WO1995031220A1 - Contrast medium for magnetic resonance imaging - Google Patents

Contrast medium for magnetic resonance imaging Download PDF

Info

Publication number
WO1995031220A1
WO1995031220A1 PCT/JP1995/000894 JP9500894W WO9531220A1 WO 1995031220 A1 WO1995031220 A1 WO 1995031220A1 JP 9500894 W JP9500894 W JP 9500894W WO 9531220 A1 WO9531220 A1 WO 9531220A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
contrast agent
group
magnetic
polysaccharide
Prior art date
Application number
PCT/JP1995/000894
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Yagi
Junji Nakamura
Original Assignee
Otsuka Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co., Ltd. filed Critical Otsuka Pharmaceutical Co., Ltd.
Priority to AU24196/95A priority Critical patent/AU2419695A/en
Publication of WO1995031220A1 publication Critical patent/WO1995031220A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch

Definitions

  • the present invention relates to a magnetic resonance imaging (MRI) of a living body and a magnetic resonance contrast agent improved in its usefulness for diagnosis (hereinafter referred to as an MRI contrast agent), and particularly to an MRI contrast agent useful as an MR angiographic agent Agent.
  • MRI magnetic resonance imaging
  • an MRI contrast agent magnetic resonance contrast agent improved in its usefulness for diagnosis
  • Magnetic iron oxide fine particles having magnetism such as ferrite have attracted attention as MRI contrast agents because of their superparamagnetic properties.
  • magnetic iron oxide fine particles were hardly soluble as they were and had extremely high toxicity in intravenous administration, so that they could not be used for living bodies for medical purposes. Therefore, an MRI contrast agent in which magnetic iron oxide is coated with dextran or a dextran derivative is known.
  • magnetic iron oxide contrast agents such as "AM 1-25" manufactured by Advansed Magnetics Co., Ltd. exhibit superparamagnetic effects, and it has been known that coating with dextran reduces toxicity. I have.
  • dextran-based magnetic iron oxide contrast agents cannot stay in the circulatory system (vascular system) for a long time and are rapidly taken up by the liver or spleen.
  • the particle size is as large as 150 to 300 m, there are side effects such as hypotensive shock and allergic reaction.
  • hypotensive shock and allergic reaction For example, when an intravenous drip infusion is performed and an MRI image of the liver is taken one hour later, it is confirmed that a decrease in blood pressure, shock, and pulsation occurs during that time, and in some cases, death may occur.
  • the conventional contrast agent simply coats magnetic iron oxide with dextran, so that the bond between iron oxide and dextran is weak, and therefore, it is easily dissociated in blood, and the stability during heat sterilization is low.
  • the main object of the present invention is to enhance the signal intensity of intravascular blood flow, which is originally no signal on MR images, to image the blood flow, thereby enabling blood, heart, cerebral vascular system, abdominal vascular system,
  • An object of the present invention is to provide an MRI contrast agent that enables imaging of circulatory organs and organs such as lymphatic vessels, thereby facilitating diagnosis of lesions, and has high safety and stability.
  • Another object of the present invention is to provide a blood vessel which has a long residence time in a blood vessel, does not exude from a blood vessel to a tissue unlike conventional Gd-DTPA contrast agents, and makes the contrast between the blood vessel part and the tissue clear. It is to provide an MRI contrast agent for angiography.
  • the present inventors have conducted intensive research to solve the above-mentioned problems, and as a result, by using magnetic iron oxide fine particles as a core and coating this with a polysaccharide as an outer shell, MRI of cardiac and vascular systems, cine MR We have found the surprising fact that a T 1 -weighted image with the effect of increasing T 1 and decreasing T 2 in I is obtained.
  • the use of a polysaccharide having a specific functional group as a coating agent for the magnetic iron oxide fine particles increases the affinity of the iron oxide fine particles with water, which increases the biological affinity.
  • the adverse effects of long-term residence in blood vessels are reduced, the load on the living body is reduced, the safety is increased, and the specific functional groups of the outer polysaccharide are magnetic iron oxide fine particles. It shows high resilience and stability over a long period of time because it reacts with and binds tightly.
  • the present inventors have synthesized a magnetic iron oxide fine particle having an ultimate single domain structure, thereby producing a contrast agent for MRI in which fine particles having the property of a superparamagnetic material can be used as a strong paramagnetic material. succeeded in.
  • the NMR signal intensity is enhanced, and, for example, the heart, cerebral vascular system, abdominal vascular system, etc. can be imaged in white. Therefore, the MRI contrast agent of the present invention can be used as a T1 enhancer that enhances the T1 signal intensity by shortening the T1 relaxation time of a hydrogen atom in a living body.
  • iron oxide fine particles with a single domain structure have not existed. It was created for the first time.
  • the MRI contrast agent of the present invention has magnetic iron oxide fine particles having an average particle diameter of 2 to 20 nm and a single magnetic domain structure as a core, and the surface of the core is formed of a sulfone group (sulfate group), a ketone group, It is characterized by being coated with a polysaccharide having a functional group selected from the group consisting of an amino group, a carboxyl group and an alkyl group.
  • the MRI contrast agent of the present invention coats single-domain iron oxide fine particles with a polysaccharide, it is difficult for the fine particles to change over time together with the superparamagnetic effect, and is used for imaging heart and vascular organs with blood flow. That is, it can be suitably used as an MRI contrast agent for angiography.
  • the iron oxide fine particles are coated with the polysaccharide, problems of biological reactions and toxicity are solved, and affinity with blood and the like is further improved.
  • the MRI contrast agent of the present invention has an advantage in that absorption into organs such as the liver and spleen is delayed, so that it can stay in blood vessels for a long time.
  • the average particle size of the magnetic iron oxide fine particles used in the present invention is as fine as 2 to 20 nm, even if they stay in the blood vessel for a long time, there is no adverse effect such as a decrease in blood pressure and shock, and they are safe for living organisms. High in nature.
  • FIG. 1 is an explanatory diagram showing an MRI contrast agent of the present invention in which magnetic iron oxide fine particles are coated with a polysaccharide
  • FIG. 2 is a graph showing the magnetization curve of the chondroitin sulfate-monomagnetic iron oxide composite obtained in Production Example 1.
  • Fig. 3 is a transmission electron micrograph (TEM, magnification: 100,000 times) of the chondroitin sulfate-magnetic iron oxide complex obtained in Production Example 1.
  • Fig. 4 is a photograph showing MR angiography images near the heart and aorta of a rabbit taken under the same conditions using different contrast agents.
  • the right side of the photograph is an angiography image of the MRI contrast agent of the present invention, and the left side is an image. Shows an angiographic image of a conventional Gd-DTPA, respectively.
  • Examples of the magnetic iron oxide fine particles in the present invention include, for example, a general formula
  • M represents a divalent metal atom, and m is a number of 0 m 1.
  • Ferrite represented by Examples of the divalent metal atom include magnesium, calcium, manganese, iron, nickel, cobalt, copper, zinc, strontium, and barium.
  • M is a divalent magnetic iron oxide in the case of iron (e.g. magnetite F e 3 ⁇ 4, 7 - F e 2 0 3 , etc.) it is preferably used in the present invention.
  • the magnetic iron oxide fine particles in the present invention include those containing water of crystallization.
  • the magnetic iron oxide fine particles in the present invention have an average particle size of 2 to 20 nm, preferably 3 to 8 nm.
  • the single magnetic domain structure of the magnetic iron oxide fine particles refers to a structure having no magnetic domain wall and having only one magnetic domain like a normal magnetic material.
  • the reason for having no magnetic domain wall is that the average particle size of the magnetic iron oxide is extremely small to the molecular level as described above.
  • the residual magnetization shown in a typical magnetic hysteresis curve generated by the movement of the domain wall when an external magnetic field is applied as in a normal magnetic body does not appear (see the later-described embodiment).
  • the magnetic iron oxide fine particles having such a single magnetic domain structure act as a superparamagnetic substance or a strong paramagnetic substance, and thus can be suitably used as a T1 enhancer.
  • a water-soluble polysaccharide is preferable, and examples thereof include chondroitin 4-monosulfate, chondroitin 6-sulfate, hyaluronic acid, chitin, and heno.
  • examples include polysaccharides or mucopolysaccharides such as phosphorus, sialic acid, neuraminic acid, acetylhexosamine, inulin, agarose, dextransulfonic acid, and N-cetylglycosamine derivatives.
  • a sulfone group substituted, amino Moto ⁇ conversion, an alkyl group substituted or ketone group e.g., - CH 2 -C0-CH 2 CH 3,
  • a dextrin substituted with —CH 2 —0C0—N 2 or the like can also be suitably used.
  • alkyl group examples include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, a pentyl group and a hexyl group.
  • these polysaccharides have a number average molecular weight in the range of about 500 to 300,000, preferably about 1000 to 50,000, more preferably about 150 to 30,000. is there.
  • the polysaccharide may be used as a mixture with various oligosaccharides (such as glucose, maltose, lactose, cellobiose, maltotriose, and melibiose) and pullulan.
  • a function as a therapeutic agent can be imparted to the polysaccharide by containing various receptors having specificity for accumulation in abnormal cells such as tumor cells.
  • the receptor include, for example, various monoclonal antibodies, various proteins, and immune-related agents (immune cell activation and activation materials). This is useful, for example, in diagnosing and treating tumors, as well as inducing killer cells.
  • an aqueous sol consisting only of magnetic iron oxide fine particles is prepared and then reacted with a polysaccharide, and the first method is a one-step synthesis in the presence of the polysaccharide.
  • the first method is a one-step synthesis in the presence of the polysaccharide.
  • an aqueous bull made of only magnetic iron oxide fine particles is prepared.
  • the method for preparing the aqueous sol include a co-precipitation method with a zinc ion exchange resin method and the like.
  • ferrous and ferric salts are mixed at a molar ratio of 1: 3
  • To 2 About 0 includes in the order of one ratio and the 1-2 moles of aqueous, N a OH, then mixed as KOH, NH 4 ⁇ ⁇ 1 like base and a 11 is about 7 to 1 2, If necessary, heat and ripen.Then, the magnetic iron oxide formed is separated, washed with water, redispersed in water, and a mineral acid such as hydrochloric acid is added until the pH of the solution becomes about 1 to 3. A magnetic iron oxide aqueous solution can be obtained.
  • an about 0.1 to 2 mol aqueous solution containing a ferrous salt and a ferric salt in a molar ratio of about i: 2 is stirred into a strongly basic exchange resin slurry.
  • a mineral acid such as hydrochloric acid is added until the pH becomes about 1 to 3, and then the resin is filtered off to obtain a magnetic iron oxide aqueous solution. it can.
  • aqueous sols may be purified or reduced by filtration, ultrafiltration, centrifugation or the like as necessary.
  • the reaction between the aqueous magnetic iron oxide aqueous solution and the polysaccharide is usually performed by mixing these at a predetermined ratio and heating.
  • the ratio of the magnetic iron oxide aqueous sol to the polysaccharide is about 1 by weight. : 1 to 1: About 6 is sufficient.
  • the reaction may be carried out at a temperature from room temperature to about 120 ° C. for about 10 minutes to 10 hours, and usually, heating and refluxing for about 1 hour is sufficient.
  • the concentration of the magnetic iron oxide in the reaction solution is usually about 0.1 to 1 OwZv%, preferably about 1 to 5 w / v% as iron.
  • a purification operation for separating unreacted polysaccharides and low molecular weight compounds is performed by using a known means such as ultrafiltration to obtain an aqueous solution having a predetermined purity and concentration.
  • a solvent such as methanol, ethanol, or acetone is added to preferentially precipitate and precipitate the magnetic iron oxide fine particle-polysaccharide complex, which is separated, and then the precipitate is re-dissolved in water, and The mixture is dialyzed and, if necessary, concentrated under reduced pressure to obtain an aqueous solution of the above complex. Then, if necessary, centrifugation, filtration, pH adjustment and the like may be performed.
  • the MRI contrast agent of the present invention obtained by caulking has an average particle size of about 30 to 200 nm, and the magnetic iron oxide fine particles as the core have an average particle size of about 2 to 20 nm. These particle sizes are measured by the dynamic light scattering method.
  • the magnetization of the MRI contrast agent at 1 Tesla is usually in the range of about 20 to 150 emu / g of iron.
  • a second method for preparing the MRI contrast agent of the present invention comprises, in the presence of a polysaccharide having a specific functional group, a mixed aqueous solution of a ferrous salt of iron (III) and a salt of iron (III) and an aqueous solution of a base. These are mixed and reacted.
  • the order of adding the polysaccharide, the mixed iron salt aqueous solution and the base aqueous solution is not particularly limited.
  • the mixed iron salt aqueous solution is prepared by dissolving a ferrous salt and a ferric salt in a molar ratio of about 1: 4 to 3: 1, preferably about 1: 3 to 1: 1, in an aqueous medium.
  • the concentration of the aqueous iron salt solution is usually about 0.1 to 3 mol, preferably about 0.5 to 2 mol.
  • iron salts include salts with mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid.
  • the base include alkali metal hydroxides such as Na ⁇ H and K ⁇ H, and amines such as ammonium nitrate, triethylamine, and trimethylamine.If necessary, a mixture of two or more kinds may be used. You can.
  • the amount of polysaccharide used should be about 1 to 15 times, preferably 3 to 10 times, based on the weight of the iron salt used.
  • the mixture After adjusting the pH by adding a base or an acid as necessary, the mixture is heated at a temperature of about 60 to 120 ° C. for about ⁇ 0 to 5 hours, preferably for about 1 hour. The reaction is caused by flowing. The obtained reaction solution is purified in the same manner as in the first method, and if necessary, pH adjustment, concentration, and filtration are performed.
  • the particle size of the magnetic iron oxide fine particles to be generated is set to 2 to
  • the particle size of the formed composite can be controlled by adjusting the reaction time and the reaction temperature.
  • the ratio of the polysaccharide to the magnetic iron oxide fine particles is not particularly limited, but generally, the polysaccharide is about 0.1 to 5 parts by weight, preferably 0 to 5 parts by weight per 1 part by weight of iron in the magnetic iron oxide. It can be contained in the range of 2 to 3 parts by weight.
  • ferrous salt is used as another divalent metal salt such as magnesium, calcium, manganese, niggel, cobalt, copper, or the like. It can be replaced with one or more salts, such as zinc.
  • the polysaccharide and the magnetic iron oxide fine particles react with each other by the above-described method to form a compound bonded to each other.
  • it has a form in which magnetic iron oxide fine particles are used as a core, and the surface thereof is firmly covered with a polysaccharide. This means that, for example, when the reaction product is fractionated on a gel column, an elution peak is observed on the higher polymer side than the elution position of the polysaccharide, and both sugar and iron are detected by analyzing the force and the peak. ing.
  • T 1 relaxation ability of the MR I contrast agents of the invention one crotch about 2 ⁇ 5 0 (sec - mM) 1 , is good Mashiku is about 3 ⁇ 3 O (sec 'mM) _ 1.
  • the T2 mitigation capacity is generally about 3 ⁇
  • the MRI contrast agent of the present invention is used in the form of an aqueous sol.
  • concentration of the magnetic iron oxide fine particle-polysaccharide complex in the aqueous sol can be set as appropriate in consideration of the dosage to the living body, etc. Approximately 90 ax mol / ⁇ to 20 ⁇ mol (90 nmol / to 720 nmol / m), preferably about 180 / ⁇ to 360 mol / ⁇ is sufficient.
  • inorganic salts such as sodium chloride, monosaccharides such as glucose, sugar alcohols such as mannite, sorbitol, and organic acid salts such as acetate, lactate, citrate, and tartaric acid , A phosphate buffer, a Tris buffer and the like can be appropriately added.
  • the MRI contrast agent of the present invention uses magnetic iron oxide in the form of ultrafine particles, and the outer shell polysaccharide has a specific functional group. Accordingly, it can be used as a powerful paramagnetic T1 contrast agent.
  • the outer shell polysaccharide has an elastic structure in the form of hair balls or coils, and if it is elongated, it has a very long molecular structure. It is not easily degraded even in the living body and can exist as a saccharide in blood for a long time. That is, as shown in FIG. 1, the MRI contrast agent of the present invention has magnetic iron oxide fine particles 1 as a core, and a large number of polysaccharide chains 2 are firmly attached to the surface of the magnetic iron oxide fine particles 1 so as to cover the surface. Is bound to. Therefore, the iron oxide fine particles 1 and the polysaccharide chains 2 are not easily dissociated in blood, and can be present in blood for a long time.
  • the amount of the MRI contrast agent of the present invention is about 1-2 cc Zkg by intravenous administration in the case of an aqueous sol having an iron equivalent concentration of 180 to 360 mol ⁇ . Is appropriate.
  • a typical dose in terms of iron is about 5 ⁇ moI to 40 ⁇ / i, preferably about 10 mol Z ⁇ to 20 mol Z, in terms of iron.
  • Suitable administration methods include intravenous, intraarterial, intravesical, intramuscular, and subcutaneous injection and injection, but oral administration and intestinal administration are also possible.
  • the MRI contrast agent of the present invention has a characteristic that it stays in the bloodstream for a long time and is hardly absorbed by organs such as the liver and ⁇ , and can stay in the vasculature, which is a characteristic of the sugar agent, for a long time. That During recognition, polysaccharides surface sulfonic group is an outer shell by the presence of certain functional groups, such as (one S 0 3 H, sulphate group), a ketone group, a saccharification coalescing recognition of biological defense mechanisms And delay the decomposition and absorption of magnetic iron oxide.
  • MRI imaging can be suitably performed even for an organ that requires a relatively long time to reach the contrast agent, and that an examination time can be easily set.
  • Blood vessels are mainly targeted as organs to be imaged. Unlike conventional Gd-chelate contrast agents, they do not penetrate blood vessels and are suitable for enhancing contrast between blood vessels and surrounding tissues.
  • the liver, lymph vessels, brain, spleen, and digestive tract can be imaged.
  • the MRI contrast agent of the present invention has safety such as being able to inject a bolus intravenously without causing a decrease in blood pressure or shock.
  • the MRI contrast agent of the present invention can make the T1 relaxation ability larger than the T2 relaxation ability by making the particle size of magnetic iron oxide extremely fine to the size of the ultimate single domain fine particles.
  • the MRI contrast agent of the present invention is extremely effective in the latest equipment such as high-speed MRI imaging, and greatly facilitates the diagnosis of myocardial infarction, cerebral infarction, cancer and vascular lesions. The effect can be expected.
  • the MRI contrast agent of the present invention When the MRI contrast agent of the present invention is administered intravascularly, it can enhance the signal intensity of the vascular part in MR angiodara phylla and cause white contrast. It can also be used as a liver MRI contrast agent since it reduces the liver signal after a certain period of time after administration.
  • the MRI contrast agent of the present invention can be easily administered, has high stability as a preparation, and has high safety. Furthermore, the MRI contrast agent of the present invention has a long residence time in a blood vessel and has no exudation outside the blood vessel, so that the blood vessel can be contrasted and the examination time is long. Is easy to set.
  • the pH was adjusted to 11 by dropwise addition of 3 N sodium hydroxide with stirring. Then, 6N hydrochloric acid was added dropwise to adjust the pH to 6.9. In this state, the temperature of the solution was kept at 100 ° C., heated for 1 hour, and then cooled to 2 (TC, and then centrifuged at 3000 rpm for 30 minutes to separate a supernatant.
  • the magnetic measurement result of the obtained chondroitin sulfate monomagnetic iron oxide complex is shown.
  • a hysteresis curve was drawn using a sample vibrating magnetometer (VMS: Vibrating Sample magnetometer) manufactured by Toei Kogyo Co., Ltd., and the saturation magnetization was determined from this curve.
  • VMS Vibrating Sample magnetometer
  • As the measurement sample a sample (S1 to S5) randomly sampled from the fine powder particles obtained by drying the aqueous bull was used and packed in a measurement capsule, and the result was converted to the value per 1 g of the sample. did.
  • Iron oxide fine particles (S6) not coated with chondroitin sulfate were similarly measured and compared.
  • FIG. 2 shows the magnetization curves of the samples S1 to S5.
  • Table 1 shows the saturation magnetization of samples S1 to S6. table 1
  • FIG. 2 clearly shows that the resulting composite is a superparamagnetic material.
  • this magnetization curve follows the same locus with respect to the reversal of the external magnetic field, indicating that the obtained iron oxide fine particles have a single magnetic domain structure.
  • iron oxide fine particles having the same initial magnetization curve, demagnetization curve, and magnetization curve are considered to have no magnetic anisotropy while being a superparamagnetic material, and have no remanent magnetization and a low coercive force.
  • the particle size of the chondroitin sulfate-magnetic iron oxide complex was measured by a dynamic light scattering method using a dynamic light scattering light intensity system, and the particle size distribution was determined by histogram method analysis. The results are shown in Table 2.
  • Fig. 3 shows a transmission electron micrograph (TEM, magnification: ⁇ 1,000) of the chondroitin sulfate-monomagnetic iron oxide complex.
  • TEM transmission electron micrograph
  • the pH was adjusted to 11 by dropwise addition of 3 N sodium hydroxide with stirring. Then, 6 N hydrochloric acid was added dropwise to adjust the pH to 6.9. In this state, the solution was heated for 1.5 hours while keeping the temperature of the solution at 100, and then cooled to 14, and then centrifuged at 3000 rpm for 30 minutes to separate a supernatant. 310 ml of acetone was added to 400 ml of the supernatant, and centrifuged at 2000 rpm to obtain a precipitate of the complex. The precipitate was dissolved in 120 ml of water, adjusted to pH 8 with 3 N sodium hydroxide, and dialyzed with running water for about 15 hours.
  • Test example 1 in vivo MR imaging
  • Table 3 shows the T1-weighted image
  • Table 4 shows the signal intensity for each concentration when the proton density-weighted image was captured.
  • Test example 2 in vivo MR imaging
  • FIG. 4 shows an MR angiography image around the rabbit heart and aorta in comparison with the MRI contrast agent of the present invention and Gd-DTPA.
  • the right of the photograph is an image obtained by using the MRI contrast agent of the present invention (contrast agent obtained in Production Example 1), and the left is an image obtained by using a conventional Gd-DTPA (trade name: Magnepist, manufactured by Schering AG).
  • test conditions are as follows.
  • TR 40 ms e c.
  • TE 10 ms e c.
  • the MRI contrast agent of the present invention can clearly display a blood vessel image that cannot be seen with a normal contrast agent, and its contribution to future medical treatment is immeasurable.

Abstract

A contrast medium for magnetic resonance imaging (MRI contrast medium) comprising fine magnetic iron oxide particles having an average particle diameter of 2-20 nm and the properties of a single magnetic domain as the core, with its surface being coated with a polysaccharide having functional groups selected from the group consisting of sulfone, ketone, amino, carboxyl and alkyl groups. When injected into the blood vessel in magnetic resonance angiography, this medium enhances the signal intensity of the blood vessel to thereby give a white image. It can be used also in the liver as the MRI contrast medium, because it can lower the signal intensity of the liver after the lapse of a given time from the injection. The medium is easy to inject and has high stability and safety as a pharmaceutical preparation. In addition, it can reside in the blood vessel for long and does not exude therefrom, so that it enables contrast enhancement in the blood vessel and facilitates the setting of a proper inspection time.

Description

明細書  Specification
磁気共鳴造影剤  Magnetic resonance contrast agent
技術分野  Technical field
本発明は、 生体の磁気共鳴イメージング (MR I ) およびそれによる診断への 有用性を改善した磁気共鳴造影剤 (以下、 MR I造影剤という) に関し、 とくに MR血管造影剤として有用な MR I造影剤に関する。  The present invention relates to a magnetic resonance imaging (MRI) of a living body and a magnetic resonance contrast agent improved in its usefulness for diagnosis (hereinafter referred to as an MRI contrast agent), and particularly to an MRI contrast agent useful as an MR angiographic agent Agent.
背景技術  Background art
フェライトなどの磁性を有する磁性酸化鉄微粒子は超常磁性の性質を有するた め、 MR I造影剤として注目されている。  Magnetic iron oxide fine particles having magnetism such as ferrite have attracted attention as MRI contrast agents because of their superparamagnetic properties.
しかし、 通常の磁性酸化鉄微粒子は、 MR Iにおけるスピン—格子緩和時間 ( 以下、 T 1という) に比べてスピン—スピン緩和時間 (以下、 T 2という) が極 めて大きく、 緩和の収束に時間を要するため、 酸化鉄微粒子が存在する領域の局 所磁場が攪乱して信号強度が低下し、 画像の欠落が起こったり周辺臓器の画像が 黒くなり、 診断が困難になることがあった。  However, ordinary magnetic iron oxide fine particles have a much larger spin-spin relaxation time (hereinafter, referred to as T2) than the spin-lattice relaxation time (hereinafter, referred to as T1) in MRI, and converge on relaxation. Because of the time required, the local magnetic field in the area where the iron oxide particles were present was disturbed, the signal intensity was reduced, and images were missing or the images of surrounding organs became black, making diagnosis difficult.
また、 磁性酸化鉄微粒子はそのままでは、 難溶性であり、 かつ静脈内投与にお ける毒性が極めて強いため、 医療用として生体に使用することができなかった。 そのため、 磁性酸化鉄をデキストランまたはデキストラン誘導体で被覆した M R I造影剤が知られている。 例えばァドバンスド ·マグネテックス社製の 「AM 1ー 2 5」 などの磁性酸化鉄造影剤は、 超常磁性の効果を発揮するもので、 デキ ストランで被覆することで毒性が低減することが知られている。  In addition, the magnetic iron oxide fine particles were hardly soluble as they were and had extremely high toxicity in intravenous administration, so that they could not be used for living bodies for medical purposes. Therefore, an MRI contrast agent in which magnetic iron oxide is coated with dextran or a dextran derivative is known. For example, magnetic iron oxide contrast agents such as "AM 1-25" manufactured by Advansed Magnetics Co., Ltd. exhibit superparamagnetic effects, and it has been known that coating with dextran reduces toxicity. I have.
しかしながら、 従来のデキストラン系磁性酸化鉄造影剤は、 体内循環系 (血管 系) に長く滞留することができず、 肝あるいは脾に急速に取り込まれる。 また、 粒径は 1 5 0〜3 0 0 mと大きいので、 低血圧ショック、 アレルギー反応など の副作用がある。 例えば、 点滴にて静脈内投与し、 1時間後に肝の MR I撮影を 行う場合、 その間に血圧低下、 ショック、 脈動低下などが起こることが確認され 、 場合によっては死に至ることもある。 また、 従来の造影剤は、 単に磁性酸化鉄 をデキストランで被覆し'ただけであるため、 酸化鉄とデキストランとの結合が弱 く、 そのため血液中で解離しやすく、 加熱滅菌時における安定性や経時安定性も 悪かった。 また、 従来の磁性酸化鉄系造影剤は、 血液中から肝、 脾などの臓器に速やかに 吸収されて、 血管中に長く滞在できないため、 MR I血管造影剤として使用する ことは非常に困難であった。 However, conventional dextran-based magnetic iron oxide contrast agents cannot stay in the circulatory system (vascular system) for a long time and are rapidly taken up by the liver or spleen. In addition, since the particle size is as large as 150 to 300 m, there are side effects such as hypotensive shock and allergic reaction. For example, when an intravenous drip infusion is performed and an MRI image of the liver is taken one hour later, it is confirmed that a decrease in blood pressure, shock, and pulsation occurs during that time, and in some cases, death may occur. In addition, the conventional contrast agent simply coats magnetic iron oxide with dextran, so that the bond between iron oxide and dextran is weak, and therefore, it is easily dissociated in blood, and the stability during heat sterilization is low. The stability over time was also poor. In addition, conventional magnetic iron oxide contrast agents are rapidly absorbed from blood into organs such as the liver and spleen and cannot stay in blood vessels for a long time, making it very difficult to use them as MRI angiography agents. there were.
本発明の主たる目的は、 元来 MR画像上で無信号である血管内血流の信号強度 を増強させて、 血流を画像化することで、 血液、 心臓、 脳血管系、 腹部血管系、 リンパ管等の循環器, 臓器の撮像を可能とし、 それによつて病変部の診断を容易 に行えると共に、 高い安全性と安定性を有する MR I造影剤を提供することであ 。  The main object of the present invention is to enhance the signal intensity of intravascular blood flow, which is originally no signal on MR images, to image the blood flow, thereby enabling blood, heart, cerebral vascular system, abdominal vascular system, An object of the present invention is to provide an MRI contrast agent that enables imaging of circulatory organs and organs such as lymphatic vessels, thereby facilitating diagnosis of lesions, and has high safety and stability.
本発明の他の目的は、 血管内での滞在時間が長く、 従来の G d— D T P A造影 剤のように血管から組織への滲み出しがなく、 血管部と組織とのコントラストを 鲜明にする血管造影 (angiography)用の MR I造影剤を提供することである。  Another object of the present invention is to provide a blood vessel which has a long residence time in a blood vessel, does not exude from a blood vessel to a tissue unlike conventional Gd-DTPA contrast agents, and makes the contrast between the blood vessel part and the tissue clear. It is to provide an MRI contrast agent for angiography.
発明の開示  Disclosure of the invention
本発明者らは、 上記課題を解決すべく鋭意研究を重ねた結果、 磁性酸化鉄微粒 子をコアとし、 これを外殻となる多糖で被覆することにより、 心臓 ·血管系の M R I、 シネ MR Iにおいて T 1を大きくし、 T 2を小さくする効果を有する T 1 強調画像が得られるという驚くべき事実を見い出した。 また製剤化にあたり、 磁 性酸化鉄微拉子のコーティング剤として特定の官能基を有する多糖類を使用する ことにより、 酸化鉄微粒子の水との親和性が増大し、 これが生体内親和性を上げ 、 血管内での長期滞留による弊害が緩和されると共に、 生体への負荷が軽減され 、 安全性の高いものになり、 しかも外殻となる多糖類が有する特定の官能基が磁 性酸化鉄微粒子と反応して強固に結合するため、 長期間にわたつて高レ、安定性を 示す。  The present inventors have conducted intensive research to solve the above-mentioned problems, and as a result, by using magnetic iron oxide fine particles as a core and coating this with a polysaccharide as an outer shell, MRI of cardiac and vascular systems, cine MR We have found the surprising fact that a T 1 -weighted image with the effect of increasing T 1 and decreasing T 2 in I is obtained. In addition, in the formulation, the use of a polysaccharide having a specific functional group as a coating agent for the magnetic iron oxide fine particles increases the affinity of the iron oxide fine particles with water, which increases the biological affinity. The adverse effects of long-term residence in blood vessels are reduced, the load on the living body is reduced, the safety is increased, and the specific functional groups of the outer polysaccharide are magnetic iron oxide fine particles. It shows high resilience and stability over a long period of time because it reacts with and binds tightly.
特に、 本発明者らは、 究極の単磁区構造を有する磁性酸化鉄微粒子を合成する ことにより、 超常磁性体の性質を有する微粒子を強力な常磁性体として使用でき る MR I用造影剤の製造に成功した。 この磁性酸化鉄微粒子の存在する領域では NMR信号強度が増強され、 例えば心臓, 脳血管系, 腹部血管系などを白く造影 させることができる。 従って、 本発明の MR I造影剤は、 生体内で水素原子の T 1緩和時間を短縮させて T 1信号強度を強調する T 1強調剤として使用可能であ る。 単磁区の構造を有する酸化鉄微粒子は従来存在せず、 今回 MR I用造影剤と して初めて作成されたものである。 In particular, the present inventors have synthesized a magnetic iron oxide fine particle having an ultimate single domain structure, thereby producing a contrast agent for MRI in which fine particles having the property of a superparamagnetic material can be used as a strong paramagnetic material. succeeded in. In the region where the magnetic iron oxide fine particles are present, the NMR signal intensity is enhanced, and, for example, the heart, cerebral vascular system, abdominal vascular system, etc. can be imaged in white. Therefore, the MRI contrast agent of the present invention can be used as a T1 enhancer that enhances the T1 signal intensity by shortening the T1 relaxation time of a hydrogen atom in a living body. Conventionally, iron oxide fine particles with a single domain structure have not existed. It was created for the first time.
すなわち、 本発明の MR I造影剤は、 平均粒径が 2〜2 0 n mで単磁区構造を 有する磁性酸化鉄微粒子をコアとし、 このコアの表面を、 スルホン基 (硫酸基) 、 ケトン基、 アミノ基、 カルボキシル基およびアルキル基からなる群から選ばれ る官能基を有する多糖類で被覆したことを特徵とする。  That is, the MRI contrast agent of the present invention has magnetic iron oxide fine particles having an average particle diameter of 2 to 20 nm and a single magnetic domain structure as a core, and the surface of the core is formed of a sulfone group (sulfate group), a ketone group, It is characterized by being coated with a polysaccharide having a functional group selected from the group consisting of an amino group, a carboxyl group and an alkyl group.
すなわち、 本発明の MR I造影剤は、 単磁区酸化鉄微粒子を多糖で被覆してい るため、 超常磁性効果と共に微粒子の経時変化がおこりにくく、 血流を伴う心臓 , 血管系の臓器の造影、 すなわち血管造影用の MR I造影剤として好適に使用で さる。  That is, since the MRI contrast agent of the present invention coats single-domain iron oxide fine particles with a polysaccharide, it is difficult for the fine particles to change over time together with the superparamagnetic effect, and is used for imaging heart and vascular organs with blood flow. That is, it can be suitably used as an MRI contrast agent for angiography.
また、 酸化鉄微粒子を多糖で被覆しているため、 生体反応や毒性の問題が解決 され、 さらに血液などとの親和性が向上する。 し力、も、 本発明の MR I造影剤は 、 肝、 脾などの臓器への吸収が遅延されることで、 血管内に長く滞在できるとい う利点がある。 さらに、 本発明で使用する磁性酸化鉄微粒子の平均粒径は 2〜2 0 n mと極微細であるため、 血管内に長く滞在しても、 血圧低下、 ショックなど の弊害がなく、 生体に対する安全性が高い。  In addition, since the iron oxide fine particles are coated with the polysaccharide, problems of biological reactions and toxicity are solved, and affinity with blood and the like is further improved. In addition, the MRI contrast agent of the present invention has an advantage in that absorption into organs such as the liver and spleen is delayed, so that it can stay in blood vessels for a long time. Furthermore, since the average particle size of the magnetic iron oxide fine particles used in the present invention is as fine as 2 to 20 nm, even if they stay in the blood vessel for a long time, there is no adverse effect such as a decrease in blood pressure and shock, and they are safe for living organisms. High in nature.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は磁性酸化鉄微粒子を多糖類で被覆した本発明の MR I造影剤を示す説明 図であり、  FIG. 1 is an explanatory diagram showing an MRI contrast agent of the present invention in which magnetic iron oxide fine particles are coated with a polysaccharide,
図 2は製造例 1で得たコンドロィチン硫酸一磁性酸化鉄複合体の磁化曲線を示 すグラフであり、  FIG. 2 is a graph showing the magnetization curve of the chondroitin sulfate-monomagnetic iron oxide composite obtained in Production Example 1.
図 3は製造例 1で得たコンドロイチン硫酸一磁性酸化鉄複合体の透過電子顕微 鏡写真 (T EM、 倍率: 1 0 0 0倍) であり、  Fig. 3 is a transmission electron micrograph (TEM, magnification: 100,000 times) of the chondroitin sulfate-magnetic iron oxide complex obtained in Production Example 1.
図 4は異なる造影剤を用いて同一条件下で撮像した兎の心臓および大動脈付近 の MRアンギオグラフィー像を示す写真であり、 写真右側が本発明の MR I造影 剤によるアンギオグラフィ一像を、 左側が従来の G d— DT P Aによるアンギオ グラフィ一像をそれぞれ示している。  Fig. 4 is a photograph showing MR angiography images near the heart and aorta of a rabbit taken under the same conditions using different contrast agents.The right side of the photograph is an angiography image of the MRI contrast agent of the present invention, and the left side is an image. Shows an angiographic image of a conventional Gd-DTPA, respectively.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明における磁性酸化鉄微粒子としては、 例えば一般式:  Examples of the magnetic iron oxide fine particles in the present invention include, for example, a general formula
(MO) m · F e 23 (式中、 Mは 2価の金属原子を表し、 mは 0 m 1の数である。 ) (MO) m · F e 23 (In the formula, M represents a divalent metal atom, and m is a number of 0 m 1.)
で表されるフェライトがあげられる。 2価の金属原子としては、 例えばマグネシ ゥ厶、 カルシウム、 マンガン、 鉄、 ニッケル、 コバルト、 銅、 亜鉛、 ストロンチ ゥム、 バリウム等があげられる。 とくに Mが 2価の鉄である場合の磁性酸化鉄 ( 例えばマグネタイト F e 34 、 7 - F e 2 0 3 など) も本発明において好適に 使用される。 なお、 本発明における磁性酸化鉄微粒子には結晶水を含むものも包 含される。 Ferrite represented by Examples of the divalent metal atom include magnesium, calcium, manganese, iron, nickel, cobalt, copper, zinc, strontium, and barium. Especially M is a divalent magnetic iron oxide in the case of iron (e.g. magnetite F e 3 4, 7 - F e 2 0 3 , etc.) it is preferably used in the present invention. The magnetic iron oxide fine particles in the present invention include those containing water of crystallization.
本発明における磁性酸化鉄微粒子は平均粒径が 2〜 2 0 n m、 好ましくは 3〜 8 n mである。  The magnetic iron oxide fine particles in the present invention have an average particle size of 2 to 20 nm, preferably 3 to 8 nm.
上記磁性酸化鉄微粒子が有する単磁区構造とは、 通常の磁性体のような磁壁を 有しない、 唯一の磁区を有する構造をいう。 このように磁壁を有しない理由は、 上記のように磁性酸化鉄の平均粒径が分子レベルにまで極微小であるためである 。 このような単磁区構造では、 通常の磁性体のように外部磁場を受けたときに磁 壁が移動することによってできる代表的な磁気ヒステリシスカーブにみられる残 留磁化は現れない (後述の実施例における図 2を参照) 。 従って、 このような単 磁区構造を有する磁性酸化鉄微粒子は超常磁性体として、 あるいは強力な常磁性 体として作用するので、 T 1強調剤として好適に使用できる。  The single magnetic domain structure of the magnetic iron oxide fine particles refers to a structure having no magnetic domain wall and having only one magnetic domain like a normal magnetic material. The reason for having no magnetic domain wall is that the average particle size of the magnetic iron oxide is extremely small to the molecular level as described above. In such a single-domain structure, the residual magnetization shown in a typical magnetic hysteresis curve generated by the movement of the domain wall when an external magnetic field is applied as in a normal magnetic body does not appear (see the later-described embodiment). In Figure 2). Accordingly, the magnetic iron oxide fine particles having such a single magnetic domain structure act as a superparamagnetic substance or a strong paramagnetic substance, and thus can be suitably used as a T1 enhancer.
本発明における特定の官能基を有する多糖類としては、 水溶性のものが好まし く、 例えばコンドロイチン 4一硫酸、 コンドロイチン 6—硫酸、 ヒアルロン酸、 キチン、 へノ、。リン、 シアル酸、 ノィラミ ン酸、 ァセチルへキソサミン、 ィヌリン 、 ァガロース、 デキストランスルホン酸、 N—了セチルグリコサミン誘導体など の多糖類または厶コ多糖類があげられる。 さらに、 スルホン基置換、 アミノ基置 換、 アルキル基置換あるいはケトン基 (例えば- CH2-C0-CH2CH3As the polysaccharide having a specific functional group in the present invention, a water-soluble polysaccharide is preferable, and examples thereof include chondroitin 4-monosulfate, chondroitin 6-sulfate, hyaluronic acid, chitin, and heno. Examples include polysaccharides or mucopolysaccharides such as phosphorus, sialic acid, neuraminic acid, acetylhexosamine, inulin, agarose, dextransulfonic acid, and N-cetylglycosamine derivatives. Furthermore, a sulfone group substituted, amino Moto置conversion, an alkyl group substituted or ketone group (e.g., - CH 2 -C0-CH 2 CH 3,
-CH2-0C0-N2 など) が置換したデキストリンも好適に使用可能である。 A dextrin substituted with —CH 2 —0C0—N 2 or the like can also be suitably used.
前記アルキル基としては、 例えばメチル基、 ェチル基、 プロピル基、 イソプロ ピル基、 n-ブチル基、 t-ブチル基、 ペンチル基、 へキシル基などの炭素 1〜6の アルキル基があげられる。  Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, a pentyl group and a hexyl group.
これらの多糖類は、 数平均分子量が約 5 0 0〜 3 0万、 好ましくは約 1 0 0 0 〜5万、 より好ましくは約 1 5 0 0〜 3万の範囲内にあるのが適当である。 また 、 多糖類を各種オリゴ糖 (グルコース、 マルト一ス、 ラクトース、 セロビオース 、 マルトトリオース、 メリビオースなど) 、 プルランなどと混合して使用しても よい 0 Suitably, these polysaccharides have a number average molecular weight in the range of about 500 to 300,000, preferably about 1000 to 50,000, more preferably about 150 to 30,000. is there. Also The polysaccharide may be used as a mixture with various oligosaccharides (such as glucose, maltose, lactose, cellobiose, maltotriose, and melibiose) and pullulan.
また、 多糖類に、 腫癌などの異常細胞への集積特異性を有する種々のレセプタ 一を含有させて治療剤としての機能も付与できる。 前記レセプ夕一としては、 例 えば種々のモノクロナール抗体、 種々の蛋白、 免疫関連剤 (免疫細胞賦活、 活性 化材料) があげられる。 これにより、 例えば 腫瘍の診断、 治療に役立つほか、 キラー細胞誘導効果もある。  In addition, a function as a therapeutic agent can be imparted to the polysaccharide by containing various receptors having specificity for accumulation in abnormal cells such as tumor cells. Examples of the receptor include, for example, various monoclonal antibodies, various proteins, and immune-related agents (immune cell activation and activation materials). This is useful, for example, in diagnosing and treating tumors, as well as inducing killer cells.
本発明の MR I造影剤の製造には、 まず磁性酸化鉄微粒子のみからなる水性ゾ ルを調製しついで多糖類と反応させる第 1の方法と、 多糖類の存在下に一段階で 合成する第 2の方法とがある。  In the production of the MRI contrast agent of the present invention, first, an aqueous sol consisting only of magnetic iron oxide fine particles is prepared and then reacted with a polysaccharide, and the first method is a one-step synthesis in the presence of the polysaccharide. There are two ways.
第 1の方法では、 磁性酸化鉄微粒子のみからなる水性ブルを調製する。 この水 性ゾルの調製法にはアル力リ共沈法ゃィォン交換樹脂法などを例示することがで さる。  In the first method, an aqueous bull made of only magnetic iron oxide fine particles is prepared. Examples of the method for preparing the aqueous sol include a co-precipitation method with a zinc ion exchange resin method and the like.
アルカリ共沈法では、 例えば第一鉄鉱酸塩と第二鉄鉱酸塩とをモル比で 1 : 3 In the alkaline coprecipitation method, for example, ferrous and ferric salts are mixed at a molar ratio of 1: 3
〜2 : 1程度の比率で含む約 0 . 1〜2モルの水溶液と、 N a O H, K O H, NH4 〇^1等の塩基とを 11が約7〜1 2になるように混合し、 必要に応じて加 熱熟成し、 ついで生成した磁性酸化鉄を分離、 水洗した後、 水に再分散し、 塩酸 などの鉱酸を液の p Hが約 1〜 3になるまで加えることにより、 磁性酸化鉄水性 ブルを得ることができる。 To 2:. About 0 includes in the order of one ratio and the 1-2 moles of aqueous, N a OH, then mixed as KOH, NH 4 〇 ^ 1 like base and a 11 is about 7 to 1 2, If necessary, heat and ripen.Then, the magnetic iron oxide formed is separated, washed with water, redispersed in water, and a mineral acid such as hydrochloric acid is added until the pH of the solution becomes about 1 to 3. A magnetic iron oxide aqueous solution can be obtained.
一方、 イオン交換樹脂法では、 例えば第 1鉄塩と第二鉄塩とを約 i : 2のモル 比で含む約 0 . 1〜 2モルの水溶液を、 強塩基性交換樹脂スラリ一に攪拌下 p H を約 8〜 9に保ちながら添加した後、 塩酸などの鉱酸を p Hが約 1〜 3になるま で加え、 ついで樹脂をろ別することにより磁性酸化鉄水性ブルを得ることができ る。  On the other hand, in the ion-exchange resin method, for example, an about 0.1 to 2 mol aqueous solution containing a ferrous salt and a ferric salt in a molar ratio of about i: 2 is stirred into a strongly basic exchange resin slurry. After the addition while maintaining the pH at about 8 to 9, a mineral acid such as hydrochloric acid is added until the pH becomes about 1 to 3, and then the resin is filtered off to obtain a magnetic iron oxide aqueous solution. it can.
これらの水性ゾルは、 必要に応じて透折、 限外ろ過、 遠心分離などにより精製 または^縮してもよい。  These aqueous sols may be purified or reduced by filtration, ultrafiltration, centrifugation or the like as necessary.
磁性酸化鉄水性ブルと多糖類との反応は、 通常これらを所定比で混合し、 加熱 することにより行われる。 磁性酸化鉄水性ゾルと多糖類との割合は重量比で約 1 : 1〜1 : 6程度でよい。 反応は、 室温ないし約 1 2 0 °Cの温度で 1 0分〜 1 0 時間程度行えばよく、 通常は約 1時間程度加熱還流すれば十分である。 反応液中 の磁性酸化鉄の濃度は、 通常、 鉄として約 0 . 1〜1 O wZ v %、 好ましくは約 1〜5 w/v %の範囲であるのが適当である。 The reaction between the aqueous magnetic iron oxide aqueous solution and the polysaccharide is usually performed by mixing these at a predetermined ratio and heating. The ratio of the magnetic iron oxide aqueous sol to the polysaccharide is about 1 by weight. : 1 to 1: About 6 is sufficient. The reaction may be carried out at a temperature from room temperature to about 120 ° C. for about 10 minutes to 10 hours, and usually, heating and refluxing for about 1 hour is sufficient. The concentration of the magnetic iron oxide in the reaction solution is usually about 0.1 to 1 OwZv%, preferably about 1 to 5 w / v% as iron.
反応後、 限外ろ過などの公知の手段を用いて、 未反応の多糖類や低分子化合物 を分離する精製操作を行い、 所定の純度および濃度を有する水性ブルを得る。 こ れに、 メタノール、 エタノール、 アセトンなどの溶媒を添加し、 磁性酸化鉄微粒 子—多糖類複合体を優先的に沈澱析出させ、 これを分離し、 ついで析出物を水に 再溶解し、 流水透析し、 必要に応じて減圧濃縮し、 上記複合体の水性ブルを得る 。 ついで、 必要に応じて、 遠心分離、 ろ過、 p H調整などを行ってもよい。 かぐして得られる本発明の MR I造影剤は、 平均粒径が約 3 0〜2 0 0 n mで あり、 コアである磁性酸化鉄微粒子は約 2〜 2 0 n mの平均粒径を有する。 これ らの粒径は動的光散乱法により測定される。 また、 MR I造影剤の 1テスラにお ける磁化は通常鉄 1 gあたり約 2 0〜1 5 0 e m uの範囲内にある。  After the reaction, a purification operation for separating unreacted polysaccharides and low molecular weight compounds is performed by using a known means such as ultrafiltration to obtain an aqueous solution having a predetermined purity and concentration. To this, a solvent such as methanol, ethanol, or acetone is added to preferentially precipitate and precipitate the magnetic iron oxide fine particle-polysaccharide complex, which is separated, and then the precipitate is re-dissolved in water, and The mixture is dialyzed and, if necessary, concentrated under reduced pressure to obtain an aqueous solution of the above complex. Then, if necessary, centrifugation, filtration, pH adjustment and the like may be performed. The MRI contrast agent of the present invention obtained by caulking has an average particle size of about 30 to 200 nm, and the magnetic iron oxide fine particles as the core have an average particle size of about 2 to 20 nm. These particle sizes are measured by the dynamic light scattering method. The magnetization of the MRI contrast agent at 1 Tesla is usually in the range of about 20 to 150 emu / g of iron.
本発明の MR I造影剤を調製する第 2の方法は、 特定の官能基を有する多糖類 の存在下に、 2価鉄鉱酸塩および 3価鉄鉱酸塩の混合鉄塩水溶液と塩基水溶液と を混合して反応させるものである。 多糖類、 混合鉄塩水溶液および塩基水溶液の 添加順序はとくに限定されるものではない。  A second method for preparing the MRI contrast agent of the present invention comprises, in the presence of a polysaccharide having a specific functional group, a mixed aqueous solution of a ferrous salt of iron (III) and a salt of iron (III) and an aqueous solution of a base. These are mixed and reacted. The order of adding the polysaccharide, the mixed iron salt aqueous solution and the base aqueous solution is not particularly limited.
前記混合鉄塩水溶液は、 第 1鉄塩と第 2鉄塩とをモル比で約 1 : 4〜3 : 1、 好ましくは約 1 : 3〜1 : 1の割合で水性媒体中に溶解することにより得ること ができる。 鉄塩水溶液の濃度は、 通常約 0 . 1〜3モル、 好ましくは約 0 . 5〜 2モルであるのが適当である。  The mixed iron salt aqueous solution is prepared by dissolving a ferrous salt and a ferric salt in a molar ratio of about 1: 4 to 3: 1, preferably about 1: 3 to 1: 1, in an aqueous medium. Can be obtained by: The concentration of the aqueous iron salt solution is usually about 0.1 to 3 mol, preferably about 0.5 to 2 mol.
鉄塩としては、 例えば塩酸、 硫酸、 硝酸などの鉱酸との塩をあげることができ る。 また、 塩基としては、 N a〇H, K〇H等のアルカリ金属水酸化物、 アンモ 二了、 トリェチルァミン、 トリメチルァミン等のアミン類などがあげられ、 必要 により 2種以上を混合して使用してもよレ、。  Examples of iron salts include salts with mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid. Examples of the base include alkali metal hydroxides such as Na〇H and K〇H, and amines such as ammonium nitrate, triethylamine, and trimethylamine.If necessary, a mixture of two or more kinds may be used. You can.
使用する多糖類の量は、 用いる鉄塩の重量を基準にして約 1〜1 5倍、 好まし くは 3〜1 0倍とするのがよい。  The amount of polysaccharide used should be about 1 to 15 times, preferably 3 to 10 times, based on the weight of the iron salt used.
各水溶液の添加および混合は、 攪拌下に室温から約 1 0 0 °Cまでの加熱下に行 ― i― The addition and mixing of each aqueous solution is performed while heating from room temperature to about 100 ° C with stirring. ― I―
うことができ、 必要に応じて塩基または酸を添加して p Hを調整したのち、 約 6 0〜 1 2 0 °Cの温度で約〖 0分ないし 5時間、 好ましくは約 1時間加熱還流す ることにより反応させる。 得られた反応液は前記第 1の方法と同様に精製し、 必 要ならば p H調整、 濃縮、 さらにろ過を行う。 After adjusting the pH by adding a base or an acid as necessary, the mixture is heated at a temperature of about 60 to 120 ° C. for about 分 0 to 5 hours, preferably for about 1 hour. The reaction is caused by flowing. The obtained reaction solution is purified in the same manner as in the first method, and if necessary, pH adjustment, concentration, and filtration are performed.
これらの方法において、 生成される磁性酸化鉄微粒子の粒径を前記した 2〜 In these methods, the particle size of the magnetic iron oxide fine particles to be generated is set to 2 to
2 0 n mの範囲内に調節するためには、 以下の合成条件を満たす必要がある。To adjust within the range of 20 nm, the following synthesis conditions must be satisfied.
(1) 高温、 高 p H下で塩化第一鉄と塩化第二鉄とを反応させて水溶液とする。(1) Ferrous chloride and ferric chloride are reacted at high temperature and high pH to form an aqueous solution.
(2) 多糖類は高 p H下で添加し、 高温を保ったまま p Hを急速に下げる。 (2) Polysaccharides are added at a high pH, and the pH is rapidly lowered while maintaining a high temperature.
(3) 酸化防止のために反応は不活性ガス (アルゴンなど) の雰囲気下で行う。 (4) 粗大粒子を遠心分離により除去する。  (3) Perform the reaction in an inert gas (eg, argon) atmosphere to prevent oxidation. (4) Remove coarse particles by centrifugation.
(5) メンブランフィルターで粒径を調整する。  (5) Adjust the particle size with a membrane filter.
(6) 純水中で透析を少なくとも 2 0時間行う。  (6) Perform dialysis in pure water for at least 20 hours.
また、 生成される複合体の粒径は、 反応時間および反応温度を調整することに より制御可能である。  Further, the particle size of the formed composite can be controlled by adjusting the reaction time and the reaction temperature.
前記多糖類と磁性酸化鉄微粒子との比率はとくに限定されるものではないが、 一般には磁性酸化鉄中の鉄 1重量部あたり多糖類が約 0 . 1〜 5重量部、 好まし くは 0 . 2〜 3重量部の範囲内で含有することができる。  The ratio of the polysaccharide to the magnetic iron oxide fine particles is not particularly limited, but generally, the polysaccharide is about 0.1 to 5 parts by weight, preferably 0 to 5 parts by weight per 1 part by weight of iron in the magnetic iron oxide. It can be contained in the range of 2 to 3 parts by weight.
なお、 第 1および第 2の方法のいずれの方法によるときも、 第 1鉄塩の 5 0モ ル%以下を他の 2価金属塩、 例えばマグネシウム、 カルシウム、 マンガン、 ニッ ゲル、 コバルト、 銅、 亜鉛などの 1種または 2種以上の塩で置き換えることがで さる。  In any of the first and second methods, 50 mol% or less of the ferrous salt is used as another divalent metal salt such as magnesium, calcium, manganese, niggel, cobalt, copper, or the like. It can be replaced with one or more salts, such as zinc.
前記多糖類と磁性酸化鉄微粒子とは、 上記の方法によって反応し、 相互に結合 した化合物となる。 具体的には磁性酸化鉄微粒子をコアとし、 その表面を多糖類 が強固に被覆した形態を有する。 このことは、 例えば反応生成物をゲルカラムで 分画すると、 多糖類の溶出位置よりも高分子側に溶出ピークが認められ、 力、つそ のピークの分折により糖および鉄の両方が検出されている。  The polysaccharide and the magnetic iron oxide fine particles react with each other by the above-described method to form a compound bonded to each other. Specifically, it has a form in which magnetic iron oxide fine particles are used as a core, and the surface thereof is firmly covered with a polysaccharide. This means that, for example, when the reaction product is fractionated on a gel column, an elution peak is observed on the higher polymer side than the elution position of the polysaccharide, and both sugar and iron are detected by analyzing the force and the peak. ing.
本発明の MR I造影剤の T 1緩和能力は、 一股に約 2〜5 0 (sec - mM) 1、 好 ましくは約 3〜3 O (sec ' mM) _ 1である。 また、 T 2緩和能力は、 一般に約 3〜T 1 relaxation ability of the MR I contrast agents of the invention, one crotch about 2~5 0 (sec - mM) 1 , is good Mashiku is about 3~3 O (sec 'mM) _ 1. In addition, the T2 mitigation capacity is generally about 3 ~
3 0 O (sec - m ) 好ましくは約 6〜3 0 (sec · mM) である。 本発明の MR I造影剤は水性ゾルの形態で使用するのが好ましい。 水性ゾル中 の磁性酸化鉄微粒子一多糖複合体の濃度は生体への投与量などを考慮して適宜設 定できる力 後述のように極微量で常磁性的効果を発揮することから、 通常鉄換 算で約 9 0 a x mol / ^〜了 2 0 ^mol ( 9 0 nmol / 〜 7 2 0 nmol / m ヽ 好ましくは約 1 8 0 /^〜3 6 0 mol / ^で十分である。 また、 水性ゾルの調製に際しては、 例えば塩化ナトリウムなどの無機塩、 ブドウ 糖などの単糖類、 、 マンニッ ト、 ソルビトールなどの糖アルコール類、 酢酸塩、 乳酸塩、 クェン酸塩、 酒石酸などの有機酸塩、 リン酸緩衝剤、 トリス緩衝剤など を適宜添加することができる。 30 O (sec-m), preferably about 6 to 30 (sec · mM). Preferably, the MRI contrast agent of the present invention is used in the form of an aqueous sol. The concentration of the magnetic iron oxide fine particle-polysaccharide complex in the aqueous sol can be set as appropriate in consideration of the dosage to the living body, etc. Approximately 90 ax mol / ^ to 20 ^ mol (90 nmol / to 720 nmol / m), preferably about 180 / ^ to 360 mol / ^ is sufficient. In preparing the aqueous sol, for example, inorganic salts such as sodium chloride, monosaccharides such as glucose, sugar alcohols such as mannite, sorbitol, and organic acid salts such as acetate, lactate, citrate, and tartaric acid , A phosphate buffer, a Tris buffer and the like can be appropriately added.
本発明の MR I造影剤は、 磁性酸化鉄を超微粒子状で使用すると共に、 外殻と なる多糖類が特定の官能基を有することによって、 表在的には超常磁性材料とし ての効果を伴って、 強力な常磁性 T 1造影剤として使用が可能となる。  The MRI contrast agent of the present invention uses magnetic iron oxide in the form of ultrafine particles, and the outer shell polysaccharide has a specific functional group. Accordingly, it can be used as a powerful paramagnetic T1 contrast agent.
また、 電子顕微鏡観察によれば、 外殻となる多糖類は毛鞠状ないしはコイル状 の塊となった弾性体構造を持ち、 引き延ばせば非常に長い分子構造となっている こと力、ら、 生体内においても分解されにく く、 血液中に糖剤として長く存在でき る。 すなわち、 本発明の MR I造影剤は、 図 1に示すように、 磁性酸化鉄微粒子 1をコアとし、 その表面を被覆するように多数の多糖類鎖 2が磁性酸化鉄微粒子 1の表面に強固に結合している。 そのため、 酸化鉄微粒子 1 と多糖類鎖 2とは血 液中でも解離しにくく、 血液中に長く存在できる。  According to electron microscopic observation, the outer shell polysaccharide has an elastic structure in the form of hair balls or coils, and if it is elongated, it has a very long molecular structure. It is not easily degraded even in the living body and can exist as a saccharide in blood for a long time. That is, as shown in FIG. 1, the MRI contrast agent of the present invention has magnetic iron oxide fine particles 1 as a core, and a large number of polysaccharide chains 2 are firmly attached to the surface of the magnetic iron oxide fine particles 1 so as to cover the surface. Is bound to. Therefore, the iron oxide fine particles 1 and the polysaccharide chains 2 are not easily dissociated in blood, and can be present in blood for a long time.
従って、 極微量の投与で常磁性的効果が発現され、 血管造影剤として、 あるい は T 1組織緩和造影剤として好適に使用できる。 従って、 本発明の MR I造影剤 の使用量は、 鉄換算濃度が 1 8 0 mol ノ^〜 3 6 0 mol ^の水性ゾル の場合、 静脈内投与で約 1〜2 c c Zk gであるのが適当である。 鉄換算での一 般の投与量は、 鉄換算で約 5 ^moI ~ 4 0 \ / i、 好ましくは約 1 0 mol Z^〜2 0 mol Z である。  Therefore, a paramagnetic effect is exhibited by administration of a very small amount, and it can be suitably used as a blood vessel contrast agent or a T1 tissue relaxation contrast agent. Therefore, the amount of the MRI contrast agent of the present invention is about 1-2 cc Zkg by intravenous administration in the case of an aqueous sol having an iron equivalent concentration of 180 to 360 mol ^. Is appropriate. A typical dose in terms of iron is about 5 ^ moI to 40 \ / i, preferably about 10 mol Z ^ to 20 mol Z, in terms of iron.
投与方法としては、 静脈内、 動脈内、 膀胱内、 筋肉内、 皮下などへの注射、 注 入などが好適であるが、 経口投与、 腸内投与なども可能である。  Suitable administration methods include intravenous, intraarterial, intravesical, intramuscular, and subcutaneous injection and injection, but oral administration and intestinal administration are also possible.
本発明の MR I造影剤は、 血流中に長く滞留して肝、 陴などの臓器に吸収され にく くなり、 糖剤の特徴である血管系に長く滞在できるという特質がある。 その 際、 外殻である多糖類の表面にはスルホン基 (一 S 03 H、 硫酸基) 、 ケトン基 などの特定の官能基が存在することによって、 生体の防御機構の認識を糖化合体 と認識させ、 磁性酸化鉄の分解吸収を遅延させる。 また、 磁性酸化鉄との反応に よる多糖類の外殻構造によっても、 生体内での分解吸収に比較的長い時間を要す ると推定される (例えば 結合の多糖類では酵素の関係で側鎖が切断されにくい ) 。 従って、 造影剤の到達までに比較的長時間を要する臓器に対しても MR I撮 影を好適に行いうると共に、 検査時間の設定も容易になるという利点がある。 な お、 撮影対象臓器としては、 血管が主に標的となる。 従来の G d—キレート造影 剤と異なり、 血管からの透過がなく、 血管と周辺組織のコントラスト強調に好適 である。 ほかに、 肝臓、 リンパ管、 脳、 脾臓、 消化管などについても造影可能で あ The MRI contrast agent of the present invention has a characteristic that it stays in the bloodstream for a long time and is hardly absorbed by organs such as the liver and 陴, and can stay in the vasculature, which is a characteristic of the sugar agent, for a long time. That During recognition, polysaccharides surface sulfonic group is an outer shell by the presence of certain functional groups, such as (one S 0 3 H, sulphate group), a ketone group, a saccharification coalescing recognition of biological defense mechanisms And delay the decomposition and absorption of magnetic iron oxide. In addition, it is estimated that a relatively long time is required for decomposition and absorption in vivo due to the outer shell structure of the polysaccharide due to the reaction with the magnetic iron oxide. The chains are not easily broken). Therefore, there is an advantage that MRI imaging can be suitably performed even for an organ that requires a relatively long time to reach the contrast agent, and that an examination time can be easily set. Blood vessels are mainly targeted as organs to be imaged. Unlike conventional Gd-chelate contrast agents, they do not penetrate blood vessels and are suitable for enhancing contrast between blood vessels and surrounding tissues. In addition, the liver, lymph vessels, brain, spleen, and digestive tract can be imaged.
その際、 本発明の MR I造影剤は、 血圧低下、 ショックなどを起こすことがな く、 ボーラス静注できる等の安全性を有する。  At that time, the MRI contrast agent of the present invention has safety such as being able to inject a bolus intravenously without causing a decrease in blood pressure or shock.
とくに、 本発明の MR I造影剤は磁性酸化鉄の粒径を究極の単磁区微粒子のサ ィズにまで極微粒子化することにより、 T 1緩和能力を T 2緩和能力よりも大き くできる。 その結果、 従来の磁性酸化鉄微粒子ではその造影が不可能であった循 環器 ·血管系などの造影において、 磁性酸化鉄微粒子の存在部位が高信号となり 、 その部位を白く撮影できるというすぐれた特質を有する。 従って、 本発明の M R I造影剤は、 高速 MR I撮像などの最新の機器において、 その効果は絶大であ り、 心筋硬塞、 脳硬塞、 癌、 血管病変などの病変の診断を著しく容易にするとい う効果が期待できる。  In particular, the MRI contrast agent of the present invention can make the T1 relaxation ability larger than the T2 relaxation ability by making the particle size of magnetic iron oxide extremely fine to the size of the ultimate single domain fine particles. As a result, in the imaging of the circulatory system and the vascular system, which could not be imaged with the conventional magnetic iron oxide fine particles, the presence site of the magnetic iron oxide fine particles becomes a high signal, and the region can be photographed in white. Has characteristics. Therefore, the MRI contrast agent of the present invention is extremely effective in the latest equipment such as high-speed MRI imaging, and greatly facilitates the diagnosis of myocardial infarction, cerebral infarction, cancer and vascular lesions. The effect can be expected.
産業上の利用可能性  Industrial applicability
本発明の MR I造影剤は、 血管内に投与されることにより、 MRアンギオダラ フィ一において血管部の信号強度を増強し白く造影させることができる。 また投 与後一定の時間がたてば肝臓の信号を低下させることから肝臓の MR I造影剤と しても使用することができる。  When the MRI contrast agent of the present invention is administered intravascularly, it can enhance the signal intensity of the vascular part in MR angiodara phylla and cause white contrast. It can also be used as a liver MRI contrast agent since it reduces the liver signal after a certain period of time after administration.
また、 本発明の MR I造影剤は、 投与が容易に行える上、 製剤としての高い安 定性を有し且つ.安全性が高い。 さらに本発明の MR I造影剤は、 血管内での滞在 時間が長く、 血管外への滲み出しがないため血管の造影が可能で、 かつ検査時間 の設定も容易である。 In addition, the MRI contrast agent of the present invention can be easily administered, has high stability as a preparation, and has high safety. Furthermore, the MRI contrast agent of the present invention has a long residence time in a blood vessel and has no exudation outside the blood vessel, so that the blood vessel can be contrasted and the examination time is long. Is easy to set.
実施例  Example
製造例 1 Production Example 1
(コンドロィチン硫酸一磁性酸化鉄複合体の製造)  (Production of chondroitin sulfate monomagnetic iron oxide composite)
29. 86 g0F e C l 3 · 6Η2 〇を蒸留水 80 m 1に溶解し、 A r置換を 1 0分間行った後、 Ar雰囲気下で F eC l 2 · 4Η2 〇を 5. 49 g添加し完 全に溶解させ、 80〜1 00°Cに加熱し反応を促進させた。 仕込んだ全鉄量は 0 . 1 3モルであり、 F e2+/F e3+は 1Z4であった。 29. 86 g0F e C a l 3 · 6Η 2 〇 was dissolved in distilled water 80 m 1, after A r substitution for 10 minutes, F under Ar eC l 2 · 4Η 2 〇 a 5. 49 g The solution was added and completely dissolved, and heated to 80 to 100 ° C. to accelerate the reaction. The total amount of iron charged was 0.13 mol, and Fe 2+ / Fe 3+ was 1Z4.
—方、 コンドロイチン硫酸 43 gを蒸留水 1 2 Om lに溶解した水溶液を Ar 雰囲気下で 80°Cまで加熱し、 上記塩化鉄溶液を一気に添加した。  On the other hand, an aqueous solution in which 43 g of chondroitin sulfate was dissolved in 12 Oml of distilled water was heated to 80 ° C under an Ar atmosphere, and the above iron chloride solution was added at a stretch.
温度を 80±5'Cに維持したまま、 攪拌下、 3 N水酸化ナトリウムを滴下して pHを 1 1に調整した。 ついで、 6N塩酸を滴下し、 pHを 6. 9に調整した。 この状態で、 溶液の温度を 1 00°Cに保ち 1時間加熱し、 ついで 2 (TCまで冷却 した後、 3000 r pmで 30分間遠心分離を行い、 上澄み液を分取した。  While maintaining the temperature at 80 ± 5′C, the pH was adjusted to 11 by dropwise addition of 3 N sodium hydroxide with stirring. Then, 6N hydrochloric acid was added dropwise to adjust the pH to 6.9. In this state, the temperature of the solution was kept at 100 ° C., heated for 1 hour, and then cooled to 2 (TC, and then centrifuged at 3000 rpm for 30 minutes to separate a supernatant.
この上澄み液 4 1 4mlにメタノール 262m lを添加し、 3000 r p mで 1 1分間遠心分離を行って、 複合体の沈澱物を得た。 この沈澱物を水 1 50ml に溶解し、 3 N水酸化ナトリウムにて pHを 8に調整し、 約 20時間流水透析を 行った。 透析液を pHを 3 N7]酸化ナトリウムにて 8に調整し、 減圧濃縮して、 コンドロィチン硫酸 -磁性酸化鉄複合体の水性ゾルを得た。  To 414 ml of the supernatant, 262 ml of methanol was added and centrifuged at 3000 rpm for 11 minutes to obtain a precipitate of the complex. This precipitate was dissolved in 150 ml of water, the pH was adjusted to 8 with 3N sodium hydroxide, and dialyzed with running water for about 20 hours. The dialysate was adjusted to pH 8 with 3N7] sodium oxide and concentrated under reduced pressure to obtain an aqueous sol of chondroitin sulfate-magnetic iron oxide complex.
得られたコンドロイチン硫酸一磁性酸化鉄複合体の磁気測定結果を示す。 測定 装置には東英工業㈱製試料振動型磁力計 (VMS : Vibrating Sample agnetome ter ) を使用してヒステリシス曲線を描き、 この曲線から飽和磁化を求めた。 測 定試料は上記水性ブルを乾燥し得られた粉末微粒子からランダムにサンプリング した試料 (S 1〜S 5) を測定用カプセルに詰めたものを使用し、 結果は試料 1 g当たりの値に換算した。 また、 コンドロイチン硫酸で被覆しない酸化鉄微粒子 (S 6) についても同様に測定を行い比較した。 試料 S 1〜S 5の磁化曲線を図 2に示す。 また、 試料 S 1〜S 6の飽和磁化を表 1に示す。 表 1 The magnetic measurement result of the obtained chondroitin sulfate monomagnetic iron oxide complex is shown. A hysteresis curve was drawn using a sample vibrating magnetometer (VMS: Vibrating Sample magnetometer) manufactured by Toei Kogyo Co., Ltd., and the saturation magnetization was determined from this curve. As the measurement sample, a sample (S1 to S5) randomly sampled from the fine powder particles obtained by drying the aqueous bull was used and packed in a measurement capsule, and the result was converted to the value per 1 g of the sample. did. Iron oxide fine particles (S6) not coated with chondroitin sulfate were similarly measured and compared. FIG. 2 shows the magnetization curves of the samples S1 to S5. Table 1 shows the saturation magnetization of samples S1 to S6. table 1
Figure imgf000013_0001
図 2は、 得られた複合体が超常磁性体であることを明瞭に示している。 すなわ ち、 この磁化曲線は外部磁界の反転に対して同一の軌跡を描くことから、 得られ た酸化鉄微粒子は単磁区構造を有することを示している。 具体的には、 初磁化曲 線、 減磁曲線および磁化曲線が同一である酸化鉄微粒子は、 超常磁性体でありな がら、 磁気異方性もないと考えられ、 残留磁化がなく保磁力は全く認められない また、 コンドロイチン硫酸—磁性酸化鉄複合体の粒子径を、 ダイナミック光散 乱光度系による動的光散乱法を用いて測定し、 ヒストグラム法解析により粒径分 布を求めた。 その結果を表 2に示す。
Figure imgf000013_0001
FIG. 2 clearly shows that the resulting composite is a superparamagnetic material. In other words, this magnetization curve follows the same locus with respect to the reversal of the external magnetic field, indicating that the obtained iron oxide fine particles have a single magnetic domain structure. Specifically, iron oxide fine particles having the same initial magnetization curve, demagnetization curve, and magnetization curve are considered to have no magnetic anisotropy while being a superparamagnetic material, and have no remanent magnetization and a low coercive force. Not observed at all In addition, the particle size of the chondroitin sulfate-magnetic iron oxide complex was measured by a dynamic light scattering method using a dynamic light scattering light intensity system, and the particle size distribution was determined by histogram method analysis. The results are shown in Table 2.
表 2 Table 2
Figure imgf000014_0001
また、 コンドロイチン硫酸一磁性酸化鉄複合体の透過電子顕微鏡写真 (TEM 、 倍率: 1 000倍) を図 3に示す。 同図において、 黒い塊のひとつひとつがコ ンドロイチン硫酸—磁性酸化鉄複合体を示している。
Figure imgf000014_0001
Fig. 3 shows a transmission electron micrograph (TEM, magnification: × 1,000) of the chondroitin sulfate-monomagnetic iron oxide complex. In the same figure, each black lump indicates a chondroitin sulfate-magnetic iron oxide complex.
上記水性ブルの分析結果を以下に示す。  The analysis results of the above aqueous bull are shown below.
鉄濃度: 3 1. 6mg/m 1  Iron concentration: 31.6mg / m1
コンドロイチン硫酸の濃度: 43. 5mg/m 1  Chondroitin sulfate concentration: 43.5mg / m1
pH: 7. 0  pH: 7.0
コアの平均粒径: 4. 1 nm  Average core particle size: 4.1 nm
1テスラにおける磁化( 1 0K) 2 1. 3 emu/1 g鉄  Magnetization at 1 Tesla (10K) 21.3 emu / 1 g iron
T 1緩和能力: 3. 3 (s e c ·πιΜ)  T 1 mitigation ability: 3.3 (s e c · πιΜ)
Τ2緩和能力: 6. 0 (s e c - mM) "  Τ2 Mitigation ability: 6.0 (sec-mM) "
全体の平均粒径: 42 nm  Overall average particle size: 42 nm
製造例 2 Production Example 2
(コンドロィチン硫酸一磁性酸化鉄複合体の製造) 29. 86 gの F eC 13 - 6H2 〇を蒸留水 8 Omlに溶 _解し、 A r置換を 10分間行った後、 Ar雰囲気下で FeC 12 · 4Η2 0を 5. 49 g添加し完 全に溶解させた。 仕込んだ全鉄量は 0. 1 3モルであり、 Fe2+ZFe3 +は 1Z 4であった。 (Production of chondroitin sulfate monomagnetic iron oxide composite) 29. 86 g of F eC 13 - 6H 2 〇 soluble _ construed in distilled water 8 OML a, after the A r substituted 10 minutes, 5. 49 g added FeC 1 2 · 4Η 2 0 under Ar And completely dissolved. All iron content were charged is 0.1 to 3 mol, Fe 2+ ZFe 3 + was 1Z 4.
—方、 コンドロイチン硫酸 43 gを蒸留水 120mlに溶解した水溶液を Ar 雰囲気下で 80°Cまで加熱し、 上記塩化鉄溶液を一気に添加した。  On the other hand, an aqueous solution in which 43 g of chondroitin sulfate was dissolved in 120 ml of distilled water was heated to 80 ° C under an Ar atmosphere, and the above iron chloride solution was added at a stretch.
温度を 80±5°Cに維持したまま、 攪拌下、 3 N水酸化ナトリウムを滴下して pHをl 1に調整した。 ついで、 6 N塩酸を滴下し、 pHを 6. 9に調整した。 この状態で、 溶液の温度を 100でに保ち1. 5時間加熱し、 ついで 14てまで 冷却した後、 3000 r pmで 30分間遠心分離を行い、 上澄み液を分取した。 この上澄み液 400mlにアセトン 310mlを添加し、 2000 r p mで遠 心分離を行って、 複合体の沈澱物を得た。 この沈澱物を水 120mlに溶解し、 3 N水酸化ナトリウムにて pHを 8に調整し、 約 1 5時間流水透析を行った。 透 析液の pHを 3 N水酸化ナトリウムにて 8に調整し、 ボアサイズが 0. 45 m のメンブランフィルターを用いてろ過し、 さらに減圧濃縮してコンドロイチン硫 酸一磁性酸化鉄複合体の水性ゾルを得た。 この水性ゾルの分析結果を以下に示す 鉄濃度: 56. 5mg/m 1  While maintaining the temperature at 80 ± 5 ° C, the pH was adjusted to 11 by dropwise addition of 3 N sodium hydroxide with stirring. Then, 6 N hydrochloric acid was added dropwise to adjust the pH to 6.9. In this state, the solution was heated for 1.5 hours while keeping the temperature of the solution at 100, and then cooled to 14, and then centrifuged at 3000 rpm for 30 minutes to separate a supernatant. 310 ml of acetone was added to 400 ml of the supernatant, and centrifuged at 2000 rpm to obtain a precipitate of the complex. The precipitate was dissolved in 120 ml of water, adjusted to pH 8 with 3 N sodium hydroxide, and dialyzed with running water for about 15 hours. The pH of the eluate was adjusted to 8 with 3 N sodium hydroxide, filtered through a 0.45 m membrane filter, concentrated under reduced pressure, and concentrated under reduced pressure to obtain an aqueous sol of chondroitin sulfate-magnetic iron oxide complex. I got The analysis results of this aqueous sol are shown below. Iron concentration: 56.5 mg / m 1
コンドロイチン硫酸の濃度: 71. 2mg/m 1  Chondroitin sulfate concentration: 71.2 mg / m 1
pH: 6. 9  pH: 6.9
コアの平均粒径: 6. 3 nm  Average core particle size: 6.3 nm
1テスラにおける磁化 (1 OK) : 32. 6 emuZl g鉄  Magnetization at 1 Tesla (1 OK): 32.6 emuZl g iron
T 1緩和能力: 4. 4 (s ec - mM)一'  T 1 relaxation ability: 4.4 (sec-mM)
T 2緩和能力: 9. 8 (s e c · mM) 一1 T 2 relaxation ability: 9. 8 (sec · mM) one 1
全体の平均粒径: 69 nm  Overall average particle size: 69 nm
試験例 1 (in vivo MR撮像) Test example 1 (in vivo MR imaging)
ラット (ウィスター種、 生後 3週間、 体重 300 g) の腹腔にネンブタール 0 . 25 c cを注射して麻酔後、 造影剤注入前の肝臓、 肾臓および筋肉部位につい てスピンエコー (Spin Echo)法を使用してアキシャル (体軸断) 方向にスライス 厚 3 mmで T 1強調画像 (繰り返し時間: 6 0 Oms、 エコー時間: 1 5 m s ) 、 T2強調画像 (繰り返し時間: 20 0 Oms、 エコー時間: 9 Oms) および プロトンデンシティ (PD)画像 (繰り返し時間: 20 0 Oms、 エコー時間: 1 5ms) を撮像し、 これをコントロール画像とした。 After anesthesia by injecting 0.25 cc of Nembutal into the abdominal cavity of a rat (Wistar, 3 weeks old, weighing 300 g), a spin echo (Spin Echo) method was performed on the liver, kidney and muscle site before injection of the contrast agent. Slice in axial direction 3 mm thick T1-weighted image (repetition time: 60 Oms, echo time: 15 ms), T2-weighted image (repetition time: 200 Oms, echo time: 9 Oms) and proton density (PD) image (repetition Time: 200 Oms, echo time: 15 ms) was taken as the control image.
ついで、 製造例 1で得た複合体 (造影剤) 0. 3 c c (濃度 1 3. 0 M) を 尾静脈へ投与後、 約 1 5〜3 0分の時間内に、 前記と同じスピンエコー法にて同 一断面、 同一スライス厚で T 1強調画像 (繰り返し時間: 60 0ms、 エコー時 間: 1 5ms) およびプロトン密度 (PD)画像 (繰り返し時間: 20 0 0 ms 、 エコー時間: 1 5ms) を撮像し、 造影剤投与前のコントロール画像との信号 強度の変化を比較した。 画像の信号強度の値は CRT (ディスプレイ) 画面の口 ィ (関心領域) を設定し、 その平均値を求めた。 その結果を表 3, 4に示す。 なお、 撮像装置として臨床用 MR装置 (シーメンス (S I E ENS)社の商 品名 「Magnetom」 、 静磁場強度: 1. 5 T) を使用した。  Then, after administering 0.3 cc (concentration: 13.0 M) of the complex (contrast agent) obtained in Production Example 1 to the tail vein, the same spin echo as described above was performed within about 15 to 30 minutes. T1-weighted image (repetition time: 600 ms, echo time: 15 ms) and proton density (PD) image (repetition time: 2000 ms, echo time: 15 ms) ) Was imaged, and the change in signal intensity was compared with the control image before administration of the contrast agent. The values of the signal strength of the image were set for the mouth (region of interest) on the CRT (display) screen, and the average value was calculated. Tables 3 and 4 show the results. A clinical MR device (Magnetom (trade name, SIEMENS), static magnetic field strength: 1.5 T) was used as the imaging device.
表 3は T 1強調像を、 表 4はプロトン密度強調像をそれぞれ撮像したときの濃 度ごとの信号強度を示している。  Table 3 shows the T1-weighted image, and Table 4 shows the signal intensity for each concentration when the proton density-weighted image was captured.
表 3 s ^ (τ ι: 6oo/i5.投与後 6 o分) コント Π-ル 10 mol/ g 20 mol/Kg 40卿 1/ g 80/zmol/Kg 血 液 462±34 686 ±40 876±37 1340±51 1301 ±52 肝 臓 646±38 418±46 375 ±41 242±50 215±68  Table 3 s ^ (τ ι: 6oo / i5. 6 minutes after administration) Control 10 mol / g 20 mol / Kg 40 Lord 1 / g 80 / zmol / Kg Blood 462 ± 34 686 ± 40 876 ± 37 1340 ± 51 1301 ± 52 Liver 646 ± 38 418 ± 46 375 ± 41 242 ± 50 215 ± 68
575±66 637±55 667±65 718±74 719±81  575 ± 66 637 ± 55 667 ± 65 718 ± 74 719 ± 81
516±48 624±46 597±49 π9±68 786±51 脾 臓 5 ±63 345 ±38 50は 37 316±62 269±89 骨格筋 394±54 431 ±35 380 ±33 413±38 427±40 心 筋 470±45 577±71 667±54 578±28 58は 16 表 4 ^sm^ . (プロトン密度: 2500/15.投与後 6 o分) 516 ± 48 624 ± 46 597 ± 49 π9 ± 68 786 ± 51 Spleen 5 ± 63 345 ± 38 50 is 37 316 ± 62 269 ± 89 Skeletal muscle 394 ± 54 431 ± 35 380 ± 33 413 ± 38 427 ± 40 heart Muscle 470 ± 45 577 ± 71 667 ± 54 578 ± 28 58 is 16 Table 4 ^ sm ^. (Proton density: 2500/15. 6 o min after administration)
Figure imgf000017_0001
Figure imgf000017_0001
表 3および表 4から、 Τ 1強調およびプロトン密度において血流及び血液の豊 富な腎皮質及び腎髄質の信号強度が増加し、 逆に肝臓においては信号が低下する のが認められる。 すなわち血管部の信号強度が増強された。 同様の効果は、 製造 例 2で得た複合体 (造影剤) 0. 4 C C (濃度 8. 8 Μ) を前記と同様にラッ 卜の尾静脈へ投与した場合にも得られた。 From Tables 3 and 4, it can be seen that the signal intensity of the renal cortex and renal medulla, which is rich in blood flow and blood, is increased at the Τ1-weighted and proton density, and conversely, the signal is decreased in the liver. That is, the signal intensity of the blood vessel was enhanced. A similar effect was obtained when the complex (contrast agent) 0.4 CC (concentration: 8.8 Μ) obtained in Production Example 2 was administered to the tail vein of a rat in the same manner as described above.
試験例 2 (in vivo MR撮像) Test example 2 (in vivo MR imaging)
図 4に兎の心臓および大動脈付近の MRアンギオグラフィ一像を、 本発明の M R I造影剤と Gd— DTP Aと比較して示す。 写真右が本発明の MR I造影剤 ( 製造例 1で得た造影剤) 、 左が従来の Gd— DTPA (シヱ一リング社製の商品 名マグネピスト) を用いて得た像である。  FIG. 4 shows an MR angiography image around the rabbit heart and aorta in comparison with the MRI contrast agent of the present invention and Gd-DTPA. The right of the photograph is an image obtained by using the MRI contrast agent of the present invention (contrast agent obtained in Production Example 1), and the left is an image obtained by using a conventional Gd-DTPA (trade name: Magnepist, manufactured by Schering AG).
試験条件は以下のとおりである。  The test conditions are as follows.
3D - FLASH s e qu e n c e,  3D-FLASH s e qu e n c e,
使用機種:シーメンス社製の Ma gn e t om 1. 5  Model used: Magnetom 1.5 made by Siemens
TR: 4 0ms e c. TE: 1 0ms e c. TR: 40 ms e c. TE: 10 ms e c.
f l i p a n g 1 e : 20 degr e e s  f l i p a n g 1 e: 20 degr e e s
図 4から明らかなように、 兎の心臓および大動脈付近の血管が明瞭に造影され ている。 従って、 本発明の MR I造影剤は、 通常の造影剤では見ることのできな い血管像を明瞭に映し出すことができるので、 将来の医療への貢献は計り知れな レ、。  As is evident from Fig. 4, the blood vessels near the rabbit heart and aorta are clearly imaged. Therefore, the MRI contrast agent of the present invention can clearly display a blood vessel image that cannot be seen with a normal contrast agent, and its contribution to future medical treatment is immeasurable.

Claims

請求の範囲 . The scope of the claims .
1 · 平均粒径が 2〜 2 0 n mで単磁区構造を有する磁性酸化鉄微粒子をコアと し、 このコアの表面を、 スルホン基、 ケトン基、 アミノ基、 カルボキシル基およ びアルキル基からなる群から選ばれる官能基を有する多糖類で被覆したことを特 徵とする磁気共鳴造影剤。  1) Magnetic iron oxide fine particles having an average particle size of 2 to 20 nm and having a single magnetic domain structure are used as a core, and the surface of this core is composed of a sulfone group, a ketone group, an amino group, a carboxyl group, and an alkyl group. A magnetic resonance contrast agent characterized by being coated with a polysaccharide having a functional group selected from the group.
2 . 前記磁性酸化鉄微粒子がフェライト粒子である請求項 1記載の磁気共鳴造 影剤。 2. The magnetic resonance contrast agent according to claim 1, wherein the magnetic iron oxide fine particles are ferrite particles.
3 . 前記多糖類が、 コンドロイチン 4—硫酸、 コンドロイチン 6—硫酸、 ヒア ルロン酸、 キチン、 へパリン、 シアル酸、 ノィラミ ン酸、 ァセチルへキソサミ ン 、 ィヌリン、 ァガロース、 デキストランスルホン酸および N—ァセチルグリコサ ミン誘導体よりなる群から選ばれる請求項 1記載の磁気共鳴造影剤。 3. The polysaccharide is chondroitin 4-sulfate, chondroitin 6-sulfate, hyaluronic acid, chitin, heparin, sialic acid, neuraminic acid, acetylhexosamine, inulin, agarose, dextransulfonic acid, and N-acetylglycosamine. 2. The magnetic resonance contrast agent according to claim 1, which is selected from the group consisting of derivatives.
4 . 平均粒径が 3 0〜 2 0 0 n mである請求項 1記載の磁気共鳴造影剤。 4. The magnetic resonance contrast agent according to claim 1, wherein the average particle size is 30 to 200 nm.
PCT/JP1995/000894 1994-05-12 1995-05-10 Contrast medium for magnetic resonance imaging WO1995031220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU24196/95A AU2419695A (en) 1994-05-12 1995-05-10 Contrast medium for magnetic resonance imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9873594 1994-05-12
JP6/98735 1994-05-12

Publications (1)

Publication Number Publication Date
WO1995031220A1 true WO1995031220A1 (en) 1995-11-23

Family

ID=14227773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000894 WO1995031220A1 (en) 1994-05-12 1995-05-10 Contrast medium for magnetic resonance imaging

Country Status (2)

Country Link
AU (1) AU2419695A (en)
WO (1) WO1995031220A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123920A (en) * 1996-01-10 2000-09-26 Nycomed Imaging As Superparamagnetic contrast media coated with starch and polyalkylene oxides
US6423296B1 (en) 1996-01-10 2002-07-23 Amersham Health As Constrast media
WO2005087367A1 (en) * 2004-03-15 2005-09-22 Hitachi Maxell, Ltd. Magnetic composite particle and process for producing the same
JP2005296942A (en) * 2004-03-15 2005-10-27 Hitachi Maxell Ltd Magnetic composite particle and method for producing it
AU2001294068B2 (en) * 2000-10-16 2005-12-22 Consejo Superior De Investigaciones Cientificas Nanoparticles
JP2008037856A (en) * 2006-07-10 2008-02-21 Keio Gijuku Mri probe
EP1952919A2 (en) 2007-02-02 2008-08-06 Fujifilm Corporation Magnetic nanoparticles and aqueous colloid composition containing the same
KR100949465B1 (en) 2008-02-20 2010-03-29 전남대학교산학협력단 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases
WO2011062217A1 (en) 2009-11-20 2011-05-26 戸田工業株式会社 Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
JP2011241194A (en) * 2010-05-20 2011-12-01 Cota Co Ltd Hair growth promoter
KR101303567B1 (en) 2011-03-08 2013-09-23 주식회사 인트론바이오테크놀로지 MRI contrast agent coated with carboxylated mannan and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500196A (en) * 1986-07-03 1989-01-26 アドバンスド マグネティックス,インコーポレーテッド Biodegradable superparamagnetic materials used in clinical applications
WO1989003675A1 (en) * 1987-10-26 1989-05-05 Carbomatrix Ab Superparamagnetic particles, a way of producing said particles and their use
EP0516252A2 (en) * 1991-05-28 1992-12-02 INSTITUT FÜR DIAGNOSTIKFORSCHUNG GmbH AN DER FREIEN UNIVERSITÄT BERLIN Monocrystalline particles of iron-oxide for application in medical diagnosis and therapy
US5262176A (en) * 1986-07-03 1993-11-16 Advanced Magnetics, Inc. Synthesis of polysaccharide covered superparamagnetic oxide colloids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500196A (en) * 1986-07-03 1989-01-26 アドバンスド マグネティックス,インコーポレーテッド Biodegradable superparamagnetic materials used in clinical applications
US5262176A (en) * 1986-07-03 1993-11-16 Advanced Magnetics, Inc. Synthesis of polysaccharide covered superparamagnetic oxide colloids
WO1989003675A1 (en) * 1987-10-26 1989-05-05 Carbomatrix Ab Superparamagnetic particles, a way of producing said particles and their use
EP0516252A2 (en) * 1991-05-28 1992-12-02 INSTITUT FÜR DIAGNOSTIKFORSCHUNG GmbH AN DER FREIEN UNIVERSITÄT BERLIN Monocrystalline particles of iron-oxide for application in medical diagnosis and therapy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123920A (en) * 1996-01-10 2000-09-26 Nycomed Imaging As Superparamagnetic contrast media coated with starch and polyalkylene oxides
US6423296B1 (en) 1996-01-10 2002-07-23 Amersham Health As Constrast media
US8080431B2 (en) 2000-10-16 2011-12-20 Midatech Limited Nanoparticles
US7364919B2 (en) 2000-10-16 2008-04-29 Midatech Limited Nanoparticles
AU2001294068B2 (en) * 2000-10-16 2005-12-22 Consejo Superior De Investigaciones Cientificas Nanoparticles
US8790934B2 (en) 2000-10-16 2014-07-29 Consejo Superior De Investigaciones Cientificas Nanoparticles
WO2005087367A1 (en) * 2004-03-15 2005-09-22 Hitachi Maxell, Ltd. Magnetic composite particle and process for producing the same
JP2005296942A (en) * 2004-03-15 2005-10-27 Hitachi Maxell Ltd Magnetic composite particle and method for producing it
JP2008037856A (en) * 2006-07-10 2008-02-21 Keio Gijuku Mri probe
EP1952919A2 (en) 2007-02-02 2008-08-06 Fujifilm Corporation Magnetic nanoparticles and aqueous colloid composition containing the same
KR100949465B1 (en) 2008-02-20 2010-03-29 전남대학교산학협력단 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases
WO2011062217A1 (en) 2009-11-20 2011-05-26 戸田工業株式会社 Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
JP2011126876A (en) * 2009-11-20 2011-06-30 Toda Kogyo Corp Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
US9127168B2 (en) 2009-11-20 2015-09-08 Toda Kogyo Corporation Magnetic iron oxide fine particles, and magnetic particle-containing water dispersion and process for producing the same
JP2011241194A (en) * 2010-05-20 2011-12-01 Cota Co Ltd Hair growth promoter
KR101303567B1 (en) 2011-03-08 2013-09-23 주식회사 인트론바이오테크놀로지 MRI contrast agent coated with carboxylated mannan and method for producing the same

Also Published As

Publication number Publication date
AU2419695A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
US5328681A (en) Composition comprising magnetic metal oxide ultrafine particles and derivatized polysaccharides
US5069216A (en) Silanized biodegradable super paramagnetic metal oxides as contrast agents for imaging the gastrointestinal tract
JP3337075B2 (en) Small particle size water-soluble carboxy polysaccharide-magnetic iron oxide complex
US4951675A (en) Biodegradable superparamagnetic metal oxides as contrast agents for MR imaging
US4827945A (en) Biologically degradable superparamagnetic materials for use in clinical applications
AU652829B2 (en) Melanin-based agents for image enhancement
US4770183A (en) Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents
US5219554A (en) Hydrated biodegradable superparamagnetic metal oxides
US10987436B2 (en) Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (MRI) of magnetic susceptibility (T2*)
US20060093555A1 (en) Imaging inflammatory conditions using superparamagnetic iron oxide agents
JPH07500823A (en) Processed apatite particles for medical diagnostic imaging
Xue et al. 99mTc-labeled iron oxide nanoparticles for dual-contrast (T 1/T 2) magnetic resonance and dual-modality imaging of tumor angiogenesis
WO1995031220A1 (en) Contrast medium for magnetic resonance imaging
EP2833916A1 (en) Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use
Wallace et al. Synthesis and preliminary evaluation of MP‐2269: a novel, nonaromatic small‐molecule blood‐pool MR contrast agent
JP2000507567A (en) Methods of T-weighted nuclear magnetic resonance imaging of retinal system (RES) organs
RU2530762C2 (en) Diagnostic technique for glioblastoma multiforme by magnetic resonance tomography
JPH10120597A (en) Highly accumulating colloidal particle of lymph node
Kroft et al. Equilibrium phase MR angiography of the aortic arch and abdominal vasculature with the blood pool contrast agent CMD‐A2‐Gd‐DOTA in pigs
CN114042172B (en) PH-responsive T1-T2 dual-activation nanoprobe and preparation method and application thereof
KR20100111911A (en) Iron oxide/manganese oxide hybrid nanocrystals for simultaneous t1 and t2 contrast enhancements in mri and preparation thereof
WO2021189121A1 (en) Paramagnetic nanoparticles, manufacturing method and use thereof with magnetic resonance imaging contrast
BR102020005909A2 (en) PARAMAGNETIC NANOPARTICLES, MANUFACTURING PROCESS AND THEIR USE AS CONTRAST IN MAGNETIC RESONANCE IMAGING
CN117551219A (en) Modified glucan and T1 weighted iron-based contrast agent and preparation method and application thereof
KR101417869B1 (en) Contrast agent coated with phosphate-polymer and method for preparing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA