WO1998045727A1 - Acoustic imaging system - Google Patents

Acoustic imaging system Download PDF

Info

Publication number
WO1998045727A1
WO1998045727A1 PCT/FR1998/000684 FR9800684W WO9845727A1 WO 1998045727 A1 WO1998045727 A1 WO 1998045727A1 FR 9800684 W FR9800684 W FR 9800684W WO 9845727 A1 WO9845727 A1 WO 9845727A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
cells
acoustic
reception
sensors
Prior art date
Application number
PCT/FR1998/000684
Other languages
French (fr)
Inventor
Daniel Billet
Original Assignee
Thomson Marconi Sonar S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Marconi Sonar S.A.S. filed Critical Thomson Marconi Sonar S.A.S.
Publication of WO1998045727A1 publication Critical patent/WO1998045727A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • G11C27/028Current mode circuits, e.g. switched current memories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems

Definitions

  • the present invention relates to acoustic imaging systems which make it possible to obtain images by processing the echoes received from the objects of which one wishes to make the image. These echoes are obtained from an acoustic signal, generally ultrasonic, emitted by the system towards these objects.
  • This basic technique can be applied in different uses, in particular in sonars, which are at the origin of this branch of the technique, and in medical sonographs, which represent a particularly important evolution of this technique initially limited to sonar.
  • the sonar technique which originated from the omnidirectional listening of the echoes of a signal itself emitted in a roughly omnidirectional manner, has evolved towards on the one hand a transmission concentrated in a given sector, and on the other apart from a fine processing of the echoes received to form a large number of channels, preferably juxtaposed in deposit and in site.
  • the information relating to the temporal positions of the echoes in each of the channels thus makes it possible to define space-time boxes, identified by a distance from a site and an azimuth, corresponding to a fragment of the insonified space.
  • space-time boxes identified by a distance from a site and an azimuth, corresponding to a fragment of the insonified space.
  • This processing is currently carried out digitally, which requires a significant processing capacity, in particular to constitute the channels defined above.
  • an acoustic camera intended for underwater exploration comprising for example a two-dimensional reception antenna formed of contiguous sensors constituting a retina, and an acoustic projector located for example in the middle of this retina, we are led to form from the signals received on the retina a set of juxtaposed pathways which make it possible to obtain for each emission of the acoustic projector an image of the environment insonified by this projector.
  • each channel corresponds to an image point.
  • the number of channels that it is necessary to form from the reception signals from the retina sensors is equal to the ratio between the insonified angular field and the desired angular definition.
  • N is the number of transducers
  • this processing must be carried out on the echoes coming from a single emission before the arrival of the echoes corresponding to the following emission.
  • the duration of the treatment is therefore determined by the interval between two successive transmissions of the insonification signal.
  • this transmission rate corresponding to the image rate, depends largely on the speed of the carrier vehicle on which the imaging system is mounted. Indeed, considering, by way of example, an imaging system mounted on a towed or autonomous underwater vehicle sailing at a speed of 5 knots at 5 m above the sea floor with an opening of 30 x 30 ° , it is necessary to obtain a frame per second in order not to have a coverage hole.
  • the above-mentioned circular reception antenna for example, is formed by 800 square sensors with a side of 4 mm, the transmitter operating at 500 kHz.
  • the Fresnel distance is 0.55 m, and given the height above the bottom it is not necessary to focus the channels, which simplifies the treatment to a certain extent and reduces the volume .
  • to obtain an angular resolution of 1.5 x 1.5 one must form 400 channels per second.
  • the computing power necessary to comply with all these conditions is therefore substantially equal to 320 Gigaops per second.
  • Double Europe allows to obtain a computing power of about 1 Gigaops per second. Under these conditions, several hundred type cards are required.
  • the invention proposes an acoustic imaging system, of the type comprising a set of sensors 201 intended to receive acoustic signals reflected by the object intended to be imaged in order to deliver in response electrical signals corresponding to these signals.
  • acoustic, processing means to apply to these electrical signals delays determined to form a set of reception channels, mainly characterized in that these processing means comprise for each sensor a voltage / current converter 202 making it possible to convert said electrical signals into intensity, a set 203 of cells 207 with current memory connected in parallel at input and at output to receive said intensity signals, a write register 204 and a read register 205 controlled by a clock of period T H and the stages of which are respectively connected to the write and read control inputs of said cells, and means 206 for injecting respectively into each of these two registers a single bit which circulates in the registers and which controls the writing and reading of the cells; the two unique bits being separated by a number n of stages between the 2 registers, to establish a delay of the output signal equal to a value n T.
  • the sensors 201 are arranged according to a two-dimensional retina so as to form the reception system of an underwater acoustic camera which makes it possible to obtain an image from the set of channels formed by said means of treatment.
  • the sensors are transducers 402 of an ultrasound probe 401 intended to operate according to a series of “shots” obtained by the selection of a series of subsets 405 of the transducers which are offset with each shot at least one sensor to allow scanning of a sectoral area 404 described by the succession of shots, and in that for each shot a dynamic focusing 403 is carried out on transmission and on reception; this focusing being obtained by delays.
  • Switched current memory cells are known devices of which the simplest diagram is shown in FIG. 1.
  • a node 101 is supplied by a bias current J by a current source 102. On this node are connected switches
  • phase signals ⁇ i and ⁇ 2 which operate under the control of so-called phase signals ⁇ i and ⁇ 2 to bring the input current i to the node and to output the output current - i therefrom.
  • a field effect transistor 105 connects this node to ground.
  • the gate of this transistor is itself connected on the one hand to ground via a storage capacitor 107 and on the other hand to node 101 via a switch 106 controlled by the signal ⁇ - i.
  • the operation of this device is as follows:
  • the transistor 105 In a first step the transistor 105 is blocked and the switches 103 and 106 are closed. The sum of the currents i and J then charges the capacitor 107. This capacitor charges to a potential V which depends on the characteristics of the elements used and which is such that it polarizes the transistor 105 so that it becomes passing and conducting the entire current i + J.
  • the switches 103 and 106 are open and the switch 104 is closed.
  • the capacitor 107 continues to impose the passage through the transistor 105 of a current equal to i + J.
  • the switch 103 is open, the current complement to obtain this sum, since J, supplied by the current source 102, is constant, arrives by the switch 104, which therefore causes an equal current to flow on the output connection have .
  • This cell therefore makes it possible to memorize the value of the input current and to restore it at the output with a change of sign.
  • a set of cells of this type is used according to the diagrams shown in FIGS. 2 to 4 to obtain the delays necessary for the formation of the channels of an acoustic imaging system.
  • Figure 2 shows the overall diagram, Figure 3 the control connections, and Figure 4 the input and output connections of the current signals to be stored.
  • Each of the transducers 201 is thus connected to a known device 202 which makes it possible to convert the output signal of this transducer, which is essentially in voltage, into a current signal.
  • This signal is then applied to the input of a set 203 composed of N current memory cells 207, of a type similar to that described with respect to FIG. 1, and which are put in parallel at input and at output.
  • the input control signals ⁇ of each cell are obtained from a shift register 204, of digital type, formed for example by N flip-flops 209 connected in series.
  • the outputs of these N flip-flops are also connected respectively to the storage control inputs of the N cells of the assembly 203.
  • a register 205 identical to register 204, makes it possible to obtain the signals ⁇ 2 for controlling the output of the cells of the assembly 203.
  • the registers 204 and 205 operate in circulating memory by circulating at the rate of a clock "H" bits "1" introduced into these registers by a logic unit 206.
  • a bit 1 arrives in one of the flip-flops 208, it starts storing in the corresponding cell 207 the current signal supplied by the device 202.
  • a bit 1 arrives in one of the flip-flops 209, it restores the current memorized in the corresponding cell 207 on the output S.
  • This logic unit introduces at a suitable time a single bit "1" in each of the registers 204 and 205 in such a way that by scrolling through the registers, they cause the sampling and memorization of the sensor signal and then its reading at the instants necessary for get the delay you want.
  • the invention proposes, as shown in FIG. 5, to add these signals according to a tree dichotomy system where these are taken successively two by two. As shown in FIG. 5, limited to four signals Si to S, first add the signals Si and S 2, and S 3 and S 4 , then add the two signals thus obtained to obtain the signal of channel S v .
  • the weighting determined by the coefficients ai we will use for example resistors, or preferably cells with current mirror of known type.
  • the number of stages of the assemblies 203 is determined by the maximum angle that the most depressed channels must form with the normal to the reception network. Referring to the digital example described above, this angle is equal to 15 °, which corresponds for the values described to a maximum delay equal to 22 ⁇ s for the transducers located at the ends of the reception network.
  • the clock frequency corresponds to the sampling frequency necessary to obtain good channel formation, ie 8 times the carrier. It is therefore equal for the values described above at 4 MHz. Under these conditions, the number of stages necessary to obtain this delay with this frequency is equal to 88. Taking into account the technology existing at present, this value is sufficiently small so that a single assembly comprising these 88 stages of cells and its related organs, such as the writing and reading registers and the logical addressing unit, in a monolithic structure.
  • microcontroller type circuits will then be used, which are capable of controlling 8 independent ASICs of this type. These 8 ASICs, the control microcontroller and the associated circuits, then occupy an area of approximately 100 cm 2 . All of the circuits necessary to obtain all of the delays using the device according to the invention can then be grouped together on a maximum of 4 cards in double Europe format. This figure is to be compared with that of 320 cards for a fully digital solution and underlines the interest of the invention.
  • the invention is not limited to sonar imaging systems, but it also extends to all acoustic imaging systems, in particular to imaging systems used in medical ultrasound systems.
  • TIR focused emission-reception
  • the probe shown in section in this figure comprises a body 401 whose front emissive part is curved and has on its face internally a set of aligned emission transducers 402, 128 in number for example.
  • a subset 405 of contiguous transducers is selected which makes it possible to perform transmission and reception, 32 transducers for example. Dynamic focusing on transmission and reception is carried out from the transducers of the subassembly. Thus we focus on several zones 403 during a shot.
  • the sub-assembly of transducers is shifted by 1 transducer, so as to obtain an offset of the radius swept during the shot in a direction BT perpendicular to BR.
  • a total scan of the area 404 to be explored is therefore carried out in 96 shots.
  • the shots must be spaced at least 0.13 milliseconds.
  • a distance resolution equal for example to 2 millimeters
  • These delay changes must therefore be made in 0.65 ⁇ s, which the invention makes it possible to carry out without any problem.
  • the maximum delay is equal to 1.78 microseconds. This delay requires using, if we also sample the carrier 8 times, 43 cells per set.

Abstract

The invention concerns acoustic imaging systems. It consists in producing delays required for the reception signals of each of the sensors (201) of such a system using a set (203) of cells (207) with current memory. Said cells are posted and read by means of two offset registers (204, 205) wherein circulates a single bit per register. The space between the bits delays the signal introduced in the set, to form channels. The system enables the use of very compact acoustic cameras or ultrasonograph probes.

Description

SYSTEME D'IMAGERIE ACOUSTIQUE ACOUSTIC IMAGING SYSTEM
La présente invention se rapporte aux systèmes d'imagerie acoustique qui permettent d'obtenir des images par traitement des échos reçus des objets dont on souhaite faire l'image. Ces échos sont obtenus à partir d'un signal acoustique, généralement ultrasonore, émis par le système vers ces objets. Cette technique de base peut être appliquée dans différentes utilisations, notamment dans des sonars, qui sont à l'origine de cette branche de la technique, et dans les échographes médicaux, qui représentent une évolution particulièrement importante de cette technique initialement limitée au sonar. La technique sonar, qui est partie à l'origine de l'écoute omnidirectionnelle des échos d'un signal lui-même émis de manière grossièrement omnidirectionnelle, a évolué vers d'une part une émission concentrée dans un secteur donné, et d'autre part un traitement fin des échos reçus pour former un nombre important de voies, de préférence juxtaposées en gisement et en site. Les informations portant sur les positions temporelles des échos dans chacune des voies permettent ainsi de définir des cases spatio-temporelles, identifiées par une distance un site et un azimut, correspondant à un fragment de l'espace insonifié. En répertoriant toutes les cases associées à un écho continu, on peut reconstituer une image tridimensionnelle de l'espace insonifié. Dans cette image les phénomènes à l'origine des échos correspondent généralement à des objets solides immergés dans le milieu marin et dont on détermine ainsi la dimension, la forme et la localisation.The present invention relates to acoustic imaging systems which make it possible to obtain images by processing the echoes received from the objects of which one wishes to make the image. These echoes are obtained from an acoustic signal, generally ultrasonic, emitted by the system towards these objects. This basic technique can be applied in different uses, in particular in sonars, which are at the origin of this branch of the technique, and in medical sonographs, which represent a particularly important evolution of this technique initially limited to sonar. The sonar technique, which originated from the omnidirectional listening of the echoes of a signal itself emitted in a roughly omnidirectional manner, has evolved towards on the one hand a transmission concentrated in a given sector, and on the other apart from a fine processing of the echoes received to form a large number of channels, preferably juxtaposed in deposit and in site. The information relating to the temporal positions of the echoes in each of the channels thus makes it possible to define space-time boxes, identified by a distance from a site and an azimuth, corresponding to a fragment of the insonified space. By listing all the boxes associated with a continuous echo, we can reconstruct a three-dimensional image of the insonified space. In this image, the phenomena at the origin of the echoes generally correspond to solid objects immersed in the marine environment and whose size, shape and location are thus determined.
Ce traitement s'effectue actuellement de manière numérique, ce qui nécessite une capacité de traitement importante, en particulier pour constituer les voies définies ci-dessus.This processing is currently carried out digitally, which requires a significant processing capacity, in particular to constitute the channels defined above.
En effet, en prenant par exemple le cas d'une caméra acoustique destinée à l'exploration sous-marine comportant par exemple une antenne de réception bi-dimensionnelle formée de capteurs jointifs constituant une rétine, et un projecteur acoustique situé par exemple au milieu de cette rétine, on est amené à former à partir des signaux reçus sur la rétine un ensemble de voies juxtaposées qui permettent d'obtenir pour chaque émission du projecteur acoustique une image du milieu insonifié par ce projecteur.Indeed, by taking for example the case of an acoustic camera intended for underwater exploration comprising for example a two-dimensional reception antenna formed of contiguous sensors constituting a retina, and an acoustic projector located for example in the middle of this retina, we are led to form from the signals received on the retina a set of juxtaposed pathways which make it possible to obtain for each emission of the acoustic projector an image of the environment insonified by this projector.
En se limitant au cas d'une image bidimensionnelle, à chaque voie correspond un point image. Le nombre de voies qu'il est nécessaire de former à partir des signaux de réception des capteurs de la rétine est égal au rapport entre le champ angulaire insonifié et la définition angulaire souhaitée.By limiting itself to the case of a two-dimensional image, each channel corresponds to an image point. The number of channels that it is necessary to form from the reception signals from the retina sensors is equal to the ratio between the insonified angular field and the desired angular definition.
On sait que pour former une voie dans une direction donnée on doit effectuer l'opération définie par la formule :We know that to form a path in a given direction we must perform the operation defined by the formula:
N ∑tf, . s, (t - τ i) (1 )N ∑tf,. s, (t - τ i) (1)
;=1; = 1
OR
N est le nombre de transducteursN is the number of transducers
Si (t) est le signal reçu par le transducteur i à l'instant t ai est un coefficient de pondération v, est le retard à appliquer pour remettre en phase les signaux dans la direction de la voie à former.If (t) is the signal received by the transducer i at time t ai is a weighting coefficient v, is the delay to be applied to put the signals back in phase in the direction of the channel to be formed.
Bien entendu ce traitement doit être réalisé sur les échos provenant d'une émission unique avant l'arrivée des échos correspondant à l'émission suivante. La durée du traitement est donc déterminée par l'intervalle entre deux émissions successives du signal d'insonification. En outre, cette cadence d'émission, correspondant à la cadence image, dépend en grande partie de la vitesse du véhicule porteur sur laquelle est monté le système d'imagerie. En effet, en considérant, à titre d'exemple un système d'imagerie monté sur véhicule sous-marin remorqué ou autonome naviguant à une vitesse de 5 noeuds à 5 m au dessus du fond de la mer avec une ouverture de 30 x 30°, il est nécessaire d'obtenir une image par seconde pour ne pas avoir de trou de couverture.Of course this processing must be carried out on the echoes coming from a single emission before the arrival of the echoes corresponding to the following emission. The duration of the treatment is therefore determined by the interval between two successive transmissions of the insonification signal. In addition, this transmission rate, corresponding to the image rate, depends largely on the speed of the carrier vehicle on which the imaging system is mounted. Indeed, considering, by way of example, an imaging system mounted on a towed or autonomous underwater vehicle sailing at a speed of 5 knots at 5 m above the sea floor with an opening of 30 x 30 ° , it is necessary to obtain a frame per second in order not to have a coverage hole.
Dans un tel système, l'antenne de réception par exemple circulaire citée plus haut est formée de 800 capteurs carrés de 4mm de côté, l 'émetteur fonctionnant à 500 kHz. Dans ces conditions, la distance de Fresnel est de 0,55 m, et compte tenu de la hauteur au dessus du fond il n'est pas nécessaire de focaliser les voies, ce qui simplifie dans une certaine mesure le traitement et en diminue le volume. Avec ces caractéristiques, pour obtenir une résolution angulaire de 1 ,5 x 1 ,5 ° on doit former 400 voies par seconde.In such a system, the above-mentioned circular reception antenna, for example, is formed by 800 square sensors with a side of 4 mm, the transmitter operating at 500 kHz. Under these conditions, the Fresnel distance is 0.55 m, and given the height above the bottom it is not necessary to focus the channels, which simplifies the treatment to a certain extent and reduces the volume . With those characteristics, to obtain an angular resolution of 1.5 x 1.5, one must form 400 channels per second.
Pour cela, il est nécessaire de numériser les signaux des 800 capteurs avec une fréquence d'échantillonnage au moins égale à 8 fois la fréquence porteuse, afin d'obtenir une précision sur les retards d'au moins λ/8 pour de pouvoir former correctement les voies sans interpolation.For this, it is necessary to digitize the signals of the 800 sensors with a sampling frequency at least equal to 8 times the carrier frequency, in order to obtain an accuracy on the delays of at least λ / 8 in order to be able to form correctly the channels without interpolation.
Compte tenu de ce que les échantillons des signaux de voies doivent être obtenus à une cadence égale à au moins deux fois la fréquence de réception, pour respecter le théorème de Shannon, la puissance de calcul nécessaire pour respecter toutes ces conditions est donc sensiblement égale à 320 Gigaops par seconde.Taking into account that the samples of the channel signals must be obtained at a rate equal to at least twice the reception frequency, in order to comply with Shannon's theorem, the computing power necessary to comply with all these conditions is therefore substantially equal to 320 Gigaops per second.
On sait qu'aujourd'hui une carte électronique au format connu dit « double Europe » permet d'obtenir une puissance de calcul d'environ 1 Gigaops par seconde. Dans ces conditions, il faut plusieurs centaines de cartes de typeWe know that today an electronic card in known format known as "double Europe" allows to obtain a computing power of about 1 Gigaops per second. Under these conditions, several hundred type cards are required.
« double Europe » pour obtenir la puissance de calcul nécessaire à la formation des voies, sans compter la puissance de calcul nécessaire pour traiter ensuite les signaux de voies afin d'obtenir l'image proprement dite, et éventuellement celle nécessaire pour traiter de manière automatique cette image."Double Europe" to obtain the computing power necessary for the formation of the channels, without counting the computing power necessary to then process the channel signals in order to obtain the image proper, and possibly that necessary to process automatically this image.
Le volume, et donc le coût, du matériel électronique nécessaire pour effectuer ces opérations est dans ces conditions particulièrement important . En outre, comme tout le traitement se fait de manière numérique, il est nécessaire de numériser les signaux reçus directement au niveau de chaque transducteur, ce qui implique d'avoir un codeur analogique/ numérique par transducteur. Le nombre de ces codeurs est alors considérable, 800 dans l'exemple ci-dessus par exemple, ce qui entraîne, outre des problèmes d'encombrement et de coût, des problèmes de dissipation thermique importants. Pour pallier ces inconvénients, l'invention propose un système d'imagerie acoustique, du type comprenant un ensemble de capteurs 201 destinés à recevoir des signaux acoustiques réfléchis par l'objet destiné à être imagé pour délivrer en réponse des signaux électriques correspondant à ces signaux acoustiques, des moyens de traitement pour appliquer à ces signaux électriques des retards déterminés pour former un ensemble de voies de réception, principalement caractérisé en ce que ces moyens de traitement comprennent pour chaque capteur un convertisseur tension/courant 202 permettant de convertir en intensité lesdits signaux électriques , un ensemble 203 de cellules 207 à mémoire de courant connectées en parallèle en entrée et en sortie pour recevoir lesdits signaux en intensité, un registre d'écriture 204 et un registre de lecture 205 commandés par une horloge de période TH et dont les étages sont reliés respectivement aux entrées de commande d'écriture et de lecture desdites cellules, et des moyens 206 pour injecter respectivement dans chacun de ces deux registres un bit unique qui circule dans les registres et qui commande l'écriture et la lecture des cellules; les deux bits uniques étant séparés d'un nombre n d'étages entre les 2 registres, pour établir un retard du signal de sortie égal à une valeur n T .The volume, and therefore the cost, of the electronic equipment necessary to carry out these operations is particularly important under these conditions. In addition, as all the processing is done digitally, it is necessary to digitize the signals received directly at each transducer, which implies having an analog / digital encoder per transducer. The number of these encoders is then considerable, 800 in the example above for example, which causes, in addition to problems of space and cost, significant heat dissipation problems. To overcome these drawbacks, the invention proposes an acoustic imaging system, of the type comprising a set of sensors 201 intended to receive acoustic signals reflected by the object intended to be imaged in order to deliver in response electrical signals corresponding to these signals. acoustic, processing means to apply to these electrical signals delays determined to form a set of reception channels, mainly characterized in that these processing means comprise for each sensor a voltage / current converter 202 making it possible to convert said electrical signals into intensity, a set 203 of cells 207 with current memory connected in parallel at input and at output to receive said intensity signals, a write register 204 and a read register 205 controlled by a clock of period T H and the stages of which are respectively connected to the write and read control inputs of said cells, and means 206 for injecting respectively into each of these two registers a single bit which circulates in the registers and which controls the writing and reading of the cells; the two unique bits being separated by a number n of stages between the 2 registers, to establish a delay of the output signal equal to a value n T.
Selon une autre caractéristique, pour additionner les signaux de sortie S S des ensembles 203 afin d'obtenir des signaux de voies successifs, on connecte ensemble ces sorties deux par deux selon une dichotomie arborescente.According to another characteristic, to add the output signals S S of the assemblies 203 in order to obtain successive channel signals, these outputs are connected together two by two according to a tree dichotomy.
Selon une autre caractéristique, les capteurs 201 sont disposés selon une rétine à deux dimensions de manière à former le système de réception d'une caméra acoustique sous-marine qui permet d'obtenir une image à partir de l'ensemble des voies formées par lesdits moyens de traitement.According to another characteristic, the sensors 201 are arranged according to a two-dimensional retina so as to form the reception system of an underwater acoustic camera which makes it possible to obtain an image from the set of channels formed by said means of treatment.
Selon une autre caractéristique, les capteurs sont des transducteurs 402 d'une sonde d'échographe 401 destinée à fonctionner selon une série de « tirs » obtenus par la sélection d'une série de sous- ensembles 405 des transducteurs qui sont décalés à chaque tir d'au moins un capteur pour permettre de balayer une zone 404 sectorielle décrite par la succession des tirs, et en ce que pour chaque tir on effectue une focalisation 403 dynamique à l'émission et à la réception; cette focalisation étant obtenue par retards.According to another characteristic, the sensors are transducers 402 of an ultrasound probe 401 intended to operate according to a series of “shots” obtained by the selection of a series of subsets 405 of the transducers which are offset with each shot at least one sensor to allow scanning of a sectoral area 404 described by the succession of shots, and in that for each shot a dynamic focusing 403 is carried out on transmission and on reception; this focusing being obtained by delays.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante, faite en regard des figures annexées qui représentent :Other features and advantages of the invention will appear clearly in the following description, given with reference to the appended figures which represent:
- la figure 1 , le schéma d'une cellule mémoire à courant commuté; - la figure 2, le schéma d'un dispositif selon l'invention permettant d'obtenir les retards de manière analogique;- Figure 1, the diagram of a switched current memory cell; - Figure 2, the diagram of a device according to the invention for obtaining delays analogically;
- les figures 3 et 4, des schémas partiels détaillés du dispositif de la figure 2; - la figure 5, le schéma d'un dispositif permettant d'additionner les signaux de sortie des dispositifs de la figure 2; et- Figures 3 and 4, detailed partial diagrams of the device of Figure 2; - Figure 5, the diagram of a device for adding the output signals of the devices of Figure 2; and
- la figure 6, le schéma en coupe d'une sonde d'échographie médicale permettant de mettre en oeuvre l'invention.- Figure 6, the sectional diagram of a medical ultrasound probe for implementing the invention.
Les cellules à mémoire à courant commuté sont des dispositifs connus dont on a représenté sur la figure 1 le schéma le plus simple.Switched current memory cells are known devices of which the simplest diagram is shown in FIG. 1.
Un noeud 101 est alimenté par un courant de polarisation J par une source de courant 102. Sur ce noeud sont connectés des interrupteursA node 101 is supplied by a bias current J by a current source 102. On this node are connected switches
103 et 104 qui fonctionnent sous la commande de signaux dits de phase φi et φ2 pour amener au noeud le courant d'entrée i et en faire sortir le courant de sortie - i .103 and 104 which operate under the control of so-called phase signals φi and φ 2 to bring the input current i to the node and to output the output current - i therefrom.
Un transistor à effet de champ 105 réuni ce noeud à la masse. La grille de ce transistor est elle-même connectéed'une part à la masse par l'intermédiaire d'un condensateur de stockage 107 et d'autre part au noeud 101 par l'intermédiaire d'un interrupteur 106 commandé par le signal φ-i. Le fonctionnement de ce dispositif est le suivant :A field effect transistor 105 connects this node to ground. The gate of this transistor is itself connected on the one hand to ground via a storage capacitor 107 and on the other hand to node 101 via a switch 106 controlled by the signal φ- i. The operation of this device is as follows:
Dans une première étape le transistor 105 est bloqué et les interrupteurs 103 et 106 sont fermés. La somme des courants i et J vient alors charger le condensateur 107. Ce condensateur se charge jusqu'à un potentiel V qui dépend des caractéristiques des éléments utilisés et qui est tel qu'il polarise le transistor 105 de manière à ce qu'il devienne passant et conduise la totalité du courant i + J.In a first step the transistor 105 is blocked and the switches 103 and 106 are closed. The sum of the currents i and J then charges the capacitor 107. This capacitor charges to a potential V which depends on the characteristics of the elements used and which is such that it polarizes the transistor 105 so that it becomes passing and conducting the entire current i + J.
Dans une deuxième étape, les interrupteurs 103 et 106 sont ouverts et l'interrupteur 104 est fermé. A ce moment le condensateur 107, restant chargé, continu à imposer le passage par le transistor 105 d'un courant égal à i+J. Comme l'interrupteur 103 est ouvert, le complément de courant pour obtenir cette somme, puisque J, fourni par la source de courant 102, est constant, arrive par l'interrupteur 104, qui fait donc débiter sur la connexion de sortie un courant égal à -i .In a second step, the switches 103 and 106 are open and the switch 104 is closed. At this time, the capacitor 107, remaining charged, continues to impose the passage through the transistor 105 of a current equal to i + J. As the switch 103 is open, the current complement to obtain this sum, since J, supplied by the current source 102, is constant, arrives by the switch 104, which therefore causes an equal current to flow on the output connection have .
Cette cellule permet donc de mémoriser la valeur du courant en entrée et de le restituer en sortie avec un changement de signe. Selon l'invention, on utilise un ensemble de cellules de ce type selon les schémas représentés sur les figures 2 à 4 pour obtenir les retards nécessaires à la formation des voies d'un système d'imagerie acoustique. La figure 2 représente le schéma d'ensemble, la figure 3 les connexions de commande, et la figure 4 les connexions d'entrée et de sortie des signaux en courant à mémoriser.This cell therefore makes it possible to memorize the value of the input current and to restore it at the output with a change of sign. According to the invention, a set of cells of this type is used according to the diagrams shown in FIGS. 2 to 4 to obtain the delays necessary for the formation of the channels of an acoustic imaging system. Figure 2 shows the overall diagram, Figure 3 the control connections, and Figure 4 the input and output connections of the current signals to be stored.
On relie ainsi chacun des transducteurs 201 à un dispositif connu 202 qui permet de convertir le signal de sortie de ce transducteur, qui est essentiellement en tension, en un signal en courant. Ce signal est alors appliqué à l'entrée d'un ensemble 203 composé de N cellules à mémoire de courant 207, de type semblable à celui décrit par rapport à la figure 1 , et qui sont mises en parallèle en entrée et en sortie.Each of the transducers 201 is thus connected to a known device 202 which makes it possible to convert the output signal of this transducer, which is essentially in voltage, into a current signal. This signal is then applied to the input of a set 203 composed of N current memory cells 207, of a type similar to that described with respect to FIG. 1, and which are put in parallel at input and at output.
Les signaux φ de commande d'entrée de chaque cellule sont obtenus à partir d'un registre à décalage 204, de type numérique, formé par exemple de N bascules 209 connectées en série. Les sorties de ces N bascules sont en outre reliées respectivement aux entrées de commande de mémorisation des N cellules de l'ensemble 203.The input control signals φ of each cell are obtained from a shift register 204, of digital type, formed for example by N flip-flops 209 connected in series. The outputs of these N flip-flops are also connected respectively to the storage control inputs of the N cells of the assembly 203.
Un registre 205, identique au registre 204, permet d'obtenir les signaux φ 2 de commande de sortie des cellules de l'ensemble 203. Les registres 204 et 205 fonctionnent en mémoire circulante en faisant circuler au rythme d'une horloge « H » des bits « 1 » introduits dans ces registres par une unité logique 206. Lorsqu'un bit 1 arrive dans l'une des bascules 208, il lance la mémorisation dans la cellule 207 correspondante du signal en courant fourni par le dispositif 202. Lorsqu'un bit 1 arrive dans l'une des bascules 209, il restitue le courant mémorisé dans la cellule 207 correspondante sur la sortie S.A register 205, identical to register 204, makes it possible to obtain the signals φ 2 for controlling the output of the cells of the assembly 203. The registers 204 and 205 operate in circulating memory by circulating at the rate of a clock "H" bits "1" introduced into these registers by a logic unit 206. When a bit 1 arrives in one of the flip-flops 208, it starts storing in the corresponding cell 207 the current signal supplied by the device 202. When a bit 1 arrives in one of the flip-flops 209, it restores the current memorized in the corresponding cell 207 on the output S.
Cette unité logique introduit à des instants adéquats un bit « 1 » unique dans chacun des registres 204 et 205 de telle manière que en défilant dans les registres, ils provoquent l'échantillonnage et la mémorisation du signal du capteur puis sa lecture aux instants nécessaires pour obtenir le retard voulu. Pour cela, le bit contenu dans le registre d'écriture et le bit contenu dans le registre de lecture sont séparés d'une distance égale à n étages. Si alors la période de l'horloge H est égale à TH, le retard τ apporté au signal à la sortie S est égal à : τ = nTH (2) On obtient donc sur la sortie S un ensemble de signaux S analogiques en courant, échantillonnés à la fréquence d'horloge correspondant à des signaux d'entrée retardés les uns par rapport aux autres d'une valeur déterminée par les positions des bits à 1 commandées par l'unité logique 206. Pour modifier ces retards, il suffit de modifier les positions des bits d'écriture et de lecture de manière à obtenir les écarts entre ces bits correspondant aux retards souhaités. Cette modification s'obtient au niveau de l'unité logique, qui fonctionne à partir des signaux de commande qui lui sont adressés par un processeur central. Cette modification peut donc être obtenue à la fois aussi facilement et aussi rapidement que dans un traitement en numérique, tout en ne nécessitant qu' une charge de calcul beaucoup plus faible, puisque ces calculs ne concernent que la détermination des retards à obtenir et non pas la formation proprement dit de ceux-ci sur les signaux eux-mêmes. Pour obtenir le signal de voie, il faut alors sommer ces différents signaux selon la formule 1. Comme ces signaux sont représentés par des courants, la sommation peut s'effectuer de manière très simple en additionnant tous les courants par simple connexion des sorties des ensembles 203 entre elles. Afin d'éviter de diminuer la bande passante, en raison des capacités parasites existant au niveau de chaque fil, l'invention propose, comme représenté sur la figure 5, d'additionner ces signaux selon un système de dichotomie arborescente où ceux-ci sont pris successivement deux par deux. Comme représenté sur la figure 5, limitée à quatre signaux Si à S , on additionne tout d'abord les signaux Si et S2, et S3 et S4, puis on additionne les deux signaux ainsi obtenus pour obtenir le signal de voie Sv. Pour obtenir la pondération déterminée par les coefficients ai.on utilisera par exemple des résistances, ou de préférence des cellules à miroir de courant de type connu.This logic unit introduces at a suitable time a single bit "1" in each of the registers 204 and 205 in such a way that by scrolling through the registers, they cause the sampling and memorization of the sensor signal and then its reading at the instants necessary for get the delay you want. For this, the bit contained in the write register and the bit contained in the read register are separated by a distance equal to n stages. If then the period of the clock H is equal to T H , the delay τ brought to the signal at the output S is equal to: τ = nT H (2) A set of analog current signals S is therefore obtained on the output S, sampled at the clock frequency corresponding to input signals delayed with respect to each other by a value determined by the positions of the bits at 1 controlled by the logic unit 206. To modify these delays, it suffices to modify the positions of the write and read bits so as to obtain the differences between these bits corresponding to the desired delays. This modification is obtained at the level of the logic unit, which operates on the basis of the control signals which are sent to it by a central processor. This modification can therefore be obtained both as easily and as quickly as in a digital processing, while requiring only a much lower computational load, since these computations relate only to the determination of the delays to be obtained and not the actual training of these on the signals themselves. To obtain the channel signal, these different signals must then be summed according to formula 1. As these signals are represented by currents, the summation can be carried out very simply by adding all the currents by simple connection of the outputs of the assemblies 203 between them. In order to avoid reducing the bandwidth, due to the parasitic capacities existing at the level of each wire, the invention proposes, as shown in FIG. 5, to add these signals according to a tree dichotomy system where these are taken successively two by two. As shown in FIG. 5, limited to four signals Si to S, first add the signals Si and S 2, and S 3 and S 4 , then add the two signals thus obtained to obtain the signal of channel S v . To obtain the weighting determined by the coefficients ai, we will use for example resistors, or preferably cells with current mirror of known type.
Le nombre d'étages des ensembles 203 est déterminé par l'angle maximal que doivent former les voies les plus dépointées avec la normale au réseau de réception. En se reportant à l'exemple numérique décrit plus haut, cet angle est égal à 15 °, ce qui correspond pour les valeurs décrites à un retard maximal égal à 22 μs pour les transducteurs situés aux extrémités du réseau de réception. La fréquence d'horloge, quant à elle, correspond à la fréquence d'échantillonnage nécessaire pour obtenir une bonne formation de voie c'est à dire 8 fois la porteuse. Elle est donc égale pour les valeurs décrites ci- dessus à 4 MHz. Dans ces conditions, le nombre d'étages nécessaires pour obtenir ce retard avec cette fréquence est égal à 88. Compte tenu de la technologie existant actuellement, cette valeur est suffisamment petite pour que l'on puisse réaliser un ensemble unique comportant ces 88 étages de cellules et ses organes annexes, tels que les registres d'écriture et de lecture et l'unité logique d'adressage, dans une structure monolithique.The number of stages of the assemblies 203 is determined by the maximum angle that the most depressed channels must form with the normal to the reception network. Referring to the digital example described above, this angle is equal to 15 °, which corresponds for the values described to a maximum delay equal to 22 μs for the transducers located at the ends of the reception network. The clock frequency, meanwhile, corresponds to the sampling frequency necessary to obtain good channel formation, ie 8 times the carrier. It is therefore equal for the values described above at 4 MHz. Under these conditions, the number of stages necessary to obtain this delay with this frequency is equal to 88. Taking into account the technology existing at present, this value is sufficiently small so that a single assembly comprising these 88 stages of cells and its related organs, such as the writing and reading registers and the logical addressing unit, in a monolithic structure.
Comme il y a dans cet exemple 800 transducteurs, il faut donc 800 ensembles munis de leurs circuits annexes. La technologie existant actuellement permet de grouper ces ensembles par 16 dans un circuit de type ASIC qui peut être contenu dans un boîtier de type CERQUAD 100 dont la surface est de l'ordre de 4 cm2.As there are 800 transducers in this example, 800 assemblies are therefore required with their auxiliary circuits. The technology currently existing makes it possible to group these assemblies by 16 in an ASIC type circuit which can be contained in a CERQUAD 100 type housing whose surface is of the order of 4 cm 2 .
Pour programmer les retards, on utilisera alors des circuits de type microcontrôleur, qui sont susceptibles de commander 8 ASIC indépendants de ce type. Ces 8 ASIC, le microcontrôleur de commande et les circuits annexes, occupent alors une surface environ 100 cm2. La totalité des circuits nécessaires pour obtenir l'ensemble des retards en utilisant le dispositif selon l'invention pourra alors être regroupée sur un maximum de 4 cartes au format double Europe . Ce chiffre est à comparer à celui de 320 cartes pour une solution entièrement numérique et souligne bien l'intérêt de l'invention. L'invention n'est pas limitée aux systèmes d'imagerie sonar, mais elle s'étend également à tous les systèmes d'imagerie acoustique, en particulier aux systèmes d'imagerie utilisés dans les échographes médicaux. Ces systèmes servent à obtenir une image en trois dimensions du corps humain à partir d'une sonde comportant une antenne acoustique fonctionnant à une fréquence de quelques mégahertz. Contrairement à la caméra décrite plus haut, on effectue, comme représenté sur la figure 6, un balayage de l'espace en effectuant une série d'émissions-réceptions focalisées successives appelées chacune « TIR ».To program the delays, microcontroller type circuits will then be used, which are capable of controlling 8 independent ASICs of this type. These 8 ASICs, the control microcontroller and the associated circuits, then occupy an area of approximately 100 cm 2 . All of the circuits necessary to obtain all of the delays using the device according to the invention can then be grouped together on a maximum of 4 cards in double Europe format. This figure is to be compared with that of 320 cards for a fully digital solution and underlines the interest of the invention. The invention is not limited to sonar imaging systems, but it also extends to all acoustic imaging systems, in particular to imaging systems used in medical ultrasound systems. These systems are used to obtain a three-dimensional image of the human body from a probe comprising an acoustic antenna operating at a frequency of a few megahertz. Unlike the camera described above, as shown in FIG. 6, a scanning of the space is carried out by carrying out a series of successive focused emission-receptions each called “TIR”.
La sonde représentée en coupe sur cette figure comprend un corps 401 dont la partie emissive avant est courbe et comporte sur sa face interne un ensemble de transducteurs 402 d'émission alignés, au nombre de 128 par exemple. A chaque tir, on sélectionne un sous-ensemble 405 de transducteurs contigus permettant d'effectuer l'émission et la réception, 32 transducteurs par exemple. On effectue à partir des transducteurs du sous- ensemble une focalisation dynamique à l'émission et à la réception. Ainsi on focalise sur plusieurs zones 403 pendant un tir.The probe shown in section in this figure comprises a body 401 whose front emissive part is curved and has on its face internally a set of aligned emission transducers 402, 128 in number for example. On each shot, a subset 405 of contiguous transducers is selected which makes it possible to perform transmission and reception, 32 transducers for example. Dynamic focusing on transmission and reception is carried out from the transducers of the subassembly. Thus we focus on several zones 403 during a shot.
Au tir suivant, on décale de 1 transducteur le sous-ensemble de transducteurs, de manière à obtenir un décalage du rayon balayé pendant le tir dans une direction BT perpendiculaire à BR. Avec les chiffres cités plus haut, on effectue donc en 96 tirs un balayage total de la zone 404 à explorer.On the next shot, the sub-assembly of transducers is shifted by 1 transducer, so as to obtain an offset of the radius swept during the shot in a direction BT perpendicular to BR. With the figures cited above, a total scan of the area 404 to be explored is therefore carried out in 96 shots.
Pour obtenir par exemple une profondeur de 20 cm pour le champ 404 à explorer, il faut que les tirs soient espacés d'au moins 0,13 millisecondes . Dans ces conditions, pour obtenir le balayage radial avec une résolution en distance égale par exemple à 2 millimètres, on est conduit à changer 200 fois de suite les retards apportés aux signaux reçus par les transducteurs pendant la durée de réception des échos correspondants au tir. Ces changements de retard doivent donc s'effectuer en 0,65 μs ce que l'invention permet d'effectuer sans aucun problème. Si l'on effectuait ce traitement de manière numérique, on serait conduit, comme dans le cas de la caméra, à utiliser un volume d'électronique très important, qui serait nécessairement situé en dehors de la sonde et exigerait en outre un nombre très important de fils de liaison entre les transducteurs et cette électronique de traitement . En utilisant l'invention, on est amené à utiliser 128 ensembles à retards dont le nombre de cellules est fonction de la distance minimale à laquelle on veut focaliser la voie de réception.To obtain for example a depth of 20 cm for the field 404 to be explored, the shots must be spaced at least 0.13 milliseconds. Under these conditions, in order to obtain the radial scanning with a distance resolution equal for example to 2 millimeters, one is led to change 200 times the delays brought to the signals received by the transducers during the reception time of the echoes corresponding to the shooting. These delay changes must therefore be made in 0.65 μs, which the invention makes it possible to carry out without any problem. If we perform this processing digitally, we would be led, as in the case of the camera, to use a very large volume of electronics, which would necessarily be located outside the probe and would also require a very large number of connecting wires between the transducers and this processing electronics. Using the invention, we are led to use 128 sets of delays whose number of cells is a function of the minimum distance at which we want to focus the reception channel.
En utilisant par exemple une fréquence courante de 3MHz, des transducteurs au pas de la longueur d'onde, soit 0,5 mm, et une focalisation à une distance minimale de 20 mm, le retard maximal est égale à 1 ,78 microsecondes. Ce retard nécessite d'utiliser, si l'on échantillonne là aussi à 8 fois la porteuse, 43 cellules par ensemble.By using for example a current frequency of 3MHz, transducers with the step of the wavelength, that is to say 0.5 mm, and a focusing at a minimum distance of 20 mm, the maximum delay is equal to 1.78 microseconds. This delay requires using, if we also sample the carrier 8 times, 43 cells per set.
En utilisant alors la même technologie que celle décrite plus haut, on est conduit à prendre 8 ASIC comportant 16 lignes à retard, ce qui correspond à une surface d'électronique d'environ 65 centimètres carrés pour l'ensemble. Cette électronique est donc facilement intégrable dans le corps de la sonde, ce qui permet notamment de limiter le nombre de fils de liaison et le débit d'information vers l'echographe auquel est relié cette sonde. Then using the same technology as that described above, we are led to take 8 ASICs comprising 16 delay lines, which corresponds to an electronic surface of approximately 65 square centimeters. for the group. This electronics can therefore be easily integrated into the body of the probe, which in particular makes it possible to limit the number of connecting wires and the flow of information to the ultrasound system to which this probe is connected.

Claims

REVENDICATIONS
1 - Système d'imagerie acoustique, du type comprenant un ensemble de capteurs (201 ) destinés à recevoir des signaux acoustiques réfléchis par l'objet destiné à être imagé pour délivrer en réponse des signaux électriques correspondant à ces signaux acoustiques, des moyens de traitement pour appliquer à ces signaux électriques des retards déterminés pour former un ensemble de voies de réception, caractérisé en ce que ces moyens de traitement comprennent pour chaque capteur un convertisseur tension/courant (202) permettant de convertir en intensité lesdits signaux électriques , un ensemble (203) de cellules (207) à mémoire de courant connectées en parallèle en entrée et en sortie pour recevoir lesdits signaux en intensité, un registre d'écriture (204) et un registre de lecture (205) commandés par une horloge de période TH et dont les étages sont reliés respectivement aux entrées de commande d'écriture et de lecture desdites cellules, et des moyens (206) pour injecter respectivement dans chacun de ces deux registres un bit unique qui circule dans les registres et qui commande l'écriture et la lecture des cellules; les deux bits uniques étant séparés d'un nombre n d'étages entre les 2 registres, pour établir un retard du signal de sortie égal à une valeur n TH.1 - Acoustic imaging system, of the type comprising a set of sensors (201) intended to receive acoustic signals reflected by the object intended to be imaged in order to deliver in response electrical signals corresponding to these acoustic signals, processing means to apply specific delays to these electrical signals to form a set of reception channels, characterized in that these processing means comprise for each sensor a voltage / current converter (202) making it possible to convert said electrical signals into intensity, a set ( 203) of cells (207) with current memory connected in parallel at input and at output to receive said intensity signals, a write register (204) and a read register (205) controlled by a clock of period T H and the stages of which are respectively connected to the write and read control inputs of said cells, and of means (206 ) to inject respectively into each of these two registers a single bit which circulates in the registers and which controls the writing and reading of the cells; the two unique bits being separated by a number n of stages between the 2 registers, to establish a delay of the output signal equal to a value n T H.
2 - Système selon la revendication 1 , caractérisé en ce que pour additionner les signaux de sortie (Si- S ) des ensembles (203) afin d'obtenir des signaux de voies successifs, on connecte ensemble ces sorties deux par deux selon une dichotomie arborescente.2 - System according to claim 1, characterized in that to add the output signals (Si- S) of the assemblies (203) in order to obtain successive channel signals, these outputs are connected together two by two according to a tree dichotomy .
3 - Système selon l'une quelconque des revendications 1 et 2, caractérisé en ce que les capteurs (201 ) sont disposés selon une rétine à deux dimensions de manière à former le système de réception d'une caméra acoustique sous-marine qui permet d'obtenir une image à partir de l'ensemble des voies formées par lesdits moyens de traitement.3 - System according to any one of claims 1 and 2, characterized in that the sensors (201) are arranged in a two-dimensional retina so as to form the reception system of an underwater acoustic camera which allows d '' obtain an image from all the channels formed by said processing means.
4 - Système selon l'une quelconque des revendications 1 et 2, caractérisé en ce que les capteurs sont des transducteurs (402) d'une sonde d'échographe (401 ) destinée à fonctionner selon une série de « tirs » obtenus par la sélection d'une série de sous-ensembles (405) des transducteurs qui sont décalés à chaque tir d'au moins un capteur pour permettre de balayer une zone (404) sectorielle décrite par la succession des tirs, et en ce que pour chaque tir on effectue une focalisation (403) dynamique à l'émission et à la réception; cette focalisation étant obtenue par retards. 4 - System according to any one of claims 1 and 2, characterized in that the sensors are transducers (402) of a probe ultrasound system (401) intended to operate according to a series of “shots” obtained by the selection of a series of sub-assemblies (405) of the transducers which are offset with each shot of at least one sensor to allow scanning a sectoral area (404) described by the succession of shots, and in that for each shot a dynamic focusing (403) is carried out on transmission and on reception; this focusing being obtained by delays.
PCT/FR1998/000684 1997-04-04 1998-04-03 Acoustic imaging system WO1998045727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/04154 1997-04-04
FR9704154A FR2761781B1 (en) 1997-04-04 1997-04-04 ACOUSTIC IMAGING SYSTEM

Publications (1)

Publication Number Publication Date
WO1998045727A1 true WO1998045727A1 (en) 1998-10-15

Family

ID=9505540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000684 WO1998045727A1 (en) 1997-04-04 1998-04-03 Acoustic imaging system

Country Status (2)

Country Link
FR (1) FR2761781B1 (en)
WO (1) WO1998045727A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2034144A (en) * 1978-10-25 1980-05-29 Secr Defence Time delay signal processor
US4401957A (en) * 1977-07-01 1983-08-30 Siemens Gammasonics, Inc. Permutating analog shift register variable delay system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401957A (en) * 1977-07-01 1983-08-30 Siemens Gammasonics, Inc. Permutating analog shift register variable delay system
GB2034144A (en) * 1978-10-25 1980-05-29 Secr Defence Time delay signal processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN N ET AL: "HIGH PERFORMANCE VOLTAGE DELAY LINES USING SWITCHED-CURRENT MEMORY CELLS", ELECTRONICS LETTERS, vol. 28, no. 3, 30 January 1992 (1992-01-30), pages 228 - 229, XP000305952 *

Also Published As

Publication number Publication date
FR2761781B1 (en) 1999-06-25
FR2761781A1 (en) 1998-10-09

Similar Documents

Publication Publication Date Title
EP0050060B1 (en) Imaging system with simultaneous multiple transmission
FR2461265A1 (en) ULTRASOUND IMAGE FORMATION DEVICE WITH DIGITAL CONTROL, IN PARTICULAR FOR MEDICAL DIAGNOSIS
EP0333552B1 (en) Sonde, device for image formation with such a sonde and method for using the device
EP0459583A1 (en) Ultrasonic echograph with phase aberration adaptive correction
EP0063517A1 (en) Passive range-finding system
EP0872742B1 (en) Method and system for processing signals representing reflected waves, transmitted or diffracted by a volumetric structure, for the purpose of effecting an investigation and an analysis of this structure
EP0543445A1 (en) Examination device for media by means of ultrasonic echography
FR2815723A1 (en) System and probe for obtaining images using waves emitted by an antennae after reflection of these waves from a illuminated target, used in radar, sonar or medical imaging systems
EP0106418B1 (en) Apparatus for examining media by ultrasonic echography
EP0420346A1 (en) Ultrasonic echograph with digital reception beam former
EP0147305B1 (en) Discrimination apparatus for radar echos
FR2643464A1 (en) METHOD FOR INCREASING IMAGE DIGITAL IMAGE OF SONAR AND SONAR FOR IMPLEMENTING SAID METHOD
EP0825453B1 (en) Method and apparatus for processing signals representative of waves which have been reflected by or transmitted through a volume structure, in order to enable exploration and analysis of said structure
FR2465233A1 (en) APPARATUS FOR DETERMINING AN ULTRASONIC RADAR DEPOSITION
EP0718638B1 (en) Method of detection of objects located in a ground area or of determination of the propagation characteristics of an acoustic wave in the ground, and system to carry out these methods
WO1998045727A1 (en) Acoustic imaging system
EP0051033B1 (en) Ultrasonic prober
EP0580695B1 (en) Movement compensation method for a sonar antenna
EP0080397A1 (en) Ground surveillance Doppler radar
EP0040566B1 (en) Dynamically-focused sector-scan imaging unit
EP0520563B1 (en) Ultrasonic echography with phase aberration adaptive correction
FR2626678A1 (en) RADAR, IN PARTICULAR FOR CORRECTION OF ARTILLERY FIRE
EP0054045A1 (en) Receiver for a multi-element ultrasonic probe echograph.
WO2004055941A1 (en) Device for generating delays for beam synthesis apparatus
WO2003101302A1 (en) Method of generating a predetermined wave field

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998542452

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA