WO1994005025A1 - Use of optical brighteners and phthalocyanines as photosensitizers - Google Patents

Use of optical brighteners and phthalocyanines as photosensitizers Download PDF

Info

Publication number
WO1994005025A1
WO1994005025A1 PCT/EP1993/002180 EP9302180W WO9405025A1 WO 1994005025 A1 WO1994005025 A1 WO 1994005025A1 EP 9302180 W EP9302180 W EP 9302180W WO 9405025 A1 WO9405025 A1 WO 9405025A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitizer
series
component
titanium dioxide
formula
Prior art date
Application number
PCT/EP1993/002180
Other languages
French (fr)
Inventor
Roland Entschel
Friedrich Lehr
Peter Matzinger
Horst Schmid
Original Assignee
Sandoz Ltd.
Sandoz-Patent-Gmbh
Sandoz-Erfindungen Verwaltungsgesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB929217472A external-priority patent/GB9217472D0/en
Priority claimed from GB929217812A external-priority patent/GB9217812D0/en
Application filed by Sandoz Ltd., Sandoz-Patent-Gmbh, Sandoz-Erfindungen Verwaltungsgesellschaft M.B.H. filed Critical Sandoz Ltd.
Priority to AU49483/93A priority Critical patent/AU4948393A/en
Publication of WO1994005025A1 publication Critical patent/WO1994005025A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/42Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • C07F19/005Metal compounds according to more than one of main groups C07F1/00 - C07F17/00 without metal-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the use of optical brighteners and phthalocyanines (including naphthalocyanines) as a photosensitizer in photovoltaic cells. These brighteners can be coated on titanium dioxide films rendering the device effective in the conversion of visible light to electric energy.
  • naphthalocyanines are included in the term phthalocyanine in the specification.
  • Titanium dioxide films are known for their semiconductive properties and this property renders them useful for photovoltaic cells.
  • titanium dioxide has a large band gap and it does not absorb light in the visible region of the spectrum.
  • the titanium dioxide film be coated with a photosensitizer which harvests light in the wavelength domain where the sun emits light, i.e. between 300 and 2000 nm so as to increase the efficiency of the cell.
  • Thermodynamic considerations show that conversion of solar energy into electricity is achieved in the most efficient fashion when all the emitted photons with wavelengths below 820 nm are absorbed by the photosensitizer.
  • the optimal photosensitizer for solar conversion should therefore have an absorption onset under 800nm.
  • a second requirement for efficient solar light energy conversion is that the photosensitizer after having absorbed light and thereby acquired an energy-rich state is able to inject with practically unit quantum yield, an electron in the conduction band of the titanium dioxide film.
  • the function of the interlocking group is to provide electronic coupling between the chromophoric group of the photosensitizer and the conduction band of the semiconductor. This type of electronic coupling is required to facilitate electron transfer between the excited state of the photosensitizer band and the conduction band.
  • Suitable interlocking groups are ⁇ -conducting substituents such as carboxylate groups, hydroxy groups, mercapto groups, sulphonate groups, cyano groups, phosphate groups or chelating groups with '-conducting character such as oximes, dioximes, hydroxy quinolines, salicylates and alpha keto enolates.
  • the electrons, photoinjected by the photosensitizer generate electrical current in the external circuit when the photovoltaic cell is operated.
  • an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group (preferably a COOH containing group) has been applied (being hereinafter defined as component a) ;
  • the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds (including naphthalocyanine compounds).
  • component a includes the electrically conductive element, one or more titanium dioxide layers and photosensitizer ).
  • a photovoltaic cell comprising:
  • component a an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group (preferably a COOH containing group) has been applied (hereinafter defined as component a);
  • At least one of the two electrically conductive layers being transparent (that is to say having a visible light transmittance of at least 60%)
  • Hi means for permitting the passage of an electrical current generated by the cell between the two electrically conductive elements
  • the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds (including naphthalocyanine compounds).
  • the means for permitting the passage of an electrical current is a liquid or solid electrolyte.
  • component a) comprises a support, (preferably a glass plate coated with metal oxide, a metal surface or a polymer sheet (preferably an intrinsically conductive polymer)) to which the Ti0 2 layer is applied.
  • component a) is transparent.
  • transparent is meant that at least 60%, preferably 70%, more preferably at least 80%, especially 80-98% of incident light passes through the support.
  • the Ti0 2 layer comprises rutile and anatase, more preferably anatase.
  • the titanium dioxide is doped with a metal ion, which may preferably be selected from a divalent or trivalent metal or boron.
  • a metal ion which may preferably be selected from a divalent or trivalent metal or boron.
  • Preferred dopant is aluminium.
  • the titanium dioxide layer is a film.
  • the film has a roughness factor greater than 20, the roughness factor being defined as the ratio of true to apparent surface area.
  • Roughness factor is defined in USP 5,084,365 and 4,927,721. More preferably the roughness factor is 20-1000. more preferably 50-200.
  • the titanium dioxide layers are built up on the surface of the conductive layer of the electrically conductive elements of component a) using one of two methods.
  • One is the sol-gel method described by "Stalder and Augustynski in J. Electrochem. Soc. 1979, 126:2007” and in Example A.
  • Another is the “colloidal method” described in Examples B and C.
  • component a) is a metal, polymer or glass plate to which an electrically conductive surface has been applied, to which one or more layers (preferably a film of 0.1- 50 microns) of titanium dioxide has been applied, the Ti0 2 being coated with a photosensitizer selected from optical brightener compounds and phthalocyanine compounds.
  • a photosensitizer selected from optical brightener compounds and phthalocyanine compounds.
  • the electrically conductive element having no Ti0 2 present may be coated with a thin layer (preferably up to 10 microns thickness) of an electrocatalyst.
  • the role of the electrocatalyst is to facilitate the transfer of electrons from the counterelectrode to the electrolyte.
  • a further possible modification of the counterelectrode (when component a) is transparent) is to make it reflective to the light that infringes thereon, having first passed through the electrolyte and component a).
  • both electrically conductive elements have a surface resistance of 5-1000 ohm/cm 2 more preferably 5-100 ohm/cm 2 , most preferably 5-50 ohm/cm 2 , especially 10 ohmlcm 2 .
  • the transparent conductive layer may alternatively have a surface resistance of less than 10 ohm! cm 2 in which case it is preferably from 1 to 10 ohm/ cm 2 .
  • the electrolyte contains a redox system (charge transfer relay) or is a solid electrolyte system.
  • a redox system charge transfer relay
  • such systems include iodine/ iodide solutions, bromine/ bromide solutions, hydroquinone solutions or solutions of transition metal complexes transferring a nonbonding electron.
  • the charge transfer relays present in the electrolyte transport electric charge from one electrode to the other. They act as pure mediators and undergo no chemical alteration during the operation of the cell.
  • the electrolytes in a photovoltaic cell according to the invention are dissolved in an organic medium so that the photosensitizer applied to the titanium dioxide surface are insoluble therein. This has the advantage that the cell has a long-term stability.
  • Preferred organic solvents for the electrolyte include but are not limited to water containing (preferably however, water-free), alcohols and mixtures thereof, non-volatile solvents such as propylene carbonate, ethylene carbonate and methyl pyrrolidinone, mixtures of non-volatile solvents with viscosity reducing solvents such as acetonitrile, ethylacetate or tetrahydrofuran. Additional solvents are dimethylsulfoxide or dichloroethane. Where miscible, mixtures of any of the above may be used.
  • the glass or polymer plate which is used for the transparent electrically conductive element of the cell according to the invention is any transparent glass or polymer onto which a light transmitting electrically conductive layer has been deposited, such that the plate preferably has a visible light transmittance of 60-99%, more preferably 85-95%.
  • the transparent conductive layer used in a photovoltaic cell according to the invention is made of tin dioxide doped with ca. 0.8 atom percent of fluorine and this layer is deposited on a transparent substrate made of low-cost soda lime float glass.
  • This type of conducting glass can be obtained from Asahi Glass Company, Ltd. Tokyo, Japan, under the brand name of TCO glass.
  • the transparent conductive layer can also be made of indium oxide doped with up to 5% tin oxide, deposited on a glass substrate. This is available from Balzers under the brand name of ITO glass.
  • the photosensitizer can advantageously be used in a photovoltaic cell that requries high transparency, e.g. when integrated in a watch or in a window.
  • a photovoltaic cell according to the invention has the following advantages when compared to existing cells.
  • the fill factor is defined as the electrical power output at the optimal cell voltage for light energy conversion divided by the product of open circuit voltage and short circuit current.
  • a high open circuit voltage is very important for practical applications since it allows to operate the cell at lower Ohmic losses than conventional photovoltaic cells which have a smaller open circuit voltage.
  • a photovoltaic cell according to the invention achieves the separation of these functions.
  • Light is absorbed by the very thin layer of photosensitizer adsorbed onto the surface of the titanium dioxide film while the charge carrier transport is carried out by the titanium dioxide film.
  • a photovoltaic cell according to the present invention operates as a majority carrier device. This has the advantage that imperfections such as grain boundaries or other types of crystalline disorders or impurities and disorder within the Ti0 2 film do not decrease the efficiency of the cell as would be the case if minority carriers were involved in the cell operation.
  • Conventional solar cells operate with minority charge carriers and this explains the need to fabricate these cells from highly pure and ordered materials which are costly.
  • the present invention permits the development of cheap solar cells. All the materials employed in the present cells are inexpensive.
  • the present cell operates as a majority carrier device is that the cell voltage depends to a smaller degree on the intensity of the impinging light than that of a conventional solar cell.
  • the present cell maintains its high efficiency under diffuse light or in cloudy weather while the efficiency of a conventional cell decrease sharply under these conditions.
  • the cell can be optimized with respect to solar energy conversion.
  • a further advantage of a preferred photovoltaic cell according to the present invention is that it can be irradiated from the front side, back side or both sides. It can be irradiated by passing the light through the counter- electrode and the electrolyte to the dyestuff absorbed at the Ti0 2 layer or through the Ti0 2 layer to the absorbed dyestuff. If both the photosensitizer coated electrode and the counterelectrode are transparent, then light from all directions can be collected. In this way it is possible in addition to direct sunlight to harvest diffuse reflected light. This will improve the overall efficiency of the solar cell.
  • a further advantage of a photovoltaic cell according to the present invention is that the specific texture and electronic properties of the photosensitizer loaded Ti0 2 layer allow the counterelectrode to be placed directly on top of the working electrode. In other words, there is no need to employ a spacer such as a polymer membrane to keep the two electrodes apart in order to avoid the formation of a short circuit.
  • the dielectric features of the photosensitizer coated Ti0 2 layer are such that even though it may be in direct contact with the counterelectrode there is no break-through current due to short circuiting of the two electrodes. This is an important advantage for practical application of the cell since it simplifies the construction of the device and reduces its cost.
  • the photosensitizer of the present cell is an optical brightener, it may- enable one to produce a colorless photovoltaic cell with improved efficiency.
  • the photosensitizer can be a three layer system comprising
  • component i an optical brightener compound (hereinafter defined as component i); ii) a phthalocyanine compound (hereinafter defined as component ii); and Hi) a ruthenium complex compound (hereinafter defined as component Hi)
  • the amount of component i) is 10-50%
  • the amount of component ii) is 10-40%
  • the amount of component Hi) is 10-50%.
  • the percentages are preferably by weight based on 100% being the total combined amount of components i), ii) and Hi).
  • the sol gel method it is preferable that only the last three, the last two or just the very top layer of the titanium dioxide is doped with a divalent or trivalent metal in an amount of no: more than 15% doping by weight.
  • the deposition of the pure dopant in form of a very thin top oxide layer can also be advantageous. In the latter case, a blocking layer is formed which impedes leakage current at the semiconductor- electrolyte junction.
  • All of the Ti0 2 layers are formed by the sol gel process method described in Application Example A.
  • the number of Ti0 2 layers deposited is 10-11.
  • tlie total thickness of the Ti0 2 film is from 5 to 50 microns (more preferably 8-20 microns).
  • the photosensitizing layer may be produced by applying to the Ti0 2 layer a photosensitizer, preferably an optical brightener according to the invention defined below.
  • the photosensitizer is an optical brightener of the stilbene series, the coumarin series, the pyrazoline series, the benzoxazolyl series (including bisbenzoxazolyl series), the thiophene series, the furane series, the benzimidazoline series, the naphthalic acid imide series, the triazole series, and the oxazole series.
  • the photosensitizer having at least one interlocking group (preferably COOH containing group) present.
  • a preferred -COOH containing group is
  • n' is 0 or 1 to 4.
  • tlie photosensitizer is a compound of formula I
  • R 12 is hydrogen, C,_-alkyl or phenyl
  • R 13 is hydrogen, C ⁇ alkyl (preferably methyl), C Xalkoxycarbonyl or cyano
  • R 14 is hydrogen, C,. 4 alkyl (preferably methyl), chloro or cyano; and X is -O- or -S-.
  • the -CH-.CH- group is in the 4 position with respect to the -(CH--CH).- COOH group on the R 14 -bearing phenyl ring, where n' is 0 or 1-4.
  • the most preferred photosensitizer is of formula II
  • the photosensitizer can be a compound of formula X or XI
  • each Rj independently is -COOH, OH or hydrogen; each R 2 independently is -COOH, OH or hydrogen; with the proviso that on at least one phenyl ring in formula I and formula II
  • Rj and R 2 cannot both be hydrogen; n' is 0 or 1
  • R 4 independently of R 3 has a significance of R 3 ; each n independently is 0 or 1 and
  • Me is selected from Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ru, Ge, Cr, Zn, Mg, Al, Pb, Mn, In, Mo,
  • R is R,' where R,' is -COOH.
  • R 2 is R 2 where R 2 is -COOH or hydrogen.
  • R 3 is -O -Si( C h alky I) 3 or -0-CO-C alkyl.
  • R 4 is R 4 ' where R 4 is -0-Si(C, ⁇ alkyl) 3 or -0-CO-C alkyl.
  • Me is Me' where Me' is Cu, Ni, Fe, Co, Ti, Ru, V, Zn, Si or In.
  • the compounds of formula IV can be prepared by reacting tri(C _. 3 alkyl)phosphite with a compound of formula V
  • Preferred ruthenium complex photosensitizers for use in the three layer system photosensitizer are those described in PCT/EP 91/00734, the contents of which are incorporated in their entirety herein by reference.
  • the ruthenium complex is one in which one ligand comprises a mononuclear, cyano containing pyridyl group. Most preferred ruthenium complexes are selected from formulae 1 to 10:
  • each M is independently selected from ruthenium, osmium or iron; ⁇ -(CN) or ⁇ -(NC) indicates that the cyano group bridges two metal atoms;
  • each L", L b , L ⁇ and L d independently is selected from 2 ,2 '-bipyridyl, unsubstituted or substituted by one or two COOH groups; 2,2' bipyridyl substituted by one or two groups selected from C ,., s alkoxy and diphenyl; 2 _2 '-biquinoline unsubstituted or substituted by one or two carboxy groups; phenanthroline, unsubstituted or substituted by one or two carboxy groups and lor one or two hydroxy groups, and/or one or two oxime groups; 4,7- diphenyl-1, 10-phenanthroline disulfonic acid;diazatriphenylene, diaza-hydroxy -carboxy l- triphenylene (for example 1 ,12-diazatriphenylene or 1,12-diaza- (6-hydroxy-l '-carboxy) triphenylene); carboxy pyridine - (for example 2 -car
  • L ' is selected from terpyridyl. (unsubstituted or substituted by phenyl. which phenyl group is unsubstituted or substituted by COOH)(for example 2,2',6'.2 "-terpyridine) and dicarboxy-pyridine (preferably 2, 6 -dicarboxy -pyridine); 2, 6-bis(benzimidazole-2'-yl)pyridine; 2 ,6-bis(N -methylbenzimidazole- 2 '-yl)py ⁇ dine; 2 ,6-bis(benzothiazol-2 '-yl)pyridine.
  • each X independently is halide, H 2 0, CN ' , NCS ' , amine (primary or preferably secondary alkylamine) and/or pyridine.
  • the terpyridyl when substituted is substitued by C, ⁇ alkyl (preferably methyl) and/ or C ls alkoxy (preferably methoxy) and! or carboxy on one or more of the pyridyl groups - for example 2 r 2',6' r 2"-terpyridine.
  • any phenanthroline in a L" to L d is selected from 5-carboxy-6-hydroxy-l ,10- phenanthroline and 5,6-dioxime-l ,10-phenanthroline.
  • ruthenium complexes are given in Table in or Table 2 below.
  • the product is of the compound of formula lb
  • Example 1 is repeated using 140 parts of 4-diethylphosphonomethyl-cinnamic acid nitrile in place of the 163 parts of 4-diethylphosphono-methyl-cinnamic acid methyl ester.
  • the following compound can be prepared by a method analogous to that of Example 1 or 2 from known compounds.
  • optical brighteners of Examples 1 to 6 are found to be useful as photosensitizers and can be used as such in photovoltaic cells according to the invention.
  • the product (12 parts) is stirred together with 150 parts of potassium hydroxide in 300 parts of water.
  • the mixture is heated to 100° C for about 15 hours.
  • the mixture is filtered.
  • the filtrate is then brought to pH 2 by the addition of about 250 parts of 6N HCl and the dyestuff precipitates out in fine form.
  • the dyestuff is then filtered off and washed with 200 parts of 0.1 HCl and finally washed with 200 parts water.
  • a photovoltaic device as shown in Figure 1, based on the sensitization of a aluminum- doped titanium dioxide film supported on conducting glass is fabricated as follows:
  • a stock solution of organic titanium dioxide precursor is prepared by dissolving 21 mmol of freshly distilled TiCl 4 in WmL of absolute ethanol.
  • TiCl 4 in ethanol solution gives titanium alkoxide spontaneously which on hydrolysis gives TiO :
  • the stock solution is then diluted with further absolute ethanol to give two solutions (solution A and solution B having) titanium contents of 25 mg/ml (solution A) and 50 mg/ml (solution B).
  • a third solution (C) is prepared from solution B by addition of AlCl 3 to yield an aluminium content of 1.25 mg/ml.
  • a conducting glass sheet provided by Asahi Inc.
  • Japan surface area 10 cm 2 and having a visible light transmittance of at least 85% and a surface resistance smaller than 10 ohms per square cm is used as support for a deposited Ti0 2 layer.
  • the glass Prior to use, the glass is cleaned with alcohol. A droplet of solution A is spread over the surface of the conducting glass to produce a thin coating. Subsequently the layer is hydrolyzed at 28°C for 30 minutes in a special chamber where the humidity is kept at 48% of the equilibrium saturation pressure of water. Thereafter, the electrode is heated in air in a tubular oven kept at 450°C, preheating it in the entrance of the oven for 5 minutes followed by 15 minutes of heating in the interior. Three more layers are produced in the same way.
  • solution B 5 thicker layers are deposited by using solution B.
  • solution C is used to deposit the last two layers containing the aluminum dopant.
  • the heating of the last layer in the tubular oven is extended from 15 to 30 minutes.
  • the total thickness of the titanium dioxide film is between 10 and 20 microns.
  • the film Prior to deposition of the photosensitizer the film is subjected to a sintering treatment in highly purified 99.997% argon.
  • a horizontal tubular oven composed of quartz tubes with suitable joints is employed. After insertion of the glass sheet with the Ti0 2 film. the tube is twice evacuated and purged with argon. The glass sheet is then heated under argon flux at a flow rate of 25Lih and a temperature grandient of 500° Clh up to 550°C at which temperature it maintained for 35 minutes. This treatment produces anatase films with a surface roughness factor of 80-200.
  • the glass sheet After cooling under a continuous argon flow, the glass sheet is immediately transferred to an alcoholic solution of a photosensitizer.
  • the photosensitizer of Example 1 in a concentration of ' 5xl0 ⁇ *M in absolute ethanol is employed. Prolonged exposure of the film to the open air prior to photosensitizer adsorption is avoided in order to prevent hydroxylation of the Ti0 2 surface as the presence of hydroxyl groups at the electrode surface interferes with dye uptake.
  • the adsorption of photosensitizer from the ethanolic solution is allowed to continue for 30 minutes after which time the glass sheet is withdrawn and washed briefly with absolute ethanol.
  • OCV is the open circuit voltage
  • FF is the fill factor of the photovoltaic cell
  • a photovoltaic cell shown in the drawing attached, is constructed, using a photosensitizer (4)-loaded Ti0 2 (5) film supported on a conducting glass (the working electrode) comprising a transparent conductive tin dioxide layer (6) and a glass substrate (7) as a photoanode.
  • the cell has a sandwich-like configuration, the working electrode (4-7) being separated from the counter electrode (1 ,2) by a thin layer of electrolyte (3) having a thickness of ca. 20 microns.
  • the electrolyte used is an ethanolic solution of 0.5 M Lil and 3xl0 '3 M iodine.
  • the electrolyte (3) is contained in a small cylindrical reservoir mot shown) attached to the side of the cell from where capillary forces attract it to the inter-electrode space.
  • the counter-electrode comprises the conductive tin dioxide layer (2) deposited on a glass substrate (1 ) made also of Asahi conducting glass and is placed directly on top of the working electrode.
  • a monomolecular transparent layer of platinum is deposited on to the conducting glass of the counter electrode (1 ,2) by- electroplating from an aqueous hexachloroplatinate solution. The role of the platinum is to enhance the electrochemical reduction of iodine at the counter electrode.
  • the transparent nature of the counterelectrode is an advantage for photovoltaic applications since it allows the harvesting of light from both the forward and the backward direction. Experiments are carried out with a high pressure Xenon lamp equipped with appropriate filters to simulate AMI solar radiation.
  • the action spectrum of the compound of formula la shows a maximum around 400 nm. Incident photon to current conversion efficiencies are high i.e. between 50 and 60%.
  • Figure 2 shows the limit of the current yield is 80-85% due to light absorption by the conducting glass of the cell of Application Example A.
  • the photocurrent voltage current and power characteristics of the cell of Application Example A are greatly improved (see Figure 3).
  • Colloidal titanium oxide particle of approximately lOnm are prepared by hydrolysis of titanium isopropoxide as follows :
  • 125 ml of titanium isopropoxide is added to a solution of 0.1 M nitric acid in 750ml of water whilst stirring. A precipitate of amorphous titanium dioxide is formed under these conditions. This is heated to 80°C for approximately 8 hours, stirring vigorously, resulting in peptisation of the precipitate and formation of a clear solution of colloidal anatase.
  • the anatase structure of the titanium dioxide particles is established by Raman spectroscopy.
  • the sol is concentrated by evaporation of the solvent in vacuum at room temperature until a viscous liquid is obtained containing the colloidal particles.
  • the nonionic surfactant TRITON X-100 (40% weight ofTi0 2 ) is added to reduce cracking of the film when applied to a substrate.
  • the titanium dioxide films are formed by spin coating the concentrated sol on to a conducting glass substrate. Usually it is sufficient to apply 6 to 10 layers in order to obtain semiconductor membranes of sufficient surface area to give excellent visible light harvesting efficiencies after deposition of a monolayer of the sensitizer.
  • Low resolution electron microscopy confirms the presence of the three layer structure, the lowest being the glass support followed by the 0.5 micron thick fluorine-doped Sn0 2 and the 2.7 micron thick titanium dioxide layer.
  • High resolution electron microscopy (Fig. 3) reveals the Ti0 2 film to be composed of a three dimensional network of interconnected particles having an average size of approximately 16nm. Apparently, significant particle growth occurs during sintering.
  • the transparent Ti0 2 films are tested in conjunction with a regenerative cell containing the photosensitizer of Example 1 for the generation of electricity from visible light.
  • the results can be represented where the photocurrent under simulated sunlight (intensity ca 30Wlm 2 ) is plotted as a function of cell voltage.
  • a sheet of conducting glass (ASAHI) area resistance ca 10 Ohm/ square) having a size of 2x9.6 cm 2 is coated with a colloidal titanium dioxide film according to the procedure of Application Example B.
  • a total of 7 layers of Ti0 2 colloid are deposited successively by spin coating and the film is subjected each time to calcination at 500°C for 30 minutes. 30% iw/w) of TRITON X 405 surfactant is added in order to avoid cracking of the film.
  • the final thickness of the titanium dioxide film is 5 micron as determined from the optical interference pattern. It is important to note that the conducing glass sheet after deposition of the Ti0 2 remains clear and transparent to visible and near infrared light.
  • the film is fired for 1 hour at 500°C.
  • the coating of Ti0 2 with photosensitizer is performed by immersing the glass sheet for 16 hours in an ethanolic solution containing the optical brightener of Example 1.
  • the glass sheet After photosensitizer deposition, the glass sheet is cut into two parts each having a size of ca 9 cm 2 . These sheets serve as working electrodes (photo-anodes) in the module whose assembly is described further below.
  • Transparent counter electrodes are made of the same type of ASAHI conducting glass as the working electrodes.
  • the counterelectrode is not coated with Ti0 2 . Instead, the equivalent of 10 monolayer of Pt is electrochemically deposited on to conducting glass.
  • the transparent nature of the counterelectrode is not affected by the deposition of the Pt its transmission in the visible and near infrared remaining greater that 60%.
  • the Pt acts as an electrocatalyst, enhancing the rate of reduction of the electron transfer mediator, i.e. triiodide, at the counterelectrode.
  • Two ca. 1mm deep and 1.5mm wide and 20mm long indentations are engraved into the surface of the counterelectrode close to the edges of the glass sheets. These serve as a reservoir for the electrolyte.
  • the counter electrode is placed directly on top of the working electrode to yield a sandwich-type configuration. After filling the reservoirs with electrolyte, the cell is sealed with epoxy resin. The wetting of the space between the two electrodes by the electrolyte occurs spontaneously by capillary action.
  • the electrolyte is a solution of 0.5M tetrapropyl ammonium iodide and 0.02M iodine in ethanol.
  • Two cells are fabricated in this way, each having a surface area of ca 9cm 2 . Subsequently they are connected in series by electrically contacting the photoanode of one cell to the cathode of the second cell. In this way a module is constructed, having a total surface area of 18 cm 2 .
  • a photovoltaic device as shown in Figure, 1 based on the sensitization of a transparent Ti0 2 film, made from colloidal titanium dioxide particles which are deposited on a conducting glass support and sintered to yield a coherent highly porous semiconducting film.
  • colloidal titanium oxide particles of approximately 8 nm are prepared by hydrolysis of titanium isopropoxide as follows:
  • 125ml titanium isopropoxide is added to a solution of 0.1 M nitric acid in 750ml water while stirring. A precipitate of amorphous titanium dioxide is formed under these conditions. This is heated to 80° C for approximately 8 hours, stirring vigorously, resulting in peptisation of the precipitate and formation of a clear solution of colloidal anatase. the propanol formed by the hydrolysis is allowed to evaporate during the heating.
  • the colloidal solution is then autoclaved at 140 to 250°C, preferably 200°C, in a pressure vessel of titanium metal or teflon for 2 to 20 hours, preferably 16 hours. The resultant sol, containing some precipitate is stirred or shaken to resuspend the precipitate.
  • the resulting sol, minus any precipitate that will not resuspend, is concentrated by evaporation of the solvent in vacuum at room temperature until a viscous liquid is obtained containing the colloidal particles.
  • a typical concentration at this point is 200g/L.
  • a polyethylene oxide polymer for example Union Carbide Carbowax 20M or Triton X-405 can be added to increase the thickness of the layer that be deposited without cracks.
  • the polymer is added in amount of 30 to 50, preferably 40. weight percent Ti0 2 .
  • the electrodes for sensitization are formed from the colloidal solution as follows:
  • a suitable substrate for example a 3 x 6 cm piece of conductive tin oxide coated glass, for example from Asahi Corp. (but also titanium metal or any flat conductive surface), is placed with the conductive surface up and with suitable spacers, for example 50 to 100 micron. preferably 80 micron thick plastic tape, placed along each edge.
  • suitable amount of the sol for example 150 microliters of sol with 200 g/L Ti0 2 and 40% Carbowax 20M for the above substrate, is pipetted along one end of the substrate. The sol is spread across the substrate by drawing with a flat edged piece of glass whose ends ride along the spacers. Thus the spacers, the viscosity of the sol, and the concentration of the sol control the amount of Ti0 2 deposited.
  • the spread film is allowed to dry in room air till visibly dry and preferable and additional 20 minutes. After drying the electrode is fired at 400 to 500°C. preferably 450, for a minimum of 20 minutes. In the case of sols autoclaved below 170° C the spacers less than 40 micron must be used and the process must be repeated twice to achieve an 8 to 10 micron thick Ti0 2 film.
  • Electrodes of up to 10 cm by 10 cm have been fabricated by this method.
  • the sol can also be applied to substrates by spin coating and dip coating.
  • the electrode can then be cut to the size desired by normal glass cutting techniques.
  • the electrode is fired again at 450 to 550, preferably 500° C for 2 to 12, preferably 6 hours.
  • the surface of the electrode is improved (with respect to electron injection) by firing the electrode 5 to 10, preferably 7 times at 500 oC for 2 to 6 hours with either 10 hours in air or soaking up to 1 hour in water, 0.5M nitric acid or 0.5M HCl, between each firing.
  • the acid solutions are saturated with dissolved Ti0 2 before use.
  • the electrode is placed in the sensitizer solution.
  • the electrode After removal from the photosensitizer solution, the electrode is made into a photovoltaic cell as follows:
  • Transparent counterelectrodes are made of the same type of ASAHI conducting glass as the workin ⁇ electrodes.
  • the counterelectrode is not coated with Ti0 2 . Instead the equivalent of 10 monolayer s of Pt is electrochemically deposited onto conducting glass.
  • the transparent nature of the counterelectrode is not affected by the deposition of the Pt, its transmissions is visible and near infrared remains greater that 60%.
  • the Pt acts as an electrocatalyst enhancing the rate of reduction of the electron transfer mediator, i.e. triiodide, at the counterelectrode.
  • a thin titanium sheet which may be porous coated as above with Pt. may be used as a counter electrode. In the case of a porous sheet, another sheet of impervious material is required behind the counter electrode, such as plastic, glass or metal.
  • a reservoir is provided for the electrolyte by engraving two ca 1mm deep and 1.5mm wide and 20mm long clefts into the surface of the counterelectrode close to the edges of the glass sheet.
  • the reservoir can also be added external to the glass sheets or be behind the counter electrode in the case of porous counter electrode.
  • the counter eletr ode is place directly on top of the working electrode to yield a sandwich type configuration.
  • the reservoirs are filled with electrolyte solution, selected from the list above buy preferably 85% by weight ethylene carbonate, 15% propylene carbonate 0.5M potassium iodide and 40mM iodine.
  • An amount of Lil or Tetraalkylamonium Iodide can be present (preferably 20mM) depending on the voltage desire.
  • the cell is sealed around the edge with a sealant compatible with the solvent chosen and bonded closed with an adhesive.
  • the sealant and the adhesive may be the same material for example silicon adhesive in the case of the alcohol solvents, or for example, polyethylene and epoxy resin (or mechanical closure) in the case of ethylene carbonate.
  • the wetting of the space between the two electrodes by the electrolyte injected into the reservoirs occurs spontaneously by capillary action.
  • Application Example E Application Example A is repeated, except that the Ti0 2 surface is coated with photosensitizer by immersing the Ti0 2 film for 3 to 5 hours in a 3xl0 ' "mol solution of each of the following compounds sequentially:
  • L 4 ,4'-dicarboxybipyridyl and L, is 2,2'bipyridyl (component Hi)
  • the percentages being by weight based on the combined amount of components i), ii) and Hi) being 100%.
  • a 3x10" 'mol solution contain components i), ii) and Hi) above can be made up and the Ti0 2 film is immersed therein for 3 to 5 hours to apply the photosensitizer.

Abstract

A photovoltaic cell comprising an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group (preferably a COOH containing group) has been applied (being hereinafter defined as component a); characterized in that the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds.

Description

USE OF OPTICAL BRIGHTENERS AND PHTHALOCYANINES AS
PHOTOSENSITIZERS
The invention relates to the use of optical brighteners and phthalocyanines (including naphthalocyanines) as a photosensitizer in photovoltaic cells. These brighteners can be coated on titanium dioxide films rendering the device effective in the conversion of visible light to electric energy.
For the avoidance of doubt, naphthalocyanines are included in the term phthalocyanine in the specification.
Titanium dioxide films (layers) are known for their semiconductive properties and this property renders them useful for photovoltaic cells. However titanium dioxide has a large band gap and it does not absorb light in the visible region of the spectrum. For solar applications it is preferable that the titanium dioxide film be coated with a photosensitizer which harvests light in the wavelength domain where the sun emits light, i.e. between 300 and 2000 nm so as to increase the efficiency of the cell. Thermodynamic considerations show that conversion of solar energy into electricity is achieved in the most efficient fashion when all the emitted photons with wavelengths below 820 nm are absorbed by the photosensitizer. The optimal photosensitizer for solar conversion should therefore have an absorption onset under 800nm.
A second requirement for efficient solar light energy conversion is that the photosensitizer after having absorbed light and thereby acquired an energy-rich state is able to inject with practically unit quantum yield, an electron in the conduction band of the titanium dioxide film. This requires that the photosensitizer is attached to the surface of the titanium dioxide through suitable interlocking groups. The function of the interlocking group is to provide electronic coupling between the chromophoric group of the photosensitizer and the conduction band of the semiconductor. This type of electronic coupling is required to facilitate electron transfer between the excited state of the photosensitizer band and the conduction band. Suitable interlocking groups (hereinafter defined as interlocking group) are π-conducting substituents such as carboxylate groups, hydroxy groups, mercapto groups, sulphonate groups, cyano groups, phosphate groups or chelating groups with '-conducting character such as oximes, dioximes, hydroxy quinolines, salicylates and alpha keto enolates. The electrons, photoinjected by the photosensitizer generate electrical current in the external circuit when the photovoltaic cell is operated.
According to the invention there is provided an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group (preferably a COOH containing group) has been applied (being hereinafter defined as component a) ;
characterised in that the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds (including naphthalocyanine compounds).
(For the sake of clarity component a includes the electrically conductive element, one or more titanium dioxide layers and photosensitizer ).
Still further according to the invention there is provided a photovoltaic cell comprising:
i) an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group (preferably a COOH containing group) has been applied (hereinafter defined as component a);
ii) a second electrically conductive element, having no Ti02 layer present;
at least one of the two electrically conductive layers being transparent (that is to say having a visible light transmittance of at least 60%)
Hi) means for permitting the passage of an electrical current generated by the cell between the two electrically conductive elements;
characterised in that the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds (including naphthalocyanine compounds).
Preferably the means for permitting the passage of an electrical current is a liquid or solid electrolyte.
Preferably component a) comprises a support, (preferably a glass plate coated with metal oxide, a metal surface or a polymer sheet (preferably an intrinsically conductive polymer)) to which the Ti02 layer is applied. Optionally, component a) is transparent. By the term "transparent" is meant that at least 60%, preferably 70%, more preferably at least 80%, especially 80-98% of incident light passes through the support.
Preferably the Ti02 layer comprises rutile and anatase, more preferably anatase.
Preferably the titanium dioxide is doped with a metal ion, which may preferably be selected from a divalent or trivalent metal or boron. Preferred dopant is aluminium.
Preferably the titanium dioxide layer is a film. Preferably the film has a roughness factor greater than 20, the roughness factor being defined as the ratio of true to apparent surface area. Roughness factor is defined in USP 5,084,365 and 4,927,721. More preferably the roughness factor is 20-1000. more preferably 50-200.
Preferably the titanium dioxide layers are built up on the surface of the conductive layer of the electrically conductive elements of component a) using one of two methods. One is the sol-gel method described by "Stalder and Augustynski in J. Electrochem. Soc. 1979, 126:2007" and in Example A. Another is the "colloidal method" described in Examples B and C.
Preferably component a) is a metal, polymer or glass plate to which an electrically conductive surface has been applied, to which one or more layers (preferably a film of 0.1- 50 microns) of titanium dioxide has been applied, the Ti02 being coated with a photosensitizer selected from optical brightener compounds and phthalocyanine compounds.
The electrically conductive element having no Ti02 present (also known as "the counter electrode") may be coated with a thin layer (preferably up to 10 microns thickness) of an electrocatalyst. The role of the electrocatalyst is to facilitate the transfer of electrons from the counterelectrode to the electrolyte. A further possible modification of the counterelectrode (when component a) is transparent) is to make it reflective to the light that infringes thereon, having first passed through the electrolyte and component a).
Preferably both electrically conductive elements have a surface resistance of 5-1000 ohm/cm2 more preferably 5-100 ohm/cm2, most preferably 5-50 ohm/cm2, especially 10 ohmlcm2. The transparent conductive layer may alternatively have a surface resistance of less than 10 ohm! cm2 in which case it is preferably from 1 to 10 ohm/ cm2.
Preferably the electrolyte contains a redox system (charge transfer relay) or is a solid electrolyte system. Preferably such systems include iodine/ iodide solutions, bromine/ bromide solutions, hydroquinone solutions or solutions of transition metal complexes transferring a nonbonding electron. The charge transfer relays present in the electrolyte transport electric charge from one electrode to the other. They act as pure mediators and undergo no chemical alteration during the operation of the cell. It is preferable that the electrolytes in a photovoltaic cell according to the invention are dissolved in an organic medium so that the photosensitizer applied to the titanium dioxide surface are insoluble therein. This has the advantage that the cell has a long-term stability.
Preferred organic solvents for the electrolyte include but are not limited to water containing (preferably however, water-free), alcohols and mixtures thereof, non-volatile solvents such as propylene carbonate, ethylene carbonate and methyl pyrrolidinone, mixtures of non-volatile solvents with viscosity reducing solvents such as acetonitrile, ethylacetate or tetrahydrofuran. Additional solvents are dimethylsulfoxide or dichloroethane. Where miscible, mixtures of any of the above may be used.
The glass or polymer plate which is used for the transparent electrically conductive element of the cell according to the invention is any transparent glass or polymer onto which a light transmitting electrically conductive layer has been deposited, such that the plate preferably has a visible light transmittance of 60-99%, more preferably 85-95%. Preferably the transparent conductive layer used in a photovoltaic cell according to the invention is made of tin dioxide doped with ca. 0.8 atom percent of fluorine and this layer is deposited on a transparent substrate made of low-cost soda lime float glass. This type of conducting glass can be obtained from Asahi Glass Company, Ltd. Tokyo, Japan, under the brand name of TCO glass. The transparent conductive layer can also be made of indium oxide doped with up to 5% tin oxide, deposited on a glass substrate. This is available from Balzers under the brand name of ITO glass.
The photosensitizer can advantageously be used in a photovoltaic cell that requries high transparency, e.g. when integrated in a watch or in a window.
A photovoltaic cell according to the invention has the following advantages when compared to existing cells.
1. It has a higher open circuit voltage than conventional p-n junction solid state solar cells while maintaining a fill factor comparable to that of conventional solar cells. The fill factor is defined as the electrical power output at the optimal cell voltage for light energy conversion divided by the product of open circuit voltage and short circuit current. A high open circuit voltage is very important for practical applications since it allows to operate the cell at lower Ohmic losses than conventional photovoltaic cells which have a smaller open circuit voltage.
2. In contrast to p-n junction solid state solar cells where the semiconductor assumes the function of light absorption and carrier transport simultaneously, a photovoltaic cell according to the invention achieves the separation of these functions. Light is absorbed by the very thin layer of photosensitizer adsorbed onto the surface of the titanium dioxide film while the charge carrier transport is carried out by the titanium dioxide film. As a consequence, a photovoltaic cell according to the present invention operates as a majority carrier device. This has the advantage that imperfections such as grain boundaries or other types of crystalline disorders or impurities and disorder within the Ti02 film do not decrease the efficiency of the cell as would be the case if minority carriers were involved in the cell operation. Conventional solar cells operate with minority charge carriers and this explains the need to fabricate these cells from highly pure and ordered materials which are costly. The present invention permits the development of cheap solar cells. All the materials employed in the present cells are inexpensive.
3. A further consequence of the fact that the present cell operates as a majority carrier device is that the cell voltage depends to a smaller degree on the intensity of the impinging light than that of a conventional solar cell. Thus, the present cell maintains its high efficiency under diffuse light or in cloudy weather while the efficiency of a conventional cell decrease sharply under these conditions.
4. By selecting appropriate optical brighteners, the cell can be optimized with respect to solar energy conversion.
5. A further advantage of a preferred photovoltaic cell according to the present invention is that it can be irradiated from the front side, back side or both sides. It can be irradiated by passing the light through the counter- electrode and the electrolyte to the dyestuff absorbed at the Ti02 layer or through the Ti02 layer to the absorbed dyestuff. If both the photosensitizer coated electrode and the counterelectrode are transparent, then light from all directions can be collected. In this way it is possible in addition to direct sunlight to harvest diffuse reflected light. This will improve the overall efficiency of the solar cell.
6. A further advantage of a photovoltaic cell according to the present invention is that the specific texture and electronic properties of the photosensitizer loaded Ti02 layer allow the counterelectrode to be placed directly on top of the working electrode. In other words, there is no need to employ a spacer such as a polymer membrane to keep the two electrodes apart in order to avoid the formation of a short circuit. The dielectric features of the photosensitizer coated Ti02 layer are such that even though it may be in direct contact with the counterelectrode there is no break-through current due to short circuiting of the two electrodes. This is an important advantage for practical application of the cell since it simplifies the construction of the device and reduces its cost.
7. In the case that the photosensitizer of the present cell is an optical brightener, it may- enable one to produce a colorless photovoltaic cell with improved efficiency.
In a further aspect according to the invention, the photosensitizer can be a three layer system comprising
i) an optical brightener compound (hereinafter defined as component i); ii) a phthalocyanine compound (hereinafter defined as component ii); and Hi) a ruthenium complex compound (hereinafter defined as component Hi)
Preferably in such a three layer system, the amount of component i) is 10-50%, the amount of component ii) is 10-40% and the amount of component Hi) is 10-50%. The percentages are preferably by weight based on 100% being the total combined amount of components i), ii) and Hi).
It goes without saying that other photosensitizers may also be added to the electrically conductive layer of a cell according to the invention. The order of addition of components i) to Hi) is immaterial to this aspect of the invention.
In the sol gel method it is preferable that only the last three, the last two or just the very top layer of the titanium dioxide is doped with a divalent or trivalent metal in an amount of no: more than 15% doping by weight. However, the deposition of the pure dopant in form of a very thin top oxide layer can also be advantageous. In the latter case, a blocking layer is formed which impedes leakage current at the semiconductor- electrolyte junction. All of the Ti02 layers are formed by the sol gel process method described in Application Example A. Preferably the number of Ti02 layers deposited is 10-11. Preferably tlie total thickness of the Ti02film is from 5 to 50 microns (more preferably 8-20 microns).
The photosensitizing layer may be produced by applying to the Ti02 layer a photosensitizer, preferably an optical brightener according to the invention defined below.
Preferably the photosensitizer is an optical brightener of the stilbene series, the coumarin series, the pyrazoline series, the benzoxazolyl series (including bisbenzoxazolyl series), the thiophene series, the furane series, the benzimidazoline series, the naphthalic acid imide series, the triazole series, and the oxazole series. The photosensitizer having at least one interlocking group (preferably COOH containing group) present. A preferred -COOH containing group is
Figure imgf000010_0001
where n' is 0 or 1 to 4.
More preferably, tlie photosensitizer is a compound of formula I
Figure imgf000010_0002
SUBSTITUTE SHEET in which Rl0 is a group a), b), c) or d)
Figure imgf000011_0001
in which R12 is hydrogen, C,_-alkyl or phenyl;
R13 is hydrogen, C^alkyl (preferably methyl), C Xalkoxycarbonyl or cyano R14 is hydrogen, C,.4alkyl (preferably methyl), chloro or cyano; and X is -O- or -S-.
Preferably the -CH-.CH- group is in the 4 position with respect to the -(CH--CH).- COOH group on the R14-bearing phenyl ring, where n' is 0 or 1-4.
The most preferred photosensitizer is of formula II
Figure imgf000011_0002
Alternatively, the photosensitizer can be a compound of formula X or XI
Figure imgf000012_0001
(XI)
Figure imgf000012_0002
in which each Rj independently is -COOH, OH or hydrogen; each R2 independently is -COOH, OH or hydrogen; with the proviso that on at least one phenyl ring in formula I and formula II
Rj and R2 cannot both be hydrogen; n' is 0 or 1
R3 is halogen (preferably Cl), OH,-O-C,.10alkyl, -0-CO-C,.6alkyl,
Figure imgf000013_0001
-0-Si-(C5.7 alkyl)3, O-Si- (C7.12aryl)3 or together with R4 = O
R4 independently of R3 has a significance of R3; each n independently is 0 or 1 and
Me is selected from Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ru, Ge, Cr, Zn, Mg, Al, Pb, Mn, In, Mo,
Y, Zr, Nb, Sb, La, W, Pt, Ta, Tl, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re,
Au, Hg, Ac, Tc, Te and Rh.
Preferably R, is R,' where R,' is -COOH.
Preferably R2 is R2 where R2 is -COOH or hydrogen.
Preferably R3 is -O -Si( Chalky I) 3 or -0-CO-C alkyl.
Preferably R4 is R4' where R4 is -0-Si(C,^alkyl)3 or -0-CO-C alkyl.
Prefereably Me is Me' where Me' is Cu, Ni, Fe, Co, Ti, Ru, V, Zn, Si or In.
Compounds of formulae X and XI are new.
Compounds of formula I are new and can be made by known methods from known compounds, for example by reacting a compound of formula III
RW-CH0 (III)
with a compound of formula IV
Figure imgf000014_0001
followed by saponification of the carboxylate group to the free carboxylic acid group by known methods.
The compounds of formula IV can be prepared by reacting tri(C _.3alkyl)phosphite with a compound of formula V
Figure imgf000014_0002
by known methods.
Preferred ruthenium complex photosensitizers for use in the three layer system photosensitizer are those described in PCT/EP 91/00734, the contents of which are incorporated in their entirety herein by reference.
More preferably the ruthenium complex is one in which one ligand comprises a mononuclear, cyano containing pyridyl group. Most preferred ruthenium complexes are selected from formulae 1 to 10:
[M(La)(Lb) (μ-(NC)M(CN)(U)(Ld))2] (1)
[M(La)(Lb) (μ-(NC)M(Lc)(Ld)μ-(CN)M(CN)(Lc)(Ld))2J (2)
[M(La)(U) (μ-(NC)M(U)(Ld)μ-(CN))2M(U)(Ld)] (3)
[(La)(L")(X1)M μ-(NC)M(CN)(Lc)(Ld)] (4)
[M(La)(Lb)(X,)2] (5)
[M(La)(U)(U)] (6)
[M(La)(Lb) (μ-(NC)M(U)(U))2) (7)
[M(U)(Lb) (μ-(NC)M(U)(Ld) μ-(CN)M(V)(U))2] (8) lM(L-)(U) μ-(NC)M(V)(Lb)] (9) lM(La)(U'(X,)] (10)
in which each M is independently selected from ruthenium, osmium or iron; μ-(CN) or μ-(NC) indicates that the cyano group bridges two metal atoms;
each L", Lb, L~ and Ld independently is selected from 2 ,2 '-bipyridyl, unsubstituted or substituted by one or two COOH groups; 2,2' bipyridyl substituted by one or two groups selected from
Figure imgf000015_0001
C ,.,salkoxy and diphenyl; 2 _2 '-biquinoline unsubstituted or substituted by one or two carboxy groups; phenanthroline, unsubstituted or substituted by one or two carboxy groups and lor one or two hydroxy groups, and/or one or two oxime groups; 4,7- diphenyl-1, 10-phenanthroline disulfonic acid;diazatriphenylene, diaza-hydroxy -carboxy l- triphenylene (for example 1 ,12-diazatriphenylene or 1,12-diaza- (6-hydroxy-l '-carboxy) triphenylene); carboxy pyridine - (for example 2 -carboxypyridine); phenyl pyridine; 2,2'-Bis- (diphenylphosphino) 1.l '-binaphthalene: (pyridyl azo) resorcinol (for example 4-(2-pyridyl(azo) resorcinol); bis (2-pyridyl) C^alkane; /VNN'N'-terrα C^ alkyl ethylene diamine; and di-C ,.4alky glyoxime; 2,2'-biimidazole; 2,2'-bibenzimidazole: 2 ,-(2 '-pyridyl N-methyl-benzimidazole; 2 ,-(2 '-pyridyDbenzothiozole; 2 ,-(2 '-pyridylmethyl)- benzimidazole;
L' is selected from terpyridyl. (unsubstituted or substituted by phenyl. which phenyl group is unsubstituted or substituted by COOH)(for example 2,2',6'.2 "-terpyridine) and dicarboxy-pyridine (preferably 2, 6 -dicarboxy -pyridine); 2, 6-bis(benzimidazole-2'-yl)pyridine; 2 ,6-bis(N -methylbenzimidazole- 2 '-yl)pyήdine; 2 ,6-bis(benzothiazol-2 '-yl)pyridine.
each X independently is halide, H20, CN' , NCS' , amine (primary or preferably secondary alkylamine) and/or pyridine.
Preferably one of L" and Lb has an interlocking group selected as defined above, preferably a -COOH and/or an OH and/or an =N-OH and/or -CO-NH2 group.
Preferably the terpyridyl when substituted is substitued by C,^alkyl (preferably methyl) and/ or C lsalkoxy (preferably methoxy) and! or carboxy on one or more of the pyridyl groups - for example 2r2',6'r2"-terpyridine.
Preferably any phenanthroline in a L" to Ld is selected from 5-carboxy-6-hydroxy-l ,10- phenanthroline and 5,6-dioxime-l ,10-phenanthroline.
Especially preferred ruthenium complexes are given in Table in or Table 2 below.
Table 1
Figure imgf000017_0001
in which "bpy" = 2 ~' - bipyridyl "Me" = methyl "ph" = phenyl
In Table 2 below, bpy - 22' bipyridyl; biq = 22' biquinoline and phen = 1,10 phenanthroline in example 19, 2-phenylpyridine is used in example 22, straight and branched alkyl groups are used in example 26, N,N -tetramethyl and C,C - tetramethyl ethylene diamine are used in example 27, 22' ' bis(diphenylphosphino)-! , "binaphthylene is used in example 28, 30 and 33 1.10 orthophenanthrolene is used and in example 31 , 4-(2-pyridyl) azo resorcinol is used Table 2
Figure imgf000018_0001
Figure imgf000019_0001
The photosensitizers of the invention will now be illustrated by the Examples below and the cells of the invention by the Application Examples below.
Example 1
a) 78.1 parts of 1 -naphthaldehyde are dissolved in 150 mis of dimethylformamide. Whilst stirring well, 163 parts of 4-diethylphosphonomethyl-cinnamic acid methyl ester, prepared from 4-bromomethyl cinnamic acid methyl ester and triethylphosphite (by known methods), are added. Over 30 minutes and under strong stirring 107 parts of a 30% methanolic sodium methylate solution are slowly let into the above mixture. Through external cooling, the temperature of the reaction mixture is held at <30°C. The resulting suspension is stirred for about 1 hour at room temperature, suction filtered over a glass frit and washed consecutively with 500 parts of water and 500 parts of methanol. 100 parts of light yellow crystals having a melting point of 144- 145°C and having a UV absorption maxiumum of 353nm in ethanol result.
The product is of the compound of formula lb
Figure imgf000020_0001
b) 36.3 parts of the compound of formula lb are slurried in 180 parts of ethanol (80%) and 56 parts of water. 49.1 parts of potassium hydroxide powder are added and the suspension is stirred under reflux for 4 hours. Additional 160 parts of ethane are added and stirring is continued for an additional 2 hours. After cooling to room temperature the pH is brought to 1 by the addition of 80 parts of concentrated HCl and filtered over a paper filter in a suction filler. The product is washed chloride-free using about 3 liters of water. The light yellow compound is dried at 80°C and under 16mm Hg vacumm. 33.1 parts (71% of theory) of light yellow (in solution blue flour escing) crystals are obtained having a melting point of 250-255° C (Sinter point). The compounds are very- soluble in dimethylformamide.
The resulting product is of formula la
Figure imgf000021_0001
Example 2
Example 1 is repeated using 140 parts of 4-diethylphosphonomethyl-cinnamic acid nitrile in place of the 163 parts of 4-diethylphosphono-methyl-cinnamic acid methyl ester.
The product of formula la above results also in good yield.
Examples 3-6
The following compound can be prepared by a method analogous to that of Example 1 or 2 from known compounds.
Example 3
Figure imgf000021_0002
Example 4
Figure imgf000022_0001
Example 5
Figure imgf000022_0002
Example 6
Figure imgf000022_0003
The optical brighteners of Examples 1 to 6 are found to be useful as photosensitizers and can be used as such in photovoltaic cells according to the invention.
Example 7
Preparation of copper tetracarboxyphthalocyanine
10 parts of trimellitic acid anhydride, 30 parts of urea, 4 parts of Cu(II) chloride and 1 part of ammonium molybdate are suspended in 150 parts of nitrobenzene. While stirring the mixture is heated 3-4 hours to 160-170°C. After allowing to cool, 100 parts ofmethanol are added and the mixture is filtered. The residue is then washed with 200 mis of ethanol and dried under vacuum in a drying cupboard.
The product (12 parts) is stirred together with 150 parts of potassium hydroxide in 300 parts of water. The mixture is heated to 100° C for about 15 hours. After the addition of 100 parts of water, the mixture is filtered. The filtrate is then brought to pH 2 by the addition of about 250 parts of 6N HCl and the dyestuff precipitates out in fine form.
The dyestuff is then filtered off and washed with 200 parts of 0.1 HCl and finally washed with 200 parts water.
Drying under vacuum results in 6 parts of product (copper tetracarboxy phthalocyanine) that is soluble in dimethyl sulphoxide.
Examples 8-21
Compounds of formula X
Figure imgf000023_0001
in which R,-R4 and Me are as defined in the Table below where n= l . can be made from appropriate reactants by a method analogous to that of Example 7.
Figure imgf000024_0001
Example 22
lg (4.22 mmols) of 6-methoxycarbonyl-2 ,3-dicyanonaphthalene is suspended in 0.4g (2.11 mmols) of SnCl2 + 35ml of chloronaphthalene. This is stirred for 8 hours at 230-240°C. After cooling, the mixture is poured into 100 ml of diethylether and filtered. The dark-green to black residue is boiled for 3 hours in 50ml of 30% NaOH solution. The pH is brought to 1 by adding a suitable amount of 30%HCl. 400mg of a black residue results of tin-tetracarboxynaphthalocyanine.
Example 23-27
Compounds of the formula
Figure imgf000025_0001
in which Ry-R and Me are as defined in the Table below. This can be made from appropriate reactants by a method analogous to that of Example 22.
Figure imgf000026_0001
Application Example A
A photovoltaic device, as shown in Figure 1, based on the sensitization of a aluminum- doped titanium dioxide film supported on conducting glass is fabricated as follows:
A stock solution of organic titanium dioxide precursor is prepared by dissolving 21 mmol of freshly distilled TiCl4 in WmL of absolute ethanol. TiCl4 in ethanol solution gives titanium alkoxide spontaneously which on hydrolysis gives TiO: The stock solution is then diluted with further absolute ethanol to give two solutions (solution A and solution B having) titanium contents of 25 mg/ml (solution A) and 50 mg/ml (solution B). A third solution (C) is prepared from solution B by addition of AlCl3 to yield an aluminium content of 1.25 mg/ml. A conducting glass sheet provided by Asahi Inc. Japan, surface area 10 cm2 and having a visible light transmittance of at least 85% and a surface resistance smaller than 10 ohms per square cm is used as support for a deposited Ti02 layer. Prior to use, the glass is cleaned with alcohol. A droplet of solution A is spread over the surface of the conducting glass to produce a thin coating. Subsequently the layer is hydrolyzed at 28°C for 30 minutes in a special chamber where the humidity is kept at 48% of the equilibrium saturation pressure of water. Thereafter, the electrode is heated in air in a tubular oven kept at 450°C, preheating it in the entrance of the oven for 5 minutes followed by 15 minutes of heating in the interior. Three more layers are produced in the same way. Subsequently, 5 thicker layers are deposited by using solution B. The same procedure as for the first layers is applied. Finally, solution C is used to deposit the last two layers containing the aluminum dopant. The heating of the last layer in the tubular oven is extended from 15 to 30 minutes. The total thickness of the titanium dioxide film is between 10 and 20 microns.
Prior to deposition of the photosensitizer the film is subjected to a sintering treatment in highly purified 99.997% argon. A horizontal tubular oven composed of quartz tubes with suitable joints is employed. After insertion of the glass sheet with the Ti02 film. the tube is twice evacuated and purged with argon. The glass sheet is then heated under argon flux at a flow rate of 25Lih and a temperature grandient of 500° Clh up to 550°C at which temperature it maintained for 35 minutes. This treatment produces anatase films with a surface roughness factor of 80-200.
After cooling under a continuous argon flow, the glass sheet is immediately transferred to an alcoholic solution of a photosensitizer. The photosensitizer of Example 1 in a concentration of ' 5xl0~ *M in absolute ethanol is employed. Prolonged exposure of the film to the open air prior to photosensitizer adsorption is avoided in order to prevent hydroxylation of the Ti02 surface as the presence of hydroxyl groups at the electrode surface interferes with dye uptake. The adsorption of photosensitizer from the ethanolic solution is allowed to continue for 30 minutes after which time the glass sheet is withdrawn and washed briefly with absolute ethanol.
The photocurrent action spectrum obtained with such a film using a conventional three electrode electrochemical cell containing an ethanolic solution of 0.5M Lil and 3xlO'3M iodine is shown in the attached figure together with the AM 1 spectral distribution of solar light emission. The incident monochromatic photon to current conversion efficiency (IPCE) is plotted qs a function of the excitation wavelength. This was derived from the equation:
[(1.24x10s) x photocurrent density (μA/cm2)]
(1) IPCE(%)=
[wavelength (nm) x photon flux (W/m2)]
From the overlap of the photocurrent action spectrum with solar emission the overall efficiency for the conversion of solar light to electricity η is calculated from the formula
(2) η = 12 x OCV x FF(Ψc)
where OCV is the open circuit voltage and FF is the fill factor of the photovoltaic cell.
For experimental verification of equation 2, a photovoltaic cell, shown in the drawing attached, is constructed, using a photosensitizer (4)-loaded Ti02 (5) film supported on a conducting glass (the working electrode) comprising a transparent conductive tin dioxide layer (6) and a glass substrate (7) as a photoanode. The cell has a sandwich-like configuration, the working electrode (4-7) being separated from the counter electrode (1 ,2) by a thin layer of electrolyte (3) having a thickness of ca. 20 microns. The electrolyte used is an ethanolic solution of 0.5 M Lil and 3xl0'3M iodine. The electrolyte (3) is contained in a small cylindrical reservoir mot shown) attached to the side of the cell from where capillary forces attract it to the inter-electrode space. The counter-electrode comprises the conductive tin dioxide layer (2) deposited on a glass substrate (1 ) made also of Asahi conducting glass and is placed directly on top of the working electrode. A monomolecular transparent layer of platinum is deposited on to the conducting glass of the counter electrode (1 ,2) by- electroplating from an aqueous hexachloroplatinate solution. The role of the platinum is to enhance the electrochemical reduction of iodine at the counter electrode. The transparent nature of the counterelectrode is an advantage for photovoltaic applications since it allows the harvesting of light from both the forward and the backward direction. Experiments are carried out with a high pressure Xenon lamp equipped with appropriate filters to simulate AMI solar radiation.
The action spectrum of the compound of formula la shows a maximum around 400 nm. Incident photon to current conversion efficiencies are high i.e. between 50 and 60%. Figure 2 shows the limit of the current yield is 80-85% due to light absorption by the conducting glass of the cell of Application Example A. The photocurrent voltage current and power characteristics of the cell of Application Example A are greatly improved (see Figure 3).
Application Example B
A transparent Ti02 film from colloidal titanium dioxide particles which are deposited on a conducting glass support and sintered to yield a coherent highly porous semiconducting film that is transparent and can be used instead of the Ti02 layer film in Application Example A.
Colloidal titanium oxide particle of approximately lOnm are prepared by hydrolysis of titanium isopropoxide as follows :
125 ml of titanium isopropoxide is added to a solution of 0.1 M nitric acid in 750ml of water whilst stirring. A precipitate of amorphous titanium dioxide is formed under these conditions. This is heated to 80°C for approximately 8 hours, stirring vigorously, resulting in peptisation of the precipitate and formation of a clear solution of colloidal anatase. The anatase structure of the titanium dioxide particles is established by Raman spectroscopy. The sol is concentrated by evaporation of the solvent in vacuum at room temperature until a viscous liquid is obtained containing the colloidal particles. At this stage the nonionic surfactant TRITON X-100 (40% weight ofTi02) is added to reduce cracking of the film when applied to a substrate.
The titanium dioxide films are formed by spin coating the concentrated sol on to a conducting glass substrate. Usually it is sufficient to apply 6 to 10 layers in order to obtain semiconductor membranes of sufficient surface area to give excellent visible light harvesting efficiencies after deposition of a monolayer of the sensitizer.
Low resolution electron microscopy confirms the presence of the three layer structure, the lowest being the glass support followed by the 0.5 micron thick fluorine-doped Sn02 and the 2.7 micron thick titanium dioxide layer. High resolution electron microscopy (Fig. 3) reveals the Ti02 film to be composed of a three dimensional network of interconnected particles having an average size of approximately 16nm. Apparently, significant particle growth occurs during sintering.
The transparent Ti02 films are tested in conjunction with a regenerative cell containing the photosensitizer of Example 1 for the generation of electricity from visible light. The results can be represented where the photocurrent under simulated sunlight (intensity ca 30Wlm2) is plotted as a function of cell voltage.
Application Example C
A sheet of conducting glass (ASAHI) area resistance ca 10 Ohm/ square) having a size of 2x9.6 cm2 is coated with a colloidal titanium dioxide film according to the procedure of Application Example B. A total of 7 layers of Ti02 colloid are deposited successively by spin coating and the film is subjected each time to calcination at 500°C for 30 minutes. 30% iw/w) of TRITON X 405 surfactant is added in order to avoid cracking of the film. The final thickness of the titanium dioxide film is 5 micron as determined from the optical interference pattern. It is important to note that the conducing glass sheet after deposition of the Ti02 remains clear and transparent to visible and near infrared light.
Immediately before coating with the photosensitizer of Example 1 , the film is fired for 1 hour at 500°C. The coating of Ti02 with photosensitizer is performed by immersing the glass sheet for 16 hours in an ethanolic solution containing the optical brightener of Example 1.
After photosensitizer deposition, the glass sheet is cut into two parts each having a size of ca 9 cm2. These sheets serve as working electrodes (photo-anodes) in the module whose assembly is described further below.
Transparent counter electrodes are made of the same type of ASAHI conducting glass as the working electrodes. The counterelectrode is not coated with Ti02. Instead, the equivalent of 10 monolayer of Pt is electrochemically deposited on to conducting glass. The transparent nature of the counterelectrode is not affected by the deposition of the Pt its transmission in the visible and near infrared remaining greater that 60%. The Pt acts as an electrocatalyst, enhancing the rate of reduction of the electron transfer mediator, i.e. triiodide, at the counterelectrode. Two ca. 1mm deep and 1.5mm wide and 20mm long indentations are engraved into the surface of the counterelectrode close to the edges of the glass sheets. These serve as a reservoir for the electrolyte.
The counter electrode is placed directly on top of the working electrode to yield a sandwich-type configuration. After filling the reservoirs with electrolyte, the cell is sealed with epoxy resin. The wetting of the space between the two electrodes by the electrolyte occurs spontaneously by capillary action. The electrolyte is a solution of 0.5M tetrapropyl ammonium iodide and 0.02M iodine in ethanol.
Two cells are fabricated in this way, each having a surface area of ca 9cm2. Subsequently they are connected in series by electrically contacting the photoanode of one cell to the cathode of the second cell. In this way a module is constructed, having a total surface area of 18 cm2.
Application Example D
A photovoltaic device, as shown in Figure, 1 based on the sensitization of a transparent Ti02 film, made from colloidal titanium dioxide particles which are deposited on a conducting glass support and sintered to yield a coherent highly porous semiconducting film.
Colloidal titanium oxide particles of approximately 8 nm are prepared by hydrolysis of titanium isopropoxide as follows:
125ml titanium isopropoxide is added to a solution of 0.1 M nitric acid in 750ml water while stirring. A precipitate of amorphous titanium dioxide is formed under these conditions. This is heated to 80° C for approximately 8 hours, stirring vigorously, resulting in peptisation of the precipitate and formation of a clear solution of colloidal anatase. the propanol formed by the hydrolysis is allowed to evaporate during the heating. The colloidal solution is then autoclaved at 140 to 250°C, preferably 200°C, in a pressure vessel of titanium metal or teflon for 2 to 20 hours, preferably 16 hours. The resultant sol, containing some precipitate is stirred or shaken to resuspend the precipitate. The resulting sol, minus any precipitate that will not resuspend, is concentrated by evaporation of the solvent in vacuum at room temperature until a viscous liquid is obtained containing the colloidal particles. A typical concentration at this point is 200g/L. At this stage a polyethylene oxide polymer, for example Union Carbide Carbowax 20M or Triton X-405 can be added to increase the thickness of the layer that be deposited without cracks. The polymer is added in amount of 30 to 50, preferably 40. weight percent Ti02.
The electrodes for sensitization are formed from the colloidal solution as follows:
A suitable substrate, for example a 3 x 6 cm piece of conductive tin oxide coated glass, for example from Asahi Corp. (but also titanium metal or any flat conductive surface), is placed with the conductive surface up and with suitable spacers, for example 50 to 100 micron. preferably 80 micron thick plastic tape, placed along each edge. A suitable amount of the sol. for example 150 microliters of sol with 200 g/L Ti02 and 40% Carbowax 20M for the above substrate, is pipetted along one end of the substrate. The sol is spread across the substrate by drawing with a flat edged piece of glass whose ends ride along the spacers. Thus the spacers, the viscosity of the sol, and the concentration of the sol control the amount of Ti02 deposited. The spread film is allowed to dry in room air till visibly dry and preferable and additional 20 minutes. After drying the electrode is fired at 400 to 500°C. preferably 450, for a minimum of 20 minutes. In the case of sols autoclaved below 170° C the spacers less than 40 micron must be used and the process must be repeated twice to achieve an 8 to 10 micron thick Ti02 film.
Electrodes of up to 10 cm by 10 cm have been fabricated by this method. The sol can also be applied to substrates by spin coating and dip coating.
The electrode can then be cut to the size desired by normal glass cutting techniques. Immediately before applying the photosensitizer, the electrode is fired again at 450 to 550, preferably 500° C for 2 to 12, preferably 6 hours. For some solvent and dye combinations the surface of the electrode is improved (with respect to electron injection) by firing the electrode 5 to 10, preferably 7 times at 500 oC for 2 to 6 hours with either 10 hours in air or soaking up to 1 hour in water, 0.5M nitric acid or 0.5M HCl, between each firing. The acid solutions are saturated with dissolved Ti02 before use. After the last firing, immediately after cooling, the electrode is placed in the sensitizer solution. Preferably an ethanolic solution containing the optical brightener of Example 1. Between 4 and 24 hours are required for the electrode to be fully coated.
After removal from the photosensitizer solution, the electrode is made into a photovoltaic cell as follows:
Transparent counterelectrodes are made of the same type of ASAHI conducting glass as the workinς electrodes. The counterelectrode is not coated with Ti02. Instead the equivalent of 10 monolayer s of Pt is electrochemically deposited onto conducting glass. The transparent nature of the counterelectrode is not affected by the deposition of the Pt, its transmissions is visible and near infrared remains greater that 60%. The Pt acts as an electrocatalyst enhancing the rate of reduction of the electron transfer mediator, i.e. triiodide, at the counterelectrode. Alternatively, a thin titanium sheet, which may be porous coated as above with Pt. may be used as a counter electrode. In the case of a porous sheet, another sheet of impervious material is required behind the counter electrode, such as plastic, glass or metal.
A reservoir is provided for the electrolyte by engraving two ca 1mm deep and 1.5mm wide and 20mm long clefts into the surface of the counterelectrode close to the edges of the glass sheet. The reservoir can also be added external to the glass sheets or be behind the counter electrode in the case of porous counter electrode.
The counter eletr ode is place directly on top of the working electrode to yield a sandwich type configuration. The reservoirs are filled with electrolyte solution, selected from the list above buy preferably 85% by weight ethylene carbonate, 15% propylene carbonate 0.5M potassium iodide and 40mM iodine. An amount of Lil or Tetraalkylamonium Iodide can be present (preferably 20mM) depending on the voltage desire. The cell is sealed around the edge with a sealant compatible with the solvent chosen and bonded closed with an adhesive. The sealant and the adhesive may be the same material for example silicon adhesive in the case of the alcohol solvents, or for example, polyethylene and epoxy resin (or mechanical closure) in the case of ethylene carbonate. The wetting of the space between the two electrodes by the electrolyte injected into the reservoirs occurs spontaneously by capillary action.
The same amount of a photosensitizer of any one of Examples 2 to 37 can be used in place of the optical brightener of Example 1 in Application Examples A to D in the photovoltaic cell.
Application Example E Application Example A is repeated, except that the Ti02 surface is coated with photosensitizer by immersing the Ti02 film for 3 to 5 hours in a 3xl0'"mol solution of each of the following compounds sequentially:
1) 33% of an optical brightener of the formula la (component i)
Figure imgf000035_0001
ii) 33% of the copper tetracarboxyphthalocyanine of Example 7 (component ii)
Hi) 34% of a ruthenium complex of the formula a)
[Ru(L2((CN2)Ru(L')2)2
in which L is 4 ,4'-dicarboxybipyridyl and L, is 2,2'bipyridyl (component Hi)
the percentages being by weight based on the combined amount of components i), ii) and Hi) being 100%.
Alternatively a 3x10" 'mol solution contain components i), ii) and Hi) above can be made up and the Ti02 film is immersed therein for 3 to 5 hours to apply the photosensitizer.

Claims

Claims;
1. A photovoltaic cell comprising:
an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group has been applied (hereinafter defined as component a) ;
characterised in that the photosensitizer is selected from optical brightener compounds and phthalocyanine compounds.
2. A photovoltaic cell comprising:
i) an electrically conductive element to which one or more titanium dioxide layers have been applied, to which titanium dioxide layers a photosensitizer having at least one interlocking group has been applied (hereinafter defined as component a);
ii) a second electrically conductive element, having no Ti02 layer present;
at least one of the two electrically conductive layers being transparent
Hi) means for permitting the passage of an electrical current generated by the cell between the two electrically conductive elements;
characterized in that the photosensitizer is selected from optical brighteners and phthalocyanine compounds.
3. A cell according to claim 1 or claim 2 in which the Ti02 layer is anatase.
4. A cell according to any one of the preceding claims in which the titanium dioxide layer is doped with a metal ion.
5. A cell according to claim 1 in which the or both electrically conductive elements have a surface resistance of 5-1000ohm/cm2.
6. A cell according to claim 1 in which the photosensitizer comprises a three layer system comprising:
i) an optical brightener compound (hereinafter defined as component i) ii) a phthalocyanine compound (hereinafter defined as component ii) and Hi) a ruthenium complex compound (hereinafter defined as component Hi)
7. A cell according to claim 6 in which the amount of component i) is 10-50%, the amount of component ii) is 10-40% and the amount of component Hi) is 10-50%.
8. A cell according to claim 1 in which the photosensitizer is an optical brightener of the stilbene series, the coumarin series, the pyrazoline series, the benzoxazolyl (including bisbenzoxazolyl) series, the thiophene series, the furane series, the benzimidazoline series, the naphthalic acid imide series, the triazole series, and the oxazole series.
9. A compound of formula I
Figure imgf000037_0001
in which n is 0 or 1 to 4.
SUBSTITUTE SHEET R10 is a group a), b). c) or d)
Figure imgf000038_0001
in which R12 is hydrogen, C,.4alkyl or phenyl;
R13 is hydrogen, Chalky I, C alkoxycarbonyl or cyano R]4 is hydrogen, C,^alkyl, chloro or cyano; and X is -O- or -S-.
10. A compound according to claim 9 of formula II
Figure imgf000038_0002
11. A compound of formula X or XI
Figure imgf000039_0001
Figure imgf000039_0002
in which n is 0 or 1 each R_ independently is -COOH. OH or hydrogen; each R: independently is -COOH, OH or hydrogen; with the proviso that on at least one phenyl ring in formula I and formula II
R, and R2 cannot both be hydrogen;
R3 is halogen. OH,-0-C,_walkyl, -0-CO-C,_eμlkyl.OC5.7aryl, -0-CO-C^ryl, -0-Si-(C_.t alkyl)3, O-Si- (C5.7aryl)3 or together with R4 = O
R4 independently of R3 has a significance of R3; each n independently is 0 or 1 and
Me is selected from Cu. Ni, Fe, Co, V, Sn, Si, Ti, Ru, Ge, Cr, Zn. Mg, Al, Pb, Mn, In,
Mo, Y, Zr, Nb, Sb, La. W, Pt, Ta, Tl, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd,
Hf, Re. Au, Hg, Ac, Tc, Te and Rh.
12. A cell according to any one of claims 1 to 8 in which the photosensitizer comprises a compound of formula I defined in claim 9.
13. A cell according to any one of claims 1 to 8 and 12, in which the photosensitizer is comprises a compound of formula X or XI defined in claim 10.
PCT/EP1993/002180 1992-08-17 1993-08-16 Use of optical brighteners and phthalocyanines as photosensitizers WO1994005025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49483/93A AU4948393A (en) 1992-08-17 1993-08-16 Use of optical brighteners and phthalocyanines as photosensitizers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9217472.1 1992-08-17
GB929217472A GB9217472D0 (en) 1992-08-17 1992-08-17 Devices
GB9217812.8 1992-08-21
GB929217812A GB9217812D0 (en) 1992-08-21 1992-08-21 Organic compounds

Publications (1)

Publication Number Publication Date
WO1994005025A1 true WO1994005025A1 (en) 1994-03-03

Family

ID=26301446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/002180 WO1994005025A1 (en) 1992-08-17 1993-08-16 Use of optical brighteners and phthalocyanines as photosensitizers

Country Status (2)

Country Link
AU (1) AU4948393A (en)
WO (1) WO1994005025A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661261A1 (en) * 1994-01-03 1995-07-05 Bristol-Myers Squibb Company Phenyl or phenylalkyl substituted naphtalene derivatives having retinoid-like activity as well as anti-tumor activities
EP0887817A2 (en) * 1997-06-23 1998-12-30 SHARP Corporation Photoelectric material using organic photosensitising dyes and manufacturing method thereof
EP0911841A2 (en) * 1997-10-23 1999-04-28 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
EP0975026A2 (en) * 1998-07-15 2000-01-26 Director-General Of The Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
EP0986079A2 (en) * 1998-09-09 2000-03-15 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
EP0892411A3 (en) * 1997-07-15 2000-03-15 Fuji Photo Film Co., Ltd. Methine dye sensitized semiconductor particle
EP1020881A2 (en) * 1999-01-14 2000-07-19 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
US6150605A (en) * 1998-09-22 2000-11-21 Sharp Kabushiki Kaisha Photovoltaic cell and manufacturing method thereof
EP1075005A2 (en) * 1999-08-04 2001-02-07 Fuji Photo Film Co., Ltd. Electrolyte composition, and photo-electro-chemical cell
AU734412B2 (en) * 1997-07-16 2001-06-14 Ecole Polytechnique Federale De Lausanne Photosensitizers
US6310282B1 (en) * 1999-03-19 2001-10-30 Kabushiki Kaisha Toshiba Photovoltaic conversion element and a dye-sensitizing photovoltaic cell
EP1311001A1 (en) * 2000-07-27 2003-05-14 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
WO2003042320A1 (en) * 2001-11-13 2003-05-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Light absorptive composition
EP1339129A1 (en) * 2000-11-28 2003-08-27 National Institute of Advanced Industrial Science and Technology Semiconductor thin film electrodes made by using organic dyes as the photosensitizer and photoelectric conversion devices
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
EP1562206A2 (en) 2004-02-03 2005-08-10 Samsung SDI Co., Ltd. Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
FR2869454A1 (en) * 2004-04-22 2005-10-28 Commissariat Energie Atomique PROCESS FOR PRODUCING PHOTOSENSITIZED SEMICONDUCTOR THIN LAYERS
GB2430440A (en) * 2005-08-16 2007-03-28 Cryscade Solar Ltd Organic compounds comprising predominantly planar heterocyclic molecular system & binding groups, for use in semiconductor crystal film & photovoltaic device
GB2433071A (en) * 2005-12-05 2007-06-13 Kontrakt Technology Ltd Organic acids comprising planar conjugated heterocyclic molecular system, & photoelectric layer thereof with rodlike supramolecules for use in solar cell
WO2008037695A2 (en) * 2006-09-26 2008-04-03 Daehan Solvay Special Chemicals Co., Ltd Soluble phthalocyanine derivatives for solar cell devices
WO2009049273A2 (en) * 2007-10-12 2009-04-16 University Of Southern California Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
EP2259378A1 (en) * 2001-07-06 2010-12-08 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
CN102827226A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
JP2014145041A (en) * 2013-01-29 2014-08-14 Okayama Univ Novel dispersant and conductive ink using the novel dispersant
US10468197B2 (en) 2014-02-26 2019-11-05 Sumitomo Osaka Cement Co., Ltd. Porous semiconductor layer, paste for porous semiconductor layer, and dye-sensitized solar cell
EP3621957A4 (en) * 2017-05-09 2021-03-17 Ambient Photonics, Inc. Stilbene and fused stilbene derivatives as solar cell dyes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520950A (en) * 1966-12-29 1970-07-21 Grace W R & Co Polyesters of metal phthalocyanine-octacarboxylic acid
US3761261A (en) * 1970-11-11 1973-09-25 Xerox Corp Phthalocyanine dye sensitizers for zinc oxide
PL72892B2 (en) * 1970-11-27 1974-08-31
JPH01210388A (en) * 1988-02-18 1989-08-23 Toyo Ink Mfg Co Ltd Optical recording medium
WO1991016719A2 (en) * 1990-04-17 1991-10-31 Michael Graetzel Photovoltaic cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520950A (en) * 1966-12-29 1970-07-21 Grace W R & Co Polyesters of metal phthalocyanine-octacarboxylic acid
US3761261A (en) * 1970-11-11 1973-09-25 Xerox Corp Phthalocyanine dye sensitizers for zinc oxide
PL72892B2 (en) * 1970-11-27 1974-08-31
JPH01210388A (en) * 1988-02-18 1989-08-23 Toyo Ink Mfg Co Ltd Optical recording medium
WO1991016719A2 (en) * 1990-04-17 1991-10-31 Michael Graetzel Photovoltaic cells

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 112, no. 22, 1990, Columbus, Ohio, US; abstract no. 208025a, S. MIYAZAKI ET AL.: "Optical recording medium with organic thin layer containing phthalocyanine derivative" page 645; *
CHEMICAL ABSTRACTS, vol. 116, no. 4, 1992, Columbus, Ohio, US; abstract no. 24600k, D. WOEHRLE: "Porphyrins, phthalocyanines and naphthalocyanines for various processes of visible light-driven conversion processes" page 215; *
CHEMICAL ABSTRACTS, vol. 69, no. 14, 1968, Columbus, Ohio, US; abstract no. 56612t, M. AL'YANOV ET AL.: "Synthesis and properties of hydroxy derivatives of copper phthalocanine" page 5285; *
CHEMICAL ABSTRACTS, vol. 73, no. 22, 1970, Columbus, Ohio, US; abstract no. 110900h, D. E. KRAMMM: "Polyesters of copper phthalocynineoctacarboxylic acid" page 60; *
CHEMICAL ABSTRACTS, vol. 78, no. 2, 1973, Columbus, Ohio, US; abstract no. 57219t, S. GASPARD ET AL.: "Phathalocyanines in sulfuric acid solution. I. Protonation of copper (II) phthalocyanine and its 4,4',4'',4'''-tetracarboxylic acid derivative" page 427; *
CHEMICAL ABSTRACTS, vol. 81, no. 12, 1974, Columbus, Ohio, US; abstract no. 71070f, H. ONO ET AL.: "Phthalocyanine dye sensitizers for zinc oxide" page 534; *
CHEMICAL ABSTRACTS, vol. 83, no. 25, 1975, Columbus, Ohio, US; abstract no. 206344n, R. DABROWSKI ET AL.: "Phthalocyanine derivatives" page 404; *
CHEMICAL ABSTRACTS, vol. 90, no. 21, 1979, Columbus, Ohio, US; abstract no. 167381v, J. H. SCHUTTEN ET AL.: "Autoxidation of mercaptans promoted by a bifuctional catalyst prepared by polymer attachment of cobalt phthalocyanine" page 509; *
CHIMIA 1991, 45 (10), 307 - 10 *
J. CHEM. CATAL. 1979, 5 (2), 109-23 *
J. CHIM. PHYS. PHYSICOCHIM BIOL. 1972, 69(11-12),1740-7 *
M. GRÄTZEL ET AL.: "A low-cost, high-efficiency solar call based on dye-sensitized colloidal TiO2 films", NATURE, vol. 353, 24 October 1991 (1991-10-24), LONDON GB, pages 737 - 740 *
UCHEB. ZAVED., KHIM. KHIM. TEKHNOL. 1968, 11 (3), 330-1 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523457A (en) * 1994-01-03 1996-06-04 Bristol-Myers Squibb Company Retinoid-like compounds
EP0661261A1 (en) * 1994-01-03 1995-07-05 Bristol-Myers Squibb Company Phenyl or phenylalkyl substituted naphtalene derivatives having retinoid-like activity as well as anti-tumor activities
US6043428A (en) * 1997-06-23 2000-03-28 Sharp Kabushiki Kaisha Photoelectric material using organic photosensitising dyes and manufacturing method thereof
EP0887817A2 (en) * 1997-06-23 1998-12-30 SHARP Corporation Photoelectric material using organic photosensitising dyes and manufacturing method thereof
EP0887817A3 (en) * 1997-06-23 1999-10-13 Sharp Kabushiki Kaisha Photoelectric material using organic photosensitising dyes and manufacturing method thereof
AU739903B2 (en) * 1997-06-23 2001-10-25 Sharp Kabushiki Kaisha Photoelectric material using organic photosensitising dyes and manufacturing method thereof
EP0892411A3 (en) * 1997-07-15 2000-03-15 Fuji Photo Film Co., Ltd. Methine dye sensitized semiconductor particle
AU734412B2 (en) * 1997-07-16 2001-06-14 Ecole Polytechnique Federale De Lausanne Photosensitizers
EP0911841A2 (en) * 1997-10-23 1999-04-28 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
EP0911841A3 (en) * 1997-10-23 1999-12-08 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
EP0975026A2 (en) * 1998-07-15 2000-01-26 Director-General Of The Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
EP0975026A3 (en) * 1998-07-15 2000-03-22 Director-General Of The Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
US6278056B1 (en) 1998-07-15 2001-08-21 Director-General Of Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
EP0986079A3 (en) * 1998-09-09 2004-04-21 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
EP0986079A2 (en) * 1998-09-09 2000-03-15 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
US6150605A (en) * 1998-09-22 2000-11-21 Sharp Kabushiki Kaisha Photovoltaic cell and manufacturing method thereof
EP1020881A3 (en) * 1999-01-14 2004-10-20 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
EP1020881A2 (en) * 1999-01-14 2000-07-19 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
US6310282B1 (en) * 1999-03-19 2001-10-30 Kabushiki Kaisha Toshiba Photovoltaic conversion element and a dye-sensitizing photovoltaic cell
EP1075005A2 (en) * 1999-08-04 2001-02-07 Fuji Photo Film Co., Ltd. Electrolyte composition, and photo-electro-chemical cell
EP1075005A3 (en) * 1999-08-04 2004-04-28 Fuji Photo Film Co., Ltd. Electrolyte composition, and photo-electro-chemical cell
EP1311001A1 (en) * 2000-07-27 2003-05-14 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
JP5054269B2 (en) * 2000-07-27 2012-10-24 日本化薬株式会社 Dye-sensitized photoelectric conversion element
EP1311001A4 (en) * 2000-07-27 2007-02-21 Nippon Kayaku Kk Dye-sensitized photoelectric transducer
EP1339129A4 (en) * 2000-11-28 2006-10-25 Nat Inst Of Advanced Ind Scien Semiconductor thin film electrodes made by using organic dyes as the photosensitizer and photoelectric conversion devices
US7262361B2 (en) 2000-11-28 2007-08-28 National Institute Of Advanced Industrial Science And Technology Semiconductor thin film electrodes made by using organic dyes as the photosensitizer and photoelectric conversion devices
EP1339129A1 (en) * 2000-11-28 2003-08-27 National Institute of Advanced Industrial Science and Technology Semiconductor thin film electrodes made by using organic dyes as the photosensitizer and photoelectric conversion devices
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
EP2262050A1 (en) * 2001-07-06 2010-12-15 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
US8338701B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8338700B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP2259378A1 (en) * 2001-07-06 2010-12-08 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
WO2003042320A1 (en) * 2001-11-13 2003-05-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Light absorptive composition
EP1562206B1 (en) * 2004-02-03 2011-08-10 Samsung SDI Co., Ltd. Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
EP1562206A2 (en) 2004-02-03 2005-08-10 Samsung SDI Co., Ltd. Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
FR2869454A1 (en) * 2004-04-22 2005-10-28 Commissariat Energie Atomique PROCESS FOR PRODUCING PHOTOSENSITIZED SEMICONDUCTOR THIN LAYERS
JP2007534169A (en) * 2004-04-22 2007-11-22 コミツサリア タ レネルジー アトミーク Method for producing photosensitive semiconductor thin film
WO2005106941A1 (en) * 2004-04-22 2005-11-10 Commissariat A L'energie Atomique Method for production of photosensitised thin layer semiconductors
GB2430440A (en) * 2005-08-16 2007-03-28 Cryscade Solar Ltd Organic compounds comprising predominantly planar heterocyclic molecular system & binding groups, for use in semiconductor crystal film & photovoltaic device
GB2433071A (en) * 2005-12-05 2007-06-13 Kontrakt Technology Ltd Organic acids comprising planar conjugated heterocyclic molecular system, & photoelectric layer thereof with rodlike supramolecules for use in solar cell
WO2008037695A3 (en) * 2006-09-26 2008-06-12 Daehan Solvay Special Chemical Soluble phthalocyanine derivatives for solar cell devices
WO2008037695A2 (en) * 2006-09-26 2008-04-03 Daehan Solvay Special Chemicals Co., Ltd Soluble phthalocyanine derivatives for solar cell devices
JP2015043436A (en) * 2007-10-12 2015-03-05 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
US8158972B2 (en) 2007-10-12 2012-04-17 The University Of Southern California Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
WO2009049273A3 (en) * 2007-10-12 2009-06-25 Univ Southern California Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
JP2011507217A (en) * 2007-10-12 2011-03-03 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive optoelectronic device containing tetra-azaporphyrin
WO2009049273A2 (en) * 2007-10-12 2009-04-16 University Of Southern California Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
CN102007615B (en) * 2007-10-12 2013-05-01 南加利福尼亚大学 Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
TWI510494B (en) * 2007-10-12 2015-12-01 Univ Southern California Organic photosensitive optoelectronic devices containing tetra-azaporphyrins
AU2007224400B2 (en) * 2007-10-12 2014-10-02 The University Of Southern California Organic photosenstive optoelectronic devices containing tetra-azaporphyrins
CN102827226A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
CN102827226B (en) * 2012-08-28 2014-12-10 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
JP2014145041A (en) * 2013-01-29 2014-08-14 Okayama Univ Novel dispersant and conductive ink using the novel dispersant
US10468197B2 (en) 2014-02-26 2019-11-05 Sumitomo Osaka Cement Co., Ltd. Porous semiconductor layer, paste for porous semiconductor layer, and dye-sensitized solar cell
EP3621957A4 (en) * 2017-05-09 2021-03-17 Ambient Photonics, Inc. Stilbene and fused stilbene derivatives as solar cell dyes
US11664171B2 (en) 2017-05-09 2023-05-30 Ambient Photonics, Inc. Stilbene and fused stilbene derivatives as solar cell dyes

Also Published As

Publication number Publication date
AU4948393A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
AU650878B2 (en) Photovoltaic cells
WO1994005025A1 (en) Use of optical brighteners and phthalocyanines as photosensitizers
EP0983282B1 (en) Metal complex photosensitizer and photovoltaic cell
US5463057A (en) Bi-pyridyl-rumetal complexes
JP3783872B2 (en) Phosphonated polypyridyl compounds and complexes thereof
Nazeeruddin et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes
KR101008226B1 (en) Novel organic dye and preparation thereof
EP1075005A2 (en) Electrolyte composition, and photo-electro-chemical cell
EP2353195A1 (en) Photoelectric conversion devices comprising novel ligands and sensitizers
US20050139257A1 (en) Photosensitizing transition metal complex containing quaterpyridine and photovoltaic cell with the metal complex
JP5293190B2 (en) Method for producing binuclear metal complex
WO1993020569A1 (en) Photovoltaic cells
US8440905B2 (en) Copper complex dye sensitized solar cell
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5061626B2 (en) Method for producing binuclear metal complex
WO2018047498A1 (en) Photoelectric conversion element, dye-sensitized solar cell and dipyrromethene complex compound
WO2018047494A1 (en) Photoelectric conversion element, dye-sensitized solar cell and dipyrromethene complex compound
JP5587070B2 (en) Quaternary ammonium salt, and electrolyte composition, photoelectric conversion element and photochemical battery using the same
AU683222C (en) Organic compounds
JP5446207B2 (en) Photoelectric conversion element and photochemical battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CZ FI HU JP KP KR KZ LK MG MN MW NO NZ PL RO RU SD SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA