure of the joining units connecting the assembly to a circuit panel, such as a printed circuit board. Larger joining units can flex to a greater extent than smaller ones and, therefore, relieve a greater amount of deformation without failure due to fatigue of the joining units. In preferred embodiments of the present invention, the movement of the terminals relative to microelectronic elements relieves a significant portion of such deformation, allowing the use of relatively small joining units while still maintaining acceptable levels of reliability. However, moveability is not essential in all embodiments.
An alternate embodiment of the present invention is shown in FIG. 3. Microelectronic assembly 100 is similar to microelectronic element assembly 10 but also includes a spacer layer 164 disposed beneath first end region 121 of second microelectronic element 114 and may overlay a portion of dielectric element 130. Also, dielectric element 130 includes a second aperture aligned with the central region of the second microelectronic element. Spacer layer 164 is designed to balance and support microelectronic element 114 in conjunction with microelectronic element 112. Desirably, spacer layer 164 is made of a compliant material that allows movement of dielectric element 130, and hence movement of terminals 136, relative to contacts 120 and 126. Preferred materials for such compliant layers include epoxies and silicones, with flexibilized epoxies and silicone elastomers being particularly preferred. The leads 150, 170 are flexible to permit such movement.
Encapsulant 180 may be provided so as to protect and seal assembly 100, similar to assembly 10. In addition, in embodiments that do not include a separate spacer layer 164, the encapsulant may also be provided between the front surfaces 116, 122 and the first surface 132, thoroughly surrounding leads 150, 170, and may fill open spaces between microelectronic elements 112 and 114.
It is preferred, although not necessary to the invention, that microelectronic elements 112 and 114 are attached to each other by means such as adhesive layer 160. It is also preferred that microelectronic element 114 and spacer layer 164 are attached to each other by adhesive layer 160.
In a third embodiment shown in FIG. 4, assembly 200 includes a third microelectronic element 202, along with first and second microelectronic elements 212, 214. Third microelectronic element 202 includes front surface 203, rear surface 204, central region 205 and first and second end regions 206 and 207. Electrical contacts 208 are disposed on front surface 203. Assembly 200 may be substantially similar to assembly 100 discussed above with reference to FIG. 3. The one significant difference is that microelectronic element 202 replaces spacer layer 164 underlying microelectronic element 214. Specifically, second end region 207 of microelectronic element 202 underlies first end region 221 of microelectronic element 214. Consistent with the first embodiment of the present invention, the percentage of front surface 222 overlying microelectronic element 202 may fluctuate depending on the number of contacts 226 located on front surface 222 of microelectronic element 214. In other words central region 219 of microelectronic element 214 must not overlie second end region 207 of microelectronic element 202. However, the amount of front surface 222 of microelectronic element 214 overlying second end region 207 of microelectronic element 202 should be sufficient to support microelectronic element 214 in conjunction with microelectronic element 212.
Similar to microelectronic 12 of FIG. 1, contacts 208 disposed on front surface 203 of microelectronic element 202 have wire bonds 250 in the form of leads for connecting contacts 208 to bond pads 240 of dielectric element 230. Dielectric element 230 may include solder mass layer 252 defining second surface 234 of dielectric element 230 with apertures or holes at bond pads 240. Dielectric element 230 can be seen as just a larger version of dielectric element 30 of assembly 10. Apertures 233 are provided in dielectric element 230 so that dielectric element 230 does not obstruct leads 250 or 270. The apertures are aligned with the central regions of each microelectronic element. Traces 242 connect the various conductive features to each other, as discussed in conjunction with the first embodiment of the present invention. Similarly, at least some of the leads 250 and 270 associated with microelectronic elements 202, 212 and 214 are connected to at least some of the terminals 236, whereas at least some bond pads 240 are also connected to at least some of the terminals 236. Some or all of the bonds pads 240 may be connected with some or all of the leads 250 and 270. Assembly 200 may further include an encapsulant 280 that covers the leads 250, and 270 and protects the microelectronic element 212, 214 and 202. Encapsulant 280 is similar to encapsulant 80 and can be employed for similar purposes.
The assembly 200 can be thought of as a brick wall having an A-B-A configuration wherein A designates a lower tier element such as first microelectronic element 212 or third microelectronic element 202, and B designates an upper tier microelectronic element such as second microelectronic element 214, and with the contact-bearing central regions arranged in the order indicated. Each upper tier element B overlies a portion of at least one lower tier element A and A′ so as to form the structure shown in FIG. 4.
As shown in FIG. 5, a third embodiment of the invention makes use of the A-B-A configuration by continuing the structure horizontally outwards. FIG. 5 is a skeletal depiction of a B-A-B-A-B configuration. The structure may have a configuration of A-B-A-B-A or A-B-A-B or B-A-B-A-B, or any other combination of the two where a structure A and a structure B are adjacent to one another. These structures could be extended out indefinitely until a required amount of microelectronics elements are met. Additionally, structures that follow varying designs such as having a plurality of A structures adjacent to one another without an overlying B structure may be employed.
In an alternate embodiment of the present invention as shown in FIG. 6, assembly 300 includes microelectronic elements denoted by the structure A altered so as to include a substantially continuous dielectric element 330 underlying at least one microelectronic element denoted A. For this discussion microelectronic element 312 will represent microelectronic elements having a structure equal to A. Contacts 320 are electrically connected to bond ribbons leads 390. The bond ribbons may be of the type described in U.S. Pat. No. 5,518,964, the disclosure of which is incorporated by reference herein. As disclosed in certain embodiments of the '964 patent, the bond ribbons may be initially formed in place on the first surface of the dielectric element, and may initially extend in the plane of such surface. The bond ribbons may be connected to the contacts 320 of the first microelectronic element 312 and may be deformed to the vertical-extensive position depicted in FIG. 6 by moving the first microelectronic element 312 and the dielectric element 330 away from one another after bonding the ribbons to the contacts of the first microelectronic element. Related bond ribbon configurations and methods of forming bond ribbons embodiments are discussed in U.S. Pat. Nos. 6,329,607; 6,228,686; 6,191,368; 5,976,913; and 5,859,472, the disclosures of which are also incorporated by reference herein.
In a further alternate embodiment as shown in FIG. 7, assembly 400 includes first microelectronic element 412 and second microelectronic element 414. The microelectronic elements in assembly 400 may be substantially similar to the first and second microelectronic elements employed with assembly 10 of FIG. 1. However, assembly 400 differs from the previous assemblies in that the dielectric layer has not been included in the assembly. Additionally, masses of conductive material, preferably solder balls 481, are employed for conductively connecting contacts 420 of first microelectronic element 412 to the circuit board. Similar masses 483 connect contacts 426 of second microelectronic element 414 directly to contacts 494 of circuit board 495. In the mounted condition illustrated in FIG. 7, the masses 481 associated with the contacts 420 of the first microelectronic element have a lesser height than masses 483 associated with the second microelectronic element. Additionally, the conductive material may be comprised of other material as, for example, polymeric conductive materials, solid core solder balls, solder filled springs, solder land or the like. A combination of options may also be employed. As with all the previous embodiments, an adhesive layer (not shown) may connect microelectronic elements 412 and 414. Additionally, an encapsulant (also not shown) as with all embodiments of the present invention may be included with assembly 400. Although the elimination of the dielectric layer has been described with specific reference to assembly 400, the dielectric layer may be also eliminated from other embodiments described herein. Additionally, conductively connecting contacts on microelectronic elements directly to contacts on a circuit board, as shown in FIG. 7, may be incorporated with other embodiments described within the present application.
The embodiment shown in FIG. 7 may be assembled using various methods. For example, microelectronic element 412 may be preassembled to microelectronic element 414. The entire assembly may then be surface mounted to circuit board 495 using solder balls 481 with standard surface mount techniques known in the art. Additionally, microelectronic element 412 may be surface mounted to circuit board 495 first and in a next step, microelectronic element 414 is surface mounted to the circuit board.
FIG. 8 shows assembly 500 employing alternate conducting leads connecting contacts 520 and 526 to other conductive features of the assembly. Assembly 500 may include any or all of the features previously described in this reference herein in conjunction with other embodiments of the present invention. The one significant modification to assembly 500 is that strip-like leads 550 formed integrally with traces 542 are used to connect contacts 520 and 526 to conductive features of the microelectronic elements. The construction of such strip-like leads is described, for example, in commonly assigned U.S. Pat. No. 5,915,752, which is hereby incorporated by reference herein. As shown in FIG. 8, assembly 500 may include a spacer layer 564 underlying second microelectronic element 514. As with all embodiments of the present invention, spacer layer 564 may be made of a compliant material or additionally, spacer layer 564 may be comprised of a small microelectronic element. In the case where spacer layer 564 is a small microelectronic element, the small microelectronic element may either not extend horizontally past second microelectronic element 514 or only extend slightly past the edge of microelectronic element 514. Various adhesive layers and encapsulants may be included with assembly 500, as described throughout this disclosure.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (37)

The invention claimed is:
1. A microelectronic assembly comprising:
a dielectric element having an upwardly-facing first surface and a downwardly-facing second surface and having, terminals exposed at said second surface, a first aperture, and a second aperture;
a first microelectronic element overlying said dielectric element, the first microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface and having contacts exposed at said front surface; and
a second microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface, having contacts exposed at said front surface, said front surface of said second microelectronic element including a central region and a first and second end region regions on opposite sides of said central region, said contacts of said second microelectronic element being disposed in said central region and facing downwardly toward said dielectric element, said first side end region overlying said first microelectronic element, said central region and said second side end region projecting outwardly from said first microelectronic element, said first aperture underlying said contacts of said first microelectronic element, said second aperture underlying said contacts of said second microelectronic element, wherein said first and second microelectronic elements are electrically connected with said terminals.
2. The microelectronic assembly of claim 1, wherein said first microelectronic element has a central region and a first and second side region, said contacts of said first microelectronic element being disposed within said central region of said first microelectronic element.
3. The microelectronic assembly of claim 1, wherein said dielectric element includes at least one aperture, said aperture substantially underlying said contacts of said front surface of said first microelectronic element.
4. The microelectronic assembly of claim 1, wherein said dielectric element includes at least one aperture, said aperture substantially underlying said contacts of said front surface of said second microelectronic element.
5. The microelectronic assembly of claim 1, further comprising a spacer layer, wherein said second side end region of said second microelectronic element overlies said spacer layer.
6. The microelectronic assembly of claim 1, further comprising a third microelectronic element, wherein said second side end region of said second microelectronic element overlies said third microelectronic element.
7. The microelectronic assembly of claim 6, further comprising an adhesive layer, wherein said adhesive layer connects said first microelectronic element and said third microelectronic element to said second microelectronic element.
8. The microelectronic assembly of claim 2, further comprising a third microelectronic element, wherein said second end region of said second microelectronic element overlies said third microelectronic element.
9. The microelectronic assembly of claim 8, wherein said third microelectronic element is substantially similar to said first microelectronic element.
10. The microelectronic assembly of claim 9, wherein said dielectric element underlies at least a portion of said third microelectronic element.
11. The microelectronic assembly of claim 1, further comprising a first encapsulant material, wherein said first encapsulant material is disposed in contact with said first microelectronic element and said second microelectronic element.
12. The microelectronic assembly of claim 6, further comprising a first encapsulant material, wherein said first encapsulant material is disposed in contact with said first microelectronic element, said second microelectronic element and said third microelectronic element.
13. The microelectronic assembly of claim 1, further comprising an adhesive layer, wherein said adhesive layer connects said first microelectronic element to said second microelectronic element.
14. The microelectronic assembly of claim 1, further comprising wire leads, wherein said first and second microelectronic elements are electrically connected with said terminals via said wire leads.
15. The microelectronic assembly of claim 1, further comprising traces on said dielectric element connected to said terminals and leads integral with said traces, wherein said first and second microelectronic elements are electrically connected with said terminals via said leads.
16. A microelectronic assembly comprising:
a dielectric element having an upwardly-facing first surface and a downwardly-facing second surface and having terminals exposed at said second surface;
a first microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface and having contacts exposed at said front surface; and
a second microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface, having contacts exposed at said front surface, said front surface of said second microelectronic element including a central region and a first and second region on opposite sides of said central region, said contacts of said second microelectronic element being disposed in said central region, further wherein said first side region overlies said first microelectronic element, said central region and said second side region projecting outwardly from said first microelectronic element wherein said first and second microelectronic elements are electrically connected with said terminals.
17. A microelectronic assembly comprising:
a first microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface and having contacts exposed at said front surface; and
a second microelectronic element having an upwardly-facing rear surface and a downwardly-facing front surface, having contacts exposed at said front surface, said front surface of said second microelectronic element including a central region and a first and second end region on opposite sides of said central region, said contacts of said second microelectronic element being disposed in said central region, said first side region overlying said first microelectronic element, said central region and said second side region projecting outwardly from said first microelectronic element.
18. The microelectronic assembly of claim 17, wherein said first microelectronic element has a central region and a first and second side region, said contacts of said first microelectronic element being disposed in said central region of said first microelectronic element.
19. The microelectronic assembly of claim 17, further comprising a spacer layer, wherein said second side region of said second microelectronic element is overlying said spacer layer.
20. The microelectronic assembly of claim 17, further comprising a third microelectronic element, wherein said second side region of said second microelectronic element is overlying said third microelectronic element.
21. The microelectronic assembly of claim 18, further comprising a third microelectronic element, wherein said second region of said second microelectronic element overlies said third microelectronic element.
22. The microelectronic assembly of claim 20, wherein said third microelectronic element is substantially similar to said first microelectronic element.
23. The microelectronic assembly of claim 17, further comprising a first encapsulant material, wherein said first encapsulant material is disposed in contact with said first microelectronic element and said second microelectronic element.
24. The microelectronic assembly of claim 17, further including an adhesive layer, wherein said adhesive layer connects said first microelectronic element to said second microelectronic element.
25. The microelectronic assembly of claim 20, further comprising an adhesive layer, wherein said adhesive layer connects said first microelectronic element and said third microelectronic element to said second microelectronic element.
26. The microelectronic assembly of claim 17, further comprising a circuit board and masses of conductive material, said masses of conductive material connecting said contacts of said first microelectronic element and said contacts of said second microelectronic element to said circuit board.
27. The microelectronic element assembly of claim 26, wherein said conductive material includes solder.
28. The microelectronic assembly of claim 1, wherein said dielectric element includes a first intermediate portion disposed between said first and second apertures, and said terminals include intermediate terminals disposed on said first intermediate portion.
29. The microelectronic assembly of claim 28 further comprising a third microelectronic element overlying said dielectric element, wherein said second end region of said second microelectronic element overlies said third microelectronic element.
30. The microelectronic assembly of claim 28 wherein said third microelectronic element has an upwardly-facing rear surface, a downwardly-facing front surface and contacts exposed at the front surface of the third microelectronic element.
31. The microelectronic assembly of claim 30 wherein said dielectric element includes a third aperture underlying said contacts of said third microelectronic element.
32. The microelectronic assembly of claim 31 wherein said dielectric element includes a second intermediate portion disposed between said second and third apertures and said terminals include second intermediate terminals disposed on said second intermediate portion.
33. The microelectronic assembly of claim 1, further comprising leads extending through said apertures, said contacts being connected to said terminals via said leads.
34. The microelectronic assembly of claim 33, wherein said leads include first leads extending through said first aperture to said contacts of said first microelectronic element and second leads extending through said second aperture to said contacts of said second microelectronic element.
35. The microelectronic assembly of claim 33 wherein said dielectric element includes bond pads exposed at said second surface and electrically connected to said terminals, and said leads include wire bonds extending through said apertures from said contacts to said bond pads.
36. The microelectronic assembly of claim 33, wherein said dielectric element includes a first intermediate portion disposed between said first and second apertures and said terminals include first intermediate terminals disposed on said first intermediate portion.
37. The microelectronic assembly of claim 36, wherein said leads include first leads extending through said first aperture to said contacts of said first microelectronic element and second leads extending through said second aperture to said contacts of said second microelectronic element.
US13/847,269 2003-11-12 2013-03-19 Stacked microelectronic assemblies with central contacts Active USRE45463E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/847,269 USRE45463E1 (en) 2003-11-12 2013-03-19 Stacked microelectronic assemblies with central contacts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US51913003P 2003-11-12 2003-11-12
US10/988,160 US7061121B2 (en) 2003-11-12 2004-11-12 Stacked microelectronic assemblies with central contacts
US13/847,269 USRE45463E1 (en) 2003-11-12 2013-03-19 Stacked microelectronic assemblies with central contacts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/988,160 Reissue US7061121B2 (en) 2003-11-12 2004-11-12 Stacked microelectronic assemblies with central contacts

Publications (1)

Publication Number Publication Date
USRE45463E1 true USRE45463E1 (en) 2015-04-14

Family

ID=34623091

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/988,160 Ceased US7061121B2 (en) 2003-11-12 2004-11-12 Stacked microelectronic assemblies with central contacts
US13/847,269 Active USRE45463E1 (en) 2003-11-12 2013-03-19 Stacked microelectronic assemblies with central contacts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/988,160 Ceased US7061121B2 (en) 2003-11-12 2004-11-12 Stacked microelectronic assemblies with central contacts

Country Status (1)

Country Link
US (2) US7061121B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312244B2 (en) 2011-04-21 2016-04-12 Tessera, Inc. Multiple die stacking for two or more die
US9312239B2 (en) 2010-10-19 2016-04-12 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
US9349672B2 (en) 2007-08-16 2016-05-24 Tessera, Inc. Microelectronic package
US9437579B2 (en) 2011-04-21 2016-09-06 Tessera, Inc. Multiple die face-down stacking for two or more die
US9735093B2 (en) 2011-04-21 2017-08-15 Tessera, Inc. Stacked chip-on-board module with edge connector
US9806017B2 (en) 2011-04-21 2017-10-31 Tessera, Inc. Flip-chip, face-up and face-down centerbond memory wirebond assemblies

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356958B1 (en) 1999-02-08 2002-03-12 Mou-Shiung Lin Integrated circuit module has common function known good integrated circuit die with multiple selectable functions
US7247932B1 (en) 2000-05-19 2007-07-24 Megica Corporation Chip package with capacitor
US8294279B2 (en) 2005-01-25 2012-10-23 Megica Corporation Chip package with dam bar restricting flow of underfill
TWI269420B (en) 2005-05-03 2006-12-21 Megica Corp Stacked chip package and process thereof
US7915724B2 (en) * 2007-09-28 2011-03-29 Stats Chippac Ltd. Integrated circuit packaging system with base structure device
US8264085B2 (en) * 2008-05-05 2012-09-11 Infineon Technologies Ag Semiconductor device package interconnections
US8896126B2 (en) * 2011-08-23 2014-11-25 Marvell World Trade Ltd. Packaging DRAM and SOC in an IC package
US8227904B2 (en) 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US8378478B2 (en) 2010-11-24 2013-02-19 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and vias connected to the central contacts
KR101061531B1 (en) * 2010-12-17 2011-09-01 테세라 리써치 엘엘씨 Enhanced stacked microelectronic assemblies with central contacts and improved ground or power distribution
KR101118711B1 (en) 2010-12-17 2012-03-12 테세라, 인코포레이티드 Enhanced stacked microelectric assemblies with central contacts
US8338963B2 (en) * 2011-04-21 2012-12-25 Tessera, Inc. Multiple die face-down stacking for two or more die
US8304881B1 (en) 2011-04-21 2012-11-06 Tessera, Inc. Flip-chip, face-up and face-down wirebond combination package
US8970028B2 (en) * 2011-12-29 2015-03-03 Invensas Corporation Embedded heat spreader for package with multiple microelectronic elements and face-down connection
US8502390B2 (en) 2011-07-12 2013-08-06 Tessera, Inc. De-skewed multi-die packages
US8823165B2 (en) 2011-07-12 2014-09-02 Invensas Corporation Memory module in a package
US8513817B2 (en) 2011-07-12 2013-08-20 Invensas Corporation Memory module in a package
US8436477B2 (en) 2011-10-03 2013-05-07 Invensas Corporation Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
US8441111B2 (en) 2011-10-03 2013-05-14 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
US8659143B2 (en) 2011-10-03 2014-02-25 Invensas Corporation Stub minimization for wirebond assemblies without windows
US8610260B2 (en) 2011-10-03 2013-12-17 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
US8345441B1 (en) 2011-10-03 2013-01-01 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
EP2766928A1 (en) 2011-10-03 2014-08-20 Invensas Corporation Stub minimization with terminal grids offset from center of package
US8436457B2 (en) 2011-10-03 2013-05-07 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
EP2764544A1 (en) * 2011-10-03 2014-08-13 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
US8513813B2 (en) 2011-10-03 2013-08-20 Invensas Corporation Stub minimization using duplicate sets of terminals for wirebond assemblies without windows
WO2013052080A1 (en) 2011-10-03 2013-04-11 Invensas Corporation Stub minimization for multi-die wirebond assemblies with orthogonal windows
EP2880685A1 (en) * 2012-08-02 2015-06-10 Tessera Interconnect Materials, Inc. Multiple die face-down stacking for two or more die
US8787034B2 (en) 2012-08-27 2014-07-22 Invensas Corporation Co-support system and microelectronic assembly
US8848392B2 (en) 2012-08-27 2014-09-30 Invensas Corporation Co-support module and microelectronic assembly
US8848391B2 (en) 2012-08-27 2014-09-30 Invensas Corporation Co-support component and microelectronic assembly
US9368477B2 (en) 2012-08-27 2016-06-14 Invensas Corporation Co-support circuit panel and microelectronic packages
WO2014066153A1 (en) * 2012-10-23 2014-05-01 Tessera, Inc. Multiple die stacking for two or more die
US9070423B2 (en) 2013-06-11 2015-06-30 Invensas Corporation Single package dual channel memory with co-support
US9123555B2 (en) 2013-10-25 2015-09-01 Invensas Corporation Co-support for XFD packaging
US9281296B2 (en) 2014-07-31 2016-03-08 Invensas Corporation Die stacking techniques in BGA memory package for small footprint CPU and memory motherboard design
US9691437B2 (en) 2014-09-25 2017-06-27 Invensas Corporation Compact microelectronic assembly having reduced spacing between controller and memory packages
US9484080B1 (en) 2015-11-09 2016-11-01 Invensas Corporation High-bandwidth memory application with controlled impedance loading
US9679613B1 (en) 2016-05-06 2017-06-13 Invensas Corporation TFD I/O partition for high-speed, high-density applications

Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390308A (en) 1966-03-31 1968-06-25 Itt Multiple chip integrated circuit assembly
US3923359A (en) 1971-07-09 1975-12-02 Pressey Handel Und Investments Multi-layer printed-circuit boards
JPS5275981A (en) 1975-12-22 1977-06-25 Hitachi Ltd Multichip device
JPS5661151A (en) 1979-10-23 1981-05-26 Mitsubishi Electric Corp Package semiconductor integrated circuit
JPS5731166A (en) 1980-07-31 1982-02-19 Fujitsu Ltd Semiconductor device
US4371744A (en) 1977-10-03 1983-02-01 Compagnie Internationale Pour L'informatique Cii-Honeywell Bull (Societe Anonyme) Substrate for interconnecting electronic integrated circuit components having a repair arrangement enabling modification of connections to a mounted chip device
US4371912A (en) 1980-10-01 1983-02-01 Motorola, Inc. Method of mounting interrelated components
JPS58178529A (en) 1982-04-13 1983-10-19 Mitsubishi Electric Corp Hybrid integrated circuit device
US4489364A (en) 1981-12-31 1984-12-18 International Business Machines Corporation Chip carrier with embedded engineering change lines with severable periodically spaced bridging connectors on the chip supporting surface
US4540226A (en) 1983-01-03 1985-09-10 Texas Instruments Incorporated Intelligent electronic connection socket
JPS60194548A (en) 1984-03-16 1985-10-03 Nec Corp Chip carrier
US4551746A (en) 1982-10-05 1985-11-05 Mayo Foundation Leadless chip carrier apparatus providing an improved transmission line environment and improved heat dissipation
US4558397A (en) 1983-12-19 1985-12-10 Amp Incorporated Interposer connector for surface mounting a ceramic chip carrier to a printed circuit board
JPS6129140A (en) 1984-07-20 1986-02-10 Hitachi Ltd Semiconductor device
JPS61101067A (en) 1984-10-24 1986-05-19 Nec Corp Memory module
JPS61120454A (en) 1984-11-16 1986-06-07 Sony Corp Package of integrated circuit for data memory
JPS61137335U (en) 1985-02-18 1986-08-26
JPS61255046A (en) 1985-05-08 1986-11-12 Seiko Epson Corp Composite semiconductor memory device
US4638348A (en) 1982-08-10 1987-01-20 Brown David F Semiconductor chip carrier
JPS6318654U (en) 1986-07-22 1988-02-06
US4734825A (en) 1986-09-05 1988-03-29 Motorola Inc. Integrated circuit stackable package
US4754316A (en) 1982-06-03 1988-06-28 Texas Instruments Incorporated Solid state interconnection system for three dimensional integrated circuit structures
US4761681A (en) 1982-09-08 1988-08-02 Texas Instruments Incorporated Method for fabricating a semiconductor contact and interconnect structure using orientation dependent etching and thermomigration
JPS6471162A (en) 1987-09-11 1989-03-16 Hitachi Ltd Semiconductor device
US4841355A (en) 1988-02-10 1989-06-20 Amdahl Corporation Three-dimensional microelectronic package for semiconductor chips
US4868712A (en) 1987-02-04 1989-09-19 Woodman John K Three dimensional integrated circuit package
US4897918A (en) 1985-07-16 1990-02-06 Nippon Telegraph And Telephone Method of manufacturing an interboard connection terminal
US4956694A (en) 1988-11-04 1990-09-11 Dense-Pac Microsystems, Inc. Integrated circuit chip stacking
US4982265A (en) 1987-06-24 1991-01-01 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing the same
US4994902A (en) 1988-11-30 1991-02-19 Hitachi, Ltd. Semiconductor devices and electronic system incorporating them
US4996583A (en) 1989-02-15 1991-02-26 Matsushita Electric Industrial Co., Ltd. Stack type semiconductor package
US4996587A (en) 1989-04-10 1991-02-26 International Business Machines Corporation Integrated semiconductor chip package
US5028986A (en) 1987-12-28 1991-07-02 Hitachi, Ltd. Semiconductor device and semiconductor module with a plurality of stacked semiconductor devices
US5045921A (en) 1989-12-26 1991-09-03 Motorola, Inc. Pad array carrier IC device using flexible tape
US5117282A (en) 1990-10-29 1992-05-26 Harris Corporation Stacked configuration for integrated circuit devices
US5128831A (en) 1991-10-31 1992-07-07 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5138438A (en) 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5172303A (en) 1990-11-23 1992-12-15 Motorola, Inc. Electronic component assembly
US5198888A (en) 1987-12-28 1993-03-30 Hitachi, Ltd. Semiconductor stacked device
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5247423A (en) 1992-05-26 1993-09-21 Motorola, Inc. Stacking three dimensional leadless multi-chip module and method for making the same
US5266912A (en) 1992-08-19 1993-11-30 Micron Technology, Inc. Inherently impedance matched multiple integrated circuit module
US5281852A (en) 1991-12-10 1994-01-25 Normington Peter J C Semiconductor device including stacked die
US5311401A (en) 1991-07-09 1994-05-10 Hughes Aircraft Company Stacked chip assembly and manufacturing method therefor
US5313096A (en) 1992-03-16 1994-05-17 Dense-Pac Microsystems, Inc. IC chip package having chip attached to and wire bonded within an overlying substrate
US5337077A (en) 1992-03-20 1994-08-09 Mark Iv Industries Limited Electromagnetic shutter
US5376825A (en) 1990-10-22 1994-12-27 Seiko Epson Corporation Integrated circuit package for flexible computer system alternative architectures
US5384689A (en) 1993-12-20 1995-01-24 Shen; Ming-Tung Integrated circuit chip including superimposed upper and lower printed circuit boards
US5397916A (en) 1991-12-10 1995-03-14 Normington; Peter J. C. Semiconductor device including stacked die
US5412247A (en) 1989-07-28 1995-05-02 The Charles Stark Draper Laboratory, Inc. Protection and packaging system for semiconductor devices
US5455740A (en) 1994-03-07 1995-10-03 Staktek Corporation Bus communication system for stacked high density integrated circuit packages
US5489749A (en) 1992-07-24 1996-02-06 Tessera, Inc. Semiconductor connection components and method with releasable lead support
US5543664A (en) 1990-08-01 1996-08-06 Staktek Corporation Ultra high density integrated circuit package
US5548091A (en) 1993-10-26 1996-08-20 Tessera, Inc. Semiconductor chip connection components with adhesives and methods for bonding to the chip
US5552631A (en) 1992-06-04 1996-09-03 Lsi Logic Corporation Semiconductor device assembly including power or ground plane which is provided on opposite surface of insulating layer from signal traces, and is exposed to central opening in insulating layer for interconnection to semiconductor die
US5600541A (en) 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5608265A (en) 1993-03-17 1997-03-04 Hitachi, Ltd. Encapsulated semiconductor device package having holes for electrically conductive material
US5616958A (en) 1995-01-25 1997-04-01 International Business Machines Corporation Electronic package
US5625221A (en) 1994-03-03 1997-04-29 Samsung Electronics Co., Ltd. Semiconductor assembly for a three-dimensional integrated circuit package
US5637536A (en) 1993-08-13 1997-06-10 Thomson-Csf Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom
US5639695A (en) 1994-11-02 1997-06-17 Motorola, Inc. Low-profile ball-grid array semiconductor package and method
US5642261A (en) 1993-12-20 1997-06-24 Sgs-Thomson Microelectronics, Inc. Ball-grid-array integrated circuit package with solder-connected thermal conductor
US5656856A (en) 1994-06-09 1997-08-12 Samsung Electronics Co., Ltd. Reduced noise semiconductor package stack
US5659952A (en) 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US5668405A (en) 1994-09-14 1997-09-16 Nec Corporation Semiconductor device with a film carrier tape
US5677566A (en) 1995-05-08 1997-10-14 Micron Technology, Inc. Semiconductor chip package
US5701031A (en) 1990-04-26 1997-12-23 Hitachi, Ltd. Sealed stacked arrangement of semiconductor devices
US5734555A (en) 1994-03-30 1998-03-31 Intel Corporation Shared socket multi-chip module and/or piggyback pin grid array package
US5751063A (en) 1995-09-18 1998-05-12 Nec Corporation Multi-chip module
US5783870A (en) 1995-03-16 1998-07-21 National Semiconductor Corporation Method for connecting packages of a stacked ball grid array structure
US5784264A (en) 1994-11-28 1998-07-21 Nec Corporation MCM (Multi Chip Module) carrier with external connection teminals BGA (Ball Grid Array) type matrix array form
US5801439A (en) 1994-04-20 1998-09-01 Fujitsu Limited Semiconductor device and semiconductor device unit for a stack arrangement
US5804874A (en) 1996-03-08 1998-09-08 Samsung Electronics Co., Ltd. Stacked chip package device employing a plurality of lead on chip type semiconductor chips
US5835988A (en) 1996-03-27 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Packed semiconductor device with wrap around external leads
US5834339A (en) 1996-03-07 1998-11-10 Tessera, Inc. Methods for providing void-free layers for semiconductor assemblies
US5844315A (en) 1996-03-26 1998-12-01 Motorola Corporation Low-profile microelectronic package
US5861666A (en) 1995-08-30 1999-01-19 Tessera, Inc. Stacked chip assembly
US5883426A (en) 1996-04-18 1999-03-16 Nec Corporation Stack module
US5977640A (en) * 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US6030856A (en) 1996-06-10 2000-02-29 Tessera, Inc. Bondable compliant pads for packaging of a semiconductor chip and method therefor
US6072233A (en) 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
US6093029A (en) 1998-09-08 2000-07-25 S3 Incorporated Vertically stackable integrated circuit
US6180881B1 (en) 1998-05-05 2001-01-30 Harlan Ruben Isaak Chip stack and method of making same
US6188028B1 (en) * 1997-06-09 2001-02-13 Tessera, Inc. Multilayer structure with interlocking protrusions
US6195268B1 (en) 1997-06-09 2001-02-27 Floyd K. Eide Stacking layers containing enclosed IC chips
US6218848B1 (en) 1998-02-25 2001-04-17 Micron Technology, Inc. Semiconductor probe card having resistance measuring circuitry and method of fabrication
US6232152B1 (en) 1994-05-19 2001-05-15 Tessera, Inc. Method of manufacturing a plurality of semiconductor packages and the resulting semiconductor package structures
US6291259B1 (en) 1998-05-30 2001-09-18 Hyundai Electronics Industries Co., Ltd. Stackable ball grid array semiconductor package and fabrication method thereof
US6303997B1 (en) 1998-04-08 2001-10-16 Anam Semiconductor, Inc. Thin, stackable semiconductor packages
US6313522B1 (en) 1998-08-28 2001-11-06 Micron Technology, Inc. Semiconductor structure having stacked semiconductor devices
US6335565B1 (en) 1996-12-04 2002-01-01 Hitachi, Ltd. Semiconductor device
US6342728B2 (en) 1996-03-22 2002-01-29 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
US6369445B1 (en) 2000-06-19 2002-04-09 Advantest Corporation Method and apparatus for edge connection between elements of an integrated circuit
US6388264B1 (en) 1997-03-28 2002-05-14 Benedict G Pace Optocoupler package being hermetically sealed
US6462421B1 (en) 2000-04-10 2002-10-08 Advanced Semicondcutor Engineering, Inc. Multichip module
US6496026B1 (en) 2000-02-25 2002-12-17 Microconnect, Inc. Method of manufacturing and testing an electronic device using a contact device having fingers and a mechanical ground
US6515870B1 (en) 2000-11-27 2003-02-04 Intel Corporation Package integrated faraday cage to reduce electromagnetic emissions from an integrated circuit
US6703713B1 (en) 2002-09-10 2004-03-09 Siliconware Precision Industries Co., Ltd. Window-type multi-chip semiconductor package
US6818474B2 (en) * 2001-12-29 2004-11-16 Hynix Semiconductor Inc. Method for manufacturing stacked chip package
US7294928B2 (en) 2002-09-06 2007-11-13 Tessera, Inc. Components, methods and assemblies for stacked packages
US8288862B2 (en) * 2002-02-21 2012-10-16 United Test & Assembly Center Limited Multiple die stack package

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390308A (en) 1966-03-31 1968-06-25 Itt Multiple chip integrated circuit assembly
US3923359A (en) 1971-07-09 1975-12-02 Pressey Handel Und Investments Multi-layer printed-circuit boards
JPS5275981A (en) 1975-12-22 1977-06-25 Hitachi Ltd Multichip device
US4371744A (en) 1977-10-03 1983-02-01 Compagnie Internationale Pour L'informatique Cii-Honeywell Bull (Societe Anonyme) Substrate for interconnecting electronic integrated circuit components having a repair arrangement enabling modification of connections to a mounted chip device
JPS5661151A (en) 1979-10-23 1981-05-26 Mitsubishi Electric Corp Package semiconductor integrated circuit
JPS5731166A (en) 1980-07-31 1982-02-19 Fujitsu Ltd Semiconductor device
US4371912A (en) 1980-10-01 1983-02-01 Motorola, Inc. Method of mounting interrelated components
US4489364A (en) 1981-12-31 1984-12-18 International Business Machines Corporation Chip carrier with embedded engineering change lines with severable periodically spaced bridging connectors on the chip supporting surface
JPS58178529A (en) 1982-04-13 1983-10-19 Mitsubishi Electric Corp Hybrid integrated circuit device
US4754316A (en) 1982-06-03 1988-06-28 Texas Instruments Incorporated Solid state interconnection system for three dimensional integrated circuit structures
US4638348A (en) 1982-08-10 1987-01-20 Brown David F Semiconductor chip carrier
US4761681A (en) 1982-09-08 1988-08-02 Texas Instruments Incorporated Method for fabricating a semiconductor contact and interconnect structure using orientation dependent etching and thermomigration
US4551746A (en) 1982-10-05 1985-11-05 Mayo Foundation Leadless chip carrier apparatus providing an improved transmission line environment and improved heat dissipation
US4540226A (en) 1983-01-03 1985-09-10 Texas Instruments Incorporated Intelligent electronic connection socket
US4558397A (en) 1983-12-19 1985-12-10 Amp Incorporated Interposer connector for surface mounting a ceramic chip carrier to a printed circuit board
JPS60194548A (en) 1984-03-16 1985-10-03 Nec Corp Chip carrier
JPS6129140A (en) 1984-07-20 1986-02-10 Hitachi Ltd Semiconductor device
JPS61101067A (en) 1984-10-24 1986-05-19 Nec Corp Memory module
JPS61120454A (en) 1984-11-16 1986-06-07 Sony Corp Package of integrated circuit for data memory
JPS61137335U (en) 1985-02-18 1986-08-26
JPS61255046A (en) 1985-05-08 1986-11-12 Seiko Epson Corp Composite semiconductor memory device
US4897918A (en) 1985-07-16 1990-02-06 Nippon Telegraph And Telephone Method of manufacturing an interboard connection terminal
JPS6318654U (en) 1986-07-22 1988-02-06
US4734825A (en) 1986-09-05 1988-03-29 Motorola Inc. Integrated circuit stackable package
US4868712A (en) 1987-02-04 1989-09-19 Woodman John K Three dimensional integrated circuit package
US4982265A (en) 1987-06-24 1991-01-01 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing the same
US5138438A (en) 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
JPS6471162A (en) 1987-09-11 1989-03-16 Hitachi Ltd Semiconductor device
US5334875A (en) 1987-12-28 1994-08-02 Hitachi, Ltd. Stacked semiconductor memory device and semiconductor memory module containing the same
US5028986A (en) 1987-12-28 1991-07-02 Hitachi, Ltd. Semiconductor device and semiconductor module with a plurality of stacked semiconductor devices
US5198888A (en) 1987-12-28 1993-03-30 Hitachi, Ltd. Semiconductor stacked device
US4841355A (en) 1988-02-10 1989-06-20 Amdahl Corporation Three-dimensional microelectronic package for semiconductor chips
US4956694A (en) 1988-11-04 1990-09-11 Dense-Pac Microsystems, Inc. Integrated circuit chip stacking
US4994902A (en) 1988-11-30 1991-02-19 Hitachi, Ltd. Semiconductor devices and electronic system incorporating them
US4996583A (en) 1989-02-15 1991-02-26 Matsushita Electric Industrial Co., Ltd. Stack type semiconductor package
US4996587A (en) 1989-04-10 1991-02-26 International Business Machines Corporation Integrated semiconductor chip package
US5412247A (en) 1989-07-28 1995-05-02 The Charles Stark Draper Laboratory, Inc. Protection and packaging system for semiconductor devices
US5045921A (en) 1989-12-26 1991-09-03 Motorola, Inc. Pad array carrier IC device using flexible tape
US5701031A (en) 1990-04-26 1997-12-23 Hitachi, Ltd. Sealed stacked arrangement of semiconductor devices
US5543664A (en) 1990-08-01 1996-08-06 Staktek Corporation Ultra high density integrated circuit package
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5376825A (en) 1990-10-22 1994-12-27 Seiko Epson Corporation Integrated circuit package for flexible computer system alternative architectures
US5117282A (en) 1990-10-29 1992-05-26 Harris Corporation Stacked configuration for integrated circuit devices
US5172303A (en) 1990-11-23 1992-12-15 Motorola, Inc. Electronic component assembly
US5311401A (en) 1991-07-09 1994-05-10 Hughes Aircraft Company Stacked chip assembly and manufacturing method therefor
US5128831A (en) 1991-10-31 1992-07-07 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5281852A (en) 1991-12-10 1994-01-25 Normington Peter J C Semiconductor device including stacked die
US5397916A (en) 1991-12-10 1995-03-14 Normington; Peter J. C. Semiconductor device including stacked die
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5313096A (en) 1992-03-16 1994-05-17 Dense-Pac Microsystems, Inc. IC chip package having chip attached to and wire bonded within an overlying substrate
US5337077A (en) 1992-03-20 1994-08-09 Mark Iv Industries Limited Electromagnetic shutter
US5247423A (en) 1992-05-26 1993-09-21 Motorola, Inc. Stacking three dimensional leadless multi-chip module and method for making the same
US5681777A (en) 1992-06-04 1997-10-28 Lsi Logic Corporation Process for manufacturing a multi-layer tab tape semiconductor device
US5552631A (en) 1992-06-04 1996-09-03 Lsi Logic Corporation Semiconductor device assembly including power or ground plane which is provided on opposite surface of insulating layer from signal traces, and is exposed to central opening in insulating layer for interconnection to semiconductor die
US5489749A (en) 1992-07-24 1996-02-06 Tessera, Inc. Semiconductor connection components and method with releasable lead support
US5266912A (en) 1992-08-19 1993-11-30 Micron Technology, Inc. Inherently impedance matched multiple integrated circuit module
US5608265A (en) 1993-03-17 1997-03-04 Hitachi, Ltd. Encapsulated semiconductor device package having holes for electrically conductive material
US5637536A (en) 1993-08-13 1997-06-10 Thomson-Csf Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom
US5548091A (en) 1993-10-26 1996-08-20 Tessera, Inc. Semiconductor chip connection components with adhesives and methods for bonding to the chip
US5600541A (en) 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5384689A (en) 1993-12-20 1995-01-24 Shen; Ming-Tung Integrated circuit chip including superimposed upper and lower printed circuit boards
US5642261A (en) 1993-12-20 1997-06-24 Sgs-Thomson Microelectronics, Inc. Ball-grid-array integrated circuit package with solder-connected thermal conductor
US5625221A (en) 1994-03-03 1997-04-29 Samsung Electronics Co., Ltd. Semiconductor assembly for a three-dimensional integrated circuit package
US5455740A (en) 1994-03-07 1995-10-03 Staktek Corporation Bus communication system for stacked high density integrated circuit packages
US5552963A (en) 1994-03-07 1996-09-03 Staktek Corporation Bus communication system for stacked high density integrated circuit packages
US5479318A (en) 1994-03-07 1995-12-26 Staktek Corporation Bus communication system for stacked high density integrated circuit packages with trifurcated distal lead ends
US5734555A (en) 1994-03-30 1998-03-31 Intel Corporation Shared socket multi-chip module and/or piggyback pin grid array package
US5801439A (en) 1994-04-20 1998-09-01 Fujitsu Limited Semiconductor device and semiconductor device unit for a stack arrangement
US6232152B1 (en) 1994-05-19 2001-05-15 Tessera, Inc. Method of manufacturing a plurality of semiconductor packages and the resulting semiconductor package structures
US5656856A (en) 1994-06-09 1997-08-12 Samsung Electronics Co., Ltd. Reduced noise semiconductor package stack
US5668405A (en) 1994-09-14 1997-09-16 Nec Corporation Semiconductor device with a film carrier tape
US5659952A (en) 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US5639695A (en) 1994-11-02 1997-06-17 Motorola, Inc. Low-profile ball-grid array semiconductor package and method
US5784264A (en) 1994-11-28 1998-07-21 Nec Corporation MCM (Multi Chip Module) carrier with external connection teminals BGA (Ball Grid Array) type matrix array form
US5616958A (en) 1995-01-25 1997-04-01 International Business Machines Corporation Electronic package
US5783870A (en) 1995-03-16 1998-07-21 National Semiconductor Corporation Method for connecting packages of a stacked ball grid array structure
US5677566A (en) 1995-05-08 1997-10-14 Micron Technology, Inc. Semiconductor chip package
US5861666A (en) 1995-08-30 1999-01-19 Tessera, Inc. Stacked chip assembly
US5751063A (en) 1995-09-18 1998-05-12 Nec Corporation Multi-chip module
US5834339A (en) 1996-03-07 1998-11-10 Tessera, Inc. Methods for providing void-free layers for semiconductor assemblies
US5804874A (en) 1996-03-08 1998-09-08 Samsung Electronics Co., Ltd. Stacked chip package device employing a plurality of lead on chip type semiconductor chips
US6342728B2 (en) 1996-03-22 2002-01-29 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
US5844315A (en) 1996-03-26 1998-12-01 Motorola Corporation Low-profile microelectronic package
US5835988A (en) 1996-03-27 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Packed semiconductor device with wrap around external leads
US5883426A (en) 1996-04-18 1999-03-16 Nec Corporation Stack module
US6030856A (en) 1996-06-10 2000-02-29 Tessera, Inc. Bondable compliant pads for packaging of a semiconductor chip and method therefor
US6335565B1 (en) 1996-12-04 2002-01-01 Hitachi, Ltd. Semiconductor device
US6388264B1 (en) 1997-03-28 2002-05-14 Benedict G Pace Optocoupler package being hermetically sealed
US6188028B1 (en) * 1997-06-09 2001-02-13 Tessera, Inc. Multilayer structure with interlocking protrusions
US6195268B1 (en) 1997-06-09 2001-02-27 Floyd K. Eide Stacking layers containing enclosed IC chips
US6218848B1 (en) 1998-02-25 2001-04-17 Micron Technology, Inc. Semiconductor probe card having resistance measuring circuitry and method of fabrication
US6303997B1 (en) 1998-04-08 2001-10-16 Anam Semiconductor, Inc. Thin, stackable semiconductor packages
US6072233A (en) 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
US6268649B1 (en) 1998-05-04 2001-07-31 Micron Technology, Inc. Stackable ball grid array package
US6180881B1 (en) 1998-05-05 2001-01-30 Harlan Ruben Isaak Chip stack and method of making same
US6291259B1 (en) 1998-05-30 2001-09-18 Hyundai Electronics Industries Co., Ltd. Stackable ball grid array semiconductor package and fabrication method thereof
US5977640A (en) * 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US6313522B1 (en) 1998-08-28 2001-11-06 Micron Technology, Inc. Semiconductor structure having stacked semiconductor devices
US6093029A (en) 1998-09-08 2000-07-25 S3 Incorporated Vertically stackable integrated circuit
US6496026B1 (en) 2000-02-25 2002-12-17 Microconnect, Inc. Method of manufacturing and testing an electronic device using a contact device having fingers and a mechanical ground
US6462421B1 (en) 2000-04-10 2002-10-08 Advanced Semicondcutor Engineering, Inc. Multichip module
US6369445B1 (en) 2000-06-19 2002-04-09 Advantest Corporation Method and apparatus for edge connection between elements of an integrated circuit
US6515870B1 (en) 2000-11-27 2003-02-04 Intel Corporation Package integrated faraday cage to reduce electromagnetic emissions from an integrated circuit
US6818474B2 (en) * 2001-12-29 2004-11-16 Hynix Semiconductor Inc. Method for manufacturing stacked chip package
US8288862B2 (en) * 2002-02-21 2012-10-16 United Test & Assembly Center Limited Multiple die stack package
US7294928B2 (en) 2002-09-06 2007-11-13 Tessera, Inc. Components, methods and assemblies for stacked packages
US6703713B1 (en) 2002-09-10 2004-03-09 Siliconware Precision Industries Co., Ltd. Window-type multi-chip semiconductor package

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Megabyte Per Cubic Inch," Defense Science, May 1988, p. 56.
"Three-Dimensional Packaging," Defense Science, May 1988, p. 65.
Forthun, U.S. Appl. No. 07/552,578, filed Jul. 13, 1990.
Newsam, U.S. Appl. No. 60/314,042, filed Aug. 22, 2001.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349672B2 (en) 2007-08-16 2016-05-24 Tessera, Inc. Microelectronic package
US9312239B2 (en) 2010-10-19 2016-04-12 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
US9312244B2 (en) 2011-04-21 2016-04-12 Tessera, Inc. Multiple die stacking for two or more die
US9437579B2 (en) 2011-04-21 2016-09-06 Tessera, Inc. Multiple die face-down stacking for two or more die
US9640515B2 (en) 2011-04-21 2017-05-02 Tessera, Inc. Multiple die stacking for two or more die
US9735093B2 (en) 2011-04-21 2017-08-15 Tessera, Inc. Stacked chip-on-board module with edge connector
US9806017B2 (en) 2011-04-21 2017-10-31 Tessera, Inc. Flip-chip, face-up and face-down centerbond memory wirebond assemblies
US10622289B2 (en) 2011-04-21 2020-04-14 Tessera, Inc. Stacked chip-on-board module with edge connector

Also Published As

Publication number Publication date
US20050116358A1 (en) 2005-06-02
US7061121B2 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
USRE45463E1 (en) Stacked microelectronic assemblies with central contacts
US6885106B1 (en) Stacked microelectronic assemblies and methods of making same
JP3685947B2 (en) Semiconductor device and manufacturing method thereof
KR100621991B1 (en) Chip scale stack package
JP3383398B2 (en) Semiconductor package
US6900551B2 (en) Semiconductor device with alternate bonding wire arrangement
US6127724A (en) Packaged microelectronic elements with enhanced thermal conduction
US7309913B2 (en) Stacked semiconductor packages
US6775153B2 (en) Semiconductor device and method of manufacture thereof, circuit board, and electronic instrument
US7402911B2 (en) Multi-chip device and method for producing a multi-chip device
US9312239B2 (en) Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
JP6027966B2 (en) Stackable mold microelectronic package with area array unit connector
US6987325B2 (en) Bond pad rerouting element and stacked semiconductor device assemblies including the rerouting element
US9627366B2 (en) Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another
US7473993B2 (en) Semiconductor stack package and memory module with improved heat dissipation
US20070111379A1 (en) Pre-molded leadframe and method therefor
US5790378A (en) High density integrated circuit package including interposer
WO2012145201A1 (en) Flip-chip, face-up and face-down centerbond memory wirebond assemblies
KR20060060605A (en) Semiconductor device
KR100674907B1 (en) Stack type semiconductor package having high reliability
US20060286717A1 (en) Stacked microelectronic assemblies having basal compliant layers
US8872318B2 (en) Through interposer wire bond using low CTE interposer with coarse slot apertures
US20030048624A1 (en) Low-height multi-component assemblies
KR20090043945A (en) Stack package
US20070228580A1 (en) Semiconductor device having stacked structure and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA

Free format text: SECURITY INTEREST;ASSIGNORS:INVENSAS CORPORATION;TESSERA, INC.;TESSERA ADVANCED TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040797/0001

Effective date: 20161201

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNORS:ROVI SOLUTIONS CORPORATION;ROVI TECHNOLOGIES CORPORATION;ROVI GUIDES, INC.;AND OTHERS;REEL/FRAME:053468/0001

Effective date: 20200601

AS Assignment

Owner name: INVENSAS CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: TESSERA, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: TESSERA ADVANCED TECHNOLOGIES, INC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: INVENSAS BONDING TECHNOLOGIES, INC. (F/K/A ZIPTRONIX, INC.), CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: DTS LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: IBIQUITY DIGITAL CORPORATION, MARYLAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: PHORUS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: FOTONATION CORPORATION (F/K/A DIGITALOPTICS CORPORATION AND F/K/A DIGITALOPTICS CORPORATION MEMS), CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601

Owner name: DTS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001

Effective date: 20200601