WO1994017734A1 - Ultrasound catheter - Google Patents

Ultrasound catheter Download PDF

Info

Publication number
WO1994017734A1
WO1994017734A1 PCT/US1994/000474 US9400474W WO9417734A1 WO 1994017734 A1 WO1994017734 A1 WO 1994017734A1 US 9400474 W US9400474 W US 9400474W WO 9417734 A1 WO9417734 A1 WO 9417734A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
imaging device
electrical signals
transducers
array
Prior art date
Application number
PCT/US1994/000474
Other languages
French (fr)
Other versions
WO1994017734B1 (en
Inventor
Michael J. Eberle
Gary P. Rizzuti
Horst F. Kiepen
Original Assignee
Endosonics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21754054&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994017734(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Endosonics Corporation filed Critical Endosonics Corporation
Priority to JP51804094A priority Critical patent/JP3732854B2/en
Priority to EP94906070A priority patent/EP0637937B1/en
Priority to DE69432448T priority patent/DE69432448T2/en
Priority to AT94906070T priority patent/ATE236573T1/en
Publication of WO1994017734A1 publication Critical patent/WO1994017734A1/en
Publication of WO1994017734B1 publication Critical patent/WO1994017734B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0633Cylindrical array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0674Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a low impedance backing, e.g. air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • G10K11/006Transducer mounting in underwater equipment, e.g. sonobuoys
    • G10K11/008Arrays of transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/892Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8981Discriminating between fixed and moving objects or between objects moving at different speeds, e.g. wall clutter filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates generally to the field of ultrasonic imaging, and more particularly to ultrasonic imaging to determine various characteristics of relatively small cavities and surrounding fluids and structures.
  • PTCA percutaneous transluminal coronary angioplasty
  • Balloon angioplasty involves carefully threading a catheter into the affected portion of the artery. After the balloon portion is determined to be properly positioned in the artery, the physician inflates the expandable portion of the catheter in order to broaden the blocked or narrowed
  • the same material is used for the electronics carrier upon which a set of electronic components are mounted and for the backing material for the transducer assembly.
  • a drawback to the known ultrasound catheters is the difficulty in finding a carrier/backing material which provides the physical and acoustic qualities desired for advantageous use as the carrier for the electronics and the backing material for a transducer assembly comprising a highly sensitive transducer material.
  • the known ultrasonic catheter structure though providing the advantage of design and construction simplicity, exhibits certain drawbacks attributable to the particular and mutually incompatible requirements for the backing material and the electronics carrier. It is desirable that the electronics carrier for the electronics body be rigid and capable of withstanding the elevated temperatures produced by the electronics. However, the known electronics carrier materials which satisfy the requirements for the electronics body are not suitable backing materials for the presently preferred transducer assemblies comprising highly sensitive lead zirconate titanate (PZT) composites.
  • PZT lead zirconate titanate
  • the transducer electrodes are coupled to the transducer layer through a capacitive glue layer.
  • PZT composites having a relatively high degree of sensitivity to acoustic signals are being considered for replacement of the previously used, less sensitive, ferroelectric polymer transducer materials. While the PZT composites exhibit superior sensitivity in comparison to the ferroelectric copolymers, they also have a higher dielectric constant. The reduced impedance (or increased capacitance) associated with the new PZT composites significantly negates the improved signal sensitivity provided by the PZT composites when coupled to the transducer electrodes through the capacitive glue layer.
  • a catheter probe assembly of the present invention comprising a multi-sectioned body for insertion into a cavity.
  • the multi-sectioned body is characterized by separate and distinct carrier/backing materials for an electronics body and a transducer assembly.
  • the present invention comprises a probe assembly for an ultrasound catheter generally of the type described in Proudian deceased et al. U.S. Patent 4,917,097 and Eberle et al. U.S. Patent 5,167,233 for producing substantially real-time images of small cavities and their surrounding tissue.
  • the transducer assembly comprising an array of transducers is mounted upon a first section of the multi- sectioned body.
  • the transducer array transmits ultrasonic acoustic waves to the cavity and generates electrical signals in response to reflected ultrasonic acoustic waves received by the transducers.
  • the backing material for the transducer assembly is specifically selected for its characteristic low acoustic impedance and high absorption.
  • the low acoustic impedance backing material absorbs signals coupled into the backing material and reduces the presence of ringing in the transducer assembly.
  • a set of transducer electrodes are directly bonded to the transducer material thereby eliminating a capacitive glue layer previously associated with the transducer circuits.
  • Integrated circuits are mounted upon a second section of the multi-sectioned body.
  • the second section acoustically isolated from the first section, comprises a carrier material having a low thermal expansion coefficient.
  • the integrated circuits receive a set of first electrical signals from the transducer array by means of electrical conductors interconnecting the transducer assembly electrodes and the pads of the integrated circuits.
  • the electrical conductors are also used to transmit excitation signals from the integrated circuits to the transducer assembly.
  • the integrated circuits convert the received first electrical signals into a second set of electrical signals. Then the integrated circuits transmit the second set of signals to a signal processor located outside the environment of the cavity by means of a cable.
  • the unique, multi-sectioned, structure of the probe assembly enables the designer of the probe assembly to separately select a material exhibiting the preferred structural and acoustic characteristic for the carrier of the integrated circuit components and the backing material for the transducer elements.
  • these two portions of the ultrasound catheter probe assembly are separately manufactured and linked during the final stages of fabrication of the ultrasonic catheter.
  • FIG. 1 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, the transducer assembly, and the balloon section of a balloon angioplasty ultrasound imaging catheter embodying the present invention
  • FIG. 2 is a perspective view of the tip of a partially constructed diagnostic imaging catheter prior to joining the signal paths between the separated electronics body and transducer assembly;
  • FIG. 3 is a detailed side cross-sectional view of the tip of the imaging device portion of the catheter showing the composition of the imaging device;
  • FIG. 4 is a cross-sectional view of the transducer assembly taken along line 4-4 in FIG. 1;
  • FIGS. 5a and 5b illustratively depict an alternative embodiment of the ultrasound catheter wherein the conducting electrodes in the transducer assembly extend beyond the backing material and the transducer material;
  • FIG. 6 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, transducer assembly, and nose assembly of an ultrasound diagnostic imaging catheter embodying the present invention
  • FIGS. 7a and 7b show cross-sectional and side- sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a "side-looking" view; and FIGS. 8a, 8b and 8c show side, forward, and top cross- sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a "forward-looking" view.
  • an example of such an alternative would be the use of the present invention on a catheter without the balloon.
  • the catheter acts as a diagnostic or monitoring device.
  • Another specific alternative use of the present invention is for measuring blood flow rates using Doppler sound imaging in conjunction with the present invention.
  • the present invention may also be used to produce internal images of a number of ducts within a body such as the monitoring of gall stones in the bile ducts and for examination and treatment in the area of urology and gynecology.
  • Another example of an application of the present invention is the use of the ultrasound catheter for providing an image of a vessel or duct during application of laser treatment or during the removal of plaque from the walls of a vessel during an antherectomy procedure.
  • the present invention concerns the structure of the carrier/backing material for the electronics body and transducer assembly and changes to the physical layers of the transducer assembly, the invention is intended to be incorporated in general into an ultrasound catheter imaging system of the type described in Proudian, deceased et al. U.S. Patent 4,917,097 the teachings of which are incorporated herein by reference.
  • FIG. 1 A cross-sectional view of a catheter embodying the present invention is illustratively depicted in FIG. 1.
  • the catheter shown in FIG. 1 carrying a balloon 1 is of the type which is generally used for angioplasty; however, the invention can be used in conjunction with a number of catheter designs such as those illustratively depicted in FIGS. 6, 7 and 8 to provide diagnostic images and deliver treatment to small cavities of the body.
  • Conventional guide wire lumens 2 and 3 are telescopically fitted over a mating radiopaque guide wire lumen 4 forming a central bore 6 for a catheter guide wire during a normal catheterization procedure.
  • An encapsulant 8 composed of an epoxy material secures an imaging device 10 comprising the electronics body 12 and the transducer assembly 14 to the end of a catheter shaft 16.
  • the imaging device 10 in accordance with the present invention contains a multi-sectioned body comprising separate and distinct materials for a carrier 20 and a transducer backing material 24.
  • the encapsulant 8 protects and insulates a set of integrated circuits (IC's) 18 mounted upon the carrier 20.
  • IC's integrated circuits
  • the imaging device 10 is positioned within a proximal sleeve 19 of the balloon 1.
  • the transducer assembly 14, described hereinafter in greater detail in conjunction with FIG. 3, generally comprises a set of transducer elements 22.
  • the transducer elements 22 are supported in a cylindrical shape about the backing material 24.
  • other transducer element configurations will be known to those skilled in the area of transducer devices in view of the present description and in view of the state of the art.
  • the balloon 1 is positioned adjacent the imaging device 10 and is isolated from ambient conditions by sealing the two ends of the balloon 1 to the catheter shaft 16 and the lumen 3 in a conventional manner.
  • a tube 26 is embedded within the encapsulant 8 for communicating a fluid between the balloon 1 and an inflation source.
  • a radiopaque marker band 27 is within the expandable portion of the balloon 1 and attached to the lumen 3 to assist in locating the position of the catheter on a fluoroscope.
  • a cable 28 comprising an inner and outer set of wires carries electronic data and control signals between the IC , s 18 and a control station computer.
  • Each inner wire in the cable 28 is formed from a solid conductor protected by an insulating coating.
  • the outer wires are spiraled a number of times around the cable 28 in order to shield the signals carried by the inner wires of the cable 28.
  • the cable is coated with an insulating material.
  • FIG. 2 a perspective view is provided of the tip of a partially constructed diagnostic imaging catheter 10 prior to joining the signal paths between the separated electronics body 12 and transducer assembly 14 in order to show the distinct first and second portions of the imaging device 10 comprising the transducer assembly 14 and the electronics body 12.
  • the proximal sleeve 19 and the epoxy encapsulant 8 covering the imaging device 10 have been removed to expose the integrated circuit chips 18 and associated electronic constructions.
  • a nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to a vessel as the catheter is guided through the vessel.
  • the radiopaque guide wire lumen 4 aids in the positioning of the catheter.
  • the radiopaque guide wire lumen 4 also holds both the electronics body 12 and the transducer assembly 14.
  • the outer diameter of the radiopaque guide wire lumen 4 is approximately 0.5 millimeters.
  • the radiopaque guide wire lumen 4 provides the additional function of acting as a guide for precisely positioning the electronics body 12 and transducer assembly 14 in order to mate a set of 64 conductor lines 30 from the IC's 18 mounted upon the electronics body 12 to a set of 64 transducer contacts 32 of the transducer assembly 14 in a manner shown in FIG. 3.
  • the gap between the radiopaque guide wire lumen 4 and both the carrier 20 and the backing material 24 must be very small and should not be greater than approximately 25 ⁇ m. This minimized gap ensures proper radial alignment of the conductor lines 30 and transducer contacts 32.
  • the four IC's 18 are of an inverted chip design known to those skilled in the area of the semiconductor chip fabrication art and are bonded to a set of conductive pads 34 formed on the carrier 20.
  • the conductive pads 34 interconnect the IC's 18 to their neighboring chips and provide a connection between the IC's 18 and the cable 28 that communicatively couples the IC's 18 to a signal processor located outside the patient.
  • the pads also connect the IC's 18 to the conductor lines 30.
  • the conductor lines 30 link the IC's 18 to a set of 64 electrodes that define the transducer elements in the transducer assembly 14.
  • Each of the IC's 18 has 16 channels associated with 16 transducer elements defined by 16 transducer electrodes in the transducer assembly 14. Each of the four IC's 18 is responsible for sequentially transmitting and receiving electrical signals in the ultrasonic frequency range on one or more of its 16 channels linked by conductor lines 30 to an associated transducer element in the transducer assembly 14.
  • the four IC's 18 provide a multiplexing function that distributes excitation pulses from a signal processor to one or more of the transducer elements. At any given time one or more of the 16 channels on each of the IC's 18 is free to be excited by an excitation signal or to receive reflections or echoes by means of activation control signals stored on the IC's 18.
  • the electrical signals generated from the reflections impinging on the active transducer elements are amplified and sent via the transmission cable line 28 to the external signal processor.
  • FIG. 3 a detailed side cross-sectional view of the imaging portion of the catheter of FIG. 1 is illustrated to show the structure and materials of the imaging device 10.
  • the electronics body 12 and the transducer assembly 14 are shown in their mated state as they would exist in the final construction of the imaging catheter.
  • the layers of the transducer assembly are shown in detail in FIG. 3 it will be helpful to refer to FIG. 4, a cross section view of the transducer assembly taken along line 4-4 of FIG. 2, during the description of the ringed layers of the transducer assembly 14.
  • the carrier 20 is bonded to the radiopaque guide wire lumen 4 by means of a glue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy.
  • a glue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy.
  • One may substitute any material or structure that satisfactorily immobilizes the electronics body 12 for the glue layer 36.
  • the space between the radiopaque guide wire lumen 4 and the carrier 20 filled by the glue layer 36 must be very small in order for the radiopaque guide wire lumen 4 to assist in the matching of the electrical contacts between the electronics body 12 and the transducer assembly 14.
  • the carrier 20 in the preferred embodiment of the invention is formed from a rigid, strong material having a low thermal expansion coefficient.
  • the carrier 20 must be capable of withstanding temperatures in excess of 200 degrees Celsius to which the electronics body 12 is subjected during the process of bonding the set of IC's 18 to the carrier 20. Furthermore, during operation of the ultrasound catheter, self-heating of the IC's 18 may cause expansion of the carrier 20. If the thermal expansion of the carrier 20 is too great, shear forces exerted by the carrier 20 upon the conductive pads 34 create a substantial risk of failure of the electrical connection between the contacts of the IC's 18 and the conductor lines 30.
  • Aluminum oxide (A10 3 ) possesses the aforementioned desired characteristics for the carrier 20; however, other suitable substitutes for this material are well known to those skilled in the art of hybrid circuits.
  • Aluminum oxide is also characterized by a very high acoustic impedance (approximately 40 MRayls) and relatively low loss. As will be explained below, these acoustical properties make Aluminum oxide a poor candidate for use as the transducer backing material for applications involving highly sensitive transducer elements.
  • An encapsulant 8 is applied to the outer surface of the electronics body 12 in order to provide a more cylindrical shape to the catheter assembly and to insulate the electronic circuitry.
  • the encapsulant 8 generally comprises any commercially available medical grade UV- curable acrylic.
  • the outside of the electronics body may be covered by a protective layer.
  • the protective layer is made of, for example, parylene. Other suitable materials for the protective layer will be known to those skilled in the art of ultrasound catheters or other medical instruments which are inserted within the body.
  • the protective layer consists of the proximal sleeve 19 in the balloon angioplasty catheter shown in FIG. 1 or a sheath 38 in the case of a diagnostic imaging catheter such as the one illustrated in FIG. 6.
  • the backing material 24 for the transducer assembly 14 is preferably formed from a material characterized by a relatively low acoustic impedance ( ⁇ 10MRayls) and high loss coefficient (on the order of 20 to 40 dB/mm) .
  • ⁇ 10MRayls acoustic impedance
  • high loss coefficient on the order of 20 to 40 dB/mm.
  • highly sensitive transducer materials such as the PZT composites used for a transducer material 40 whose superior signal sensitivity is otherwise negated by the ringing effect caused by a backing material having a high acoustic impedance and low loss.
  • Aluminum oxide is not a preferred material for the backing material 24 for the transducer assembly 14.
  • a separate and different material is used to form the backing material 24 for the ultrasound catheter of the present invention.
  • a preferred material for the backing material 24 is an epoxy resin filled with either rubber particles or glass microspheres.
  • An example of such a resin is "light-weld" 183-M by Dymax Corp., Torrington, Connecticut.
  • Other suitable materials having low acoustic impedance and high loss will be known to those of ordinary skill in the art of ultrasound imaging.
  • air is an ideal backing material, transducer assemblies using an air backing are difficult to achieve in practice.
  • the ultrasound catheter of the present invention is characterized by an imaging device 10 having separate and distinct carrier/backing materials that exhibit greatly contrasting characteristics.
  • the two distinct materials provide desirable structural and acoustical characteristics for satisfying the dissimilar requirements for the electronics body 12 and the transducer assembly 14.
  • the outer layers of the transducer assembly 14 are separately manufactured as a planar sheet. They comprise a first set of 64 conducting electrodes 42, the transducer material 40, a continuous layer conducting electrode 44, and a matching layer 46. After the layers are fabricated, the planar sheet of transducer elements 22 is wrapped around the backing material 24 and bonded by means of a glue layer 48. Depending on the mechanical and acoustic properties of the transducer assembly 14, physical isolation of the transducer elements 22 from one another may be desirable.
  • the outer diameter of the backing material 24 must be manufactured within very close tolerances so that the ends of the planar sheet of transducer elements, when joined to form a cylinder around the backing material 24, meet with minimal gap or overlap.
  • the planar. transducer assembly 14 may be formed into a cylinder of exact outer diameter concentrically around the radiopaque lumen 4 and the gap between the lumen 4 and the transducer assembly 14 is filled with the backing material 24. This ensures that the spacing between the transducer array elements at the opposite ends of the cylindrically wrapped planar sheet have the same spacing as the other transducer array elements.
  • the error in the circumference of the transducer sheet, when wrapped around the lumen 4, should be less than (plus or minus) 8 ⁇ m.
  • the inner diameter of the backing material 24 must closely match the outer diameter of the radiopaque guide wire lumen 4 in order to facilitate the mating of electrical contacts between the electronics body 12 and the transducer assembly 14.
  • the concentric rings comprising the afore-described layers of the transducer assembly 14 are illustratively depicted in FIG. 4 showing a cross- sectional view of the transducer assembly taken on line 4-4 of FIG. 1.
  • planar sheet transducer element fabrication method is the absence of capacitive glue layers previously present between the transducer material 40 and each of the conducting electrodes 42 and 44. If the capacitive glue layer remained in the presently described ultrasound catheter, an increased capacitance attributable to the higher dielectric constant of the PZT composite transducer material 40 would negate the improved signal sensitivity of the preferred transducer material.
  • planar sheets comprising the transducer elements Some of the possible manufacturers of the planar sheets comprising the transducer elements are: Precision Acoustic Devices, Fremont, California; Acoustic Imaging, Phoenix, Arizona; Echo Ultrasound, Lewistown, Pennsylvania; Vermon S.A., Tours, France; and Imasonic, Besancon, France.
  • the transducer material may be polarized by means of a high voltage on the order of 5,000 Volts applied between the first set of conducting electrodes 42 and the continuous conducting electrode 44. Therefore, it is desirable to perform the polarization procedure on a separated assembly to isolate the transducer assembly 14 from the electronics body 12 since application of such a high voltage to the IC's 18 would destroy the electronic circuitry of the IC's 18.
  • the layer of glue 48 bonds the backing material 24 to the first set of conducting electrodes 42 spaced evenly about the circumference of the backing material 24.
  • the first set of conducting electrodes 42 defines the individual transducer elements in the transducer array.
  • the first set of conducting electrodes 42 is attached to the set of 64 transducer contacts 32.
  • Connection material 50 electrically couples each one of the transducer contacts 32, corresponding to a single transducer element, to a corresponding one of the conductor lines 30, thereby providing an electronic signal path between the transducer elements 22 and the IC's 18.
  • the connection material comprises any of several known suitable conductors such as silver or gold loaded epoxy droplets, solder or gold bumps, or solder tape.
  • FIGS. 5A and 5B illustratively depict an alternative embodiment of the ultrasound catheter wherein copper conducting electrodes 42 of the transducer assembly 14 extend beyond the backing material 24 and the transducer material 40.
  • the portion of the conducting electrodes 42 extending beyond the backing material 24 and overlapping the conductor lines 30 when the transducer assembly 14 is joined to the electronics body 12 facilitates the use of a well known gap welder to fuse the individual conductor lines 30 to the corresponding conducting electrodes 42.
  • FIG. 5A shows a cross-sectional view of a partially constructed ultrasound catheter to show the above described connection scheme.
  • the use of a gap welder eliminates the need to deposit individual drops of solder material 50 as shown in FIG. 3.
  • the elimination of solder droplets potentially simplifies the design of the electronics carrier 20 that may otherwise require scalloping of the carrier at the end proximate the transducer assembly 14 in order to facilitate proper deposition of the droplets to fuse the conductor lines 30 and the transducer contacts 32.
  • Other advantages of this connection scheme include better bonding of the conductors, simpler assembly techniques, and enhanced mechanical stability.
  • connection scheme portrayed in FIGS. 5A and 5B is the potential to automate the process of bonding the conducting electrodes 42 to the conductor lines 30.
  • the conductor lines 30 are matched to the conducting electrodes 42.
  • a tip 70 of a gap welder is placed above one of the matched lines.
  • the tip 70 presses a conducting electrode 42a to a corresponding conductor line 30a.
  • a low voltage, high electrical current passes between the electrodes of the tip 70.
  • the electrical current fuses the conducting electrode 42a to the conductor line 30a.
  • the catheter assembly is rotated so that a next matched set of lines (42b and 30b) is below the tip 70 and the welding process is repeated. The welding continues until all the lines have been fused.
  • the efficiency rating of the transducer material is high (greater than 50%) ; the bandwidth should be high (greater than 50% of center frequency) ; there should be good matching among the transducer elements; there should be low insertion loss (less than -40dB) ; and the center frequency should be around 20 MHz. Therefore, in the preferred embodiment of the present invention, the transducer material 24 is any one of many known suitable PZT composites.
  • the radial thickness of the transducer layer 40 is preferably one-half wavelength thickness or an odd multiple of half wavelengths of the intended center operating frequency of the ultrasound catheter. As explained in Biomedical Ultrasonics, at page 53, this enables the transducer to resonate at the center operating frequency of the ultrasound catheter. In the present embodiment, the radial thickness of the transducer material 24 is approximately 0.1 millimeters.
  • the backing material 24 In order to take advantage of the superior signal sensitivity of transducers formed from PZT composites, the backing material 24 must have a low acoustic impedance. Therefore, the aluminum oxide carrier 20 having a high acoustic impedance should not be used as the backing material 24. Instead the previous monolithic carrier for both the electronics body 12 and the transducer assembly 14 is replaced by the separated carrier/backing sections 20 and 24.
  • the continuous conducting electrode 44 covering the outer surface of the transducer material 40 is the ground plane for the transducer elements 22. It is preferably a layer of gold metal deposited upon the surface of the matching layer 46 by means of sputtering. However, other suitable conductors and methods to deposit the conductor will be known to those skilled in the art of transducers fabrication.
  • the continuous conducting electrode 44 is connected in a known manner to a ground line provided by the cable 28.
  • the ground line runs along the electronics carrier 20 and is connected to the continuous conducting electrode after the electronics body 12 and the transducer assembly 14 have been joined.
  • One possible way to connect the ground wire is shown in FIG. 2 of the Proudian, deceased et al. U.S. Patent 4,917,097.
  • the transducer elements 22 are enclosed by a matching layer 46.
  • the matching layer 46 comprises a loaded epoxy and is approximately 0.06 mm. thick.
  • Alternative appropriate matching layer materials and their thicknesses will be apparent to those of ordinary skill in the art of ultrasonic imaging.
  • FIG. 6 shows an alternative embodiment of the present invention, wherein the imaging device 10 is included in a diagnostic imaging catheter that does not contain a balloon 1. Portions of the diagnostic imaging catheter have been removed to reveal the cable 28 and the lumen 2. Since there is no balloon 1 in the imaging catheter shown in FIG. 6, there is of course no tube 26 for filling and draining a fluid from the balloon. Instead, the catheter is fitted with a nose cone 25. The nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to the walls of a cavity as the catheter is inserted. A sheath 38 covers the epoxy resin 8 thereby guarding against contamination of a patient's blood and possibly electrical shock.
  • the sheath 38 is preferably constructed of parylene, though other suitable substitutes will be known to those skilled in the art of medical instruments that are inserted within a body.
  • the structure of the imaging catheter shown in FIG. 6 is otherwise unchanged from the structure of the balloon angioplasty ultrasound imaging catheter illustrated in FIG. 1.
  • transducer array configured as a cylinder about a cylindrical core
  • FIGS. 7 and 8 Examples of such configurations are shown in FIGS. 7 and 8.
  • Other configurations of transducer arrays for an ultrasound catheter will be known to those skilled in the art in view of the present description of this invention.
  • FIGS. 7A and 7B illustrate side and cross-sectional views of a side-looking linear array imaging catheter.
  • the transducer elements 22 are arranged in a plane and perpendicular to the direction of insertion of the imaging catheter. This arrangement provides an image along the length of a cavity.
  • the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention.
  • the IC's 18 are mounted upon an electronics carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1.
  • the IC's are electrically coupled to the transducer elements 22 by conductor lines 30.
  • the backing material for the transducer elements 22 forms the encapsulant 8 in this case.
  • FIGS. 8A, 8B and 8C illustrate side, forward, and top cross-sectional views of a forward-looking "endfire" imaging catheter shown in FIG. 1.
  • the encapsulant 8 which is also the backing material for the transducers 22, has been partially removed to reveal the placement and orientation of the electronics portion.
  • the transducer elements 22 are arranged as a planar array mounted upon the leading face of the catheter.
  • the guide wire lumen 4 is mounted adjacent the ultrasonic imaging device. The diameter of the guide wire lumen 4 is approximately 0.3 mm or about one-third the diameter of the imaging catheter.
  • This arrangement provides a forward looking view of a cavity.
  • the dimensions of the field of view are determined by the size of the array, the number of elements, the element dimensions and frequency.
  • the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention.
  • the IC's 18 are mounted upon a carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1.
  • the IC's are electrically coupled to the transducer elements 22 by conductor lines 30.
  • the encapsulant 8 may form the backing material for the transducer elements 22.

Abstract

An ultrasound catheter (10) is disclosed for providing substantially real-time images of small cavities. The ultrasound catheter (10) is characterized by separate and distinct materials for backing the transducers (22) and for carrying the electronics components (18). The separate materials comprise an electronics carrier (20) meeting the requirements for holding the integrated circuitry (18) of the ultrasound device and a backing material (24) displaying superior characteristics relating to reducing ringing and minimizing the effect of other sources of signal degradation in the transducer assembly. Also, in accordance with the present invention, a technique is described for connecting the conductor lines of the separate transducer assembly and electronics body.

Description

ULTRASOUND CATHETER
INCORPORATION BY REFERENCE The applicants hereby incorporate by reference the description of an "Apparatus and Method for Imaging Small Cavities" described in Proudian et al. U.S. Patent 4,917,097 and the description of a "Dilating and Imaging Apparatus" described in Eberle et al. U.S. Patent 5,167,233.
FIELD OF THE INVENTION The present invention relates generally to the field of ultrasonic imaging, and more particularly to ultrasonic imaging to determine various characteristics of relatively small cavities and surrounding fluids and structures.
BACKGROUND OF THE INVENTION Diagnosis and treatment of fully or partially blocked arteries of the heart is essential in the medical profession's endeavor to prevent heart attacks. Physicians have successfully prevented heart attacks arising from artery blockage caused by the build-up of plague upon the walls of the coronary arteries through the use of percutaneous transluminal coronary angioplasty (PTCA, commonly referred to as "balloon angioplasty") . Balloon angioplasty involves carefully threading a catheter into the affected portion of the artery. After the balloon portion is determined to be properly positioned in the artery, the physician inflates the expandable portion of the catheter in order to broaden the blocked or narrowed
passage in the blood vessel caused by the deposition of plaque upon the artery wall. The desirability of using an imaging device to produce treatment and diagnostic quality images of small enclosed areas such as human blood vessels on a diagnostic video display device is unquestioned. It is known to use a very small ultrasonic imaging device mounted at the end of a catheter to produce a real-time image of the internal walls of a coronary artery. This device is referred to herein as an ultrasound catheter.
In the known ultrasound catheters, the same material is used for the electronics carrier upon which a set of electronic components are mounted and for the backing material for the transducer assembly. A drawback to the known ultrasound catheters is the difficulty in finding a carrier/backing material which provides the physical and acoustic qualities desired for advantageous use as the carrier for the electronics and the backing material for a transducer assembly comprising a highly sensitive transducer material.
The known ultrasonic catheter structure, though providing the advantage of design and construction simplicity, exhibits certain drawbacks attributable to the particular and mutually incompatible requirements for the backing material and the electronics carrier. It is desirable that the electronics carrier for the electronics body be rigid and capable of withstanding the elevated temperatures produced by the electronics. However, the known electronics carrier materials which satisfy the requirements for the electronics body are not suitable backing materials for the presently preferred transducer assemblies comprising highly sensitive lead zirconate titanate (PZT) composites.
When the new, more sensitive PZT composites are used with the known electronic carrier material as the backing material for the transducer, unwanted ringing occurs in the transducer assembly when an acoustic signal is received or transmitted by the catheter. The signal produced by the ringing reduces the quality of the signal transmitted by the transducer assembly and limits the foreseeable advantages of utilizing the more sensitive transducer materials in ultrasonic catheters. The decreased signal quality attributed to the ringing limits the image quality provided by an ultrasound catheter. The limited image quality restricts the usefulness of the ultrasound catheter for clinical and diagnostic imaging.
In known ultrasound catheters the transducer electrodes are coupled to the transducer layer through a capacitive glue layer. As was previously mentioned, PZT composites having a relatively high degree of sensitivity to acoustic signals are being considered for replacement of the previously used, less sensitive, ferroelectric polymer transducer materials. While the PZT composites exhibit superior sensitivity in comparison to the ferroelectric copolymers, they also have a higher dielectric constant. The reduced impedance (or increased capacitance) associated with the new PZT composites significantly negates the improved signal sensitivity provided by the PZT composites when coupled to the transducer electrodes through the capacitive glue layer.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a superior virtually real-time ultrasonic image of relatively small cavities and their surrounding tissues than previously obtainable in the prior art.
It is a further object to provide enhanced sensitivity to reflected signals from the walls of a cavity in order to provide improved image resolution. It is a further object of the invention to meet the other objectives and maintain or reduce ringing and other sources of noise in a signal transmitted or received by the transducer assembly and to thereby provide a clearer image of a cavity. It is yet another object of the present invention to provide a means for more easily fabricating the very small transducer elements of the transducer assembly of an ultrasound catheter.
It is yet another object of the present invention to provide a means for forming the very small transducer elements for the ultrasound catheter to very close tolerances.
It is another object of the present invention to provide desirable carrier/backing materials for the electronics body and transducer assembly of an ultrasound catheter.
It is yet another object of the present invention to provide a means for joining the conductor lines of the electronics body to the conducting electrodes of the transducer assembly in order to provide a signal path between the separately fabricated sections containing the integrated circuits and the transducer assembly of an ultrasound catheter.
The above objects are met by a catheter probe assembly of the present invention comprising a multi-sectioned body for insertion into a cavity. The multi-sectioned body is characterized by separate and distinct carrier/backing materials for an electronics body and a transducer assembly. The present invention comprises a probe assembly for an ultrasound catheter generally of the type described in Proudian deceased et al. U.S. Patent 4,917,097 and Eberle et al. U.S. Patent 5,167,233 for producing substantially real-time images of small cavities and their surrounding tissue. The transducer assembly, comprising an array of transducers is mounted upon a first section of the multi- sectioned body. The transducer array transmits ultrasonic acoustic waves to the cavity and generates electrical signals in response to reflected ultrasonic acoustic waves received by the transducers.
The backing material for the transducer assembly is specifically selected for its characteristic low acoustic impedance and high absorption. The low acoustic impedance backing material absorbs signals coupled into the backing material and reduces the presence of ringing in the transducer assembly. In addition, a set of transducer electrodes are directly bonded to the transducer material thereby eliminating a capacitive glue layer previously associated with the transducer circuits.
Integrated circuits are mounted upon a second section of the multi-sectioned body. The second section, acoustically isolated from the first section, comprises a carrier material having a low thermal expansion coefficient. The integrated circuits receive a set of first electrical signals from the transducer array by means of electrical conductors interconnecting the transducer assembly electrodes and the pads of the integrated circuits. The electrical conductors are also used to transmit excitation signals from the integrated circuits to the transducer assembly. The integrated circuits convert the received first electrical signals into a second set of electrical signals. Then the integrated circuits transmit the second set of signals to a signal processor located outside the environment of the cavity by means of a cable.
The unique, multi-sectioned, structure of the probe assembly enables the designer of the probe assembly to separately select a material exhibiting the preferred structural and acoustic characteristic for the carrier of the integrated circuit components and the backing material for the transducer elements.
In order to prevent damage to the components of both the transducer assembly and the electronics body, these two portions of the ultrasound catheter probe assembly are separately manufactured and linked during the final stages of fabrication of the ultrasonic catheter.
BRIEF DESCRIPTION OF THE DRAWINGS The appended claims set forth the features of the present invention with particularity. The invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which: FIG. 1 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, the transducer assembly, and the balloon section of a balloon angioplasty ultrasound imaging catheter embodying the present invention;
FIG. 2 is a perspective view of the tip of a partially constructed diagnostic imaging catheter prior to joining the signal paths between the separated electronics body and transducer assembly;
FIG. 3 is a detailed side cross-sectional view of the tip of the imaging device portion of the catheter showing the composition of the imaging device;
FIG. 4 is a cross-sectional view of the transducer assembly taken along line 4-4 in FIG. 1;
FIGS. 5a and 5b illustratively depict an alternative embodiment of the ultrasound catheter wherein the conducting electrodes in the transducer assembly extend beyond the backing material and the transducer material;
FIG. 6 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, transducer assembly, and nose assembly of an ultrasound diagnostic imaging catheter embodying the present invention;
FIGS. 7a and 7b show cross-sectional and side- sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a "side-looking" view; and FIGS. 8a, 8b and 8c show side, forward, and top cross- sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a "forward-looking" view.
While the invention will be described in connection with a catheter used for angioplasty, it will be understood
'that it is not intended to be limited to such use. On the contrary, the invention is intended to cover all applications which may require imaging in a small cavity.
An example of such an alternative would be the use of the present invention on a catheter without the balloon. In such a case, the catheter acts as a diagnostic or monitoring device. Another specific alternative use of the present invention is for measuring blood flow rates using Doppler sound imaging in conjunction with the present invention. The present invention may also be used to produce internal images of a number of ducts within a body such as the monitoring of gall stones in the bile ducts and for examination and treatment in the area of urology and gynecology. Another example of an application of the present invention is the use of the ultrasound catheter for providing an image of a vessel or duct during application of laser treatment or during the removal of plaque from the walls of a vessel during an antherectomy procedure.
Furthermore, this invention may be applied to other types of transducer array configurations which will be known to those of ordinary skill in the art in view of the description of the invention and the accompanying descriptions of various embodiments of this invention contained herein.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Though the present invention concerns the structure of the carrier/backing material for the electronics body and transducer assembly and changes to the physical layers of the transducer assembly, the invention is intended to be incorporated in general into an ultrasound catheter imaging system of the type described in Proudian, deceased et al. U.S. Patent 4,917,097 the teachings of which are incorporated herein by reference.
A cross-sectional view of a catheter embodying the present invention is illustratively depicted in FIG. 1. The catheter shown in FIG. 1 carrying a balloon 1 is of the type which is generally used for angioplasty; however, the invention can be used in conjunction with a number of catheter designs such as those illustratively depicted in FIGS. 6, 7 and 8 to provide diagnostic images and deliver treatment to small cavities of the body. Conventional guide wire lumens 2 and 3 are telescopically fitted over a mating radiopaque guide wire lumen 4 forming a central bore 6 for a catheter guide wire during a normal catheterization procedure. An encapsulant 8 composed of an epoxy material secures an imaging device 10 comprising the electronics body 12 and the transducer assembly 14 to the end of a catheter shaft 16. The imaging device 10 in accordance with the present invention contains a multi-sectioned body comprising separate and distinct materials for a carrier 20 and a transducer backing material 24. The encapsulant 8 protects and insulates a set of integrated circuits (IC's) 18 mounted upon the carrier 20. In the preferred embodiment of a balloon angioplasty device embodying the present invention, the imaging device 10 is positioned within a proximal sleeve 19 of the balloon 1.
The transducer assembly 14, described hereinafter in greater detail in conjunction with FIG. 3, generally comprises a set of transducer elements 22. The transducer elements 22 are supported in a cylindrical shape about the backing material 24. However, other transducer element configurations will be known to those skilled in the area of transducer devices in view of the present description and in view of the state of the art.
Continuing with the description of FIG. 1, the balloon 1 is positioned adjacent the imaging device 10 and is isolated from ambient conditions by sealing the two ends of the balloon 1 to the catheter shaft 16 and the lumen 3 in a conventional manner. A tube 26 is embedded within the encapsulant 8 for communicating a fluid between the balloon 1 and an inflation source. Within the expandable portion of the balloon 1 and attached to the lumen 3 is a radiopaque marker band 27 to assist in locating the position of the catheter on a fluoroscope.
A cable 28 comprising an inner and outer set of wires carries electronic data and control signals between the IC,s 18 and a control station computer. Each inner wire in the cable 28 is formed from a solid conductor protected by an insulating coating. The outer wires are spiraled a number of times around the cable 28 in order to shield the signals carried by the inner wires of the cable 28. Preferably, the cable is coated with an insulating material.
Turning now to FIG. 2, a perspective view is provided of the tip of a partially constructed diagnostic imaging catheter 10 prior to joining the signal paths between the separated electronics body 12 and transducer assembly 14 in order to show the distinct first and second portions of the imaging device 10 comprising the transducer assembly 14 and the electronics body 12. To aid the description of the imaging device 10, the proximal sleeve 19 and the epoxy encapsulant 8 covering the imaging device 10 have been removed to expose the integrated circuit chips 18 and associated electronic constructions. A nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to a vessel as the catheter is guided through the vessel.
The radiopaque guide wire lumen 4, visible within a patient by means of a fluoroscope, aids in the positioning of the catheter. The radiopaque guide wire lumen 4 also holds both the electronics body 12 and the transducer assembly 14. The outer diameter of the radiopaque guide wire lumen 4 is approximately 0.5 millimeters. The radiopaque guide wire lumen 4 provides the additional function of acting as a guide for precisely positioning the electronics body 12 and transducer assembly 14 in order to mate a set of 64 conductor lines 30 from the IC's 18 mounted upon the electronics body 12 to a set of 64 transducer contacts 32 of the transducer assembly 14 in a manner shown in FIG. 3. In order for the radiopaque guide wire lumen 4 to assist in mating the above described components of the imaging device 10, the gap between the radiopaque guide wire lumen 4 and both the carrier 20 and the backing material 24 must be very small and should not be greater than approximately 25 μm. This minimized gap ensures proper radial alignment of the conductor lines 30 and transducer contacts 32. In order to physically place the IC's 18 onto the carrier 20, the four IC's 18 are of an inverted chip design known to those skilled in the area of the semiconductor chip fabrication art and are bonded to a set of conductive pads 34 formed on the carrier 20. The conductive pads 34 interconnect the IC's 18 to their neighboring chips and provide a connection between the IC's 18 and the cable 28 that communicatively couples the IC's 18 to a signal processor located outside the patient. The pads also connect the IC's 18 to the conductor lines 30. The conductor lines 30 link the IC's 18 to a set of 64 electrodes that define the transducer elements in the transducer assembly 14.
Each of the IC's 18 has 16 channels associated with 16 transducer elements defined by 16 transducer electrodes in the transducer assembly 14. Each of the four IC's 18 is responsible for sequentially transmitting and receiving electrical signals in the ultrasonic frequency range on one or more of its 16 channels linked by conductor lines 30 to an associated transducer element in the transducer assembly 14. The four IC's 18 provide a multiplexing function that distributes excitation pulses from a signal processor to one or more of the transducer elements. At any given time one or more of the 16 channels on each of the IC's 18 is free to be excited by an excitation signal or to receive reflections or echoes by means of activation control signals stored on the IC's 18. The electrical signals generated from the reflections impinging on the active transducer elements are amplified and sent via the transmission cable line 28 to the external signal processor.
Turning to FIG. 3 a detailed side cross-sectional view of the imaging portion of the catheter of FIG. 1 is illustrated to show the structure and materials of the imaging device 10. In this drawing the electronics body 12 and the transducer assembly 14 are shown in their mated state as they would exist in the final construction of the imaging catheter. Though the layers of the transducer assembly are shown in detail in FIG. 3 it will be helpful to refer to FIG. 4, a cross section view of the transducer assembly taken along line 4-4 of FIG. 2, during the description of the ringed layers of the transducer assembly 14.
The carrier 20 is bonded to the radiopaque guide wire lumen 4 by means of a glue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy. One may substitute any material or structure that satisfactorily immobilizes the electronics body 12 for the glue layer 36. As previously mentioned the space between the radiopaque guide wire lumen 4 and the carrier 20 filled by the glue layer 36 must be very small in order for the radiopaque guide wire lumen 4 to assist in the matching of the electrical contacts between the electronics body 12 and the transducer assembly 14.
The carrier 20 in the preferred embodiment of the invention is formed from a rigid, strong material having a low thermal expansion coefficient. The carrier 20 must be capable of withstanding temperatures in excess of 200 degrees Celsius to which the electronics body 12 is subjected during the process of bonding the set of IC's 18 to the carrier 20. Furthermore, during operation of the ultrasound catheter, self-heating of the IC's 18 may cause expansion of the carrier 20. If the thermal expansion of the carrier 20 is too great, shear forces exerted by the carrier 20 upon the conductive pads 34 create a substantial risk of failure of the electrical connection between the contacts of the IC's 18 and the conductor lines 30. Aluminum oxide (A103) possesses the aforementioned desired characteristics for the carrier 20; however, other suitable substitutes for this material are well known to those skilled in the art of hybrid circuits. Aluminum oxide is also characterized by a very high acoustic impedance (approximately 40 MRayls) and relatively low loss. As will be explained below, these acoustical properties make Aluminum oxide a poor candidate for use as the transducer backing material for applications involving highly sensitive transducer elements.
An encapsulant 8 is applied to the outer surface of the electronics body 12 in order to provide a more cylindrical shape to the catheter assembly and to insulate the electronic circuitry. The encapsulant 8 generally comprises any commercially available medical grade UV- curable acrylic. In order to guard against contamination of the blood and possibly electrical shock, the outside of the electronics body may be covered by a protective layer. The protective layer is made of, for example, parylene. Other suitable materials for the protective layer will be known to those skilled in the art of ultrasound catheters or other medical instruments which are inserted within the body. The protective layer consists of the proximal sleeve 19 in the balloon angioplasty catheter shown in FIG. 1 or a sheath 38 in the case of a diagnostic imaging catheter such as the one illustrated in FIG. 6. Turning to the transducer assembly 14 and its related structures, the backing material 24 for the transducer assembly 14 is preferably formed from a material characterized by a relatively low acoustic impedance (<10MRayls) and high loss coefficient (on the order of 20 to 40 dB/mm) . This is necessitated by the use of highly sensitive transducer materials such as the PZT composites used for a transducer material 40 whose superior signal sensitivity is otherwise negated by the ringing effect caused by a backing material having a high acoustic impedance and low loss. For this reason, Aluminum oxide is not a preferred material for the backing material 24 for the transducer assembly 14. Instead, a separate and different material is used to form the backing material 24 for the ultrasound catheter of the present invention. A preferred material for the backing material 24 is an epoxy resin filled with either rubber particles or glass microspheres. An example of such a resin is "light-weld" 183-M by Dymax Corp., Torrington, Connecticut. Other suitable materials having low acoustic impedance and high loss will be known to those of ordinary skill in the art of ultrasound imaging. Although air is an ideal backing material, transducer assemblies using an air backing are difficult to achieve in practice.
Thus, the ultrasound catheter of the present invention is characterized by an imaging device 10 having separate and distinct carrier/backing materials that exhibit greatly contrasting characteristics. The two distinct materials provide desirable structural and acoustical characteristics for satisfying the dissimilar requirements for the electronics body 12 and the transducer assembly 14.
In the preferred method of making the transducer assembly 14, the outer layers of the transducer assembly 14 are separately manufactured as a planar sheet. They comprise a first set of 64 conducting electrodes 42, the transducer material 40, a continuous layer conducting electrode 44, and a matching layer 46. After the layers are fabricated, the planar sheet of transducer elements 22 is wrapped around the backing material 24 and bonded by means of a glue layer 48. Depending on the mechanical and acoustic properties of the transducer assembly 14, physical isolation of the transducer elements 22 from one another may be desirable. Since a uniform distribution of each of the transducer elements 22 is desired, the outer diameter of the backing material 24 must be manufactured within very close tolerances so that the ends of the planar sheet of transducer elements, when joined to form a cylinder around the backing material 24, meet with minimal gap or overlap. Alternatively, the planar. transducer assembly 14 may be formed into a cylinder of exact outer diameter concentrically around the radiopaque lumen 4 and the gap between the lumen 4 and the transducer assembly 14 is filled with the backing material 24. This ensures that the spacing between the transducer array elements at the opposite ends of the cylindrically wrapped planar sheet have the same spacing as the other transducer array elements. It is believed that the error in the circumference of the transducer sheet, when wrapped around the lumen 4, should be less than (plus or minus) 8 μm. Furthermore, the inner diameter of the backing material 24 must closely match the outer diameter of the radiopaque guide wire lumen 4 in order to facilitate the mating of electrical contacts between the electronics body 12 and the transducer assembly 14. The concentric rings comprising the afore-described layers of the transducer assembly 14 are illustratively depicted in FIG. 4 showing a cross- sectional view of the transducer assembly taken on line 4-4 of FIG. 1.
An advantage of the planar sheet transducer element fabrication method is the absence of capacitive glue layers previously present between the transducer material 40 and each of the conducting electrodes 42 and 44. If the capacitive glue layer remained in the presently described ultrasound catheter, an increased capacitance attributable to the higher dielectric constant of the PZT composite transducer material 40 would negate the improved signal sensitivity of the preferred transducer material.
There are several other advantages to the sheet approach to fabricating the transducer array. Fabrication on a flat surface is easier than on a curved, cylindrical surface. This is especially important in transducer assemblies wherein the transducer material 40 must be separated (or diced) in order to form the transducer material on the continuous conducting electrode 44 as individual elements instead of a continuous sheet. The capability of fabricating the transducer material 40 as individual elements is an important factor when choosing a particular fabrication method in view of the desirability of low cross-talk (less than -30dB) , which may necessitate such a separation of elements. Some of the possible manufacturers of the planar sheets comprising the transducer elements are: Precision Acoustic Devices, Fremont, California; Acoustic Imaging, Phoenix, Arizona; Echo Ultrasound, Lewistown, Pennsylvania; Vermon S.A., Tours, France; and Imasonic, Besancon, France.
After the transducer assembly 14 has been formed, it may be desirable for the transducer material to be polarized by means of a high voltage on the order of 5,000 Volts applied between the first set of conducting electrodes 42 and the continuous conducting electrode 44. Therefore, it is desirable to perform the polarization procedure on a separated assembly to isolate the transducer assembly 14 from the electronics body 12 since application of such a high voltage to the IC's 18 would destroy the electronic circuitry of the IC's 18.
The layer of glue 48 bonds the backing material 24 to the first set of conducting electrodes 42 spaced evenly about the circumference of the backing material 24. The first set of conducting electrodes 42 defines the individual transducer elements in the transducer array. The first set of conducting electrodes 42 is attached to the set of 64 transducer contacts 32. Connection material 50 electrically couples each one of the transducer contacts 32, corresponding to a single transducer element, to a corresponding one of the conductor lines 30, thereby providing an electronic signal path between the transducer elements 22 and the IC's 18. The connection material comprises any of several known suitable conductors such as silver or gold loaded epoxy droplets, solder or gold bumps, or solder tape.
There are other connection schemes for joining the conducting electrodes 42 to the conductor lines 30. FIGS. 5A and 5B illustratively depict an alternative embodiment of the ultrasound catheter wherein copper conducting electrodes 42 of the transducer assembly 14 extend beyond the backing material 24 and the transducer material 40. The portion of the conducting electrodes 42 extending beyond the backing material 24 and overlapping the conductor lines 30 when the transducer assembly 14 is joined to the electronics body 12 facilitates the use of a well known gap welder to fuse the individual conductor lines 30 to the corresponding conducting electrodes 42.
FIG. 5A shows a cross-sectional view of a partially constructed ultrasound catheter to show the above described connection scheme. The use of a gap welder eliminates the need to deposit individual drops of solder material 50 as shown in FIG. 3. The elimination of solder droplets potentially simplifies the design of the electronics carrier 20 that may otherwise require scalloping of the carrier at the end proximate the transducer assembly 14 in order to facilitate proper deposition of the droplets to fuse the conductor lines 30 and the transducer contacts 32. Other advantages of this connection scheme include better bonding of the conductors, simpler assembly techniques, and enhanced mechanical stability.
Another advantage of the connection scheme portrayed in FIGS. 5A and 5B is the potential to automate the process of bonding the conducting electrodes 42 to the conductor lines 30. As shown in the cross-sectional view of a partially assembled ultrasound catheter assembly in FIG. 5B, the conductor lines 30 are matched to the conducting electrodes 42. Next, a tip 70 of a gap welder is placed above one of the matched lines. The tip 70 presses a conducting electrode 42a to a corresponding conductor line 30a. A low voltage, high electrical current passes between the electrodes of the tip 70. The electrical current fuses the conducting electrode 42a to the conductor line 30a. Next, the catheter assembly is rotated so that a next matched set of lines (42b and 30b) is below the tip 70 and the welding process is repeated. The welding continues until all the lines have been fused.
Returning now to ultrasound imaging device in FIG. 3, there exists a range of suitable transducer materials which can be used to transduce electrical energy into acoustic energy and vice versa in the Megahertz frequency range. In the preferred embodiment of the present invention, the efficiency rating of the transducer material, expressed in terms of the coupling coefficient k^, is high (greater than 50%) ; the bandwidth should be high (greater than 50% of center frequency) ; there should be good matching among the transducer elements; there should be low insertion loss (less than -40dB) ; and the center frequency should be around 20 MHz. Therefore, in the preferred embodiment of the present invention, the transducer material 24 is any one of many known suitable PZT composites. A summary of the properties of the PZT composites is provided in Acoustic Waves: Devices. Imaging, and Analog Signal Processing, by Professor Gordon S. Kino, Prentice-Hall, Inc., 1987 at pages 554 and 555. Generally, these composites may be damaged by temperatures exceeding 75° Celsius and could not be present when the bonding of the IC's 18 to the carrier 20 occurs.
The radial thickness of the transducer layer 40 is preferably one-half wavelength thickness or an odd multiple of half wavelengths of the intended center operating frequency of the ultrasound catheter. As explained in Biomedical Ultrasonics, at page 53, this enables the transducer to resonate at the center operating frequency of the ultrasound catheter. In the present embodiment, the radial thickness of the transducer material 24 is approximately 0.1 millimeters.
In order to take advantage of the superior signal sensitivity of transducers formed from PZT composites, the backing material 24 must have a low acoustic impedance. Therefore, the aluminum oxide carrier 20 having a high acoustic impedance should not be used as the backing material 24. Instead the previous monolithic carrier for both the electronics body 12 and the transducer assembly 14 is replaced by the separated carrier/backing sections 20 and 24. The continuous conducting electrode 44 covering the outer surface of the transducer material 40 is the ground plane for the transducer elements 22. It is preferably a layer of gold metal deposited upon the surface of the matching layer 46 by means of sputtering. However, other suitable conductors and methods to deposit the conductor will be known to those skilled in the art of transducers fabrication. Though not essential to the proper operation of the ultrasound catheter, it is preferred to connect in a known manner the continuous conducting electrode 44 to a ground line provided by the cable 28. The ground line runs along the electronics carrier 20 and is connected to the continuous conducting electrode after the electronics body 12 and the transducer assembly 14 have been joined. One possible way to connect the ground wire is shown in FIG. 2 of the Proudian, deceased et al. U.S. Patent 4,917,097.
The transducer elements 22 are enclosed by a matching layer 46. As explained in Biomedical Ultrasonics. by P.N.T. Wells, Academic Press 1977, at page 54, the efficiency of transmission into the load may be increased by an impedance matching layer of quarter wavelength thickness. In the presently preferred embodiment the matching layer 46 comprises a loaded epoxy and is approximately 0.06 mm. thick. Alternative appropriate matching layer materials and their thicknesses will be apparent to those of ordinary skill in the art of ultrasonic imaging. After independent construction, the electronics body 12 and the transducer assembly 14 are bonded together by a layer of glue 52 and the electrical connections between the electronics body 12 and the transducer assembly 14 are electrically coupled in a manner previously described. The cable 28 containing the leads from the signal processor for the ultrasound catheter (previously described in the Proudian et al. '097 patent) are bonded to the conductive pads 34 on the carrier 20 in a known manner.
FIG. 6 shows an alternative embodiment of the present invention, wherein the imaging device 10 is included in a diagnostic imaging catheter that does not contain a balloon 1. Portions of the diagnostic imaging catheter have been removed to reveal the cable 28 and the lumen 2. Since there is no balloon 1 in the imaging catheter shown in FIG. 6, there is of course no tube 26 for filling and draining a fluid from the balloon. Instead, the catheter is fitted with a nose cone 25. The nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to the walls of a cavity as the catheter is inserted. A sheath 38 covers the epoxy resin 8 thereby guarding against contamination of a patient's blood and possibly electrical shock. The sheath 38 is preferably constructed of parylene, though other suitable substitutes will be known to those skilled in the art of medical instruments that are inserted within a body. The structure of the imaging catheter shown in FIG. 6 is otherwise unchanged from the structure of the balloon angioplasty ultrasound imaging catheter illustrated in FIG. 1.
Though the preferred embodiment of the present invention contains a transducer array configured as a cylinder about a cylindrical core, there are numerous other configurations of ultrasound catheters that embody the present invention. Examples of such configurations are shown in FIGS. 7 and 8. Other configurations of transducer arrays for an ultrasound catheter will be known to those skilled in the art in view of the present description of this invention.
FIGS. 7A and 7B illustrate side and cross-sectional views of a side-looking linear array imaging catheter. In this arrangement the transducer elements 22 are arranged in a plane and perpendicular to the direction of insertion of the imaging catheter. This arrangement provides an image along the length of a cavity. In this alternative embodiment of the present invention, the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention. Furthermore, in accordance with the present invention, the IC's 18 are mounted upon an electronics carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1. The IC's are electrically coupled to the transducer elements 22 by conductor lines 30. The backing material for the transducer elements 22 forms the encapsulant 8 in this case.
FIGS. 8A, 8B and 8C illustrate side, forward, and top cross-sectional views of a forward-looking "endfire" imaging catheter shown in FIG. 1. In FIGS. 8A, 8B and 8C the encapsulant 8, which is also the backing material for the transducers 22, has been partially removed to reveal the placement and orientation of the electronics portion. In this arrangement the transducer elements 22 are arranged as a planar array mounted upon the leading face of the catheter. The guide wire lumen 4 is mounted adjacent the ultrasonic imaging device. The diameter of the guide wire lumen 4 is approximately 0.3 mm or about one-third the diameter of the imaging catheter.
This arrangement provides a forward looking view of a cavity. The dimensions of the field of view are determined by the size of the array, the number of elements, the element dimensions and frequency. In this alternative embodiment of the present invention, the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention. Furthermore, in accordance with the present invention, the IC's 18 are mounted upon a carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1. The IC's are electrically coupled to the transducer elements 22 by conductor lines 30. The encapsulant 8 may form the backing material for the transducer elements 22.
It will be appreciated by those skilled in the art that modifications to the foregoing preferred embodiment may be made in various aspects. The present invention is set forth with particularity in the appended claims. It is deemed that the spirit and scope of that invention encompasses such modifications and alterations to the preferred embodiment as would be apparent to one of ordinary skill in the art and familiar with the teaching of the present application.

Claims

WHAT IS CLAIMED IS :
1. An imaging device for insertion into a cavity and emitting ultrasonic acoustic waves and providing a usable image in accordance with detected reflected ultrasonic acoustic waves, said imaging device comprising: a multi-sectioned body for insertion into the cavity; a transducer assembly, mounted upon a first section of the multi-sectioned body, including an array of transducers for transmitting ultrasonic acoustic waves into the cavity and generating first electrical signals in response to the reflections of the ultrasonic acoustic waves received by the transducers; electronic signal conversion means, mounted upon a second section of the multi-sectioned body proximate to and physically distinct from the first section, for receiving the first electrical signals from the array of transducers and converting the first electrical signals to second electrical signals transmitted via a cable connecting the multi-sectioned body to an environment external of the cavity and including at least one signal channel for transporting the second electrical signals; and means for communicating the first electrical signals from the array of transducers to the electronic signal conversion means.
2. The imaging device of claim 1 wherein the first section and the second section are adjacently mounted upon a guide wire lumen.
3. The imaging device of claim 1 wherein the first section comprises a backing material having a relatively low acoustic impedance.
4. The imaging device of claim 1 wherein the second section comprises a carrier material having a relatively low thermal expansion coefficient.
5. The imaging device of claim 1 wherein the transducer assembly includes a set of conducting electrodes bonded directly to the transducer layer for defining the transducer elements.
6. The imaging device of claim 1 wherein the transducer assembly includes a continuous layer conducting electrode bonded directly to the transducer material.
7. The imaging device of claim 1 wherein the transducer assembly includes a transducer array configured in a cylindrical shape.
8. The imaging device of claim 1 wherein the transducer assembly includes a transducer array configured in a planar shape.
9. The imaging device of claim 8 wherein the transducer array is disposed upon a side of the multi- sectioned body in order to provide a side-looking view within the cavity.
10. The imaging device of claim 8 wherein the transducer array is disposed upon a front of the multi- sectioned body in order to provide a forward-looking view within the cavity.
11. The imaging device of claim 1 further comprising a balloon section positioned proximate the imaging device.
12. The imaging device of claim 11 wherein the balloon is positioned at a portion of a catheter which is inserted ahead of the multi-sectioned body.
13. The imaging device of claim 1 wherein said transducer assembly includes a set of conducting electrodes extending beyond the transducer material for facilitating connection of the set of conducting electrodes to the means for communicating the first electrical signals.
14. The imaging device of claim 13 wherein said set of conducting electrodes overlap the means for communicating the first electrical signals to facilitate the use of a gap welder to fuse each of the conducting electrodes to a corresponding one of the conductor lines of the means for communicating the first electrical signal.
15. An ultrasound imaging catheter for insertion into a cavity and emitting ultrasonic acoustic waves and providing a usable image in accordance with detected reflected ultrasonic acoustic waves, said imaging catheter comprising: a shaft containing at least one lumen; and an imaging device mounted upon the shaft, said imaging device comprising: a multi-sectioned body for insertion into the cavity; a transducer assembly, mounted upon a first section of the multi-sectioned body, including an array of transducers for transmitting ultrasonic acoustic waves to the cavity and generating first electrical signals in response to ultrasonic acoustic waves received by the transducers; electronic signal conversion means, mounted upon a second section of the multi-sectioned body proximate to and physically distinct from the first section, for receiving the first electrical signals from the array of transducers and converting the first electrical signals to second electrical signals transmitted by a cable connecting the multi-sectioned body to an environment external of the cavity and including at least one signal channel for transporting the second electrical signals; and means for communicating the first electrical signals between the array of transducers and the electronic signal conversion means.
16. A method for assembling an ultrasound catheter having a multi-sectioned body comprising the steps: mounting upon a first section of the multi-sectioned body a transducer assembly including an array of transducers for transmitting ultrasonic acoustic waves to the cavity and generating first electrical signals in response to ultrasonic acoustic waves received by the transducers, said transducer assembly including a set of conducting electrodes extending beyond the array of transducers; mounting upon a second section of the multi-sectioned body an electronic signal conversion means for receiving the first electrical signals from the array of transducers and converting the first electrical signals to second electrical signals transmitted by a cable connecting the electronic signal conversion means to an environment external of the cavity and including at least one signal channel for transporting the second electrical signals; bringing the first and second sections in proximate position so that a portion of each of the conducting electrodes overlaps a corresponding one of a set of conductor lines communicatively connected to the electronic signal conversion means; and applying a localized electrical current source to each of the overlapped electrodes and conductor lines to fuse the lines.
17. The method of claim 16 wherein the applying step comprises applying localized electrical current to each of the overlapped electrodes by means of a gap welder.
PCT/US1994/000474 1993-02-01 1994-01-14 Ultrasound catheter WO1994017734A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51804094A JP3732854B2 (en) 1993-02-01 1994-01-14 Ultrasound catheter
EP94906070A EP0637937B1 (en) 1993-02-01 1994-01-14 Ultrasound catheter probe
DE69432448T DE69432448T2 (en) 1993-02-01 1994-01-14 ULTRASONIC CATHETER SENSOR
AT94906070T ATE236573T1 (en) 1993-02-01 1994-01-14 ULTRASONIC CATHETER SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/012,251 1993-02-01
US08/012,251 US5368037A (en) 1993-02-01 1993-02-01 Ultrasound catheter

Publications (2)

Publication Number Publication Date
WO1994017734A1 true WO1994017734A1 (en) 1994-08-18
WO1994017734B1 WO1994017734B1 (en) 1994-09-29

Family

ID=21754054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/000474 WO1994017734A1 (en) 1993-02-01 1994-01-14 Ultrasound catheter

Country Status (7)

Country Link
US (1) US5368037A (en)
EP (3) EP1327417B1 (en)
JP (3) JP3732854B2 (en)
AT (3) ATE216570T1 (en)
CA (2) CA2235947C (en)
DE (3) DE69430490T3 (en)
WO (1) WO1994017734A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287375A (en) * 1994-03-11 1995-09-13 Intravascular Res Ltd Ultrasonic transducer array and method manufacturing the same
GB2315020A (en) * 1996-07-11 1998-01-21 Intravascular Res Ltd Ultrasonic visualisation catheters
WO1999011325A1 (en) 1997-09-01 1999-03-11 Ali Hassan Ultrasound catheter with capability of side irradiation
EP1762182A1 (en) * 2004-06-10 2007-03-14 Olympus Corporation Electrostatic capacity type ultrasonic probe device
US7226417B1 (en) 1995-12-26 2007-06-05 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
EP1757230B1 (en) * 2001-07-31 2016-02-24 Koninklijke Philips N.V. Transesophageal and transnasal, transesophageal ultrasound imaging systems .
US9579494B2 (en) 2013-03-14 2017-02-28 Ekos Corporation Method and apparatus for drug delivery to a target site
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US10888657B2 (en) 2010-08-27 2021-01-12 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US10926074B2 (en) 2001-12-03 2021-02-23 Ekos Corporation Catheter with multiple ultrasound radiating members
CN113423326A (en) * 2019-02-05 2021-09-21 皇家飞利浦有限公司 Sensor with adapted housing
US11672553B2 (en) 2007-06-22 2023-06-13 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US11925367B2 (en) 2007-01-08 2024-03-12 Ekos Corporation Power parameters for ultrasonic catheter

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029671A (en) * 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US5453575A (en) 1993-02-01 1995-09-26 Endosonics Corporation Apparatus and method for detecting blood flow in intravascular ultrasonic imaging
US20070016071A1 (en) * 1993-02-01 2007-01-18 Volcano Corporation Ultrasound transducer assembly
US5488954A (en) * 1994-09-09 1996-02-06 Georgia Tech Research Corp. Ultrasonic transducer and method for using same
US5606975A (en) * 1994-09-19 1997-03-04 The Board Of Trustees Of The Leland Stanford Junior University Forward viewing ultrasonic imaging catheter
US8241217B2 (en) 1995-06-29 2012-08-14 Teratech Corporation Portable ultrasound imaging data
US5957846A (en) * 1995-06-29 1999-09-28 Teratech Corporation Portable ultrasound imaging system
US7500952B1 (en) 1995-06-29 2009-03-10 Teratech Corporation Portable ultrasound imaging system
US5590658A (en) * 1995-06-29 1997-01-07 Teratech Corporation Portable ultrasound imaging system
US5738100A (en) * 1995-06-30 1998-04-14 Terumo Kabushiki Kaisha Ultrasonic imaging catheter
US6117083A (en) * 1996-02-21 2000-09-12 The Whitaker Corporation Ultrasound imaging probe assembly
US6030346A (en) * 1996-02-21 2000-02-29 The Whitaker Corporation Ultrasound imaging probe assembly
EP0883860B1 (en) * 1996-02-29 2006-08-23 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US5733281A (en) * 1996-03-19 1998-03-31 American Ablation Co., Inc. Ultrasound and impedance feedback system for use with electrosurgical instruments
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US5857974A (en) 1997-01-08 1999-01-12 Endosonics Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US5795299A (en) * 1997-01-31 1998-08-18 Acuson Corporation Ultrasonic transducer assembly with extended flexible circuits
US5954654A (en) * 1997-01-31 1999-09-21 Acuson Corporation Steering mechanism and steering line for a catheter-mounted ultrasonic transducer
US5797848A (en) * 1997-01-31 1998-08-25 Acuson Corporation Ultrasonic transducer assembly with improved electrical interface
US5938616A (en) 1997-01-31 1999-08-17 Acuson Corporation Steering mechanism and steering line for a catheter-mounted ultrasonic transducer
US6464645B1 (en) 1997-01-31 2002-10-15 Acuson Corporation Ultrasonic transducer assembly controller
US5846205A (en) * 1997-01-31 1998-12-08 Acuson Corporation Catheter-mounted, phased-array ultrasound transducer with improved imaging
US5876345A (en) * 1997-02-27 1999-03-02 Acuson Corporation Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction
US6045508A (en) 1997-02-27 2000-04-04 Acuson Corporation Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction
US5921931A (en) 1997-04-08 1999-07-13 Endosonics Corporation Method and apparatus for creating a color blood flow image based upon ultrasonic echo signals received by an intravascular ultrasound imaging probe
JP3525700B2 (en) * 1997-09-24 2004-05-10 富士写真光機株式会社 Ultrasonic probe
US5876344A (en) * 1997-12-09 1999-03-02 Endosonics Corporation Modular imaging/treatment catheter assembly and method
US20050171478A1 (en) * 1998-01-13 2005-08-04 Selmon Matthew R. Catheter system for crossing total occlusions in vasculature
EP1059878B1 (en) 1998-03-05 2005-11-09 Gil M. Vardi Optical-acoustic imaging device
US6440102B1 (en) * 1998-07-23 2002-08-27 Durect Corporation Fluid transfer and diagnostic system for treating the inner ear
US6277077B1 (en) 1998-11-16 2001-08-21 Cardiac Pathways Corporation Catheter including ultrasound transducer with emissions attenuation
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
US6423002B1 (en) 1999-06-24 2002-07-23 Acuson Corporation Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool
US6457365B1 (en) * 2000-02-09 2002-10-01 Endosonics Corporation Method and apparatus for ultrasonic imaging
US20030060731A1 (en) * 2001-01-26 2003-03-27 Fleischhacker Mark G. Non-metallic guide wire
US6589182B1 (en) 2001-02-12 2003-07-08 Acuson Corporation Medical diagnostic ultrasound catheter with first and second tip portions
US7387612B2 (en) * 2001-03-28 2008-06-17 Cybersonics, Inc. Floating probe for ultrasonic transducers
ATE382444T1 (en) * 2001-03-28 2008-01-15 Cybersonics Inc PROBE FOR ULTRASONIC TRANSDUCERS
US6712767B2 (en) * 2002-08-29 2004-03-30 Volcano Therapeutics, Inc. Ultrasonic imaging devices and methods of fabrication
US20040054287A1 (en) * 2002-08-29 2004-03-18 Stephens Douglas Neil Ultrasonic imaging devices and methods of fabrication
US7245789B2 (en) 2002-10-07 2007-07-17 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
US7527591B2 (en) * 2003-11-21 2009-05-05 General Electric Company Ultrasound probe distributed beamformer
US7527592B2 (en) * 2003-11-21 2009-05-05 General Electric Company Ultrasound probe sub-aperture processing
US20050113698A1 (en) * 2003-11-21 2005-05-26 Kjell Kristoffersen Ultrasound probe transceiver circuitry
US7230368B2 (en) 2004-04-20 2007-06-12 Visualsonics Inc. Arrayed ultrasonic transducer
WO2006003606A2 (en) * 2004-06-29 2006-01-12 Koninklijke Philips Electronics, N.V. System simplification for an ultrasound-based perfusion detection system
EP1621135B1 (en) * 2004-07-29 2006-11-29 Fujinon Corporation Ultrasonic endoscope
US20070005011A1 (en) * 2005-06-20 2007-01-04 Boston Scientific Scimed, Inc. Method, system, apparatus, and kit for remote therapeutic delivery
JP5630958B2 (en) 2005-11-02 2014-11-26 ビジュアルソニックス インコーポレイテッド High frequency array ultrasound system
US7887488B2 (en) * 2005-11-12 2011-02-15 Scimed Life Systems, Inc. Systems and methods for reducing noise in an imaging catheter system
US7599588B2 (en) * 2005-11-22 2009-10-06 Vascular Imaging Corporation Optical imaging probe connector
US8303505B2 (en) 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US8840560B2 (en) * 2006-04-04 2014-09-23 Volcano Corporation Ultrasound catheter and hand-held device for manipulating a transducer on the catheter's distal end
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US20090183350A1 (en) * 2008-01-17 2009-07-23 Wetsco, Inc. Method for Ultrasound Probe Repair
GB2457240B (en) 2008-02-05 2013-04-10 Fujitsu Ltd Ultrasound probe device and method of operation
US9184369B2 (en) 2008-09-18 2015-11-10 Fujifilm Sonosite, Inc. Methods for manufacturing ultrasound transducers and other components
US9173047B2 (en) 2008-09-18 2015-10-27 Fujifilm Sonosite, Inc. Methods for manufacturing ultrasound transducers and other components
CN103811366B (en) 2008-09-18 2017-04-12 富士胶卷视声公司 Methods For Manufacturing Ultrasound Transducers And Other Components
US8560048B2 (en) 2008-10-02 2013-10-15 Vascular Imaging Corporation Optical ultrasound receiver
US20100228130A1 (en) * 2009-03-09 2010-09-09 Teratech Corporation Portable ultrasound imaging system
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
CN102793568B (en) * 2011-05-23 2014-12-10 香港理工大学 Annular-array ultrasonic endoscope probe, preparation method thereof and fixing rotating device
US9295447B2 (en) 2011-08-17 2016-03-29 Volcano Corporation Systems and methods for identifying vascular borders
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9164084B2 (en) 2012-01-31 2015-10-20 Purdue Research Foundation Methods for determining aggressiveness of a cancer and treatment thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
JP2015532536A (en) 2012-10-05 2015-11-09 デイビッド ウェルフォード, System and method for amplifying light
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
JP6322210B2 (en) 2012-12-13 2018-05-09 ボルケーノ コーポレイション Devices, systems, and methods for targeted intubation
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
WO2014099797A2 (en) * 2012-12-20 2014-06-26 Jeremy Stigall Catheter assembly with a shortened tip
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
JP2016504589A (en) 2012-12-20 2016-02-12 ナサニエル ジェイ. ケンプ, Optical coherence tomography system reconfigurable between different imaging modes
EP2934282B1 (en) 2012-12-20 2020-04-29 Volcano Corporation Locating intravascular images
JP2016508757A (en) 2012-12-21 2016-03-24 ジェイソン スペンサー, System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9615878B2 (en) 2012-12-21 2017-04-11 Volcano Corporation Device, system, and method for imaging and tissue characterization of ablated tissue
JP2016502884A (en) 2012-12-21 2016-02-01 ダグラス メイヤー, Rotating ultrasound imaging catheter with extended catheter body telescope
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
WO2014100579A1 (en) 2012-12-21 2014-06-26 David Anderson Functional gain measurement technique and representation
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014099867A1 (en) * 2012-12-21 2014-06-26 Paul Hoseit Imaging catheter for imaging from within balloon
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
WO2014099896A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
US20140257107A1 (en) * 2012-12-28 2014-09-11 Volcano Corporation Transducer Assembly for an Imaging Device
CN105103163A (en) 2013-03-07 2015-11-25 火山公司 Multimodal segmentation in intravascular images
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
EP3895604A1 (en) 2013-03-12 2021-10-20 Collins, Donna Systems and methods for diagnosing coronary microvascular disease
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9278187B2 (en) * 2013-03-13 2016-03-08 Biosense Webster (Israel) Ltd. Method for making a low OHMIC pressure-contact electrical connection between split ring electrode and lead wire
CN105120759B (en) 2013-03-13 2018-02-23 火山公司 System and method for producing image from rotation intravascular ultrasound equipment
US9592027B2 (en) 2013-03-14 2017-03-14 Volcano Corporation System and method of adventitial tissue characterization
EP2967606B1 (en) 2013-03-14 2018-05-16 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10687832B2 (en) 2013-11-18 2020-06-23 Koninklijke Philips N.V. Methods and devices for thrombus dispersal
WO2015074032A1 (en) 2013-11-18 2015-05-21 Jeremy Stigall Guided thrombus dispersal catheter
EP3091906A4 (en) 2014-01-10 2017-01-11 Volcano Corporation Detecting endoleaks associated with aneurysm repair
US10575822B2 (en) 2014-01-10 2020-03-03 Philips Image Guided Therapy Corporation Detecting endoleaks associated with aneurysm repair
WO2015108942A1 (en) 2014-01-14 2015-07-23 Volcano Corporation Vascular access evaluation and treatment
CN105916457A (en) 2014-01-14 2016-08-31 火山公司 Devices and methods for forming vascular access
US11260160B2 (en) 2014-01-14 2022-03-01 Philips Image Guided Therapy Corporation Systems and methods for improving an AV access site
JP2017509366A (en) 2014-01-14 2017-04-06 ボルケーノ コーポレイション Catheter assembly for vascular access site creation
JP6389526B2 (en) 2014-01-14 2018-09-12 ボルケーノ コーポレイション System and method for assessing hemodialysis arteriovenous fistula maturation
US10874409B2 (en) 2014-01-14 2020-12-29 Philips Image Guided Therapy Corporation Methods and systems for clearing thrombus from a vascular access site
US20150289749A1 (en) 2014-04-11 2015-10-15 Volcano Corporation Imaging and treatment device
US11413017B2 (en) * 2014-04-28 2022-08-16 Philips Image Guided Therapy Corporation Pre-doped solid substrate for intravascular devices
EP3169249B1 (en) 2014-07-15 2018-11-28 Koninklijke Philips N.V. Devices for intrahepatic shunts
WO2016027198A1 (en) 2014-08-21 2016-02-25 Koninklijke Philips N.V. Device and methods for crossing occlusions
CN107530049B (en) 2015-02-20 2021-06-04 皇家飞利浦有限公司 Atherectomy device with imaging support
US10905394B2 (en) 2015-04-20 2021-02-02 Philips Image Guided Therapy Corporation Dual lumen diagnostic catheter
WO2017167886A1 (en) 2016-03-30 2017-10-05 Koninklijke Philips N.V. Conductive support member for intravascular imaging device and associated devices, systems, and methods
JP2019516477A (en) 2016-05-20 2019-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Patient stratification device and method for renal denaturation based on intravascular pressure and cross-sectional lumen measurement
US20210128105A1 (en) * 2017-01-12 2021-05-06 Koninklijke Philips N.V. Support members for connection of components in intraluminal devices, systems, and methods
EP4275609A3 (en) 2018-03-15 2024-04-03 Koninklijke Philips N.V. Variable intraluminal ultrasound transmit pulse generation and control devices, systems, and methods
JP2021528178A (en) 2018-06-27 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dynamic resource reconfiguration for patient interface module (PIM) in intraluminal medical ultrasound imaging
WO2020002179A1 (en) 2018-06-28 2020-01-02 Koninklijke Philips N.V. External targeted delivery of active therapeutic agents
WO2020002177A1 (en) 2018-06-28 2020-01-02 Koninklijke Philips N.V. Internal ultrasound assisted local therapeutic delivery
CN112788996A (en) 2018-10-04 2021-05-11 皇家飞利浦有限公司 Fluid flow detection for ultrasound imaging apparatus, systems, and methods
WO2021069216A1 (en) 2019-10-10 2021-04-15 Koninklijke Philips N.V. Vascular tissue characterization devices, systems, and methods
CN114554968A (en) 2019-10-17 2022-05-27 韦拉索恩股份有限公司 System and method for ultrasound scanning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009150A1 (en) * 1987-05-26 1988-12-01 Inter Therapy, Inc. Ultrasonic imaging array and balloon catheter assembly
US4917097A (en) * 1987-10-27 1990-04-17 Endosonics Corporation Apparatus and method for imaging small cavities

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755557A (en) * 1969-09-03 1971-03-01 Hoffmann La Roche BLOOD PRESSURE TESTING DEVICE
FR2173115B1 (en) * 1972-02-22 1977-09-02 Univ Erasmus
US3938502A (en) * 1972-02-22 1976-02-17 Nicolaas Bom Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves
JPS5918051B2 (en) * 1976-02-29 1984-04-25 三菱油化株式会社 catheter
JPS5921495B2 (en) * 1977-12-15 1984-05-21 株式会社豊田中央研究所 Capillary pressure gauge
JPS54149615A (en) * 1978-05-17 1979-11-24 Oki Electric Ind Co Ltd Production of ultrasonic oscillator of curved arrangement type
US4211949A (en) * 1978-11-08 1980-07-08 General Electric Company Wear plate for piezoelectric ultrasonic transducer arrays
US4237900A (en) * 1979-02-14 1980-12-09 Pacesetter Systems, Inc. Implantable calibration means and calibration method for an implantable body transducer
US4325257A (en) * 1980-02-20 1982-04-20 Kino Gordon S Real-time digital, synthetic-focus, acoustic imaging system
JPS57121400A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Ultrasonic probe
US4456013A (en) * 1981-09-08 1984-06-26 Brown University Research Foundation Catheter
US4582067A (en) * 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4576177A (en) * 1983-02-18 1986-03-18 Webster Wilton W Jr Catheter for removing arteriosclerotic plaque
US4505156A (en) * 1983-06-21 1985-03-19 Sound Products Company L.P. Method and apparatus for switching multi-element transducer arrays
US4589419A (en) * 1984-11-01 1986-05-20 University Of Iowa Research Foundation Catheter for treating arterial occlusion
US4641657A (en) * 1985-02-08 1987-02-10 University Patents, Inc. Probe swivel mechanism
US4665925A (en) * 1985-09-13 1987-05-19 Pfizer Hospital Products Group, Inc. Doppler catheter
US4671293A (en) * 1985-10-15 1987-06-09 North American Philips Corporation Biplane phased array for ultrasonic medical imaging
US4794931A (en) * 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US4771788A (en) * 1986-07-18 1988-09-20 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
US4771782A (en) * 1986-11-14 1988-09-20 Millar Instruments, Inc. Method and assembly for introducing multiple catheters into a biological vessel
US4817616A (en) * 1987-10-30 1989-04-04 Wayne State University Auto switch biplane prostate probe
GB2212267B (en) * 1987-11-11 1992-07-29 Circulation Res Ltd Methods and apparatus for the examination and treatment of internal organs
AU2928889A (en) * 1988-02-02 1989-08-25 Intra-Sonix, Inc. Ultrasonic transducer
US4951677A (en) * 1988-03-21 1990-08-28 Prutech Research And Development Partnership Ii Acoustic imaging catheter and the like
JP2502685B2 (en) * 1988-06-15 1996-05-29 松下電器産業株式会社 Ultrasonic probe manufacturing method
US5046503A (en) * 1989-04-26 1991-09-10 Advanced Cardiovascular Systems, Inc. Angioplasty autoperfusion catheter flow measurement method and apparatus
US5109861A (en) * 1989-04-28 1992-05-05 Thomas Jefferson University Intravascular, ultrasonic imaging catheters and methods for making same
US5117831A (en) * 1990-03-28 1992-06-02 Cardiovascular Imaging Systems, Inc. Vascular catheter having tandem imaging and dilatation components
JPH03280939A (en) * 1990-03-29 1991-12-11 Fujitsu Ltd Ultrasonic probe
US5167233A (en) * 1991-01-07 1992-12-01 Endosonics Corporation Dilating and imaging apparatus
US5199437A (en) * 1991-09-09 1993-04-06 Sensor Electronics, Inc. Ultrasonic imager
US5186177A (en) * 1991-12-05 1993-02-16 General Electric Company Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009150A1 (en) * 1987-05-26 1988-12-01 Inter Therapy, Inc. Ultrasonic imaging array and balloon catheter assembly
US4917097A (en) * 1987-10-27 1990-04-17 Endosonics Corporation Apparatus and method for imaging small cavities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. R. LOCKWOOD ET AL.: "A 45 TO 55 MHZ NEEDLE-BASED ULTRASOUND SYSTEM FOR INVASIVE IMAGING", ULTRASONIC IMAGING, vol. 15, no. 1, January 1993 (1993-01-01), DULUTH (US), pages 1 - 13, XP000369564 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110314A (en) * 1994-03-11 2000-08-29 Intravascular Research Limited Ultrasonic transducer array and method of manufacturing the same
GB2287375A (en) * 1994-03-11 1995-09-13 Intravascular Res Ltd Ultrasonic transducer array and method manufacturing the same
US6776763B2 (en) 1994-03-11 2004-08-17 Volcano Therapeutic, Inc. Ultrasonic transducer array and method of manufacturing the same
GB2287375B (en) * 1994-03-11 1998-04-15 Intravascular Res Ltd Ultrasonic transducer array and method of manufacturing the same
US6238347B1 (en) 1994-03-11 2001-05-29 Intravascular Research Limited Ultrasonic transducer array and method of manufacturing the same
US7226417B1 (en) 1995-12-26 2007-06-05 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US7846101B2 (en) 1995-12-26 2010-12-07 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US6283921B1 (en) 1996-07-11 2001-09-04 Intravascular Research Limited Ultrasonic visualization and catheters therefor
WO1998002096A1 (en) * 1996-07-11 1998-01-22 Intravascular Research Limited Ultrasonic visualisation and catheters therefor
GB2315020A (en) * 1996-07-11 1998-01-21 Intravascular Res Ltd Ultrasonic visualisation catheters
WO1999011325A1 (en) 1997-09-01 1999-03-11 Ali Hassan Ultrasound catheter with capability of side irradiation
EP1757230B1 (en) * 2001-07-31 2016-02-24 Koninklijke Philips N.V. Transesophageal and transnasal, transesophageal ultrasound imaging systems .
US10926074B2 (en) 2001-12-03 2021-02-23 Ekos Corporation Catheter with multiple ultrasound radiating members
EP1762182A4 (en) * 2004-06-10 2008-06-11 Olympus Corp Electrostatic capacity type ultrasonic probe device
US7892175B2 (en) 2004-06-10 2011-02-22 Olympus Corporation Capacitive ultrasonic probe device
EP1762182A1 (en) * 2004-06-10 2007-03-14 Olympus Corporation Electrostatic capacity type ultrasonic probe device
US11925367B2 (en) 2007-01-08 2024-03-12 Ekos Corporation Power parameters for ultrasonic catheter
US11672553B2 (en) 2007-06-22 2023-06-13 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US10888657B2 (en) 2010-08-27 2021-01-12 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US9579494B2 (en) 2013-03-14 2017-02-28 Ekos Corporation Method and apparatus for drug delivery to a target site
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US11740138B2 (en) 2015-06-10 2023-08-29 Ekos Corporation Ultrasound catheter
CN113423326A (en) * 2019-02-05 2021-09-21 皇家飞利浦有限公司 Sensor with adapted housing

Also Published As

Publication number Publication date
EP1327417A3 (en) 2003-09-10
JP2005342535A (en) 2005-12-15
DE69435314D1 (en) 2010-10-28
CA2235947A1 (en) 1994-08-18
EP0750883A1 (en) 1997-01-02
ATE481034T1 (en) 2010-10-15
CA2133475A1 (en) 1994-08-18
CA2235947C (en) 2003-01-07
JP3732854B2 (en) 2006-01-11
DE69432448D1 (en) 2003-05-15
JP2006055649A (en) 2006-03-02
EP0637937A1 (en) 1995-02-15
EP0637937B1 (en) 2003-04-09
EP0750883B2 (en) 2009-04-22
JPH07505820A (en) 1995-06-29
DE69430490D1 (en) 2002-05-29
ATE216570T1 (en) 2002-05-15
ATE236573T1 (en) 2003-04-15
DE69430490T2 (en) 2003-01-02
EP1327417B1 (en) 2010-09-15
US5368037A (en) 1994-11-29
EP0750883B1 (en) 2002-04-24
DE69432448T2 (en) 2004-03-04
DE69430490T3 (en) 2009-11-05
CA2133475C (en) 1998-07-14
EP1327417A2 (en) 2003-07-16
JP3831743B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US5368037A (en) Ultrasound catheter
US6123673A (en) Method of making an ultrasound transducer assembly
US20070016071A1 (en) Ultrasound transducer assembly
US7846101B2 (en) High resolution intravascular ultrasound transducer assembly having a flexible substrate
US6049958A (en) High resolution intravascular ultrasound transducer assembly having a flexible substrate and method for manufacture thereof
US4841977A (en) Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US5947905A (en) Ultrasound transducer array probe for intraluminal imaging catheter
US5109861A (en) Intravascular, ultrasonic imaging catheters and methods for making same
JPS60137200A (en) Ultrasonic probe
Piel Jr et al. Phased array transesophageal endoscope for pediatrics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2133475

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994906070

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994906070

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994906070

Country of ref document: EP