WO1997041785A2 - Apparatus for cosmetically remodeling a body structure - Google Patents

Apparatus for cosmetically remodeling a body structure Download PDF

Info

Publication number
WO1997041785A2
WO1997041785A2 PCT/US1996/013426 US9613426W WO9741785A2 WO 1997041785 A2 WO1997041785 A2 WO 1997041785A2 US 9613426 W US9613426 W US 9613426W WO 9741785 A2 WO9741785 A2 WO 9741785A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
tongue
interior
coupled
handpiece
Prior art date
Application number
PCT/US1996/013426
Other languages
French (fr)
Other versions
WO1997041785A3 (en
Inventor
Stuart D. Edwards
Original Assignee
Somnus Medical Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/642,327 external-priority patent/US5807308A/en
Priority claimed from US08/695,802 external-priority patent/US5879349A/en
Application filed by Somnus Medical Technologies, Inc. filed Critical Somnus Medical Technologies, Inc.
Priority to EP96930548A priority Critical patent/EP0914068A2/en
Priority to AU69548/96A priority patent/AU725853B2/en
Priority to JP09539885A priority patent/JP2000514319A/en
Publication of WO1997041785A2 publication Critical patent/WO1997041785A2/en
Publication of WO1997041785A3 publication Critical patent/WO1997041785A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/04Radiators for near-field treatment
    • A61N5/045Radiators for near-field treatment specially adapted for treatment inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/04Radiators for near-field treatment

Definitions

  • This invention relates to a method for maintaining upper airway patency in human patients, and more particularly to a method which utilizes electromagnetic energy to debulk selected sections of the tongue and/or lingual tonsil without damaging the hypoglossal nerve.
  • Sleep-apnea syndrome is a medical condition characterized by daytime hypersomnomulence, morning arm aches, intellectual deterioration, cardiac arrhythmias, snoring and thrashing during sleep. It is caused by frequent episodes of apnea during the patient's sleep.
  • the syndrome is classically subdivided into two types.
  • One type termed "central sleep apnea syndrome" is characterized by repeated loss of respiratory effort.
  • the second type termed obstructive sleep apnea syndrome
  • Treatment thus far includes various medical, surgical and physical measures.
  • Medical measures include the use of medications such as protriptyline, medroxyprogesterone, acetazolamide, theophylline, nicotine and other medications in addition to avoidance of central nervous system depressants such as sedatives or alcohol.
  • the medical measures above are sometimes helpfiil but are rarely completely effective. Further, the medications frequently have undesirable side effects.
  • Surgical interventions have included uvulopalatopharyngoplasty, tonsillectomy, surgery to correct severe retrognathia and tracheostomy.
  • the jaw is dislodged and pulled forward, in order to gain access to the base of the tongue.
  • Phrenic nerve or diaphragmatic pacing includes the use of electrical stimulation to regulate and control the patient's diaphragm which is innervated bilaterally by the phrenic nerves to assist or support ventilation. This pacing is disclosed in Direct Diaphragm Stimulation by J. Mugica et al. PACE vol.
  • Laryngeal Pacemaker by F. Kaneko et al. from Trans Am Soc Artif Intern Organs 1985 senses volume displaced by the lungs and stimulates the appropriate nerve to open the patient's glottis to treat dyspnea.
  • This apparatus is not effective for treatment of sleep apnea.
  • the apparatus produces a signal proportional in the displaced air volume of the lungs and thereby the signal produced is too late to be used as an indicator for the treatment of sleep apnea. There is often no displaced air volume in sleep apnea due to obstruction.
  • an object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue.
  • Another object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue including an electrode and an electrode advancement device, wherein the electrode advancement member advances the electrode an advancement distance in the interior of the tongue sufficient for an electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve.
  • Yet another object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue including an electrode and an electrode advancement member, wherein the electrode advancement member advances the electrode to a placement position in the interior of the tongue so that at the placement position an electrode electromagnetic energy delivery surface can deliver sufficient electromagnetic energy to reduce a volume of the selected site without damaging a hypoglossal nerve.
  • a further object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue with an electrode, an electrode electromagnetic energy delivery surface and an electrode advancement length extending from an exterior of a handpiece to the interior of the tongue, wherein the advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve.
  • Still a further object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue that includes an electrode with a geometric shape configured to reduce a volume of the selected site without damaging a hypoglossal nerve.
  • the apparatus includes a handpiece and an electrode at least partially positioned in the interior of the catheter.
  • the electrode includes an electrode electromagnetic energy delivery surface and is advance able from the interior of the handpiece into the interior of the tongue.
  • An electrode advancement member is coupled to the electrode and configured to advance the electrode an advancement distance in the interior of the tongue. The advancement distance is sufficient for the electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve and/or a surface of the tongue.
  • a cable is coupled to the electrode.
  • the electrode advancement member is configured to advance at least a portion of the electrode to a placement position in the interior of the tongue. At the placement position the electrode electromagnetic energy delivery surface delivers sufficient electromagnetic energy to reduce a volume of the selected site without damaging a hypoglossal nerve.
  • the electrode has an electrode advancement length that extends from an exterior of the catheter to the interior of the tongue.
  • the advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve.
  • the electrode is preferably an RF electrode coupled to an RF energy source.
  • a cooling device can be included that is at least partially positioned in the interior of the catheter and configured to cool a selected surface of the tongue.
  • a flow rate control device may be coupled to the cooling device to control a cooling medium flow rate through the cooling device.
  • An insulator is at least partially positioned around an exterior of the electrode and defines the electromagnetic energy delivery surface of the electrode. Sensors can be positioned at various locations including, at a distal end of the insulator, at the distal end of the electrode and on an exterior surface of the catheter.
  • a first sensor is positioned at the distal end of the electrode and a second sensor positioned at the distal end of an insulator.
  • a feedback control device can be coupled to the electrode, the sensors and an electromagnetic energy source. Additionally, an infusion medium source may be coupled to the electrode.
  • FIGURES Figure 1 is a cross-sectional view of an ablation apparatus used with the methods of the present invention.
  • Figure 2 is cross-sectional view illustrating the catheter and connector of the ablation apparatus shown in Figure 1.
  • Figure 3 is a perspective view of the connector illustrated in Figure 1.
  • Figure 4 is a perspective view of a needle electrode associated with the ablation apparatus illustrated in Figure 1.
  • Figure 5 is a perspective view of a flexible needle electrode utilized with the methods of the present invention.
  • Figure 6 illustrates the creation of ablation zones with the ablation apparatus shown in Figure 1.
  • Figure 7 is a cross-sectional view of the tongue with the mouth closed.
  • Figure 8 is a cross-sectional view of the tongue with the mouth open.
  • Figure 9 is a perspective view of the tongue.
  • Figure 10 is a perspective view of the dorsum of the tongue.
  • Figure 11 is a cross-sectional view of the tongue.
  • Figure 12 is a cross-sectional view of the tongue illustrating the location of the hypoglossal nerves and the creation of an ablation zone.
  • Figure 13 is a cross-sectional view of the tongue illustrating a plurality of ablation zones.
  • Figure 14 is a perspective view of the ventral surface of the tongue.
  • Figure 15 is a cross-sectional view of the tongue.
  • Figure 16 is a block diagram illustrating an analog amplifier, analog multiplexer and microprocessor used with the feedback control system.
  • Figure 17 is a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through the catheter of Figure 1.
  • Figure 18 is a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through the catheter of Figure 1.
  • Figure 19 is a three dimensional graph illustrating the percent shrinkage of the tongue following RF ablation.
  • Figure 20 is a graph illustrating two-dimensional shrinkage of bovine tongue tissue with RF ablation.
  • Figure 21 is a graph illustrating three-dimensional shrinkage of bovine tongue tissue due to RF ablation.
  • Figure 22 is a graph illustrating percent volume change in a tongue following RF ablation.
  • a method for cosmetically remodeling and debulking the tongue, uvula, soft palate, lingual tonsil and/or adenoids provides an ablation apparatus including a source of electromagnetic energy and one or more electromagnetic energy delivery electrodes coupled to the electromagnetic energy source. At least one electrode is advanced into an interior of the tongue. Sufficient electromagnetic energy is delivered from the electrode to debulk a section of the tongue without damaging the hypoglossal nerve. The electrode is then removed from the interior of the tongue.
  • a method for treating airway obstructions is achieved by debulking the tongue without damaging the hypoglossal nerve.
  • the electrode can be introduced into the tongue from the tongue's tip, ventral surface, dorsum, underneath the tongue, along the tongue's midline, or in certain instances through the chin area.
  • the tongue is ablated (debulked) without damaging the hypoglossal nerves, resulting in a remodeling of the tongue and a cosmetic change.
  • This is achieved by positioning the electrodes far enough away from the hypoglossal nerves so that during the delivery of electromagnetic energy to the tongue, the hypoglossal nerves are not damaged.
  • Another method for treating airway obstructions is achieved by debulking the lingual tonsil without damaging the hypoglossal nerve. These methods are used to treat sleep apnea.
  • an ablation apparatus 10 for cosmetically remodeling and debulking the tongue, lingual tonsils, uvula, soft palate and/or adenoids is illustrated.
  • Ablation apparatus 10 can be positioned so that one or more energy delivery devices or electrodes 12 are introduced into an interior of the tongue through the tongue.
  • Ablation apparatus 10 may include atraumatic intubation with or without visualization, provide for the delivery of oxygen or anesthetics, and can be capable of suctioning blood or other secretions. It will be appreciated that ablation apparatus 10 is used to treat a variety of different obstructions in the body where passage of gas is restricted.
  • One embodiment is the treatment of sleep apnea using electrodes 12 to ablate (cell necrosis) selected portions of the tongue, lingual tonsils and/or adenoids by the use of resistive heating, RF, microwave, ultrasound and liquid thermal jet.
  • the preferred energy source is an RF source.
  • ablation apparatus 10 can be used to ablate targeted masses including but not limited to the tongue, tonsils, turbinates, soft palate tissues, hard tissue and mucosal tissue.
  • ablation apparatus 10 is used to debulk the tongue in order to increase the cross-sectional area of the air passageway.
  • a disinfectant medium introduction member introduces a disinfectant medium in the oral cavity in order to reduce infection of the ablated body member.
  • a presurgical evaluation may be performed including a physical examination, fiberoptic pharyngoscopy, cephalometric analysis and polygraphic monitoring.
  • the physical examination emphasizes the evaluation of the head and neck. It also includes a close examination of the nasal cavity to identify obstructing deformities of the septum and turbinate; oropharyngeal obstruction from a long, redundant soft palate or hypertrophic tonsils; and hypopharyngeal obstruction from a prominent base of the tongue.
  • Debulking apparatus 10 includes a catheter 14, an optional handle 16 and one or more electrodes 12 extending from different ports 18 formed along a longitudinal surface of catheter 14, or from a distal end of electrode 12.
  • Catheter 14 can be a handpiece.
  • An advancement device 20 may be provided. Advancement device 20 can include guide tracks or tubes 23 positioned in the interior of catheter 14. Electrodes 12 may be positioned in guide tracks 23 and advanced from guide tracks into the interior of the tongue.
  • Ablation or debulking apparatus 10 includes a catheter 14, an optional handle 16 and one or more ablation source delivery device 12 extending from different ports 18 formed along a longitudinal surface of catheter 14, or from a distal portion of ablation source delivery device 12
  • Catheter 14 can be a handpiece.
  • Ablation source delivery device advancement device 20, also known as advancement device 20 may be provided.
  • Ablation source delivery device advancement device 20 can include guide tracks or tubes 23 positioned in the interior of catheter 14.
  • Ablation source delivery device 12 may be positioned in guide tracks 23 and advanced from the guide tracks into the interior of the tongue. Cabling is coupled to ablation source delivery device 12.
  • Ablation source delivery device 12 may be least partially positioned in an interior of catheter 14. In one embodiment, ablation source delivery device 12 is advanced and retracted through a port 18 formed in an exterior surface of catheter 14. Ablation source delivery device advancement and retraction device
  • ablation source delivery device 12 advances ablation source delivery device 12 out of catheter 14, into an interior of a body structure and can also provide a retraction of ablation source delivery device 12 from the interior of the body structure.
  • the body structure can be any number of different structures, the body structure will hereafter be referred to as the tongue.
  • Ablation source delivery device 12 pierce an exterior surface of the tongue and are directed to an interior region of the tongue. Sufficient ablation energy is delivered by ablation source 12 to the interior of the tongue to cause the tongue to become sufficiently ablated and debulked.
  • Ablation source delivery device 12 can be a hollow structure that is, (i) adapted to deliver different chemicals to a selected tongue interior ablation site (for chemical ablation) (ii) deliver alcohol or other liquids or semi-liquids to achieve ablation as well as a variety of different infusion mediums, including but not limited to saline, chemotherapy and the like. Different modalities can be combined to achieved a desired ablation including but not limited to RF and chemotherapy, chemical and chemotherapy.
  • Ablation source delivery device 12 may have a limited travel distance in the tongue. In one embodiment with RF electrodes, this is achieved with an insulation sleeve that is in a surrounding relationship to an exterior of an electrode.
  • Other devices can include a structure located on ablation source delivery device 12 which limits their advancement, or a structure coupled to a catheter which limits the advancement of ablation source delivery devices 12, such as a stop and the like.
  • One suitable fluid is an electrolytic solution.
  • a cooled electrolytic solution can be used to deliver the thermal energy to the tissue.
  • the electrolytic solution may be cooled in the range of about 30 to 55 degrees C.
  • Catheter 14 includes a catheter tissue interface surface 22, a cooling medium inlet conduit 24 and a cooling medium exit conduit 26 extending through an interior of catheter 14. Ports 18 are formed in the exterior of catheter 14, and are preferably formed on catheter tissue interface surface 22.
  • Ports 18 are isolated from a cooling medium flowing in inlet and outlet conduits 24 and 26. Cooling medium inlet and exit conduits 24 and 26 are configured to provide a cooled section of catheter tissue interface surface 22 of at least 1 to 2 cm 2 . More preferably, the cooled section of catheter tissue interface surface 22 is at least equal to the cross-sectional diameter of the underlying zone of ablation.
  • the cooled section of catheter tissue interface surface 22 is at least equal to the cross-sectional diameter of the underlying zone of ablation. In another embodiment, the cooled section of catheter tissue interface surface 22 only provides cooling to an area associated with each deployed ablation source delivery device.
  • the size of the cooled section of catheter tissue interface surface 22 varies for each patient.
  • the size is sufficient enough to minimize swelling of the tongue following the delivery of electromagnetic energy.
  • the reduction of swelling can be 50% or greater, 75% or greater , and 90% and greater.
  • the amount of cooling provided is sufficient to enable the patient to return home shortly after the debulking procedure is performed, and not run the risk of choking on the tongue. It has been found that by providing a sufficient level of cooling over a relatively large area, the amount of ablation in an interior region of the tongue is enhanced. By providing a sufficiently large enough cooled section of catheter tissue interface surface 22, an adenomas response is minimized.
  • Handle 16 is preferably made of an insulating material.
  • Electrodes 12 are made of a conductive material such as stainless steel.
  • electrodes 12 can be made of a shaped memory metal, such as nickel titanium, commercially available from Raychem Corporation, Menlo Park, California. In one embodiment, only a distal end of electrode 12 is made of the shaped memory metal in order to effect a desired deflection.
  • catheter 14 When introduced into the oral cavity, catheter 14 can be advanced until a patient's gag response is initiated. Catheter 14 is then retracted back to prevent patient's gagging.
  • the distal end of electrode 12 can be semi-curved. The distal end can have a geometry to conform to an exterior of the tongue.
  • catheter 14 is a handpiece. In this embodiment, a separate handle 16 is not necessary.
  • Debulking apparatus 10 is used to treat an interior region of the tongue.
  • Catheter 14 has a distal end that is sized to be positioned within an oral cavity.
  • Ablation source delivery device 12 is at least partially positioned within an interior of catheter 14.
  • Ablation source delivery device 12 includes ablation delivery surface 30.
  • Ablation source delivery device 20 is coupled to ablation source delivery device 12 and calibrated to advance ablation source delivery device 12 from catheter 14, including but not limited to a distal position of catheter 14, into the interior of the tongue when catheter 14 is positioned adjacent to a surface of the tongue.
  • Ablation source delivery device 12 is advanced an advancement distance 33 from catheter 14 of sufficient length to treat the interior region of the tongue with ablation energy and/or an ablation effect without damaging the hypoglossal nerve or the surface of the tongue.
  • Catheter 14 can be malleable in order to conform to the surface of the tongue when a selected ablation target site is selected.
  • An encapsulated soft metal such as copper, or an annealed metal/plastic material can be used to form malleable catheter 14. All or a portion of catheter 14 may be malleable or made of a shaped memory metal.
  • a distal end 14' of catheter 14 it is desirable for a distal end 14' of catheter 14 to be deflectable. This can be achieved mechanically or with the use of memory metals.
  • a steering wire, or other mechanical structure can be attached to either the exterior or interior of distal end 14'.
  • a deflection knob located on handle 16 is activated by the physician causing a steering wire to tighten. This imparts a retraction of distal end 14', resulting in its deflection. It will be appreciated that other mechanical devices can be used in place of the steering wire. The deflection may be desirable for tissue sites with difficult access.
  • Controlled volumetric reduction of the tongue, under feedback control is used to achieve an effective opening in the airway passage.
  • a variety of different pain killing medicaments including but not limited to Xylocaine, may be used.
  • a digital ultrasonic measurement system can be used. The ultrasound measurement quantifies biological shape changes, provides ultrasonic transmission and reception, uses piezoelectric transducers (crystals) and provides time of flight data.
  • a disinfectant medium introduction member 21 may also be introduced into the oral cavity.
  • the disinfectant medium can be introduced prior to ablation, during ablation and/or after the ablation. It can be delivered continuously.
  • the level of disinfection of the oral cavity is selectable as the volume of the oral cavity that is disinfected. The degree of disinfection varies. Disinfection is provided to reduce infection of the ablated body structure. Disinfectant medium introduction member 21 can be introduced before, after or during the introduction of ablation apparatus 10 into the oral cavity.
  • disinfectant medium introduction member 21 can be removed at the same time or at a different time that ablation apparatus 10 is removed from the oral cavity.
  • Disinfectant medium introduction member 21 can be included in ablation apparatus 10, in an interior of catheter 14 or at an exterior of catheter 14, and may be an introducer with a lumen configured to introduce a disinfectant agent from a disinfectant agent source 23 into all or a selected portion of the oral cavity. Disinfectant medium introduction member 21 can be capable of movement within the oral cavity in order to provide for disinfection of all or only a portion of the oral cavity.
  • the oral cavity is that body internal environment where infectious germs may be introduced into the ablated tongue, soft tissue structure, and the like.
  • Disinfectant medium introduction member 21 may be slideably positioned in catheter 14 or at its exterior.
  • disinfectant medium introduction member 21 can be an optical fiber coupled to a light energy source, including but not limited to a UV source 25.
  • the optical fiber can also be slideably be positioned in the oral cavity.
  • the optical fiber is configured to provide for the selective disinfection of all or only a portion of the oral cavity and can have a variety of different distal ends to achieve this purpose.
  • Suitable disinfectant agents include but are not limited to Peridex, an oral rinse containing 0.12% chlorhexidine glucinate (1, l'-hexanethylenebis[5-(p- chlorophenyl) biganide ⁇ di-D-gluconate in a base containing water, 11.6% alcohol, glycerin, PEG 40 sorbitan arisoterate, flavor, dosium saccharin, and FD&C Blue No. 1.
  • Electrodes 12 are at least partially positioned in an interior of catheter 14. Each electrode 12 is advanced and retracted through a port 18 formed in an exterior surface of catheter 14. Advancement and retraction device advances electrodes 12 out of catheter 14, into an interior of a body structure and retracted back into catheter 14. Electrodes 12 pierce an exterior surface of the tongue and are directed to an interior region of the tongue. Sufficient electromagnetic energy is delivered by electrodes 12 to the interior of the tongue to cause the tongue to become sufficiently ablated and debulked. Electrodes 12 can be hollow to receive a variety of different infusion mediums, including but not limited to saline. Electrodes 12 may be limited in the distance that they can be advanced into the tongue. This is achieved with an insulation sleeve, a structure located on electrodes 12 which limits their advancement, or a structure coupled to catheter which limits the advancement of electrodes 12, such as a stop and the like.
  • the disinfectant medium can be introduced prior to ablation, during ablation and/or after the ablation. It can be delivered continuously.
  • the level of disinfection of the oral cavity is selectable as is the volume of the oral cavity that is disinfected. The degree of disinfection varies. Disinfection is provided to reduce infection of the ablated body structure.
  • An ablation delivery surface such as an electromagnetic energy delivery surface 30 of electrode 12 can be adjusted by inclusion of an adjustable or non- adjustable insulation sleeve 32 ( Figures 3, 4, and 5). Insulation sleeve 32 can be advanced and retracted along the exterior surface of electrode 12 in order to increase or decrease the length of the electromagnetic energy delivery surface
  • Insulation sleeve 32 can be made of a variety of materials including but not limited to nylon, polyimides, other thermoplastics and the like.
  • the size of electromagnetic energy delivery surface 30 can be varied by other methods including but not limited to creating a segmented electrode with a plurality of electrodes that are capable of being multiplexed and individually activated, and the like.
  • ablation source delivery device 12 has an advancement length 33 that extends from an exterior surface of catheter 14 and is directed into the interior of the tongue. Advancement length 33 is sufficient to position ablation delivery surface 30 at a selected tissue site in the interior of the tongue. Ablation delivery surface 30 is of sufficient length so that the ablation effect is delivered to the selected tissue site, create a desired level of ablation at the selected tissue site without causing damage to the hypoglossal nerve. Ablation delivery surface 30 is not always at the distal end of ablation source delivery device 12. Insulation 32 can also be positioned at the distal end of ablation source delivery device 12. In this embodiment, ablation delivery surface 30 does not extend to the distal end of ablation source delivery device 12.
  • ablation delivery surface 30 still delivers a sufficient ablation effect to create a desired level of cell necrosis in the interior of the tongue at the selected tissue site without damaging the hypoglossal nerve and/or damage to the surface of the tongue.
  • ablation source delivery device 12 only one side or a portion of a side of ablation source delivery device 12 can be insulated. This also provides for an ablation source delivery device 12 which can be positioned throughout the tongue, including adjacent to a hypoglossal nerve. Where ablation source delivery device 12 is adjacent to the hypoglossal nerve, ablation source delivery device 12 is insulated.
  • advancement length 33 is 1.2 to 1.5 cm, and the length of ablation delivery surface 30 is 5 to 10 mm, more preferably about 8 mm.
  • advancement length 33 is insufficient to reach the hypoglossal nerve when introduced through any of the tongue surfaces, particularly the dorsum of the tongue.
  • Advancement device 20 is configured to advance at least a portion of each ablation source delivery device 12 to a placement position in the interior of the tongue. Advancement device 20 can also be configured to retract each ablation source delivery device 12. At the placement position, ablation delivery surface delivers sufficient ablation energy and/or effect to reduce a volume of the selected site without damaging a hypoglossal nerve and/or a surface of the tongue.
  • ablation source delivery device advancement and retraction device 20, with or without guide tracks 23, directs the delivery of ablation source delivery device 12 from catheter 14 into the interior of the tongue at an angle of 60 to 90 degrees relative to a longitudinal axis of catheter
  • ablation source delivery device 12 has a geometric shape, including but not limited to a curved configuration that includes one or more insulated surfaces, either partially insulated on one side, at a proximal end, at a distal end, and the like, that is configured to reduce the volume of the selected tissue site without damaging a hypoglossal nerve.
  • ablation source delivery device 12 is introduced through any tongue surface and is configured so that a section of ablation source delivery device 12 which may be positioned close to the hypoglossal nerve is provided with insulation 32. As previously noted, insulation 32 can be positioned at different sites of ablation source delivery device 12.
  • Handle 16 can comprise a connector 34 coupled to retraction and advancement device 20.
  • Connector 34 provides a coupling of electrodes 12 to power, feedback control, temperature and/or imaging systems.
  • An RF/temperature control block 36 can be included.
  • Electrodes 12 can be spring loaded. When retraction and advancement device 20 is moved back, springs cause selected electrodes 12 to advance out of catheter 14.
  • One or more cables 38 couple electrodes 12 to an electromagnetic energy source 40.
  • a variety of energy sources 40 can be used with the present invention to transfer electromagnetic energy to the interior of a body structure, including but not limited to RF, microwave, ultrasound, coherent light and thermal transfer.
  • energy source 40 is a RF generator. When a RF energy source is used, the physician can activate RF energy source 40 by the use of a foot switch (not shown) coupled to RF energy source 40.
  • One or more sensors 42 may be positioned on an interior or exterior surface of electrode 12, insulation sleeve 32, or be independently inserted into the interior of the body structure. Sensors 42 permit accurate measurement of temperature at a tissue site in order to determine, (i) the extent of ablation, (ii) the amount of ablation, (iii) whether or not further ablation is needed, and (iv) the boundary or periphery of the ablated geometry. Further, sensors 42 prevent non-targeted tissue from being destroyed or ablated.
  • Sensors 42 are of conventional design, including but not limited to thermistors, thermocouples, resistive wires, and the like. Suitable sensors 42 include a T type thermocouple with copper constantene, J type, E type, K type, fiber optics, resistive wires, thermocouple IR detectors, and the like. It will be appreciated that sensors 42 need not be thermal sensors.
  • Sensors 42 measure temperature and/or impedance to permit ablation monitoring. This reduces damage to tissue surrounding the targeted ablation mass. By monitoring the temperature at various points within the interior of the body structure the periphery of ablation can be ascertained and it is possible to determine when the ablation is completed. If at any time sensor 42 determines that a desired ablation temperature is exceeded, then an appropriate feedback signal is received at energy source 40 and the amount of energy delivered is regulated.
  • Ablation or debulking apparatus 10 can include visualization capability including but not limited to a viewing scope, an expanded eyepiece, fiber optics, video imaging, and the like.
  • ultrasound imaging can be used to position the electrodes 12 and/or determine the amount of ablation.
  • One or more ultrasound transducers 44 can be positioned in or on electrode 12, catheter 14, or on a separate device.
  • An imaging probe may also be used internally or externally to the selected tissue site.
  • a suitable imaging probe is Model 21362, manufactured and sold by Hewlett Packard Company.
  • Each ultrasound transducer 44 is coupled to an ultrasound source (not shown).
  • catheter 14 is shown as being introduced into the oral cavity and multiple RF electrodes 12 are advanced into the interior of the tongue creating different ablation zones 46. Using RF, ablation apparatus 10 can be operated in either bipolar or monopolar modes.
  • electrodes 12 are operated in the bipolar mode, creating sufficient ablation zones 46 to debulk the tongue without affecting the hypoglossal nerves and creating a larger airway passage. With this debulking, the back of the tongue moves in a forward direction away from the air passageway. The result is an increase in the cross-sectional diameter of the air passageway.
  • ablation apparatus 10 can also be operated in the monopolar mode.
  • a groundpad can be positioned in a convenient place such as under the chin.
  • a single electrode 12 is positioned in the tongue to create a first ablation zone 46. Electrode 12 can then be retracted from the interior of the tongue, catheter 14 moved, and electrode 12 is then advanced from catheter 14 into another interior section of the tongue. A second ablation zone 46 is created. This procedure can be completed any number of times to form different ablation regions in the interior of the tongue. More than one electrode 12 can be introduced into the tongue and operated in the bipolar mode. Electrodes 12 are then repositioned in the interior of the tongue any number of times to create a plurality of connecting or non-connecting ablation zones 46.
  • the genioglossus muscle, or body of the tongue is denoted as 48; the geniohyoid muscle is 50; the mylohyoid muscle is 52; the hyoid bone is 54; the tip of the tongue is 56; the ventral surface of the tongue is denoted as 58; the dorsum of the tongue is denoted as 60; the inferior dorsal of the tongue is denoted as 62; the reflex of the vallecula is 64; the lingual follicles are denoted as 66; the uvula is 68; the adenoid area is 70; the lateral border of the tongue is 72; the circumvallate papilla is 74, the palatine tonsil is 76; the pharynx is 78; the redundant pharyngeal tissue is 80; the foramen cecum
  • Dorsum 60 is divided into an anterior 2/3 and inferior dorsal 62.
  • the delineation is determined by circumvallate papilla 74 and foramen cecum 82.
  • Inferior dorsal 62 is the dorsal surface inferior to circumvallate papilla 74 and superior reflex of the vallecula 64.
  • Reflex of the vallecula 64 is the deepest portion of the surface of the tongue contiguous with the epiglottis.
  • Lingual follicles 66 comprise the lingual tonsil.
  • Catheter 14 can be introduced through the nose or through the oral cavity. Electrodes 12 can be inserted into an interior of the tongue through dorsum surface 60, inferior dorsal surface 62, ventral surface 58, tip 56 or geniohyoid muscle 50. Additionally, electrodes may be introduced into an interior of lingual follicles 66 and into adenoid area 70. Once electrodes 12 are positioned, insulation sleeve 32 may be adjusted to provided a desired electromagnetic energy delivery surface 30 for each electrode 12.
  • Ablation zones 46 are created without damaging hypoglossal nerves 84. This creates a larger air way passage and provides a treatment for sleep apnea. In all instances, the positioning of electrodes 12, as well as the creation of ablation zones 46 is such that hypoglossal nerves 84 are not ablated or damaged. The ability to swallow and speak is not impaired.
  • RF electrode 12 are placed on the dorsum surface of the tongue.
  • the first electrode is positioned 0.5 cm proximal to the circumvallate pappilla.
  • the other electrodes are spaced 1.6 cm apart and are 1 cm off a central axis of the tongue.
  • 465 MHz RF was applied.
  • the temperature at the distal end of electrode 12 was about 100 degrees C.
  • the temperature at the distal end of the insulation sleeve 32 was about 60 degrees C. In another embodiment, the temperature at the distal end of insulation sleeve 32 was 43 degrees C and above.
  • RF energy can be applied as short duration pulses with low frequency RF. Precise targeting of a desired ablation site is achieved.
  • One or more electrodes 12 may be used to create volumetric three-dimensional ablation.
  • a variety of ablation geometries are possible, including but not limited to rectilinear, polyhedral, redetermined shapes, symmetrical and non-symmetrical.
  • an open or closed loop feedback system couples sensors 42 to energy source 40. The temperature of the tissue, or of electrode 12 is monitored, and the output power of energy source 40 adjusted accordingly. Additionally, the level of disinfection in the oral cavity can be monitored. The physician can, if desired, override the closed or open loop system.
  • a microprocessor can be included and inco ⁇ orated in the closed or open loop system to switch power on and off, as well as modulate the power.
  • the closed loop system utilizes a microprocessor 88 to serve as a controller, watch the temperature, adjust the RF power, look at the result, refeed the result, and then modulate the power.
  • a tissue adjacent to RF electrodes 12 can be maintained at a desired temperature for a selected period of time without impeding out.
  • Each RF electrode 12 is connected to resources which generate an independent output for each RF electrode 12. An output maintains a selected energy at RF electrodes 12 for a selected length of time.
  • a control signal is generated by controller 98 that is proportional to the difference between an actual measured value, and a desired value.
  • the control signal is used by power circuits 100 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 12.
  • temperatures detected at sensors 42 provide feedback for maintaining a selected power.
  • the actual temperatures are measured at temperature measurement device 102, and the temperatures are displayed at user interface and display 96.
  • a control signal is generated by controller 98 that is proportional to the difference between an actual measured temperature, and a desired temperature.
  • the control signal is used by power circuits 100 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the respective sensor.
  • a multiplexer can be included to measure current, voltage and temperature, at the numerous sensors 42, and energy can be delivered to RF electrodes 12 in monopolar or bipolar fashion.
  • Controller 98 can be a digital or analog controller, or a computer with software.
  • controller 98 is a computer it can include a CPU coupled through a system bus.
  • On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art.
  • Also coupled to the bus is a program memory and a data memory.
  • User interface and display 96 includes operator controls and a display.
  • Controller 98 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners, X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
  • the output of current sensor 90 and voltage sensor 92 is used by controller 98 to maintain a selected power level at RF electrodes 12.
  • the amount of RF energy delivered controls the amount of power.
  • a profile of power delivered can be incorporated in controller 98, and a preset amount of energy to be delivered can also be profiled.
  • Other sensors similar to sensors 90 and 92 can be used by controller 98 for other ablation source delivery devices 12 to maintain a controllable amount of an ablation energy and/or ablative agent.
  • Circuitry, software and feedback to controller 98 result in process control, and the maintenance of the selected power that is independent of changes in voltage or current, and are used to change, (i) the selected power,
  • Microprocessor 88 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature. Microprocessor 88 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 88 corresponds to different temperatures and impedances.
  • Calculated power and impedance values can be indicated on user interface and display 96.
  • calculated impedance and power values can be compared by microprocessor 88 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 96, and additionally, the delivery of RF energy can be reduced, modified or interrupted.
  • a control signal from microprocessor 88 can modify the power level supplied by energy source 40.
  • FIG. 18 illustrates a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through catheter 14.
  • Electromagnetic energy is delivered to electrode 12 by energy source 44, and applied to tissue.
  • a monitor 110 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If the measured impedance exceeds the set value a disabling signal 112 is transmitted to energy source 40, ceasing further delivery of energy to electrode 12. If measured impedance is within acceptable limits, energy continues to be applied to the tissue.
  • tissue sensor 42 measures the temperature of tissue and/or electrode 12.
  • a comparator 114 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. Comparator 114 sends a signal to a flow regulator 116 representing a need for a higher cooling medium flow rate, if the tissue temperature is too high, or to maintain the flow rate if the temperature has not exceeded the desired temperature.
  • EXAMPLE 1 Ablation apparatus 10 was used to determine two-dimensional shrinkage of a bovine. RF volumetric reduction was achieved using a single needle electrode. Four miniature ultrasonic crystals were positioned to form a square. Measurements were taken at control and post volumetric reduction at 15 watts initially with a 13% volumetric reduction, and 15 watts for 4 hours with an additional 4% volumetric reduction. A total 17% volumetric reduction was achieved.
  • EXAMPLE 2 Ablation apparatus 10 was used to determine three-dimensional shrinkage of a bovine tongue. RF volumetric reduction was achieved with a single needle electrode with eight miniature ultrasonic crystals, creating a cube. Application of 16 watts initially produced a 17% volumetric reduction of the tongue, 25 watts applied initially produced a 25% volumetric reduction, and 25 watts after hours produced an additional 4% reduction, for a total volumetric reduction of 29%.
  • EXAMPLE 3 A 35% volumetric reduction was achieved in porcine in vivo, with three dimensional gross at 20 watts initial application.
  • ablation volume dimensions were measured with a multidimensional digital sonomicrometry. An average decrease in the Z direction was 20%, and volume shrinkage was 26%.
  • Three-dimensional shrinkage of tongue tissue due to in vivo RF ablation with the needle, ablation with 20 Watts) is presented in Figure 20. Control volume before ablation is compared with a post-ablation volume.
  • Figure 20 illustrates two-dimensional shrinkage of a bovine tongue tissue due to RF ablation with a needle electrode. The before and after ablation results are illustrated.
  • Figure 21 illustrates in graph form ablation at 16 Watts resulted in a 17% volume shrinkage of the tissue in post-ablation verses control. Ablation at 25 watts resulted in a 25% volume shrinkage after ablation. An additional 4% area shrinkage was obtained after in long-term post ablation (4 hours) verses post- ablation.
  • Figure 22 illustrates a percent volume change after RF ablation. 16

Abstract

An apparatus that reduces a volume of a selected site in an interior of the tongue includes a handpiece and an electrode at least partially positioned in the interior of the handpiece. The electrode includes an electrode electromagnetic energy delivery surface and is advanceable from the interior of the handpiece into the interior of the tongue. An electrode advancement member is coupled to the electrode and configured to advance the electrode and advancement distance in the interior of the tongue. The advancement distance is sufficient for the electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve. A cable is coupled to the electrode.

Description

APPARATUS FOR COSMETICALLY REMODELING A BODY STRUCTURE
BACKGROUND OF THF. TNVENTTON
Field of the Invention This invention relates to a method for maintaining upper airway patency in human patients, and more particularly to a method which utilizes electromagnetic energy to debulk selected sections of the tongue and/or lingual tonsil without damaging the hypoglossal nerve.
Description of Related Art Sleep-apnea syndrome is a medical condition characterized by daytime hypersomnomulence, morning arm aches, intellectual deterioration, cardiac arrhythmias, snoring and thrashing during sleep. It is caused by frequent episodes of apnea during the patient's sleep. The syndrome is classically subdivided into two types. One type, termed "central sleep apnea syndrome", is characterized by repeated loss of respiratory effort. The second type, termed obstructive sleep apnea syndrome, is characterized by repeated apneic episodes during sleep resulting from obstruction of the patient's upper airway or that portion of the patient's respiratory tract which is cephalad to, and does not include, the larynx. Treatment thus far includes various medical, surgical and physical measures. Medical measures include the use of medications such as protriptyline, medroxyprogesterone, acetazolamide, theophylline, nicotine and other medications in addition to avoidance of central nervous system depressants such as sedatives or alcohol. The medical measures above are sometimes helpfiil but are rarely completely effective. Further, the medications frequently have undesirable side effects.
Surgical interventions have included uvulopalatopharyngoplasty, tonsillectomy, surgery to correct severe retrognathia and tracheostomy. In one procedure the jaw is dislodged and pulled forward, in order to gain access to the base of the tongue. These procedures may be effective but the risk of surgery in these patients can be prohibitive and the procedures are often unacceptable to the patients.
Physical measures have included weight loss, nasopharyngeal airways, nasal CPAP and various tongue retaining devices used nocturnally. These measures may be partially effective but are cumbersome, uncomfortable and patients often will not continue to use these for prolonged periods of time. Weight loss may be effective but is rarely achieved by these patients. In patients with central sleep apnea syndrome, phrenic nerve or diaphragmatic pacing has been used. Phrenic nerve or diaphragmatic pacing includes the use of electrical stimulation to regulate and control the patient's diaphragm which is innervated bilaterally by the phrenic nerves to assist or support ventilation. This pacing is disclosed in Direct Diaphragm Stimulation by J. Mugica et al. PACE vol. 10 Jan-Feb. 1987, Part II, Preliminary Test of a Muscular Diaphragm Pacing System on Human Patients by J. Mugica et al. from Neurostimulation: An Overview 1985 pp. 263-279 and Electrical Activation of Respiration by Nochomovitez LEEE Eng. in Medicine and Biology; June, 1993.
However, it was found that many of these patients also have some degree of obstructive sleep apnea which worsens when the inspiratory force is augmented by the pacer. The ventilation induced by the activation of the diaphragm also collapses the upper airway upon inspiration and draws the patient's tongue inferiorly down the throat choking the patient. These patients then require tracheostomies for adequate treatment. A physiological laryngeal pacemaker as described in Physiological
Laryngeal Pacemaker by F. Kaneko et al. from Trans Am Soc Artif Intern Organs 1985 senses volume displaced by the lungs and stimulates the appropriate nerve to open the patient's glottis to treat dyspnea. This apparatus is not effective for treatment of sleep apnea. The apparatus produces a signal proportional in the displaced air volume of the lungs and thereby the signal produced is too late to be used as an indicator for the treatment of sleep apnea. There is often no displaced air volume in sleep apnea due to obstruction.
One measure that is effective in obstructive sleep apnea is tracheostomy. However, this surgical intervention carries considerable morbidity and is aesthetically unacceptable to many patients. Other surgical procedures include pulling the tongue as forward as possible and surgically cutting and removing sections of the tongue and other structures which can close off the upper airway passage.
There is a need for a method and apparatus to overcome these problems.
SUMMARY OF THF. INVENTION
Accordingly, an object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue.
Another object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue including an electrode and an electrode advancement device, wherein the electrode advancement member advances the electrode an advancement distance in the interior of the tongue sufficient for an electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve. Yet another object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue including an electrode and an electrode advancement member, wherein the electrode advancement member advances the electrode to a placement position in the interior of the tongue so that at the placement position an electrode electromagnetic energy delivery surface can deliver sufficient electromagnetic energy to reduce a volume of the selected site without damaging a hypoglossal nerve.
A further object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue with an electrode, an electrode electromagnetic energy delivery surface and an electrode advancement length extending from an exterior of a handpiece to the interior of the tongue, wherein the advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve. Still a further object of the invention is to provide an apparatus to reduce a volume of a selected site in an interior of the tongue that includes an electrode with a geometric shape configured to reduce a volume of the selected site without damaging a hypoglossal nerve.
These and other objects of the invention are achieved in an apparatus that reduces a volume of a selected site in an interior of the tongue. The apparatus includes a handpiece and an electrode at least partially positioned in the interior of the catheter. The electrode includes an electrode electromagnetic energy delivery surface and is advance able from the interior of the handpiece into the interior of the tongue. An electrode advancement member is coupled to the electrode and configured to advance the electrode an advancement distance in the interior of the tongue. The advancement distance is sufficient for the electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve and/or a surface of the tongue. A cable is coupled to the electrode.
In another embodiment, the electrode advancement member is configured to advance at least a portion of the electrode to a placement position in the interior of the tongue. At the placement position the electrode electromagnetic energy delivery surface delivers sufficient electromagnetic energy to reduce a volume of the selected site without damaging a hypoglossal nerve.
In a further embodiment, the electrode has an electrode advancement length that extends from an exterior of the catheter to the interior of the tongue. The advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve. The electrode is preferably an RF electrode coupled to an RF energy source. A cooling device can be included that is at least partially positioned in the interior of the catheter and configured to cool a selected surface of the tongue. A flow rate control device may be coupled to the cooling device to control a cooling medium flow rate through the cooling device.
An insulator is at least partially positioned around an exterior of the electrode and defines the electromagnetic energy delivery surface of the electrode. Sensors can be positioned at various locations including, at a distal end of the insulator, at the distal end of the electrode and on an exterior surface of the catheter.
In one embodiment, a first sensor is positioned at the distal end of the electrode and a second sensor positioned at the distal end of an insulator.
A feedback control device can be coupled to the electrode, the sensors and an electromagnetic energy source. Additionally, an infusion medium source may be coupled to the electrode.
BRIEF DESCRIPTION QF THE FIGURES Figure 1 is a cross-sectional view of an ablation apparatus used with the methods of the present invention.
Figure 2 is cross-sectional view illustrating the catheter and connector of the ablation apparatus shown in Figure 1.
Figure 3 is a perspective view of the connector illustrated in Figure 1. Figure 4 is a perspective view of a needle electrode associated with the ablation apparatus illustrated in Figure 1.
Figure 5 is a perspective view of a flexible needle electrode utilized with the methods of the present invention.
Figure 6 illustrates the creation of ablation zones with the ablation apparatus shown in Figure 1.
Figure 7 is a cross-sectional view of the tongue with the mouth closed. Figure 8 is a cross-sectional view of the tongue with the mouth open. Figure 9 is a perspective view of the tongue. Figure 10 is a perspective view of the dorsum of the tongue.
Figure 11 is a cross-sectional view of the tongue.
Figure 12 is a cross-sectional view of the tongue illustrating the location of the hypoglossal nerves and the creation of an ablation zone. Figure 13 is a cross-sectional view of the tongue illustrating a plurality of ablation zones.
Figure 14 is a perspective view of the ventral surface of the tongue.
Figure 15 is a cross-sectional view of the tongue.
Figure 16 is a block diagram illustrating an analog amplifier, analog multiplexer and microprocessor used with the feedback control system.
Figure 17 is a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through the catheter of Figure 1.
Figure 18 is a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through the catheter of Figure 1.
Figure 19 is a three dimensional graph illustrating the percent shrinkage of the tongue following RF ablation.
Figure 20 is a graph illustrating two-dimensional shrinkage of bovine tongue tissue with RF ablation.
Figure 21 is a graph illustrating three-dimensional shrinkage of bovine tongue tissue due to RF ablation.
Figure 22 is a graph illustrating percent volume change in a tongue following RF ablation.
DETAILED DESCRIPTION
A method for cosmetically remodeling and debulking the tongue, uvula, soft palate, lingual tonsil and/or adenoids provides an ablation apparatus including a source of electromagnetic energy and one or more electromagnetic energy delivery electrodes coupled to the electromagnetic energy source. At least one electrode is advanced into an interior of the tongue. Sufficient electromagnetic energy is delivered from the electrode to debulk a section of the tongue without damaging the hypoglossal nerve. The electrode is then removed from the interior of the tongue. A method for treating airway obstructions is achieved by debulking the tongue without damaging the hypoglossal nerve. The electrode can be introduced into the tongue from the tongue's tip, ventral surface, dorsum, underneath the tongue, along the tongue's midline, or in certain instances through the chin area. The tongue is ablated (debulked) without damaging the hypoglossal nerves, resulting in a remodeling of the tongue and a cosmetic change. This is achieved by positioning the electrodes far enough away from the hypoglossal nerves so that during the delivery of electromagnetic energy to the tongue, the hypoglossal nerves are not damaged. Another method for treating airway obstructions is achieved by debulking the lingual tonsil without damaging the hypoglossal nerve. These methods are used to treat sleep apnea. Referring to Figures 1 and 2, an ablation apparatus 10 for cosmetically remodeling and debulking the tongue, lingual tonsils, uvula, soft palate and/or adenoids is illustrated. Ablation apparatus 10 can be positioned so that one or more energy delivery devices or electrodes 12 are introduced into an interior of the tongue through the tongue. Ablation apparatus 10 may include atraumatic intubation with or without visualization, provide for the delivery of oxygen or anesthetics, and can be capable of suctioning blood or other secretions. It will be appreciated that ablation apparatus 10 is used to treat a variety of different obstructions in the body where passage of gas is restricted. One embodiment is the treatment of sleep apnea using electrodes 12 to ablate (cell necrosis) selected portions of the tongue, lingual tonsils and/or adenoids by the use of resistive heating, RF, microwave, ultrasound and liquid thermal jet. The preferred energy source is an RF source. In this regard, ablation apparatus 10 can be used to ablate targeted masses including but not limited to the tongue, tonsils, turbinates, soft palate tissues, hard tissue and mucosal tissue. In one embodiment, ablation apparatus 10 is used to debulk the tongue in order to increase the cross-sectional area of the air passageway. A disinfectant medium introduction member introduces a disinfectant medium in the oral cavity in order to reduce infection of the ablated body member.
Prior to debulking the tongue, a presurgical evaluation may be performed including a physical examination, fiberoptic pharyngoscopy, cephalometric analysis and polygraphic monitoring. The physical examination emphasizes the evaluation of the head and neck. It also includes a close examination of the nasal cavity to identify obstructing deformities of the septum and turbinate; oropharyngeal obstruction from a long, redundant soft palate or hypertrophic tonsils; and hypopharyngeal obstruction from a prominent base of the tongue. Debulking apparatus 10 includes a catheter 14, an optional handle 16 and one or more electrodes 12 extending from different ports 18 formed along a longitudinal surface of catheter 14, or from a distal end of electrode 12. Catheter 14 can be a handpiece. An advancement device 20 may be provided. Advancement device 20 can include guide tracks or tubes 23 positioned in the interior of catheter 14. Electrodes 12 may be positioned in guide tracks 23 and advanced from guide tracks into the interior of the tongue.
Ablation or debulking apparatus 10 includes a catheter 14, an optional handle 16 and one or more ablation source delivery device 12 extending from different ports 18 formed along a longitudinal surface of catheter 14, or from a distal portion of ablation source delivery device 12 Catheter 14 can be a handpiece. Ablation source delivery device advancement device 20, also known as advancement device 20 may be provided. Ablation source delivery device advancement device 20 can include guide tracks or tubes 23 positioned in the interior of catheter 14. Ablation source delivery device 12 may be positioned in guide tracks 23 and advanced from the guide tracks into the interior of the tongue. Cabling is coupled to ablation source delivery device 12.
Ablation source delivery device 12 may be least partially positioned in an interior of catheter 14. In one embodiment, ablation source delivery device 12 is advanced and retracted through a port 18 formed in an exterior surface of catheter 14. Ablation source delivery device advancement and retraction device
20 advances ablation source delivery device 12 out of catheter 14, into an interior of a body structure and can also provide a retraction of ablation source delivery device 12 from the interior of the body structure. Although the body structure can be any number of different structures, the body structure will hereafter be referred to as the tongue. Ablation source delivery device 12 pierce an exterior surface of the tongue and are directed to an interior region of the tongue. Sufficient ablation energy is delivered by ablation source 12 to the interior of the tongue to cause the tongue to become sufficiently ablated and debulked. Ablation source delivery device 12 can be a hollow structure that is, (i) adapted to deliver different chemicals to a selected tongue interior ablation site (for chemical ablation) (ii) deliver alcohol or other liquids or semi-liquids to achieve ablation as well as a variety of different infusion mediums, including but not limited to saline, chemotherapy and the like. Different modalities can be combined to achieved a desired ablation including but not limited to RF and chemotherapy, chemical and chemotherapy. Ablation source delivery device 12 may have a limited travel distance in the tongue. In one embodiment with RF electrodes, this is achieved with an insulation sleeve that is in a surrounding relationship to an exterior of an electrode. Other devices can include a structure located on ablation source delivery device 12 which limits their advancement, or a structure coupled to a catheter which limits the advancement of ablation source delivery devices 12, such as a stop and the like. One suitable fluid is an electrolytic solution. Instead of direct contact with tissue and electrode 12 for the delivery of thermal energy, a cooled electrolytic solution can be used to deliver the thermal energy to the tissue. The electrolytic solution may be cooled in the range of about 30 to 55 degrees C. Catheter 14 includes a catheter tissue interface surface 22, a cooling medium inlet conduit 24 and a cooling medium exit conduit 26 extending through an interior of catheter 14. Ports 18 are formed in the exterior of catheter 14, and are preferably formed on catheter tissue interface surface 22. Ports 18 are isolated from a cooling medium flowing in inlet and outlet conduits 24 and 26. Cooling medium inlet and exit conduits 24 and 26 are configured to provide a cooled section of catheter tissue interface surface 22 of at least 1 to 2 cm2. More preferably, the cooled section of catheter tissue interface surface 22 is at least equal to the cross-sectional diameter of the underlying zone of ablation.
In one embodiment, the cooled section of catheter tissue interface surface 22 is at least equal to the cross-sectional diameter of the underlying zone of ablation. In another embodiment, the cooled section of catheter tissue interface surface 22 only provides cooling to an area associated with each deployed ablation source delivery device.
The size of the cooled section of catheter tissue interface surface 22 varies for each patient. The size is sufficient enough to minimize swelling of the tongue following the delivery of electromagnetic energy. The reduction of swelling can be 50% or greater, 75% or greater , and 90% and greater. The amount of cooling provided is sufficient to enable the patient to return home shortly after the debulking procedure is performed, and not run the risk of choking on the tongue. It has been found that by providing a sufficient level of cooling over a relatively large area, the amount of ablation in an interior region of the tongue is enhanced. By providing a sufficiently large enough cooled section of catheter tissue interface surface 22, an adenomas response is minimized. Handle 16 is preferably made of an insulating material. Electrodes 12 are made of a conductive material such as stainless steel. Additionally, electrodes 12 can be made of a shaped memory metal, such as nickel titanium, commercially available from Raychem Corporation, Menlo Park, California. In one embodiment, only a distal end of electrode 12 is made of the shaped memory metal in order to effect a desired deflection. When introduced into the oral cavity, catheter 14 can be advanced until a patient's gag response is initiated. Catheter 14 is then retracted back to prevent patient's gagging. The distal end of electrode 12 can be semi-curved. The distal end can have a geometry to conform to an exterior of the tongue. In one embodiment of the invention catheter 14 is a handpiece. In this embodiment, a separate handle 16 is not necessary. Debulking apparatus 10 is used to treat an interior region of the tongue. Catheter 14 has a distal end that is sized to be positioned within an oral cavity. Ablation source delivery device 12 is at least partially positioned within an interior of catheter 14. Ablation source delivery device 12 includes ablation delivery surface 30. Ablation source delivery device 20 is coupled to ablation source delivery device 12 and calibrated to advance ablation source delivery device 12 from catheter 14, including but not limited to a distal position of catheter 14, into the interior of the tongue when catheter 14 is positioned adjacent to a surface of the tongue. Ablation source delivery device 12 is advanced an advancement distance 33 from catheter 14 of sufficient length to treat the interior region of the tongue with ablation energy and/or an ablation effect without damaging the hypoglossal nerve or the surface of the tongue.
Catheter 14 can be malleable in order to conform to the surface of the tongue when a selected ablation target site is selected. An encapsulated soft metal, such as copper, or an annealed metal/plastic material can be used to form malleable catheter 14. All or a portion of catheter 14 may be malleable or made of a shaped memory metal.
For many applications it is desirable for a distal end 14' of catheter 14 to be deflectable. This can be achieved mechanically or with the use of memory metals. A steering wire, or other mechanical structure, can be attached to either the exterior or interior of distal end 14'. In one embodiment, a deflection knob located on handle 16 is activated by the physician causing a steering wire to tighten. This imparts a retraction of distal end 14', resulting in its deflection. It will be appreciated that other mechanical devices can be used in place of the steering wire. The deflection may be desirable for tissue sites with difficult access.
Controlled volumetric reduction of the tongue, under feedback control is used to achieve an effective opening in the airway passage. A variety of different pain killing medicaments, including but not limited to Xylocaine, may be used. A digital ultrasonic measurement system can be used. The ultrasound measurement quantifies biological shape changes, provides ultrasonic transmission and reception, uses piezoelectric transducers (crystals) and provides time of flight data.
A disinfectant medium introduction member 21 may also be introduced into the oral cavity. The disinfectant medium can be introduced prior to ablation, during ablation and/or after the ablation. It can be delivered continuously. The level of disinfection of the oral cavity is selectable as the volume of the oral cavity that is disinfected. The degree of disinfection varies. Disinfection is provided to reduce infection of the ablated body structure. Disinfectant medium introduction member 21 can be introduced before, after or during the introduction of ablation apparatus 10 into the oral cavity.
Additionally, disinfectant medium introduction member 21 can be removed at the same time or at a different time that ablation apparatus 10 is removed from the oral cavity.
Disinfectant medium introduction member 21 can be included in ablation apparatus 10, in an interior of catheter 14 or at an exterior of catheter 14, and may be an introducer with a lumen configured to introduce a disinfectant agent from a disinfectant agent source 23 into all or a selected portion of the oral cavity. Disinfectant medium introduction member 21 can be capable of movement within the oral cavity in order to provide for disinfection of all or only a portion of the oral cavity. For purposes of this disclosure, the oral cavity is that body internal environment where infectious germs may be introduced into the ablated tongue, soft tissue structure, and the like. Disinfectant medium introduction member 21 may be slideably positioned in catheter 14 or at its exterior. Alternatively, disinfectant medium introduction member 21 can be an optical fiber coupled to a light energy source, including but not limited to a UV source 25. The optical fiber can also be slideably be positioned in the oral cavity. The optical fiber is configured to provide for the selective disinfection of all or only a portion of the oral cavity and can have a variety of different distal ends to achieve this purpose. Suitable disinfectant agents include but are not limited to Peridex, an oral rinse containing 0.12% chlorhexidine glucinate (1, l'-hexanethylenebis[5-(p- chlorophenyl) biganide} di-D-gluconate in a base containing water, 11.6% alcohol, glycerin, PEG 40 sorbitan arisoterate, flavor, dosium saccharin, and FD&C Blue No. 1.
It will be appreciated that a variety of different disinfectants can be employed, including other electromagnetic wavelengths, and various chemical compositions.
Electrodes 12 are at least partially positioned in an interior of catheter 14. Each electrode 12 is advanced and retracted through a port 18 formed in an exterior surface of catheter 14. Advancement and retraction device advances electrodes 12 out of catheter 14, into an interior of a body structure and retracted back into catheter 14. Electrodes 12 pierce an exterior surface of the tongue and are directed to an interior region of the tongue. Sufficient electromagnetic energy is delivered by electrodes 12 to the interior of the tongue to cause the tongue to become sufficiently ablated and debulked. Electrodes 12 can be hollow to receive a variety of different infusion mediums, including but not limited to saline. Electrodes 12 may be limited in the distance that they can be advanced into the tongue. This is achieved with an insulation sleeve, a structure located on electrodes 12 which limits their advancement, or a structure coupled to catheter which limits the advancement of electrodes 12, such as a stop and the like.
The disinfectant medium can be introduced prior to ablation, during ablation and/or after the ablation. It can be delivered continuously. The level of disinfection of the oral cavity is selectable as is the volume of the oral cavity that is disinfected. The degree of disinfection varies. Disinfection is provided to reduce infection of the ablated body structure.
An ablation delivery surface, such as an electromagnetic energy delivery surface 30 of electrode 12 can be adjusted by inclusion of an adjustable or non- adjustable insulation sleeve 32 (Figures 3, 4, and 5). Insulation sleeve 32 can be advanced and retracted along the exterior surface of electrode 12 in order to increase or decrease the length of the electromagnetic energy delivery surface
30. Insulation sleeve 32 can be made of a variety of materials including but not limited to nylon, polyimides, other thermoplastics and the like. The size of electromagnetic energy delivery surface 30 can be varied by other methods including but not limited to creating a segmented electrode with a plurality of electrodes that are capable of being multiplexed and individually activated, and the like.
Referring specifically to Figure 4, ablation source delivery device 12 has an advancement length 33 that extends from an exterior surface of catheter 14 and is directed into the interior of the tongue. Advancement length 33 is sufficient to position ablation delivery surface 30 at a selected tissue site in the interior of the tongue. Ablation delivery surface 30 is of sufficient length so that the ablation effect is delivered to the selected tissue site, create a desired level of ablation at the selected tissue site without causing damage to the hypoglossal nerve. Ablation delivery surface 30 is not always at the distal end of ablation source delivery device 12. Insulation 32 can also be positioned at the distal end of ablation source delivery device 12. In this embodiment, ablation delivery surface 30 does not extend to the distal end of ablation source delivery device 12. However, ablation delivery surface 30 still delivers a sufficient ablation effect to create a desired level of cell necrosis in the interior of the tongue at the selected tissue site without damaging the hypoglossal nerve and/or damage to the surface of the tongue. Additionally, only one side or a portion of a side of ablation source delivery device 12 can be insulated. This also provides for an ablation source delivery device 12 which can be positioned throughout the tongue, including adjacent to a hypoglossal nerve. Where ablation source delivery device 12 is adjacent to the hypoglossal nerve, ablation source delivery device 12 is insulated.
In one embodiment, advancement length 33 is 1.2 to 1.5 cm, and the length of ablation delivery surface 30 is 5 to 10 mm, more preferably about 8 mm.
In another embodiment, advancement length 33 is insufficient to reach the hypoglossal nerve when introduced through any of the tongue surfaces, particularly the dorsum of the tongue. Advancement device 20 is configured to advance at least a portion of each ablation source delivery device 12 to a placement position in the interior of the tongue. Advancement device 20 can also be configured to retract each ablation source delivery device 12. At the placement position, ablation delivery surface delivers sufficient ablation energy and/or effect to reduce a volume of the selected site without damaging a hypoglossal nerve and/or a surface of the tongue. In one embodiment, ablation source delivery device advancement and retraction device 20, with or without guide tracks 23, directs the delivery of ablation source delivery device 12 from catheter 14 into the interior of the tongue at an angle of 60 to 90 degrees relative to a longitudinal axis of catheter
14, and preferably about 70 degrees.
In certain embodiments, ablation source delivery device 12 has a geometric shape, including but not limited to a curved configuration that includes one or more insulated surfaces, either partially insulated on one side, at a proximal end, at a distal end, and the like, that is configured to reduce the volume of the selected tissue site without damaging a hypoglossal nerve. In one embodiment, ablation source delivery device 12 is introduced through any tongue surface and is configured so that a section of ablation source delivery device 12 which may be positioned close to the hypoglossal nerve is provided with insulation 32. As previously noted, insulation 32 can be positioned at different sites of ablation source delivery device 12.
Handle 16 can comprise a connector 34 coupled to retraction and advancement device 20. Connector 34 provides a coupling of electrodes 12 to power, feedback control, temperature and/or imaging systems. An RF/temperature control block 36 can be included.
In one embodiment, the physician moves retraction and advancement device 20 in a direction toward a distal end of connector 34. Electrodes 12 can be spring loaded. When retraction and advancement device 20 is moved back, springs cause selected electrodes 12 to advance out of catheter 14. One or more cables 38 couple electrodes 12 to an electromagnetic energy source 40. A variety of energy sources 40 can be used with the present invention to transfer electromagnetic energy to the interior of a body structure, including but not limited to RF, microwave, ultrasound, coherent light and thermal transfer. Preferably, energy source 40 is a RF generator. When a RF energy source is used, the physician can activate RF energy source 40 by the use of a foot switch (not shown) coupled to RF energy source 40.
One or more sensors 42 may be positioned on an interior or exterior surface of electrode 12, insulation sleeve 32, or be independently inserted into the interior of the body structure. Sensors 42 permit accurate measurement of temperature at a tissue site in order to determine, (i) the extent of ablation, (ii) the amount of ablation, (iii) whether or not further ablation is needed, and (iv) the boundary or periphery of the ablated geometry. Further, sensors 42 prevent non-targeted tissue from being destroyed or ablated.
Sensors 42 are of conventional design, including but not limited to thermistors, thermocouples, resistive wires, and the like. Suitable sensors 42 include a T type thermocouple with copper constantene, J type, E type, K type, fiber optics, resistive wires, thermocouple IR detectors, and the like. It will be appreciated that sensors 42 need not be thermal sensors.
Sensors 42 measure temperature and/or impedance to permit ablation monitoring. This reduces damage to tissue surrounding the targeted ablation mass. By monitoring the temperature at various points within the interior of the body structure the periphery of ablation can be ascertained and it is possible to determine when the ablation is completed. If at any time sensor 42 determines that a desired ablation temperature is exceeded, then an appropriate feedback signal is received at energy source 40 and the amount of energy delivered is regulated.
Ablation or debulking apparatus 10 can include visualization capability including but not limited to a viewing scope, an expanded eyepiece, fiber optics, video imaging, and the like.
Additionally, ultrasound imaging can be used to position the electrodes 12 and/or determine the amount of ablation. One or more ultrasound transducers 44 can be positioned in or on electrode 12, catheter 14, or on a separate device. An imaging probe may also be used internally or externally to the selected tissue site. A suitable imaging probe is Model 21362, manufactured and sold by Hewlett Packard Company. Each ultrasound transducer 44 is coupled to an ultrasound source (not shown). With reference now to Figure 6 catheter 14 is shown as being introduced into the oral cavity and multiple RF electrodes 12 are advanced into the interior of the tongue creating different ablation zones 46. Using RF, ablation apparatus 10 can be operated in either bipolar or monopolar modes. In Figure 6, electrodes 12 are operated in the bipolar mode, creating sufficient ablation zones 46 to debulk the tongue without affecting the hypoglossal nerves and creating a larger airway passage. With this debulking, the back of the tongue moves in a forward direction away from the air passageway. The result is an increase in the cross-sectional diameter of the air passageway.
Using RF, ablation apparatus 10 can also be operated in the monopolar mode. A groundpad can be positioned in a convenient place such as under the chin. A single electrode 12 is positioned in the tongue to create a first ablation zone 46. Electrode 12 can then be retracted from the interior of the tongue, catheter 14 moved, and electrode 12 is then advanced from catheter 14 into another interior section of the tongue. A second ablation zone 46 is created. This procedure can be completed any number of times to form different ablation regions in the interior of the tongue. More than one electrode 12 can be introduced into the tongue and operated in the bipolar mode. Electrodes 12 are then repositioned in the interior of the tongue any number of times to create a plurality of connecting or non-connecting ablation zones 46. Referring now to Figures 7 through 15, various anatomical views of the tongue and other structures are illustrated. The different anatomical structures are as follows: the genioglossus muscle, or body of the tongue is denoted as 48; the geniohyoid muscle is 50; the mylohyoid muscle is 52; the hyoid bone is 54; the tip of the tongue is 56; the ventral surface of the tongue is denoted as 58; the dorsum of the tongue is denoted as 60; the inferior dorsal of the tongue is denoted as 62; the reflex of the vallecula is 64; the lingual follicles are denoted as 66; the uvula is 68; the adenoid area is 70; the lateral border of the tongue is 72; the circumvallate papilla is 74, the palatine tonsil is 76; the pharynx is 78; the redundant pharyngeal tissue is 80; the foramen cecum is 82; the hypoglossal nerve is 84, and the lingual frenum of the tongue is 86. Dorsum 60 is divided into an anterior 2/3 and inferior dorsal 62. The delineation is determined by circumvallate papilla 74 and foramen cecum 82. Inferior dorsal 62 is the dorsal surface inferior to circumvallate papilla 74 and superior reflex of the vallecula 64. Reflex of the vallecula 64 is the deepest portion of the surface of the tongue contiguous with the epiglottis. Lingual follicles 66 comprise the lingual tonsil.
Catheter 14 can be introduced through the nose or through the oral cavity. Electrodes 12 can be inserted into an interior of the tongue through dorsum surface 60, inferior dorsal surface 62, ventral surface 58, tip 56 or geniohyoid muscle 50. Additionally, electrodes may be introduced into an interior of lingual follicles 66 and into adenoid area 70. Once electrodes 12 are positioned, insulation sleeve 32 may be adjusted to provided a desired electromagnetic energy delivery surface 30 for each electrode 12.
Ablation zones 46 are created without damaging hypoglossal nerves 84. This creates a larger air way passage and provides a treatment for sleep apnea. In all instances, the positioning of electrodes 12, as well as the creation of ablation zones 46 is such that hypoglossal nerves 84 are not ablated or damaged. The ability to swallow and speak is not impaired.
In one embodiment, RF electrode 12 are placed on the dorsum surface of the tongue. The first electrode is positioned 0.5 cm proximal to the circumvallate pappilla. The other electrodes are spaced 1.6 cm apart and are 1 cm off a central axis of the tongue. In one embodiment, 465 MHz RF was applied. The temperature at the distal end of electrode 12 was about 100 degrees C. The temperature at the distal end of the insulation sleeve 32 was about 60 degrees C. In another embodiment, the temperature at the distal end of insulation sleeve 32 was 43 degrees C and above. RF energy can be applied as short duration pulses with low frequency RF. Precise targeting of a desired ablation site is achieved. One or more electrodes 12 may be used to create volumetric three-dimensional ablation. A variety of ablation geometries are possible, including but not limited to rectilinear, polyhedral, redetermined shapes, symmetrical and non-symmetrical. Referring now to Figures 16 and 17 an open or closed loop feedback system couples sensors 42 to energy source 40. The temperature of the tissue, or of electrode 12 is monitored, and the output power of energy source 40 adjusted accordingly. Additionally, the level of disinfection in the oral cavity can be monitored. The physician can, if desired, override the closed or open loop system. A microprocessor can be included and incoφorated in the closed or open loop system to switch power on and off, as well as modulate the power. The closed loop system utilizes a microprocessor 88 to serve as a controller, watch the temperature, adjust the RF power, look at the result, refeed the result, and then modulate the power. With the use of sensors 42 and the feedback control system a tissue adjacent to RF electrodes 12 can be maintained at a desired temperature for a selected period of time without impeding out. Each RF electrode 12 is connected to resources which generate an independent output for each RF electrode 12. An output maintains a selected energy at RF electrodes 12 for a selected length of time.
When an RF electrode is used, current delivered through RF electrodes 12 is measured by current sensor 90. Voltage is measured by voltage sensor 92. Impedance and power are then calculated at power and impedance calculation device 94. These values can then be displayed at user interface and display 96. Signals representative of power and impedance values are received by a controller 98.
A control signal is generated by controller 98 that is proportional to the difference between an actual measured value, and a desired value. The control signal is used by power circuits 100 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 12. In a similar manner, temperatures detected at sensors 42 provide feedback for maintaining a selected power. The actual temperatures are measured at temperature measurement device 102, and the temperatures are displayed at user interface and display 96. A control signal is generated by controller 98 that is proportional to the difference between an actual measured temperature, and a desired temperature. The control signal is used by power circuits 100 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the respective sensor. A multiplexer can be included to measure current, voltage and temperature, at the numerous sensors 42, and energy can be delivered to RF electrodes 12 in monopolar or bipolar fashion.
Controller 98 can be a digital or analog controller, or a computer with software. When controller 98 is a computer it can include a CPU coupled through a system bus. On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
User interface and display 96 includes operator controls and a display. Controller 98 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners, X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
The output of current sensor 90 and voltage sensor 92 is used by controller 98 to maintain a selected power level at RF electrodes 12. The amount of RF energy delivered controls the amount of power. A profile of power delivered can be incorporated in controller 98, and a preset amount of energy to be delivered can also be profiled. Other sensors similar to sensors 90 and 92 can be used by controller 98 for other ablation source delivery devices 12 to maintain a controllable amount of an ablation energy and/or ablative agent.
Circuitry, software and feedback to controller 98 result in process control, and the maintenance of the selected power that is independent of changes in voltage or current, and are used to change, (i) the selected power,
(ii) the duty cycle (on-off and wattage), (iii) bipolar or monopolar energy delivery, and (iv) infusion medium delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensors 42. Current sensor 90 and voltage sensor 92 are connected to the input of an analog amplifier 104. Analog amplifier 104 can be a conventional differential amplifier circuit for use with sensors 42. The output of analog amplifier 104 is sequentially connected by an analog multiplexer 106 to the input of A/D converter 108. The output of analog amplifier 104 is a voltage which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A/D converter 108 to microprocessor 88. Microprocessor 88 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature. Microprocessor 88 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 88 corresponds to different temperatures and impedances.
Calculated power and impedance values can be indicated on user interface and display 96. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 88 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 96, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal from microprocessor 88 can modify the power level supplied by energy source 40.
Figure 18 illustrates a block diagram of a temperature/impedance feedback system that can be used to control cooling medium flow rate through catheter 14. Electromagnetic energy is delivered to electrode 12 by energy source 44, and applied to tissue. A monitor 110 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If the measured impedance exceeds the set value a disabling signal 112 is transmitted to energy source 40, ceasing further delivery of energy to electrode 12. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. During the application of energy to tissue sensor 42 measures the temperature of tissue and/or electrode 12. A comparator 114 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. Comparator 114 sends a signal to a flow regulator 116 representing a need for a higher cooling medium flow rate, if the tissue temperature is too high, or to maintain the flow rate if the temperature has not exceeded the desired temperature.
EXAMPLE 1 Ablation apparatus 10 was used to determine two-dimensional shrinkage of a bovine. RF volumetric reduction was achieved using a single needle electrode. Four miniature ultrasonic crystals were positioned to form a square. Measurements were taken at control and post volumetric reduction at 15 watts initially with a 13% volumetric reduction, and 15 watts for 4 hours with an additional 4% volumetric reduction. A total 17% volumetric reduction was achieved.
EXAMPLE 2 Ablation apparatus 10 was used to determine three-dimensional shrinkage of a bovine tongue. RF volumetric reduction was achieved with a single needle electrode with eight miniature ultrasonic crystals, creating a cube. Application of 16 watts initially produced a 17% volumetric reduction of the tongue, 25 watts applied initially produced a 25% volumetric reduction, and 25 watts after hours produced an additional 4% reduction, for a total volumetric reduction of 29%.
EXAMPLE 3 A 35% volumetric reduction was achieved in porcine in vivo, with three dimensional gross at 20 watts initial application. Referring now to Figure 19, ablation volume dimensions were measured with a multidimensional digital sonomicrometry. An average decrease in the Z direction was 20%, and volume shrinkage was 26%. Three-dimensional shrinkage of tongue tissue due to in vivo RF ablation with the needle, ablation with 20 Watts) is presented in Figure 20. Control volume before ablation is compared with a post-ablation volume.
Figure 20 illustrates two-dimensional shrinkage of a bovine tongue tissue due to RF ablation with a needle electrode. The before and after ablation results are illustrated. Figure 21 illustrates in graph form ablation at 16 Watts resulted in a 17% volume shrinkage of the tissue in post-ablation verses control. Ablation at 25 watts resulted in a 25% volume shrinkage after ablation. An additional 4% area shrinkage was obtained after in long-term post ablation (4 hours) verses post- ablation. Figure 22 illustrates a percent volume change after RF ablation. 16
Watts, ablation at 16 Watts for 20 minutes; 25 Watts, ablation at 25 Watts for 20 minutes; 25 Watts (4 hours), and long tern post ablation (4 hours after 25 Watts ablation).
The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents. What is claimed is:

Claims

1. An apparatus to reduce a volume of a selected site in an interior of the tongue, comprising: a handpiece; an electrode at least partially positioned in the interior of the handpiece, the electrode including an electrode electromagnetic energy delivery surface and advance able from the interior of the handpiece into the interior of the tongue; an electrode advancement member coupled to the electrode and configured to advance the electrode an advancement distance in the interior of the tongue, wherein the advancement distance is sufficient for the electrode electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve; and a cable coupled to the electrode.
2. The apparatus of claim 1 , wherein the electrode is an RF electrode.
3. The apparatus of claim 2, further comprising: an RF energy source coupled to the RF electrode.
4. The apparatus of claim 1, further comprising: a cooling device at least partially positioned in the interior of the handpiece and configured to cool a surface of the tongue.
5. The apparatus of claim 4, further comprising: a flow rate control device coupled to the cooling device and configured to control a cooling medium flow rate through the cooling device.
6. The apparatus of claim 1, further comprising: an insulator at least partially positioned around an exterior of the electrode.
7. The apparatus of claim 6, further comprising: a sensor positioned at a distal end of the insulator.
8. The apparatus of claim 1, further comprising: a sensor positioned at a distal end of the electrode.
9. The apparatus of claim 1, further comprising: a sensor positioned on an exterior of the handpiece.
10. The apparatus of claim 1, further comprising: a first sensor positioned at a distal end of the electrode and a second sensor positioned at a distal end of an insulator, wherein the insulator is at least partially positioned around an exterior of the electrode.
11. The apparatus of claim 1 , further comprising: a feedback control means coupled to the electrode, a sensor and an RF energy source.
12. The apparatus of claim 1, further comprising: an infusion medium source coupled to the electrode.
13. An apparatus to reduce a volume of a selected site in an interior of the tongue, comprising: a handpiece; an electrode at least partially positioned in the interior of the handpiece, the electrode including an electrode electromagnetic energy delivery surface and advance able from the interior of the handpiece into the interior of the tongue; an electrode advancement and retraction member coupled to the electrode and configured to advance at least a portion of the electrode to a placement position in the interior of the tongue, wherein at the placement position the electrode electromagnetic energy delivery surface delivers sufficient electromagnetic energy to reduce a volume of the selected site without damaging a hypoglossal nerve; and a cable coupled to the electrode.
14. The apparatus of claim 13, wherein the electrode advancement and retraction member further comprises: a guide channel configured to receive the electrode in at least a portion of the interior of the handpiece and configured to guide an advancement direction of the electrode from the handpiece into the interior of the tongue.
15. The apparatus of claim 13, wherein the electrode is an RF electrode.
16. The apparatus of claim 14, further comprising: an RF energy source coupled to the RF electrode.
17. The apparatus of claim 13, further comprising: a cooling device at least partially positioned in the interior of the handpiece and configured to cool a surface of the tongue.
18. The apparatus of claim 17, further comprising: a flow rate control device coupled to the cooling device and configured to control a cooling medium flow rate through the cooling device.
19. The apparatus of claim 13, further comprising: an insulator at least partially positioned around an exterior of the electrode.
20. The apparatus of claim 19, further comprising: a sensor positioned at a distal end of the insulator.
21. The apparatus of claim 13, further comprising: a sensor positioned at a distal end of the electrode.
22. The apparatus of claim 13, further comprising: a sensor positioned on an exterior of the handpiece.
23. The apparatus of claim 13, further comprising: a first sensor positioned at a distal end of the electrode and a second sensor positioned at a distal end of an insulator, wherein the insulator is at least partially positioned around an exterior of the electrode.
24. The apparatus of claim 13, further comprising: a feedback control means coupled to the electrode, a sensor and an RF energy source.
25. The apparatus of claim 13, further comprising: an infusion medium source coupled to the electrode.
26. An apparatus to reduce a volume of a selected site in an interior of the tongue, comprising: a handpiece; an electrode at least partially positioned in the interior of the handpiece, the electrode including an electrode electromagnetic energy delivery surface and an electrode advancement length extending from an exterior of the handpiece to the interior of the tongue, wherein the advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve; an electrode advancement and retraction member coupled to the electrode and configured to advance and retract at least a portion of the electrode; and a cable coupled to the electrode.
27. The apparatus of claim 26, wherein the electrode is an RF electrode.
28. The apparatus of claim 27, further comprising: an RF energy source coupled to the RF electrode.
29. The apparatus of claim 26, further comprising: a cooling device at least partially positioned in the interior of the handpiece and configured to cool a surface of the tongue.
30. The apparatus of claim 29, further comprising: a flow rate control device coupled to the cooling device and configured to control a cooling medium flow rate through the cooling device.
31. The apparatus of claim 26, further comprising: an insulator at least partially positioned around an exterior of the electrode.
32. The apparatus of claim 31, further comprising: a sensor positioned at a distal end of the insulator.
33. The apparatus of claim 26, further comprising: a sensor positioned at a distal end of the electrode.
34. The apparatus of claim 26, further comprising: a sensor positioned on an exterior of the handpiece.
35. The apparatus of claim 26, further comprising: a first sensor positioned at a distal end of the electrode and a second sensor positioned at a distal end of an insulator, wherein the insulator is at least partially positioned around an exterior of the electrode.
36. The apparatus of claim 26, further comprising: a feedback control means coupled to the electrode, a sensor and an RF energy source.
37. The apparatus of claim 26, further comprising: an infusion medium source coupled to the electrode.
38. An apparatus to reduce a volume of a selected site in an interior of the tongue, comprising: a handpiece; an electrode at least partially positioned in the interior of the handpiece and advance able from the interior of the handpiece into the interior of the tongue, wherein the electrode has a geometric shape configured to reduce a volume of the selected site without damaging a hypoglossal nerve; an electrode advancement and retraction member coupled to the electrode and configured to advance and retract at least a portion of the electrode; and a cable coupled to the electrode.
39. The apparatus of claim 38, wherein the electrode is an RF electrode.
40. The apparatus of claim 39, further comprising: an RF energy source coupled to the RF electrode.
41. The apparatus of claim 38, further comprising : a cooling device at least partially positioned in the interior of the handpiece and configured to cool a surface of the tongue.
42. The apparatus of claim 41 , further comprising : a flow rate control device coupled to the cooling device and configured to control a cooling medium flow rate through the cooling device.
43. The apparatus of claim 38, further comprising: an insulator at least partially positioned around an exterior of the electrode.
44. The apparatus of claim 43, further comprising: a sensor positioned at a distal end of the insulator.
45. The apparatus of claim 38, further comprising: a sensor positioned at a distal end of the electrode.
46. The apparatus of claim 38, further comprising: a sensor positioned on an exterior of the handpiece.
47. The apparatus of claim 38, further comprising: a first sensor positioned at a distal end of the electrode and a second sensor positioned at a distal end of an insulator, wherein the insulator is at least partially positioned around an exterior of the electrode.
48. The apparatus of claim 38, further comprising: a feedback control means coupled to the electrode, a sensor and an RF energy source.
49. The apparatus of claim 38, further comprising: an infusion medium source coupled to the electrode.
50. An apparatus to reduce a volume of a selected site in an interior of the tongue, comprising: a handpiece; and an electrode at least partially positioned in the interior of the handpiece, the electrode including an electrode electromagnetic energy delivery surface and an electrode advancement length extending from an exterior of the handpiece to the interior of the tongue, wherein the advancement length is sufficient to position the electrode electromagnetic energy delivery surface at the selected site and deliver sufficient electromagnetic energy to reduce a volume of the selected tissue site without damaging a hypoglossal nerve.
51. An apparatus for reducing the volume of selected sections of a tongue, comprising: a catheter means; an electrode means at least partially positioned in an interior of the catheter means, the electrode means being configured to deliver sufficient electromagnetic energy to ablate an interior of the tongue without damaging a hypoglossal nerve of the tongue; an electrode advancement and retraction means coupled to the electrode means to advance and retract at least a portion of the electrode means in and out of a selected tongue surface; and a cabling means coupled to the electrode means.
52. The apparatus of claim 51, further comprising: an electromagnetic energy source means coupled to the electrode means and the cabling means.
53. The apparatus of claim 51 , further comprising: a cooling means at least partially positioned in the interior of the catheter and configured to cool a surface of the tongue.
54. The apparatus of claim 53, further comprising: means for controlling a cooling medium flow rate through the cooling means.
55. The apparatus of claim 51 , further comprising : an insulator means positioned at least partially around an exterior of the electrode means.
56. The apparatus of claim 55, further comprising: a sensor means positioned at a distal end of the insulator means.
57. The apparatus of claim 51 , further comprising : a sensor means positioned at a distal end of the electrode means.
58. The apparatus of claim 51, further comprising: a sensor means positioned on an exterior of the catheter means.
59. The apparatus of claim 51, further comprising: a first sensor means positioned at a distal end of the electrode means and a second sensor means positioned at a distal end of an insulator means positioned at least partially around an exterior of the electrode means.
60. The apparatus of claim 51, wherein the electrode means is a RF electrode coupled to a RF generator.
61. The apparatus of claim 51 , wherein the electrode means is a microwave antenna coupled to a microwave source.
62. The apparatus of claim 51 , further comprising: a feedback control means coupled to the electrode means and an electromagnetic source.
63. The apparatus of claim 62, further comprising: an ultrasound means coupled to the feedback control means.
64. The apparatus of claim 51, wherein the electrode means includes two or more RF electrodes coupled to a RF energy source.
65. The apparatus of claim 51 , further comprising: an infusion medium source means coupled to the electrode means.
PCT/US1996/013426 1996-05-03 1996-08-16 Apparatus for cosmetically remodeling a body structure WO1997041785A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96930548A EP0914068A2 (en) 1996-05-03 1996-08-16 Apparatus for cosmetically remodeling a body structure
AU69548/96A AU725853B2 (en) 1996-05-03 1996-08-16 Apparatus for cosmetically remodeling a body structure
JP09539885A JP2000514319A (en) 1996-05-03 1996-08-16 Apparatus for orthopedically remodeling body structures

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/642,327 US5807308A (en) 1996-02-23 1996-05-03 Method and apparatus for treatment of air way obstructions
US08/642,327 1996-05-03
US08/695,802 1996-08-12
US08/695,802 US5879349A (en) 1996-02-23 1996-08-12 Apparatus for treatment of air way obstructions

Publications (2)

Publication Number Publication Date
WO1997041785A2 true WO1997041785A2 (en) 1997-11-13
WO1997041785A3 WO1997041785A3 (en) 1999-05-14

Family

ID=27093990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/013426 WO1997041785A2 (en) 1996-05-03 1996-08-16 Apparatus for cosmetically remodeling a body structure

Country Status (6)

Country Link
EP (1) EP0914068A2 (en)
JP (1) JP2000514319A (en)
KR (1) KR20000010722A (en)
AU (1) AU725853B2 (en)
CA (1) CA2252820A1 (en)
WO (1) WO1997041785A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003412A1 (en) 1997-07-17 1999-01-28 Somnus Medical Technologies, Inc. Apparatus for electrosurgical treatment of air ways obstructions
WO1999058070A2 (en) * 1998-05-08 1999-11-18 Novacept A radio-frequency generator for an ablation device
US9649144B2 (en) 2013-01-17 2017-05-16 Arthrocare Corporation Systems and methods for turbinate reduction
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604633B2 (en) 1996-04-12 2009-10-20 Cytyc Corporation Moisture transport system for contact electrocoagulation
US8551082B2 (en) 1998-05-08 2013-10-08 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010925A1 (en) * 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
EP0608609A2 (en) * 1992-12-01 1994-08-03 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode and method
WO1994026178A1 (en) * 1993-05-14 1994-11-24 Vidamed, Inc. Bph ablation method and apparatus
WO1995018575A1 (en) * 1994-01-06 1995-07-13 Vidamed, Inc. Medical probe apparatus with enhanced rf, resistance heating, and microwave ablation capabilities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010925A1 (en) * 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
EP0608609A2 (en) * 1992-12-01 1994-08-03 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode and method
WO1994026178A1 (en) * 1993-05-14 1994-11-24 Vidamed, Inc. Bph ablation method and apparatus
WO1995018575A1 (en) * 1994-01-06 1995-07-13 Vidamed, Inc. Medical probe apparatus with enhanced rf, resistance heating, and microwave ablation capabilities

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003412A1 (en) 1997-07-17 1999-01-28 Somnus Medical Technologies, Inc. Apparatus for electrosurgical treatment of air ways obstructions
WO1999058070A2 (en) * 1998-05-08 1999-11-18 Novacept A radio-frequency generator for an ablation device
WO1999058070A3 (en) * 1998-05-08 2000-02-17 Novacept A radio-frequency generator for an ablation device
US6508815B1 (en) 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US7074217B2 (en) 1998-05-08 2006-07-11 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US7407502B2 (en) 1998-05-08 2008-08-05 Cytyc Corporation Radio-frequency generator for powering an ablation device
US7717909B2 (en) 1998-05-08 2010-05-18 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
US9649144B2 (en) 2013-01-17 2017-05-16 Arthrocare Corporation Systems and methods for turbinate reduction

Also Published As

Publication number Publication date
AU6954896A (en) 1997-11-26
EP0914068A2 (en) 1999-05-12
WO1997041785A3 (en) 1999-05-14
JP2000514319A (en) 2000-10-31
KR20000010722A (en) 2000-02-25
AU725853B2 (en) 2000-10-19
CA2252820A1 (en) 1997-11-13

Similar Documents

Publication Publication Date Title
US5879349A (en) Apparatus for treatment of air way obstructions
US5836906A (en) Method and apparatus for treatment of air way obstructions
AU718288B2 (en) Apparatus for cosmetically remodeling a body structure
US5820580A (en) Method for ablating interior sections of the tongue
US5730719A (en) Method and apparatus for cosmetically remodeling a body structure
US6126657A (en) Apparatus for treatment of air way obstructions
US5807308A (en) Method and apparatus for treatment of air way obstructions
US5738114A (en) Method and apparatus for treatment of air way obstructions
US5817049A (en) Method for treatment of airway obstructions
KR19990037713A (en) Cosmetic remodeling device of body tissue
US20010051783A1 (en) Method and apparatus for treatment of air way obstructions
AU725853B2 (en) Apparatus for cosmetically remodeling a body structure
AU702374B2 (en) Method and apparatus for treatment of air way obstructions
WO1997043973A1 (en) Method for ablating interior sections of the tongue
WO1997030645A1 (en) Apparatus and method for treating airway insufficiency in the laringeal/oral cavity region by electromagnetic energy
WO1997043969A1 (en) Apparatus for cosmetically remodeling a body structure
WO1999003411A1 (en) Method and apparatus for treatment of air way obstructions
KR20000015919A (en) Method and apparatus for cosmetically remodeling a body structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96180280.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2252820

Country of ref document: CA

Ref document number: 2252820

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980708826

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996930548

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996930548

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): KE LS MW SD SZ UG AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 1019980708826

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019980708826

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996930548

Country of ref document: EP