WO1989012887A1 - Process for treating metal particles against corrosion and the particles thereby obtained - Google Patents

Process for treating metal particles against corrosion and the particles thereby obtained Download PDF

Info

Publication number
WO1989012887A1
WO1989012887A1 PCT/EP1989/000684 EP8900684W WO8912887A1 WO 1989012887 A1 WO1989012887 A1 WO 1989012887A1 EP 8900684 W EP8900684 W EP 8900684W WO 8912887 A1 WO8912887 A1 WO 8912887A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
fluidized bed
metal particles
metal
silane
Prior art date
Application number
PCT/EP1989/000684
Other languages
French (fr)
Inventor
Gilles Le Du
Pierre-André Marie Vincent MARI
Original Assignee
Eastman Kodak Company
Kodak-Pathe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Company, Kodak-Pathe filed Critical Eastman Kodak Company
Publication of WO1989012887A1 publication Critical patent/WO1989012887A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Definitions

  • the present invention relates to a process for obtaining and treating metal particles which are unstable in air, as well as the particles obtained, which have good dispersibility, increased resistance to corrosion and good resistance to aging.
  • the invention relates more particularly to ferromagnetic metal particles which can be used for magnetic recording.
  • Many metals exhibit critical air instability due to their reducing nature, the properties of their oxides and their sensitivity to various catalytic agents. This instability in air is often increased depending on the physical state of the metal and the specific surface it can offer to the ambient atmosphere. Consequently, if the particles are finely divided, the problem of instability in air is particularly critical, going so far as to manifest itself under the aspect of almost spontaneous flammability, in the case of pyrophoric metal particles.
  • ferromagnetic metal particles have, compared with iron oxides in particular, the advantage of a magnetization at saturation and a particularly high coercive field.
  • these metal particles are difficult to disperse (in the binders used to prepare the magnetic layers usually) and, above all, suffer from being very sensitive to corrosion by oxidation, given the oxidizable nature of metals, in particular iron.
  • US Patent 4,746,547 describes a process for treating metallic particles smaller than 100 ⁇ m in size with gaseous silane.
  • the silane decomposition reaction does not however take place in a fluidized bed, and the presence of hydrogen is not compulsory.
  • This patent does not disclose the means of the invention making it possible to control the deposition of silicon on particles of very small dimensions and to avoid their agglomeration.
  • the present invention relates to a method of treating metal particles which are unstable in air, which provides a solution to the abovementioned drawbacks.
  • the method of the invention for treating metal particles consists in subjecting these particles to the action of silane gas, and it is characterized in that the particles are subjected to the action of a gas stream containing silane gaseous and hydrogen in a partial pressure pH / pSiH ratio between 10 6 and 10? in a fluidized bed.
  • the fluidized bed is heated to a temperature between 200 ° C and 400 ° C, and the fluidization speed is between 0.1 and 0.5 m / s.
  • the metal particles are ferromagnetic particles, and more particularly iron particles.
  • the subject of the invention is also a process for the passivation of metal particles in which the metal particles carrying a silicon coating are oxidized, as obtained by the treatment process described above, to form on their surface a layer of silica.
  • the subject of the invention is also a process for obtaining treated particles of a metal from an oxide of this metal, in which particles of oxide of this metal are reduced by a gaseous reducing agent in a fluidized bed, then they are treated according to the treatment method described above.
  • all of the methods of the invention can be carried out in a fluidized bed, in the same reactor, by carrying out the appropriate purges between each step.
  • the gaseous reducing agent used to reduce the metal oxide is preferably hydrogen.
  • the method is mainly applicable to obtaining iron particles intended for magnetic recording.
  • the invention makes it possible to obtain ferromagnetic metal particles stabilized against oxidation with a reduced reduction in magnetization, suitable for dispersion in a binder and resistant to aging.
  • the method of the invention is however not limited to such an application. It can also be used in general to coat fine particles with a silicon layer.
  • an H 2 / SiH 4 gas mixture is used in a fluidized bed.
  • the use of the fluidized bed technique makes it possible to better control the coating of the particle, but it is obviously essential to properly control the amount of silicon formed on the particles.
  • the objective is to make a supply of silicon just necessary to coat the particles, without introducing an excess of silicon which, being housed between the particles, would cause an undesirable aggregation of the particles.
  • aggregates greatly hinder the subsequent formation of magnetic dispersions, because they require more intense mixing operations which destroy the morphology of the particles. This is in particular the case for needle-like particles which are most often sought for making the magnetic recording layers.
  • Control of the amount of silicon formed on the particles is also necessary insofar as there is a threshold beyond which the corrosion resistance no longer increases, while the magnetic characteristics begin to degrade.
  • the amount of silicon deposited during a given time depends on the ratio of partial pressures pH 2 / pSiH4, the fluidization speed and the treatment temperature.
  • the partial pressure ratio pH 2 / pSiH4 makes it possible to control the rate of decomposition of the silane, and therefore the rate of deposition of the silicon, the presence of hydrogen tending to slow down the reaction.
  • the ratio of partial pressures pH 2 / pSiH4 is between
  • the fluidization speed which is the ratio of the total gas flow rate through the section of the reactor, itself depends on the size of the particles and on the nature of the carrier gas, as will be seen below.
  • the temperature is preferably between 200 ° C and 400 ° C.
  • Figure 1 is a graph showing the relationship between the amount of silicon added to the particle and the residence time in the bed according to different characteristics of the fluidized bed (fluidization rates and silane concentrations) at 350 ° C.
  • FIG. 2 is a graph showing the effectiveness of the protection (evaluated by the oxidation of the particle) as a function of the amount of silicon added to the particle.
  • FIG. 3 represents diagrams showing the structure of the inter and intragranular porosities before and after the treatment.
  • Figure 4 shows a diagram of the installation.
  • the percentage of silicon is given by mass relative to the total mass of the particle, and possibly includes the silicate which could have been deposited on the starting metal oxide particles.
  • the fluidized bed technique consists in bringing a layer of particles 7 solids in a state presenting certain analogies with a fluid, thanks to the action of an ascending gas stream.
  • the advantage of the fluidized bed technique is that it allows very good contact between the gas and the particles.
  • the reaction times can be short, which is interesting, in particular when, as in the case of magnetic particles, there is a risk of deterioration of the substrate.
  • a minimum speed of the gas flow (minimum fluidization speed) is necessary to obtain the suspension of the particles and the formation of the bed. But if the speed of the gas flow exceeds a certain limit (maximum fluidization speed), particles are entrained by the gas stream.
  • the speed of fluidization governs the deposition of silane, but it itself depends on the size of the particles and the viscosity of the medium, determined by the nature of the carrier gas.
  • the particles treated according to the process of the invention are in the form of powders consisting of porous grains having dimensions of 0.1 to 1 mm and pore sizes between 1 and 0.01 ⁇ m. This structure appears in FIG. 3, giving the inter and intragranular porosities of the powder.
  • the fluidization speed is preferably between 0.1 and 0.5 m / s.
  • Powders having the granularity characteristics indicated above are for example goethite powders prepared according to the procedure of French patent 2,487,326. However, any powder having such 8 particle size characteristics whatever its preparation process.
  • the process according to the present invention is carried out in a fluidized bed in a device mainly comprising: - A reactor (1) inside which the thermochemical reactions are carried out; this reactor consists of a stainless steel tube and has at its top a flange and a cover provided with a safety glass intended for the observation of fluidization. At its base, another interlocking flange receives the sintered metal distribution plate and ensures the assembly of the assembly on a base (2).
  • the gas heater (3) whose function is to heat the different gases (H, N, air, argon, O) before their introduction into the reactor, thus bringing additional calories to the fluidized bed so as to facilitate the setting in temperature and its regulation.
  • a heating chamber (4) which surrounds the reactor in the closed position and which provides most of the calories necessary for heating and regulating the bed and which also serves as insulation. This enclosure consists of two half-shells each equipped with an electrical resistance.
  • a product recuperator (7) It mainly comprises a cyclone fitted with a pneumatic valve and a product recovery container. The product is recovered by pneumatic transport of the particles.
  • the powder formed from the porous particles of particles is first swept with the gas chosen for the fluidization. Then, the cold gas mixture is introduced at the base of the diffuser surmounted by the powder.
  • the gas mixture comprises silane SiH, hydrogen and an inert dilution gas which, preferably, is a rare gas such as helium or argon.
  • the concentration of silane in the dilution gas is between 1% and 5% by volume.
  • a stream of oxygen can be passed through the fluidized bed so as to obtain a layer of silica around the particles.
  • a stream of oxygen diluted in nitrogen with increasing concentration is used, from 0 to 3% at the start, up to 21%, at 80 ° C., for 1 hour.
  • the metal particles are prepared from a metal oxide by reduction with a gaseous reducing agent, in the same fluidized bed, this reducing agent preferably being hydrogen.
  • goethite prepared according to the procedure of BF 2 487 326 is used.
  • Example 1 After reduction of the goethite with hydrogen in a fluidized bed, the reduced powder is treated with silane with a fluidization speed of 0.5 m / s (a product composed of argon containing 3% of silane)% of SiH. and the temperatures are indicated in the table below, for 4 samples and one untreated control. The 5 samples are then passive with a current of O 2.
  • the table below gives the quantity of total silicon mass titrated, including the silicate initially deposited on the goethite needles, and the magnetic properties: coercive field, magnetization, middle, for the particles obtained, and for a control sample. prepared from the same goethite reduced by hydrogen in a fluidized bed, then passive with oxygen, but without the silane treatment.
  • the magnetic properties are measured with a hysterometer under a magnetizing field of 4500 Oe. It can be seen that the magnetization and the coercive field are less reduced for the particles of the invention treated with silane before passivation, than for the passive control without treatment with silane.
  • Example 2
  • compositions are ground in a solvent mixture consisting of toluene, cyclohexanone and tetrahydrofuran (1/3: 1/3: 1/3 by volume), and the compositions are deposited on a support of polyethylene terephthalate.
  • solvent mixture consisting of toluene, cyclohexanone and tetrahydrofuran (1/3: 1/3: 1/3 by volume)
  • the products obtained are oriented and dried to obtain layers 5 ⁇ m thick, the magnetic properties of which are indicated in the following table: Samples Hc (Oe) Middle part Im S / N
  • Example 4 The porosity of the powders is measured after reduction and after deposition of silicon.
  • the process of the invention is carried out at 350 ° C., with a fluidization speed of 0.31 m / s and a percentage of silane of 0.9%.
  • the diagrams of FIGS. 3a and 3b represent the distributions of the pore volumes as a function of the diameter of the pores.
  • the measurements are carried out with a mercury porosimeter. We can observe two kinds of pores: the largest have a diameter between 50 and 120 ⁇ m, and the smallest have a diameter between 13 and

Abstract

This invention concerns a process of treating particles which are unstable in air and the particles obtained which exhibit good corrosion resistance. The method consists in treating the metal particles by a current of gas containing silane and hydrogen in a fluidised bed. The particles may subsequently be subjected to a current of oxygen, preferably in the same fluidised bed, to obtain a coating of silica around the particles. The method is especially useful in obtaining particles of iron for magnetic recording materials which are suitable for dispersion and are corrosion-resistant.

Description

PROCEDE DE TRAITEMENT DE PARTICULES METALLIQUES PROCESS FOR TREATING METALLIC PARTICLES
CONTRE LA CORROSION ET PARTICULES OBTENUES La présente invention concerne un procédé d'obtention et de traitement de particules de métal instables à l'air, ainsi que les particules obtenues, qui présentent une bonne aptitude à la dispersion, une résistance accrue à la corrosion et une bonne résistance au vieillissement. L'invention concerne plus particulièrement des particules de métal ferromagnétique utilisables pour l'enregistrement magnétique. Beaucoup de métaux présentent une instabilité à l'air critique du fait de leur caractère réducteur, des propriétés de leurs oxydes et de leur sensibilité à divers agents catalytiques. Cette instabilité à l'air est souvent accrue en fonction de l'état physique du métal et de la surface spécifique qu'il peut offrir à l'atmosphère ambiante. Par suite, si les particules sont finement divisées, le problème de l'instabilité à l'air est particulièrement critique, allant jusqu'à se manifester sous l'aspect d'une inflammabilité quasi spontanée, dans le cas de particules de métal pyrophoriques.AGENT AGAINST CORROSION AND PARTICLES OBTAINED The present invention relates to a process for obtaining and treating metal particles which are unstable in air, as well as the particles obtained, which have good dispersibility, increased resistance to corrosion and good resistance to aging. The invention relates more particularly to ferromagnetic metal particles which can be used for magnetic recording. Many metals exhibit critical air instability due to their reducing nature, the properties of their oxides and their sensitivity to various catalytic agents. This instability in air is often increased depending on the physical state of the metal and the specific surface it can offer to the ambient atmosphere. Consequently, if the particles are finely divided, the problem of instability in air is particularly critical, going so far as to manifest itself under the aspect of almost spontaneous flammability, in the case of pyrophoric metal particles.
Parmi les différents matériaux connus et utilisés pour l'enregistrement magnétique, les particules de métal ferromagnétique présentent, par rapport notamment aux oxydes de fer, l'avantage d'une aimantation à saturation et d'un champ coercitif particulièrement élevés. Toutefois, ces particules métalliques sont difficiles à disperser (dans les liants servant à préparer habituellement les couches magnétiques) et, surtout, souffrent d'être très sensibles à la corrosion par oxydation, étant donné le caractère oxydable des métaux, en particulier du fer.Among the various materials known and used for magnetic recording, ferromagnetic metal particles have, compared with iron oxides in particular, the advantage of a magnetization at saturation and a particularly high coercive field. However, these metal particles are difficult to disperse (in the binders used to prepare the magnetic layers usually) and, above all, suffer from being very sensitive to corrosion by oxidation, given the oxidizable nature of metals, in particular iron.
Compte tenu des propriétés magnétiques intéressantes des particules métalliques, divers traitements ont été proposés pour améliorer leur aptitude à la dispersion et pour diminuer leur sensibilité à la corrosion. Il a été par exemple proposé de protéger des particules de fer par un enrobage d'oxyde de fer. La constitution de cet enrobage d'oxyde consomme une partie non négligeable du fer de la particule et contribue ainsi à affaiblir les caractéristiques magnétiques. Mais, surtout, la perméabilité des oxydes de fer rend inopérante toute tentative de protection définitive par formation, sur la particule de fer, d'un enrobage d'oxyde de fer. En effet, à travers cet enrobage, les phénomènes de diffusion cationique ou anionique peuvent se poursuivre, c'est-à-dire que l'oxydation peut continuer et entraîner une diminution ininterrompue de la teneur en fer de la particule et, par là, aggraver de façon continue et irrémédiable l'affaiblissement des caractéristiques magnétiques, en tout cas de celles de ces caractéristiques qui sont directement reliées à la quantité de métal ferromagnétique. Ceci est vrai dans tous les cas de particules métalliques protégées de l'oxydation par une couche d'oxyde du même métal, où les propriétés recherchées sont liées à la quantité de matière.Given the attractive magnetic properties of metallic particles, various treatments have been proposed to improve their dispersibility and to reduce their sensitivity to corrosion. It has for example been proposed to protect iron particles by coating with iron oxide. The constitution of this oxide coating consumes a non-negligible part of the iron of the particle and thus contributes to weakening the magnetic characteristics. But, above all, the permeability of iron oxides makes ineffective any attempt at final protection by the formation, on the iron particle, of a coating of iron oxide. Indeed, through this coating, the phenomena of cationic or anionic diffusion can continue, that is to say that the oxidation can continue and cause an uninterrupted decrease in the iron content of the particle and, thereby, continuously and irreparably worsening the weakening of the magnetic characteristics, in any case those of these characteristics which are directly related to the quantity of ferromagnetic metal. This is true in all cases of metallic particles protected from oxidation by an oxide layer of the same metal, where the desired properties are linked to the quantity of material.
En métallurgie, diverses techniques sont connues pour passiver les métaux, c'est-à-dire les rendre insensibles à divers agents corrosifs. Certaines de ces techniques utilisent des composés du silicium. Ces techniques ont été appliquées aux particules ferromagnétiques destinées à l'enregistrement magnétique. Il est en particulier connu d'enrober avec des silicates ou des gels de silice les particules de goethite qui sont ensuite réduites à haute température pour donner des particules de fer enrobées de silice. De tels procédés sont par exemples décrits dans les brevets des Etats-Unis d'Amérique 4 334 933, 4 347 291 et 4 400 337. L'inconvénient de ces procédés réside dans l'action de ralentissement exercée par les composés du silicium sur le processus de réduction de la goethite en fer : si la quantité de silice formée est trop importante, la réaction peut être bloquée avant d'être achevée.In metallurgy, various techniques are known for passivating metals, that is to say making them insensitive to various corrosive agents. Some of these techniques use silicon compounds. These techniques have been applied to ferromagnetic particles intended for magnetic recording. It is in particular known to coat the goethite particles with silicates or silica gels which are then reduced at high temperature to give iron particles coated with silica. Such methods are for example described in the patents of the United States of America 4,334,933, 4,347,291 and 4,400,337. The disadvantage of these methods lies in the slowing action exerted by the silicon compounds on the process of reduction of goethite to iron: if the amount of silica formed is too large, the reaction can be blocked before being completed.
Il est connu aussi de passiver des particules de métaux ferromagnétiques en formant à leur surface un enrobage de silane organique par traitement de ces particules avec une solution de silane dans un solvant organique. De tels procédés, décrits dans les brevets des Etats-Unis d'Amérique 4 475 946 et 4 437 882, impliquent donc l'utilisation industrielle de solvants organiques.It is also known to passivate particles of ferromagnetic metals by forming on their surface a coating of organic silane by treatment of these particles with a solution of silane in an organic solvent. Such methods, described in US Patents 4,475,946 and 4,437,882, therefore involve the industrial use of organic solvents.
Le brevet des Etats-Unis d'Amérique 4 746 547 décrit un procédé de traitement de particules métalliques de dimension inférieure à 100 μm, par du silane gazeux. La réaction de décomposition du silane n'a cependant pas lieu en lit fluidisé, et la présence d'hydrogène n'est pas obligatoire. Ce brevet ne divulgue pas les moyens de l'invention permettant de contrôler le dépôt de silicium sur des particules de très petites dimensions et d'éviter leur agglomération.US Patent 4,746,547 describes a process for treating metallic particles smaller than 100 μm in size with gaseous silane. The silane decomposition reaction does not however take place in a fluidized bed, and the presence of hydrogen is not compulsory. This patent does not disclose the means of the invention making it possible to control the deposition of silicon on particles of very small dimensions and to avoid their agglomeration.
Aucun des procédés précités ne donne entièrement satisfaction tant par les résultats qu'ils permettent d'obtenir en matière de résistance à la corrosion et d'aptitude à la dispersion, que par leur facilité et leur reproductibilité en matière de mise en oeuvre industrielle.None of the aforementioned methods is entirely satisfactory as much by the results which they make it possible to obtain in terms of corrosion resistance and ability to disperse, as by their ease and their reproducibility in terms of industrial implementation.
La présente invention a pour objet un procédé de traitement de particules de métal instables à l'air, qui apporte une solution aux inconvénients précités. Le procédé de l'invention pour traiter des particules de métal, consiste à soumettre ces particules à l'action de silane gazeux, et il est caractérisé en ce qu'on soumet les particules à l'action d'un courant gazeux contenant du silane gazeux et de l'hydrogène dans un rapport de pressions partielles pH /pSiH compris entre 106 et 10 ? dans un lit fluidisé.The present invention relates to a method of treating metal particles which are unstable in air, which provides a solution to the abovementioned drawbacks. The method of the invention for treating metal particles consists in subjecting these particles to the action of silane gas, and it is characterized in that the particles are subjected to the action of a gas stream containing silane gaseous and hydrogen in a partial pressure pH / pSiH ratio between 10 6 and 10? in a fluidized bed.
Selon des modes de réalisation avantageux, le lit fluidisé est chauffé à une température comprise entre 200°C et 400°C, et la vitesse de fluidisation est comprise entre 0,1 et 0,5 m/s.According to advantageous embodiments, the fluidized bed is heated to a temperature between 200 ° C and 400 ° C, and the fluidization speed is between 0.1 and 0.5 m / s.
Selon un autre mode de réalisation, les particules de métal sont des particules ferromagnétiques, et plus particulièrement des particules de fer. L'invention a aussi pour objet un procédé de passivation de particules métalliques dans lequel on oxyde les particules métalliques portant un revêtement de silicium, telles qu'on les a obtenues par le procédé de traitement décrit ci-dessus, pour former à leur surface une couche de silice.According to another embodiment, the metal particles are ferromagnetic particles, and more particularly iron particles. The subject of the invention is also a process for the passivation of metal particles in which the metal particles carrying a silicon coating are oxidized, as obtained by the treatment process described above, to form on their surface a layer of silica.
L'invention a aussi pour objet un procédé d'obtention de particules traitées d'un métal à partir d'un oxyde de ce métal, dans lequel on réduit des particules d'oxyde de ce métal par un agent réducteur gazeux en lit fluidisé, puis on les traite selon le procédé de traitement décrit ci-dessus.The subject of the invention is also a process for obtaining treated particles of a metal from an oxide of this metal, in which particles of oxide of this metal are reduced by a gaseous reducing agent in a fluidized bed, then they are treated according to the treatment method described above.
Selon un mode préféré de réalisation, l'ensemble des procédés de l'invention peut être réalisé en lit fluidisé, dans le même réacteur, en effectuant les purges appropriées entre chaque étape. L'agent réducteur gazeux utilisé pour réduire l'oxyde métallique est de préférence de l'hydrogène. Un tel procédé est très avantageux dans une application industrielle, puisqu'il permet d'utiliser le même réacteur pour préparer les particules et pour les traiter, en changeant seulement le gaz réactif, et ne nécessite pas un traitement ultérieur des particules.According to a preferred embodiment, all of the methods of the invention can be carried out in a fluidized bed, in the same reactor, by carrying out the appropriate purges between each step. The gaseous reducing agent used to reduce the metal oxide is preferably hydrogen. Such a process is very advantageous in an industrial application, since it makes it possible to use the same reactor to prepare the particles and to treat them, by changing only the reactive gas, and not does not require further treatment of the particles.
Le procédé est principalement applicable à l'obtention de particules de fer destinées à l'enregistrement magnétique. L'invention permet d'obtenir des particules de métal ferromagnétique stabilisées contre l'oxydation avec une diminution réduite de l'aimantation, aptes à la dispersion dans un liant et résistantes au vieillissement.The method is mainly applicable to obtaining iron particles intended for magnetic recording. The invention makes it possible to obtain ferromagnetic metal particles stabilized against oxidation with a reduced reduction in magnetization, suitable for dispersion in a binder and resistant to aging.
Le procédé de l'invention n'est cependant pas limité à une telle application. Il peut être aussi utilisé d'une façon générale pour enduire des fines particules d'une couche de silicium.The method of the invention is however not limited to such an application. It can also be used in general to coat fine particles with a silicon layer.
Dans le procédé selon l'invention, on utilise un mélange gazeux H 2/SiH4 en lit fluidisé. L'utilisation de la technique du lit fluidisé permet de mieux maîtriser l'enrobage de la particule, mais il est évidemment essentiel de bien contrôler la quantité de silicium formée sur les particules. En effet, l'objectif est de réaliser un apport de silicium juste nécessaire pour enrober les particules, sans introduire d'excès de silicium qui, venant se loger entre les particules, entraînerait une agrégation indésirable des particules. En particulier dans le cas d'utilisation pour l'enregistrement magnétique, de tels agrégats gênent beaucoup la formation subséquente des dispersions magnétiques, parce qu'ils obligent à des opérations de malaxage plus intense qui détruisent la morphologie des particules. Ceci est en particulier le cas pour les particules aciculaires qui sont le plus souvent recherchées pour réaliser les couches d'enregistrement magnétique. Le contrôle de la quantité de silicium formée sur les particules est en outre nécessaire dans la mesure où il existe un seuil au-delà duquel la résistance à la corrosion n'augmente plus, alors que les caractéristiques magnétiques commencent à se dégrader. La quantité de silicium déposée pendant un temps donné dépend du rapport des pressions partielles pH 2/pSiH4, de la vitesse de fluidisation et de la température de traitement.In the process according to the invention, an H 2 / SiH 4 gas mixture is used in a fluidized bed. The use of the fluidized bed technique makes it possible to better control the coating of the particle, but it is obviously essential to properly control the amount of silicon formed on the particles. Indeed, the objective is to make a supply of silicon just necessary to coat the particles, without introducing an excess of silicon which, being housed between the particles, would cause an undesirable aggregation of the particles. In particular in the case of use for magnetic recording, such aggregates greatly hinder the subsequent formation of magnetic dispersions, because they require more intense mixing operations which destroy the morphology of the particles. This is in particular the case for needle-like particles which are most often sought for making the magnetic recording layers. Control of the amount of silicon formed on the particles is also necessary insofar as there is a threshold beyond which the corrosion resistance no longer increases, while the magnetic characteristics begin to degrade. The amount of silicon deposited during a given time depends on the ratio of partial pressures pH 2 / pSiH4, the fluidization speed and the treatment temperature.
Le rapport des pressions partielles pH 2/pSiH4 permet de contrôler la vitesse de décomposition du silane, et donc la vitesse de dépôt du silicium, la présence d'hydrogène tendant à ralentir la réaction. Le rapport des pressions partielles pH 2/pSiH4 est compris entreThe partial pressure ratio pH 2 / pSiH4 makes it possible to control the rate of decomposition of the silane, and therefore the rate of deposition of the silicon, the presence of hydrogen tending to slow down the reaction. The ratio of partial pressures pH 2 / pSiH4 is between
10 et 10 , ce qui correspond à une teneur en silane en volume par rapport au volume de gaz total de fluidisation comprise entre 0,05 et 1 %. La vitesse de fluidisation, qui est le rapport du débit en gaz total par la section du réacteur, dépend elle-même de la taille des particules et de la nature du gaz porteur, comme on le verra ci-après. La température est de préférence comprise entre 200°C et 400°C.10 and 10, which corresponds to a silane content by volume relative to the volume of total fluidization gas of between 0.05 and 1%. The fluidization speed, which is the ratio of the total gas flow rate through the section of the reactor, itself depends on the size of the particles and on the nature of the carrier gas, as will be seen below. The temperature is preferably between 200 ° C and 400 ° C.
La figure 1 est un graphique montrant la relation entre la quantité de silicium ajoutée à la particule et le temps de résidence dans le lit suivant différentes caractéristiques du lit fluidisé (vitesses de fluidisation et concentrations en silane) à 350°C.Figure 1 is a graph showing the relationship between the amount of silicon added to the particle and the residence time in the bed according to different characteristics of the fluidized bed (fluidization rates and silane concentrations) at 350 ° C.
La figure 2 est un graphique montrant l'efficacité de la protection (évaluée par l'oxydation de la particule) en fonction de la quantité de silicium ajoutée à la particule. La figure 3 représente des diagrammes montrant la structure des porosités inter et intragranulaires avant et après le traitement.FIG. 2 is a graph showing the effectiveness of the protection (evaluated by the oxidation of the particle) as a function of the amount of silicon added to the particle. FIG. 3 represents diagrams showing the structure of the inter and intragranular porosities before and after the treatment.
La figure 4 représente un schéma de l'installation. Dans les graphiques, le pourcentage de silicium est donné en masse par rapport à la masse totale de la particule, et comprend éventuellement le silicate qui aurait pu être déposé sur les particules d'oxyde métallique de départ.Figure 4 shows a diagram of the installation. In the graphs, the percentage of silicon is given by mass relative to the total mass of the particle, and possibly includes the silicate which could have been deposited on the starting metal oxide particles.
La technique du lit fluidisé, préconisée dans le procédé de l'invention, consiste à amener une couche de particules 7 solides dans un état présentant certaines analogies avec un fluide, grâce à l'action d'un courant gazeux ascendant. L'avantage de la technique du lit fluidisé est de permettre un très bon contact entre le gaz et les particules. Ainsi les temps de réaction peuvent être courts, ce qui est intéressant, en particulier lorsque, comme dans le cas des particules magnétiques, il y a risque de détérioration du substrat.The fluidized bed technique, recommended in the process of the invention, consists in bringing a layer of particles 7 solids in a state presenting certain analogies with a fluid, thanks to the action of an ascending gas stream. The advantage of the fluidized bed technique is that it allows very good contact between the gas and the particles. Thus the reaction times can be short, which is interesting, in particular when, as in the case of magnetic particles, there is a risk of deterioration of the substrate.
Une vitesse minimale du flux gazeux (vitesse minimale de fluidisation) est nécessaire pour obtenir la mise en suspension des particules et la formation du lit. Mais si la vitesse du flux gazeux dépasse une certaine limite (vitesse maximale de fluidisation), des particules sont entraînées par le courant gazeux. La vitesse de fluidisation gouverne le dépôt de silane, mais elle dépend elle-même de la taille des particules et de la viscosité du milieu, déterminée par la nature du gaz porteur. Les particules traitées selon le procédé de l'invention sont sous forme de poudres constituées de grains poreux ayant des dimensions de 0,1 à 1 mm et des tailles de pores comprises entre 1 et 0,01 μm. Cette structure apparaît à la figure 3, donnant les porosités inter et intragranulaires de la poudre. Cette dimension de pores permet au silane de s'infiltrer à l'intérieur des grains, pour se déposer sur les particules individuelles. Mais d'autre part les grains eux-mêmes sont assez gros pour que l'on puisse utiliser des vitesses de fluidisation assez élevées. Quand le gaz porteur est de l'argon, la vitesse de fluidisation est de préférence comprise entre 0,1 et 0,5 m/s.A minimum speed of the gas flow (minimum fluidization speed) is necessary to obtain the suspension of the particles and the formation of the bed. But if the speed of the gas flow exceeds a certain limit (maximum fluidization speed), particles are entrained by the gas stream. The speed of fluidization governs the deposition of silane, but it itself depends on the size of the particles and the viscosity of the medium, determined by the nature of the carrier gas. The particles treated according to the process of the invention are in the form of powders consisting of porous grains having dimensions of 0.1 to 1 mm and pore sizes between 1 and 0.01 μm. This structure appears in FIG. 3, giving the inter and intragranular porosities of the powder. This pore size allows the silane to infiltrate inside the grains, to deposit on the individual particles. But on the other hand the grains themselves are large enough that one can use fairly high fluidization speeds. When the carrier gas is argon, the fluidization speed is preferably between 0.1 and 0.5 m / s.
Des poudres ayant les caractéristiques de granularité indiquées ci-dessus sont par exemple des poudres de goethite préparées selon le mode opératoire du brevet français 2 487 326. Cependant on peut traiter par le procédé de l'invention toute poudre ayant de telles 8 caractéristiques granulometriques quelque soit son procédé de préparation.Powders having the granularity characteristics indicated above are for example goethite powders prepared according to the procedure of French patent 2,487,326. However, any powder having such 8 particle size characteristics whatever its preparation process.
Le procédé selon la présente invention est réalisé en lit fluidisé dans un dispositif comprenant principalement : - Un réacteur (1) à l'intérieur duquel sont effectuées les réactions thermochimiques ; ce réacteur est constitué d'un tube en acier inoxydable et comporte à son sommet une bride et un couvercle muni d'un verre de sécurité destiné à l'observation de la fluidisation. A sa base, une autre bride à emboîtement reçoit la plaque en métal fritte de distribution et assure la fixation de l'ensemble sur une embase (2) .The process according to the present invention is carried out in a fluidized bed in a device mainly comprising: - A reactor (1) inside which the thermochemical reactions are carried out; this reactor consists of a stainless steel tube and has at its top a flange and a cover provided with a safety glass intended for the observation of fluidization. At its base, another interlocking flange receives the sintered metal distribution plate and ensures the assembly of the assembly on a base (2).
- Le réchauffeur de gaz (3) dont la fonction est de chauffer les différents gaz (H , N , air, argon, O ) avant leur introduction dans le réacteur, apportant ainsi un complément de calories au lit fluidisé de façon à faciliter la mise en température et sa régulation. - Une enceinte chauffante (4) qui ceinture le réacteur en position fermée et qui apporte l'essentiel des calories nécessaires au chauffage et à la régulation du lit et qui lui sert également de calorifugeage. Cette enceinte est constituée de deux demi-coquilles équipées chacune d'une résistance électrique.- The gas heater (3) whose function is to heat the different gases (H, N, air, argon, O) before their introduction into the reactor, thus bringing additional calories to the fluidized bed so as to facilitate the setting in temperature and its regulation. - A heating chamber (4) which surrounds the reactor in the closed position and which provides most of the calories necessary for heating and regulating the bed and which also serves as insulation. This enclosure consists of two half-shells each equipped with an electrical resistance.
- Un cyclone de dépoussiérage (5) placé dans le circuit d'évacuation des gaz en sortie de réacteur. Il agit par centrifugation et sépare du courant gazeux les fines particules de produit, entraînées lors de la fluidisation.- A dedusting cyclone (5) placed in the gas evacuation circuit at the outlet of the reactor. It acts by centrifugation and separates from the gas stream the fine particles of product entrained during fluidization.
- Un refroidisseur (6) placé dans le circuit d'évacuation des gaz en aval du cyclone de dépoussiérage, et qui sert à refroidir les gaz chauds avant leur passage dans l'épurateur. Il peut s'agir d'un échangeur tubulaire composé d'une série de petits tubes métalliques parcourus par les gaz chauds et refroidis extérieurement par une circulation d'eau froide contenue dans une enveloppe cylindrique.- A cooler (6) placed in the gas evacuation circuit downstream of the dedusting cyclone, and which is used to cool the hot gases before they pass through the purifier. It can be a tubular exchanger composed of a series of small metal tubes traversed by hot gases and cooled externally by a circulation of cold water contained in a cylindrical envelope.
- Un récupérateur de produit (7) . Il comprend principalement un cyclone muni d'un clapet pneumatique et un récipient de récupération du produit. La récupération du produit se fait par transport pneumatique des particules.- A product recuperator (7). It mainly comprises a cyclone fitted with a pneumatic valve and a product recovery container. The product is recovered by pneumatic transport of the particles.
- Un épurateur (8) dont le rôle principal est d'épurer les gaz en provenance des deux circuits- A purifier (8) whose main role is to purify the gases from the two circuits
(refroidissement et récupération) par barbotage dans de l'eau avant tout rejet dans l'atmosphère. Ce dispositif forme également un joint liquide (anti-retour) isolant le contenu du réacteur de l'extérieur, en cas d'arrêt momentané de fonctionnement de l'installation. Pour des raisons de simplification le dispositif a été décrit seulement dans ses principales fonctions. Ces dispositifs, bien connu dans la technique antérieure, comportent d'autres éléments tels que des sondes de température et de prélèvement disposées notamment dans le réacteur (1). Dans notre cas, il est à noter que le silane est introduit dans le réacteur sans passer par le réchauffeur, au moyen d'un autre conduit (9) communiquant avec le réacteur, ceci en raison du fait que le silane est un gaz qui se décompose à la chaleur.(cooling and recovery) by bubbling in water before any release into the atmosphere. This device also forms a liquid seal (non-return) isolating the contents of the reactor from the outside, in the event of a temporary stop of operation of the installation. For reasons of simplification, the device has been described only in its main functions. These devices, well known in the prior art, include other elements such as temperature and sampling probes arranged in particular in the reactor (1). In our case, it should be noted that the silane is introduced into the reactor without passing through the heater, by means of another conduit (9) communicating with the reactor, this due to the fact that the silane is a gas which is decomposes on heat.
En pratique, la poudre formée des grains poreux de particules est d'abord balayée avec le gaz choisi pour la fluidisation. Puis, le mélange gazeux froid est introduit à la base du diffuseur surmonté par la poudre. Le mélange gazeux comprend le silane SiH , de l'hydrogène et un gaz de dilution inerte qui, de préférence, est un gaz rare tel que l'hélium ou l'argon. La concentration du silane dans le gaz de dilution est comprise entre 1% et 5% en volume. Après l'action du gaz silane sur les particules, 10 suivie d'une purge à l'azote, on peut faire passer un courant d'oxygène dans le lit fluidisé de façon à obtenir une couche de silice autour des particules. Dans un mode de réalisation préféré, on utilise un courant d'oxygène dilué dans l'azote à concentration croissante, de 0 à 3% au début, jusqu'à 21%, à 80°C, pendant 1 heure.In practice, the powder formed from the porous particles of particles is first swept with the gas chosen for the fluidization. Then, the cold gas mixture is introduced at the base of the diffuser surmounted by the powder. The gas mixture comprises silane SiH, hydrogen and an inert dilution gas which, preferably, is a rare gas such as helium or argon. The concentration of silane in the dilution gas is between 1% and 5% by volume. After the action of the silane gas on the particles, 10 followed by a nitrogen purge, a stream of oxygen can be passed through the fluidized bed so as to obtain a layer of silica around the particles. In a preferred embodiment, a stream of oxygen diluted in nitrogen with increasing concentration is used, from 0 to 3% at the start, up to 21%, at 80 ° C., for 1 hour.
Dans un mode de réalisation préféré, les particules métalliques sont préparées à partir d'un oxyde métallique par réduction par un agent réducteur gazeux, dans le même lit fluidisé, cet agent réducteur étant de préférence de l'hydrogène.In a preferred embodiment, the metal particles are prepared from a metal oxide by reduction with a gaseous reducing agent, in the same fluidized bed, this reducing agent preferably being hydrogen.
Les exemples suivants illustrent l'invention. EXEMPLESThe following examples illustrate the invention. EXAMPLES
Dans tous les exemples, on utilise de la goethite préparée suivant le mode opératoire du BF 2 487 326In all the examples, goethite prepared according to the procedure of BF 2 487 326 is used.
(Pingaud) , sous forme d'aiguilles d'environ 0,4 μm de long et d'acicularité environ 20, enrobées de silicate à 7,5 % par rapport à la masse de goethite. Exemple 1 Après réduction de la goethite par de l'hydrogène en lit fluidisé, on traite au silane la poudre réduite avec une vitesse de fluidisation de 0,5 m/s (on utilise comme silane un produit composé d'argon contenant 3% de silane) les % de SiH. et les températures sont indiqués au tableau ci-dessous, pour 4 échantillons et un témoin non traité. Les 5 échantillons sont ensuite passives avec un courant d'O 2.(Pingaud), in the form of needles about 0.4 μm long and of particularity about 20, coated with silicate at 7.5% relative to the mass of goethite. Example 1 After reduction of the goethite with hydrogen in a fluidized bed, the reduced powder is treated with silane with a fluidization speed of 0.5 m / s (a product composed of argon containing 3% of silane)% of SiH. and the temperatures are indicated in the table below, for 4 samples and one untreated control. The 5 samples are then passive with a current of O 2.
Le tableau ci-dessous donne la quantité de silicium totale titrée en masse, y compris le silicate déposé au départ sur les aiguilles de goethite, et les propriétés magnétiques : champ coercitif, aimantation, carrure, pour les particules obtenues, et pour un échantillon témoin préparé à partir de la même goethite réduite par de l'hydrogène en lit fluidisé, puis passive avec de l'oxygène, mais sans le traitement au silane. TABLEAUThe table below gives the quantity of total silicon mass titrated, including the silicate initially deposited on the goethite needles, and the magnetic properties: coercive field, magnetization, middle, for the particles obtained, and for a control sample. prepared from the same goethite reduced by hydrogen in a fluidized bed, then passive with oxygen, but without the silane treatment. BOARD
Hc Im Carrure % Si (Total Température % SiH4Hc Im Shoulder width% Si (Total Temperature% SiH4
0e emu/g dosé) en masse °C (mole/mole H )0 emu / g dosed) by mass ° C (mole / mole H)
Témoin 1620-1660 100 0, ,57-0,59 1/1,2 / 0Witness 1620-1660 100 0.57-0.59 1 / 1.2 / 0
1 1660 100-105 0,61 2,2 350 0,071 1660 100-105 0.61 2.2 350 0.07
2 1670 110-120 0,6 3,3 350 0,2 -2 1670 110-120 0.6 3.3 350 0.2 -
3 1725 120 0,61 3,5 350 0,353 1,725 120 0.61 3.5 350 0.35
4 1680 110-115 0,6 3,3 310 0,35 4 1680 110-115 0.6 3.3 310 0.35
Les propriétés magnétiques sont mesurées avec un hystérésimètre sous un champ magnétisant de 4500 Oe. On voit que l'aimantation et le champ coercitif sont moins diminués pour les particules de l'invention traitées au silane avant passivation, que pour le témoin passive sans traitement au silane. Exemple 2The magnetic properties are measured with a hysterometer under a magnetizing field of 4500 Oe. It can be seen that the magnetization and the coercive field are less reduced for the particles of the invention treated with silane before passivation, than for the passive control without treatment with silane. Example 2
Il est possible de mesurer les qualités protectrices d'une couche d'oxyde sur les aiguilles en étudiant la cinétique d'oxydation (variation de masse par unité de surface) en milieu non humide, de ces aiguilles. Ceci a été fait à 130°C. On peut mesurer la constante parabolique d'oxydation K comme Δm/S = K-/t, où m est la masse des particules, S leur surface et t le temps d'oxydation. La figure 2 donne la valeur de K en fonction du % en Si total titré. On voit que la qualité de la protection augmente avec le taux de silicium et se stabilise vers 5 % de Si. Exem le 3 On utilise l'échantillon 2 et le témoin de l'exemple 1 pour préparer deux compositions ayant la formule suivante.It is possible to measure the protective qualities of an oxide layer on the needles by studying the oxidation kinetics (variation in mass per unit area) in a non-humid environment, of these needles. This was done at 130 ° C. The parabolic oxidation constant K can be measured as Δm / S = K- / t, where m is the mass of the particles, S their surface and t the oxidation time. Figure 2 gives the value of K as a function of the% in total Si titrated. It can be seen that the quality of the protection increases with the silicon content and stabilizes around 5% of Si. Example 3 The sample 2 and the control of Example 1 are used to prepare two compositions having the following formula.
Particules métalliques 73.6 %Metal particles 73.6%
Estane 57151 6.98 %Estane 5715 1 6.98%
VAGH2 4.66% A Acciiddee oollééiiqquuee 0.73%VAGH 2 4.66% A Acciiddee oolléiiqquuee 0.73%
Al2°3 5.88% Al 2 ° 3 5.88%
Cr203 1.1%Cr 2 0 3 1.1%
Acide myristique 1.45%Myristic acid 1.45%
Gafac 5.51% i Polyester uréthane fourni par B.F. Goodrich Chemical Co.Gafac 5.51% i Polyester urethane supplied by B.F. Goodrich Chemical Co.
2 Acétochlorure de polyvinyle fourni par Union Carbide Corp.2 Polyvinyl acetochloride supplied by Union Carbide Corp.
3 Agent tensioactif à base de phosphates organiques complexes, fourni par General Aniline and Film3 Surfactant based on complex organic phosphates, supplied by General Aniline and Film
Corporation. On broie les compositions dans un mélange solvant constitué de toluène, de cyclohexanone et de tétrahydrofuranne (1/3 : 1/3 : 1/3 en volume), et on dépose les compositions sur un support de polyterephtalate d'éthylène. On oriente et on sèche les produits obtenus pour obtenir des couches de 5 μm d'épaisseur dont les propriétés magnétiques sont indiquées au tableau suivant : Echantillons Hc(Oe) Carrure Im S/NCorporation. The compositions are ground in a solvent mixture consisting of toluene, cyclohexanone and tetrahydrofuran (1/3: 1/3: 1/3 by volume), and the compositions are deposited on a support of polyethylene terephthalate. The products obtained are oriented and dried to obtain layers 5 μm thick, the magnetic properties of which are indicated in the following table: Samples Hc (Oe) Middle part Im S / N
(Emu/cm ) Témoin 1475 201,8 50 db(Emu / cm) Witness 1475 201.8 50 db
Invention 1550 0,74 212,2 53,4 dbInvention 1,550 0.74 212.2 53.4 db
On peut constater que les propriétés de l'échantillon de l'invention sont meilleures que celles du témoin. Exemple 4 On mesure la porosité des poudres après réduction et après dépôt de silicium.It can be seen that the properties of the sample of the invention are better than those of the control. Example 4 The porosity of the powders is measured after reduction and after deposition of silicon.
Le procédé de l'invention est mis en oeuvre à 350°C, avec une vitesse de fluidisation de 0,31 m/s et un pourcentage de silane de 0,9%. Les diagrammes des figures 3a et 3b représentent les répartitions des volumes poreux en fonction du diamètre des pores. Les mesures sont effectuées avec un porosimetre à mercure. On peut observer deux sortes de pores : les plus gros ont un diamètre compris entre 50 et 120 μm, et les plus petits ont un diamètre compris entre 13 etThe process of the invention is carried out at 350 ° C., with a fluidization speed of 0.31 m / s and a percentage of silane of 0.9%. The diagrams of FIGS. 3a and 3b represent the distributions of the pore volumes as a function of the diameter of the pores. The measurements are carried out with a mercury porosimeter. We can observe two kinds of pores: the largest have a diameter between 50 and 120 μm, and the smallest have a diameter between 13 and
120 nm; on voit que les petits pores ne disparaissent pas après le traitement au silane, ce qui signifie que les particules ne sont pas agglomérées. 120 nm; it can be seen that the small pores do not disappear after the silane treatment, which means that the particles are not agglomerated.

Claims

H H
REVENDICATIONS - Procédé de traitement de particules de métal instables à l'air, consistant à soumettre ces particules à l'action de silane gazeux, caractérisé en ce qu'on soumet les particules de métal à l'action d'un courant gazeux comprenant du silane gazeuxCLAIMS - Process for treating metal particles which are unstable in air, which consists in subjecting these particles to the action of silane gas, characterized in that the metal particles are subjected to the action of a gas stream comprising gaseous silane
SiH , de l'hydrogène dans un rapport de pressionsSiH, hydrogen in a pressure ratio
4 6 partielles pH /pSiH compris entre 10 et 4 6 partial pH / pSiH between 10 and
104, et un gaz de dilution, dans un lit fluidisé. 2 - Procédé selon la revendication 1, dans lequel la concentration du silane dans le gaz de dilution est comprise entre 1% et 5% en volume.10 4 , and a dilution gas, in a fluidized bed. 2 - Process according to claim 1, wherein the concentration of silane in the dilution gas is between 1% and 5% by volume.
3 - Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel le gaz de dilution est l'argon ou l'hélium.3 - Process according to any one of claims 1 or 2, wherein the dilution gas is argon or helium.
4 - Procédé selon l'une quelconque des revendications 1 à4 - Method according to any one of claims 1 to
3 dans lequel la vitesse de fluidisation est comprise entre 0,1 et 0,5 m/s.3 in which the fluidization speed is between 0.1 and 0.5 m / s.
5 - Procédé selon l'une des revendications 1 à 4, dans lequel le lit fluidisé est chauffé à une température comprise entre 200°C et 400°C.5 - Method according to one of claims 1 to 4, wherein the fluidized bed is heated to a temperature between 200 ° C and 400 ° C.
6 - Procédé selon l'une des revendications 1 à 5, dans lequel les particules de métal sont des particules de métal ferromagnétique. 7 - Procédé selon la revendication 6, dans lequel les particules de métal ferromagnétique sont des particules de fer. 8 - Procédé de passivation de particules métalliques, dans lequel on oxyde les particules métalliques portant un revêtement de silicium, telles que traitées selon le procédé de l'une quelconque des revendications 1 à 7, dans le même lit fluidisé, par un courant oxydant gazeux, pour former à leur surfac une couche de silice. 9 - Procédé d'obtention de particules traitées d'un méta à partir d'un oxyde de ce métal, dans lequel on réduit des particules d'oxyde de ce métal par un courant d'un agent réducteur gazeux en lit fluidisé, puis on les traite dans le même lit fluidisé suivant le procédé d'une quelconque des revendications 1 à 8. - Procédé selon la revendication 9, dans lequel l'agent réducteur gazeux est de l'hydrogène. - Procédé selon l'une des revendications 9 ou 10, dans lequel on prépare des particules de fer à partir d'oxyde ferrique hydraté alpha. - Particules de métal ferromagnétique stabilisées contre l'oxydation sans diminution d'aimantation, aptes à la dispersion dans un liant, et résistantes au vieillissement, préparées selon un procédé conforme à l'une des revendications 1 à 11. 6 - Method according to one of claims 1 to 5, wherein the metal particles are ferromagnetic metal particles. 7 - Process according to claim 6, wherein the ferromagnetic metal particles are iron particles. 8 - Method for passivation of metal particles, in which the metal particles carrying a silicon coating are oxidized, as treated according to the method of any one of claims 1 to 7, in the same fluidized bed, by a gaseous oxidizing current to form a layer of silica on their surface. 9 - Process for obtaining treated particles of a meta from an oxide of this metal, in which particles of oxide of this metal are reduced by a current of a gaseous reducing agent in a fluidized bed, then they are treated in the same fluidized bed according to the method of any of claims 1 to 8. - The method of claim 9, wherein the gaseous reducing agent is hydrogen. - Method according to one of claims 9 or 10, wherein iron particles are prepared from alpha hydrated ferric oxide. - Particles of ferromagnetic metal stabilized against oxidation without reduction in magnetization, suitable for dispersion in a binder, and resistant to aging, prepared according to a process according to one of claims 1 to 11.
PCT/EP1989/000684 1988-06-24 1989-06-17 Process for treating metal particles against corrosion and the particles thereby obtained WO1989012887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR88/08781 1988-06-24
FR8808781A FR2633311A1 (en) 1988-06-24 1988-06-24 PROCESS FOR THE TREATMENT OF METAL PARTICLES AGAINST CORROSION AND PARTICLES OBTAINED

Publications (1)

Publication Number Publication Date
WO1989012887A1 true WO1989012887A1 (en) 1989-12-28

Family

ID=9367883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000684 WO1989012887A1 (en) 1988-06-24 1989-06-17 Process for treating metal particles against corrosion and the particles thereby obtained

Country Status (3)

Country Link
EP (1) EP0424411A1 (en)
FR (1) FR2633311A1 (en)
WO (1) WO1989012887A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517576A1 (en) * 1991-06-03 1992-12-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for storing a gas mixture in passivated metal containers to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith
US5480677A (en) * 1991-06-03 1996-01-02 American Air Liquide Chicago Research Center Process for passivating metal surfaces to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852972B1 (en) * 2003-03-25 2005-05-20 Lifco Ind METHODS OF MAKING COATED METALLIC PARTICLES AND COMPOSITE MATERIAL AND INSTALLATION FOR CARRYING OUT SAID METHODS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1253514A (en) * 1968-01-15 1971-11-17 Thermal Syndicate Ltd Protective coating of refractory metals
DE2225973B1 (en) * 1972-05-27 1973-11-29 Merck Patent Gmbh, 6100 Darmstadt Process for coating non-porous material with a porous silicon dioxide layer
US4334933A (en) * 1979-05-21 1982-06-15 Toho Ganryo Kogyo Co., Ltd. Process for preparing stable inorganic pigment
EP0056257A1 (en) * 1981-01-10 1982-07-21 Hitachi Maxell Ltd. Method for production of metal magnetic particles
US4347291A (en) * 1979-11-28 1982-08-31 Tdk Electronics Co., Ltd. Magnetic recording medium and preparation thereof
DE3331927A1 (en) * 1982-09-08 1984-03-15 Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa FERROMAGNETIC METAL PARTICLES
US4437882A (en) * 1982-07-26 1984-03-20 Fuji Photo Film Co., Ltd. Ferromagnetic powder treated with an organic silane compound
US4579752A (en) * 1984-10-29 1986-04-01 At&T Bell Laboratories Enhanced corrosion resistance of metal surfaces
US4746547A (en) * 1986-12-29 1988-05-24 Ga Technologies Inc. Method and apparatus for circulating bed coater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161708A (en) * 1982-03-20 1983-09-26 Hitachi Maxell Ltd Production of magnetic metallic iron powder
JPS59168643A (en) * 1983-03-15 1984-09-22 Fuji Electric Corp Res & Dev Ltd Compacting treatment method of oxide film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1253514A (en) * 1968-01-15 1971-11-17 Thermal Syndicate Ltd Protective coating of refractory metals
DE2225973B1 (en) * 1972-05-27 1973-11-29 Merck Patent Gmbh, 6100 Darmstadt Process for coating non-porous material with a porous silicon dioxide layer
US4334933A (en) * 1979-05-21 1982-06-15 Toho Ganryo Kogyo Co., Ltd. Process for preparing stable inorganic pigment
US4347291A (en) * 1979-11-28 1982-08-31 Tdk Electronics Co., Ltd. Magnetic recording medium and preparation thereof
EP0056257A1 (en) * 1981-01-10 1982-07-21 Hitachi Maxell Ltd. Method for production of metal magnetic particles
US4437882A (en) * 1982-07-26 1984-03-20 Fuji Photo Film Co., Ltd. Ferromagnetic powder treated with an organic silane compound
DE3331927A1 (en) * 1982-09-08 1984-03-15 Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa FERROMAGNETIC METAL PARTICLES
US4579752A (en) * 1984-10-29 1986-04-01 At&T Bell Laboratories Enhanced corrosion resistance of metal surfaces
US4746547A (en) * 1986-12-29 1988-05-24 Ga Technologies Inc. Method and apparatus for circulating bed coater

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 7, No. 287 (M-264) (1432), 21 Decembre 1983; & JP-A- 58161708 (Hitachi Maxell K.K.) 26 Septembre 1983 *
PATENT ABSTRACTS OF JAPAN, Vol. 9, No. 19 (E-292) (1742), 25 Janvier 1985; & JP-A-59168643 (Fuji Denki Sougou Kenkyusho K.K.) 22 Septembre 1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517576A1 (en) * 1991-06-03 1992-12-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for storing a gas mixture in passivated metal containers to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith
US5480677A (en) * 1991-06-03 1996-01-02 American Air Liquide Chicago Research Center Process for passivating metal surfaces to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith

Also Published As

Publication number Publication date
FR2633311A1 (en) 1989-12-29
EP0424411A1 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US5003919A (en) Apparatus for stabilization treatment of ferromagnetic metal powder
Hambrock et al. A non-aqueous organometallic route to highly monodispersed copper nanoparticles using [Cu (OCH (Me) CH 2 NMe 2) 2]
FR2538092A1 (en) FLUIDIZED BED METHOD AND APPARATUS FOR TREATING METALS IN A CONTROLLED ATMOSPHERE
FR2577944A1 (en) HARD SURFACE COATINGS OF METALS IN FLUIDIZED BEDS
JPS5924184B2 (en) protective coating
CA2553284A1 (en) Gold and reducible oxide-based composition, method for the preparation and the use thereof in the form of a catalyst, in particular for carbon monoxide oxidation
Boies et al. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition
He et al. Laser-driven synthesis and magnetic properties of iron nanoparticles
US4470844A (en) Agglomerated ferromagnetic iron particles
WO1989012887A1 (en) Process for treating metal particles against corrosion and the particles thereby obtained
WO2004045793A1 (en) Alloy nano-particle and method for production thereof, and magnetic recording medium using alloy nano-particle
Granath et al. The Significant Influence of the pH Value on Citrate Coordination upon Modification of Superparamagnetic Iron Oxide Nanoparticles
US5037705A (en) Oxygen-containing molybdenum metal powder and processes for its preparation
JP3022576B2 (en) Polysilicon with reduced hydrogen content
US6506229B2 (en) Two experimental trials using the system 10 demonstrate the efficacy of the present process:
EP0769567B1 (en) Process for coating a sheet
KR910006421B1 (en) Method for passivating uranium oxides to control oxidation and the oxidation resisting uranium product thereof
Riskin et al. Deposition of functionalized gold nanoparticles onto modified silicon substrates
Bondar et al. Emission and percolation of excitons in dense sensembles of quantum dots on the spherical surface
JPH04202602A (en) Manufacture of metal magnetic powder
EP0420718A1 (en) Process for the preparation of metallic nitrides
JPH03126801A (en) Method for stabilizing metal magnetic powder
EP0580912A1 (en) Process for making metal alloys for obtaining a homogenous powder of oxides of said metals and their applications for obtaining semi-conductors and super-conductors
JPS6067603A (en) Treatment of ultrafine metal powder
Choi et al. Thermal stability of Cu and Cu2O nanoparticles in a polyimide film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989907134

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989907134

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989907134

Country of ref document: EP