WO1991016020A1 - Transpedicular screw system and method of use - Google Patents

Transpedicular screw system and method of use Download PDF

Info

Publication number
WO1991016020A1
WO1991016020A1 PCT/US1990/002286 US9002286W WO9116020A1 WO 1991016020 A1 WO1991016020 A1 WO 1991016020A1 US 9002286 W US9002286 W US 9002286W WO 9116020 A1 WO9116020 A1 WO 9116020A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
screw
anchor
seat
anchor seat
Prior art date
Application number
PCT/US1990/002286
Other languages
French (fr)
Inventor
Rolando M. Puno
Phillip A. Mellinger
Original Assignee
Danninger Medical Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22220819&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991016020(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Danninger Medical Technology, Inc. filed Critical Danninger Medical Technology, Inc.
Priority to US07/946,319 priority Critical patent/US5360431A/en
Priority to PCT/US1990/002286 priority patent/WO1991016020A1/en
Publication of WO1991016020A1 publication Critical patent/WO1991016020A1/en
Priority to US08/285,226 priority patent/US5474555A/en
Priority to US08/539,532 priority patent/US5624442A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • A61B17/7052Connectors, not bearing on the vertebrae, for linking longitudinal elements together of variable angle or length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7082Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for driving, i.e. rotating, screws or screw parts specially adapted for spinal fixation, e.g. for driving polyaxial or tulip-headed screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7083Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7091Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for applying, tightening or removing longitudinal element-to-bone anchor locking elements, e.g. caps, set screws, nuts or wedges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7092Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for checking pedicle hole has correct depth or has an intact wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor

Definitions

  • This invention relates generally to an appara ⁇ tus for immobilization of the spine, and more particu ⁇ larly, to an apparatus for posterior internal fixation of the spine as well as to a method of therapy which utilizes the device.
  • Internal fixation refers to therapeutic methods of stabilization which are wholly internal to the patient and include commonly known devices such as bone plates and pins.
  • External JTixation in coivi- st involves at least some portion of the stabilization device which is external to the patient's body.
  • Inter ⁇ nal fixation is now the favored method of immobilization since the patient is allowed greater freedom with the elimination of the external portion of the device an the possibility of infections, such as pin tract infec tion, is reduced.
  • Some of the indications treated by interna fixation of the spine include vertebral displacement an management such as kyphosis, spondylolisthesis an rotation; segmental instability, such as disc degenera tion and fracture caused by disease and trauma an congenital defects; and tumor diseases.
  • a common problem with spinal fixation is th question of how to secure the fixation device to th spine without damaging the spinal cord.
  • the pedicle are a favored area of attachment since they offer a area that is strong enough to hold the fixation devic even when the patient suffers from osteoporosis.
  • Sinc the middle 1950's methods of fixation have utilized th pedicles. In early methods, screws extended through th facets into the pedicles.
  • the present invention represents an improve ment in the technology and in the therapy advanced i ⁇ .S. Patent No. 4,805,602.
  • this inven tion greatly reduces the time required to perform t spinal operation as compared to the prior inventio
  • the time for inser ing the anchors may be cut from hours to around an hou
  • Such a time saving represents a significant reduction i the risk associated with a surgical procedure.
  • the new design may be easier to use as the chances o cross-threading the nut unto the anchor are reduced an the nut is more accessible for tightening. This is o particular significance in the bloody environment whic obscures the spinal surgeon's access to the fixatio device.
  • the anchor is designed so that it is not overl obtrusive. More specifically, the nut is thin an further is chamfered to reduce bulk and yet includes thread design to achieve sufficient compression on th rod.
  • the anchor system presents a flush upper surfac and the total system is elegant and effective. Eac anchor seat is secured by a cancellous screw whic cooperates through a sloped bore in the anchor seat s as to provide a limited ball and socket motion.
  • Th design of the present invention incorporates a method o therapy for treating a spinal indication utilizing thi internal fixator.
  • the present invention is viewe as having an application in the stabilization of th thoracolumbar, lumbar, and sacral spine.
  • fixation unique to this area of the spin such as the fact that the lumbar spine is normall lordotic and this lordosis must be preserved.
  • spinal decompression often require a destabilization of the spine posteriorly. This ma result in instability unless fusion is done, and fusio will often fail to become solid unless effective inter nal fixation is used.
  • the points of »acra fixation are the weakest point of fixation.
  • Prior art devices for posterior spinal fixa tion are discussed above as including the Steffee plat and the Luque System.
  • Common distraction and compression system utilize a threaded rod and hooks which engage selecte transverse lamina of the vertebrae.
  • suc systems include the Harrington distraction system sol by Zimmer USA, Inc., the Keene system shown in U.S Patent No. 4,269,178 and the Lewis-Greenlaw Syste illustrated in U.S. Patent No. 4,085,744.
  • U.S. Paten No. 3,648,691 to Lumb, et al shows the use of spinou process plates.
  • Wired implants are favored by some orthopedi surgeons because of the flexibility of the system.
  • Dr Eduardo Luque has developed a wired implant system wher two L-shaped rods are secured along their long sides t the vertebral laminae by means of wires which pas through the vertebral foramina. The short legs of th rods extend across the vertebrae between the spinou process.
  • a similar wired implant is shown in U.S Patent No. 4,604,995 to Stephens, et al.
  • Transpedicular screw and plate systems rely o a screw threaded into a reamed canal generally posi tioned perpendicular to the longitudinal axis o ⁇ th spine and horizontal or parallel to the transverse plan of the vertebral body.
  • the screws engage a plate whic has been bent to conform to the normal curvature of th spine or to the points of desired reduction.
  • One scre and plate system which has been used with significan success is the Steffee system. In this system, th screws are inserted first, the spine plates are the inserted over the pedicle screws and then posterio tapered nuts are screwed on. The screws are tightene bilaterally until the plate is locked between two nuts.
  • the wired implants have the advantage of facilitating vertebral alignment, permitting varia tion of the device to allow for variations in individual spines
  • this method of fixation includes the increase risk of damage to the neural structures. This risk can be countered by the use of transpedicular screws and plates.
  • the pedicle presents an area for fixation of sufficient size and depth, that under careful condi- tions, the risk of damage to the neural elements (i.e., spinal cord and or nerve roots) is reduced.
  • the use of plates with the screws rigidly linked results in the direct transfer of loads at the bone-screw interface which is the weakest link in the fixation spine construction. This can result in break ⁇ age of the screw or failure of the bone-screw interface prior to achieving fusion.
  • the current plate designs are bulky and leave little surface for bone grafting and they cannot be contoured to account for lateral curvature of the spine (i.e., scoliosis) .
  • the present invention utilizes a rod and vertebral anchors which holds the rod in position.
  • Each anchor is secured to the vertebrae by a transpedicular screw member.
  • the screw and rod system of the present invention combines favorable attributes discussed above of wire implants and of screw plate systems.
  • the present invention has an object of pro ⁇ viding a fixation system which adequately immobilizes the lumbosacral area, allows relatively simple and risk- free insertion and provides adequate area for bone grafting.
  • the present invention combines advan- tages of the known devices as it provides suitable immobilization, in particular of the lumbosacral region, it allows for adaptation to individual patient charac ⁇ teristics such as degree of sagittal and/or coronal plane curvature; it allows for safe and relatively risk- free insertion; and it permits sufficient area for bone grafting.
  • the present invention presents an improvement over the previous rod and anchor system as it streamlines the surgical procedure and increases the ease of insertion while maintaining the favorable attributes of the other system. Specifically, one less part is required and less time is required in prepara ⁇ tion of the bony surface to receive the implant.
  • each implant set includes a 0.25 inch diameter stainless steel (316L) rod which spans the vertebrae to be immobilized.
  • an implant set is used on each side of the spinous process on the posterior side of the lamina and the transverse process.
  • the rod is held in position by a stainless steel vertebral anchor which captures the rods.
  • Th anchor has a seat member which is secured to the verte brae by a stainless steel transpedicular screw. Th screw is separate from the anchor seat and thus provide for limited motion between the anchor seat and th vertebrae.
  • this aspect of the design act as a "shock-absorber" to prevent direct transfer of loa from the rod to the bone-screw interface prior t achieving bony fusion, thereby decreasing the chance o failure of the screw or the bone-screw interface prio to achieving bony fusion.
  • the ancho comprises three members; an anchor seat having a bor which receives the screw and a rod-receiving channe transverse to the screw; a cap which mates with th anchor seat to capture the rod between the rod receivin channel and the cap; and an internally threaded colla or nut which engages external threads on the anchor sea to tighten the cap into position on the rod support a it is screwed downward into position on the anchor seat.
  • FIG. 1 is a side view of a spine with th invention in place
  • FIG. 2 is a side plan view of the vertebral anchor and rod of the present invention
  • FIG. 3 is a posterior view of a vertebral body with an exploded view of the fixation device of the invention
  • FIG. 4 is a cross-sectional of the anchor seat along line 4-4 with the rod shown in phantom;
  • FIG. 5 is a top plan view of the assembly
  • FIG. 6 is a cross-section of the assembly shown in FIG. 4 taken along line 6-6;
  • FIG. 7 is a cross-section of the anchor seat and nut with the cap and screw and the rod shown in phantom;
  • FIG. 8 is a top view of the crosslink of the present invention.
  • FIG. 9 is a cross-section taken along line 9-9 of FIG. 3;
  • FIG. 10 is a cross-section taken along line 10-10 Of FIG. 8;
  • FIG. 11 is a cross-section of the set screw;
  • FIG. 12 is a posterior view of the placement of the awl;
  • FIG. 13 is a cross-section of a vertebrae showing placement of the pedicle probe;
  • FIG. 14 is a side view showing the placement of the trial seats;
  • FIG. 15 is a cross-section of a vertebrae showing implantation of the anchor seat and transpedicu ⁇ lar screw using a seat holder and hexagonal screw driver;
  • FIG. 16 is a cross-section of a vertebrae showing the transpedicular screw and the seat in posi ⁇ tion;
  • FIG. 17 is a posterior view showing installa- tion of the rod and cap using the rod holder and cap holder;
  • FIG. 18 is a posterior view showing tightening of the nuts on the anchor seats
  • FIG. 19 is a posterior view showing installa- tion of the crosslinks.
  • FIG. 20 is a posterior view showing position ⁇ ing of the joining link between the crosslink an tightening of the set screw in the crosslink.
  • the anchor screw and rod system 10 of th present invention includes two implant sets 8 on eithe side of the spinous processes. Each set is comprised o a plurality of vertebral anchors 16 and a rod 18 whic is of sufficient length to span the length of spine t be immobilized. u ⁇ Cn cu- uo J.O xS pOoi ⁇ j.-j ⁇ cG On uic uuj. ⁇ >u side of the vertebra and in general, a separate ancho 16 is used for each vertebrae comprising the length o spine to be stabilized. The rod 18 is held by th anchors 16 posterior to the vertebra.
  • the rod 18 is generally made of quarter inc stainless-steel rod (316L) , but could be made of an material which has suitable biocompatibility and materi al strength characteristics.
  • the rod should be able t withstand lateral bending forces and torsion since th system may be used to correct spinal displacement an curvature.
  • th rod 18 it is important that th rod 18 can be bent to a certain extent so that the ro can be bent to the proper curvature for the individua application.
  • the vertebral anchor 16 comprises a trans pedicular screw 21, an anchor seat 23, a cap 25, and a nut 27.
  • the various anchor parts 16 can be made of an suitably strong biocompatible material such as stainless steel.
  • the screw 21 which is shown is a standar stainless steel cancellous screw with 6.5 mm thread diameter. It is available in various lengths.
  • the anchor 16 was designed for use with this screw since the screw is readily available, and it has a proven record in fracture fixation; and the size can be accommodated by the average adult pedicles of the lower thoracic, lumbar and the upper two sacral segments vertebrae.
  • the screw 21 includes a head 30 which accom ⁇ modates a hex driver.
  • the screw 21 includes a smooth shank 32 of 2-4 millimeters length which joins the rounded rear shoulder 34 of the head 30. After inser ⁇ tion, the screw 21 extends from the curve formed on the dorsal side of the posterior neural arch.
  • the anchor seat 23 is comprised of a hollow cup portion 49 which receives the screw and which includes opposing channels 51,52 to receive the rod 18.
  • the cup 49 has a stepped central longitudinal opening 40 having an upper inner diameter section of about C.358 and a smaller lower diameter section which slightly exceeds the diameter of the head 30 of the screw 21. This step eliminates unwanted motion between the screw 21 and the anchor 23. This lower diameter section is about 0.323 of an inch.
  • the screw 21 passes through the two sections of the opening 40 within the rod support 23 until the rear shoulder 34 of the screw 21 encounters a detaining flange 42 within the central opening 40 of the rod support 23.
  • the flange 42 has an internal surface at an angle of about 120 degrees and defines an opening
  • the internal surface of the detaining flange 42 represents a sloped shoulder
  • the anchor seat 23 has two opposing channels 51,52 of the proper diameter to cradle the rod 18.
  • the channels 51,52 form a rod-receiving cradle which is about 0.37 of an inch long..
  • the height of the anchor seat 23 generally determines the amount that the anchor 26 projects posterior of the vertebrae. This height ranges fro 0.66 to 0.84 inches. However, if necessary, one or two washers may be added. These washers are smooth roun washers having an outer diameter which corresponds t the diameter of the anchor seat, i.e., 0.5 inch, and height of 0.063 inch. The washer fits around the scre 21 and is positioned under the seat between the bone an the seat 23. The washers are useful in indication where the patient is heavy or severely deformed.
  • the anchor seat 2 On its external surface, the anchor seat 2 includes a threaded area 76. This area is 0.27 inc deep to the thread runout. A 45 degree chamfer i included at the top to facilitate threading the nut o the seat 23. The threads are at a count of 20 thread per inch.
  • the nut 25 has a height of 0.19 inch an includes a chamfered area 81 on its top surface. This chamfered area 81 blunts the edges of the nut and eliminates sharp edges which could otherwise irritate the soft tissues post-operatively, two opposing clamping flanges 46,47 which each extend about 0.13 inch beyond a larger diameter area 46 of the cap 25.
  • the cap 25 includes an arch 72 transverse to the longitudinal axis of the cap 25.
  • the nut 27 includes internal threads 83 which engage the external threaded area 76 on the anchor seat.
  • the nut 27 is a hex nut which can be tightened relative to the seat 25.
  • a cross ⁇ link 110 may be used to stabilize the rod members 18 against torsional rotation.
  • the crosslink 110 may be used with this implant device or with any spinal implant which utilizes rods for longitudinal stability such as the Harrington rod system. It is preferable that two crosslinks are used to form a rectangular construct.
  • Each crosslink 110 comprises two clamps 112, each secured to the main rods 18.
  • each clamp 112 includes a rod receiving channel 113 which accom- modates the rod 18 and is locked into position relative thereto by a first set screw received in bore 114.
  • the clamp further includes a link opening 118 which has a well 119 to accommodate a link 117 axially transverse to the main rod 18.
  • This link 117 may be, for example, a 4 mm Steinmann pin.
  • the link 117 is locked into posi ⁇ tion by a second set screw which biases the link 117 into the well 119.
  • the set screws 115 include a hexa ⁇ gonal opening 120 to receive a corresponding screw ⁇ driver.
  • the screws 115 further include a terminal bevel at a 45 degree angle to facilitate locking the rod and link, respectively.
  • the area of implantation is surgi ⁇ cally approached.
  • a longitudinal posterior midline incision is made over the spine.
  • the incision is carried through the subcutaneous tissue and the fascia to the tips of the spinous processes.
  • Subperiosteal dissection is performed over the laminae and transverse processes.
  • the facet capsule and articular cartilage are removed in preparation for fusion.
  • the pedicle is located using an awl 80.
  • the awl 80 is used to make a hole 4 mm deep at the intersec ⁇ tion of a line drawn transversely through the midportion of the transverse process and a line drawn longitudi ⁇ nally through the lateral margin of superior articular facet.
  • a pedicle hole is made using a pedicle probe 85.
  • the pedicle probe is inserted into the hole ini ⁇ tially created by the awl 80 and rotated back and forth in a 90 degree arc of motion with a very gentle downward pressure.
  • the surgeon feels a relatively soft gritt sensation of the cancellous bone within the pedicle an vertebral body during this procedure.
  • the shaft of th probe 85 should end up at an angle of 10 to 15 degree from the midline of the spine when used in the lumba region. Great care should be taken not to penetrate th anterior cortex of the vertebral body with the probe 85.
  • the depth of the hole is determined by usin the graduated markings on the pedicle probe 85. Th appropriate size screw is then chosen for that particu lar pedicle.
  • the surgeon sequentially inserts an appro ⁇ priate transpedicular screw 21 and anchor 23 seat assembly into each pedicle being instrumented. This is accomplished by using a hexagonal screwdriver 97. At the same time, the seat holder 98 grips the seat, thereby preventing rotation when the screw 21 is finally tightened.
  • an appropriate length of 6.35 mm rod is chosen and contoured with a French bender to fit the seats.
  • the rod 18 is placed using a rod holder 100 and secured on the seats with caps which are placed over the rod using a rod holder 101 and nuts which are tightened down over the cap with the use of a T-wrench 105.
  • the procedure is repeated on the other side of the spine over the same number of vertebral levels.
  • crosslinks 110 may be applied for added torsional stability.
  • the crosslink is composed of two clamps 112, each of which is secured to one of the two main rods with set screws 115.
  • the clamps are then bridged together by a 4 mm Steinmann pin which acts as a crosslink 117 which is cut to the length equivalent to the distance between the clamps.
  • the Steinmann pin is secured to the clamp 117 with a second set screw. It is recommended that at least two sets of crosslinks are used to provide a more stable construct.
  • the fusion portion of the procedure is carried out in standard fashion. However, it is recommended to place some of the bone grafts in the lateral gutter after making the pedicle hole prior to screw insertion. The presence of the instrumentation can block the visualization of the fusion bed necessary for the proper placement of the graft. The remainder of the bone grafts are placed on the fusion bed after the instrumentation is completed. While in accordance with the Patent Statutes, the best mode and preferred embodiment has been set forth, the scope of the invention is not limited there ⁇ to, but rather by the scope of the attached claims.

Abstract

An apparatus is provided for the internal fixation of the spine. The apparatus comprises two sets of implants (8) each consisting of a rod (18) and a plurality of vertebral anchors (16). The rod (18) is secured to the vertebral elements by the vertebral anchors (16). The anchor (16) includes a transpedicular screw (21) which is secured to a vertebrae. The anchor (16) further includes an anchor seat (23) which captures the screw (21) and permits micromotion between the anchor seat (23) and screw (21). This seat (23) has a rod-receiving channel (51, 52) which captures the rod (18). A cap (25) cooperates with the seat (23) to secure the rod (18) in the anchor (16). A nut (27) screws down from the top of the assembly onto the seat (23) to cause rod (18) receiving flanges (46, 47) in the cap (23) to apply a compressive force to the rod (18). A method of therapy is presented in which the present implants (8) are inserted surgically into a patient.

Description

Transpedicular screw system and method of use
This invention relates generally to an appara¬ tus for immobilization of the spine, and more particu¬ larly, to an apparatus for posterior internal fixation of the spine as well as to a method of therapy which utilizes the device.
Various methods of spinal immobilization have been known and used during this century in the treatment of spinal instability and displacement. The preferred treatment for spinal stabilization is immobilization of the joint by surgical fusion, or arthrodesis. This method has been known since its development in 1911 by Hibbs and Albee. However, in many cases, and in par¬ ticular, in cases involving fusion across the lumbo- sacral articulation and when there are many levels involved, pseudoarthrosis is a problem. It was dis- covered that immediate immobilization was necessary in order to allow a bony union to form. Early in the century, post operative external immobilization such as the use of splints and casts was the favored method of treatment, however, as surgical techniques have become more sophisticated, various methods of internal and external fixation have been developed.
Internal fixation refers to therapeutic methods of stabilization which are wholly internal to the patient and include commonly known devices such as bone plates and pins. External JTixation in coivi- st involves at least some portion of the stabilization device which is external to the patient's body. Inter¬ nal fixation is now the favored method of immobilization since the patient is allowed greater freedom with the elimination of the external portion of the device an the possibility of infections, such as pin tract infec tion, is reduced.
Some of the indications treated by interna fixation of the spine include vertebral displacement an management such as kyphosis, spondylolisthesis an rotation; segmental instability, such as disc degenera tion and fracture caused by disease and trauma an congenital defects; and tumor diseases. A common problem with spinal fixation is th question of how to secure the fixation device to th spine without damaging the spinal cord. The pedicle are a favored area of attachment since they offer a area that is strong enough to hold the fixation devic even when the patient suffers from osteoporosis. Sinc the middle 1950's, methods of fixation have utilized th pedicles. In early methods, screws extended through th facets into the pedicles. More recently, posterio methods of fixation have been developed which utiliz wires that extend through the spinal canal and hold rod against the lamina (such as the Luque system) o that utilize pedicular screws which extend into th pedicle and secure a plate which extends across severa vertebral segments (such as the Steffee plate) . U.S. Patent No. 4,805,602 to Puno, et a presents a system sharing advantage of both the wire implants and the plate. Specifically, that screw an rod system provides a rigidity which is intermediat between the wired implant and the plate systems and ma be contoured to any plane.
The present invention represents an improve ment in the technology and in the therapy advanced i ϋ.S. Patent No. 4,805,602. In particular, this inven tion greatly reduces the time required to perform t spinal operation as compared to the prior inventio As an example of such a reduction, the time for inser ing the anchors may be cut from hours to around an hou Such a time saving represents a significant reduction i the risk associated with a surgical procedure. Further the new design may be easier to use as the chances o cross-threading the nut unto the anchor are reduced an the nut is more accessible for tightening. This is o particular significance in the bloody environment whic obscures the spinal surgeon's access to the fixatio device. The present device achieves this accessibilit and attendant time savings without sacrificing th mechanical benefits of the earlier design. In particu lar, the anchor is designed so that it is not overl obtrusive. More specifically, the nut is thin an further is chamfered to reduce bulk and yet includes thread design to achieve sufficient compression on th rod. The anchor system presents a flush upper surfac and the total system is elegant and effective. Eac anchor seat is secured by a cancellous screw whic cooperates through a sloped bore in the anchor seat s as to provide a limited ball and socket motion. Th design of the present invention incorporates a method o therapy for treating a spinal indication utilizing thi internal fixator.
In particular, the present invention is viewe as having an application in the stabilization of th thoracolumbar, lumbar, and sacral spine. There ar problems of fixation unique to this area of the spin such as the fact that the lumbar spine is normall lordotic and this lordosis must be preserved. I addition, indicated spinal decompression often require a destabilization of the spine posteriorly. This ma result in instability unless fusion is done, and fusio will often fail to become solid unless effective inter nal fixation is used. Finally, the points of »acra fixation are the weakest point of fixation. Thes problems are addressed by the present invention. Prior art devices for posterior spinal fixa tion are discussed above as including the Steffee plat and the Luque System. A complete discussion of variou internal devices are included in L. iltse, "Interna Fixation of the Lumbar Spine," Clinical Orthopaedics an Related Research. February 1986, No. 203, pp. 2-219. Known implant configurations include facet screws, double distraction systems, compression distractio systems, springs, spinous process plates, wired implant and transpedicular screw and plate systems.
Common distraction and compression system utilize a threaded rod and hooks which engage selecte transverse lamina of the vertebrae. Examples of suc systems include the Harrington distraction system sol by Zimmer USA, Inc., the Keene system shown in U.S Patent No. 4,269,178 and the Lewis-Greenlaw Syste illustrated in U.S. Patent No. 4,085,744. U.S. Paten No. 3,648,691 to Lumb, et al shows the use of spinou process plates.
Wired implants are favored by some orthopedi surgeons because of the flexibility of the system. Dr Eduardo Luque has developed a wired implant system wher two L-shaped rods are secured along their long sides t the vertebral laminae by means of wires which pas through the vertebral foramina. The short legs of th rods extend across the vertebrae between the spinou process. A similar wired implant is shown in U.S Patent No. 4,604,995 to Stephens, et al.
Transpedicular screw and plate systems rely o a screw threaded into a reamed canal generally posi tioned perpendicular to the longitudinal axis o∑ th spine and horizontal or parallel to the transverse plan of the vertebral body. The screws engage a plate whic has been bent to conform to the normal curvature of th spine or to the points of desired reduction. One scre and plate system which has been used with significan success is the Steffee system. In this system, th screws are inserted first, the spine plates are the inserted over the pedicle screws and then posterio tapered nuts are screwed on. The screws are tightene bilaterally until the plate is locked between two nuts. While the wired implants have the advantage of facilitating vertebral alignment, permitting varia tion of the device to allow for variations in individual spines, this method of fixation includes the increase risk of damage to the neural structures. This risk can be countered by the use of transpedicular screws and plates. The pedicle presents an area for fixation of sufficient size and depth, that under careful condi- tions, the risk of damage to the neural elements (i.e., spinal cord and or nerve roots) is reduced. On the other hand, the use of plates with the screws rigidly linked results in the direct transfer of loads at the bone-screw interface which is the weakest link in the fixation spine construction. This can result in break¬ age of the screw or failure of the bone-screw interface prior to achieving fusion. In addition, the current plate designs are bulky and leave little surface for bone grafting and they cannot be contoured to account for lateral curvature of the spine (i.e., scoliosis) .
The present invention utilizes a rod and vertebral anchors which holds the rod in position. Each anchor is secured to the vertebrae by a transpedicular screw member.
The screw and rod system of the present invention combines favorable attributes discussed above of wire implants and of screw plate systems. In par¬ ticular, the present invention has an object of pro¬ viding a fixation system which adequately immobilizes the lumbosacral area, allows relatively simple and risk- free insertion and provides adequate area for bone grafting.
Thus, the present invention combines advan- tages of the known devices as it provides suitable immobilization, in particular of the lumbosacral region, it allows for adaptation to individual patient charac¬ teristics such as degree of sagittal and/or coronal plane curvature; it allows for safe and relatively risk- free insertion; and it permits sufficient area for bone grafting.
Further, the present invention presents an improvement over the previous rod and anchor system as it streamlines the surgical procedure and increases the ease of insertion while maintaining the favorable attributes of the other system. Specifically, one less part is required and less time is required in prepara¬ tion of the bony surface to receive the implant.
In order to achieve these advantages, the present design utilizes two implant sets on either side of the spinous processes. Each implant set includes a 0.25 inch diameter stainless steel (316L) rod which spans the vertebrae to be immobilized. Generally, an implant set is used on each side of the spinous process on the posterior side of the lamina and the transverse process. The rod is held in position by a stainless steel vertebral anchor which captures the rods. Th anchor has a seat member which is secured to the verte brae by a stainless steel transpedicular screw. Th screw is separate from the anchor seat and thus provide for limited motion between the anchor seat and th vertebrae. In addition, this aspect of the design act as a "shock-absorber" to prevent direct transfer of loa from the rod to the bone-screw interface prior t achieving bony fusion, thereby decreasing the chance o failure of the screw or the bone-screw interface prio to achieving bony fusion. This greatly facilitates th surgical procedure and therapy incorporating thi device.
In the preferred embodiment, the ancho comprises three members; an anchor seat having a bor which receives the screw and a rod-receiving channe transverse to the screw; a cap which mates with th anchor seat to capture the rod between the rod receivin channel and the cap; and an internally threaded colla or nut which engages external threads on the anchor sea to tighten the cap into position on the rod support a it is screwed downward into position on the anchor seat.
FIG. 1 is a side view of a spine with th invention in place;
FIG. 2 is a side plan view of the vertebral anchor and rod of the present invention;
FIG. 3 is a posterior view of a vertebral body with an exploded view of the fixation device of the invention;
FIG. 4 is a cross-sectional of the anchor seat along line 4-4 with the rod shown in phantom;
FIG. 5 is a top plan view of the assembly; FIG. 6 is a cross-section of the assembly shown in FIG. 4 taken along line 6-6;
FIG. 7 is a cross-section of the anchor seat and nut with the cap and screw and the rod shown in phantom; FIG. 8 is a top view of the crosslink of the present invention;
FIG. 9 is a cross-section taken along line 9-9 of FIG. 3;
FIG. 10 is a cross-section taken along line 10-10 Of FIG. 8;
FIG. 11 is a cross-section of the set screw; FIG. 12 is a posterior view of the placement of the awl;
FIG. 13 is a cross-section of a vertebrae showing placement of the pedicle probe; FIG. 14 is a side view showing the placement of the trial seats;
FIG. 15 is a cross-section of a vertebrae showing implantation of the anchor seat and transpedicu¬ lar screw using a seat holder and hexagonal screw driver;
FIG. 16 is a cross-section of a vertebrae showing the transpedicular screw and the seat in posi¬ tion;
FIG. 17 is a posterior view showing installa- tion of the rod and cap using the rod holder and cap holder;
FIG. 18 is a posterior view showing tightening of the nuts on the anchor seats;
FIG. 19 is a posterior view showing installa- tion of the crosslinks; and
FIG. 20 is a posterior view showing position¬ ing of the joining link between the crosslink an tightening of the set screw in the crosslink.
The anchor screw and rod system 10 of th present invention includes two implant sets 8 on eithe side of the spinous processes. Each set is comprised o a plurality of vertebral anchors 16 and a rod 18 whic is of sufficient length to span the length of spine t be immobilized. uαCn cu- uo J.O xS pOoi υj.-jιιcG On uic uuj. ^>u side of the vertebra and in general, a separate ancho 16 is used for each vertebrae comprising the length o spine to be stabilized. The rod 18 is held by th anchors 16 posterior to the vertebra. The rod 18 is generally made of quarter inc stainless-steel rod (316L) , but could be made of an material which has suitable biocompatibility and materi al strength characteristics. The rod should be able t withstand lateral bending forces and torsion since th system may be used to correct spinal displacement an curvature. On the other hand, it is important that th rod 18 can be bent to a certain extent so that the ro can be bent to the proper curvature for the individua application.
The vertebral anchor 16 comprises a trans pedicular screw 21, an anchor seat 23, a cap 25, and a nut 27. The various anchor parts 16 can be made of an suitably strong biocompatible material such as stainless steel. The screw 21 which is shown is a standar stainless steel cancellous screw with 6.5 mm thread diameter. It is available in various lengths. The anchor 16 was designed for use with this screw since the screw is readily available, and it has a proven record in fracture fixation; and the size can be accommodated by the average adult pedicles of the lower thoracic, lumbar and the upper two sacral segments vertebrae.
The screw 21 includes a head 30 which accom¬ modates a hex driver. The screw 21 includes a smooth shank 32 of 2-4 millimeters length which joins the rounded rear shoulder 34 of the head 30. After inser¬ tion, the screw 21 extends from the curve formed on the dorsal side of the posterior neural arch.
The anchor seat 23 is comprised of a hollow cup portion 49 which receives the screw and which includes opposing channels 51,52 to receive the rod 18. The cup 49 has a stepped central longitudinal opening 40 having an upper inner diameter section of about C.358 and a smaller lower diameter section which slightly exceeds the diameter of the head 30 of the screw 21. This step eliminates unwanted motion between the screw 21 and the anchor 23. This lower diameter section is about 0.323 of an inch. The screw 21 passes through the two sections of the opening 40 within the rod support 23 until the rear shoulder 34 of the screw 21 encounters a detaining flange 42 within the central opening 40 of the rod support 23. The flange 42 has an internal surface at an angle of about 120 degrees and defines an opening
43 which has a diameter that exceeds the diameter of the shank 32 but which is smaller than that of the head 30 of the screw 31. The diameter of the opening at the flange is about 0.27 of an inch. The internal surface of the detaining flange 42 represents a sloped shoulder
44 which forms a socket for the rear shoulder 34 of the screw head 30. Thus, when the screw 21 engages the anchor seat 23, a limited ball-and-socket joint is formed which permits freedom of movement between the rod support 23 and the screw 21.
The anchor seat 23 has two opposing channels 51,52 of the proper diameter to cradle the rod 18. The channels 51,52 form a rod-receiving cradle which is about 0.37 of an inch long..
The height of the anchor seat 23 generally determines the amount that the anchor 26 projects posterior of the vertebrae. This height ranges fro 0.66 to 0.84 inches. However, if necessary, one or two washers may be added. These washers are smooth roun washers having an outer diameter which corresponds t the diameter of the anchor seat, i.e., 0.5 inch, and height of 0.063 inch. The washer fits around the scre 21 and is positioned under the seat between the bone an the seat 23. The washers are useful in indication where the patient is heavy or severely deformed.
On its external surface, the anchor seat 2 includes a threaded area 76. This area is 0.27 inc deep to the thread runout. A 45 degree chamfer i included at the top to facilitate threading the nut o the seat 23. The threads are at a count of 20 thread per inch. The nut 25 has a height of 0.19 inch an includes a chamfered area 81 on its top surface. This chamfered area 81 blunts the edges of the nut and eliminates sharp edges which could otherwise irritate the soft tissues post-operatively, two opposing clamping flanges 46,47 which each extend about 0.13 inch beyond a larger diameter area 46 of the cap 25. Two such larger diameter areas 48 exist and form opposing but¬ tressing curves where the flanges 46,47 flow into the cup portion 59 of the cap 25. These two areas 48 mate with the channels 51,52 so that the seat 23 and the cap 25 complement each other to form a cylindrical unit into which the nut 27 is threaded. On its bottom, the cap 25 includes an arch 72 transverse to the longitudinal axis of the cap 25. The nut 27 includes internal threads 83 which engage the external threaded area 76 on the anchor seat. The nut 27 is a hex nut which can be tightened relative to the seat 25.
As the nut 27 is rotated about the anchor seat 25, it cooperates with the top side of the flange 46,47 to tighten the clamp 25 in relation to the rod support 23. The rod 18 is grasped in the tunnel 84 formed between the rod-receiving channel 54 of the anchor seat 23 and the arch 72 of the cap 25. As a further part of this invention, a cross¬ link 110 may be used to stabilize the rod members 18 against torsional rotation. The crosslink 110 may be used with this implant device or with any spinal implant which utilizes rods for longitudinal stability such as the Harrington rod system. It is preferable that two crosslinks are used to form a rectangular construct. Each crosslink 110 comprises two clamps 112, each secured to the main rods 18. Specifically, each clamp 112 includes a rod receiving channel 113 which accom- modates the rod 18 and is locked into position relative thereto by a first set screw received in bore 114. The clamp further includes a link opening 118 which has a well 119 to accommodate a link 117 axially transverse to the main rod 18. This link 117 may be, for example, a 4 mm Steinmann pin. The link 117 is locked into posi¬ tion by a second set screw which biases the link 117 into the well 119. The set screws 115 include a hexa¬ gonal opening 120 to receive a corresponding screw¬ driver. The screws 115 further include a terminal bevel at a 45 degree angle to facilitate locking the rod and link, respectively. A method of therapy for use of the present device is described as follows:
Initially, the area of implantation is surgi¬ cally approached. A longitudinal posterior midline incision is made over the spine. The incision is carried through the subcutaneous tissue and the fascia to the tips of the spinous processes. Subperiosteal dissection is performed over the laminae and transverse processes. The facet capsule and articular cartilage are removed in preparation for fusion. The pedicle is located using an awl 80. The awl 80 is used to make a hole 4 mm deep at the intersec¬ tion of a line drawn transversely through the midportion of the transverse process and a line drawn longitudi¬ nally through the lateral margin of superior articular facet.
A pedicle hole is made using a pedicle probe 85. The pedicle probe is inserted into the hole ini¬ tially created by the awl 80 and rotated back and forth in a 90 degree arc of motion with a very gentle downward pressure. The surgeon feels a relatively soft gritt sensation of the cancellous bone within the pedicle an vertebral body during this procedure. The shaft of th probe 85 should end up at an angle of 10 to 15 degree from the midline of the spine when used in the lumba region. Great care should be taken not to penetrate th anterior cortex of the vertebral body with the probe 85. The depth of the hole is determined by usin the graduated markings on the pedicle probe 85. Th appropriate size screw is then chosen for that particu lar pedicle. The same technique is repeated for th remaining pedicles that need to be instrumented. Roentgenographic assistance using plain radiographs o fluoroscopy may be recommended for proper insertion of the pedicle probe 85 and screw into the pedicle. Bot anterior-posterior and lateral views are taken with metal markers in the holes of the pedicles to assure proper hole direction prior to insertion of the screws. After the hole has been created, one of four sizes of anchor seats is then selected depending on the height needed for the rod to rest above the fusion bed. Trial anchors 91 may be inserted on rods 92. Washers are provided if additional height is needed.
The surgeon sequentially inserts an appro¬ priate transpedicular screw 21 and anchor 23 seat assembly into each pedicle being instrumented. This is accomplished by using a hexagonal screwdriver 97. At the same time, the seat holder 98 grips the seat, thereby preventing rotation when the screw 21 is finally tightened.
After all the screws and anchor seats are in place, an appropriate length of 6.35 mm rod is chosen and contoured with a French bender to fit the seats. The rod 18 is placed using a rod holder 100 and secured on the seats with caps which are placed over the rod using a rod holder 101 and nuts which are tightened down over the cap with the use of a T-wrench 105.
The procedure is repeated on the other side of the spine over the same number of vertebral levels.
Finally, the crosslinks 110 may be applied for added torsional stability. The crosslink is composed of two clamps 112, each of which is secured to one of the two main rods with set screws 115. The clamps are then bridged together by a 4 mm Steinmann pin which acts as a crosslink 117 which is cut to the length equivalent to the distance between the clamps. The Steinmann pin is secured to the clamp 117 with a second set screw. It is recommended that at least two sets of crosslinks are used to provide a more stable construct.
In the case of arthrodesis, the fusion portion of the procedure is carried out in standard fashion. However, it is recommended to place some of the bone grafts in the lateral gutter after making the pedicle hole prior to screw insertion. The presence of the instrumentation can block the visualization of the fusion bed necessary for the proper placement of the graft. The remainder of the bone grafts are placed on the fusion bed after the instrumentation is completed. While in accordance with the Patent Statutes, the best mode and preferred embodiment has been set forth, the scope of the invention is not limited there¬ to, but rather by the scope of the attached claims.

Claims

C L A I M S 1. A fixation device for the stabilization of one or more bone segments, comprising at least two anchors and an elongated stabilizer, said anchors each comprising screw means which secures said anchor to said bone segment, anchor seat means which has a lower bone interface which is operatively joined to said bone segment by said screw means and has a portion spaced apart from said bone interface surface and said anchor seat means cooperating with said screw means so as to permit limited motion between said screw means and said anchor seat means, said anchor seat means further having means to receive said stabilizer, cap means which cooperate with said anchor seat means to capture said stabilizer, and securing means which cooperates with said anchor seat portion which is spaced apart from said bone interface surface and which is posterior to said rod and said seat and said screw means cooperating to allow relative limited motion whereby alignment of the rod-receiving channels is facilitated and transfer of load from the rod to the interface of the spine and the screw is inhibited.
2. A fixation device according to claim 1, wherein said anchor seat means includes an internal bore through which said screw means projects, and wherein said screw means comprises a screw having a rounded head and said internal bore terminates in an annular flange which cooperates with said rounded head.
3. A fixation device according to claim 2, wherein said anchor seat means includes external threads and said securing means comprises a nut having internal threads and said internal threads cooperate with said external threads to secure said nut to said anchor seat means, and wherein the anchor seat means has a channel to receive said rod and said cap means has an opposing larger diameter portion which complements said channel and said larger diameter portion terminates in rod receiving flanges and said nut cooperates with said rod receiving flanges to apply said compression force to said rod.
4. A fixation device according to claim 3, wherein said lower bone interface surface of said anchor seat means has a diameter of less than about 0.6 inch and said anchor projects less than 0.95 inch from said bone surface.
5. A device for the stabilization of one or more bone segments, comprising at least two anchors and a rod, said anchors each comprising a screw, an anchor seat, a cap, and a nut, said screw having a shank joined to a head, said head having a rounded profile where it joins said shank; said anchor seat having an internal bore, said screw projecting through said bore to be received by said bone segment and said bore including a shoulder which cooperates with the rounded profile of the screw head and said anchor seat further including external threads and a channel to receive said rod; said cap having a smaller outer diameter portion which is received within said anchor seat bore and a large outer diameter portion forming at one end an arch including opposing rod holding flanges; said larger outer diameter portion mating with said rod receiving channel whereby said rod is captured between said arch and said channel; and a nut including top and bottom surfaces and having internal threads which mate with the external threads of the anchor seat and said nut being posterior to said rod and tightening down toward rod whereby said bottom surface engages said opposing rod holding flanges and causes said cap to apply a compressive force to said rod.
6. A device according to claim 5, wherein said device comprises two sets of implants, each of said implant sets comprising a rod and at least two of said anchors.
7. A device according to claim 6, wherein said device further comprises two crosslinks, each of which links the rod of one implant set to the rod of the other implant set.
8. A method of therapy comprising the surgical implantation of a fixation device in a spine, said fixation device comprising a rod and at least two anchors, each of said anchors having screw means, seat means forming a rod receiving channel, cap means including a rod-holding arch and securing means, said method comprising the steps of exposing the area including at least two vertebrae of spine to be implanted, preparing the bone of said area by --. flattening a surface to receive each of said seat means and by forming a hole in the pedicle of each vertebrae to receive each of said screw means, joining each of said seat means to each of said pedicles by screwing each said screw means in each of said holes, aligning the rod receiving channels of each of said seat means and inserting said rod within said channel, placing a cap over the rod for each anchor so that the rod holding arch of each cap cooperates with the rod receiving channel of each seat means and to encircle said rod so that the cap mates with the seat, tightening a securing means for each of said anchors so that the anchor applies a compressive force on said rod and said seat and said screw means cooperating to allow relative limited motion whereby alignment of the rod- receiving channels is facilitated and transfer of load from the rod to the interface of the spine and the screw is inhibited.
9. The use of a device for the stabilization of one or more bone segments, said device comprising at least two anchors and an elongated stabilizer, said anchors each comprising screw means which secures said anchor to said bone segment, anchor seat means which has a lower bone interface which is operatively joined to said bone segment by said screw means and has a portion spaced apart from said bone interface surface and said anchor seat means cooperating with said screw means so as to permit limited motion between said screw means and said anchor seat means, said anchor seat means further having means to receive said stabilizer, cap means which cooperate with said anchor seat means to capture said stabilizer, and securing means which cooperates with said anchor seat portion which is spaced apart from said bone interface surface and which is posterior to said rod and said seat and said screw means cooperating to allow relative limited motion whereby alignment of the rod-receiving channels is facilitated and transfer of load from the rod to the interface of the spine and the screw is inhibited.
10. The use of the following components to create a device for the stabilization of one or more bore segments, said components including at least two anchors and an elongated stabilizer, said anchors each comprising screw means which secures said anchor to said bone segment, anchor seat means which has a lower bone interface which is operatively joined to said bone segment by said screw means and has a portion spaced apart from said bone interface surface and said anchor seat means cooperating with said screw means so as to permit limited motion between said screw means and said anchor seat means, said anchor seat means further having means to receive said stabilizer, cap means which cooperate with said anchor seat means to capture said stabilizer, and securing means which cooperates with said anchor seat portion which is spaced apart from said bone interface surface and which is posterior to said rod and said seat and said screw means cooperating to allow relative limited motion whereby alignment of the rod-receiving channels is facilitated and transfer of load from the rod to the interface of the spine and the screw is inhibited.
PCT/US1990/002286 1990-04-26 1990-04-26 Transpedicular screw system and method of use WO1991016020A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/946,319 US5360431A (en) 1990-04-26 1990-04-26 Transpedicular screw system and method of use
PCT/US1990/002286 WO1991016020A1 (en) 1990-04-26 1990-04-26 Transpedicular screw system and method of use
US08/285,226 US5474555A (en) 1990-04-26 1994-08-03 Spinal implant system
US08/539,532 US5624442A (en) 1990-04-26 1995-10-05 Transverse link for use with a spinal implant system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1990/002286 WO1991016020A1 (en) 1990-04-26 1990-04-26 Transpedicular screw system and method of use

Publications (1)

Publication Number Publication Date
WO1991016020A1 true WO1991016020A1 (en) 1991-10-31

Family

ID=22220819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/002286 WO1991016020A1 (en) 1990-04-26 1990-04-26 Transpedicular screw system and method of use

Country Status (2)

Country Link
US (3) US5360431A (en)
WO (1) WO1991016020A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558883A1 (en) * 1992-03-02 1993-09-08 Howmedica GmbH Apparatus for bracing a plurality of vertebras of the human spine
EP0572790A1 (en) * 1992-06-04 1993-12-08 Synthes AG, Chur Osteosynthesis anchoring element
DE4240223A1 (en) * 1992-11-30 1994-06-01 Kovac Vladimir Dr Stabilising aligner for bone portions - has several implant elements, each as hook, screw, or loop with integral coupler linking them which is fork shaped into which a rod is insertable
WO1994014384A2 (en) * 1992-12-23 1994-07-07 Plus Endoprothetik Ag System for osteosynthesis along the spinal column, connecting element for such a system and tool for assembling and/or dismantling the same
EP0613664A2 (en) * 1993-02-25 1994-09-07 Howmedica GmbH A device for setting a spline
EP0625337A1 (en) * 1993-05-17 1994-11-23 Tornier Sa Spinal fixator for holding the vertebral column
WO1995013754A1 (en) * 1993-11-19 1995-05-26 Cross Medical Products, Inc. Transverse link for spinal implant system
EP0682918A1 (en) 1994-05-20 1995-11-22 Groupe Lepine Spinal osteosynthesis device
US5498264A (en) * 1992-07-21 1996-03-12 Synthes (U.S.A.) Clamp connection for connecting two construction components for a setting device, particularly an osteosynthetic setting device
US5545165A (en) * 1992-10-09 1996-08-13 Biedermann Motech Gmbh Anchoring member
DE19510543A1 (en) * 1995-03-23 1996-10-02 Juergen Prof Dr Med Harms Spinal fixation device
WO1996031167A1 (en) * 1995-04-05 1996-10-10 Chauvin Jean Luc Device for straightening and supporting a backbone
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
US5624442A (en) * 1990-04-26 1997-04-29 Cross Medical Products, Inc. Transverse link for use with a spinal implant system
WO1998035622A1 (en) * 1997-02-12 1998-08-20 Sdgi Holdings, Inc. Rod introducer forceps
WO2002054965A1 (en) 2001-01-12 2002-07-18 Biedermann Motech Gmbh Connector element for bone rods or spinal rods
US6432108B1 (en) 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
DE10136162A1 (en) * 2001-07-25 2003-02-20 Biedermann Motech Gmbh Rod connector prosthesis for bone stabilizing frame has pair of shaft sections adjusted for length and locked by clamp
US7294128B2 (en) 2002-04-09 2007-11-13 Nas Medical Technologies, Inc. Bone fixation apparatus
US7854751B2 (en) 2003-12-16 2010-12-21 Dupuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7918858B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US8632572B2 (en) 2007-04-19 2014-01-21 Zimmer Spine, Inc. Method and associated instrumentation for installation of spinal dynamic stabilization system
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US8870921B2 (en) 2006-11-08 2014-10-28 DePuy Synthes Products, LLC Spinal cross connectors
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US8920469B2 (en) 2004-03-31 2014-12-30 Depuy Synthes Products Llc Rod attachment for head to head cross connector
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8961572B2 (en) 2004-08-27 2015-02-24 Depuy Synthes Products Llc Dual rod cross connectors and inserter tools
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
EP2977017A1 (en) 2014-07-22 2016-01-27 LfC sp. z o.o. Pedicle anchor assembly
US9277940B2 (en) 2008-02-05 2016-03-08 Zimmer Spine, Inc. System and method for insertion of flexible spinal stabilization element
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
DE102014223115A1 (en) 2014-11-12 2016-05-12 Gebr. Brasseler Gmbh & Co. Kg Device for clamping vertebrae of the human spine
DE102014223112A1 (en) 2014-11-12 2016-05-12 Gebr. Brasseler Gmbh & Co. Kg Device for clamping vertebrae of the human spine
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US9636146B2 (en) 2012-01-10 2017-05-02 Roger P. Jackson Multi-start closures for open implants
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US9713488B2 (en) 2008-02-04 2017-07-25 Medos International Sarl Methods for correction of spinal deformities
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9724145B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Bone anchor assemblies with multiple component bottom loading bone anchors
US9724130B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Locking compression members for use with bone anchor assemblies and methods
US9775660B2 (en) 2013-03-14 2017-10-03 DePuy Synthes Products, Inc. Bottom-loading bone anchor assemblies and methods
US9782204B2 (en) 2012-09-28 2017-10-10 Medos International Sarl Bone anchor assemblies
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9918747B2 (en) 2013-03-14 2018-03-20 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US10342582B2 (en) 2013-03-14 2019-07-09 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies

Families Citing this family (709)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888221A (en) * 1992-08-11 1999-03-30 Gelbard; Steven D. Spinal stabilization implant system
FR2697992B1 (en) * 1992-11-18 1994-12-30 Eurosurgical Device for attaching to a rod of an organ, in particular for spinal orthopedic instrumentation.
US6077262A (en) * 1993-06-04 2000-06-20 Synthes (U.S.A.) Posterior spinal implant
US5601552A (en) * 1994-03-18 1997-02-11 Sofamor, S.N.C. Fixing device for a rigid transverse connection device between rods of a spinal osteosynthesis system
US5620443A (en) 1995-01-25 1997-04-15 Danek Medical, Inc. Anterior screw-rod connector
US5562661A (en) * 1995-03-16 1996-10-08 Alphatec Manufacturing Incorporated Top tightening bone fixation apparatus
US5520690A (en) * 1995-04-13 1996-05-28 Errico; Joseph P. Anterior spinal polyaxial locking screw plate assembly
US5669911A (en) * 1995-04-13 1997-09-23 Fastenetix, L.L.C. Polyaxial pedicle screw
US5697979A (en) * 1995-05-19 1997-12-16 Pignataro; Anthony S. Method and apparatus for securing a hair prosthesis to the human head
AU5935196A (en) * 1995-06-06 1996-12-24 Sdgi Holdings, Inc. Device for linking adjacent rods in spinal instrumentation
US5609594A (en) * 1995-07-13 1997-03-11 Fastenetix Llc Extending hook and polyaxial coupling element device for use with side loading road fixation devices
US5584834A (en) * 1995-07-13 1996-12-17 Fastenetix, L.L.C. Polyaxial locking screw and coupling element assembly for use with side loading rod fixation apparatus
US5586984A (en) * 1995-07-13 1996-12-24 Fastenetix, L.L.C. Polyaxial locking screw and coupling element assembly for use with rod fixation apparatus
US5609593A (en) * 1995-07-13 1997-03-11 Fastenetix, Llc Advanced polyaxial locking hook and coupling element device for use with top loading rod fixation devices
US5554157A (en) * 1995-07-13 1996-09-10 Fastenetix, L.L.C. Rod securing polyaxial locking screw and coupling element assembly
US5549608A (en) * 1995-07-13 1996-08-27 Fastenetix, L.L.C. Advanced polyaxial locking screw and coupling element device for use with rod fixation apparatus
US5578033A (en) * 1995-07-13 1996-11-26 Fastenetix, L.L.C. Advanced polyaxial locking hook and coupling element device for use with side loading rod fixation devices
US5575792A (en) * 1995-07-14 1996-11-19 Fastenetix, L.L.C. Extending hook and polyaxial coupling element device for use with top loading rod fixation devices
US5688273A (en) * 1995-10-23 1997-11-18 Fastenetix, Llc. Spinal implant apparatus having a single central rod and plow hooks
US5688274A (en) * 1995-10-23 1997-11-18 Fastenetix Llc. Spinal implant device having a single central rod and claw hooks
FR2742040B1 (en) * 1995-12-07 1998-01-23 Groupe Lepine ASSEMBLY DEVICE FOR EXTENDED PARTS OF OSTEOSYNTHESIS MATERIAL, ESPECIALLY SPINAL
US5713900A (en) * 1996-05-31 1998-02-03 Acromed Corporation Apparatus for retaining bone portions in a desired spatial relationship
US6019759A (en) * 1996-07-29 2000-02-01 Rogozinski; Chaim Multi-Directional fasteners or attachment devices for spinal implant elements
FR2753368B1 (en) * 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US5885286A (en) * 1996-09-24 1999-03-23 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5797911A (en) * 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5725528A (en) * 1997-02-12 1998-03-10 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5964760A (en) * 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US6416515B1 (en) 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
WO1998017188A1 (en) 1996-10-24 1998-04-30 Spinal Concepts, Inc. Method and apparatus for spinal fixation
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5728098A (en) 1996-11-07 1998-03-17 Sdgi Holdings, Inc. Multi-angle bone screw assembly using shape-memory technology
EP0951245B1 (en) * 1996-12-12 2003-03-12 SYNTHES AG Chur Device for connecting a longitudinal support to a pedicle screw
US6485494B1 (en) 1996-12-20 2002-11-26 Thomas T. Haider Pedicle screw system for osteosynthesis
WO1998032386A1 (en) * 1997-01-22 1998-07-30 Synthes Ag Chur Device for connecting a longitudinal bar to a pedicle screw
US5733286A (en) * 1997-02-12 1998-03-31 Third Millennium Engineering, Llc Rod securing polyaxial locking screw and coupling element assembly
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6248105B1 (en) 1997-05-17 2001-06-19 Synthes (U.S.A.) Device for connecting a longitudinal support with a pedicle screw
US5989254A (en) * 1997-05-20 1999-11-23 Katz; Akiva Raphael Pedicle screw assembly
US5928243A (en) * 1997-07-16 1999-07-27 Spinal Concepts, Inc. Pedicle probe and depth gage
US6454769B2 (en) 1997-08-04 2002-09-24 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6030389A (en) * 1997-08-04 2000-02-29 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
US6053921A (en) * 1997-08-26 2000-04-25 Spinal Concepts, Inc. Surgical cable system and method
US5980523A (en) * 1998-01-08 1999-11-09 Jackson; Roger Transverse connectors for spinal rods
US6179838B1 (en) 1998-02-24 2001-01-30 Daniel Fiz Bone fixation arrangements and method
US6319241B1 (en) * 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US5989251A (en) * 1998-06-17 1999-11-23 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US6090111A (en) * 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
US6565565B1 (en) 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US6264658B1 (en) * 1998-07-06 2001-07-24 Solco Surgical Instruments Co., Ltd. Spine fixing apparatus
US6228085B1 (en) 1998-07-14 2001-05-08 Theken Surgical Llc Bone fixation system
DE19835816C2 (en) * 1998-08-08 2002-02-07 Schaefer Micomed Gmbh osteosynthesis
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
EP1109502B1 (en) 1998-09-11 2006-03-15 Synthes AG Chur Variable angle spinal fixation system
US6352537B1 (en) 1998-09-17 2002-03-05 Electro-Biology, Inc. Method and apparatus for spinal fixation
US6066142A (en) * 1998-10-22 2000-05-23 Depuy Orthopaedics, Inc. Variable position bone drilling alignment guide
US6296642B1 (en) 1998-11-09 2001-10-02 Sdgi Holdings, Inc. Reverse angle thread for preventing splaying in medical devices
EP1253854A4 (en) 1999-03-07 2010-01-06 Discure Ltd Method and apparatus for computerized surgery
US6302888B1 (en) 1999-03-19 2001-10-16 Interpore Cross International Locking dovetail and self-limiting set screw assembly for a spinal stabilization member
EP1164954B1 (en) * 1999-03-30 2006-12-06 Howmedica Osteonics Corp. Apparatus for spinal stabilization
US6283967B1 (en) 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
WO2000059387A1 (en) * 1999-04-06 2000-10-12 Synthes Ag Chur Transconnector for coupling spinal rods
ES2166258B1 (en) * 1999-05-11 2004-11-16 Jesus Burgos Flores PROCEDURE AND APPLIANCES USED FOR SURGICAL TREATMENT BY PREVIOUS ENDOSCOPIC TECHNIQUE OF DISEASES OF THE VERTEBRAL COLUMN, ESPECIALLY SCHOLIOSIS.
JP3675669B2 (en) * 1999-05-21 2005-07-27 株式会社ロバート・リード商会 Rod pair spacing adjustment device
US6254602B1 (en) * 1999-05-28 2001-07-03 Sdgi Holdings, Inc. Advanced coupling device using shape-memory technology
CN1154443C (en) 1999-07-07 2004-06-23 库尔斯恩蒂斯股份公司 Angle-adjustable bone screw and device for the osteosynthetic bone fixation
DE19936286C2 (en) * 1999-08-02 2002-01-17 Lutz Biedermann bone screw
AU6633900A (en) 1999-08-12 2001-03-13 Osteotech, Inc. Rod-to-rod coupler
US6280442B1 (en) 1999-09-01 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US6554834B1 (en) 1999-10-07 2003-04-29 Stryker Spine Slotted head pedicle screw assembly
US6217578B1 (en) 1999-10-19 2001-04-17 Stryker Spine S.A. Spinal cross connector
US6530929B1 (en) * 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
US7674293B2 (en) 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US7691145B2 (en) 1999-10-22 2010-04-06 Facet Solutions, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
CA2386504C (en) 1999-10-22 2008-07-15 Mark A. Reiley Facet arthroplasty devices and methods
US8187303B2 (en) 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
ES2223458T3 (en) * 2000-02-29 2005-03-01 Synthes Ag Chur ENDOSEPARATOR
US6565566B1 (en) * 2000-03-22 2003-05-20 Spinal Concepts, Inc. Sacral screw assembly and method
US20060241602A1 (en) * 2000-06-06 2006-10-26 Jackson Roger P Hooked transverse connector for spinal implant system
FR2810533B1 (en) * 2000-06-22 2003-01-10 Emmanuel Bockx DEVICE FOR ORIENTABLE FIXATION OF A CONNECTION BAR BY MEANS OF AT LEAST ONE PEDICLE SCREW FOR VERTEBRAL STABILITY
EP1294295A4 (en) 2000-06-30 2009-12-23 Stephen Ritland Polyaxial connection device and method
CA2416115C (en) * 2000-07-28 2009-09-08 Synthes (U.S.A.) Spinal fixation system
US7056321B2 (en) 2000-08-01 2006-06-06 Endius, Incorporated Method of securing vertebrae
US7985247B2 (en) * 2000-08-01 2011-07-26 Zimmer Spine, Inc. Methods and apparatuses for treating the spine through an access device
US7837716B2 (en) * 2000-08-23 2010-11-23 Jackson Roger P Threadform for medical implant closure
MXPA03001628A (en) * 2000-08-24 2003-06-24 Synthes Ag A DEVICE FOR THE UNION OF A BONE FIXING ELEMENT WITH A LONGITUDINAL ROD.
US6485491B1 (en) * 2000-09-15 2002-11-26 Sdgi Holdings, Inc. Posterior fixation system
US8512380B2 (en) * 2002-08-28 2013-08-20 Warsaw Orthopedic, Inc. Posterior fixation system
US6692434B2 (en) 2000-09-29 2004-02-17 Stephen Ritland Method and device for retractor for microsurgical intermuscular lumbar arthrodesis
US7166073B2 (en) 2000-09-29 2007-01-23 Stephen Ritland Method and device for microsurgical intermuscular spinal surgery
AU2000277906A1 (en) * 2000-10-05 2002-04-15 Jesus Burgos Flores Method and apparatus for surgical treatment of diseases of the vertebral column,especially scoliosis, using anterior endoscopic technique
US7485132B1 (en) * 2000-10-06 2009-02-03 Abbott Spine Inc. Transverse connector with cam activated engagers
DE10055888C1 (en) 2000-11-10 2002-04-25 Biedermann Motech Gmbh Bone screw, has connector rod receiving part with unsymmetrically arranged end bores
US6524311B2 (en) 2000-12-01 2003-02-25 Robert W. Gaines, Jr. Method and apparatus for performing spinal procedures
US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US6726689B2 (en) 2002-09-06 2004-04-27 Roger P. Jackson Helical interlocking mating guide and advancement structure
DE10064571C2 (en) * 2000-12-22 2003-07-10 Juergen Harms fixing
US6488681B2 (en) * 2001-01-05 2002-12-03 Stryker Spine S.A. Pedicle screw assembly
US6602253B2 (en) * 2001-02-12 2003-08-05 Marc Richelsoph Rod to rod connector
US7371238B2 (en) 2001-02-16 2008-05-13 Queen's University At Kingston Method and device for treating scoliosis
DE10108965B4 (en) * 2001-02-17 2006-02-23 DePuy Spine Sàrl bone screw
US6902565B2 (en) 2001-02-21 2005-06-07 Synthes (U.S.A.) Occipital plate and system for spinal stabilization
US6802844B2 (en) * 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
FR2823095B1 (en) 2001-04-06 2004-02-06 Ldr Medical RACHIS OSTEOSYNTHESIS DEVICE AND PLACEMENT METHOD
US7144413B2 (en) 2001-04-20 2006-12-05 Synthes (U.S.A.) Graft fixation system and method
US6974480B2 (en) * 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US6478797B1 (en) * 2001-05-16 2002-11-12 Kamaljit S. Paul Spinal fixation device
US6770075B2 (en) 2001-05-17 2004-08-03 Robert S. Howland Spinal fixation apparatus with enhanced axial support and methods for use
US7129161B2 (en) * 2001-07-19 2006-10-31 Trikon Holdings Limited Depositing a tantalum film
US6520963B1 (en) * 2001-08-13 2003-02-18 Mckinley Lawrence M. Vertebral alignment and fixation assembly
FR2829014B1 (en) * 2001-09-03 2005-04-08 Stryker Spine SPINAL OSTEOSYNTHESIS SYSTEM COMPRISING A SUPPORT SKATE
US6793657B2 (en) * 2001-09-10 2004-09-21 Solco Biomedical Co., Ltd. Spine fixing apparatus
US6974460B2 (en) 2001-09-14 2005-12-13 Stryker Spine Biased angulation bone fixation assembly
US8021399B2 (en) 2005-07-19 2011-09-20 Stephen Ritland Rod extension for extending fusion construct
FR2829919B1 (en) * 2001-09-26 2003-12-19 Spine Next Sa VERTEBRAL FIXATION DEVICE
CA2460183C (en) 2001-09-28 2011-04-12 Stephen Ritland Connection rod for screw or hook polyaxial system and method of use
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector
US6679883B2 (en) 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US20060079892A1 (en) * 2001-10-31 2006-04-13 Suranjan Roychowdhury Adjustable tandem connectors for corrective devices for the spinal column and other bones and joints
DE10157969C1 (en) 2001-11-27 2003-02-06 Biedermann Motech Gmbh Element used in spinal and accident surgery comprises a shaft joined to a holding element having a U-shaped recess with two free arms having an internal thread with flanks lying at right angles to the central axis of the holding element
US6641586B2 (en) 2002-02-01 2003-11-04 Depuy Acromed, Inc. Closure system for spinal fixation instrumentation
FR2835734B1 (en) * 2002-02-11 2004-10-29 Scient X CONNECTION SYSTEM BETWEEN A SPINAL ROD AND A CROSS BAR
US7066937B2 (en) 2002-02-13 2006-06-27 Endius Incorporated Apparatus for connecting a longitudinal member to a bone portion
US7879075B2 (en) 2002-02-13 2011-02-01 Zimmer Spine, Inc. Methods for connecting a longitudinal member to a bone portion
WO2003073908A2 (en) 2002-02-20 2003-09-12 Stephen Ritland Pedicle screw connector apparatus and method
US20030181982A1 (en) * 2002-03-04 2003-09-25 Spineology, Inc. No-profile, lumbo-sacral fixation device and method
US20040030387A1 (en) 2002-03-11 2004-02-12 Landry Michael E. Instrumentation and procedure for implanting spinal implant devices
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US6740086B2 (en) 2002-04-18 2004-05-25 Spinal Innovations, Llc Screw and rod fixation assembly and device
EP2457529A1 (en) 2002-05-08 2012-05-30 Stephen Ritland Dynamic fixation device and method of use
US11224464B2 (en) 2002-05-09 2022-01-18 Roger P. Jackson Threaded closure with inwardly-facing tool engaging concave radiused structures and axial through-aperture
US6733502B2 (en) 2002-05-15 2004-05-11 Cross Medical Products, Inc. Variable locking spinal screw having a knurled collar
US7107091B2 (en) * 2002-07-25 2006-09-12 Orthosoft Inc. Multiple bone tracking
US6971623B2 (en) * 2002-07-30 2005-12-06 Allmon James A Fitting for building structures and the like
US7306603B2 (en) 2002-08-21 2007-12-11 Innovative Spinal Technologies Device and method for percutaneous placement of lumbar pedicle screws and connecting rods
US8257402B2 (en) 2002-09-06 2012-09-04 Jackson Roger P Closure for rod receiving orthopedic implant having left handed thread removal
WO2006052796A2 (en) 2004-11-10 2006-05-18 Jackson Roger P Helical guide and advancement flange with break-off extensions
US8282673B2 (en) 2002-09-06 2012-10-09 Jackson Roger P Anti-splay medical implant closure with multi-surface removal aperture
US7066938B2 (en) 2002-09-09 2006-06-27 Depuy Spine, Inc. Snap-on spinal rod connector
WO2004034982A2 (en) * 2002-10-15 2004-04-29 Medtronic Inc. Treatment termination in a medical device
US8162989B2 (en) * 2002-11-04 2012-04-24 Altus Partners, Llc Orthopedic rod system
FR2847152B1 (en) * 2002-11-19 2005-02-18 Eurosurgical VERTEBRAL ANCHORING DEVICE AND ITS LOCKING DEVICE ON A POLY AXIAL SCREW
US20040111088A1 (en) 2002-12-06 2004-06-10 Picetti George D. Multi-rod bone attachment member
US7914561B2 (en) 2002-12-31 2011-03-29 Depuy Spine, Inc. Resilient bone plate and screw system allowing bi-directional assembly
US7175624B2 (en) 2002-12-31 2007-02-13 Depuy Spine, Inc. Bone plate and screw system allowing bi-directional assembly
US6843791B2 (en) * 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US7887539B2 (en) 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7341591B2 (en) 2003-01-30 2008-03-11 Depuy Spine, Inc. Anterior buttress staple
US7141051B2 (en) 2003-02-05 2006-11-28 Pioneer Laboratories, Inc. Low profile spinal fixation system
US7088515B2 (en) * 2003-02-12 2006-08-08 Stereographics Corporation Autostereoscopic lens sheet with planar areas
CA2516791C (en) 2003-02-25 2011-12-13 Stephen Ritland Adjustable rod and connector device and method of use
US7608096B2 (en) * 2003-03-10 2009-10-27 Warsaw Orthopedic, Inc. Posterior pedicle screw and plate system and methods
DE10310540B3 (en) * 2003-03-11 2004-08-19 Biedermann Motech Gmbh Anchoring element for bone or spinal column surgery has threaded shaft and cylindrical reception part for coupling with rod having U-shaped seating with screw threads at ends of its arms
US20040186473A1 (en) * 2003-03-21 2004-09-23 Cournoyer John R. Spinal fixation devices of improved strength and rigidity
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US7433005B2 (en) * 2003-03-31 2008-10-07 Sharp Kabushiki Kaisha Liquid crystal display device having electrode units each provided with a solid part and an extending part and method of manufacturing the same
US8052724B2 (en) 2003-06-18 2011-11-08 Jackson Roger P Upload shank swivel head bone screw spinal implant
US6716214B1 (en) * 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US8540753B2 (en) * 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US20040210216A1 (en) * 2003-04-17 2004-10-21 Farris Robert A Spinal fixation system and method
DE10320417A1 (en) * 2003-05-07 2004-12-02 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US7608104B2 (en) 2003-05-14 2009-10-27 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US20040230304A1 (en) 2003-05-14 2004-11-18 Archus Orthopedics Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
WO2004110247A2 (en) 2003-05-22 2004-12-23 Stephen Ritland Intermuscular guide for retractor insertion and method of use
EP1628563B1 (en) 2003-05-23 2009-09-23 Globus Medical, Inc. Spine stabilization system
US6986771B2 (en) * 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US7204838B2 (en) * 2004-12-20 2007-04-17 Jackson Roger P Medical implant fastener with nested set screw and method
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US8257398B2 (en) 2003-06-18 2012-09-04 Jackson Roger P Polyaxial bone screw with cam capture
US7087057B2 (en) 2003-06-27 2006-08-08 Depuy Acromed, Inc. Polyaxial bone screw
US7771474B2 (en) * 2003-07-01 2010-08-10 Seaspine, Inc. Transverse connector system
US7160301B2 (en) * 2003-07-01 2007-01-09 Seaspine, Inc. Transverse connector system
US7074238B2 (en) 2003-07-08 2006-07-11 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US6981973B2 (en) * 2003-08-11 2006-01-03 Mckinley Laurence M Low profile vertebral alignment and fixation assembly
US8021397B2 (en) * 2003-08-20 2011-09-20 Warsaw Orthopedic, Inc. Multi-axial orthopedic device and system
US9254137B2 (en) * 2003-08-29 2016-02-09 Lanterna Medical Technologies Ltd Facet implant
US7938858B2 (en) * 2003-09-15 2011-05-10 Warsaw Orthopedic, Inc. Spinal implant system
US7955355B2 (en) 2003-09-24 2011-06-07 Stryker Spine Methods and devices for improving percutaneous access in minimally invasive surgeries
US7632294B2 (en) 2003-09-29 2009-12-15 Promethean Surgical Devices, Llc Devices and methods for spine repair
US7481827B2 (en) * 2003-10-09 2009-01-27 Synthes (U.S.A.) Linking transconnector for coupling spinal rods
US20050080414A1 (en) * 2003-10-14 2005-04-14 Keyer Thomas R. Spinal fixation hooks and method of spinal fixation
US20050080415A1 (en) * 2003-10-14 2005-04-14 Keyer Thomas R. Polyaxial bone anchor and method of spinal fixation
DE10348329B3 (en) 2003-10-17 2005-02-17 Biedermann Motech Gmbh Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece
US7588588B2 (en) * 2003-10-21 2009-09-15 Innovative Spinal Technologies System and method for stabilizing of internal structures
US7618442B2 (en) * 2003-10-21 2009-11-17 Theken Spine, Llc Implant assembly and method for use in an internal structure stabilization system
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
US7744633B2 (en) * 2003-10-22 2010-06-29 Pioneer Surgical Technology, Inc. Crosslink for securing spinal rods
CN100581493C (en) 2003-11-07 2010-01-20 比德曼莫泰赫有限公司 Spring element for a bone stabilizing device
US8632570B2 (en) 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US20050131406A1 (en) 2003-12-15 2005-06-16 Archus Orthopedics, Inc. Polyaxial adjustment of facet joint prostheses
AU2004311447A1 (en) * 2003-12-30 2005-07-21 Depuy Spine Sarl Bone anchor assemblies
EP2050407A1 (en) * 2003-12-30 2009-04-22 DePuy Spine Sàrl Bone anchor assemblies
US8480712B1 (en) 2004-01-06 2013-07-09 Nuvasive, Inc. System and method for performing spinal fixation
US7833251B1 (en) 2004-01-06 2010-11-16 Nuvasive, Inc. System and method for performing spinal fixation
US7678137B2 (en) * 2004-01-13 2010-03-16 Life Spine, Inc. Pedicle screw constructs for spine fixation systems
US20050159746A1 (en) * 2004-01-21 2005-07-21 Dieter Grob Cervical facet resurfacing implant
US7846183B2 (en) * 2004-02-06 2010-12-07 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
US20050173472A1 (en) * 2004-02-11 2005-08-11 Page Steven M. Angled caulk tube extension
US9492203B2 (en) * 2004-02-17 2016-11-15 Globus Medical, Inc. Facet joint replacement instruments and methods
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US7789896B2 (en) 2005-02-22 2010-09-07 Jackson Roger P Polyaxial bone screw assembly
US7163539B2 (en) * 2004-02-27 2007-01-16 Custom Spine, Inc. Biased angle polyaxial pedicle screw assembly
US7470279B2 (en) * 2004-02-27 2008-12-30 Jackson Roger P Orthopedic implant rod reduction tool set and method
US7862594B2 (en) * 2004-02-27 2011-01-04 Custom Spine, Inc. Polyaxial pedicle screw assembly
US7892257B2 (en) * 2004-02-27 2011-02-22 Custom Spine, Inc. Spring loaded, load sharing polyaxial pedicle screw assembly and method
US7819902B2 (en) * 2004-02-27 2010-10-26 Custom Spine, Inc. Medialised rod pedicle screw assembly
US7083651B2 (en) 2004-03-03 2006-08-01 Joint Synergy, Llc Spinal implant
US7115144B2 (en) 2004-03-02 2006-10-03 Joint Synergy, Llc Spinal implant
US7195644B2 (en) 2004-03-02 2007-03-27 Joint Synergy, Llc Ball and dual socket joint
US7491239B2 (en) 2005-02-23 2009-02-17 Joint Synergy, Llc Interior insert ball and dual socket joint
DE102004010382B4 (en) * 2004-03-03 2006-04-20 Biedermann Motech Gmbh Bone anchoring element for anchoring in a bone or in a vertebra and its use in a stabilizing device
DE102004010380A1 (en) * 2004-03-03 2005-09-22 Biedermann Motech Gmbh Anchoring element and stabilizing device for the dynamic stabilization of vertebrae or bones with such an anchoring element
US7344537B1 (en) 2004-03-05 2008-03-18 Theken Spine, Llc Bone fixation rod system
US7547318B2 (en) * 2004-03-19 2009-06-16 Depuy Spine, Inc. Spinal fixation element and methods
US7214227B2 (en) * 2004-03-22 2007-05-08 Innovative Spinal Technologies Closure member for a medical implant device
US7645294B2 (en) 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US20050228377A1 (en) * 2004-04-07 2005-10-13 Depuy Spine, Inc. Spinal cross-connectors
US7503924B2 (en) 2004-04-08 2009-03-17 Globus Medical, Inc. Polyaxial screw
US8475495B2 (en) 2004-04-08 2013-07-02 Globus Medical Polyaxial screw
US7524323B2 (en) * 2004-04-16 2009-04-28 Kyphon Sarl Subcutaneous support
US7618418B2 (en) * 2004-04-16 2009-11-17 Kyphon Sarl Plate system for minimally invasive support of the spine
US7789899B2 (en) * 2004-12-30 2010-09-07 Warsaw Orthopedic, Inc. Bone anchorage screw with built-in hinged plate
US7811311B2 (en) * 2004-12-30 2010-10-12 Warsaw Orthopedic, Inc. Screw with deployable interlaced dual rods
US7648520B2 (en) * 2004-04-16 2010-01-19 Kyphon Sarl Pedicle screw assembly
WO2005102195A1 (en) 2004-04-20 2005-11-03 Allez Spine, Llc Pedicle screw assembly
US7406775B2 (en) 2004-04-22 2008-08-05 Archus Orthopedics, Inc. Implantable orthopedic device component selection instrument and methods
US7051451B2 (en) 2004-04-22 2006-05-30 Archus Orthopedics, Inc. Facet joint prosthesis measurement and implant tools
US7776051B2 (en) * 2004-05-03 2010-08-17 Theken Spine, Llc System and method for displacement of bony structures
US7766941B2 (en) * 2004-05-14 2010-08-03 Paul Kamaljit S Spinal support, stabilization
US7901435B2 (en) * 2004-05-28 2011-03-08 Depuy Spine, Inc. Anchoring systems and methods for correcting spinal deformities
US9504583B2 (en) 2004-06-10 2016-11-29 Spinal Elements, Inc. Implant and method for facet immobilization
US7264621B2 (en) * 2004-06-17 2007-09-04 Sdgi Holdings, Inc. Multi-axial bone attachment assembly
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US7766945B2 (en) 2004-08-10 2010-08-03 Lanx, Inc. Screw and rod fixation system
DE202004020396U1 (en) 2004-08-12 2005-07-07 Columbus Trading-Partners Pos und Brendel GbR (vertretungsberechtigte Gesellschafter Karin Brendel, 95503 Hummeltal und Bohumila Pos, 95445 Bayreuth) Child seat for motor vehicles
US7186255B2 (en) * 2004-08-12 2007-03-06 Atlas Spine, Inc. Polyaxial screw
AU2005277363A1 (en) 2004-08-18 2006-03-02 Fsi Acquisition Sub, Llc Adjacent level facet arthroplasty devices, spine stabilization systems, and methods
US8951290B2 (en) 2004-08-27 2015-02-10 Blackstone Medical, Inc. Multi-axial connection system
US20060058788A1 (en) * 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
US7959653B2 (en) * 2004-09-03 2011-06-14 Lanx, Inc. Spinal rod cross connector
US7455639B2 (en) 2004-09-20 2008-11-25 Stephen Ritland Opposing parallel bladed retractor and method of use
US20060069436A1 (en) * 2004-09-30 2006-03-30 Depuy Spine, Inc. Trial disk implant
US20060084978A1 (en) * 2004-09-30 2006-04-20 Mokhtar Mourad B Spinal fixation system and method
US7722654B2 (en) 2004-10-05 2010-05-25 Warsaw Orthopedic, Inc. Spinal implants with multi-axial anchor assembly and methods
US7572280B2 (en) * 2004-10-05 2009-08-11 Warsaw Orthopedic, Inc. Multi-axial anchor assemblies for spinal implants and methods
US7794477B2 (en) * 2004-10-05 2010-09-14 Warsaw Orthopedic, Inc. Spinal implants and methods with extended multi-axial anchor assemblies
US20100036423A1 (en) * 2004-10-20 2010-02-11 Stanley Kyle Hayes Dynamic rod
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US7935134B2 (en) 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US20070225713A1 (en) * 2004-10-20 2007-09-27 Moti Altarac Systems and methods for posterior dynamic stabilization of the spine
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8366747B2 (en) * 2004-10-20 2013-02-05 Zimmer Spine, Inc. Apparatus for connecting a longitudinal member to a bone portion
US20090228045A1 (en) * 2004-10-20 2009-09-10 Stanley Kyle Hayes Dynamic rod
US20090030465A1 (en) * 2004-10-20 2009-01-29 Moti Altarac Dynamic rod
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US7662172B2 (en) 2004-10-25 2010-02-16 X-Spine Systems, Inc. Pedicle screw systems and methods of assembling/installing the same
US7604655B2 (en) 2004-10-25 2009-10-20 X-Spine Systems, Inc. Bone fixation system and method for using the same
US8221461B2 (en) 2004-10-25 2012-07-17 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
US7691129B2 (en) * 2004-10-27 2010-04-06 Felix Brent A Spinal stabilizing system
US7513905B2 (en) * 2004-11-03 2009-04-07 Jackson Roger P Polyaxial bone screw
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7601165B2 (en) 2006-09-29 2009-10-13 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable suture loop
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US7572279B2 (en) * 2004-11-10 2009-08-11 Jackson Roger P Polyaxial bone screw with discontinuous helically wound capture connection
JP4603047B2 (en) * 2004-11-18 2010-12-22 カイエン メディカル インコーポレイテッド Material fixing device
US7875065B2 (en) 2004-11-23 2011-01-25 Jackson Roger P Polyaxial bone screw with multi-part shank retainer and pressure insert
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US8118838B2 (en) 2004-12-13 2012-02-21 Kyphon Sarl Inter-cervical facet implant with multiple direction articulation joint and method for implanting
US7776090B2 (en) * 2004-12-13 2010-08-17 Warsaw Orthopedic, Inc. Inter-cervical facet implant and method
US20060247650A1 (en) 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet joint fusion implant
US7763050B2 (en) 2004-12-13 2010-07-27 Warsaw Orthopedic, Inc. Inter-cervical facet implant with locking screw and method
US8029540B2 (en) 2005-05-10 2011-10-04 Kyphon Sarl Inter-cervical facet implant with implantation tool
US8066749B2 (en) 2004-12-13 2011-11-29 Warsaw Orthopedic, Inc. Implant for stabilizing a bone graft during spinal fusion
US8172877B2 (en) 2004-12-13 2012-05-08 Kyphon Sarl Inter-cervical facet implant with surface enhancements
US7306606B2 (en) * 2004-12-15 2007-12-11 Orthopaedic Innovations, Inc. Multi-axial bone screw mechanism
US7744636B2 (en) * 2004-12-16 2010-06-29 Aesculap Ii, Inc. Locking mechanism
WO2006069089A2 (en) 2004-12-21 2006-06-29 Packaging Service Corporation Of Kentucky Cervical plate system
US7625376B2 (en) * 2005-01-26 2009-12-01 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US8834473B2 (en) * 2005-02-01 2014-09-16 Smith & Nephew, Inc. Lockable orientation instrument assembly
EP1848352A4 (en) 2005-02-18 2011-07-20 M S Abdou Devices and methods for dynamic fixation of skeletal structure
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7476239B2 (en) 2005-05-10 2009-01-13 Jackson Roger P Polyaxial bone screw with compound articulation
WO2006096381A2 (en) * 2005-03-03 2006-09-14 Accelerated Innovation Llc Spinal stabilization using bone anchor seat and cross coupling with improved locking feature
WO2006096351A1 (en) * 2005-03-03 2006-09-14 Accelerated Innovation, Llc Spinal stabilization using bone anchor and anchor seat with tangential locking feature
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US8496708B2 (en) 2005-03-17 2013-07-30 Spinal Elements, Inc. Flanged interbody fusion device with hinge
US7338491B2 (en) * 2005-03-22 2008-03-04 Spinefrontier Inc Spinal fixation locking mechanism
US8496686B2 (en) 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US8123749B2 (en) 2005-03-24 2012-02-28 Depuy Spine, Inc. Low profile spinal tethering systems
CN101222879A (en) * 2005-03-25 2008-07-16 黑石医药股份有限公司 Multi-axial connection system
US20060241593A1 (en) * 2005-04-08 2006-10-26 Sdgi Holdings, Inc. Multi-piece vertebral attachment device
US8668699B2 (en) 2005-04-14 2014-03-11 Warsaw Orthopedic, Inc. Multi-function orthopedic instrument
CN101198284B (en) 2005-04-25 2010-05-19 新特斯有限责任公司 Bone anchor with locking cap
US20060247631A1 (en) * 2005-04-27 2006-11-02 Ahn Sae Y Spinal pedicle screw assembly
US7811310B2 (en) * 2005-05-04 2010-10-12 Spinefrontier, Inc Multistage spinal fixation locking mechanism
US7951198B2 (en) * 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint
US8177817B2 (en) 2005-05-18 2012-05-15 Stryker Spine System and method for orthopedic implant configuration
US20060271045A1 (en) * 2005-05-27 2006-11-30 Depuy Spine, Inc. Spinal cross-connector
US7749233B2 (en) * 2005-06-08 2010-07-06 Innovative Spine, Llc Sleeve assembly for spinal stabilization system and methods of use
US20070043364A1 (en) * 2005-06-17 2007-02-22 Cawley Trace R Spinal correction system with multi-stage locking mechanism
KR20080040684A (en) * 2005-07-18 2008-05-08 동명 전 Bi-polar bone screw assembly
US7766946B2 (en) * 2005-07-27 2010-08-03 Frank Emile Bailly Device for securing spinal rods
US7717943B2 (en) 2005-07-29 2010-05-18 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
US7766943B1 (en) 2005-08-11 2010-08-03 Medicine Lodge Inc. Modular percutaneous spinal fusion system and method
US7628799B2 (en) 2005-08-23 2009-12-08 Aesculap Ag & Co. Kg Rod to rod connector
ES2305969T3 (en) 2005-08-24 2008-11-01 Biedermann Motech Gmbh ELEMENT OF IMPLANT IN THE FORM OF A BAR FOR THE APPLICATION IN SURGERY OF THE VERTEBRAL COLUMN OR TRAUMATIC SURGERY AND DEVICE OF STABILIZATION WITH SUCH ELEMENT OF IMPLANT IN THE FORM OF A BAR.
CH705709B1 (en) * 2005-08-29 2013-05-15 Bird Biedermann Ag Spinal implant.
KR100741293B1 (en) * 2005-08-30 2007-07-23 주식회사 솔고 바이오메디칼 Spinal Pedicle Screw
DE502006002049D1 (en) * 2005-09-13 2008-12-24 Bird Biedermann Ag Dynamic clamping device for spinal implant
US7955358B2 (en) * 2005-09-19 2011-06-07 Albert Todd J Bone screw apparatus, system and method
US8226689B2 (en) * 2005-09-23 2012-07-24 Zimmer Spine, Inc. Apparatus and methods for spinal implant with variable link mechanism
WO2007040553A1 (en) * 2005-09-26 2007-04-12 Dong Jeon Hybrid jointed bone screw system
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
JP5270352B2 (en) 2005-10-03 2013-08-21 スミス アンド ネフュー インコーポレーテッド Fixture assembly
WO2007041702A2 (en) 2005-10-04 2007-04-12 Alphaspine, Inc. Pedicle screw system with provisional locking aspects
US7722651B2 (en) * 2005-10-21 2010-05-25 Depuy Spine, Inc. Adjustable bone screw assembly
GB0521582D0 (en) 2005-10-22 2005-11-30 Depuy Int Ltd An implant for supporting a spinal column
DE602005008752D1 (en) * 2005-11-17 2008-09-18 Biedermann Motech Gmbh Polyaxial screw for flexible rod
US8100946B2 (en) 2005-11-21 2012-01-24 Synthes Usa, Llc Polyaxial bone anchors with increased angulation
US8034078B2 (en) 2008-05-30 2011-10-11 Globus Medical, Inc. System and method for replacement of spinal motion segment
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
WO2007126428A2 (en) 2005-12-20 2007-11-08 Archus Orthopedics, Inc. Arthroplasty revision system and method
US9241800B2 (en) * 2005-12-21 2016-01-26 Orthopaedic International Inc. Tibial component with a conversion module for a knee implant
KR200410476Y1 (en) * 2005-12-21 2006-03-07 (주)베리안 Pedicle screw
GB0600662D0 (en) 2006-01-13 2006-02-22 Depuy Int Ltd Spinal support rod kit
US8348952B2 (en) * 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US7833252B2 (en) 2006-01-27 2010-11-16 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
US8057519B2 (en) 2006-01-27 2011-11-15 Warsaw Orthopedic, Inc. Multi-axial screw assembly
US7722652B2 (en) 2006-01-27 2010-05-25 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
EP1981422B1 (en) 2006-02-06 2018-10-24 Stryker European Holdings I, LLC Rod contouring apparatus for percutaneous pedicle screw extension
US7967861B2 (en) * 2006-03-20 2011-06-28 Cayenne Medical, Inc. Devices, systems and methods for material fixation
WO2008103150A1 (en) * 2006-03-22 2008-08-28 Pioneer Surgical Technology, Inc. Low top bone fixation system and method for using the same
US20070233062A1 (en) * 2006-04-04 2007-10-04 Amedica Corporation Pedicle screw system with offset stabilizer rod
WO2007114834A1 (en) 2006-04-05 2007-10-11 Dong Myung Jeon Multi-axial, double locking bone screw assembly
US7722648B2 (en) * 2006-04-10 2010-05-25 Warsaw Orthopedic, Inc. Crosslink interconnection of bone attachment devices
US7837714B2 (en) * 2006-04-10 2010-11-23 Warsaw Orthopedic, Inc. Methods and devices for the interconnection of bone attachment devices
KR101387163B1 (en) 2006-04-11 2014-04-29 신세스 게엠바하 Minimally invasive fixation system
US8676293B2 (en) 2006-04-13 2014-03-18 Aecc Enterprises Ltd. Devices, systems and methods for measuring and evaluating the motion and function of joint structures and associated muscles, determining suitability for orthopedic intervention, and evaluating efficacy of orthopedic intervention
US7922749B2 (en) * 2006-04-14 2011-04-12 Warsaw Orthopedic, Inc. Reducing device
EP2012686B1 (en) * 2006-04-18 2013-10-02 Joseph Nicholas Logan Spinal rod system
US20070270815A1 (en) * 2006-04-20 2007-11-22 Chris Johnson Bone anchors with end-loading receivers for elongated connecting elements in spinal surgical procedures
US7942901B2 (en) * 2006-04-24 2011-05-17 Warsaw Orthopedic, Inc. Connector apparatus
US20070270817A1 (en) * 2006-04-24 2007-11-22 Sdgi Holdings, Inc. Connector apparatus
US8821506B2 (en) 2006-05-11 2014-09-02 Michael David Mitchell Bone screw
US8313514B2 (en) * 2006-05-15 2012-11-20 Warsaw Orthopedic, Inc. Device for interconnection of components in a spinal implant assembly
EP2050408B1 (en) * 2006-06-07 2011-04-13 Disc Motion Technologies Inc. Pedicle screw system
US20080015601A1 (en) * 2006-06-14 2008-01-17 Michael Castro Reduction device and method of use
US20080058808A1 (en) 2006-06-14 2008-03-06 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US7666211B2 (en) 2006-12-28 2010-02-23 Mi4Spine, Llc Vertebral disc annular fibrosis tensioning and lengthening device
US7959564B2 (en) 2006-07-08 2011-06-14 Stephen Ritland Pedicle seeker and retractor, and methods of use
WO2008008853A2 (en) * 2006-07-11 2008-01-17 Pioneer Surgical Technology, Inc. Transverse connector
WO2008008511A2 (en) 2006-07-14 2008-01-17 Laszlo Garamszegi Pedicle screw assembly with inclined surface seat
US20080021455A1 (en) * 2006-07-21 2008-01-24 Depuy Spine, Inc. Articulating Sacral or Iliac Connector
US20080021456A1 (en) * 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac cross connector
US20080027444A1 (en) * 2006-07-28 2008-01-31 Malek Michel H Bone anchor device
US8388660B1 (en) 2006-08-01 2013-03-05 Samy Abdou Devices and methods for superior fixation of orthopedic devices onto the vertebral column
US8702755B2 (en) 2006-08-11 2014-04-22 Gmedelaware 2 Llc Angled washer polyaxial connection for dynamic spine prosthesis
WO2008022268A2 (en) * 2006-08-16 2008-02-21 Pioneer Surgical Technology, Inc. Spinal rod anchor device and method
WO2008024373A2 (en) 2006-08-21 2008-02-28 Abdou M Samy Bone screw systems and methods of use
AU2007289258A1 (en) * 2006-08-31 2008-03-06 Warsaw Orthopedic, Inc. Spinal rod extenders and methods of use
US7922746B2 (en) * 2006-08-31 2011-04-12 Warsaw Orthopedic, Inc. Spinal rod extenders and methods of use
DE602006010556D1 (en) * 2006-09-15 2009-12-31 Biedermann Motech Gmbh Bone anchoring device
US7686809B2 (en) * 2006-09-25 2010-03-30 Stryker Spine Rod inserter and rod with reduced diameter end
WO2008039790A1 (en) * 2006-09-25 2008-04-03 Zimmer Spine, Inc. Apparatus for connecting a longitudinal member to a bone portion
ATE486534T1 (en) 2006-09-26 2010-11-15 Synthes Gmbh TRANSCONNECTOR
US8016862B2 (en) * 2006-09-27 2011-09-13 Innovasis, Inc. Spinal stabilizing system
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8167910B2 (en) 2006-10-16 2012-05-01 Innovative Delta Technology Llc Bone screw and associated assembly and methods of use thereof
US7867258B2 (en) * 2006-10-17 2011-01-11 Warsaw Orthopedic, Inc. Multi-axial bone attachment member
US20080177324A1 (en) * 2006-10-20 2008-07-24 Showa Ika Kohgyo Co., Ltd. Vertebra connection member
AU2007333475B2 (en) * 2006-10-24 2013-04-04 Cayenne Medical, Inc. Methods and systems for material fixation
US8096996B2 (en) * 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8162990B2 (en) * 2006-11-16 2012-04-24 Spine Wave, Inc. Multi-axial spinal fixation system
WO2008091266A1 (en) * 2006-12-07 2008-07-31 Dong Myung Jeon Spinal rod transverse connector system
US7744632B2 (en) 2006-12-20 2010-06-29 Aesculap Implant Systems, Inc. Rod to rod connector
US7789895B2 (en) * 2006-12-26 2010-09-07 Warsaw Orthopedic, Inc. Sacral reconstruction fixation device
US7892265B2 (en) 2006-12-28 2011-02-22 Mi4Spine, Llc Surgical screw including a body that facilitates bone in-growth
US8409256B2 (en) * 2006-12-28 2013-04-02 Depuy Spine, Inc. Spinal anchoring screw
US9962194B2 (en) 2007-01-15 2018-05-08 Innovative Delta Technology, Llc Polyaxial spinal stabilizer connector and methods of use thereof
US7794478B2 (en) 2007-01-15 2010-09-14 Innovative Delta Technology, Llc Polyaxial cross connector and methods of use thereof
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8597358B2 (en) 2007-01-19 2013-12-03 Flexuspine, Inc. Dynamic interbody devices
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
KR100991204B1 (en) * 2007-01-23 2010-11-01 주식회사 바이오스마트 Spacer for use in a surgical operation for spinous process of spine
WO2008094572A2 (en) * 2007-01-30 2008-08-07 Dong Myung Jeon Anterior cervical plating system
US20080243187A1 (en) * 2007-02-01 2008-10-02 Warsaw Orthopedic, Inc. Vertebral body fixation apparatus
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US7942906B2 (en) * 2007-02-12 2011-05-17 Neurospine Innovations And Solutions, Llc Spinal stabilization system for the stabilization and fixation of the lumbar spine and method for using same
US10842535B2 (en) 2007-02-14 2020-11-24 William R. Krause Flexible spine components having multiple slots
EP2162079B1 (en) 2007-02-14 2016-07-06 Flex Technology Inc. Flexible spine components
US8992533B2 (en) 2007-02-22 2015-03-31 Spinal Elements, Inc. Vertebral facet joint drill and method of use
WO2008103843A1 (en) 2007-02-22 2008-08-28 Spinal Elements, Inc. Vertebral facet joint drill and method of use
ES2421707T3 (en) * 2007-02-23 2013-09-05 Biedermann Technologies Gmbh Rod connector to stabilize vertebrae
US8167912B2 (en) 2007-02-27 2012-05-01 The Center for Orthopedic Research and Education, Inc Modular pedicle screw system
US8926669B2 (en) * 2007-02-27 2015-01-06 The Center For Orthopedic Research And Education, Inc. Modular polyaxial pedicle screw system
EP2131767B1 (en) * 2007-03-12 2017-11-22 Stout Medical Group, L.P. Expandable attachment device
US20080234765A1 (en) * 2007-03-13 2008-09-25 Depuy Spine, Inc. Rod reduction methods and devices
WO2008119006A1 (en) 2007-03-27 2008-10-02 Alpinespine Llc Pedicle screw system configured to receive a straight or a curved rod
US7967849B2 (en) * 2007-04-06 2011-06-28 Warsaw Orthopedic, Inc. Adjustable multi-axial spinal coupling assemblies
EP2142121B1 (en) 2007-04-30 2014-04-16 Globus Medical, Inc. Flexible spine stabilization system
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US8197517B1 (en) 2007-05-08 2012-06-12 Theken Spine, Llc Frictional polyaxial screw assembly
US7942909B2 (en) 2009-08-13 2011-05-17 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7942910B2 (en) * 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7951173B2 (en) 2007-05-16 2011-05-31 Ortho Innovations, Llc Pedicle screw implant system
US7947065B2 (en) * 2008-11-14 2011-05-24 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US8197518B2 (en) * 2007-05-16 2012-06-12 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7942911B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US20100305620A1 (en) * 2007-05-17 2010-12-02 Yechiel Gotfried Multidirectional bone fixation assembly
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
US8221471B2 (en) * 2007-05-24 2012-07-17 Aesculap Implant Systems, Llc Pedicle screw fixation system
WO2008153747A2 (en) * 2007-05-25 2008-12-18 Vertiflex, Inc. Dynamic rod
WO2008153827A1 (en) 2007-05-31 2008-12-18 Jackson Roger P Dynamic stabilization connecting member with pre-tensioned solid core
US8177815B2 (en) 2007-06-05 2012-05-15 Spartek Medical, Inc. Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8298267B2 (en) 2007-06-05 2012-10-30 Spartek Medical, Inc. Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
WO2008151096A1 (en) 2007-06-05 2008-12-11 Spartek Medical, Inc. A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US20080312655A1 (en) * 2007-06-14 2008-12-18 X-Spine Systems, Inc. Polyaxial screw system and method having a hinged receiver
US8083777B2 (en) 2007-06-15 2011-12-27 Robert Reid, Inc. System and method for polyaxially adjustable bone anchorage
EP2170191B1 (en) 2007-06-28 2015-12-09 Spinal Elements, Inc. Spinal stabilization device
US8668725B2 (en) * 2007-07-13 2014-03-11 Southern Spine, Llc Bone screw
US9439681B2 (en) 2007-07-20 2016-09-13 DePuy Synthes Products, Inc. Polyaxial bone fixation element
CA2692772A1 (en) 2007-07-20 2009-01-29 Synthes Usa, Llc Polyaxial bone fixation element
DE602007007466D1 (en) * 2007-07-20 2010-08-12 Biedermann Motech Gmbh Bone anchoring device
WO2009029458A1 (en) * 2007-08-24 2009-03-05 Spinal Elements, Inc. Loop rod spinal stabilization device
DE102007042953B4 (en) * 2007-08-30 2015-01-22 Aesculap Ag Orthopedic retention system
DE102007042958B4 (en) * 2007-08-30 2015-03-19 Aesculap Ag Surgical holding system
DE102007042959B4 (en) * 2007-08-30 2011-03-31 Aesculap Ag Surgical retaining screw
US20090069849A1 (en) * 2007-09-10 2009-03-12 Oh Younghoon Dynamic screw system
US20090076550A1 (en) * 2007-09-18 2009-03-19 Ortho Development Corporation Spinal fixation system connectors
US8262701B2 (en) * 2007-09-25 2012-09-11 Synthes Usa, Llc Transconnector
US8414588B2 (en) 2007-10-04 2013-04-09 Depuy Spine, Inc. Methods and devices for minimally invasive spinal connection element delivery
US20090099481A1 (en) 2007-10-10 2009-04-16 Adam Deitz Devices, Systems and Methods for Measuring and Evaluating the Motion and Function of Joints and Associated Muscles
US7922747B2 (en) * 2007-10-17 2011-04-12 X-Spine Systems, Inc. Cross connector apparatus for spinal fixation rods
US8398683B2 (en) * 2007-10-23 2013-03-19 Pioneer Surgical Technology, Inc. Rod coupling assembly and methods for bone fixation
US8911477B2 (en) 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
GB0720762D0 (en) 2007-10-24 2007-12-05 Depuy Spine Sorl Assembly for orthopaedic surgery
US20090112266A1 (en) * 2007-10-25 2009-04-30 Industrial Technology Research Institute Spinal dynamic stabilization device
JP2011502584A (en) * 2007-11-02 2011-01-27 スタウト メディカル グループ,エル.ピー. Expandable mounting device and method
US20090125032A1 (en) * 2007-11-14 2009-05-14 Gutierrez Robert C Rod removal instrument
WO2009076239A2 (en) * 2007-12-06 2009-06-18 Vertiflex, Inc. Spondylolisthesis reduction system and method
US8021400B2 (en) * 2007-12-13 2011-09-20 Trinity Orthopedics Llc Spinal transverse connector
US8029539B2 (en) 2007-12-19 2011-10-04 X-Spine Systems, Inc. Offset multiaxial or polyaxial screw, system and assembly
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US20090171395A1 (en) * 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US7967848B2 (en) 2008-01-16 2011-06-28 Custom Spine, Inc. Spring-loaded dynamic pedicle screw assembly
US20090192548A1 (en) * 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US20090194206A1 (en) * 2008-01-31 2009-08-06 Jeon Dong M Systems and methods for wrought nickel/titanium alloy flexible spinal rods
US8439922B1 (en) 2008-02-06 2013-05-14 NiVasive, Inc. Systems and methods for holding and implanting bone anchors
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US9060813B1 (en) 2008-02-29 2015-06-23 Nuvasive, Inc. Surgical fixation system and related methods
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US8608746B2 (en) * 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
EP2105101B2 (en) * 2008-03-28 2013-09-11 BIEDERMANN MOTECH GmbH Bone anchoring device
US20090254125A1 (en) * 2008-04-03 2009-10-08 Daniel Predick Top Loading Polyaxial Spine Screw Assembly With One Step Lockup
US8858565B1 (en) 2008-05-08 2014-10-14 Cayenne Medical, Inc. Inserter for soft tissue or bone-to-bone fixation device and methods
US8123806B1 (en) 2008-05-09 2012-02-28 Cayenne Medical, Inc Method of tensioning a tissue graft having suture bundles using a cleated bar
US8092503B2 (en) 2008-05-15 2012-01-10 Innovasis, Inc. Polyaxial screw system
US20090292308A1 (en) * 2008-05-22 2009-11-26 K2M, Inc. Spinal fixation system
US10973556B2 (en) * 2008-06-17 2021-04-13 DePuy Synthes Products, Inc. Adjustable implant assembly
EP2135574B1 (en) * 2008-06-19 2011-10-12 BIEDERMANN MOTECH GmbH Bone anchoring assembly
US8192467B2 (en) * 2008-06-27 2012-06-05 Innovasis, Inc. Cross connector
WO2010003139A1 (en) 2008-07-03 2010-01-07 Krause William R Flexible spine components having a concentric slot
CH699333A1 (en) 2008-08-11 2010-02-15 Sepitec Foundation Connecting rod for a stabilization assembly and stabilization arrangement with at least one such connecting rod.
US20100211109A1 (en) * 2008-08-14 2010-08-19 Doerr Timothy E Tack for spine fixation
US20110106170A1 (en) * 2008-08-14 2011-05-05 Doerr Timothy E Tack for spine fixation
US8167952B2 (en) * 2008-09-03 2012-05-01 The Cleveland Clinic Foundation Arthroplastic implant with shield for basilar joint and related methods
US8506641B2 (en) * 2008-09-03 2013-08-13 The Cleveland Clinic Foundation Arthrodesis implant for finger joints and related methods
US8343228B2 (en) * 2008-09-03 2013-01-01 The Cleveland Clinic Foundation Arthroplastic implant with anchor peg for basilar joint and related methods
US8231625B2 (en) * 2008-09-03 2012-07-31 The Cleveland Clinic Foundation Modular bone fixation device for treatment of fractures and related methods
EP2355725B1 (en) 2008-09-05 2017-03-08 Synthes GmbH Bone fixation assembly
US9408649B2 (en) 2008-09-11 2016-08-09 Innovasis, Inc. Radiolucent screw with radiopaque marker
CA2736616A1 (en) 2008-09-12 2010-03-18 Marcel Mueller Spinal stabilizing and guiding fixation system
DE09793113T8 (en) 2008-09-29 2013-04-25 Synthes Gmbh POLYAXIAL BOTTOM CHARGE SCREW AND BAR ASSEMBLY
KR100890034B1 (en) * 2008-10-09 2009-03-25 (주)코리아 본 뱅크 A pedicle screw
US8506601B2 (en) * 2008-10-14 2013-08-13 Pioneer Surgical Technology, Inc. Low profile dual locking fixation system and offset anchor member
US8382809B2 (en) * 2008-10-17 2013-02-26 Omni Surgical Poly-axial pedicle screw implements and lock screw therefor
EP3682828B1 (en) 2008-11-03 2024-01-24 Synthes GmbH Uni-planar bone fixation assembly
US8828058B2 (en) 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
US20090143823A1 (en) * 2008-11-13 2009-06-04 Jeon Dong M Transverse connector system for spinal rods
US8075603B2 (en) * 2008-11-14 2011-12-13 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
EP2198792A1 (en) 2008-12-19 2010-06-23 Sepitec Foundation Implant system for stabilising bones
KR100978562B1 (en) * 2008-12-31 2010-08-27 주식회사 코리아본뱅크 Cancellous bone graft substitute and its process
US8636778B2 (en) 2009-02-11 2014-01-28 Pioneer Surgical Technology, Inc. Wide angulation coupling members for bone fixation system
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
US8998961B1 (en) 2009-02-26 2015-04-07 Lanx, Inc. Spinal rod connector and methods
US8206446B1 (en) 2009-03-10 2012-06-26 Cayenne Medical, Inc. Method for surgically repairing a damaged ligament
US8241341B2 (en) 2009-03-20 2012-08-14 Spinal Usa, Inc. Pedicle screws and methods of using the same
US8357182B2 (en) 2009-03-26 2013-01-22 Kspine, Inc. Alignment system with longitudinal support features
US9220547B2 (en) 2009-03-27 2015-12-29 Spinal Elements, Inc. Flanged interbody fusion device
CN102368967B (en) 2009-04-15 2016-03-02 斯恩蒂斯有限公司 For the revision connector of spinal structure
US9161787B2 (en) * 2009-04-23 2015-10-20 The Johns Hopkins University Vertebral body reduction instrument and methods related thereto
JP2012524623A (en) 2009-04-23 2012-10-18 スパイナル・エレメンツ・インコーポレーテッド Lateral connector
CN102497828B (en) 2009-05-20 2015-09-09 斯恩蒂斯有限公司 What patient installed retracts part
US8372120B2 (en) 2009-05-20 2013-02-12 Spine Wave, Inc. Multi-axial cross connector
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8236035B1 (en) 2009-06-16 2012-08-07 Bedor Bernard M Spinal fixation system and method
EP2442738B1 (en) 2009-06-17 2014-04-30 Synthes GmbH Revision connector for spinal constructs
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US8246657B1 (en) 2009-06-29 2012-08-21 Nuvasive, Inc. Spinal cross connector
WO2011017712A2 (en) * 2009-08-07 2011-02-10 Exatech, Inc. Systems and methods for stabilization of bone structures, including thorocolumbar stabilization systems and methods
US9433439B2 (en) 2009-09-10 2016-09-06 Innovasis, Inc. Radiolucent stabilizing rod with radiopaque marker
US20110066187A1 (en) * 2009-09-11 2011-03-17 Zimmer Spine, Inc. Spinal stabilization system
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
WO2011038236A2 (en) 2009-09-25 2011-03-31 Ortho Kinematics, Inc. Systems and devices for an integrated imaging system with real-time feedback loops and methods therefor
CA2774471A1 (en) 2009-10-05 2011-04-14 James L. Surber Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8236032B2 (en) * 2009-10-20 2012-08-07 Depuy Spine, Inc. Spinal implant with a flexible extension element
US8449578B2 (en) * 2009-11-09 2013-05-28 Ebi, Llc Multiplanar bone anchor system
US9044272B2 (en) 2009-11-09 2015-06-02 Ebi, Llc Multiplanar bone anchor system
US10172647B2 (en) * 2009-11-16 2019-01-08 Nexxt Spine, LLC Poly-axial implant fixation system
US8623061B2 (en) * 2009-11-23 2014-01-07 Rolix Holdings, Llc CAM lock pedicle screw
EP2506785A4 (en) 2009-12-02 2014-10-15 Spartek Medical Inc Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8801761B2 (en) * 2009-12-18 2014-08-12 X-Spine Systems, Inc. Spinal implant locking member with improved guidance, tactile and visual feedback
US8801712B2 (en) 2010-03-08 2014-08-12 Innovasis, Inc. Radiolucent bone plate with radiopaque marker
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
US8617216B2 (en) 2010-04-05 2013-12-31 David L. Brumfield Fully-adjustable bone fixation device
US8535318B2 (en) 2010-04-23 2013-09-17 DePuy Synthes Products, LLC Minimally invasive instrument set, devices and related methods
US9198696B1 (en) 2010-05-27 2015-12-01 Nuvasive, Inc. Cross-connector and related methods
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US10603083B1 (en) 2010-07-09 2020-03-31 Theken Spine, Llc Apparatus and method for limiting a range of angular positions of a screw
US9084634B1 (en) 2010-07-09 2015-07-21 Theken Spine, Llc Uniplanar screw
US8920471B2 (en) 2010-07-12 2014-12-30 K2M, Inc. Transverse connector
WO2012024665A2 (en) 2010-08-20 2012-02-23 K2M, Inc. Spinal fixation system
US9393049B2 (en) 2010-08-20 2016-07-19 K2M, Inc. Spinal fixation system
EP2611373B1 (en) 2010-08-30 2015-11-04 Zimmer Spine, Inc. Polyaxial pedicle screw
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element
US8491641B2 (en) 2010-09-28 2013-07-23 Spinofix, Inc. Pedicle screws and dynamic adaptors
US8961569B2 (en) 2010-10-04 2015-02-24 Genesys Spine Locking pedicle screw devices, methods, and systems
DE112011104028A1 (en) 2010-11-02 2013-12-12 Roger P. Jackson Polyaxial bone anchor with quick-release shaft and rotatable holder
EP3649937A1 (en) 2010-12-13 2020-05-13 Statera Spine, Inc. Methods, systems and devices for clinical data reporting and surgical navigation
BR112013019837B1 (en) * 2011-02-04 2020-12-01 Spinesave Ag bone screw and fixing element
US9198698B1 (en) 2011-02-10 2015-12-01 Nuvasive, Inc. Minimally invasive spinal fixation system and related methods
US8740949B2 (en) 2011-02-24 2014-06-03 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
US9271765B2 (en) 2011-02-24 2016-03-01 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
USD724733S1 (en) 2011-02-24 2015-03-17 Spinal Elements, Inc. Interbody bone implant
US9387013B1 (en) 2011-03-01 2016-07-12 Nuvasive, Inc. Posterior cervical fixation system
US9247964B1 (en) 2011-03-01 2016-02-02 Nuasive, Inc. Spinal Cross-connector
US8790375B2 (en) 2011-03-18 2014-07-29 Raed M. Ali, M.D., Inc. Transpedicular access to intervertebral spaces and related spinal fusion systems and methods
US9265620B2 (en) 2011-03-18 2016-02-23 Raed M. Ali, M.D., Inc. Devices and methods for transpedicular stabilization of the spine
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US9131962B2 (en) 2011-05-24 2015-09-15 Globus Medical, Inc. Bone screw assembly
EP2713915B1 (en) 2011-05-27 2017-06-21 Synthes GmbH Minimally invasive spinal fixation system including vertebral alignment features
CA2838047A1 (en) 2011-06-03 2012-12-06 Kspine, Inc. Spinal correction system actuators
US9358047B2 (en) 2011-07-15 2016-06-07 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9186187B2 (en) 2011-07-15 2015-11-17 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9993269B2 (en) * 2011-07-15 2018-06-12 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US8888827B2 (en) 2011-07-15 2014-11-18 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9198694B2 (en) 2011-07-15 2015-12-01 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9060818B2 (en) 2011-09-01 2015-06-23 DePuy Synthes Products, Inc. Bone implants
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
USD739935S1 (en) 2011-10-26 2015-09-29 Spinal Elements, Inc. Interbody bone implant
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US8920472B2 (en) 2011-11-16 2014-12-30 Kspine, Inc. Spinal correction and secondary stabilization
US9468469B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
WO2014172632A2 (en) 2011-11-16 2014-10-23 Kspine, Inc. Spinal correction and secondary stabilization
US9451987B2 (en) 2011-11-16 2016-09-27 K2M, Inc. System and method for spinal correction
US9468468B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse connector for spinal stabilization system
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8337532B1 (en) 2011-12-08 2012-12-25 Spine Wave, Inc. Methods for percutaneously extending an existing spinal construct
US9125691B2 (en) 2011-12-23 2015-09-08 Amendia, Inc. Transverse crosslink device
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US8940020B2 (en) 2012-04-06 2015-01-27 DePuy Synthes Products, LLC Rod connector
US8771319B2 (en) 2012-04-16 2014-07-08 Aesculap Implant Systems, Llc Rod to rod cross connector
US8828056B2 (en) 2012-04-16 2014-09-09 Aesculap Implant Systems, Llc Rod to rod cross connector
TW201352122A (en) * 2012-06-15 2013-12-16 Wistron Corp Hinge device and electronic apparatus comprising the hinge device
US9295488B2 (en) 2012-08-09 2016-03-29 Wilson T. Asfora Joint fusion
US9572598B2 (en) 2012-08-09 2017-02-21 Spine Craft, LLC Uniplanar surgical screw assembly
US9179957B2 (en) 2012-08-09 2015-11-10 Spinecraft, LLC Systems, assemblies and methods for spinal derotation
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9339309B1 (en) 2012-10-11 2016-05-17 Nuvasive, Inc. Systems and methods for inserting cross-connectors
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8998968B1 (en) 2012-11-28 2015-04-07 Choice Spine, Lp Facet screw system
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US8979898B2 (en) 2013-02-20 2015-03-17 K2M, Inc. Iliosacral polyaxial screw
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US20140277155A1 (en) 2013-03-14 2014-09-18 K2M, Inc. Taper lock hook
USD765853S1 (en) 2013-03-14 2016-09-06 Spinal Elements, Inc. Flexible elongate member with a portion configured to receive a bone anchor
CA2846149C (en) 2013-03-14 2018-03-20 Stryker Spine Systems and methods for percutaneous spinal fusion
US9820784B2 (en) 2013-03-14 2017-11-21 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
US10687962B2 (en) 2013-03-14 2020-06-23 Raed M. Ali, M.D., Inc. Interbody fusion devices, systems and methods
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US9421044B2 (en) 2013-03-14 2016-08-23 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US9861495B2 (en) 2013-03-14 2018-01-09 Raed M. Ali, M.D., Inc. Lateral interbody fusion devices, systems and methods
US9486256B1 (en) 2013-03-15 2016-11-08 Nuvasive, Inc. Rod reduction assemblies and related methods
US9453526B2 (en) 2013-04-30 2016-09-27 Degen Medical, Inc. Bottom-loading anchor assembly
US9468471B2 (en) 2013-09-17 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
US9839450B2 (en) 2013-09-27 2017-12-12 Spinal Elements, Inc. Device and method for reinforcement of a facet
US9456855B2 (en) 2013-09-27 2016-10-04 Spinal Elements, Inc. Method of placing an implant between bone portions
US9987047B2 (en) 2013-10-07 2018-06-05 Spine Wave, Inc. Translating polyaxial screw
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
EP2893890B1 (en) 2014-01-13 2016-11-02 Biedermann Technologies GmbH & Co. KG Coupling assembly for coupling a rod to a bone anchoring element, and polyaxial bone anchoring device
CN103800060B (en) * 2014-01-25 2015-12-23 山东航维骨科医疗器械股份有限公司 A kind of spinal column is fixing with the horizontal connected device of low incisura
US20150297266A1 (en) 2014-04-21 2015-10-22 X-Spine Systems, Inc. Modular multi-axial screw system
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
EP3151788A4 (en) 2014-06-04 2018-01-17 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9737340B1 (en) 2014-09-16 2017-08-22 Nuvasive, Inc. Adjustable iliac connector
US11478275B2 (en) 2014-09-17 2022-10-25 Spinal Elements, Inc. Flexible fastening band connector
EP3250155A4 (en) 2015-01-27 2018-08-22 Spinal Elements Inc. Facet joint implant
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US9974577B1 (en) 2015-05-21 2018-05-22 Nuvasive, Inc. Methods and instruments for performing leveraged reduction during single position spine surgery
US20160354161A1 (en) 2015-06-05 2016-12-08 Ortho Kinematics, Inc. Methods for data processing for intra-operative navigation systems
US10265104B2 (en) 2015-09-23 2019-04-23 Deniz Ufuk Erbulut Pedicle screw
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
EP3181075B1 (en) 2015-12-17 2021-04-14 Ozer, Ali Fahir Double-headed pedicle screw
US10398481B2 (en) 2016-10-03 2019-09-03 Nuvasive, Inc. Spinal fixation system
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11006981B2 (en) 2017-07-07 2021-05-18 K2M, Inc. Surgical implant and methods of additive manufacturing
US10507043B1 (en) 2017-10-11 2019-12-17 Seaspine Orthopedics Corporation Collet for a polyaxial screw assembly
US10888363B2 (en) 2017-12-06 2021-01-12 Stout Medical Group, L.P. Attachment device and method for use
US11051861B2 (en) 2018-06-13 2021-07-06 Nuvasive, Inc. Rod reduction assemblies and related methods
CA3111008A1 (en) 2018-09-20 2020-03-26 Spinal Elements, Inc. Spinal implant device
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant
US11464552B2 (en) 2019-05-22 2022-10-11 Spinal Elements, Inc. Bone tie and bone tie inserter
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
WO2021163313A1 (en) 2020-02-14 2021-08-19 Spinal Elements, Inc. Bone tie methods
DE102020108276A1 (en) * 2020-03-25 2021-09-30 Aesculap Ag Surgical connector and surgical connector system
US11129651B1 (en) * 2020-03-31 2021-09-28 Warsaw Orthopedic, Inc. Pop-on-cap assemblies having opposing splay-resisting features and opposing anti-rotation features for spinal surgery
US11911284B2 (en) 2020-11-19 2024-02-27 Spinal Elements, Inc. Curved expandable interbody devices and deployment tools
US11331125B1 (en) 2021-10-07 2022-05-17 Ortho Inventions, Llc Low profile rod-to-rod coupler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611580A (en) * 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
US4653481A (en) * 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4658809A (en) * 1983-02-25 1987-04-21 Firma Heinrich C. Ulrich Implantable spinal distraction splint
US4719905A (en) * 1985-11-01 1988-01-19 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US4913134A (en) * 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US483342A (en) * 1892-09-27 bolte
US900717A (en) * 1907-09-26 1908-10-13 Edward B Feaster Cable fastener or clamp.
GB167228A (en) * 1920-04-26 1921-07-26 Stanley Watkin Darker Improvements in or relating to nut locks
US2344381A (en) * 1940-05-03 1944-03-14 Leonard A Young Nut
US3019504A (en) * 1959-04-29 1962-02-06 Burroughs Corp Tape and terminal fitting assembly
US3752203A (en) * 1971-07-28 1973-08-14 Hill Fastener Corp Lock-screw fasteners
CH572844A5 (en) * 1974-03-21 1976-02-27 Lehner Stirnemann Max
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
DE2715638B1 (en) * 1977-04-07 1978-10-12 Gelenkwellenbau Gmbh, 4300 Essen Storage arrangement for universal joint
NL169513C (en) * 1978-01-13 1982-07-16 Nedschroef Octrooi Maats SELF-SECURING FASTENING ELEMENT AND A STAMP FOR MAKING THAT ELEMENT.
US4289124A (en) * 1978-09-18 1981-09-15 Zickel Robert E Surgical appliance for the fixation of fractured bones
AU4984279A (en) * 1979-07-29 1981-02-19 Kishu Neji Co. Ltd. A nut or bolt having a toothed engaging surface
US4411259A (en) * 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
DE3219575A1 (en) * 1982-05-25 1983-12-01 Patrick Dr.med. 3590 Bad Wildungen Kluger Implant system for correction of the position and stabilisation of the spine
FR2545350B1 (en) * 1983-05-04 1985-08-23 Cotrel Yves DEVICE FOR SHRINKAGE OF THE RACHIS
US4696290A (en) * 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
US4611581A (en) * 1983-12-16 1986-09-16 Acromed Corporation Apparatus for straightening spinal columns
US4655199A (en) * 1985-03-29 1987-04-07 Acromed Corporation Spinal column straightening apparatus
SE448085B (en) * 1985-07-04 1987-01-19 Svenska Utvecklings Ab DEVELOPMENT OF SALT WATER WITH MEMBRANE STILLATION
US4648388B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4771767A (en) * 1986-02-03 1988-09-20 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
DE3614101C1 (en) * 1986-04-25 1987-10-22 Juergen Prof Dr Med Harms Pedicle screw
DE3639810C2 (en) * 1986-11-21 1998-04-09 Heinrich Ulrich Implant for spine correction and / or stabilization
FR2615095B1 (en) * 1987-05-15 1989-08-18 Fabrication Materiel Orthopedi OSTEOSYNTHESIS INSTRUMENTATION FOR THE CORRECTION OF LUMBAR SCOLIOSES BY POSTERIOR PATHWAY
US4887595A (en) * 1987-07-29 1989-12-19 Acromed Corporation Surgically implantable device for spinal columns
FR2624720B1 (en) * 1987-12-21 1994-04-15 Fabrication Materiel Orthopediqu IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS
US4950269A (en) * 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
FR2633177B1 (en) * 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
GB8825909D0 (en) * 1988-11-04 1988-12-07 Showell A W Sugicraft Ltd Pedicle engaging means
US5084049A (en) * 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
US5024213A (en) * 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
FR2645427A1 (en) * 1989-04-11 1990-10-12 Cotrel Yves Transverse fixing bar for spinal osteosynthesis device
FR2645732B1 (en) * 1989-04-13 1997-01-03 Cotrel Yves VERTEBRAL IMPLANT FOR OSTEOSYNTHESIS DEVICE
DE3923996A1 (en) * 1989-07-20 1991-01-31 Lutz Biedermann RECORDING PART FOR JOINTLY CONNECTING TO A SCREW FOR MAKING A PEDICLE SCREW
US5261913A (en) * 1989-07-26 1993-11-16 J.B.S. Limited Company Device for straightening, securing, compressing and elongating the spinal column
CA2035348C (en) * 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
FR2658413B1 (en) * 1990-02-19 1997-01-03 Sofamor OSTEOSYNTHESIS DEVICE FOR THE CORRECTION OF SPINAL DEVIATIONS.
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5120171A (en) * 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5129900B1 (en) * 1990-07-24 1998-12-29 Acromed Corp Spinal column retaining method and apparatus
US5127912A (en) * 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
CH685850A5 (en) * 1990-11-26 1995-10-31 Synthes Ag anchoring device
US5113685A (en) * 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5183359A (en) * 1992-05-12 1993-02-02 Illinois Tool Works Inc. Rotary fastener with anti-strip-out nibs
US5275600A (en) * 1992-10-05 1994-01-04 Zimmer, Inc. Telescoping rod to rod coupler for a spinal system
FR2697742B1 (en) * 1992-11-06 1994-12-16 Biomat Osteosynthesis device for spinal consolidation.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658809A (en) * 1983-02-25 1987-04-21 Firma Heinrich C. Ulrich Implantable spinal distraction splint
US4611580A (en) * 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4653481A (en) * 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4719905A (en) * 1985-11-01 1988-01-19 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4719905B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US4913134A (en) * 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624442A (en) * 1990-04-26 1997-04-29 Cross Medical Products, Inc. Transverse link for use with a spinal implant system
EP0558883A1 (en) * 1992-03-02 1993-09-08 Howmedica GmbH Apparatus for bracing a plurality of vertebras of the human spine
US6261287B1 (en) 1992-03-02 2001-07-17 Stryker Trauma Gmbh Apparatus for bracing vertebrae
US7988713B2 (en) 1992-03-02 2011-08-02 Stryker Trauma Gmbh Apparatus for bracing vertebrae
US8007520B2 (en) 1992-03-02 2011-08-30 Stryker Trauma Gmbh Apparatus for bracing vertebrae
US7128743B2 (en) * 1992-03-02 2006-10-31 Stryker Trauma Gmbh Apparatus for bracing vertebrae
EP0572790A1 (en) * 1992-06-04 1993-12-08 Synthes AG, Chur Osteosynthesis anchoring element
US5520689A (en) * 1992-06-04 1996-05-28 Synthes (U.S.A.) Osteosynthetic fastening device
US5498264A (en) * 1992-07-21 1996-03-12 Synthes (U.S.A.) Clamp connection for connecting two construction components for a setting device, particularly an osteosynthetic setting device
US5725527A (en) * 1992-09-10 1998-03-10 Biedermann Motech Gmbh Anchoring member
US5545165A (en) * 1992-10-09 1996-08-13 Biedermann Motech Gmbh Anchoring member
EP0776635A1 (en) * 1992-10-09 1997-06-04 BIEDERMANN MOTECH GmbH Anchoring element
DE4240223A1 (en) * 1992-11-30 1994-06-01 Kovac Vladimir Dr Stabilising aligner for bone portions - has several implant elements, each as hook, screw, or loop with integral coupler linking them which is fork shaped into which a rod is insertable
WO1994014384A2 (en) * 1992-12-23 1994-07-07 Plus Endoprothetik Ag System for osteosynthesis along the spinal column, connecting element for such a system and tool for assembling and/or dismantling the same
WO1994014384A3 (en) * 1992-12-23 1994-08-18 Plus Endoprothetik Ag System for osteosynthesis along the spinal column, connecting element for such a system and tool for assembling and/or dismantling the same
EP0613664A2 (en) * 1993-02-25 1994-09-07 Howmedica GmbH A device for setting a spline
EP0613664A3 (en) * 1993-02-25 1995-04-19 Howmedica Gmbh A device for setting a spline.
US5476464A (en) * 1993-02-25 1995-12-19 Howmedica Gmbh Device for setting a spine
FR2705226A1 (en) * 1993-05-17 1994-11-25 Tornier Sa Spine fixator for maintaining a spine.
EP0625337A1 (en) * 1993-05-17 1994-11-23 Tornier Sa Spinal fixator for holding the vertebral column
WO1995013754A1 (en) * 1993-11-19 1995-05-26 Cross Medical Products, Inc. Transverse link for spinal implant system
EP0682918A1 (en) 1994-05-20 1995-11-22 Groupe Lepine Spinal osteosynthesis device
FR2719990A1 (en) * 1994-05-20 1995-11-24 Lepine Groupe Fixation and osteosynthesis device for spine.
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
USRE37479E1 (en) * 1995-03-15 2001-12-18 Spineology, Inc. Spinal fixation device
DE19510543A1 (en) * 1995-03-23 1996-10-02 Juergen Prof Dr Med Harms Spinal fixation device
DE19510543C2 (en) * 1995-03-23 1999-06-10 Juergen Prof Dr Med Harms Spinal fixation device
WO1996031167A1 (en) * 1995-04-05 1996-10-10 Chauvin Jean Luc Device for straightening and supporting a backbone
WO1998035622A1 (en) * 1997-02-12 1998-08-20 Sdgi Holdings, Inc. Rod introducer forceps
US6036692A (en) * 1997-02-12 2000-03-14 Sdgi Holdings, Inc. Rod introducer forceps
US6432108B1 (en) 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
WO2002054965A1 (en) 2001-01-12 2002-07-18 Biedermann Motech Gmbh Connector element for bone rods or spinal rods
DE10101478C2 (en) * 2001-01-12 2003-03-27 Biedermann Motech Gmbh connecting element
DE10101478A1 (en) * 2001-01-12 2002-07-25 Biedermann Motech Gmbh connecting element
US7276069B2 (en) 2001-01-12 2007-10-02 Biedermann Motech Gmbh Connector element for bone rods or spinal rods
DE10136162B4 (en) * 2001-07-25 2016-05-12 Biedermann Technologies Gmbh & Co. Kg Connecting element for connecting two used for bone and spine stabilization rod-shaped elements
US7195632B2 (en) 2001-07-25 2007-03-27 Biedermann Motech Gmbh Connecting element
DE10136162A1 (en) * 2001-07-25 2003-02-20 Biedermann Motech Gmbh Rod connector prosthesis for bone stabilizing frame has pair of shaft sections adjusted for length and locked by clamp
US7294128B2 (en) 2002-04-09 2007-11-13 Nas Medical Technologies, Inc. Bone fixation apparatus
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
USRE46431E1 (en) 2003-06-18 2017-06-13 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US11426216B2 (en) 2003-12-16 2022-08-30 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7854751B2 (en) 2003-12-16 2010-12-21 Dupuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US9439699B2 (en) 2003-12-16 2016-09-13 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US8518082B2 (en) 2003-12-16 2013-08-27 Depuy Spine, Sarl Percutaneous access devices and bone anchor assemblies
US8617210B2 (en) 2003-12-16 2013-12-31 Depuy Spine, Sarl Percutaneous access devices and bone anchor assemblies
US9662151B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Orthopedic implant rod reduction tool set and method
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US11648039B2 (en) 2004-02-27 2023-05-16 Roger P. Jackson Spinal fixation tool attachment structure
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9636151B2 (en) 2004-02-27 2017-05-02 Roger P Jackson Orthopedic implant rod reduction tool set and method
US10485588B2 (en) 2004-02-27 2019-11-26 Nuvasive, Inc. Spinal fixation tool attachment structure
US9532815B2 (en) 2004-02-27 2017-01-03 Roger P. Jackson Spinal fixation tool set and method
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US11291480B2 (en) 2004-02-27 2022-04-05 Nuvasive, Inc. Spinal fixation tool attachment structure
US11147597B2 (en) 2004-02-27 2021-10-19 Roger P Jackson Dynamic spinal stabilization assemblies, tool set and method
US9629663B2 (en) 2004-03-31 2017-04-25 DePuy Synthes Products, Inc. Rod attachment for head to head cross connector
US8920470B2 (en) 2004-03-31 2014-12-30 Depuy Synthes Products Llc Rod attachment for head to head cross connector
US9387014B2 (en) 2004-03-31 2016-07-12 DePuy Synthes Products, Inc. Systems and methods for decompressing a spinal canal
US9486247B2 (en) 2004-03-31 2016-11-08 DePuy Synthes Products, Inc. Rod attachment for head to head cross connector
US8920469B2 (en) 2004-03-31 2014-12-30 Depuy Synthes Products Llc Rod attachment for head to head cross connector
US8961572B2 (en) 2004-08-27 2015-02-24 Depuy Synthes Products Llc Dual rod cross connectors and inserter tools
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US11147591B2 (en) 2004-11-10 2021-10-19 Roger P Jackson Pivotal bone anchor receiver assembly with threaded closure
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US9522021B2 (en) 2004-11-23 2016-12-20 Roger P. Jackson Polyaxial bone anchor with retainer with notch for mono-axial motion
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US11389214B2 (en) 2004-11-23 2022-07-19 Roger P. Jackson Spinal fixation tool set and method
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7918857B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US7918858B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US8870921B2 (en) 2006-11-08 2014-10-28 DePuy Synthes Products, LLC Spinal cross connectors
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
USRE47646E1 (en) 2007-04-19 2019-10-15 Zimmer Spine, Inc. Method and associated instrumentation for installation of spinal dynamic stabilization system
USRE47377E1 (en) 2007-04-19 2019-05-07 Zimmer Spine, Inc. Method and associated instrumentation for installation of spinal dynamic stabilization system
US8632572B2 (en) 2007-04-19 2014-01-21 Zimmer Spine, Inc. Method and associated instrumentation for installation of spinal dynamic stabilization system
US10201377B2 (en) 2008-02-04 2019-02-12 Medos International Sarl Methods for correction of spinal deformities
US9713488B2 (en) 2008-02-04 2017-07-25 Medos International Sarl Methods for correction of spinal deformities
US10987145B2 (en) 2008-02-04 2021-04-27 Medos International Sarl Methods for correction of spinal deformities
US9277940B2 (en) 2008-02-05 2016-03-08 Zimmer Spine, Inc. System and method for insertion of flexible spinal stabilization element
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US9717534B2 (en) 2009-06-15 2017-08-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9636146B2 (en) 2012-01-10 2017-05-02 Roger P. Jackson Multi-start closures for open implants
US10786284B2 (en) 2012-09-28 2020-09-29 Medos International Sarl Bone anchor assemblies
US10226282B2 (en) 2012-09-28 2019-03-12 Medos International Sarl Bone anchor assemblies
US9782204B2 (en) 2012-09-28 2017-10-10 Medos International Sarl Bone anchor assemblies
US9770265B2 (en) 2012-11-21 2017-09-26 Roger P. Jackson Splay control closure for open bone anchor
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US10342582B2 (en) 2013-03-14 2019-07-09 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US10321938B2 (en) 2013-03-14 2019-06-18 Medos International Sàrl Locking compression members for use with bone anchor assemblies and methods
US9724130B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Locking compression members for use with bone anchor assemblies and methods
US10413342B2 (en) 2013-03-14 2019-09-17 Medos International Sárl Bone anchor assemblies with multiple component bottom loading bone anchors
US10238441B2 (en) 2013-03-14 2019-03-26 Medos International Sàrl Bottom-loading bone anchor assemblies and methods
US9724145B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Bone anchor assemblies with multiple component bottom loading bone anchors
US10987138B2 (en) 2013-03-14 2021-04-27 Medos International Sari Locking compression members for use with bone anchor assemblies and methods
US9918747B2 (en) 2013-03-14 2018-03-20 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US11311318B2 (en) 2013-03-14 2022-04-26 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US9775660B2 (en) 2013-03-14 2017-10-03 DePuy Synthes Products, Inc. Bottom-loading bone anchor assemblies and methods
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
EP2977017A1 (en) 2014-07-22 2016-01-27 LfC sp. z o.o. Pedicle anchor assembly
DE102014223112A1 (en) 2014-11-12 2016-05-12 Gebr. Brasseler Gmbh & Co. Kg Device for clamping vertebrae of the human spine
DE102014223115A1 (en) 2014-11-12 2016-05-12 Gebr. Brasseler Gmbh & Co. Kg Device for clamping vertebrae of the human spine
US10398473B2 (en) 2014-11-12 2019-09-03 Gebr. Brasseler Gmbh & Co. Kg Device for bracing vertebrae of the human spinal column
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US11419637B2 (en) 2014-12-09 2022-08-23 John A. Heflin Spine alignment system
US10736668B2 (en) 2014-12-09 2020-08-11 John A. Heflin Spine alignment system

Also Published As

Publication number Publication date
US5474555A (en) 1995-12-12
US5624442A (en) 1997-04-29
US5360431A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
US5360431A (en) Transpedicular screw system and method of use
AU690179B2 (en) Transverse link for spinal implant system
US4805602A (en) Transpedicular screw and rod system
US10080590B2 (en) Spinal stabilization system and methods of use
US8623062B2 (en) System and method to stablize a spinal column including a spinolaminar locking plate
EP1729664B1 (en) Head-to-head connector spinal fixation system
US7708762B2 (en) Systems, devices and methods for stabilization of the spinal column
US6287308B1 (en) Methods and apparatus for fusionless treatment of spinal deformities
US6533790B1 (en) Self-guided pedical screw
US6843790B2 (en) Anatomic posterior lumbar plate
USRE39325E1 (en) Spinal fixation apparatus and method
US5951553A (en) Methods and apparatus for fusionless treatment of spinal deformities
AU2005311787B2 (en) Side-loading bone anchor
AU2004220647B2 (en) Posterior pedicle screw and plate system and methods
US7883532B2 (en) Vertebral pars interarticularis clamp a new spine fixation device, instrumentation, and methodology
US8002808B2 (en) Variable angle adaptive plate
US6136003A (en) Device for linking adjacent rods in spinal instrumentation
US8147524B2 (en) Instrumentation and methods for reducing spinal deformities
US20040158247A1 (en) Polyaxial pedicle screw system
US20070233062A1 (en) Pedicle screw system with offset stabilizer rod
US20110178552A1 (en) Vertebral pars interarticularis clamp a new spine fixation device, instrumentation, and methodology
US20160128734A1 (en) Threaded Setscrew Crosslink
EP3419536B1 (en) Integral double rod spinal construct

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA