USRE46317E1 - Normalizing capacitive sensor array signals - Google Patents

Normalizing capacitive sensor array signals Download PDF

Info

Publication number
USRE46317E1
USRE46317E1 US14/171,746 US201414171746A USRE46317E US RE46317 E1 USRE46317 E1 US RE46317E1 US 201414171746 A US201414171746 A US 201414171746A US RE46317 E USRE46317 E US RE46317E
Authority
US
United States
Prior art keywords
array
position information
capacitive sensors
capacitive
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/171,746
Inventor
Ryan D. Seguine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monterey Research LLC
Original Assignee
Monterey Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monterey Research LLC filed Critical Monterey Research LLC
Priority to US14/171,746 priority Critical patent/USRE46317E1/en
Assigned to CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC reassignment CYPRESS SEMICONDUCTOR CORPORATION PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MONTEREY RESEARCH, LLC reassignment MONTEREY RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION
Application granted granted Critical
Publication of USRE46317E1 publication Critical patent/USRE46317E1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance

Definitions

  • Embodiments of the present invention generally relate to capacitive sensor arrays.
  • the sensor array is typically connected to detection logic via a portion of the sides of the array.
  • the sensor array is divided up into rows and columns each with corresponding capacitive sensing elements.
  • the signal In order for a signal of a capacitive sensing element to be processed, the signal must travel though the rest of the row or column to be received by the detection logic.
  • the greater the distance from the connection of the sensor array the greater signal loss that occurs due to series impedance as the signal travels through the array to the detector logic. For example, for a sensor array having connections on the bottom and right, signals registered in the upper left corner will experience signal loss as the signals travel through the array connections.
  • signals registered at the bottom right of the array will have much less signal loss.
  • the non-uniform signal loss characteristic may lead to inaccurate position determination across the face of the user interface panel.
  • the reduction in sensitivity occurs worse at the corner that is furthest away from the detection logic connection.
  • embodiments of the present invention are directed to a system and method for processing position signal information using high impedance capacitive sensors.
  • the processing of the signal information overcomes the signal loss caused by series impedance of an array of capacitive sensors.
  • Embodiments of the present invention thus facilitate accurate reporting of position information from an array of capacitive sensors that utilize high impedance capacitive substrates.
  • an embodiment of the present invention is directed to a method for processing a position signal.
  • the method includes receiving a first position signal from a capacitive sensor and determining a proximity of the capacitive sensor to a connection of an array of capacitive sensors.
  • the sensitivity of the capacitive sensor is then adjusted (e.g., by adjusting the scan time) and a second position signal (e.g., including a more sensitive sensor reading) is received from the capacitive sensor.
  • the second position signal may then be reported.
  • the system includes a position signal receiver for receiving a position signal from an array of capacitive sensors and a position information module for accessing information corresponding with the position signal.
  • the information may include values to be applied to the position signal.
  • the system further includes a sensor sensitivity control module for adjusting the sensitivity of a capacitive sensor (e.g., adjusting the scan time or applying a value corresponding to the location of a sensor) and a position signal reporting module for reporting the position signal to a coupled device (e.g., computing device).
  • Another embodiment of the present invention is a method for reporting position information using capacitive sensors.
  • the method includes receiving position information from a capacitive sensor and accessing a value corresponding to the position information.
  • the value accessed may correspond to the location of the capacitive sensor within an array of capacitive sensors.
  • the method further includes adjusting the position information based on the value corresponding to the position information and reporting the adjusted position information.
  • Another embodiment of the present invention is a method for processing a position signal.
  • the method includes receiving a first position signal from a plurality of active capacitive sensors and determining a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors.
  • the method further includes adjusting the sensitivity of the active capacitive sensors and receiving a second position from the plurality of active capacitive sensors.
  • the second position signal (e.g., more sensitive signal) may then be reported.
  • FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention
  • FIG. 2 shows an exemplary sensor circuit, in accordance with one embodiment of the present invention.
  • FIG. 3 shows an exemplary timing diagram or voltage graph of a capacitor of the exemplary sensor circuit of FIG. 2 , in accordance with an embodiment of the present invention.
  • FIG. 4 shows the exemplary sensor circuit of FIG. 2 with an equivalent resistance during phase 1, in accordance with an embodiment of the present invention.
  • FIG. 5 shows another exemplary sensor circuit, in accordance with another embodiment of the present invention.
  • FIG. 6 shows the exemplary sensor circuit of FIG. 5 with an equivalent resistance, in accordance with an embodiment of the present invention.
  • FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention.
  • FIG. 8 shows a flowchart of an exemplary process for reporting position information, in accordance with an embodiment of the present invention.
  • FIG. 9 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.
  • FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.
  • FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention.
  • Capacitive sensor array 100 may provide a user interface (e.g., touchpad, track pad, touch screen, and the like) for a variety of devices including, but not limited to, servers, desktop computers, laptops, tablet PCs, mobile devices, music devices, video devices, cellular telephones, and smartphones etc.
  • Capacitive sensor array 100 may include a plurality of sensor elements in a row and column configuration that utilize a high impedance capacitance substrate. Another possible structure for a capacitive sensing array is described in US Patent Application Publication No. 2007/0229470.
  • Sensor capacitor 102 illustrates an exemplary capacitive sensor cell in capacitive sensor array 100 .
  • Capacitive sensor array 100 may be configured in a variety of ways including, but not limited to, a square, a rectangle, a circle, or a ring etc.
  • Connections 104 facilitate coupling of capacitive sensor array 100 to detection logic for detecting and reporting a user contact and its position to a coupled device (e.g., computing device).
  • capacitive sensor array 100 is made of a material having an impedance which impacts signals received from sensor circuits remote from connections 104 .
  • signals from sensor circuits in the upper left of capacitive sensor array 100 may be reduced or impacted by series impedance as the signal travels through the array to connections 104 . It is appreciated that as the distance between connections 104 and a sensor of capacitive sensor circuit array 100 increases, the impact of the series impedance of capacitive sensor array 100 increases. Embodiments of the present invention address this decrease in sensitivity to provide a more accurate position determination.
  • FIGS. 2 and 4-6 illustrate example components used by various embodiments of the present invention. Although specific components are disclosed in circuits 200 , 400 , 500 , and 600 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in systems 200 , 400 , 500 , and 600 . It is appreciated that the components in systems 200 , 400 , 500 , and 600 may operate with other components than those presented, and that not all of the components of systems 200 , 400 , 500 , and 600 may be required to achieve the goals of systems 200 , 400 , 500 , and 600 .
  • FIG. 2 shows an exemplary sensor circuit 200 , in accordance with one embodiment of the present invention.
  • Sensor circuit 200 includes Vdd signal 202 , current source 204 , comparator 208 , timer 210 , data processing module 212 , oscillator 214 , reference voltage 226 , external modification capacitor 216 , ground signal 224 , sensor capacitor 222 (located in the sensor array), switch 220 and switch 218 .
  • Current source 204 may be a current DAC (Digital to Analog converter). Circuits of the type shown in FIG. 2 are described in more detail in U.S. Pat. Nos. 7,307,485 and 7,375,535.
  • circuit 200 may operate in three phases.
  • a first phase See 302 , FIG. 3
  • switch 218 alternatively couples current source 204 to sensor capacitor 222 and current source 204 charges or settles external modification capacitor 216 to a start voltage, Vstart.
  • the start voltage may be governed the voltage current function expressed by:
  • V Start 1 f ⁇ C x ⁇ iDAC
  • f is the frequency of the switching of switch 218
  • Cx is the capacitance of the sensor capacitor 222
  • iDAC is the current of current source 204 .
  • the capacitance of sensor capacitor 222 (one of the capacitors of array 100 of FIG. 1 ) varies with the presence of objects (e.g., a finger). For example, the presence of a finger may increase the capacitance and thereby result in a lower starting voltage. Conversely, a higher starting voltage may result from no finger being present.
  • the sensor capacitor 222 is decoupled from current source 204 by switch 218 and sensor capacitor 222 is discharged by coupling to ground signal 224 via switch 220 .
  • External modification capacitor 216 may be charged by current source 204 until the voltage across it increases to reference voltage 226 at which time comparator 208 is tripped which disables timer 210 .
  • voltage on the external modification capacitor 216 is reduced through a low pass filter in series with external modification capacitor 216 to the input of comparator 208 .
  • timer 210 is a counter (e.g., 16-bit).
  • the raw number of counts on timer 210 measures the time required from Vstart to Vref (reference voltage 226 ) and may be used to determine if a finger is present on sensor capacitor 222 .
  • the raw counts are taken after each measurement sequence (e.g., after each charge of sensor capacitor 222 and tripping of comparator 208 ) and then compared to a stored baseline number of counts with no finger present on sensor capacitor 222 . If the difference between the raw counts and the baseline counts exceeds a threshold, then sensor activation is detected for that sensor.
  • the value of the counter may measure how long it took for the voltage across external modification capacitor 216 to reach the threshold or reference voltage 226 and can then be used to determine what the start voltage was which is a measure of whether or not a finger was present.
  • the time (or count) measured by timer 210 may be used by data processing module 212 to the detection logic to process the data and make decisions based on the capacitive inputs (e.g., sensors triggered by presence of a finger). Lower starting voltages (e.g., when a finger is present) lead to longer charge times as the current from the current source 204 flows into the external modification capacitor 216 and increases the voltage at the same rate. If the start voltage is low, the time or count measured by timer 210 will be relatively large because current source 204 will have to provide more charge to external modification capacitor 216 to reach reference voltage 226 . If the start voltage is relatively high (e.g., no finger present), the time or count measured by time 210 is low as current source 204 provides less current to external modification capacitor 216 to reach reference voltage 226 .
  • a third phase (See 306 , FIG. 3 ), the sensor scan is completed and current source 204 is turned off.
  • the time or count from timer 210 may be processed and stored.
  • Voltage on the external modification capacitor 216 decreases as charge dissipates by leakage currents until the next scan begins.
  • the amount of time that the voltage decreases is strictly dependent upon the firmware between each scan and the CPU (Central Processing Unit) clock speed. It is appreciated that the next scan may then start with the first phase on the same sensor circuit or another sensor circuit (e.g., an adjacent or active sensor circuit).
  • comparator 208 may be replaced with an analog-to-digital converter (ADC).
  • ADC analog-to-digital converter
  • Charge from the sensor capacitor 222 is transferred to external modification capacitor 216 acting as a filter capacitor for a prescribed number of cycles. After the prescribed number of cycles is complete, the voltage on external modification capacitor 216 is measured by the ADC and the output of the ADC is proportional to the size of sensor capacitor 222 . The measured value of the ADC may then be used to determine the presence of an object.
  • ADC analog-to-digital converter
  • FIG. 3 shows an exemplary voltage graph of the exemplary sensor circuit of FIG. 2 in operation, in accordance with an embodiment of the present invention.
  • Graph 300 includes vertical axis 320 corresponding to the voltage of external modification capacitor 216 and horizontal axis 322 corresponding to the time (or counts) which may be measured by timer 210 .
  • Graph 300 further includes voltage markers 316 corresponding to reference voltage 226 and voltage marker 318 corresponding to the start voltage.
  • circuit 200 may operate in three phases.
  • Graph 300 illustrates phase 1 with region 302 during which the voltage on external modification capacitor 216 is settled or brought to a start voltage.
  • Graph 300 illustrates phase 2 with region 304 during which external modification capacitor 216 is charged via current source 204 to reference voltage 226 .
  • the amount of time needed to reach reference voltage 226 is used by data processing module 212 to determine whether an object (e.g., finger) is present. It is appreciated that the voltage of external modification capacitor 216 may exceed reference voltage 226 before comparator 208 trips timer 210 .
  • the duration of 304 can be increased which will increase the resolution of the reading.
  • Graph 300 further illustrates phase 3 with region 306 during which external modification capacitor 216 is discharged. It is appreciated that external modification capacitor 216 may be discharged while other capacitive sensors of a capacitive sensor array are scanned.
  • FIG. 4 shows an exemplary sensor circuit with an equivalent resistance, in accordance with phase 1 of the circuit of FIG. 2 .
  • Sensor circuit 400 includes Vdd signal 202 , current source 204 , comparator 208 , timer 210 , data processing 212 , oscillator 214 , reference voltage 226 , external modification capacitor 216 , ground signal 224 , sensor capacitor 222 , and equivalent resistance 430 .
  • a current value for current source 204 may be determined which results in a start voltage across equivalent resistance 430 that is below reference voltage 226 .
  • the equivalent resistance 430 may be governed the voltage current function expressed by:
  • R Equivalent 1 f s ⁇ C x
  • fs the switching frequency of phases 1 and 2 as described herein
  • Cx the capacitance of sensor capacitor 22 .
  • equivalent resistance 430 is inversely proportional to the capacitance of sensor capacitor 222 .
  • the presence of an object (e.g., finger) on a sensor therefore increases the capacitance of the sensor, which decreases equivalent resistance 430 formed by the switching phases 1 and 2.
  • the start voltage may be governed the voltage current function expressed by:
  • V Start 1 f s ⁇ C x ⁇ iDAC
  • fs is the switching frequency of phases 1 and 2 as described herein
  • Cx is the capacitance of sensor capacitor 222
  • iDAC is current of current source 204 .
  • a lower starting voltage corresponds to an increased time for current source 204 to charge up external modification capacitor 216 , thereby resulting in a larger time that timer 210 will operate.
  • Data processing module 212 may thus process the increased value from timer 210 to indicate the presence of an object relative to the equivalent resistance 430 .
  • FIG. 5 shows an exemplary sensor circuit, in accordance with another embodiment of the present invention.
  • Sensor circuit 500 includes Vdd 502 , pseudo random generator 504 , oscillator 506 , frequency modifier 508 , pulse-width modulator 510 , counter 512 , data processing module 514 , and gate 516 , latch 518 , comparator 520 , reference voltage 522 , discharge resistor 526 , ground signal 524 , external modification capacitor 528 , sensor capacitor 530 , switch 532 , switch 534 , and switch 536 .
  • Switches 532 and 534 are controlled by pseudo random generator 504 , which modulates the voltage across external modification capacitor 528 about reference voltage 522 in charge up and charge down steps. Pseudo random generator 504 reduces the electromagnetic inference susceptibility and radiated emissions of capacitive sensing circuits.
  • external modification capacitor 528 is larger than sensor capacitor 530 .
  • switch 534 is used to charge sensor capacitor 530 .
  • the capacitance of sensor capacitor 530 varies with the presence of an object (e.g., a finger). After the charging of sensor capacitor 530 , switch 534 is decoupled and switch 532 is coupled thereby allowing the charge of sensor capacitor 530 to flow to external modification capacitor 528 .
  • the voltage across external modification capacitor 528 may be an input to comparator 520 .
  • discharge resistor 526 is connected and charge is bled off of external modification capacitor 528 at a rate determined by the starting voltage across the external modification capacitor 528 and the value of discharge resistor 526 .
  • discharge resistor 526 is disconnected from ground 524 via switch 536 .
  • the charge/discharge cycle of the external modification capacitor 528 is manifested as a bit stream on the output of comparator 520 .
  • the bit-stream of comparator 520 is ‘ANDed’ with pulse-width modulator 510 via and gate 516 to enable timer 512 .
  • Pulse width modulator 510 sets the time-frame or measurement window in which the bit-stream enables and disables timer 512 .
  • the capacitance measurement and therefore the presence of an object is a matter of comparing the bit-stream of the comparator to the known, baseline value.
  • reference voltage 522 affects the baseline level of counts or time measured by timer 512 from a sensor when no finger is on the sensor. This voltage on an external modification capacitor 528 may reach the reference voltage before comparator 520 trips, so the value of reference voltage 522 affects the amount of time that it takes external modification capacitor 528 to charge to reference voltage 522 , decreasing the density of the bit-stream during a scan.
  • timer 512 The output of timer 512 is used for processing the level of capacitance change and determining the sensor activation state. The duration of these steps is compared relative to each other by looking at the comparator bit-stream density. If the density of the bit-stream is relatively high, the sensor is read as “on”. The bit-stream output of comparator 520 is synchronized with system clock via latch 518 .
  • FIG. 6 shows an equivalent resistance of the circuit of FIG. 5 , in accordance with an embodiment of the present invention.
  • Sensor circuit 600 includes Vdd 502 , oscillator 506 , frequency modifier 508 , pulse-width modulator 510 , counter 512 , data processing module 514 , and gate 516 , latch 518 , comparator 520 , reference voltage 522 , discharge resistor 526 , ground signal 5247 external modification capacitor 528 , switch 536 , and equivalent resistance 640 .
  • Equivalent resistance 640 is inversely proportional to the capacitance of sensor capacitor 530 . As such, the presence of an object (e.g., a finger) will result in an increase in capacitance and a corresponding reduction in the resistance of equivalent resistance 640 . The reduction of equivalent resistance 640 thereby allows more current to charge external modification capacitor 528 and thereby allowing the voltage across external modification capacitor 528 to reach reference voltage 522 relatively faster.
  • FIG. 7 illustrates example components used by various embodiments of the present invention. Although specific components are disclosed in system 700 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in system 700 . It is appreciated that the components in system 700 may operate with other components than those presented, and that not all of the components of system 700 may be required to achieve the goals of system 700 .
  • FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention.
  • System 700 may be coupled to an array of capacitive sensors comprising a plurality of sensor circuits as described herein.
  • Position signal receiver 702 receives position signals from an array of capacitive sensors. As described herein, the position signals may be received from one or more sensor circuits of an array of capacitive sensors. The position signals may further originate from multiple sensors comprising a centroid.
  • Position information module 704 accesses information corresponding with the position signal received by position signal receiver 702 .
  • the information may correspond with the position signal and include location information of a capacitive sensor within the array of capacitive sensors. For example, information regarding the relative location of a capacitive sensor relative to a connection (e.g., connections 104 ) of an array of capacitive sensors may be accessed. It is appreciated that values may be accessed as new position information is received from active sensors (e.g., as an object moves around).
  • the information may further include a scalar value for adjusting a position signal.
  • the scalar value may be dependent on the sensor's distance from the detection logic and therefore based on the sensor's location within the array. In one embodiment, the value may be based on the percentage of reduction of the signal impacted by the impedance of the array as the signal is transmitted to a connection of a capacitive sensor array. For example, the scalar value may be used to increase a signal level by 50% of a capacitive sensor in the top left of a capacitive sensor in the array where the connections are in the bottom right. The scalar value may be based on the capacitive sensor's location resulting in a 50% reduction in the signal received at the connections of the array. It is appreciated that a scalar value corresponding to sensors adjacent to the connections of an array of capacitive sensors may not need to be applied.
  • the scalar values may be stored in a matrix with each sensor circuit having a corresponding scalar value.
  • scalar values for adjusting position signals from sensor circuits remote from the connection of the array of capacitive sensors may be greater than the scalar values for sensor circuits near or adjacent to the connections of the array of capacitive sensors.
  • Scalar values corresponding to each sensor circuit may further facilitate more accurate readings from the array of capacitive sensors. For example, due to the impact of impedance on an array of capacitive sensors, centroid readings may be pulled down and to the right because the reading from sensors up and to the left are increasingly impacted by the series impedance of the array of capacitive sensors thereby having decreased sensitivity. The adjusting of centroid with the scalar values allows the centroid to be adjusted to compensate for the impact of the capacitance and thereby the centroid can be more accurately reported.
  • all the sensor values may be adjusted by the same scalar value.
  • a scalar value may be multiplied or applied to each signal of each capacitive sensor in an array of capacitive sensors.
  • Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors.
  • the sensor sensitivity control module 706 may adjust the sensitivity of one or more active capacitive sensors or a plurality of the capacitive sensors (e.g., including active and inactive sensors) in an array of capacitive sensors.
  • Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors by adjusting a scan time of the one or more capacitive sensors.
  • the adjustment of the scan time of the capacitive sensors facilitates greater resolution and signal levels in readings from the capacitive sensors.
  • the sensitivity may be adjusted according to the proximity of the sensors to the connections of the array of capacitive sensors.
  • the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200 ).
  • a current source e.g., current source 204
  • capacitor e.g., external modification capacitor 216
  • the adjustment of the current or capacitor value may result in increased counts or time measured by timer 210 .
  • the current of a current source e.g., current source 204
  • a pulse width modulator (e.g. pulse width modulator 510 ) may be adjusted to increase period of an output of a bit-stream of a circuit (e.g., circuit 500 ).
  • the increased period of the output of the bit-stream enables higher raw counts or times to be measured thereby increasing the resolution of the sensor.
  • Sensor sensitivity control module 706 may further adjust the sensitivity of one or more capacitive sensors based on information corresponding to a location within the array of capacitive sensors including, but not limited to, scalar values accessed via position information module 704 .
  • Position signal reporting module 708 reports the position signal.
  • Position signal reporting module 708 may report a position signal after that has been adjusted by sensor sensitivity control module 706 . For example, a first position signal may be received and a second signal may be reported after the sensitivity of the corresponding sensor has been adjusted by sensor sensitivity control module 706 .
  • exemplary flowcharts 800 - 1000 each illustrate example blocks used by various embodiments of the present invention. Although specific blocks are disclosed in flowcharts 800 - 1000 , such blocks are examples. That is, embodiments are well suited to performing various other blocks or variations of the blocks recited in flowcharts 800 - 1000 . It is appreciated that the blocks in flowcharts 800 - 1000 may be performed in an order different than presented, and that not all of the blocks in flowcharts 800 - 1000 may be performed.
  • FIG. 8 shows a flowchart 800 of an exemplary process for reporting position information, in accordance with an embodiment of the present invention.
  • the blocks of flowchart 800 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514 ) of a sensor circuit (e.g., sensor circuits 200 and 400 - 600 ).
  • a data processing portion e.g., data processing module 212 or data processing module 514
  • a sensor circuit e.g., sensor circuits 200 and 400 - 600 .
  • first position information regarding an interaction is received from a number of capacitive sensors.
  • the position information may include a centroid computation and may be received from one or more capacitive sensors in an array of capacitive sensors. Sensors reporting a signal that exceeds a threshold are active and contribute to the centroid computation.
  • an adjustment value corresponding to the position information is accessed.
  • the adjustment value corresponding to the position information may be based on a location of the active capacitive sensor within an array of capacitive sensors relative to the connections of the array. For example, a larger adjustment value may correspond to sensors whose signal is impacted by the series impedance of the array of capacitive sensors as the signal travels to the connections of the array of capacitive sensors.
  • each capacitive sensor in the array may have a respective adjustment value assigned to it based on its relative distance to the detector logic.
  • the adjustment values are obtained for the active sensors participating in the centroid computation.
  • the first position information is adjusted based on the adjustment values corresponding to the position information to calculate an adjusted position information.
  • the adjusting may include multiplying the signals corresponding to the first position information with the adjustment values which may be scalar values.
  • the values may be applied to active sensors or one or more sensors of the array of capacitive sensors. It is appreciated that the adjustment of the position information may improve the signal level reported by sensor and thereby compensate for the impact of impedance on the array of capacitive sensors.
  • the sensor readings for the active sensors are multiplied by their respective adjustment values. This new data is then used to determine an adjusted position.
  • a position of the interaction is computed using the adjusted signals.
  • the centroid is again calculated based on the adjusted position information.
  • the position of the interaction as computed in 808 is reported.
  • the position of the interaction e.g., centroid
  • the device e.g., computing device and the like
  • FIG. 9 shows a flowchart 900 of an exemplary process for processing a position signal, in accordance with another embodiment of the present invention.
  • the blocks of flowchart 900 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514 ) of a sensor circuit (e.g., sensor circuits 200 and 400 - 600 ). It is appreciated that blocks or select blocks of flowchart 900 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.
  • the array of capacitive sensors is in a low sensitivity mode with all sensors scanned.
  • the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.
  • a first position signal is received from a first plurality of capacitive sensors.
  • the first position signal may be computed from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.
  • a proximity of the plurality of capacitive sensors to a connection of an array of capacitive sensors is determined on an individual level. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.
  • the sensitivity of all capacitive sensors in the array of capacitive sensors is adjusted.
  • the sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of all of the sensors allows enhanced tracking of an object as movement is detected.
  • the sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors based individually on their location within the array.
  • the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204 ), adjusting a pulse width modulation (e.g., of pulse width modulator 410 ), a voltage threshold (e.g., reference voltage 226 or 422 ), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428 ).
  • the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200 ).
  • the scan time may be adjusted according to the position of one or more capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right.
  • each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.
  • a second position signal is received from a second plurality of capacitive sensors.
  • the second position signal may be received after the sensitivity of the sensors has been adjusted as described herein. It is appreciated that the second plurality of sensors may be different from the first plurality of sensors where the object has moved before the sensitivity of the sensors has been adjusted. The first plurality of sensors and the second plurality of sensors may be same when the object has not moved.
  • the second position signal is reported.
  • FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.
  • the blocks of flowchart 1000 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514 ) of a sensor circuit (e.g., sensor circuits 200 and 400 - 600 ). It is appreciated that blocks or select blocks of flowchart 1000 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.
  • the array of capacitive sensors is in a low sensitivity mode with all sensors scanned.
  • the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.
  • a first position signal is received from a plurality of active capacitive sensors.
  • the first position signal may be coupled from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.
  • a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors is determined. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.
  • the sensitivity of the active capacitive sensors in the array of capacitive sensors is adjusted.
  • the sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of the active capacitive sensors saves power over increasing the sensitivity of all the capacitive sensors.
  • the sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors.
  • the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204 ), adjusting a pulse width modulation (e.g., of pulse width modulator 410 ), a voltage threshold (e.g., reference voltage 226 or 422 ), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428 ).
  • the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200 ). It is appreciated that adjusting the scan time of the active capacitive sensors saves scan time over increasing the scan time of the entire array of capacitive sensors.
  • the scan time may be adjusted according to the position of one or more active capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right.
  • each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.
  • a second position signal is received from the plurality of active capacitive sensors with heightened sensitivity.
  • the second position signal may be received after the sensitivity of the sensors has been adjusted as described herein.
  • the second position signal is reported.
  • embodiments of the present invention compensate for the impedance of an array of capacitive sensors.
  • a substantial improvement in accuracy and performance of arrays of capacitive sensors is achieved.

Abstract

An embodiment of the present invention is directed to a method for reporting position information. Position information received from a plurality of capacitive sensors in an array of capacitive sensors is adjusted based on predetermined adjustment values to generate adjusted position information. Each predetermined adjustment value is associated with at least one of the plurality of capacitive sensors. A signal representative of the adjusted position information is generated. In another embodiment, the sensitivity of at least one of the capacitive sensors is adjusted based on the position of the at least one capacitive sensor within the array.

Description

RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 12/167,552, filed Jul. 3, 2008, which claims the benefit of U.S. Provisional Application No. 60/947,903, filed on Jul. 3, 2007, both of which are incorporated herein by reference.
FIELD OF THE INVENTION
Embodiments of the present invention generally relate to capacitive sensor arrays.
BACKGROUND OF THE INVENTION
As computing technology has developed, user interface devices have advanced correspondingly. User interfaces have become increasingly significant in the usability of a computing device.
One particular user interface becoming increasingly popular is touch screen or track pad which uses an array of capacitive sensors using high impedance capacitance substrates. The sensor array is typically connected to detection logic via a portion of the sides of the array. The sensor array is divided up into rows and columns each with corresponding capacitive sensing elements. In order for a signal of a capacitive sensing element to be processed, the signal must travel though the rest of the row or column to be received by the detection logic. The greater the distance from the connection of the sensor array, the greater signal loss that occurs due to series impedance as the signal travels through the array to the detector logic. For example, for a sensor array having connections on the bottom and right, signals registered in the upper left corner will experience signal loss as the signals travel through the array connections. In contrast, signals registered at the bottom right of the array will have much less signal loss. The non-uniform signal loss characteristic may lead to inaccurate position determination across the face of the user interface panel. For an array of high impedance row and column sensors, the reduction in sensitivity occurs worse at the corner that is furthest away from the detection logic connection.
Thus, conventional user interface designs have signal loss issues as signals from sensors remote from the connection of a sensory array are impacted by the series impedance of the sensor array.
SUMMARY OF THE INVENTION
Accordingly, embodiments of the present invention are directed to a system and method for processing position signal information using high impedance capacitive sensors. The processing of the signal information overcomes the signal loss caused by series impedance of an array of capacitive sensors. Embodiments of the present invention thus facilitate accurate reporting of position information from an array of capacitive sensors that utilize high impedance capacitive substrates.
More specifically, an embodiment of the present invention is directed to a method for processing a position signal. The method includes receiving a first position signal from a capacitive sensor and determining a proximity of the capacitive sensor to a connection of an array of capacitive sensors. The sensitivity of the capacitive sensor is then adjusted (e.g., by adjusting the scan time) and a second position signal (e.g., including a more sensitive sensor reading) is received from the capacitive sensor. The second position signal may then be reported.
Another embodiment of the present invention is directed to a system for processing position information using capacitive sensors. The system includes a position signal receiver for receiving a position signal from an array of capacitive sensors and a position information module for accessing information corresponding with the position signal. The information may include values to be applied to the position signal. The system further includes a sensor sensitivity control module for adjusting the sensitivity of a capacitive sensor (e.g., adjusting the scan time or applying a value corresponding to the location of a sensor) and a position signal reporting module for reporting the position signal to a coupled device (e.g., computing device).
Another embodiment of the present invention is a method for reporting position information using capacitive sensors. The method includes receiving position information from a capacitive sensor and accessing a value corresponding to the position information. The value accessed may correspond to the location of the capacitive sensor within an array of capacitive sensors. The method further includes adjusting the position information based on the value corresponding to the position information and reporting the adjusted position information.
Another embodiment of the present invention is a method for processing a position signal. The method includes receiving a first position signal from a plurality of active capacitive sensors and determining a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors. The method further includes adjusting the sensitivity of the active capacitive sensors and receiving a second position from the plurality of active capacitive sensors. The second position signal (e.g., more sensitive signal) may then be reported.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.
FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention
FIG. 2 shows an exemplary sensor circuit, in accordance with one embodiment of the present invention.
FIG. 3 shows an exemplary timing diagram or voltage graph of a capacitor of the exemplary sensor circuit of FIG. 2, in accordance with an embodiment of the present invention.
FIG. 4 shows the exemplary sensor circuit of FIG. 2 with an equivalent resistance during phase 1, in accordance with an embodiment of the present invention.
FIG. 5 shows another exemplary sensor circuit, in accordance with another embodiment of the present invention.
FIG. 6 shows the exemplary sensor circuit of FIG. 5 with an equivalent resistance, in accordance with an embodiment of the present invention.
FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention.
FIG. 8 shows a flowchart of an exemplary process for reporting position information, in accordance with an embodiment of the present invention.
FIG. 9 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.
FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION
Reference will now be made in detail to the preferred embodiments of the claimed subject matter, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the claimed subject matter to these embodiments. On the contrary, the claimed subject matter is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the claimed subject matter as defined by the claims. Furthermore, in the detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. However, it will be obvious to one of ordinary skill in the art that the claimed subject matter may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the claimed subject matter.
FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention. Capacitive sensor array 100 may provide a user interface (e.g., touchpad, track pad, touch screen, and the like) for a variety of devices including, but not limited to, servers, desktop computers, laptops, tablet PCs, mobile devices, music devices, video devices, cellular telephones, and smartphones etc. Capacitive sensor array 100 may include a plurality of sensor elements in a row and column configuration that utilize a high impedance capacitance substrate. Another possible structure for a capacitive sensing array is described in US Patent Application Publication No. 2007/0229470.
Sensor capacitor 102 illustrates an exemplary capacitive sensor cell in capacitive sensor array 100. Capacitive sensor array 100 may be configured in a variety of ways including, but not limited to, a square, a rectangle, a circle, or a ring etc. Connections 104 facilitate coupling of capacitive sensor array 100 to detection logic for detecting and reporting a user contact and its position to a coupled device (e.g., computing device).
In one embodiment, capacitive sensor array 100 is made of a material having an impedance which impacts signals received from sensor circuits remote from connections 104. For example, signals from sensor circuits in the upper left of capacitive sensor array 100 may be reduced or impacted by series impedance as the signal travels through the array to connections 104. It is appreciated that as the distance between connections 104 and a sensor of capacitive sensor circuit array 100 increases, the impact of the series impedance of capacitive sensor array 100 increases. Embodiments of the present invention address this decrease in sensitivity to provide a more accurate position determination.
Example Circuits
FIGS. 2 and 4-6 illustrate example components used by various embodiments of the present invention. Although specific components are disclosed in circuits 200, 400, 500, and 600 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in systems 200, 400, 500, and 600. It is appreciated that the components in systems 200, 400, 500, and 600 may operate with other components than those presented, and that not all of the components of systems 200, 400, 500, and 600 may be required to achieve the goals of systems 200, 400, 500, and 600.
FIG. 2 shows an exemplary sensor circuit 200, in accordance with one embodiment of the present invention. Sensor circuit 200 includes Vdd signal 202, current source 204, comparator 208, timer 210, data processing module 212, oscillator 214, reference voltage 226, external modification capacitor 216, ground signal 224, sensor capacitor 222 (located in the sensor array), switch 220 and switch 218. Current source 204 may be a current DAC (Digital to Analog converter). Circuits of the type shown in FIG. 2 are described in more detail in U.S. Pat. Nos. 7,307,485 and 7,375,535.
In one embodiment, circuit 200 may operate in three phases. In a first phase (See 302, FIG. 3), switch 218 alternatively couples current source 204 to sensor capacitor 222 and current source 204 charges or settles external modification capacitor 216 to a start voltage, Vstart. In one embodiment, the start voltage may be governed the voltage current function expressed by:
V Start = 1 f · C x · iDAC
Where f is the frequency of the switching of switch 218, Cx is the capacitance of the sensor capacitor 222, and iDAC is the current of current source 204.
It is appreciated that the capacitance of sensor capacitor 222 (one of the capacitors of array 100 of FIG. 1) varies with the presence of objects (e.g., a finger). For example, the presence of a finger may increase the capacitance and thereby result in a lower starting voltage. Conversely, a higher starting voltage may result from no finger being present.
In a second phase (See 304, FIG. 3), the sensor capacitor 222 is decoupled from current source 204 by switch 218 and sensor capacitor 222 is discharged by coupling to ground signal 224 via switch 220. External modification capacitor 216 may be charged by current source 204 until the voltage across it increases to reference voltage 226 at which time comparator 208 is tripped which disables timer 210. In one embodiment, voltage on the external modification capacitor 216 is reduced through a low pass filter in series with external modification capacitor 216 to the input of comparator 208.
In one embodiment, timer 210 is a counter (e.g., 16-bit). The raw number of counts on timer 210 measures the time required from Vstart to Vref (reference voltage 226) and may be used to determine if a finger is present on sensor capacitor 222. The raw counts are taken after each measurement sequence (e.g., after each charge of sensor capacitor 222 and tripping of comparator 208) and then compared to a stored baseline number of counts with no finger present on sensor capacitor 222. If the difference between the raw counts and the baseline counts exceeds a threshold, then sensor activation is detected for that sensor. The value of the counter may measure how long it took for the voltage across external modification capacitor 216 to reach the threshold or reference voltage 226 and can then be used to determine what the start voltage was which is a measure of whether or not a finger was present.
For example, when no finger is present, 100 cycles may be required to bring the voltage across external modification capacitor 216 to reference voltage 226. When a finger is present, 105 cycles may be required to bring the voltage across external modification capacitor 216 to reference voltage 226. If there is a threshold of three cycles to indicate the presence of an object, as long as the number of the change in cycles is greater than three, the sensor may be determined or considered to be active. It is appreciated that a difference threshold larger than zero prevents noise or other interference from appearing as an active sensor.
The time (or count) measured by timer 210 may be used by data processing module 212 to the detection logic to process the data and make decisions based on the capacitive inputs (e.g., sensors triggered by presence of a finger). Lower starting voltages (e.g., when a finger is present) lead to longer charge times as the current from the current source 204 flows into the external modification capacitor 216 and increases the voltage at the same rate. If the start voltage is low, the time or count measured by timer 210 will be relatively large because current source 204 will have to provide more charge to external modification capacitor 216 to reach reference voltage 226. If the start voltage is relatively high (e.g., no finger present), the time or count measured by time 210 is low as current source 204 provides less current to external modification capacitor 216 to reach reference voltage 226.
In a third phase (See 306, FIG. 3), the sensor scan is completed and current source 204 is turned off. During the third phase, the time or count from timer 210 may be processed and stored. Voltage on the external modification capacitor 216 decreases as charge dissipates by leakage currents until the next scan begins. In one embodiment, the amount of time that the voltage decreases is strictly dependent upon the firmware between each scan and the CPU (Central Processing Unit) clock speed. It is appreciated that the next scan may then start with the first phase on the same sensor circuit or another sensor circuit (e.g., an adjacent or active sensor circuit).
In another embodiment, comparator 208 may be replaced with an analog-to-digital converter (ADC). Charge from the sensor capacitor 222 is transferred to external modification capacitor 216 acting as a filter capacitor for a prescribed number of cycles. After the prescribed number of cycles is complete, the voltage on external modification capacitor 216 is measured by the ADC and the output of the ADC is proportional to the size of sensor capacitor 222. The measured value of the ADC may then be used to determine the presence of an object.
FIG. 3 shows an exemplary voltage graph of the exemplary sensor circuit of FIG. 2 in operation, in accordance with an embodiment of the present invention. Graph 300 includes vertical axis 320 corresponding to the voltage of external modification capacitor 216 and horizontal axis 322 corresponding to the time (or counts) which may be measured by timer 210. Graph 300 further includes voltage markers 316 corresponding to reference voltage 226 and voltage marker 318 corresponding to the start voltage.
As mentioned above, circuit 200 may operate in three phases. Graph 300 illustrates phase 1 with region 302 during which the voltage on external modification capacitor 216 is settled or brought to a start voltage.
Graph 300 illustrates phase 2 with region 304 during which external modification capacitor 216 is charged via current source 204 to reference voltage 226. The amount of time needed to reach reference voltage 226 is used by data processing module 212 to determine whether an object (e.g., finger) is present. It is appreciated that the voltage of external modification capacitor 216 may exceed reference voltage 226 before comparator 208 trips timer 210. To increase the sensitivity of this detection mechanism, the duration of 304 can be increased which will increase the resolution of the reading.
Graph 300 further illustrates phase 3 with region 306 during which external modification capacitor 216 is discharged. It is appreciated that external modification capacitor 216 may be discharged while other capacitive sensors of a capacitive sensor array are scanned.
FIG. 4 shows an exemplary sensor circuit with an equivalent resistance, in accordance with phase 1 of the circuit of FIG. 2. Sensor circuit 400 includes Vdd signal 202, current source 204, comparator 208, timer 210, data processing 212, oscillator 214, reference voltage 226, external modification capacitor 216, ground signal 224, sensor capacitor 222, and equivalent resistance 430.
In the first phase, a current value for current source 204 may be determined which results in a start voltage across equivalent resistance 430 that is below reference voltage 226.
The equivalent resistance 430 may be governed the voltage current function expressed by:
R Equivalent = 1 f s · C x
Where fs is the switching frequency of phases 1 and 2 as described herein, and Cx is the capacitance of sensor capacitor 22.
As shown, equivalent resistance 430 is inversely proportional to the capacitance of sensor capacitor 222. The presence of an object (e.g., finger) on a sensor therefore increases the capacitance of the sensor, which decreases equivalent resistance 430 formed by the switching phases 1 and 2. A decreased equivalent resistance results in a lower starting voltage by V=IR. In one embodiment, the start voltage may be governed the voltage current function expressed by:
V Start = 1 f s · C x · iDAC
Where fs is the switching frequency of phases 1 and 2 as described herein, and Cx is the capacitance of sensor capacitor 222 and iDAC is current of current source 204.
A lower starting voltage corresponds to an increased time for current source 204 to charge up external modification capacitor 216, thereby resulting in a larger time that timer 210 will operate. Data processing module 212 may thus process the increased value from timer 210 to indicate the presence of an object relative to the equivalent resistance 430.
FIG. 5 shows an exemplary sensor circuit, in accordance with another embodiment of the present invention. Sensor circuit 500 includes Vdd 502, pseudo random generator 504, oscillator 506, frequency modifier 508, pulse-width modulator 510, counter 512, data processing module 514, and gate 516, latch 518, comparator 520, reference voltage 522, discharge resistor 526, ground signal 524, external modification capacitor 528, sensor capacitor 530, switch 532, switch 534, and switch 536.
Switches 532 and 534 are controlled by pseudo random generator 504, which modulates the voltage across external modification capacitor 528 about reference voltage 522 in charge up and charge down steps. Pseudo random generator 504 reduces the electromagnetic inference susceptibility and radiated emissions of capacitive sensing circuits. In one embodiment, external modification capacitor 528 is larger than sensor capacitor 530.
In one embodiment, switch 534 is used to charge sensor capacitor 530. The capacitance of sensor capacitor 530 varies with the presence of an object (e.g., a finger). After the charging of sensor capacitor 530, switch 534 is decoupled and switch 532 is coupled thereby allowing the charge of sensor capacitor 530 to flow to external modification capacitor 528.
As the charge in external modification capacitor 528 increases, so does the voltage across external modification capacitor 528. The voltage across external modification capacitor 528 may be an input to comparator 520. When the input to comparator 520 reaches the threshold voltage or reference voltage 522, discharge resistor 526 is connected and charge is bled off of external modification capacitor 528 at a rate determined by the starting voltage across the external modification capacitor 528 and the value of discharge resistor 526. As the voltage across external modification capacitor 528 decreases and the voltage passes reference voltage 522, discharge resistor 526 is disconnected from ground 524 via switch 536.
The charge/discharge cycle of the external modification capacitor 528 is manifested as a bit stream on the output of comparator 520. The bit-stream of comparator 520 is ‘ANDed’ with pulse-width modulator 510 via and gate 516 to enable timer 512. Pulse width modulator 510 sets the time-frame or measurement window in which the bit-stream enables and disables timer 512. The capacitance measurement and therefore the presence of an object is a matter of comparing the bit-stream of the comparator to the known, baseline value.
The value of reference voltage 522 affects the baseline level of counts or time measured by timer 512 from a sensor when no finger is on the sensor. This voltage on an external modification capacitor 528 may reach the reference voltage before comparator 520 trips, so the value of reference voltage 522 affects the amount of time that it takes external modification capacitor 528 to charge to reference voltage 522, decreasing the density of the bit-stream during a scan.
The output of timer 512 is used for processing the level of capacitance change and determining the sensor activation state. The duration of these steps is compared relative to each other by looking at the comparator bit-stream density. If the density of the bit-stream is relatively high, the sensor is read as “on”. The bit-stream output of comparator 520 is synchronized with system clock via latch 518.
FIG. 6 shows an equivalent resistance of the circuit of FIG. 5, in accordance with an embodiment of the present invention. Sensor circuit 600 includes Vdd 502, oscillator 506, frequency modifier 508, pulse-width modulator 510, counter 512, data processing module 514, and gate 516, latch 518, comparator 520, reference voltage 522, discharge resistor 526, ground signal 5247 external modification capacitor 528, switch 536, and equivalent resistance 640.
Sensor capacitor 530 is replaced with equivalent resistance 540. Equivalent resistance 640 is inversely proportional to the capacitance of sensor capacitor 530. As such, the presence of an object (e.g., a finger) will result in an increase in capacitance and a corresponding reduction in the resistance of equivalent resistance 640. The reduction of equivalent resistance 640 thereby allows more current to charge external modification capacitor 528 and thereby allowing the voltage across external modification capacitor 528 to reach reference voltage 522 relatively faster.
Example System
FIG. 7 illustrates example components used by various embodiments of the present invention. Although specific components are disclosed in system 700 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in system 700. It is appreciated that the components in system 700 may operate with other components than those presented, and that not all of the components of system 700 may be required to achieve the goals of system 700.
FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention. System 700 may be coupled to an array of capacitive sensors comprising a plurality of sensor circuits as described herein.
Position signal receiver 702 receives position signals from an array of capacitive sensors. As described herein, the position signals may be received from one or more sensor circuits of an array of capacitive sensors. The position signals may further originate from multiple sensors comprising a centroid.
Position information module 704 accesses information corresponding with the position signal received by position signal receiver 702. The information may correspond with the position signal and include location information of a capacitive sensor within the array of capacitive sensors. For example, information regarding the relative location of a capacitive sensor relative to a connection (e.g., connections 104) of an array of capacitive sensors may be accessed. It is appreciated that values may be accessed as new position information is received from active sensors (e.g., as an object moves around).
The information may further include a scalar value for adjusting a position signal. The scalar value may be dependent on the sensor's distance from the detection logic and therefore based on the sensor's location within the array. In one embodiment, the value may be based on the percentage of reduction of the signal impacted by the impedance of the array as the signal is transmitted to a connection of a capacitive sensor array. For example, the scalar value may be used to increase a signal level by 50% of a capacitive sensor in the top left of a capacitive sensor in the array where the connections are in the bottom right. The scalar value may be based on the capacitive sensor's location resulting in a 50% reduction in the signal received at the connections of the array. It is appreciated that a scalar value corresponding to sensors adjacent to the connections of an array of capacitive sensors may not need to be applied.
In one embodiment, the scalar values may be stored in a matrix with each sensor circuit having a corresponding scalar value. For example, scalar values for adjusting position signals from sensor circuits remote from the connection of the array of capacitive sensors may be greater than the scalar values for sensor circuits near or adjacent to the connections of the array of capacitive sensors.
Scalar values corresponding to each sensor circuit may further facilitate more accurate readings from the array of capacitive sensors. For example, due to the impact of impedance on an array of capacitive sensors, centroid readings may be pulled down and to the right because the reading from sensors up and to the left are increasingly impacted by the series impedance of the array of capacitive sensors thereby having decreased sensitivity. The adjusting of centroid with the scalar values allows the centroid to be adjusted to compensate for the impact of the capacitance and thereby the centroid can be more accurately reported.
In another embodiment, all the sensor values may be adjusted by the same scalar value. For example, a scalar value may be multiplied or applied to each signal of each capacitive sensor in an array of capacitive sensors.
Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors. The sensor sensitivity control module 706 may adjust the sensitivity of one or more active capacitive sensors or a plurality of the capacitive sensors (e.g., including active and inactive sensors) in an array of capacitive sensors.
Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors by adjusting a scan time of the one or more capacitive sensors. The adjustment of the scan time of the capacitive sensors facilitates greater resolution and signal levels in readings from the capacitive sensors. The sensitivity may be adjusted according to the proximity of the sensors to the connections of the array of capacitive sensors. In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200).
In one embodiment, a current source (e.g., current source 204) or capacitor (e.g., external modification capacitor 216) of a sensor circuit (e.g., circuit 200) may be adjusted to increase scan time. The adjustment of the current or capacitor value may result in increased counts or time measured by timer 210. For example, the current of a current source (e.g., current source 204) may be reduced which thereby increases the time before the reference voltage is reached and thereby increases the scan time.
In another embodiment, a pulse width modulator (e.g. pulse width modulator 510) may be adjusted to increase period of an output of a bit-stream of a circuit (e.g., circuit 500). The increased period of the output of the bit-stream enables higher raw counts or times to be measured thereby increasing the resolution of the sensor.
Sensor sensitivity control module 706 may further adjust the sensitivity of one or more capacitive sensors based on information corresponding to a location within the array of capacitive sensors including, but not limited to, scalar values accessed via position information module 704.
Position signal reporting module 708 reports the position signal. Position signal reporting module 708 may report a position signal after that has been adjusted by sensor sensitivity control module 706. For example, a first position signal may be received and a second signal may be reported after the sensitivity of the corresponding sensor has been adjusted by sensor sensitivity control module 706.
Example Operations
With reference to FIGS. 8-10, exemplary flowcharts 800-1000 each illustrate example blocks used by various embodiments of the present invention. Although specific blocks are disclosed in flowcharts 800-1000, such blocks are examples. That is, embodiments are well suited to performing various other blocks or variations of the blocks recited in flowcharts 800-1000. It is appreciated that the blocks in flowcharts 800-1000 may be performed in an order different than presented, and that not all of the blocks in flowcharts 800-1000 may be performed.
FIG. 8 shows a flowchart 800 of an exemplary process for reporting position information, in accordance with an embodiment of the present invention. The blocks of flowchart 800 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600).
At block 802, first position information regarding an interaction is received from a number of capacitive sensors. As described herein, the position information may include a centroid computation and may be received from one or more capacitive sensors in an array of capacitive sensors. Sensors reporting a signal that exceeds a threshold are active and contribute to the centroid computation.
At block 804, an adjustment value corresponding to the position information is accessed. As described herein, the adjustment value corresponding to the position information may be based on a location of the active capacitive sensor within an array of capacitive sensors relative to the connections of the array. For example, a larger adjustment value may correspond to sensors whose signal is impacted by the series impedance of the array of capacitive sensors as the signal travels to the connections of the array of capacitive sensors. In one embodiment, each capacitive sensor in the array may have a respective adjustment value assigned to it based on its relative distance to the detector logic. At step 804, the adjustment values are obtained for the active sensors participating in the centroid computation.
At block 806, the first position information is adjusted based on the adjustment values corresponding to the position information to calculate an adjusted position information. The adjusting may include multiplying the signals corresponding to the first position information with the adjustment values which may be scalar values. As described herein, the values may be applied to active sensors or one or more sensors of the array of capacitive sensors. It is appreciated that the adjustment of the position information may improve the signal level reported by sensor and thereby compensate for the impact of impedance on the array of capacitive sensors. In accordance with the embodiment described above, the sensor readings for the active sensors are multiplied by their respective adjustment values. This new data is then used to determine an adjusted position.
At block 808, a position of the interaction is computed using the adjusted signals. In one embodiment, the centroid is again calculated based on the adjusted position information.
At block 810, the position of the interaction as computed in 808 is reported. As described herein, the position of the interaction (e.g., centroid) may be reported to the device (e.g., computing device and the like) coupled to the array of capacitive sensors.
FIG. 9 shows a flowchart 900 of an exemplary process for processing a position signal, in accordance with another embodiment of the present invention. The blocks of flowchart 900 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600). It is appreciated that blocks or select blocks of flowchart 900 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.
At block 902, the array of capacitive sensors is in a low sensitivity mode with all sensors scanned. In one embodiment, the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.
At block 904, whether an interaction with the array of capacitive sensors has occurred is detected. If there is no interaction detected, the capacitive sensor array remains in low sensitivity mode at block 902. If an interaction is detected, the capacitive sensor array may proceed to block 906.
At block 906, a first position signal is received from a first plurality of capacitive sensors. As described herein, the first position signal may be computed from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.
At block 908, a proximity of the plurality of capacitive sensors to a connection of an array of capacitive sensors is determined on an individual level. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.
At block 910, the sensitivity of all capacitive sensors in the array of capacitive sensors is adjusted. The sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of all of the sensors allows enhanced tracking of an object as movement is detected.
The sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors based individually on their location within the array. As described herein, the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204), adjusting a pulse width modulation (e.g., of pulse width modulator 410), a voltage threshold (e.g., reference voltage 226 or 422), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428). In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200).
In one embodiment, the scan time may be adjusted according to the position of one or more capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right. In one embodiment, each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.
At block 912, a second position signal is received from a second plurality of capacitive sensors. The second position signal may be received after the sensitivity of the sensors has been adjusted as described herein. It is appreciated that the second plurality of sensors may be different from the first plurality of sensors where the object has moved before the sensitivity of the sensors has been adjusted. The first plurality of sensors and the second plurality of sensors may be same when the object has not moved. At block 914, the second position signal is reported.
FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention. The blocks of flowchart 1000 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600). It is appreciated that blocks or select blocks of flowchart 1000 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.
At block 1002, the array of capacitive sensors is in a low sensitivity mode with all sensors scanned. In one embodiment, the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.
At block 1004, whether an interaction with the array of capacitive sensors has occurred is detected. If there is no interaction detected, the capacitive sensor array remains in low sensitivity mode at block 1002. If an interaction is detected, the capacitive sensor array may proceed to block 1006.
At block 1006, a first position signal is received from a plurality of active capacitive sensors. As described herein, the first position signal may be coupled from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.
At block 1008, a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors is determined. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.
At block 1010, the sensitivity of the active capacitive sensors in the array of capacitive sensors is adjusted. The sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of the active capacitive sensors saves power over increasing the sensitivity of all the capacitive sensors.
The sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors. As described herein, the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204), adjusting a pulse width modulation (e.g., of pulse width modulator 410), a voltage threshold (e.g., reference voltage 226 or 422), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428). In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200). It is appreciated that adjusting the scan time of the active capacitive sensors saves scan time over increasing the scan time of the entire array of capacitive sensors.
In one embodiment, the scan time may be adjusted according to the position of one or more active capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right. In one embodiment, each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.
At block 1012, a second position signal is received from the plurality of active capacitive sensors with heightened sensitivity. The second position signal may be received after the sensitivity of the sensors has been adjusted as described herein. At block 1014, the second position signal is reported.
Thus, embodiments of the present invention compensate for the impedance of an array of capacitive sensors. Thus, a substantial improvement in accuracy and performance of arrays of capacitive sensors is achieved.
Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.

Claims (20)

What is claimed is:
1. A method for reporting position information, the method comprising:
adjusting position information received from a plurality of capacitive sensors in an array of capacitive sensors based on predetermined adjustment values to generate adjusted position information, wherein each predetermined adjustment value is associated with at least one of the plurality of capacitive sensors, and wherein each predetermined adjustment value is derived from a distance between the at least one of the plurality of capacitive sensors and a connection of the array of capacitive sensors; and
generating a signal representative of the adjusted position information.
2. The method of claim 1, wherein each predetermined adjustment value is derived from a position of the at least one of the plurality of capacitive sensors within the array of capacitive sensors.
3. The method of claim 1, wherein each predetermined adjustment value is a scalar value, and the predetermined adjustment values are stored in a matrix corresponding to the array of capacitive sensors.
4. The method of claim 3, wherein the adjusting of the position information comprises multiplying the position information received from the plurality of capacitive sensors by the respective predetermined adjustment values.
5. The method of claim 1, further comprising performing a centroid computation based on the adjust position information.
6. The method of claim 1, wherein the array of capacitive sensors comprises a high impedance substrate.
7. A method for reporting position information comprising:
adjusting the sensitivity of at least one capacitive sensor in a capacitive sensor array based on a distance between the at least one capacitive sensor and a connection of the capacitive sensor array;
receiving position information from the at least one capacitive sensor; and
generating a signal representative of the position information.
8. The method of claim 7, further comprising generating the position information with the at least one capacitive sensor, wherein the generating of the position information comprises charging the at least one capacitive sensor based on the operation of a switch.
9. The method of claim 8, wherein the operation of the switch is controlled by a pseudo random generator.
10. The method of claim 7, wherein the adjusting of the sensitivity of the at least one capacitive sensor comprises adjusting a scan time of the at least one capacitive sensor.
11. The method of claim 10, wherein the adjusting of the scan time of the at least one capacitive sensor comprises adjusting a current source coupled to the at least one capacitive sensor.
12. The method of claim 10, wherein the adjusting of the scan time of the at least one capacitive sensor comprises adjusting the pulse width modulation of a pulse width modulator.
13. The method of claim 10, wherein the at least one capacitive sensor is coupled to a capacitor, and the adjusting of the scan time of the at least one capacitive sensor comprises adjusting a reference voltage to which a voltage across the capacitor is compared.
14. The method of claim 10, wherein the at least one capacitive sensor is coupled to a capacitor, and the adjusting of the scan time of the at least one capacitor comprises adjusting the capacitance of the capacitor.
15. A method for reporting position information, the method comprising:
storing a plurality of predetermined adjustment values, wherein each predetermined adjustment value is associated with at least one of a plurality of capacitive sensors in an array of capacitive sensors, and wherein each predetermined adjustment value is derived from a distance between at least one of the plurality of capacitive sensors and a connection of the array of capacitive sensors; and
generating a signal based on the predetermined adjustment values and received position information.
16. The method of claim 15, wherein generating the signal further comprises adjusting position information received from the plurality of capacitive sensors based on the stored predetermined adjustment values to generate adjusted position information.
17. The method of claim 15, wherein each predetermined adjustment value is a scalar value, and the predetermined adjustment values are stored in a matrix corresponding to the array of capacitive sensors.
18. The method of claim 17, further comprising adjusting the position information by multiplying the received position information by the respective predetermined adjustment values.
19. The method of claim 15, further comprising performing a centroid computation based on the adjusted position information.
20. The method of claim 15, wherein the array of capacitive sensors comprises a high impedance substrate.
US14/171,746 2007-07-03 2014-02-03 Normalizing capacitive sensor array signals Expired - Fee Related USRE46317E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/171,746 USRE46317E1 (en) 2007-07-03 2014-02-03 Normalizing capacitive sensor array signals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US94790307P 2007-07-03 2007-07-03
US12/167,552 US8086417B2 (en) 2007-07-03 2008-07-03 Normalizing capacitive sensor array signals
US13/156,297 US8315832B1 (en) 2007-07-03 2011-06-08 Normalizing capacitive sensor array signals
US14/171,746 USRE46317E1 (en) 2007-07-03 2014-02-03 Normalizing capacitive sensor array signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/156,297 Reissue US8315832B1 (en) 2007-07-03 2011-06-08 Normalizing capacitive sensor array signals

Publications (1)

Publication Number Publication Date
USRE46317E1 true USRE46317E1 (en) 2017-02-21

Family

ID=40220933

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/167,552 Ceased US8086417B2 (en) 2007-07-03 2008-07-03 Normalizing capacitive sensor array signals
US13/156,297 Active US8315832B1 (en) 2007-07-03 2011-06-08 Normalizing capacitive sensor array signals
US14/171,746 Expired - Fee Related USRE46317E1 (en) 2007-07-03 2014-02-03 Normalizing capacitive sensor array signals

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/167,552 Ceased US8086417B2 (en) 2007-07-03 2008-07-03 Normalizing capacitive sensor array signals
US13/156,297 Active US8315832B1 (en) 2007-07-03 2011-06-08 Normalizing capacitive sensor array signals

Country Status (3)

Country Link
US (3) US8086417B2 (en)
TW (1) TWI454973B (en)
WO (1) WO2009006556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11561629B1 (en) 2021-11-23 2023-01-24 Cirque Corporation Adjusting cursor speed

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006557A1 (en) * 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Method for improving scan time and sensitivity in touch sensitive user interface device
WO2009006556A1 (en) 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Normalizing capacitive sensor array signals
WO2009090534A2 (en) * 2008-01-15 2009-07-23 Lionel Portmann Device for quantifying an electric unbalance and touch detection system incorporating it
JP4508248B2 (en) * 2008-03-03 2010-07-21 ソニー株式会社 Input device and electronic device
US8619056B2 (en) * 2009-01-07 2013-12-31 Elan Microelectronics Corp. Ghost resolution for a capacitive touch panel
WO2010107961A2 (en) * 2009-03-18 2010-09-23 Synaptics Incorporated Integrated display and touch sensor
JP5193942B2 (en) * 2009-05-14 2013-05-08 京セラディスプレイ株式会社 Capacitive touch panel device
JP5513933B2 (en) 2009-06-30 2014-06-04 株式会社ジャパンディスプレイ Touch sensor and display device
US8723833B2 (en) * 2009-07-13 2014-05-13 Microchip Technology Incorporated Capacitive touch system with noise immunity
US8723825B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US8723827B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US9069405B2 (en) 2009-07-28 2015-06-30 Cypress Semiconductor Corporation Dynamic mode switching for fast touch response
US20110067933A1 (en) * 2009-09-18 2011-03-24 Delta Electronics, Inc. Touch-control apparatus
TWI507949B (en) * 2010-02-08 2015-11-11 Novatek Microelectronics Corp Touch sensing system, capacitance sensing circuit and capacitance sensing method thereof
CN102156595B (en) * 2010-02-12 2014-04-30 联咏科技股份有限公司 Touch-control sensing system, capacitance sensing circuit and capacitance sensing method
US9805692B2 (en) * 2010-02-26 2017-10-31 Synaptics Incorporated Varying demodulation to avoid interference
TWI435088B (en) * 2010-03-12 2014-04-21 Nuvoton Technology Corp Capacitive sensor and sensing method
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
US8688393B2 (en) * 2010-07-29 2014-04-01 Medtronic, Inc. Techniques for approximating a difference between two capacitances
WO2013032040A1 (en) * 2011-08-26 2013-03-07 한양대학교 산학협력단 Circuit for measuring electrostatic capacity using a current source technique and circuit for measuring electrostatic capacity using same
CN105022542B (en) 2011-09-07 2018-06-01 辛纳普蒂克斯公司 Capacitive sensing during non-display renewal time
DE112011105894T5 (en) * 2011-11-30 2014-11-06 Hewlett-Packard Development Company, L.P. Input method based on a location of a hand gesture
US8933712B2 (en) 2012-01-31 2015-01-13 Medtronic, Inc. Servo techniques for approximation of differential capacitance of a sensor
US8970547B2 (en) 2012-02-01 2015-03-03 Synaptics Incorporated Noise-adapting touch sensing window
US8779780B1 (en) * 2012-02-23 2014-07-15 Cypress Semiconductor Corporation Methods and apparatus to detect presence of an input object
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US8816985B1 (en) * 2012-09-20 2014-08-26 Cypress Semiconductor Corporation Methods and apparatus to detect a touch pattern
US10073550B2 (en) 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
US10121049B2 (en) 2013-04-01 2018-11-06 AMI Research & Development, LLC Fingerprint based smart phone user verification
US9754149B2 (en) 2013-04-01 2017-09-05 AMI Research & Development, LLC Fingerprint based smart phone user verification
US9432366B2 (en) 2013-04-01 2016-08-30 AMI Research & Development, LLC Fingerprint based smartphone user verification
CN104216580B (en) * 2013-06-05 2017-04-19 硕呈科技股份有限公司 Integratable circuit achieving touch capacitor sensing through electric charge sharing
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
US9298309B2 (en) 2014-04-29 2016-03-29 Synaptics Incorporated Source driver touch transmitter in parallel with display drive
US10444862B2 (en) 2014-08-22 2019-10-15 Synaptics Incorporated Low-profile capacitive pointing stick
US9436338B2 (en) 2014-12-22 2016-09-06 Microsoft Technology Licensing, Llc Active matrix capacitive touch sensor
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
CN107407988B (en) 2015-01-05 2020-07-10 辛纳普蒂克斯公司 Input device, processing system and method for operating an input device
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits
US10579193B2 (en) 2017-12-14 2020-03-03 Cypress Semiconductor Corporation Spatial-frequency-based capacitive motion sensor and method of using the same
US10915248B1 (en) * 2019-08-07 2021-02-09 Macronix International Co., Ltd. Memory device
CN111679598B (en) * 2020-05-18 2023-12-29 惠州拓邦电气技术有限公司 Method and device for acquiring detection information of sensor

Citations (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266144A (en) 1979-05-14 1981-05-05 Emhart Industries, Inc. Detection means for multiple capacitive sensing devices
US4283713A (en) 1979-01-15 1981-08-11 Tektronix, Inc. Waveform acquisition circuit
US4438404A (en) 1982-01-04 1984-03-20 Tektronix, Inc. Signal sampling system
US4475151A (en) 1982-11-04 1984-10-02 Harald Philipp Switching amplifier circuit
US4497575A (en) 1982-11-01 1985-02-05 Tektronix, Inc. Optical fiber test instrument calibrator
US4736191A (en) 1985-08-02 1988-04-05 Karl E. Matzke Touch activated control method and apparatus
US4736097A (en) 1987-02-02 1988-04-05 Harald Philipp Optical motion sensor
US4773024A (en) 1986-06-03 1988-09-20 Synaptics, Inc. Brain emulation circuit with reduced confusion
US4831325A (en) 1987-04-01 1989-05-16 General Signal Corporation Capacitance measuring circuit
US4876534A (en) 1988-02-05 1989-10-24 Synaptics Incorporated Scanning method and apparatus for current signals having large dynamic range
US4879461A (en) 1988-04-25 1989-11-07 Harald Philipp Energy field sensor using summing means
US4935702A (en) 1988-12-09 1990-06-19 Synaptics, Inc. Subthreshold CMOS amplifier with offset adaptation
US4953928A (en) 1989-06-09 1990-09-04 Synaptics Inc. MOS device for long-term learning
US4962342A (en) 1989-05-04 1990-10-09 Synaptics, Inc. Dynamic synapse for neural network
US5049758A (en) 1988-12-09 1991-09-17 Synaptics, Incorporated Adaptable CMOS winner-take all circuit
US5055827A (en) 1990-02-20 1991-10-08 Harald Philipp Fiber optic security system
US5059920A (en) 1988-12-09 1991-10-22 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5068622A (en) 1988-12-09 1991-11-26 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5073759A (en) 1988-12-09 1991-12-17 Synaptics, Incorporated Adaptable current mirror
US5083044A (en) 1989-03-10 1992-01-21 Synaptics, Incorporated Synaptic element and array
US5095284A (en) 1990-09-10 1992-03-10 Synaptics, Incorporated Subthreshold CMOS amplifier with wide input voltage range
US5097305A (en) 1991-02-19 1992-03-17 Synaptics Corporation Integrating photosensor and imaging system having wide dynamic range
US5107149A (en) 1990-12-18 1992-04-21 Synaptics, Inc. Linear, continuous-time, two quadrant multiplier
US5109261A (en) 1988-12-09 1992-04-28 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5119038A (en) 1988-12-09 1992-06-02 Synaptics, Corporation CMOS current mirror with offset adaptation
US5120996A (en) 1989-03-10 1992-06-09 Synaptics, Incorporated Synaptic element and array
US5122800A (en) 1989-01-26 1992-06-16 Harald Philipp Variable successive approximation converter
US5126685A (en) 1990-12-18 1992-06-30 Synaptics, Incorporated Circuits for linear conversion between voltages and currents
US5146106A (en) 1988-12-09 1992-09-08 Synaptics, Incorporated CMOS winner-take all circuit with offset adaptation
US5160899A (en) 1988-12-09 1992-11-03 Synaptics, Incorporated Adaptable MOS current mirror
US5166562A (en) 1991-05-09 1992-11-24 Synaptics, Incorporated Writable analog reference voltage storage device
US5204549A (en) 1992-01-28 1993-04-20 Synaptics, Incorporated Synaptic element including weight-storage and weight-adjustment circuit
US5243554A (en) 1991-05-09 1993-09-07 Synaptics, Incorporated Writable analog reference voltage storage device
US5248873A (en) 1991-06-10 1993-09-28 Synaptics, Incorporated Integrated device for recognition of moving objects
US5260592A (en) 1991-02-19 1993-11-09 Synaptics, Incorporated Integrating photosensor and imaging system having wide dynamic range with varactors
US5270963A (en) 1988-08-10 1993-12-14 Synaptics, Incorporated Method and apparatus for performing neighborhood operations on a processing plane
US5276407A (en) 1991-02-19 1994-01-04 Synaptics, Incorporated Sense amplifier
US5289023A (en) 1991-02-19 1994-02-22 Synaptics, Incorporated High-density photosensor and contactless imaging array having wide dynamic range
US5303329A (en) 1991-12-10 1994-04-12 Synaptics, Incorporated Continuous synaptic weight update mechanism
US5305017A (en) 1989-08-16 1994-04-19 Gerpheide George E Methods and apparatus for data input
US5331215A (en) 1988-12-09 1994-07-19 Synaptics, Incorporated Electrically adaptable neural network with post-processing circuitry
US5336936A (en) 1992-05-06 1994-08-09 Synaptics, Incorporated One-transistor adaptable analog storage element and array
US5339213A (en) 1992-11-16 1994-08-16 Cirque Corporation Portable computer touch pad attachment
US5349303A (en) 1993-07-02 1994-09-20 Cirque Corporation Electrical charge transfer apparatus
US5374787A (en) 1992-06-08 1994-12-20 Synaptics, Inc. Object position detector
US5381515A (en) 1988-12-09 1995-01-10 Synaptics, Incorporated Two layer neural network comprised of neurons with improved input range and input offset
US5384467A (en) 1992-10-16 1995-01-24 AVL Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Prof.Dr.Dr.h.c. Hans List Optoelectronic measuring device for monitoring a combustion chamber
US5408194A (en) 1993-06-25 1995-04-18 Synaptics, Incorporated Adaptive analog minimum/maximum selector and subtractor circuit
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
US5541878A (en) 1991-05-09 1996-07-30 Synaptics, Incorporated Writable analog reference voltage storage device
US5543590A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5543591A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5555907A (en) 1995-06-02 1996-09-17 Philipp; Harald Divided box for valve controller
US5565658A (en) 1992-07-13 1996-10-15 Cirque Corporation Capacitance-based proximity with interference rejection apparatus and methods
US5566702A (en) 1994-12-30 1996-10-22 Philipp; Harald Adaptive faucet controller measuring proximity and motion
US5646377A (en) 1994-04-08 1997-07-08 Oda; Yasuo Point detecting device and method of same
TW315495B (en) 1996-10-02 1997-09-11 Macronix Int Co Ltd Trench isolation planarization method
US5670915A (en) 1996-05-24 1997-09-23 Microchip Technology Incorporated Accurate RC oscillator having peak - to - peak voltage control
US5682032A (en) 1996-02-22 1997-10-28 Philipp; Harald Capacitively coupled identity verification and escort memory apparatus
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
US5757368A (en) 1995-03-27 1998-05-26 Cirque Corporation System and method for extending the drag function of a computer pointing device
US5767457A (en) 1995-11-13 1998-06-16 Cirque Corporation Apparatus and method for audible feedback from input device
US5796183A (en) 1996-01-31 1998-08-18 Nartron Corporation Capacitive responsive electronic switching circuit
US5812698A (en) 1995-05-12 1998-09-22 Synaptics, Inc. Handwriting recognition system and method
US5844265A (en) 1996-07-11 1998-12-01 Synaptics, Incorporated Sense amplifier for high-density imaging array
US5854625A (en) 1996-11-06 1998-12-29 Synaptics, Incorporated Force sensing touchpad
US5861875A (en) 1992-07-13 1999-01-19 Cirque Corporation Methods and apparatus for data input
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
US5864392A (en) 1995-12-15 1999-01-26 Avl List Gmbh Method for optically detecting gas bubbles moving in a coolant
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5889236A (en) 1992-06-08 1999-03-30 Synaptics Incorporated Pressure sensitive scrollbar feature
US5914708A (en) 1996-04-04 1999-06-22 Cirque Corporation Computer input stylus method and apparatus
US5914465A (en) 1992-06-08 1999-06-22 Synaptics, Inc. Object position detector
US5920310A (en) 1996-11-15 1999-07-06 Synaptics, Incorporated Electronic device employing a touch sensitive transducer
US5926566A (en) 1996-11-15 1999-07-20 Synaptics, Inc. Incremental ideographic character input method
US5942733A (en) 1992-06-08 1999-08-24 Synaptics, Inc. Stylus input capacitive touchpad sensor
US5943052A (en) 1997-08-12 1999-08-24 Synaptics, Incorporated Method and apparatus for scroll bar control
US5969513A (en) 1998-03-24 1999-10-19 Volterra Semiconductor Corporation Switched capacitor current source for use in switching regulators
US6028271A (en) 1992-06-08 2000-02-22 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US6185450B1 (en) 1998-01-26 2001-02-06 Physio-Control Manufacturing Corporation Digital sliding pole fast-restore for an electrocardiograph display
US6188228B1 (en) 1997-11-21 2001-02-13 Harald Philipp Hammer having integral stud and mains sensor
US6188391B1 (en) 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6222528B1 (en) 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input
US6239389B1 (en) 1992-06-08 2001-05-29 Synaptics, Inc. Object position detection system and method
US6249447B1 (en) 1999-08-13 2001-06-19 Tyco Electronics Logistics Ag System and method for determining output current and converter employing the same
US6262717B1 (en) 1998-07-02 2001-07-17 Cirque Corporation Kiosk touch pad
US6280391B1 (en) 1999-02-08 2001-08-28 Physio-Control Manufacturing Corporation Method and apparatus for removing baseline wander from an egg signal
US6288707B1 (en) 1996-07-29 2001-09-11 Harald Philipp Capacitive position sensor
US6304014B1 (en) 1997-10-02 2001-10-16 Synaptics (Uk) Limited Motor control system
US6320184B1 (en) 1998-07-09 2001-11-20 Avl List Gmbh Optoelectric measuring device for monitoring combustion processes
US6323846B1 (en) 1998-01-26 2001-11-27 University Of Delaware Method and apparatus for integrating manual input
US6326859B1 (en) 1999-07-01 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Oscillator circuit having trimmable capacitor array receiving a reference current
US6377009B1 (en) 1999-09-08 2002-04-23 Harald Philipp Capacitive closure obstruction sensor
US6380929B1 (en) 1996-09-20 2002-04-30 Synaptics, Incorporated Pen drawing computer input device
US20020063688A1 (en) 1999-11-04 2002-05-30 Synaptics Incorporated Capacitive mouse
US6430305B1 (en) 1996-12-20 2002-08-06 Synaptics, Incorporated Identity verification methods
US6441073B1 (en) 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
US6448911B1 (en) 2001-07-30 2002-09-10 Cirrus Logic, Inc. Circuits and methods for linearizing capacitor calibration and systems using the same
US6452514B1 (en) 1999-01-26 2002-09-17 Harald Philipp Capacitive sensor and array
US6457355B1 (en) 1999-08-27 2002-10-01 Harald Philipp Level sensing
US6466036B1 (en) 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
US6473069B1 (en) 1995-11-13 2002-10-29 Cirque Corporation Apparatus and method for tactile feedback from input device
US6489899B1 (en) 1994-05-14 2002-12-03 Synaptics (Uk) Limited Position detector
US20020191029A1 (en) 2001-05-16 2002-12-19 Synaptics, Inc. Touch screen with user interface enhancement
US6498720B2 (en) 2001-01-04 2002-12-24 Cirque Corporation Connector and support system for a touchpad keyboard for use with portable electronic appliances
US6499359B1 (en) 2001-07-09 2002-12-31 Nartron Corporation Compressible capacitance sensor for determining the presence of an object
US6506983B1 (en) * 1996-03-15 2003-01-14 Elo Touchsystems, Inc. Algorithmic compensation system and method therefor for a touch sensor panel
US6522128B1 (en) 1997-10-15 2003-02-18 Synaptics (Uk) Limited Position sensor having compact arrangement of coils
US6523416B2 (en) 2000-08-31 2003-02-25 Kawasaki Steel Corporation Method for setting shape and working stress, and working environment of steel member
US6535200B2 (en) 1999-01-25 2003-03-18 Harald Philipp Capacitive position sensor
US6534970B1 (en) 1998-05-22 2003-03-18 Synaptics (Uk) Limited Rotary position sensor and transducer for use therein
US20030062889A1 (en) 1996-12-12 2003-04-03 Synaptics (Uk) Limited Position detector
US20030080755A1 (en) 2001-10-31 2003-05-01 Kabushiki Kaisha Honda Denshi Giken Proximity sensor and object detecting device
US20030091220A1 (en) 2001-11-13 2003-05-15 Toko, Inc. Capacitive sensor device
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
US6583632B2 (en) 1998-07-23 2003-06-24 Micronas Gmbh Method of determining very small capacitances
US6624640B2 (en) 2001-02-07 2003-09-23 Fluke Corporation Capacitance measurement
US6639586B2 (en) 2000-04-11 2003-10-28 Cirque Corporation Efficient entry of characters from a large character set into a portable information appliance
US6642857B1 (en) 2000-01-19 2003-11-04 Synaptics Incorporated Capacitive pointing stick
US6649924B1 (en) 1999-09-28 2003-11-18 Avl List Gmbh Optoelectronic measuring device
US6667740B2 (en) 1998-11-27 2003-12-23 Synaptics (Uk) Limited Position sensor
US6673308B2 (en) 2000-08-30 2004-01-06 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US6680731B2 (en) 2000-01-11 2004-01-20 Cirque Corporation Flexible touchpad sensor grid for conforming to arcuate surfaces
US6683462B2 (en) 2000-11-30 2004-01-27 Agilent Technologies, Inc. Apparatus for and method of measuring capacitance with high accuracy
US6705511B1 (en) 1997-05-28 2004-03-16 Synaptics (Uk) Limited Transducer and method of manufacture
US6714817B2 (en) 2001-08-31 2004-03-30 Medtronic Physio-Control Manufacturing Corp. Hard paddle for an external defibrillator
US6730863B1 (en) 1999-06-22 2004-05-04 Cirque Corporation Touchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
US6774644B2 (en) 2002-04-02 2004-08-10 Dialog Semiconductor Gmbh Method and circuit for compensating MOSFET capacitance variations in integrated circuits
US6781577B2 (en) 2000-07-04 2004-08-24 Alps Electric Co., Ltd. Capacitive sensor-based input device
US6788521B2 (en) 2001-09-28 2004-09-07 Fujitsu Quantum Devices Limited Capacitor and method for fabricating the same
US6788221B1 (en) 1996-06-28 2004-09-07 Synaptics (Uk) Limited Signal processing apparatus and method
US6798218B2 (en) 2000-05-23 2004-09-28 Semiconductor Ideas To Market (Itom) B.V. Circuit for measuring absolute spread in capacitors implemented in planary technology
US6809275B1 (en) 2002-05-13 2004-10-26 Synaptics, Inc. Rotary and push type input device
US20050024341A1 (en) 2001-05-16 2005-02-03 Synaptics, Inc. Touch screen with user interface enhancement
US20050031175A1 (en) 2003-07-28 2005-02-10 Seiko Epson Corporation Input device, electronic apparatus, and method for driving input device
US6856433B2 (en) 2002-09-10 2005-02-15 Pioneer Corporation Holographic recording medium and holographic recording/reproducing apparatus using the same
US6873203B1 (en) 2003-10-20 2005-03-29 Tyco Electronics Corporation Integrated device providing current-regulated charge pump driver with capacitor-proportional current
US6893724B2 (en) 2003-03-11 2005-05-17 Grand Tek Advance Material Science Co., Ltd. Silicone-polyester-polysilicate hybrid compositions for thermal resistance coating
US6904570B2 (en) 2001-06-07 2005-06-07 Synaptics, Inc. Method and apparatus for controlling a display of data on a display screen
US6903402B2 (en) 2002-03-28 2005-06-07 Fujitsu Quantum Devices, Ltd. Interdigital capacitor having a cutting target portion
US6933931B2 (en) * 2002-08-23 2005-08-23 Ceronix, Inc. Method and apparatus of position location
US6949811B2 (en) 2002-03-28 2005-09-27 Fujitsu Quantum Devices Limited Device having interdigital capacitor
US20050243894A1 (en) * 2004-04-29 2005-11-03 Yuhui Chen Methods and circuits for frequency modulation that reduce the spectral noise of switching regulators
US6970160B2 (en) 2002-12-19 2005-11-29 3M Innovative Properties Company Lattice touch-sensing system
US6969978B2 (en) 2003-03-17 2005-11-29 Rf Micro Devices, Inc. DC-DC converter with reduced electromagnetic interference
US6975123B1 (en) 2000-12-20 2005-12-13 Maxtor Corporation Method and apparatus for calibrating piezoelectric driver in dual actuator disk drive
US20060032680A1 (en) 2004-08-16 2006-02-16 Fingerworks, Inc. Method of increasing the spatial resolution of touch sensitive devices
US7006078B2 (en) 2002-05-07 2006-02-28 Mcquint, Inc. Apparatus and method for sensing the degree and touch strength of a human body on a sensor
US7030860B1 (en) 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
US7046230B2 (en) 2001-10-22 2006-05-16 Apple Computer, Inc. Touch pad handheld device
US7068039B2 (en) 2004-04-28 2006-06-27 Agilent Technologies, Inc. Test structure embedded in a shipping and handling cover for integrated circuit sockets and method for testing integrated circuit sockets and circuit assemblies utilizing same
US7075316B2 (en) 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
US20060181627A1 (en) 2005-01-06 2006-08-17 Recon/Optical, Inc. Hybrid infrared detector array and CMOS readout integrated circuit with improved dynamic range
US7119550B2 (en) 2004-05-14 2006-10-10 Fujitsu Limited Capacitance difference detecting circuit and MEMS sensor
US7133140B2 (en) 2001-10-02 2006-11-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and measurement procedure for the fast, quantitative, non-contact topographic investigation of semiconductor wafers and other mirror like surfaces
US7133793B2 (en) 2003-07-24 2006-11-07 Synaptics (Uk) Limited Magnetic calibration array
US7141968B2 (en) 2003-10-07 2006-11-28 Quasar Federal Systems, Inc. Integrated sensor system for measuring electric and/or magnetic field vector components
US20060273804A1 (en) 2003-06-20 2006-12-07 Commissariat A L'energie Atomique Capacitive measuring sensor and associated ,measurement method
US7148704B2 (en) 2002-10-31 2006-12-12 Harald Philipp Charge transfer capacitive position sensor
US20060279548A1 (en) * 2005-06-08 2006-12-14 Geaghan Bernard O Touch location determination involving multiple touch location processes
US7151528B2 (en) 1999-06-22 2006-12-19 Cirque Corporation System for disposing a proximity sensitive touchpad behind a mobile phone keypad
US20060290677A1 (en) * 2005-06-23 2006-12-28 Lyon Benjamin B Trackpad sensitivity compensation
US20070024970A1 (en) 2003-11-06 2007-02-01 Johan Lub Dichroic guest-host polarizer comprising an oriented polymer film
US20070052690A1 (en) * 2002-05-17 2007-03-08 3M Innovative Properties Company Calibration of force based touch panel systems
US7239302B2 (en) 2002-08-30 2007-07-03 In-Gwang Kim Pointing device and scanner, robot, mobile communication device and electronic dictionary using the same
US20070229470A1 (en) 2006-03-31 2007-10-04 Warren Snyder Capacitive touch sense device having polygonal shaped sensor elements
US20070229469A1 (en) 2006-03-31 2007-10-04 Ryan Seguine Non-planar touch sensor pad
US7288977B2 (en) 2005-01-21 2007-10-30 Freescale Semiconductor, Inc. High resolution pulse width modulator
US7298124B2 (en) 2004-12-01 2007-11-20 Semiconductor Components Industries, L.L.C. PWM regulator with discontinuous mode and method therefor
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US20080100586A1 (en) * 2006-10-26 2008-05-01 Deere & Company Method and system for calibrating a touch screen
US7375535B1 (en) 2005-09-19 2008-05-20 Cypress Semiconductor Corporation Scan method and topology for capacitive sensing
US7423635B2 (en) 2002-08-02 2008-09-09 Cirque Corporation Single-layer touchpad having touch zones
US7429976B2 (en) 2003-11-24 2008-09-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact pointing device
US7466307B2 (en) 2002-04-11 2008-12-16 Synaptics Incorporated Closed-loop sensor on a solid-state object position detector
US7492358B2 (en) 2004-06-15 2009-02-17 International Business Machines Corporation Resistive scanning grid touch panel
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US7701440B2 (en) 2005-12-19 2010-04-20 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Pointing device adapted for small handheld devices having two display modes
US7728377B2 (en) 2005-09-23 2010-06-01 Agile Rf, Inc. Varactor design using area to perimeter ratio for improved tuning range
US7868875B2 (en) 2005-10-26 2011-01-11 Samsung Electronics Co., Ltd. Touch sensitive display device and method thereof
US7920134B2 (en) * 2007-06-13 2011-04-05 Apple Inc. Periodic sensor autocalibration and emulation by varying stimulus level
US7965281B2 (en) * 2006-10-03 2011-06-21 Synaptics, Inc. Unambiguous capacitance sensing using shared inputs
US8086417B2 (en) 2007-07-03 2011-12-27 Cypress Semiconductor Corporation Normalizing capacitive sensor array signals
US8482536B1 (en) 2008-07-23 2013-07-09 Cypress Semiconductor Corporation Compensation of signal values for a touch sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400248B2 (en) * 2004-11-24 2008-07-15 Intel Corporation Sensor devices with RFID communications

Patent Citations (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283713A (en) 1979-01-15 1981-08-11 Tektronix, Inc. Waveform acquisition circuit
US4266144A (en) 1979-05-14 1981-05-05 Emhart Industries, Inc. Detection means for multiple capacitive sensing devices
US4438404A (en) 1982-01-04 1984-03-20 Tektronix, Inc. Signal sampling system
US4497575A (en) 1982-11-01 1985-02-05 Tektronix, Inc. Optical fiber test instrument calibrator
US4475151A (en) 1982-11-04 1984-10-02 Harald Philipp Switching amplifier circuit
US4736191A (en) 1985-08-02 1988-04-05 Karl E. Matzke Touch activated control method and apparatus
US4802103A (en) 1986-06-03 1989-01-31 Synaptics, Inc. Brain learning and recognition emulation circuitry and method of recognizing events
US4773024A (en) 1986-06-03 1988-09-20 Synaptics, Inc. Brain emulation circuit with reduced confusion
US4736097A (en) 1987-02-02 1988-04-05 Harald Philipp Optical motion sensor
US4831325A (en) 1987-04-01 1989-05-16 General Signal Corporation Capacitance measuring circuit
US4876534A (en) 1988-02-05 1989-10-24 Synaptics Incorporated Scanning method and apparatus for current signals having large dynamic range
US4879461A (en) 1988-04-25 1989-11-07 Harald Philipp Energy field sensor using summing means
US5270963A (en) 1988-08-10 1993-12-14 Synaptics, Incorporated Method and apparatus for performing neighborhood operations on a processing plane
US5109261A (en) 1988-12-09 1992-04-28 Synaptics, Incorporated CMOS amplifier with offset adaptation
US4935702A (en) 1988-12-09 1990-06-19 Synaptics, Inc. Subthreshold CMOS amplifier with offset adaptation
US5049758A (en) 1988-12-09 1991-09-17 Synaptics, Incorporated Adaptable CMOS winner-take all circuit
US5331215A (en) 1988-12-09 1994-07-19 Synaptics, Incorporated Electrically adaptable neural network with post-processing circuitry
US5059920A (en) 1988-12-09 1991-10-22 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5068622A (en) 1988-12-09 1991-11-26 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5073759A (en) 1988-12-09 1991-12-17 Synaptics, Incorporated Adaptable current mirror
US5381515A (en) 1988-12-09 1995-01-10 Synaptics, Incorporated Two layer neural network comprised of neurons with improved input range and input offset
US5160899A (en) 1988-12-09 1992-11-03 Synaptics, Incorporated Adaptable MOS current mirror
US5146106A (en) 1988-12-09 1992-09-08 Synaptics, Incorporated CMOS winner-take all circuit with offset adaptation
US5119038A (en) 1988-12-09 1992-06-02 Synaptics, Corporation CMOS current mirror with offset adaptation
US5122800A (en) 1989-01-26 1992-06-16 Harald Philipp Variable successive approximation converter
US5120996A (en) 1989-03-10 1992-06-09 Synaptics, Incorporated Synaptic element and array
US5083044A (en) 1989-03-10 1992-01-21 Synaptics, Incorporated Synaptic element and array
US4962342A (en) 1989-05-04 1990-10-09 Synaptics, Inc. Dynamic synapse for neural network
US4962342B1 (en) 1989-05-04 1992-09-15 Synaptics Inc
US4953928A (en) 1989-06-09 1990-09-04 Synaptics Inc. MOS device for long-term learning
US5305017A (en) 1989-08-16 1994-04-19 Gerpheide George E Methods and apparatus for data input
US5055827A (en) 1990-02-20 1991-10-08 Harald Philipp Fiber optic security system
US5095284A (en) 1990-09-10 1992-03-10 Synaptics, Incorporated Subthreshold CMOS amplifier with wide input voltage range
US5107149A (en) 1990-12-18 1992-04-21 Synaptics, Inc. Linear, continuous-time, two quadrant multiplier
US5126685A (en) 1990-12-18 1992-06-30 Synaptics, Incorporated Circuits for linear conversion between voltages and currents
US5289023A (en) 1991-02-19 1994-02-22 Synaptics, Incorporated High-density photosensor and contactless imaging array having wide dynamic range
US5276407A (en) 1991-02-19 1994-01-04 Synaptics, Incorporated Sense amplifier
US5763909A (en) 1991-02-19 1998-06-09 Synaptics, Incorporated Integrating imaging system with phototransistor having wide dynamic range
US5324958A (en) 1991-02-19 1994-06-28 Synaptics, Incorporated Integrating imaging systgem having wide dynamic range with sample/hold circuits
US5097305A (en) 1991-02-19 1992-03-17 Synaptics Corporation Integrating photosensor and imaging system having wide dynamic range
US5260592A (en) 1991-02-19 1993-11-09 Synaptics, Incorporated Integrating photosensor and imaging system having wide dynamic range with varactors
US5166562A (en) 1991-05-09 1992-11-24 Synaptics, Incorporated Writable analog reference voltage storage device
US5243554A (en) 1991-05-09 1993-09-07 Synaptics, Incorporated Writable analog reference voltage storage device
US5629891A (en) 1991-05-09 1997-05-13 Synaptics, Incorporated Writable analog reference voltage storage device
US5541878A (en) 1991-05-09 1996-07-30 Synaptics, Incorporated Writable analog reference voltage storage device
US5248873A (en) 1991-06-10 1993-09-28 Synaptics, Incorporated Integrated device for recognition of moving objects
US5303329A (en) 1991-12-10 1994-04-12 Synaptics, Incorporated Continuous synaptic weight update mechanism
US5204549A (en) 1992-01-28 1993-04-20 Synaptics, Incorporated Synaptic element including weight-storage and weight-adjustment circuit
US5336936A (en) 1992-05-06 1994-08-09 Synaptics, Incorporated One-transistor adaptable analog storage element and array
US5864242A (en) 1992-05-06 1999-01-26 Synaptics Incorporated One-transistor adaptable analog storage element and array
US6023422A (en) 1992-05-06 2000-02-08 Synaptics, Inc. Method for changing the weight of a synaptic element
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
US5889236A (en) 1992-06-08 1999-03-30 Synaptics Incorporated Pressure sensitive scrollbar feature
US5374787A (en) 1992-06-08 1994-12-20 Synaptics, Inc. Object position detector
US5543590A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5543591A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US6610936B2 (en) 1992-06-08 2003-08-26 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
US5495077A (en) 1992-06-08 1996-02-27 Synaptics, Inc. Object position and proximity detector
US5942733A (en) 1992-06-08 1999-08-24 Synaptics, Inc. Stylus input capacitive touchpad sensor
US5648642A (en) 1992-06-08 1997-07-15 Synaptics, Incorporated Object position detector
US6414671B1 (en) 1992-06-08 2002-07-02 Synaptics Incorporated Object position detector with edge motion feature and gesture recognition
US6380931B1 (en) 1992-06-08 2002-04-30 Synaptics Incorporated Object position detector with edge motion feature and gesture recognition
US6750852B2 (en) 1992-06-08 2004-06-15 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US7109978B2 (en) 1992-06-08 2006-09-19 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US6028271A (en) 1992-06-08 2000-02-22 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US5914465A (en) 1992-06-08 1999-06-22 Synaptics, Inc. Object position detector
US5841078A (en) 1992-06-08 1998-11-24 Synaptics, Inc. Object position detector
US6239389B1 (en) 1992-06-08 2001-05-29 Synaptics, Inc. Object position detection system and method
US5565658A (en) 1992-07-13 1996-10-15 Cirque Corporation Capacitance-based proximity with interference rejection apparatus and methods
US5861875A (en) 1992-07-13 1999-01-19 Cirque Corporation Methods and apparatus for data input
US5384467A (en) 1992-10-16 1995-01-24 AVL Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Prof.Dr.Dr.h.c. Hans List Optoelectronic measuring device for monitoring a combustion chamber
US5339213A (en) 1992-11-16 1994-08-16 Cirque Corporation Portable computer touch pad attachment
US5408194A (en) 1993-06-25 1995-04-18 Synaptics, Incorporated Adaptive analog minimum/maximum selector and subtractor circuit
US5349303A (en) 1993-07-02 1994-09-20 Cirque Corporation Electrical charge transfer apparatus
US5646377A (en) 1994-04-08 1997-07-08 Oda; Yasuo Point detecting device and method of same
US7030782B2 (en) 1994-05-14 2006-04-18 Synaptics (Uk) Limited Position detector
US6888538B2 (en) 1994-05-14 2005-05-03 Synaptics (Uk) Limited Position sensor
US6489899B1 (en) 1994-05-14 2002-12-03 Synaptics (Uk) Limited Position detector
US5566702A (en) 1994-12-30 1996-10-22 Philipp; Harald Adaptive faucet controller measuring proximity and motion
US5757368A (en) 1995-03-27 1998-05-26 Cirque Corporation System and method for extending the drag function of a computer pointing device
US5812698A (en) 1995-05-12 1998-09-22 Synaptics, Inc. Handwriting recognition system and method
US5555907A (en) 1995-06-02 1996-09-17 Philipp; Harald Divided box for valve controller
US6473069B1 (en) 1995-11-13 2002-10-29 Cirque Corporation Apparatus and method for tactile feedback from input device
US5767457A (en) 1995-11-13 1998-06-16 Cirque Corporation Apparatus and method for audible feedback from input device
US5864392A (en) 1995-12-15 1999-01-26 Avl List Gmbh Method for optically detecting gas bubbles moving in a coolant
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
US5796183A (en) 1996-01-31 1998-08-18 Nartron Corporation Capacitive responsive electronic switching circuit
US5682032A (en) 1996-02-22 1997-10-28 Philipp; Harald Capacitively coupled identity verification and escort memory apparatus
US6506983B1 (en) * 1996-03-15 2003-01-14 Elo Touchsystems, Inc. Algorithmic compensation system and method therefor for a touch sensor panel
US5914708A (en) 1996-04-04 1999-06-22 Cirque Corporation Computer input stylus method and apparatus
US5670915A (en) 1996-05-24 1997-09-23 Microchip Technology Incorporated Accurate RC oscillator having peak - to - peak voltage control
US6788221B1 (en) 1996-06-28 2004-09-07 Synaptics (Uk) Limited Signal processing apparatus and method
US6097432A (en) 1996-07-11 2000-08-01 Synaptics, Inc. Sense amplifier for high-density imaging array
US5844265A (en) 1996-07-11 1998-12-01 Synaptics, Incorporated Sense amplifier for high-density imaging array
US6288707B1 (en) 1996-07-29 2001-09-11 Harald Philipp Capacitive position sensor
US6380929B1 (en) 1996-09-20 2002-04-30 Synaptics, Incorporated Pen drawing computer input device
TW315495B (en) 1996-10-02 1997-09-11 Macronix Int Co Ltd Trench isolation planarization method
US5854625A (en) 1996-11-06 1998-12-29 Synaptics, Incorporated Force sensing touchpad
US6148104A (en) 1996-11-15 2000-11-14 Synaptics, Inc. Incremental ideographic character input method
US5920310A (en) 1996-11-15 1999-07-06 Synaptics, Incorporated Electronic device employing a touch sensitive transducer
US6028959A (en) 1996-11-15 2000-02-22 Synaptics, Inc. Incremental ideographic character input method
US5926566A (en) 1996-11-15 1999-07-20 Synaptics, Inc. Incremental ideographic character input method
US20030062889A1 (en) 1996-12-12 2003-04-03 Synaptics (Uk) Limited Position detector
US6430305B1 (en) 1996-12-20 2002-08-06 Synaptics, Incorporated Identity verification methods
US6222528B1 (en) 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input
US6705511B1 (en) 1997-05-28 2004-03-16 Synaptics (Uk) Limited Transducer and method of manufacture
US5943052A (en) 1997-08-12 1999-08-24 Synaptics, Incorporated Method and apparatus for scroll bar control
US6304014B1 (en) 1997-10-02 2001-10-16 Synaptics (Uk) Limited Motor control system
US6522128B1 (en) 1997-10-15 2003-02-18 Synaptics (Uk) Limited Position sensor having compact arrangement of coils
US6188228B1 (en) 1997-11-21 2001-02-13 Harald Philipp Hammer having integral stud and mains sensor
US6185450B1 (en) 1998-01-26 2001-02-06 Physio-Control Manufacturing Corporation Digital sliding pole fast-restore for an electrocardiograph display
US6323846B1 (en) 1998-01-26 2001-11-27 University Of Delaware Method and apparatus for integrating manual input
US5969513A (en) 1998-03-24 1999-10-19 Volterra Semiconductor Corporation Switched capacitor current source for use in switching regulators
US6534970B1 (en) 1998-05-22 2003-03-18 Synaptics (Uk) Limited Rotary position sensor and transducer for use therein
US6262717B1 (en) 1998-07-02 2001-07-17 Cirque Corporation Kiosk touch pad
US6320184B1 (en) 1998-07-09 2001-11-20 Avl List Gmbh Optoelectric measuring device for monitoring combustion processes
US6188391B1 (en) 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6583632B2 (en) 1998-07-23 2003-06-24 Micronas Gmbh Method of determining very small capacitances
US6466036B1 (en) 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
US6667740B2 (en) 1998-11-27 2003-12-23 Synaptics (Uk) Limited Position sensor
US6535200B2 (en) 1999-01-25 2003-03-18 Harald Philipp Capacitive position sensor
US6452514B1 (en) 1999-01-26 2002-09-17 Harald Philipp Capacitive sensor and array
US6280391B1 (en) 1999-02-08 2001-08-28 Physio-Control Manufacturing Corporation Method and apparatus for removing baseline wander from an egg signal
US6730863B1 (en) 1999-06-22 2004-05-04 Cirque Corporation Touchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
US7400318B2 (en) 1999-06-22 2008-07-15 Cirque Corporation Touchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
US7151528B2 (en) 1999-06-22 2006-12-19 Cirque Corporation System for disposing a proximity sensitive touchpad behind a mobile phone keypad
US6326859B1 (en) 1999-07-01 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Oscillator circuit having trimmable capacitor array receiving a reference current
US6249447B1 (en) 1999-08-13 2001-06-19 Tyco Electronics Logistics Ag System and method for determining output current and converter employing the same
US6441073B1 (en) 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
US6457355B1 (en) 1999-08-27 2002-10-01 Harald Philipp Level sensing
US6377009B1 (en) 1999-09-08 2002-04-23 Harald Philipp Capacitive closure obstruction sensor
US6649924B1 (en) 1999-09-28 2003-11-18 Avl List Gmbh Optoelectronic measuring device
US7030860B1 (en) 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
US6587093B1 (en) 1999-11-04 2003-07-01 Synaptics Incorporated Capacitive mouse
US7212189B2 (en) 1999-11-04 2007-05-01 Synaptics Incorporated Capacitive mouse
US20020063688A1 (en) 1999-11-04 2002-05-30 Synaptics Incorporated Capacitive mouse
US6680731B2 (en) 2000-01-11 2004-01-20 Cirque Corporation Flexible touchpad sensor grid for conforming to arcuate surfaces
US6642857B1 (en) 2000-01-19 2003-11-04 Synaptics Incorporated Capacitive pointing stick
US6639586B2 (en) 2000-04-11 2003-10-28 Cirque Corporation Efficient entry of characters from a large character set into a portable information appliance
US6798218B2 (en) 2000-05-23 2004-09-28 Semiconductor Ideas To Market (Itom) B.V. Circuit for measuring absolute spread in capacitors implemented in planary technology
US6781577B2 (en) 2000-07-04 2004-08-24 Alps Electric Co., Ltd. Capacitive sensor-based input device
US6673308B2 (en) 2000-08-30 2004-01-06 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
US6523416B2 (en) 2000-08-31 2003-02-25 Kawasaki Steel Corporation Method for setting shape and working stress, and working environment of steel member
US6683462B2 (en) 2000-11-30 2004-01-27 Agilent Technologies, Inc. Apparatus for and method of measuring capacitance with high accuracy
US6975123B1 (en) 2000-12-20 2005-12-13 Maxtor Corporation Method and apparatus for calibrating piezoelectric driver in dual actuator disk drive
US6498720B2 (en) 2001-01-04 2002-12-24 Cirque Corporation Connector and support system for a touchpad keyboard for use with portable electronic appliances
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US6624640B2 (en) 2001-02-07 2003-09-23 Fluke Corporation Capacitance measurement
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
US20050024341A1 (en) 2001-05-16 2005-02-03 Synaptics, Inc. Touch screen with user interface enhancement
US20020191029A1 (en) 2001-05-16 2002-12-19 Synaptics, Inc. Touch screen with user interface enhancement
US6904570B2 (en) 2001-06-07 2005-06-07 Synaptics, Inc. Method and apparatus for controlling a display of data on a display screen
US6499359B1 (en) 2001-07-09 2002-12-31 Nartron Corporation Compressible capacitance sensor for determining the presence of an object
US6448911B1 (en) 2001-07-30 2002-09-10 Cirrus Logic, Inc. Circuits and methods for linearizing capacitor calibration and systems using the same
US6714817B2 (en) 2001-08-31 2004-03-30 Medtronic Physio-Control Manufacturing Corp. Hard paddle for an external defibrillator
US6788521B2 (en) 2001-09-28 2004-09-07 Fujitsu Quantum Devices Limited Capacitor and method for fabricating the same
US7133140B2 (en) 2001-10-02 2006-11-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and measurement procedure for the fast, quantitative, non-contact topographic investigation of semiconductor wafers and other mirror like surfaces
US7046230B2 (en) 2001-10-22 2006-05-16 Apple Computer, Inc. Touch pad handheld device
US20030080755A1 (en) 2001-10-31 2003-05-01 Kabushiki Kaisha Honda Denshi Giken Proximity sensor and object detecting device
US20030091220A1 (en) 2001-11-13 2003-05-15 Toko, Inc. Capacitive sensor device
US6903402B2 (en) 2002-03-28 2005-06-07 Fujitsu Quantum Devices, Ltd. Interdigital capacitor having a cutting target portion
US6949811B2 (en) 2002-03-28 2005-09-27 Fujitsu Quantum Devices Limited Device having interdigital capacitor
US6774644B2 (en) 2002-04-02 2004-08-10 Dialog Semiconductor Gmbh Method and circuit for compensating MOSFET capacitance variations in integrated circuits
US7466307B2 (en) 2002-04-11 2008-12-16 Synaptics Incorporated Closed-loop sensor on a solid-state object position detector
US7006078B2 (en) 2002-05-07 2006-02-28 Mcquint, Inc. Apparatus and method for sensing the degree and touch strength of a human body on a sensor
US6809275B1 (en) 2002-05-13 2004-10-26 Synaptics, Inc. Rotary and push type input device
US20070052690A1 (en) * 2002-05-17 2007-03-08 3M Innovative Properties Company Calibration of force based touch panel systems
US7423635B2 (en) 2002-08-02 2008-09-09 Cirque Corporation Single-layer touchpad having touch zones
US6933931B2 (en) * 2002-08-23 2005-08-23 Ceronix, Inc. Method and apparatus of position location
US7239302B2 (en) 2002-08-30 2007-07-03 In-Gwang Kim Pointing device and scanner, robot, mobile communication device and electronic dictionary using the same
US6856433B2 (en) 2002-09-10 2005-02-15 Pioneer Corporation Holographic recording medium and holographic recording/reproducing apparatus using the same
US7148704B2 (en) 2002-10-31 2006-12-12 Harald Philipp Charge transfer capacitive position sensor
US6970160B2 (en) 2002-12-19 2005-11-29 3M Innovative Properties Company Lattice touch-sensing system
US6893724B2 (en) 2003-03-11 2005-05-17 Grand Tek Advance Material Science Co., Ltd. Silicone-polyester-polysilicate hybrid compositions for thermal resistance coating
US6969978B2 (en) 2003-03-17 2005-11-29 Rf Micro Devices, Inc. DC-DC converter with reduced electromagnetic interference
US20060273804A1 (en) 2003-06-20 2006-12-07 Commissariat A L'energie Atomique Capacitive measuring sensor and associated ,measurement method
US7133793B2 (en) 2003-07-24 2006-11-07 Synaptics (Uk) Limited Magnetic calibration array
US20050031175A1 (en) 2003-07-28 2005-02-10 Seiko Epson Corporation Input device, electronic apparatus, and method for driving input device
US7075316B2 (en) 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
US7141968B2 (en) 2003-10-07 2006-11-28 Quasar Federal Systems, Inc. Integrated sensor system for measuring electric and/or magnetic field vector components
US7141987B2 (en) 2003-10-07 2006-11-28 Quantum Applied Science And Research, Inc. Sensor system for measurement of one or more vector components of an electric field
US6873203B1 (en) 2003-10-20 2005-03-29 Tyco Electronics Corporation Integrated device providing current-regulated charge pump driver with capacitor-proportional current
US20070024970A1 (en) 2003-11-06 2007-02-01 Johan Lub Dichroic guest-host polarizer comprising an oriented polymer film
US7429976B2 (en) 2003-11-24 2008-09-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact pointing device
US7068039B2 (en) 2004-04-28 2006-06-27 Agilent Technologies, Inc. Test structure embedded in a shipping and handling cover for integrated circuit sockets and method for testing integrated circuit sockets and circuit assemblies utilizing same
US20050243894A1 (en) * 2004-04-29 2005-11-03 Yuhui Chen Methods and circuits for frequency modulation that reduce the spectral noise of switching regulators
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US7119550B2 (en) 2004-05-14 2006-10-10 Fujitsu Limited Capacitance difference detecting circuit and MEMS sensor
US7492358B2 (en) 2004-06-15 2009-02-17 International Business Machines Corporation Resistive scanning grid touch panel
US20060032680A1 (en) 2004-08-16 2006-02-16 Fingerworks, Inc. Method of increasing the spatial resolution of touch sensitive devices
US7298124B2 (en) 2004-12-01 2007-11-20 Semiconductor Components Industries, L.L.C. PWM regulator with discontinuous mode and method therefor
US20060181627A1 (en) 2005-01-06 2006-08-17 Recon/Optical, Inc. Hybrid infrared detector array and CMOS readout integrated circuit with improved dynamic range
US7288977B2 (en) 2005-01-21 2007-10-30 Freescale Semiconductor, Inc. High resolution pulse width modulator
US20060279548A1 (en) * 2005-06-08 2006-12-14 Geaghan Bernard O Touch location determination involving multiple touch location processes
US20060290677A1 (en) * 2005-06-23 2006-12-28 Lyon Benjamin B Trackpad sensitivity compensation
US7375535B1 (en) 2005-09-19 2008-05-20 Cypress Semiconductor Corporation Scan method and topology for capacitive sensing
US7728377B2 (en) 2005-09-23 2010-06-01 Agile Rf, Inc. Varactor design using area to perimeter ratio for improved tuning range
US7868875B2 (en) 2005-10-26 2011-01-11 Samsung Electronics Co., Ltd. Touch sensitive display device and method thereof
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US7701440B2 (en) 2005-12-19 2010-04-20 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Pointing device adapted for small handheld devices having two display modes
US20070229470A1 (en) 2006-03-31 2007-10-04 Warren Snyder Capacitive touch sense device having polygonal shaped sensor elements
US20070229469A1 (en) 2006-03-31 2007-10-04 Ryan Seguine Non-planar touch sensor pad
US7965281B2 (en) * 2006-10-03 2011-06-21 Synaptics, Inc. Unambiguous capacitance sensing using shared inputs
US20080100586A1 (en) * 2006-10-26 2008-05-01 Deere & Company Method and system for calibrating a touch screen
US7920134B2 (en) * 2007-06-13 2011-04-05 Apple Inc. Periodic sensor autocalibration and emulation by varying stimulus level
US8086417B2 (en) 2007-07-03 2011-12-27 Cypress Semiconductor Corporation Normalizing capacitive sensor array signals
US8482536B1 (en) 2008-07-23 2013-07-09 Cypress Semiconductor Corporation Compensation of signal values for a touch sensor

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
Chapweske, Adam; "The PS/2 Mouse Interface," PS/2 Mouse Interfacing, 2001, retrieved on May 18, 2006; 10 pages.
Cypress Semiconductor Corporation, "CY8C21×34 Data Sheet," CSR User Module, CSR V.1.0; Oct. 6, 2005; 36 pages.
Cypress Semiconductor Corporation, "Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution," Cypress Press Release; May 31, 2005; ; retrieved on Feb. 5, 2007; 4 pages.
Cypress Semiconductor Corporation, "Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution," Cypress Press Release; May 31, 2005; <http://www.cypress.com/portal/server>; retrieved on Feb. 5, 2007; 4 pages.
Cypress Semiconductor Corporation, "FAN Controller CG6457AM and CG6462AM," PSoC Mixed Signal Array Preliminary Data Sheet; May 24, 2005; 25 pages.
Cypress Semiconductor Corporation, "PSoC CY8C20×34 Technical Reference Manual (TRM)," PSoC CY8C20×34 TRM, Version 1.0, 2006; 218 pages.
Cypress Semiconductor Corporation, "PSoC Mixed-Signal Controllers," Production Description; ; retrieved on Sep. 27, 2005; 2 pages.
Cypress Semiconductor Corporation, "PSoC Mixed-Signal Controllers," Production Description; <http://www.cypress.com/portal/server>; retrieved on Sep. 27, 2005; 2 pages.
Cypress Semiconductor Corporation, "Release Notes srn017," Jan. 24, 2007; 3 pages.
Dennis Seguine, "Capacitive Switch Scan," AN2233a, Application Note, CY8C21×34, Apr. 7, 2005; 6 pages.
International Search Report for International Application No. PCT/US08/69107 dated Oct. 2, 2008; 2 pages.
Lee, Mark; "EMC Design Considerations for PSoC CapSense Applications," Cypress Semiconductor Corporation, Application Note AN2318; Sep. 16, 2005; 6 pages.
Requirement for Restriction/Election for U.S. Appl. No. 13/156,297 dated Dec. 1, 2011; 6 pages.
Sedra, Adel S. et al., "Microelectronic Circuits," 3rd Edition, Oxford University Press, pp. xiii-xx and 861-883, 1991; 20 pages.
Seguine, Ryan; "Layout Guidelines for PSoC CapSense," Cypress Semiconductor Corporation, Application Note AN2292; Jul. 22, 2005; 13 pages.
Taiwanese Office Action for Application No. 097125030 dated Feb. 6, 2014; 2 pages.
U.S. Appl. No. 13/156,297: "Normalizing Capacitive Sensor Array Signals" Ryan D. Seguine et al., filed Jun. 8, 2011; 48 pages.
USPTO Advisory Action for U.S. Appl. No. 11/230,719 dated Nov. 30, 2007; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/605,506 dated Apr. 12, 2010; 3 pages.
USPTO Final Rejection for U.S. Appl. No. 11/230,719 dated Sep. 7, 2007; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 11/273,708 dated Jul. 5, 2007; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 11/605,506 dated Dec. 21, 2010; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/605,506 dated Feb. 3, 2010; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/605,819 dated Feb. 2, 2010; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 13/156,297 dated May 3, 2012; 22 pages.
USPTO Non Final Rejection for U.S. Appl. No. 12/167,552 dated May 18, 2010; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Aug. 28, 2006; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Jan. 16, 2007; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 11, 2006; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 25, 2006; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/273,708 dated Mar. 19, 2007; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/605,506 dated Aug. 11, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/605,819 dated Aug. 11, 2009; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/156,297 dated Feb. 23, 2012; 13 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/230,719 dated Jan. 16, 2008; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/273,708 dated Aug. 9, 2007; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/167,552 dated Aug. 19, 2011; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/167,552 dated Nov. 12, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/156,297 dated Jul. 9, 2012; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/156,297 dated Sep. 18, 2012; 8 pages.
Van Ess, David; "Simulating a 555 Timer with PSoC," Cypress Semiconductor Corporation, Application Note AN2286, May 19, 2005; 10 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US08/69107 dated Oct. 2, 2008; 5 pages.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11561629B1 (en) 2021-11-23 2023-01-24 Cirque Corporation Adjusting cursor speed

Also Published As

Publication number Publication date
US8086417B2 (en) 2011-12-27
WO2009006556A1 (en) 2009-01-08
TW200915157A (en) 2009-04-01
TWI454973B (en) 2014-10-01
US8315832B1 (en) 2012-11-20
US20090009194A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
USRE46317E1 (en) Normalizing capacitive sensor array signals
US9482559B2 (en) Method for improving scan time and sensitivity in touch sensitive user interface device
US10191588B2 (en) Coordinate input device and display device with the same
US8624870B2 (en) System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
JP6706660B2 (en) Multi-stage feedback capacitor switching scheme
US9423427B2 (en) Methods and circuits for measuring mutual and self capacitance
JP5075082B2 (en) Input device and display device including the same
CN105531654B (en) Injection touch noise analysis
TWI405111B (en) Digital controller for a true multi-point touch surface useable in a computer system
TWI410853B (en) Capacitance measurement device for a touch control device
US20100245286A1 (en) Touch screen finger tracking algorithm
TWI461998B (en) Capacitance sensing devices and control methods
US20120050229A1 (en) Touch sensor panel calibration
US20110156724A1 (en) Capacitance measurement systems and methods
US9287865B2 (en) Capacitive touch sensor control unit with sampling capacitors for differential integration
US10831323B2 (en) Ohmmeter for sensor electrodes
TWI410852B (en) Touch detection method and related touch control device
US7755614B2 (en) Motion detection system and motion detection method
JP2009260536A (en) Input device and display device equipped with same
US7349822B2 (en) Slide pad system and method
US20130181947A1 (en) Touch screen panel
JP5273418B2 (en) Input device and display device including the same
US9500686B1 (en) Capacitance measurement system and methods
US9007310B1 (en) Single layer touch sensor with improved sensitivity and accuracy

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001

Effective date: 20160811

Owner name: SPANSION LLC, CALIFORNIA

Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001

Effective date: 20160811

AS Assignment

Owner name: MONTEREY RESEARCH, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:040028/0054

Effective date: 20160811

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY