WO1999036824A1 - Dispositif de commutation optique et dispositif d'affichage d'images - Google Patents

Dispositif de commutation optique et dispositif d'affichage d'images Download PDF

Info

Publication number
WO1999036824A1
WO1999036824A1 PCT/JP1998/005366 JP9805366W WO9936824A1 WO 1999036824 A1 WO1999036824 A1 WO 1999036824A1 JP 9805366 W JP9805366 W JP 9805366W WO 9936824 A1 WO9936824 A1 WO 9936824A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
switching element
optical switching
optical
electrode
Prior art date
Application number
PCT/JP1998/005366
Other languages
English (en)
French (fr)
Inventor
Takashi Takeda
Masatoshi Yonekubo
Hirokazu Ito
Shunji Kamijima
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP914898A external-priority patent/JP3658965B2/ja
Priority claimed from JP13077698A external-priority patent/JP3855454B2/ja
Priority claimed from JP24383498A external-priority patent/JP4029489B2/ja
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to DE69830153T priority Critical patent/DE69830153T2/de
Priority to KR1019997008584A priority patent/KR100604621B1/ko
Priority to US09/381,495 priority patent/US6381381B1/en
Priority to EP98955980A priority patent/EP0969306B1/en
Publication of WO1999036824A1 publication Critical patent/WO1999036824A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/3473Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on light coupled out of a light guide, e.g. due to scattering, by contracting the light guide with external means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/56Optics using evanescent waves, i.e. inhomogeneous waves
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/06Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S385/00Optical waveguides
    • Y10S385/901Illuminating or display apparatus

Definitions

  • the present invention relates to an optical switching element (light valve) used for an optical communication, an optical operation, an optical storage device, an optical printer, an image display device, and the like, and particularly to an optical switching device suitable for an image display device.
  • the present invention relates to a switching element and an image display device.
  • the conventional optical switching element 900 comprises polarizing plates 91 and 908, glass plates 902 and 903, transparent electrodes 904 and It consisted of 905 and liquid crystal 906 and 907, and applied light voltage between transparent electrodes to change the direction of liquid crystal molecules and rotate the plane of polarization to perform optical switching.
  • Conventional image display devices use a liquid crystal panel in which such optical switching elements (liquid crystal cells) are arranged two-dimensionally, and the gradation is expressed by adjusting the applied voltage so that the liquid crystal molecules face the direction. was controlled.
  • liquid crystals have poor high-speed response characteristics and operate only at a response speed of at most a few milliseconds. For this reason, it has been difficult to apply an optical switching element using a liquid crystal to an optical storage device such as an optical communication device, an optical operation device, a hologram memory, or an optical printer, which requires a high-speed response. Further, in an optical switching element using liquid crystal, there is a problem that the light use efficiency is reduced by the polarizing plate. Further, in recent years, image display devices have been required to have higher quality image quality, and an optical switching element capable of performing a display with more accurate gradation expression than an optical switching element using liquid crystal has been required. You.
  • an object of the present invention is to provide an optical switching element which has a small light loss and can respond at high speed. It is another object of the present invention to provide an optical switching element that can obtain a uniform contrast and display with good image quality. Disclosure of the invention
  • the evanescent light is extracted by bringing the light-transmitting extraction surface of the switching part into contact with the light-guiding part capable of transmitting the light by total reflection, and the wavelength of about one wavelength of the switching part is extracted.
  • an optical switching element capable of controlling light on and off at a high speed by a small movement smaller than that is used, and the switching section is made a reflection type, and the light guide section, the optical switching section and the switching section are used.
  • the driving means for driving are arranged in this order from the light irradiation direction to form a hierarchical structure.
  • an optical switching element which emits a large amount of light has a small loss of the emitted light, and is capable of high-speed response is realized.
  • the optical switching element of the present invention includes a light guide section having a total reflection surface capable of totally reflecting and transmitting light, and a light-transmitting extraction element capable of extracting evanescent light leaked from the total reflection surface.
  • a switching portion that has a surface and is capable of reflecting the extracted light in the direction of the light guide portion; a first position that is equal to or less than an extraction distance at which the extraction surface can extract evanescent light; and
  • a driving unit movable to a second position at a distance greater than or equal to the distance, wherein the light guide unit, the switching unit, and the driving unit are arranged in this order in the light emission direction.
  • the light guide section, the switching section, and the driving means for driving the light guide section can be stacked in this order, and the optical switching element can be provided in the light guide section, the switching section, and the driving means for the driving section. It is possible to form a layered structure in which parts of substantially independent layer structures having the functions of the respective parts are stacked, that is, a hierarchical structure. Therefore, it is easy to optimize each part.
  • the light is reflected toward the light guide portion by the switching portion, and the driving means does not transmit the light. Therefore, the driving means can be optimized without optical considerations.
  • the light guide section does not require a structure on the optical switching section side, and a simple flat panel structure can be realized.
  • the entire area on the total reflection side of the light guide portion can be used as a surface for extracting light, that is, a surface with which the switching portion comes into contact.
  • An optical switching element having a large aperture area for emitting light, a high aperture ratio, and a large light amount can be realized.
  • the surface facing the total reflection surface can be an emission surface from which the extracted light is emitted.
  • the driving means can be formed on an IC substrate for controlling the driving means, and it is also possible to realize an optical switching element integrated with an IC chip for screen control.
  • Such an optical switching element of the present invention can display a pixel by combining one or a plurality of such elements, and a plurality of optical switching elements are two-dimensionally arranged.
  • An image display device can be configured by transmitting white or three primary colors of light. This image display device can display images at high speed and high resolution, and can be provided at low cost because the image display device can be structured in a hierarchical structure. Also, the image integrated with the IC chip Of course, a display device can be used.
  • a micro-prism or a light-scattering element that reflects the light extracted by the extraction surface can be used as the emitting body that emits the extracted light, and the direction of the emitted light. Can be controlled to approach the total reflection surface of the light guide vertically.
  • the driving means is provided with a support member for elastically supporting the switching part and an electrostatic driving means for driving the switching part by an electrostatic force acting between at least one set of electrodes, whereby the switching part is provided. Can be moved to first and second position. It is desirable that the support member presses the switching portion toward the light guide portion at the first position when no electrostatic force is applied by the electrostatic driving means.
  • the electrostatic drive means is easy to control using electric power, but the driving force changes with fluctuations in voltage or current.
  • the driving force using the elastic body is mechanical and stable. Therefore, the extraction surface of the switching unit is brought close to the total reflection surface of the light guide unit to turn on the optical switching element. Therefore, by using electrostatic driving means that uses electric power that can be easily controlled as a driving force for turning off the light, a stable light amount can be secured and an optical switching element with high control ability is provided. Can be.
  • the support member is set so that the radiused state remains when the switching part is at the first position.
  • the radiused state By leaving the radiused state, in the on state, the extraction surface is pressed against the total reflection surface of the light guide by the elastic force of the support member, so that the extraction surface is adhered to the total reflection surface, It is possible to provide an optical switching element that is bright when on and has a high contrast of on-off. Also, by giving the support member flexure, vibration, temperature change or other aging changes When the distance between the light guide section and the switching section or the distance between the switching section and the driving means is changed, it is possible to absorb the change.
  • the switching portion be supported by a support member via a spacer.
  • This spacer has a function of reducing the distance between the electrodes and a function of securing a space where the support member is elastically deformed. And can be provided.
  • a spacer there is a spacer having a T-shaped or inverted trapezoidal cross section when the driving means is viewed from below. If the distance between the electrodes becomes shorter, the drive voltage can be lowered, and high-speed operation becomes possible.
  • a plate-like panel member having one end supported by a column near the boundary of the switching portion and the other end connected to the switching portion is used as a supporting member. It can be adopted, the effective length of the panel member can be long, and the force for pressing the switching part can be adjusted. Therefore, even if the driving force of the electrostatic driving means is small, it can be adjusted so as to obtain an elastic force capable of reliably performing on / off operation.
  • the effective length of the panel member can be secured without breaking the area of the switching part, so that the aperture ratio for emitting light is high, It is possible to provide a seamless optical switching element in which adjacent optical switching elements are almost connected to each other when an image display device is configured.
  • the panel member may be of any shape, such as a coil spring.
  • the panel member has a plate-like panel whose one end is supported by a column near the boundary of the switching part (element) and the other end is connected to the optical switching part.
  • the optical switching unit can be positioned.
  • a panel-shaped panel with slits or holes near the boundary should be used as the panel member. Thereby, the influence on the adjacent optical switching part can be prevented, and the elastic modulus of the panel member can be set to a value suitable for driving the switching part.
  • a plate-like panel is connected to a support provided near the boundary, and becomes a narrow panel member radially extending from the optical switching portion.
  • the electrode area can be increased, so that a high driving force can be obtained at a low voltage and the driving voltage is reduced.
  • the panel member is a plate-like panel with a spiral portion extending along the boundary, so that the effective length of the panel can be increased without increasing the area, The voltage for driving the switching part can be reduced, the power consumption can be reduced, a double spiral structure can be used, and the bending part of the panel (the middle part between both fulcrums) can be used.
  • the support parts of such panel panel are arranged regularly near the boundary, Multiple optical switches
  • the image display device can be configured to be shared with an adjacent switching element.
  • the support portion may be like a protrusion that extends long along the boundary between the optical switching elements, but the space occupied by the support portion by adopting the support that intermittently exists along the boundary.
  • the space can be used as an electrode or other space.
  • the posts can be arranged at random, but by arranging them in accordance with a predetermined rule, it is possible to provide an optical switching element and an image display device which are easy to assemble in symmetry and have stable performance. be able to.
  • a boron thinned silicon thin film is used as a panel material.
  • a conductive thin film member can be adopted, and a structure which also serves as an electrode of the electrostatic driving means can be obtained.
  • an auxiliary support portion is provided between the light guide portion and the panel member, and the switching portion side can be substantially sealed without providing the above-mentioned slit or hole in the panel member.
  • the switching section can be made to have a negative pressure by the driving means. Thereby, the panel member is pressed against the auxiliary support by the external air pressure, so that the gap between the panel member and the switching portion can be kept uniform. Also, when turned on due to the pressure difference, the switching part is in close contact with the light guide part. Therefore, stable operation can be performed and an optical switching element with high contrast can be provided.
  • the driving means is installed in a sealed space and the inside of the optical switching element having a switching section is made a sealed space, the pressure is reduced or a gas such as an inert gas is removed from the air.
  • a gas such as an inert gas
  • x is the moving distance of the switching portion
  • K is the elastic modulus of the support member
  • C is a constant that is proportional to the area of the electrode and further takes into account the dielectric constant and the like.
  • the moving position of the switching part is a stable position where the elastic force F g and the electrostatic force F s are balanced.Therefore, in order to lower the driving voltage V d, the elastic force F g must be reduced, and the moving distance d must be reduced. It is desirable to shorten it. However, when the elastic modulus K is decreased, the moving speed of the switching part is decreased, and the response speed is decreased. On the other hand, if the moving distance X is shortened, it becomes difficult to obtain an off-contrast.
  • the drive voltage Vd it is difficult to lower the drive voltage Vd. Furthermore, if the stable position where the elastic force F g and the electrostatic force F s are balanced is the on / off position, the posture of the switching unit may not be stable, and the light modulation capability may be degraded. In a switching element using an epicenter wave, if a minute gap is formed between the total reflection surface and the extraction surface, the amount of light that can be extracted decreases.
  • the drive voltage Vd can be reduced even under the condition that the moving distance d or the elastic constant K is kept constant, and the attitude of the switching section is controlled stably, and the optical condensing speed is high.
  • the trust is large. It can be driven at a lower voltage.
  • the driving voltage for driving the switching unit is reduced by applying a constant bias voltage having the same polarity as the driving voltage between the electrodes for driving the switching unit.
  • the switching part is turned on and off, especially in the on position, so that the posture can be stably held. I am trying to ensure my strength. That is, the driving voltage for driving the switching portion, the same polarity as the driving voltage, the electrostatic force or Is provided with a drive control means capable of applying a constant bias voltage capable of securing a holding force for stably holding the switching portion at least in the first position by an elastic force.
  • control method of the spatial light modulation device of the present invention is characterized in that the electrostatic drive means has a drive voltage for driving the switching unit, at least a first drive voltage having the same polarity as the drive voltage, and an electrostatic force or elastic force. And a control step of applying a constant bias voltage capable of securing a holding force for stably holding the switching portion at the position.
  • the drive voltage applied when driving the switching unit can be reduced, so that the power supply voltage of the drive control means can be reduced. Therefore, the withstand voltage of the control circuit and the like constituting the drive control means can be reduced to simplify the configuration, and the power consumption can be reduced. Further, by securing a sufficient holding force capable of holding the switching portion at the first position, the posture of the switching portion can be stabilized while the bias voltage is applied. Therefore, the bias voltage can be continuously applied even when the switching portion is at the first position, and the control of the bias voltage becomes unnecessary or simplified.
  • a stopper for securing a minimum gap between the electrodes is provided at a position where a holding force can be obtained by the driving voltage, of the first or second position, and a switching portion is provided at the first or second position.
  • the electrostatic force due to the bias voltage should be kept in a certain range without infinitely increasing, and the bias voltage should be such that the elastic force of the supporting member cannot be reached at the position of the stopper. Is desirable.
  • the switching section can be moved only by turning on and off the drive voltage. Therefore, a constant bias voltage can be always applied, and the control of the bias voltage is not required.
  • the bias voltage may be periodically changed so as to be smaller than the elastic force at the first or second position of the support member.
  • the switching unit can be moved from the first or second position by the elastic force of the support member at the timing of the operation clock. Therefore, even if the bias voltage is not controlled in conjunction with the drive voltage, the switching section can operate in response to the change in the drive voltage only by changing the bias voltage at a fixed timing. . Therefore, the control of the bias voltage is easy. Further, since the bias voltage can be set to be higher than the elastic force of the support member, the drive voltage can be further reduced.
  • the electrostatic force due to the bias voltage can be kept within a certain range, so that the bias voltage is periodically applied to the support member at the position of the stopper.
  • the switching portion can respond to the drive voltage. Therefore, it is possible to suppress the fluctuation width of the bias voltage, simplify the circuit for controlling the bias voltage, and reduce the power consumption.
  • the holding force for holding the switching portion at the first position is such that the switching portion is moved from the second position to the first position by the support member, and is moved to the first position by the elastic force of the support member. It can be obtained by holding.
  • the first position is not at a stable point where the electrostatic force by the bias voltage and the elastic force of the support member are balanced, but is stabilized by making the elastic force of the support member larger than the electrostatic force. You can gain strength.
  • the electrostatic force increases in inverse proportion to the square of the distance as shown in equation (2). Therefore, by setting the position where the elastic force at which the support member is appropriately displaced acts as the first position, the elasticity of the support member is reduced.
  • the driving voltage has a stable point at one or more positions and the driving voltage does not have a stable point from the first position to the second position, it is stable between the force and the neutral force of the support member.
  • the switching section can be driven stably with a voltage lower than the drive voltage having no points. Therefore, the driving voltage can be reduced even when the bias voltage is not set. Of course, the drive voltage can be further reduced by combining with the bias voltage.
  • the switching portion when the electrostatic force does not act on the support member, the switching portion can be supported at substantially the middle between the first and second positions, and the switching portion is held at the first position as electrostatic driving means.
  • a holding force can be obtained at each position by electrostatic force.
  • the driving voltage can be greatly reduced. Therefore, the drive voltage can be reduced even when the bias voltage is not set. Of course, the drive voltage can be further reduced by combining with the bias voltage.
  • the drive voltage is maintained without changing the interval between the first and second positions of the switching portion and the elastic coefficient of the support member. Can be reduced. Therefore, high-speed operation is possible, and it is possible to drive an optical switching element with a large contrast at a low voltage.
  • Such a control method is not limited to the present invention, and can be applied to all spatial light modulators that can perform high-speed modulation by mechanically moving a switching element that can control light. In addition, it is possible to provide a spatial light modulator that can operate at high speed with low cost and low power consumption. Attitude control of switching part
  • an optical switching element which is a spatial light modulator that modulates light by controlling the movement of a switching unit having a planar extraction surface as an element, is further increased. I have.
  • the inventors of the present application have studied the operation of an optical switching element having a planar element such as an extraction surface, and found that in a switching operation performed while moving at a high speed over a small distance, the extraction of the switching portion was performed.
  • the resistance of the fluid such as air or inert gas sealed between the surface and the total reflection surface, or the resistance when the switching part moves is a negligible drag force.
  • the optical switching element may be operated in a vacuum as described in the above-described one embodiment, but the surrounding environment of the switching unit or the driving unit is evacuated.
  • additional members such as pressure-resistant containers are required, which causes an increase in size and cost.
  • a process for creating a vacuum is required. Furthermore, in the case of an optical switching element that can be used only in a vacuum atmosphere, if the vacuum atmosphere is broken during use, the performance may be reduced at once, or the operation may become inoperable. .
  • the resistance of the fluid is reduced by the movement (posture) of the switching part.
  • the driving means tilts the direction of the extraction surface of the switching unit with respect to the first direction in which the extraction surface faces at the first position, at the beginning of movement, during movement, or at the end of movement.
  • the switching part comes off when the switching part starts to move.
  • the fluid can smoothly flow into the space, reducing the resistance due to the fluid.
  • the planar element is inclined with respect to the traveling direction, so that the resistance of the fluid received when the switching part moves can be reduced.
  • the resistance of the fluid can be reduced by inclining the plane element at least at one of the initial stage, the moving stage, and the final stage of the movement of the switching part.
  • the resistance due to the fluid can be further reduced. Since the resistance during the movement of the switching part is reduced, the moving speed is increased, and the modulation processing speed can be improved.
  • the resistance due to fluid can be reduced without reducing the pressure around the switching part or evacuating the vacuum, the optical switching element can be moved at high speed in a normal environment without entering the pressure vessel ⁇ Therefore, it is possible to provide an optical switching element having a high operation speed and high reliability at a low cost.
  • the optical switching element using the evanescent light of the present invention when the extraction surface of the switching portion comes into contact with the total reflection surface at the first position and the extraction surface separates from the total reflection surface or comes into close contact therewith. Fluid movement is restricted. Therefore, resistance when the switching part moves is increased. On the other hand, by inclining the switching portion at the beginning of the movement or at the end of the movement, the fluid can smoothly flow in or out of the space generated between the extraction surface and the total reflection surface. Therefore, the operation speed can be greatly improved.
  • attitude control is based on the light of the present invention using a planar element. It can also be applied to spatial light modulators other than the switching element.
  • the posture of the switching section can be changed by applying a driving force with an asymmetric distribution to the center of gravity.
  • the switching part can be tilted at the beginning of the movement, during the movement, or at the end of the movement, because it can be in the inclined state.
  • a driving force having an asymmetric distribution a driving force having a distribution that is symmetrically distributed with respect to the switching portion and a driving force with respect to the center of gravity are shifted by shifting the center of gravity of the switching portion from the center of the solid. An asymmetric state can be achieved, whereby the switching portion can be tilted.
  • a driving member is provided with a supporting member for elastically supporting the switching portion, and the distribution of the intrinsic constant of the supporting member is made asymmetric at least in one portion with respect to the center of gravity of the switching portion.
  • a driving force asymmetrical with respect to the center of gravity can be applied to the switching portion.
  • the driving means includes a first electrode provided on the switching portion and serving as an electrostatic driving means, and a second electrode provided at a position facing the first electrode.
  • an asymmetrical driving force is applied to the switching part by making at least one part of the shape of the first or second electrode or at least a part of the distance between the electrodes asymmetric with respect to the center of gravity of the switching part. can do.
  • first or second electrode is divided into first and second sections each having an asymmetrical shape with respect to the center of gravity of the switching portion, and these sections have different timings or different timings. Also, by supplying the electric power of the applied voltage, an asymmetric driving force can be applied to the switching part.
  • the switching part does not need to be parallel to the direction of the first position in the second position, but rather is inclined at the second position so that the initial movement, the movement and the end of the movement can be performed. Leaning The transition to and from the state can be performed smoothly. Therefore, the resistance of the fluid can be further reduced, and the operation speed can be improved.
  • the elastic constant of the support member of the driving means may be asymmetric with respect to the center of gravity of the switching portion, or the distance between the first and second electrodes may be changed.
  • FIG. 1 is a sectional view showing a schematic configuration of an optical switching device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the optical switching element shown in FIG.
  • FIG. 3 is a graph showing the transmittance of the evanescent wave with respect to the distance between the total reflection surface and the extraction surface.
  • FIG. 4 is a diagram showing a configuration of a panel member of the optical switching element shown in FIG. 1 as viewed from a direction of a substrate.
  • FIG. 5 is a view showing an example different from the panel member shown in FIG.
  • FIG. 6 is a view showing another example different from the panel member shown in FIG.
  • FIG. 7 is a view showing an example further different from the panel member shown in FIG.
  • FIG. 8 is a diagram showing an example of a projection device using the image display device shown in FIG.
  • FIG. 9 is a diagram showing a schematic configuration of an optical switching element different from the above.
  • FIG. 10 shows the elastic force of the optical switching element shown in FIG.
  • FIG. 4 is a diagram showing the relationship between (spring force) and electrostatic force with respect to the amount of movement (displacement) of the switching part.
  • FIG. 11 is a timing chart showing how the optical switching element shown in FIG. 1 is driven with a drive voltage by a bias voltage.
  • FIG. 12 is a diagram showing a configuration example of an optical switching element according to a second embodiment of the present invention.
  • the first 3 is a graph for comparing the drive power of Sui switching element showing a driving power of Sui switching element shown in the first 2 Figure 1 (the first 4 figures shown in the first 2 Figure Elastic force in optical switching element
  • FIG. 4 is a diagram showing the relationship between (spring force) and electrostatic force with respect to the amount of movement (displacement) of the switching part.
  • FIG. 15 is a timing chart showing how the optical switching element shown in FIG. 12 is driven by a drive voltage by a bias voltage
  • FIG. 16 shows a third embodiment of the present invention.
  • 3A and 3B are diagrams showing an outline of an optical switching element using evanescent light according to the embodiment, in which FIG. 4A shows an ON state in which a switching part is at a first position, and FIG. Indicates the off state at the second position.
  • FIG. 17 is a diagram showing a configuration of a switching section of the optical switching element shown in FIG. 16 from the address electrode side.
  • FIG. 18 is a cross-sectional view schematically showing a state in which the optical switching element shown in FIG. 16 moves from an on state (first position) to an off state (second position) in order. .
  • Fig. 19 is a diagram showing the interval between the address electrode and the base electrode together with the elapsed time in the optical switching device shown in Fig. 16.
  • Fig. 19 (a) shows the transition from ON to OFF.
  • FIG. 19 (b) shows the transition from OFF to ON.
  • FIG. 20 is a diagram showing a configuration example of a different optical switching element according to the third embodiment.
  • FIG. 21 is a diagram showing a configuration example of a further different optical switching element according to the third embodiment.
  • FIG. 22 is a diagram showing a configuration example of still another optical switching element according to the third embodiment.
  • FIG. 23 is a diagram showing a configuration example of still another optical switching element according to the third embodiment.
  • FIG. 24 is a diagram showing a configuration example of still another optical switching element according to the third embodiment.
  • FIG. 25 is a diagram showing a configuration example of still another optical switching element according to the third embodiment.
  • FIG. 26 is a sectional view of the optical switching element shown in FIG. 25.
  • FIG. 27 is a block diagram of the optical switching device shown in FIG.
  • FIG. 4 is a diagram illustrating an example in which the vehicle stops at a second position while being inclined with respect to a direction.
  • FIG. 28 is a diagram showing still another example of the optical switching element shown in FIG.
  • FIG. 29 is a diagram showing still another example of the optical switching element shown in FIG.
  • FIG. 30 is a diagram showing a schematic configuration of an optical switching element according to a fourth embodiment of the present invention, and is a diagram showing an example in which the position of the center of gravity is shifted.
  • FIG. 31 is a diagram showing a schematic configuration of an optical switching element according to a fifth embodiment of the present invention, and is a diagram showing an example in which the shape of an address electrode is asymmetric.
  • FIG. 32 is a diagram showing another example of the optical switching element according to the fifth embodiment shown in FIG. 31.
  • FIG. 33 is a diagram showing still another example of the optical switching element according to the fifth embodiment shown in FIG.
  • FIG. 34 is a diagram showing still another example of the optical switching element according to the fifth embodiment shown in FIG. 31.
  • FIG. 35 is a diagram showing an example of an optical switching element obtained by dividing electrodes according to the sixth embodiment of the present invention.
  • FIG. 36 is a diagram showing an operation of the optical switching element shown in FIG. 35, and is a diagram showing a first position and a state after the start of movement from the first position.
  • FIG. 37 is a diagram showing an operation of the optical switching element shown in FIG. 35, and is a diagram showing a state where the optical switching element is moving and stopped at the second position.
  • FIG. 38 is a time chart showing the control operation of the optical switching element shown in FIG.
  • FIG. 39 is a diagram showing a different example of the optical switching element according to the sixth embodiment shown in FIG. 35, showing a first position and a state after movement from the first position is started. It is a figure showing a state.
  • FIG. 40 is a view following FIG. 39, showing a state in which the robot is moving and stopped at the second position.
  • FIG. 41 is a timing chart showing a control operation of the optical switching element shown in FIGS. 39 and 40.
  • FIG. 42 is a diagram showing an optical switching element using a piezo element.
  • FIG. 43 is a view showing a conventional optical switching element using a liquid crystal.
  • FIG. 1 shows a schematic configuration of an optical switching element 1 which is a spatial light modulator according to the present invention, and an image display apparatus 2 in which a plurality of these optical switching elements 1 are arranged in a two-dimensional array.
  • the schematic configuration is shown in cross section.
  • FIG. 2 shows an enlarged schematic configuration centering on the switching portion of the optical switching element 1.
  • the optical switching element 1 of the present invention includes a switch provided with a light-transmitting extraction surface 32 with respect to the total reflection surface 22 of the light guide portion 20 capable of totally reflecting and transmitting the introduced light 10.
  • the switching element is capable of extracting an evanescent wave by bringing the switching part 30 into contact.
  • the optical switching element 1 can modulate the incident light 10 at high speed (on / off control) by a minute movement of about one wavelength or less of the switching part 30, and therefore, the static A driving section 40 for driving the switching section 3 using electric power and spring force, and a control section 70 for supplying power to the driving section 40 and controlling the driving section 40 are provided.
  • the circuit board 70 forms layers, which are stacked in order. Therefore, the optical switching element i of this example has a hierarchical structure in which the respective functional parts are stacked in a hierarchical manner.
  • the configuration of the optical switching element 1 will be described in further detail.
  • the optical switching element 1 is made of glass or transparent plastic and has a high transmittance of incident light 10 (light guide, cover glass) 20. With thus, the incident light 10 is incident on the total reflection surface 22 at an appropriate angle such that the incident light 10 is totally reflected by the total reflection surface 22. Then, as shown in Sui Tsu quenching element 1 a in Figure 2, the position can be extracted Ebanesen preparative light extraction surface 3 2 of Sui etching unit 3 0 is close to or in close contact with the total reflection surface 2 2 (first position Or on) When P 1, the incoming light 10 is extracted from the light guide 20 to the switching unit 30.
  • the switching unit 30 includes a triangular prism-shaped microprism 34 having an extraction surface 32 that is flat on the side of the total reflection surface 22 of the light guide unit as an emitting body. Therefore, the light extracted from the bottom extraction surface 32 is reflected by the reflection surface 34 a of the microprism 34 in a direction substantially perpendicular to the total reflection surface 22, and exits through the light guide portion 20 on the opposite side. Emitted from surface 21.
  • the switching part 30 is separated from the first position, and the extraction surface 32 is separated from the total reflection surface 22 (the second position or the second position).
  • the incident light 10 is totally reflected by the total reflection surface 22 and is not extracted from the light guide portion 20 as evanescent light. Therefore, the emitted light 11 cannot be obtained.
  • Figure 3 shows some examples of evanescent wave transmittance.
  • evanescent waves When a transparent body is brought close to the surface that is totally reflected, evanescent waves leak to the transparent body side and light is transmitted.
  • the transmittance of the evanescent wave differs depending on the refractive index of the medium and the incident angle.
  • Figure 3 shows that the transmittance (%) of the evanescent wave is 50% for the 500 nm light and the transmittance (%) of the evanescent wave is the total reflection surface 22 and the extraction surface (transparent body).
  • the transmission curve L 1 measured for the distance (m) from 32 is shown.
  • a characteristic curve L2 at an incident angle of 60 °, a characteristic curve L3 at an incident angle of 70 °, and a characteristic curve L4 at an incident angle of 80 ° are also shown. These characteristic curves show almost the same tendency.
  • the transmittance becomes 5%. About 0% You.
  • the second position when the extraction surface 32 is separated from the total reflection surface 22 by 0.2 ⁇ m or more (the second position), the transmittance becomes 10% or less, and the distance between the extraction surface 32 and 0.3 is 0.3. Beyond m, the transmittance becomes almost 0%. Therefore, in the on state shown by the optical switching element 1a in FIG.
  • the extraction surface 32 only needs to be moved by about 0.2 to 0.3 ⁇ m. good. For this reason, by using the optical switching element 1 of the present example, the pixels can be controlled at high speed, and a high-contrast image can be obtained. Further, since the moving distance of the extraction surface 32 is short, the distance between the electrodes for driving the switching unit 30 having the extraction surface is also short. Accordingly, the drive voltage for moving the switching section 30 is reduced by the electrostatic force by these electrodes, and the image display device 2 which consumes less power, can operate at high speed, and has a large contrast can be provided. it can. Structure of drive unit
  • a base electrode 62 provided on the side (lower side) of the silicon substrate 70 is provided below the switching portion 30 and a base electrode 62 is provided on the upper surface of the silicon substrate 70 so as to face the base electrode 62.
  • the electrode 60 is provided, and an electrostatic force is generated by a combination of the electrodes 60 and 62 to drive the switching unit 30.
  • the driving section 40 is a thin film-like elastic support member (support member) extending from the support section (post) 44 disposed around the switching section 30 to the switching section 30. 50 is equipped.
  • the switching force is obtained by the electrostatic force F s of the electrostatic driving means composed of a pair of electrodes 60 and 62 and the elastic force F g of the yoke 50.
  • a first position P1 shown in the switching element 1a, It can be moved to the second position P2 shown in the switching element 1b.
  • the switching portion 30 performing such a movement is supported from the yoke 50 by a spacer 42.
  • the cross section of the baser 42 is almost C-shaped. For this reason, the center of the spacer 42 extends toward the surface 71 of the substrate 70, and the gap (first space) 45 between the lower surface 42a of the spacer 42 and the substrate surface 71 is It is narrow. Since both sides (periphery) 42b of the spacer 42 are separated from the substrate surface 71, the gap (second space) between the periphery 42b and the substrate surface 71 is wide.
  • the electrodes 62 and 60 are provided so as to sandwich the narrow first space 45.
  • a yoke 50 which is a panel member, is provided in the wide second space 46, and the support column 44 provided at the boundary of the switching element 1 and the spacer 42 are connected.
  • the switching portion 30 is elastically supported via the spacer 42, and the position of the switching portion 30 is also determined.
  • the plate-like panel member 50 can be deformed by the second space 46 formed by the T-shaped spacer 42.
  • the space between the electrodes 6 ° and 62 ° (the first space) was not increased, and the space for installing the panel members 5 ° was secured. Therefore, the interval between the electrodes 60 and 62 constituting the electrostatic driving means is narrowed, the driving voltage can be reduced, and the power consumption can be suppressed.
  • a second space 46 is provided below the prism 34, that is, the switching portion 30 as an installation space for the panel member 50. be able to. Therefore, all parts constituting the driving section 40 including the panel member 50 can be arranged below the switching section 30, as described above.
  • the optical switching elements 1 can be arranged in a hierarchical manner. By treating the space of the panel member 50 with the layer of the drive unit 40, the panel member 50 is placed between the adjacent optical switching elements 1a and 1b in the layer of the optical switching unit 30. No space is required for installation. Therefore, it is possible to increase the area of the prism 34, increase the area ratio (aperture ratio) from which light can be extracted from the light guide portion 20, and provide a bright light switching element with a large amount of emitted light. Can be done.
  • the support 44 is provided in the layer of the drive section 40 so that the drive section 40 can support the switching section 30. Therefore, it is not necessary to form a structure for supporting the prism 34 on the light guide portion 20 by etching or the like. Therefore, the total reflection surface 22 of the light guide section 20 becomes a flat plane with respect to the plurality of optical switching elements 1, and a member having a simple shape can be used as the light guide section 20. And, since the spring member 50 does not exist between the switching parts 30, the distance between the switching parts 30 can be minimized, and the optical switching elements 1 a and 1 b are hardly spaced from each other. It becomes possible to arrange. Therefore, by using the optical switching element of the present example, an image display device 2 that can form a seamless or almost seamless image in which almost no space is opened between pixels and the boundaries of pixels are not recognized. Can be provided.
  • the extraction surface 3 of the microprism 34 is turned on by the force of the panel member 50 without using electrostatic force in the ON state. 2 is pressed against the total reflection surface 22 of the light guide section 20. In the ON state, the panel member 50 has a slight displacement 51 so that the prism 34 can be pressed against the total reflection surface 22. Controlled with power
  • the electrostatic force is easy to control, but when the supply voltage fluctuates, the force pressing the extraction surface 32 onto the total reflection surface 22 changes. As shown in FIG. 3, when the voltage drops and the pressure is insufficient, and when the gap between the extraction surface 32 and the total reflection surface 22 is about 0.1 to 0.15 m, the transmission amount is 20%.
  • the on / off contrast is reduced.
  • the force obtained by the panel member 50 is mechanical and stable regardless of voltage fluctuation. Therefore, in the switching element 1 of the present example, the stable force of the panel member 50 is used as the driving force for turning on, while the electrostatic force that is easily controlled is used as the driving force for turning off. As a result, a stable light quantity can be ensured and an optical switching element with high control ability can be provided.
  • the extraction surface 32 can be pressed against the total reflection surface 22 with an appropriate force. Therefore, even if the distance between the light guide section and the switching section or the distance between the optical switching section and the drive section due to vibration, temperature change, or other aging changes is absorbed, it is absorbed and the on-off Contrast can be prevented from lowering. Furthermore, as described above, the switching element 1 of this example has a large space 46 as an installation space for the panel member 50 by the T-shaped spacer 42, so that It is possible to displace the spring member 50.
  • the extent of the radius 51 is the same as the interval in the off state, that is, preferably about 0.1 to 0.2 ⁇ m.
  • the panel member 50 of the present example is formed of a thin film 49 made of boron-bonded silicon, and has conductivity. Therefore, in a wide space 46 area, the thin film 49 functions as a panel member 50, and in a narrow space 45 area, the thin film 49 is fixed to the spacer 42 and the electrode is fixed. 6 2 can function properly. Structure of support member (panel member)
  • the drive section 40 of the optical switching element 1 of the present example includes the support member (panel member or yoke) 50 that exerts an elastic force and the electrostatic drive means by the electrodes 60 and 62.
  • the switching unit 30 can be driven at a high speed.
  • the panel member 50 has an appropriate elastic modulus. If the elastic modulus is too high, even a short interval requires a great deal of force to move, and a large electrostatic force is required, resulting in a high drive voltage. On the other hand, if the elastic coefficient is too low, the force for pressing the extraction surface 32 of the prism 34 against the total reflection surface 22 will not be obtained.
  • the size of the optical switching element 1 used as a pixel in the image display device 2 is in the range of tens of microns to several hundreds of microns, and in such a micromachine, the effective length of the non-metal member 50 is required. It is important to keep the elastic modulus low by increasing the length. For this reason, in the optical switching element 1 of the present example, the panel member 50 is arranged in a wide space 46 secured by using a T-shaped spacer 42 to increase the effective length and further increase the panel length. The member 50 is made thinner to increase the effective length.
  • the panel member 50 can be used as the electrode 62.
  • those in which the panel member 50 can be used as an electrode include a conductive thin film material such as an A 1 film, a Pt film, and an Ag film.
  • FIG. 4 shows the arrangement of the driving section 40 of the optical switching element 1 of the present example as viewed from the bottom (the side of the substrate 70).
  • the silicon thin film 49 forms a panel member 50 (shown by a vertical line for clarity) extending radially from the four pillars 44 toward the bottom surface 42 a of the spacer 42.
  • the periphery of 44 is greatly cut to form a hole 59.
  • the silicon thin film 49 remaining on the bottom surface 42a forms a substantially rectangular electrode 62 (shown by oblique lines for clarity).
  • FIG. 5 in the c present example is shown an example of the a different panel member 5 0 of this embodiment, the sheet re con thin film 4 9, extending from the scan Bae colonel 4 2 in the direction of the strut 4 4
  • the slits 58 are formed radially to form elongated panel members 50, and the radial electrodes 62 are further expanded from the electrodes 62 mounted on the bottom surface 42a of the spacers 42.
  • the electrode area is widened. As described above, by enlarging the area of the electrode 62, it becomes possible to reduce the drive voltage applied to drive the switching unit 30.
  • FIG. 6 shows an example of a panel member 50 which is further different from the above.
  • FIGS. 6 (a) and 6 (b) show a plurality of panel members 50 arranged two-dimensionally to constitute an image display device. The state in which four optical switching elements 1 among the optical switching elements 1 are arranged is shown when viewed from the side of the silicon substrate 70.
  • the silicon thin film 49 is provided with each of them.
  • a slit 58 is formed in the direction along the boundary of the optical switching element 1, and a panel extending spirally around the switcher 42, that is, along the boundary of the optical switching element 1.
  • FIG. 6 (b) shows an example in which the slit 58 is further lengthened so that the panel member 50 can be further secured in a long spiral until it reaches two sides along the boundary of the switching element 1. Yes, the effective length of the non-conductive member 50 can be lengthened and the driving voltage can be reduced.
  • the slit 58 can be further elongated to form a panel member 50 having a long effective length along the boundary.
  • FIG. 8 shows another example of a spring member.
  • the thickness of the central portion 55 between the panel member 50 and the portion where the panel member 50 is in contact with the spacer 42 or the portion where the panel member 50 is connected to the support column 44 is reduced, and the elastic modulus is reduced. Lowering the drive voltage.
  • the elastic modulus of the panel member 50 can be reduced by combining some of the examples described above or a combination thereof, so that the electrodes 60 and 62 are used to move the optical switching section 30. , The driving voltage at which the electrostatic force is generated can be reduced. Therefore, it is possible to provide the optical switching element 1 operable with low electric power consumption, and it is possible to suppress the entire power of the image display device 2.
  • the optical switching element 1 of this example adopts a structure in which a light guide section 20, an optical switching section 30 and a driving section 40 are laminated in this order to form a reflection type optical switching section 30. Accordingly, the present invention provides an optical switching element in which the emission directions are stacked, that is, the optical switching element is directed to the light guide section 20 and has a configuration in which the light extracted from the driving section 40 does not pass. Can be. Therefore, since the drive unit 40 can be designed without considering optical characteristics, the configuration for supporting and driving the optical switching unit 30 is optimized so as to be realized by the drive unit 40 as described above. The configuration of the optical switching unit 30 and the light guide unit 20 can be made very simple.
  • the light guide section 20 and the optical switch Independent design is possible by making the chin part 30 and the drive part 40 into a layered structure, and the light guide part 2 ⁇ can use a flat plate-like member whose total reflection surface 22 is flat.
  • an exiting body 34 such as a prism having a wide extraction surface 32 can be used.
  • a highly reliable mechanism capable of stably performing the on / off operation at high speed can be adopted as the driving unit 40. Therefore, according to the present invention, an optical switching element having a large amount of light and a small loss of light can be provided, and an optical switching element having a high on / off contrast and good image quality can be provided.
  • the optical switching element 1 of the present example is constructed such that the drive section 40 is formed on a silicon IC substrate on which a drive circuit and the like are formed by using a semiconductor manufacturing technique or a micromachine manufacturing technique suitable for fine processing such as etching. It can be manufactured, and it is easy to integrate a plurality of optical switching elements 1 at high density. Therefore, by using the optical switching element of the present invention, a thin and high-resolution image display device 2 can be provided.
  • FIG. 8 shows a projection device 6 using the image display device 2 according to the present invention.
  • an IC chip 5 on which an optical switching unit 30 and a drive unit 40 are mounted together with a drive circuit is mounted on the total reflection surface 22 of the light guide unit 2.
  • the light guide section 20 of the image display device 2 is provided with an incident surface 81 on one side, and a red, green, blue (RGB), cyan, magenta, yellow, or the like from a light source is directed toward this surface.
  • the three primary colors of light are incident on a time-division basis.
  • the light source 80 in this example includes a white metal halved lamp 80a and a three-color division filter 8Ob that is rotated in a single color.
  • the resulting light beam is converted into a parallel light beam through the collimating lens 80 c and is incident on the light guide portion 20 from the incident surface 81. Then, the incident light that reaches the total reflection surface 22
  • the light 10 is reflected by the individual optical switching elements configured using the IC chip 5, is emitted as the outgoing light 11 that passes through the light guide 20, and is emitted through the projection lens 85.
  • the projected image is formed on a screen such as a lean screen.
  • the incident light 10 which has not been converted into the outgoing light by the optical switching element reaches the reflecting surface 82 opposite to the incident surface 81 of the light guide section 20 by total reflection, and is reflected by this surface. Then, the light is transmitted again in the light guide section 20 and reaches the optical switching element.
  • the image display device 2 of the present embodiment can project a color image by operating the optical switching element configured by the IC chip 5 in a time-division manner and in synchronization with the incident light.
  • the optical switching element configured by the IC chip 5
  • white light it is also possible to use white light as the incident light 10 and project a color image by an optical switching element using a light extractor having wavelength selectivity.
  • FIG. 9 shows a different example of the optical switching element according to the present invention.
  • the optical switching element 1 also has a light guide section 20, an optical switching section 30, and a drive section 40 stacked in this order on the base of the IC section 70.
  • a light guide section 20 an optical switching section 30, and a drive section 40 stacked in this order on the base of the IC section 70.
  • a drive section 40 stacked in this order on the base of the IC section 70.
  • the thin film 49 installed so as to connect the support 44 and the spacer 42 also as the panel member 50 and the electrode 62 to the light guide part 20 is provided. It is supported by the auxiliary column 48. The distance between the extraction surface 32 and the total reflection surface 22 is maintained almost uniformly between the optical switching elements 1. Further, no holes or slits are formed in the thin film 49, so that the layer of the switching portion 30 can be sealed by the thin film 49 and the light guide portion 20. The pressure in the switching section 30 is adjusted so as to be a negative pressure with respect to the outside air. As a result, the thin film 49 is brought into close contact with the auxiliary pillar 48, and a plurality of optical switches are provided.
  • the image display device 2 is configured by two-dimensionally arranging the switching elements 1, the distance between the thin film 49 and the total reflection surface 22, that is, the extraction surface 3 of the optical switching portion 30 attached to the thin film 49. Total reflection surface of 2 and light guide 20
  • the gap with 22 can be kept almost even. Therefore, a stable switching operation is performed in all the pixels of the image display device 2 configured by the plurality of optical switching elements 1, and a high contrast can be obtained in all the pixels.
  • the auxiliary columns 48 need not be provided in the switching elements constituting all the pixels, and may be provided at appropriate intervals or may be arranged at random.
  • the extraction surface 32 of the optical switching section 30 is pressed against the total reflection surface 22 by the external air pressure. Therefore, in the optical switching element 1 of this example, the extraction surface is utilized by using the atmospheric pressure in addition to the force of the panel member 50.
  • an inverted trapezoidal shape is adopted as the spacer 42 between the panel member 50 and the prism 34 instead of the T-shape.
  • the drive section 40 can be sealed, and the entire area surrounded by the light guide section 20 and the silicon substrate 70 can be sealed to have a negative pressure. .
  • the gas flow resistance is eliminated when the optical switching section 30 and the prisms 34 and the panel members 50 constituting the driving section 40 move to perform the switching operation.
  • a stopper 65 is provided between the electrodes 60 and 62.
  • the drive voltage Vd is supplied from the drive control unit 70 formed on the silicon substrate to the electrode 60, and an electrostatic force Fs is generated between the electrodes 60 and 62.
  • the switching part 30 is moved to the second position P2 by the force, it stops at the position of the stopper 65, and the electrodes 60 and 62 are not in close contact with each other, and the electrodes 60 and 62 are not in close contact with each other.
  • G can be secured.
  • the stopper 65 not only prevents the electrodes from colliding with each other when the switching section 30 moves, but also prevents the electrostatic force from becoming infinite at the stop position as shown below. It also performs a function that enables high-speed control at low voltage.
  • FIG. 10 shows the relationship between the electrostatic force F s and the elastic force (spring force) F g in the driving section 4 ° of the switching element 1 of the present example.
  • the electrostatic force F s indicates the force when the drive voltage V d is set to 10, 20, 30, 40, and 50 V, respectively.
  • the distance between the electrodes 60 and 62 is 0.5 m
  • the electrostatic force F s When a gap is added, a gap G of 0.1 m is opened between the electrodes 60 and 62 by the stopper 65.
  • the yoke 50 is set so as to be displaced by 0.5 ⁇ m (initial displacement X 0) at the first position P 1.
  • the switching part 30 is 0.5 ⁇ m of the initial displacement ⁇ ⁇ from the first position P1 to the second position P2 (stopper position). From 0.9 ⁇ 111 at 0.4 m intervals d O, and the elastic force F g shown in equation (1) is generated accordingly. Also, during this interval d O, when the drive voltage V d is applied, as shown in Equation (2), when the distance d between the electrodes moves by 0.5 mm between the electrodes with a displacement X Of electrostatic force F s is generated.
  • the drive voltage Vd for moving the switching unit 30 from the first position P1 to the second position P2 will be considered.
  • an electrostatic force Fs larger than the spring force Fg is always obtained.
  • Drive voltage Vd must be applied to the electrodes 60 and 62. That is, it is necessary to apply a drive voltage Vd that can exhibit the spring force Fg and the electrostatic force Fs that does not have a stable point.
  • the voltage that generates the electrostatic force Fs without a stable point is 50 V, and if 50 V is applied as the driving voltage Vd, the switching section 3 0 can be moved to the second position P2.
  • the yoke 50 has the initial displacement X 0 set as the radius 51 of the yoke (panel member) at the first position P 1.
  • the switching part 30 can be moved without any problem. That is, the electrostatic force F s is inversely proportional to the square of the distance (d — X) Therefore, there is an initial displacement X0, and the distance between the electrodes (d- If X) is substantially smaller, a lower voltage can be used as the drive voltage V d.
  • the case where the drive voltage Vd is 40 V corresponds to this.
  • the switching section 40 can be stably held at the first position P 1, and the drive voltage V d is further reduced from 50 V to 40 V. Can be reduced.
  • the voltage that gives the electrostatic force F s equal to or less than the spring force F g is set as the bias voltage V b and the electrodes 60 and 6 are applied. 2 can be applied.
  • the electrostatic force Fs by the bias voltage Vb at the first position P 1 becomes the value of B 1 in the figure. Therefore, even when the bias voltage Vb is applied, the difference Fkl from the spring force Fg at the first position P1 acts as a holding force, so that the switching section 30 can be stably held.
  • the electrostatic force Fs when the drive voltage Vd is 40 V can be obtained by applying 30 V as the drive voltage Vd.
  • the unit 30 can be driven. Therefore, drive voltage Vd can be further reduced by 10 V.
  • the bias voltage Vb can be commonly applied to the switching elements 1 constituting the image display device 2 shown in FIG.
  • the switching element 1 here is driven.
  • a high-potential drive voltage Vd is applied to the moving electrode 60 for driving, the driving is performed by uniformly applying ⁇ 10 V to the base electrode 62 common to these switching elements 1.
  • a bias voltage Vb having the same polarity as the voltage Vd can be set.
  • the drive control unit (control unit) 70 so as to set the bias voltage Vb so that the reference voltage of the drive voltage Vd rises by 10 V.
  • the gap G due to the stopper 65 exists between the electrodes 60 and 62 at the second position P2, so that the electrostatic force Fs is infinitely large. It will not be. Therefore, when the bias voltage Vb is 10 V, the electrostatic force Fs generated thereby is the value of C1 in the figure at the second position P2, and does not reach the spring force Fg. . Therefore, when the driving voltage Vd is lost, the spring force F becomes larger than the electrostatic force Fs at the second position P2 even when the bias voltage Vb is applied, and the switching portion 30 applies the spring force Fs. g moves from the second position P2 to the first position P1.
  • switching section 30 can be turned on / off only by controlling drive voltage Vd.
  • a constant bias voltage Vb is continuously applied to all the switching elements. It is possible to control the bias voltage Vb very easily. Therefore, the bias voltage Vb can be applied without complicating the configuration of the control unit 70, and the drive voltage Vd can be reduced by the bias voltage Vb. Therefore, the withstand voltage of the control unit 70 can be reduced and the configuration can be simplified, so that the size of the control unit 70 can be reduced and the manufacturing can be performed at lower cost. Further, since the power supply voltage of the drive voltage can be reduced, the power consumption can be suppressed.
  • the holding force F k1 for stably holding the switching portion 30 can be secured. Further, since the moving distance d0 of the switching unit 30 does not need to be changed, a sufficient contrast can be obtained. Further, since it is not necessary to change the elastic coefficient K of the shock 50, the driving speed of the switching section 30 hardly changes. As can be seen from FIG. 10 even when the bias voltage Vb is applied, the electrostatic force Fs due to the bias voltage Vb decreases sharply in inverse proportion to the square of the distance. The speed of moving to the position P 1 of 1 is not so influential. Next, consider the case where the bias voltage Vb is 20 V.
  • the electrostatic force Fs due to the bias voltage Vb (20 V) becomes the value of B2 in the figure. Therefore, the holding force Fk2 is obtained as a difference from the spring force Fg, so that the switching portion 30 can be stably held.
  • a driving voltage V d of 20 V may be applied to obtain the electrostatic force F s of 40 V required to drive the switching unit 30, and the driving is further improved than in the above case.
  • the voltage Vd can be reduced by 10 V.
  • the electrostatic force Fs exceeds the spring force Fg. 0 does not move from the second position P2 to the first position P1.
  • the bias voltage V b is set to 0 or a voltage having a value smaller than the spring force F g, for example, Must drop to 10 V.
  • Such control of the bias voltage Vb may be performed at a timing when the switching unit 30 is moved from the second position P2 to the first position P1.
  • the bias voltage V b changes at the first position P 1
  • only the holding force F k2 increases, and the second position P 1
  • the driving voltage Vd is applied, so that even when the bias voltage Vb is turned off, the switching unit 30 does not move.
  • FIG. 11 shows, using a timing chart, how the switching section 30 is controlled using the drive voltage Vd and the bias voltage Vb.
  • the switching unit 30 located at the second position P 2 is moved to the first position by the spring force F g. To the position P 1.
  • the switching unit 30 moves from the second position P2 to the first position P1 similarly to time t1.
  • the drive voltage Vd can be lowered by the bias voltage Vb.
  • the configuration of the control unit 70 for controlling the drive voltage Vd can be further simplified, and the withstand voltage can be reduced, so that the device can be made compact.
  • power consumption can be reduced because the drive voltage can be lowered.
  • the driving voltage Vd is increased at time t7 which is the next cycle.
  • the bias voltage Vb decreases, and a voltage of 30 V is applied between the electrodes, so that the electrostatic force Fs exceeds the repulsive force Fg and the switching section 30 moves. do not do.
  • the driving voltage Vd becomes 0 V, the switching section 30 moves to the first position P1, and the driving voltage Vd at time t9 in the next cycle. If is not applied, even if the bias voltage Vb increases or decreases, the electrostatic force Fs does not exceed the spring force Fg at the first position P1, so that the switching section 30 does not move.
  • the bias voltage Vb is increased or decreased in the range of 10 to 20 V, but it is needless to say that the bias voltage Vb may be changed in the range of 0 to 20 V.
  • the stopper 65 is provided at the second position P2
  • the electrostatic force Fs does not become infinitely large, and the spring voltage is reduced only by reducing the bias voltage Vb to 10 V. Power F "exceeded As described above, the switching unit 30 can be moved. Therefore, the fluctuation range of the bias voltage Vb is also set to the range of 10 to 20 V, so that the circuit for controlling the bias voltage Vb can be simplified, and the power consumption accompanying the increase and decrease of the base voltage can be reduced. Can be.
  • the drive voltage and the bias voltage shown above are the values exemplified for examining each case, and if the voltage satisfies the above-described conditions, the corresponding effects can be obtained even if the values are not the above-described values. Of course, you can get it. Further, the values of the drive voltage and the bias voltage shown in this example are values under the conditions assumed in FIG. 10, and the drive voltage and the bias voltage according to the present invention are set to the values exemplified in this specification. Of course, it is not limited.
  • FIG. 12 shows a different optical switching element 1 according to the present invention.
  • the optical switching element 1 of this example is also an optical switching element capable of extracting an evanescent wave and irradiating the outgoing light 12 with the light guide section 20, the reflection type optical switching section 30,
  • the section 40 and the control section 70 have a hierarchical structure in which they are stacked in this order. Therefore, portions common to the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the optical switching element 1 of this example includes a pair of electrodes 60 and 62 for moving the switching unit 30 from the first position P1 to the second position P2 in the driving unit 40 (hereinafter, referred to as a pair).
  • a pair of electrodes 64 and 66 (hereinafter referred to as a first electrode pair) E 1 for moving from the second position P 2 to the first position P 1 in addition to E 2 It is provided. Therefore, a substantially U-shaped notch 38 is provided at a symmetrical position on the side surface of the buffer member 35 for supporting the prism 34 from the spacer 42. And this column 3 8 extends from column 4 4 A stripped auxiliary column 47 is inserted, an electrode 66 as an electrode is fixed on the column side, and an electrode 64 as a base electrode (common electrode) is fixed on the buffer member 45 side. .
  • both the ON and OFF states can be controlled by the electrostatic drive means including the first and second electrode pairs E 1 and E 2.
  • the electrostatic drive means including the first and second electrode pairs E 1 and E 2.
  • the yoke 50 is further arranged so that the intermediate position P3 between the first position P1 and the second position P2 is balanced, that is, the displacement X is zero. Is set to For this reason, the switching part 30 moves from the first position P1 to the intermediate position with the elasticity Fg of the yoke 50, and then moves to the second pair E2 of the electrodes 60 and 62. It moves to the second position P2 with the electrostatic force Fs. In the opposite direction, it moves from the second position P2 to the intermediate position P3 with an elastic force Fg, and thereafter, the first pair E1 of the electrodes 6 4 and 6 6 To the position P1.
  • the electrostatic force Fs of the first pair E1 acts as a holding force.
  • the interval between the electrodes 64 and 66 is set such that the total reflection surface 22 becomes the stopper at the first position P1 and the gap G opens, and the second position is set.
  • the electrostatic force Fs can be stopped within a certain range also at the first position P1.
  • the equilibrium position of the yoke 50 as a panel member is an intermediate position P3 between the first and second positions, and the first and second electrode pairs E1 and E2 move the intermediate position to the first position P1.
  • the intervals at which the electrode pairs E1 and E2 function as electrostatic driving means are the first and second positions. May be half of the distance d0 between the positions. Therefore, switching part 3 Since the interval at which the electrostatic force F s works can be halved without changing the movement interval d 0 of 0, the interval d can be halved as can be seen from the above equation (2), and the same static The driving voltage Vd for obtaining the power Fs is also halved.
  • the electrostatic force Fs can be used as the holding force at the first position P1, the initial displacement ⁇ for securing the holding force with the spring force Fg is not required. Therefore, the amount of electrostatic force F s required to oppose the initial displacement X 0 is not required, so that the drive voltage V d can be further reduced.
  • the displacement X of the core is 0 as shown by the brackets in FIG. The position is the intermediate position P 3, and the position where the displacement X of the core is 0.25 is the first position P 1 or the second position P 2 be able to.
  • the second electrode gap E2 composed of the electrodes 60 and 62 moves the switching section 30 from the intermediate position P3 to the second position P2 against the spring force Fg, and likewise, the electrode The first electrode pair E1 consisting of 64 and 66 moves the switching part 30 from the intermediate position P3 to the first position P1 against the spring force Fg.
  • the switching part 30 Since the switching part 30 is driven by the electrode pairs E1 and E2 in the same manner, the switching part 30 is driven from the intermediate position P3 against the spring force Fg based on the electrode pair E2. In order to move, a drive voltage Vd that can obtain an electrostatic force Fs having no stable point between the intermediate position P3 and the second position P2 may be applied.
  • the switching unit 30 can be moved from the intermediate position P3 to the second position P2 by applying a driving voltage Vd of 7 V. Therefore, in switching element 1 of the present example, switching section 30 can be driven by alternately applying drive voltage Vd of 7 V to two electrode pairs E1 and E2. For this reason, it becomes possible to reduce the drive voltage Vd from 20 V to 7 V to approximately 1/3 as compared with the above. Furthermore, since it can be moved from the intermediate position P3 to the first position P1 by using the electrostatic force Fs and can be held at the electrostatic force Fs, the switching portion 30 is held at the first position P1. It is also possible to gain strength.
  • FIG. 14 is an enlarged view of the spring force F and the electrostatic force F s shown in FIG. 13, and further shows the electrostatic force F s when the voltage V d is 5 V, 4 V, and 2 V. In addition, it is shown.
  • the driving voltage Vd becomes 7 by applying the driving voltage Vd of 5 V at the intermediate position P3.
  • the static F s at V is obtained. Therefore, 5 V
  • the switching unit 30 can be driven by the driving voltage Vd of the switching device.
  • the bias voltage V b is larger than the electrostatic force F s of 2 V at the spring force F g, so that the driving at 5 V is performed.
  • Switching section 30 can be driven only by turning on / off voltage Vd. Further, since the same bias voltage Vb is applied to the two electrode pairs E1 and E2, the electrostatic force Fs due to the bias voltage Vb is balanced at the intermediate position P3, and the intermediate position P3 is hardly fluctuated. On the other hand, when the switching section 30 starts moving toward any position, the interval between the other electrode pair becomes wide, and the electrostatic force Fs decreases in inverse proportion to the square of the distance. Therefore, once the switching unit 30 starts moving in the direction of any of the electrode pairs, the influence of the bias voltage Vb between the other electrode pairs hardly occurs.
  • Such a bias voltage Vb applies a common potential to the base electrode 62 of the second electrode pair E2 and the base electrode 64 of the first electrode pair E1 that move together with the switching section 30. Can be supplied. Furthermore, to apply a bias voltage having the same polarity as the drive voltage Vd-a voltage lower than the reference voltage of the drive voltage, for example, when the reference voltage is 0 V, 12 V is used as the bias voltage Vb as the base electrode. This can be achieved by applying a common voltage to 62 and 64.
  • bias voltage Vb It is also possible to further increase the bias voltage Vb and apply a bias voltage Vb of 4 V.
  • a 7 V electrostatic force F s can be obtained by applying a 3 V drive voltage V d, and the switching unit 30 can be driven with a 3 V drive voltage V d .
  • the switching portion 3 0 At the intermediate position P3, since the bias voltage Vb is balanced between the two electrode pairs, only the electrostatic force Fs of 3 V is effective, but since the spring force Fg is 0, the switching portion 3 0 starts moving, and when it starts moving, the effect of the bias voltage V b of other electrode pairs is almost The switching portion 30 can be moved smoothly without generating a spring force F g and a stable point.
  • the switching unit 30 does not start moving. Therefore, in this case, it is necessary to reduce the bias voltage Vb to 0 V or 2 V where the spring force Fg is superior in synchronization with the clock signal.
  • the switching section 30 is driven by alternately applying the 3 V drive voltage Vd to the first and second electrode pairs by increasing and decreasing the 4 V bias voltage Vb in synchronization with the clock signal. can do.
  • the switching element 1 of the present example the most commonly adopted driving voltage of 50 V described in the above embodiment is reduced to a voltage level of 3 V which is easy to use in a semiconductor circuit. be able to. Therefore, the circuit scale of the control unit 70 can be extremely reduced, and the power consumption can be significantly reduced.
  • FIG. 15 shows, using a timing chart, how the switching section 30 of the switching element 1 of the present example controls the switching section 30 using the drive voltage Vd and the bias voltage Vb. It is. At time t 11, the bias voltage V b decreases from 4 V to 2 V, and the driving potential V d 2 of the second electrode pair E 2 that drives the switching unit 30 toward the second position P 2 is turned off. (3 V to 0 V), the total voltage of the second electrode pair E 2 decreases from 7 V to 2 V. Therefore, the spring force Fg becomes larger than the electrostatic force Fs, and the switching portion 30 moves from the second position P2 toward the intermediate position P3.
  • the driving potential Vd1 of the first electrode pair E1 that drives the switching section 30 toward the first position P1 is turned on (from 0 V to 3 V), and the bias is applied.
  • Electric When the voltage Vb becomes 4 V, the total voltage of the first electrode pair E 1 becomes 7 V, and the switching unit 30 moves to the first position P 1 and is held at that position.
  • the total voltage of the second electrode pair E 2 becomes 4 V due to the bias voltage V b, but the electrostatic force F s is almost ignored because the interval between the second electrode pairs E 2 is wide. You can do it.
  • the switching unit 3 0 starts moving from the first position P1 toward the intermediate position P3. Then, at time t 14, when the drive voltage V d 2 of the second electrode pair E 2 is turned on and the bias voltage V b becomes 4 V, the total voltage of the second electrode pair E 2 becomes 7 V Therefore, the switching unit 30 is moved to and held at the second position P2.
  • the bias voltage Vb decreases, the drive voltage Vd2 is turned off, and subsequently, when the drive voltage Vd1 is turned on, the switching unit is turned on. 30 moves from the second position P2 to the first position P1.
  • the driving voltage Vd1 is turned off, the driving voltage Vd2 is turned on, and the switching unit 30 moves to the second position.
  • the switching unit 30 is held at the second position P2 because the drive voltage Vd2 is on. Then, at time t20, the drive voltage Vd2 is turned off, and when the drive voltage Vd1 is turned on, the switching unit 30 moves from the second position P2 to the first position P1.
  • the switching unit 30 can be driven by changing the drive voltage Vd from 0 to 3 V. Also, the bias voltage Vb need only be changed in the range of 2-4 V at the clock cycle. Therefore, the switching element 1 of this example can drastically reduce the voltage for driving the switching section 30 and can be driven at a normal battery power supply level.
  • an image display device in which a plurality of switching elements shown in FIG. 1 are arranged in an array can be driven by the voltage of the battery.
  • the voltage level controllable by the control circuit can be reduced, and the withstand voltage characteristics can be reduced. Therefore, a switching element and an image display device using the same can be provided. It can also be driven directly by a conventional semiconductor integrated circuit. Also, since the power supply voltage can be low, power consumption can be significantly reduced.
  • the performance as a switching element for example, the elastic coefficient of the peak 50, the moving distance of the switching element, and the ability to hold the switching section 30 at the ON position, etc., are maintained as they are. Can be.
  • switching element that has high contrast and can operate stably at high speed at low cost. Further, by arranging the switching elements in an array, a high-resolution, bright image can be displayed at high speed, and an image display device with low power consumption can be provided at low cost.
  • Such drive control is not limited to the optical switching element using the evanescent wave, but may also be applied to other spatial light modulators that move a planar element serving as a switching part in parallel, and furthermore, a micro mirror device.
  • a spatial light modulator that turns on and off light by changing the angle of a plane element, such as, and modulates incident light by changing the position of a switching part, and changes the polarization direction or the phase of reflected light.
  • Type space Applicable to light modulation devices. Attitude control of switching part
  • FIG. 16 shows an optical switching element 1 different from the above.
  • the optical switching element 1 of the present example is also an optical switching element using an evanescent wave. Portions common to the above are denoted by the same reference numerals and description thereof will be omitted.
  • the optical switching element 1 of this example also approaches in the direction (first direction) where the extraction surface 32 of the switching section 30 is parallel to the total reflection surface 22 as shown in FIG. 16 (a).
  • first position when it comes to a position where the evanescent light can be extracted in close contact (first position), the incident light 10 is extracted from the light guide 20 to the switching unit 30. Then, the light is emitted as substantially perpendicular light 11 by the micro prism 34.
  • the movement of the switching section of the optical switching element is controlled by electrostatic driving means using a yoke and electrodes, which are panel members of the driving section 40, but in the optical switching element of the present example, the switching section is controlled by the electrostatic driving means. It is designed to perform asymmetric movement with respect to the center. For this reason, the materials, thickness, width, and the like of the yokes 50 and 52 arranged on the left and right on the drawing are changed.
  • FIG. 17 shows an example in which the widths of the yokes 50 and 52 are different.
  • FIG. 17 shows the switching part 30 viewed from below (in the direction of the driving part 40).
  • the substantially rectangular parallelepiped symmetrical switching part 30 has its solid center point (body Heart) extends radially in four directions symmetrical to 1 4a Are supported from the boss 44 by the yokes 50 and 52.
  • the solid center line 14 extends in the direction extending vertically above and below the drawing through the body center 14 a of the optical switching element 1, the left section 12 a and the right section of the solid center line 14 on the drawing are assumed.
  • the two yokes 50 and the yokes 52 arranged on the 1 2 b each have the same material and thickness, but have different widths (that is, the width W of the yoke 50 is greater than the width W of the yoke 52). Therefore, the yoke 50 and the yoke 52, which elastically support the switching part 30 as a part of the drive part 40, have different elastic forces, that is, a different spring coefficient.
  • the elastic force of section 12a is weaker than the elastic force of section 12b on the right side, so in the optical switching element of this example, the switching section 30 is different on the left and right of the solid centerline 14 Yokes (supporting members) with elastic constants of 50 and 52 (on the other hand, Since the left and right shapes of the switching part are symmetrical, the positions of the body center 14a and the center of gravity 14b match, so that the switching part 30 has an elastic constant that is asymmetrical to the center of gravity 14b on the left and right.
  • the switching unit 30 is driven by electrostatic force by supplying power to the electrodes 62 and 60 which are the electrostatic driving means of the driving unit 40, the switching unit 30 is driven by electrostatic force. An unbalanced force acts on the switching part 30. As a result, the switching part 30 does not move horizontally with respect to the total reflection surface 22 but moves in an inclined state.
  • FIG. 18 shows stepwise how the switching section 30 of the present example moves in an inclined state.
  • FIG. 18 (a) shows a state in which the switching part 30 shown in FIG. 16 (a) is at the first position. In this first position, the switching part 30 is shown.
  • the extraction surface 32 is in contact with the total reflection surface 22 of the light guide portion 20 and faces in the first direction A, that is, in the present example, upwards in the drawing, and the optical switching element 1 is in an on state in which emitted light is output. It has become.
  • the electrodes of the drive section 40 No power is supplied from the power supply section 61 to 62 and 60, and the switching section 30 is provided with a total reflection surface of the light guide section 20 by the elastic force generated by the yokes 50 and 52.
  • the extraction surface 32 and the all-reflection surface 22 are almost in close contact with each other.
  • the distribution of the driving force acting on the switching part 30 differs between the left and right sides of the three-dimensional center line 14, and the switching part 30 shown in FIG. 18 (b) is moved from the first position to the second position.
  • the driving force of the left section 12a is larger than the driving force of the right section 12b. Therefore, the section 12a on the left side of the switching section 30 starts moving first, followed by the section 12b on the right side. It becomes a state inclined to the direction A of 1.
  • the extraction surface 32 When the extraction surface 32 starts to move in an inclined state, the extraction surface 32 gradually separates from the total reflection surface 22 from the left side as shown in FIG. A space 17 is formed between the space and the total reflection surface 22. Then, the fluid around the switching part 30, in this example, the air 16 flows into the space 17, and the switching part 30 moves in the opposite direction to the first direction A toward the second position. Start moving in the direction of arrow X on the side. So Then, when the switching section 30 moves, the space 17 gradually expands to the right and increases, and the air 16 gradually flows into the space 17.
  • the extraction surface 32 when the extraction surface 32 starts to move in a tilted state, the volume of the space initially formed between the extraction surface 32 and the total reflection surface 22 is very small, and the amount of air flowing into the space also decreases.
  • the air resistance is very low because it requires only a small amount.
  • the extraction surface 32 if the extraction surface 32 is moved in the first direction A while keeping it parallel to the total reflection surface 22, the extraction surface 32 is formed because the entire extraction surface 32 is separated at the initial stage of movement. The resulting gap is very large and the amount of air flowing in is also large. Therefore, the resistance of air is very large.
  • the air resistance can be reduced by inclining the direction of the extraction surface 32 with respect to the first direction A at the beginning of the movement, and the driving force at the beginning of the movement is small. And the time it takes to start moving can be reduced.
  • the optical switching element 1 using the evanescent light of this example a slight gap is generated between the extraction surface 32 and the total reflection surface 22 and the angle of the extraction surface 32 changes.
  • the amount of evanescent light extracted decreases extremely and the direction of the emitted light changes. Therefore, the state quickly changes from an on state in which the outgoing light is output in a predetermined direction to an off state in which no outgoing light is output or the direction of the outgoing light changes. Therefore, by changing the angle of the extraction surface 32 in the initial stage of the movement, the transition speed from the ON state to the OFF state can be extremely increased.
  • the switching unit 30 is inclined with respect to the traveling direction X during the movement. Therefore, with respect to the fluid (air) existing in the moving direction X, the bottom surface of the switching section 30, that is, the electrode 62 advances in an inclined state, and the air 16 flows to the electrode 62 of the switching section 30. The air flows smoothly along the surface inclined to the direction of travel, and the air resistance is small. On the other hand, the extraction surface 32 remains in the first direction A. When the electrode 62 moves in a state perpendicular to the traveling direction X, the air 16 is compressed between the electrode 62 and the electrode 60, so that the air resistance is large. As described above, even during movement, the air resistance can be reduced and the movement speed can be increased by inclining the extraction surface 32 of the switching unit 30.
  • FIG. 18 (d) shows the second state in which the switching section 30 described above with reference to FIG. 16 (b) comes into contact with the electrode 60 of the substrate 0 and stops.
  • the extraction surface 32 of the switching section 30 is oriented in the same direction A as the first position at the second position.
  • the extraction surface 32 is inclined with respect to the first direction A even at the end of the movement immediately before the switching unit 30 stops. Therefore, the space between the electrode 62 and the electrode 60 gradually decreases from the left side of the section 12a with respect to the three-dimensional center line 14.
  • the air between the electrodes 62 and 60 flows smoothly in the direction of the right section 12b since the space 17 gradually narrows diagonally, and the air between the electrodes 62 and 60 Released from.
  • the resistance due to the fluid (air) 16 between the electrode 62 and the electrode 60 becomes extremely small, and the switching portion 30 quickly reaches the second position.
  • the switching section 30 stops at a stable position because it is hard to receive air resistance.
  • the optical switching element 1 of this example since the electrostatic power between the electrodes 62 and 60 is eliminated by turning off the power supply section 61, the elasticity of the yokes 50 and 52 of the drive section 40 is reduced.
  • the switching part 30 is moved by force from the second position shown in FIG. 18 (d) to the first position shown in FIG. 18 (a).
  • the elastic force of the yoke 52 in the right section 12b becomes larger than the elastic force of the yoke 50 in the left section 12a.
  • a large driving force acts on the right side of the switching part 30. Therefore, the extraction surface 32 starts to move with the left side of the drawing inclined with respect to the first direction A, and the states shown in FIGS. 18 (a) to (d) are reversed in the reverse order.
  • the optical switching element 1 of the present invention begins to peel off at an on-off operation (modulation operation) when the switching unit 30 is tilted with respect to the first direction A when moving in any direction. , Moves in a tilted state, and stops in the first direction A from the further tilted state. For this reason, in any state, the resistance of the air 16 received by the switching section 30 can be reduced, and the optical switching element that moves at high speed and has a high response speed, that is, the spatial light modulator, can be used. Can be provided.
  • FIG. 19 shows the moving time of the optical switching element 1 of the present example in comparison with the moving time of the optical switching element in which the switching unit 30 moves without tilting.
  • FIG. 19 (a) shows the distance (interval) between the electrode 60 and the electrode 62 when the switching section 30 switches from the first position to the second position, that is, from the ON state to the OFF state. And the time required for switching (elapsed time) T.
  • the resistance of air; Fa is reduced as described above, so that the electrostatic force F s is greatly increased. Acts on the switching part 30.
  • the transit time T is reduced by ⁇ 1 (t2-t1), and the moving speed of the switching unit 30, that is, the response speed is improved.
  • FIG. 19 (b) shows the movement of the switching section 30 when switching from the second position to the first position, that is, from the off state to the on state. While moving from the second position to the first position, the electrostatic force Fs does not act as described above, and the elastic force Fg of the jokes 50 and 52 is applied to the switching part 30 as described above.
  • the air resistance Fa acts. When the switching part 30 moves while maintaining the direction of the switching part 30 in the first direction A, the air resistance Fa acts greatly, and the switching part 30 moves as shown by the dashed-dotted line 91b. I do.
  • the optical switching element 1 of this example since the air resistance Fa is reduced, the optical switching element 1 can move as fast as ⁇ 2 (t5 ⁇ t4) as shown by the solid line 9Ob. Therefore, the optical switching element 1 of the present example has a faster moving speed from ON to OFF and a faster moving speed from OFF to ON, and can improve the overall response speed.
  • the switching unit 30 when the switching unit 30 is moved from the first position to the second position, or vice versa, the air resistance is reduced by inclining the direction of the extraction surface 32, and the response speed is reduced. It can be made faster.
  • it is sufficient to apply an asymmetric distribution of driving force to the center of gravity 14 b of the switching part 30.
  • the widths of the yokes 50 and 52 located on the left and right with respect to the three-dimensional center line 14 passing through the center of gravity 14 b are changed to change the spring coefficients of the yokes 50
  • the distribution of the left and right elastic forces applied from the yokes 50 and 52 is asymmetric.
  • the factor that changes the spring coefficient of the yoke is not limited to the width W of the yoke.
  • yoke 50 and The spring coefficient can be adjusted by changing the thickness U of 52.
  • the thickness U of the yoke 50 located in the left section 12a of the solid center line 14 is smaller than the thickness U of the yoke 52 located in the right section 12b.
  • the spring coefficient of the yoke 50 is set to be smaller than the spring coefficient of the yoke 52 as in the above example.
  • switch ring portion 3 0 moves in the same manner as described above, it is possible to increase the response speed (In the above, the yoke 5
  • the spring coefficient of each yoke 50 and 52 is changed, as shown in FIG. 21. It is also possible to change the spring coefficient by changing the materials of and 2.
  • the yoke 50 located in the left section 12a and the right section If the yoke 52 located at 1 2 b has a different spring coefficient, for example, a boron-doped silicon film, the spring coefficient can be changed by changing the boron concentration or doping other impurities. Using members that have changed . Of course, instead of the silicon film, it is also possible to employ as a material of a different yoke of coefficients I if and thin film of an organic resin.
  • the spring coefficients of the left and right yokes 50 and 52 can be changed. it can.
  • the yoke 52 located in the right section 12b is formed by two layers 52a and 52b of different materials.
  • the yoke 50 located in the section 12a is formed of one material.
  • the spring coefficient of the yokes 50 and 52 disposed on the left and right can be adjusted by such a method. As described above, it is possible to move the switching section 30 in an inclined state. Can be.
  • the distribution of the elastic force applied to the switching part 30 is made asymmetric by changing the spring coefficients of the yokes 50 and 52. It is also possible to make the distribution of the spring constant around the center of gravity 14 b of the switching part 30 asymmetrical.
  • FIG. 23 is a drawing corresponding to FIG. 17 described above.
  • one yoke 5 is provided in the section 12 a on the left side of the three-dimensional center line 14. 0 is arranged, and two blocks 5 2 are arranged in the right section 1 2b.
  • the number of the yokes 52 is larger in the right section 12b, and the elastic force is larger. Accordingly, the distribution of the left and right elastic forces becomes unbalanced, so that the switching unit 30 moves in a state of being inclined with respect to the direction of the first position (the first direction) as in the above-described example, and the air resistance is reduced. Can be reduced.
  • the yoke 52 is placed only in the right section 12b without the yoke in the left section 12a of the solid center line 14, and the switching section 30 is supported.
  • the switching part 30 is elastically supported only in the right section 12b, so that an asymmetric driving force with respect to the three-dimensional center line 14 is applied to the switching part 30.
  • the switching section 30 is inclined at the initial, intermediate and final stages of the movement, and the air resistance during the movement can be reduced, so that the optical switching element 1 having a high response speed can be provided. Can be.
  • the yokes are arranged only in the section 12b on one side of the three-dimensional center, but the number, shape, material, etc. of the yokes 50 or 52 are described above.
  • a single yoke supporting the sweep rate T suchingu unit 3 0 is an example, and the second 4 Figure provided in the partition 1 2 a of the opposite The switching portion 30 is supported by the single yoke 50 thus obtained.
  • an asymmetric driving force acts on the three-dimensional center line 14, and the switching unit 30 is inclined during the movement.
  • the electrode 62 and the electrode 6 are located at the second position where the switching portion 30 is close to the electrode 60 even when the switching portion 30 is close to the electrode 60.
  • An example is shown in which 0 becomes parallel, and the extraction plane 32 stops in a direction substantially the same as the direction A of the first position. However, it is also effective that the extraction plane 32 is inclined with respect to the first direction A at the second position.
  • the switching part 30 is tilted at the end of the movement, and the elastic force F g of the yoke 52 and the electrostatic force F s generated by the electrodes 62 and 60 balance and stop.
  • An example is shown. That is, in the yokes 50 and 52 of the optical switching element 1 of the present example, the spring coefficient of the yoke 50 of the left section 12a is smaller than that of the yoke 52 of the right section 12;
  • the electrostatic force Fs works, the electrode 62 of the switching section 30 reaches the vicinity of the electrode 60 in the left section 12a and stops at the stop 65, In the right partition 12b, the force is applied where the electrode 62 does not reach the vicinity of the electrode 60. Therefore, the switching part 30 is stopped in an inclined state.
  • the time required for the electrode 62 to move from the tilted state at the end of the movement to a position parallel to the electrode 60 can be omitted, and conversely, the initial movement can be reduced.
  • the time required for the electrode 62 to peel off while being inclined from the electrode 60 can be omitted.
  • the direction of the extraction surface 32 does not need to be parallel to the total reflection surface 22, and there is no problem in the performance as an optical switching element (spatial light modulator). Since the switching section 30 is already inclined when the movement starts, the air resistance can be reduced and the switching section 30 can move at high speed.
  • the switching unit 30 when the switching unit 30 is inclined at the second position, the air resistance during the movement can be reduced, and the time for changing the attitude of the switching unit 30 can be saved. Further, it is possible to provide an optical switching element which can further reduce the response time and operate at a very high speed.
  • the optical switching element 1 shown in FIG. 28 also stops at the second position in a state where the switching section 30 is inclined. For this reason, in the optical switching element of this example, the height of the left and right stops 65a and 65b supporting the switching section 30 at the second position is changed, and the switching section 3 is switched.
  • the movable interval of the switching part 30 is asymmetrical on the left and right of the solid center line 14 of 0.
  • the switching portion 30 is inclined at the second position, and when starting to move from this state, or The air resistance at the end of the movement that stops in this state can be reduced. Therefore, the moving time of the switching section 30 can be reduced, and an optical switching element having a high response speed can be provided.
  • the flange 65a or 65b prevents the electrode 62 of the switching portion from directly contacting the electrode 60 of the substrate. Each electrode contacts and short-circuits, or It also has a function to prevent the adhesive from being peeled off due to the suction.
  • FIG. 29 shows an optical switching element in which a stopper 65 c is provided only on one side of the electrode 60 of the substrate. 1 is indicated.
  • a stopper 65 c is provided only on one side of the electrode 60 of the substrate. 1 is indicated.
  • the position of the stopper 65 is changed to the position of the solid center line 14. Even by making the left and right asymmetric, the switching part 30 can be stopped in a state where the switching part 30 is inclined at the second position.
  • the electrode 62 and the electrode 60 may come into contact with each other.
  • the outer surface of the electrode 62 is covered with the insulating member layer 69. Coating is performed so that the electrodes 62 and 60 do not come into direct contact with each other.
  • an asymmetrical driving force is applied to the center of gravity of the switching section 30 to move the switching section 30 while tilting the yoke 50 or 52.
  • the distribution of the elastic force with respect to the center of gravity is controlled by changing the spring coefficient, arrangement, etc.
  • the center of gravity 14 b it is also possible to make the distribution of the driving force around it asymmetric ( Fig. 30 shows that a weight (balancer) 3 1 is added to the left section 12 a of the solid center line 14 of the switching part 30.
  • the optical switching element 1 in which the center of gravity 14b is moved to the left section 12a is shown in Fig. 1.
  • the center of gravity 14b passes through the body center 14a. Since the three-dimensional center line 14 is shifted to the left from the center line 14, the masses of the left and right sections 12a and 12b are different. Therefore, if the switching part 30 is arranged so as to move in the vertical direction, the difference between the masses of the left and right sections 12a and 12b is due to the difference in gravitational acceleration, that is, the difference in weight. Therefore, the left and right compartments 1 2a and 1 2b Even when the same elastic force F e and electrostatic force F s are applied, the left section 12a is heavy, so that the switching section 30 moves in an inclined manner as in the above-described embodiment.
  • the switching section 30 moves in an inclined state.
  • the switching part 30 moves in a tilted state at the beginning of movement, during movement, and at the end of movement, so that the fluid around the switching part 30 (mostly (It is of course possible to use an inert gas such as nitrogen as well as air). Therefore, it is possible to provide an optical switching element having a higher response speed as in the above embodiment.
  • the distribution of the electrostatic force F s is proportional to the electrode area and the voltage V, and inversely proportional to the square of the distance between the electrodes, as shown in Equation (2) above, so that for any of these elements, By making the distribution around the center of gravity 14 b asymmetric, an asymmetric electrostatic force can be obtained.
  • FIG. 31 is a drawing corresponding to FIG. 17 shown above, and shows the shape of the electrode 62 provided on the lower surface 37 of the switching part 30 on the left and right of the three-dimensional center line 14.
  • the balance is set so that an asymmetrical electrostatic force F s is obtained with respect to the center of gravity 14 b. That is, in the electrode 62 of the present example, the area of the left section 12a is substantially larger than the area of the right section 12b. It has a trapezoidal shape. Therefore, the electrostatic force generated in the left section 12a is larger than the electrostatic force generated in the right section 12b.
  • the switching unit 30 when moving the switching unit 30 from the first position to the second position using electrostatic force, the left-side section 12a having a large electrostatic force starts moving first, and as a result, the switch The notch 30 moves in an inclined state as in the above embodiment.
  • no electrostatic force acts on the optical switching element 1 of the present example, so that the elastic force of the yokes 50 and 52 is constant in the left and right sections. Then, the switching part 30 moves in a substantially parallel state.
  • the yokes 50 and 52 which also have the function of supplying power to the electrode 62, may be used. Electrical connection becomes difficult. For this reason, in this example, a connection electrode 62 t is provided along the edge of the bottom surface 37 of the switching portion 30 to electrically connect the electrode 62 and the yoke 52.
  • FIG. 32 shows a different example in which the area of the electrode 62 is changed in the left and right sections 12 a and 12 b of the solid center line 14.
  • the electrode 62 of the switching portion is almost T-shaped, and the left-side section 12a has a substantially rectangular electrode 62 slightly larger than the bottom surface 37.
  • a square electrode 62 b is provided in the right section 12 b at almost the center of the section 12 b on the right side with an area about half of that of the left electrode 62 a.
  • the switching section 30 can be driven in a tilted state as described above. Therefore, it is possible to provide an optical switching element having a low air resistance and a high response speed. Rice cake In addition, it is possible to change the shape of the electrode 60 on the substrate in place of the electrode 62 in the switching part, or to asymmetrical the shape of both electrodes 62 and 60 to make the distribution of electrostatic force asymmetric. In Fig.
  • the distance d between electrode 62 and electrode 60 is made asymmetric with respect to solid centerline 14.
  • the thickness of the electrode 62b of the right section 12b is larger than the thickness of the electrode 62a of the left section 12a. Therefore, when the switching section 30 is at the first position in the ON state, the distance d between the electrode 6 2b and the electrode 60 in the right section 12b is equal to the distance d between the left section 12a. It is narrower than. Therefore, when power is supplied to the electrodes 62 and 60, the electrostatic force of the right section 12b becomes larger than the electrostatic force of the left section 12a. Therefore, in the optical switching element of this example, when the switching section 30 moves from the first position to the second position, unlike the above-described embodiment, the section 12b on the right side The movement is started in a state of being separated from the side and inclined.
  • the right electrode 62b which has a large thickness, first contacts the electrode 60, and then the left electrode 62a contacts the electrode 60 and stops. I do. For this reason, the switching unit 30 stops at an angle different from that at the start of the movement. Further, when moving from the second position to the first position, the electrostatic force is cut off, so that the switching portion 30 moves by the elastic force of the yokes 50 and 52. At this time, since the switching part 30 is in the inclined state at the second position, the switching part 30 remains inclined during the initial movement and during the movement.
  • the extraction surface 32 corresponds to the total reflection surface 22 of the light guide 20. For this reason, the direction of the extraction surface 32 is changed from the inclined state to the direction in which Is changed to the ON state.
  • the optical switching element 1 of the present example is in a tilted state at the beginning of the movement, during the movement, and at the end of the movement, and stops at the second position in the tilted state. Therefore, the moving speed is high, the ON-OFF moving period is short, and an optical switching element with a high response speed can be provided.
  • the thickness of the electrode 62 is changed on the left and right so that the electrode 62 hits the electrode 60 and stops. For this reason, if the electrode 62 and the electrode 60 are in direct contact with each other, there is a problem such as a short circuit. Therefore, the electrode 62 is coated with an insulating member 69 to prevent direct contact.
  • FIG. 34 shows an example in which the thickness of the electrode 60 of the substrate is changed instead of the electrode 62 of the switching portion.
  • the thickness of the electrode 6 Ob of the right section 12 b is made larger than the thickness of the electrode 60 a of the left section 12 a of the solid center line 14. Therefore, as in the example described with reference to FIG. 16, when the switching part 30 is at the first position, the distance d between the electrode 60 and the electrode 62 in the right section 12 b is d. Is shorter than the left compartment 12a, and a larger electrostatic force is generated. For this reason, the switching unit 30 starts to move in a tilted manner as in the above-described example.
  • the switching section 30 stops at the second position, as shown in FIG. 34, since the height of the electrode 60 is different between the left and right, the switching section 30 is attached to this electrode 60. Stops in a tilted state. For this reason, when moving from the second position to the first position, the switching unit 30 also moves in an inclined state in this example.
  • the distribution of the electrostatic force is made asymmetric by changing the area or interval of the electrodes 62 and 60, but the switching part 30 is further changed by changing the evening when the electrostatic force is applied.
  • Driving force with an asymmetric distribution can be applied to the center of gravity of.
  • the electrodes 62 of the switching part 30 are moved to the left and right so that the evening of applying electrostatic force can be changed in the left and right sections 12a and 12b of the solid center line 14.
  • the optical switching element 1 divided into a and 62b is shown.
  • the electrode 62 is divided into two electrodes 62 a and 62 b along the solid centerline 14, and the electrodes 62 a and 62 b are connected to the solid centerline 14 here. It has a symmetrical shape. Therefore, by supplying power to the electrodes 62a and 42b at different timings, it is possible to apply a driving force having an asymmetric distribution to the solid centerline 14 to the switching section 30. it can.
  • FIG. 36 and FIG. 37 show the operation of the optical switching element 1 of the present example.
  • FIG. 38 shows the operation (control) of the power supply units 61 a and 61 b for supplying power to the electrodes 62 a and 62 b using timing charts.
  • the yoke of the drive unit 40 is an extraction surface 32 and a total reflection surface 32 by 50 and 52.
  • the switch of the power supply section 61a is turned on, and when power is supplied to the electrode 62a of the left section 12a, electrostatic force acts on the left section 12a. I do.
  • the electrostatic force reaches a suitable force at time t12,
  • the switching part 30 moves in an inclined state. Then, the extraction surface 32 is inclined with respect to the total reflection surface 22 to form a gap (space) 17 and turn off. Since the space 17 gradually increases in size, the air 16 flows in smoothly, and the movement of the switching section 30 proceeds promptly with little air resistance.
  • Block 1 on the right side at time t 3 3 delayed from time t 3 1 by time T 10
  • the electrostatic force acts on the switching unit 30 also in the right section 12 b.
  • the switching part 30 is inclined at an appropriate angle, and the peeling force acts on the right part, and the second part is maintained in the state where the angle is maintained. Move towards the position. Even during this movement, the switching section 30 is inclined with respect to the moving direction, so that it can move at high speed with little air resistance.
  • the electrostatic force required to obtain a predetermined response speed may be small, there is also an effect that power consumption required to drive the optical switching element 1 can be reduced.
  • the switching section 30 is changed from the inclined state to a substantially parallel state, and the air between the electrodes 60 and 62 is also discharged smoothly.
  • the switching unit 30 is inclined at the beginning of movement, during movement, and at the end of movement, so that the response speed can be further improved. It is also possible to reduce the driving power of the optical switching element.Even when the switching unit 30 moves from the second position to the first position, the electrode of the right section 12 When the power supply to 6b is cut off, the electrostatic force in the right section 12b disappears, so that the switching section 30 starts to move with the switching section 30 inclined by the elastic force of the yoke 52. You. Then, at time t 3 5 which is later than time T 1 1, the left section 1
  • the switching unit 30 moves from the second position to the first position while being inclined at an appropriate angle. Then, at time t36, the switching unit 30 reaches the first position, and the extraction surface 32 is brought into a state of being in parallel with and in close contact with the total reflection surface 22, and the optical switching element 1 of this example is The light enters an ON state in which incident light is modulated as output light and output.
  • the optical switching element 1 described in the present example and the above-described embodiment operates at high speed in a fluid such as air or an inert gas from on to off and from off to on. It is possible to realize a spatial light modulator with a high response speed or low power consumption without vacuum.
  • FIG. 39 and FIG. 40 show examples in which the electrode 60 of the substrate is divided into left and right.
  • the timing and the manner of supplying power to the left and right divided electrodes 60a and 60b by changing the timing and the voltage V are shown using the timing chart of FIG.
  • the electrode 60 is connected to the electrodes 6 a of the left and right sections 12 a and 12 b of the three-dimensional center line 14.
  • the power supply unit 61 includes a power supply unit 61a connected to the left electrode 60a and a power supply unit 61b connected to the right electrode 60b.
  • a control unit 61c is provided which can control the voltage supplied from these power supply units 6la and 6lb to the respective electrodes 60a and 60b.
  • the optical switching element 1 of this example is also connected to the electrodes 62 and 60 similarly to the above example. In a state where no force is supplied, the switching portion 30 is in the first position by the elastic force of the yokes 50 and 52 and is in the ON state.
  • power supply unit 61a supplies power of voltage V1 to left electrode 60a
  • power supply unit 61b supplies power of voltage V2 to right electrode 60b. Is done.
  • the switching section 30 A larger electrostatic force acts on the left section 12a than on the right section 12b.
  • an asymmetric driving force acts on the center of gravity 14b of the switching section 30 on the left and right, so that the switching section 30 starts moving while rotating, as shown in Fig. 39 (b).
  • the extraction plane 32 starts to peel off from the left side of the section 12a while tilting. Therefore, also in the optical switching element 1 of this example, the air resistance is small and the switching section 30 can be moved smoothly as in the above-described embodiments.
  • the control unit 61c supplies power of the same voltage V3 to the left and right electrodes 60a and 60b from the power supply units 61a and 61b. Then, as shown in FIG. 40 (a), the switching unit 30 moves to the second position with the switching unit 30 rotated to an appropriate angle. Then, as shown in FIG. 40 (b), the electrode 62 hits the stop 65e and stops at the second position. Even in the last stage of the movement, the switching unit 30 rotates from the inclined state to the parallel state as in the above-described embodiments, and quickly exhausts and stops the air in the space therebetween.
  • the electrodes 60a and 60b of the substrate are processed into a non-flat shape in which the portion 65e to be a toe protrudes.
  • Part electrode 62 is the substrate electrode 60a or 60b So that it does not stick to it.
  • the switching section 30 when the switching section 30 is moved from the second position to the first position, the power supply to the right base electrode 60b is cut off at time t43 as shown in FIG. However, the power to the left base electrode 60a can be gradually reduced. As a result, in the right section 12b, the switching portion 30 starts to move quickly due to the elastic force of the yoke 52, whereas in the left section 12a, the base electrode An electrostatic force acts between 60a and the electrode 62, and the force gradually decreases. Therefore, the switching section 30 rotates to an appropriate angle even when starting to move from the second position, and moves toward the first position after being inclined. Therefore, when moving from the second position to the first position, the air resistance is reduced, and the switching section 30 can be moved at a high speed.
  • the optical switching element 1 described above has a function as a spatial light modulator that can control the on / off of the incident light, and it is of course possible to use these optical switching elements 1 alone, In addition, by arranging them in an array, they can be applied not only to image display devices but also to various other fields such as optical communication, optical operation and optical recording. By tilting the switching unit from the ON state when moving the switching unit, it is possible to significantly reduce the resistance received from the fluid around the switching unit. For this reason, the spatial light modulator of the present invention can be used in an atmosphere such as ordinary air or inert gas, and can operate at high speed, has a fast response speed, and has a highly reliable space. An optical modulation device can be obtained. Conversely, since the resistance of the fluid can be reduced, power consumption for driving the spatial light modulator can be reduced.
  • attitude control is performed by an optical switch using an evanescent wave.
  • the switching element not only the switching element, but also various types such as changing the interference characteristics by moving the plane element that changes to the extraction surface of the switching part to modulate the incident light, changing the polarization direction or the phase of the reflected light, etc. It can be applied to a spatial light modulator.
  • the description is based on a combination of a support member (yoke or panel member) that elastically supports the drive unit and an electrostatic drive unit.
  • a piezo element or the like is used to drive the switching unit. It is also possible to use this piezoelectric element as a drive source.
  • FIG. 42 shows an example in which a piezo element 99 is used.
  • a reflection type projector 36 including a plurality of reflectors is employed as the optical switching section 30 instead of the microprism.
  • the evanescent light caught by the extraction surface 32 in the ON state is scattered by the emitting body 36 toward the light guide portion 20 at an appropriate angle, and an image that can be viewed at a wide viewing angle can be formed.
  • the electrostrictive force of the piezo element 99 is used instead of the electrostatic force as a driving section for driving the switching section 30.
  • the piezo element 990 of this example is a bimorph type in which two layers having different polarization directions are stacked, and when power is applied, the piezo element 990 extends from a curved state to a linear state, pulls the yoke 50 as a panel member, and performs optical switching. Element 1 can be turned off.
  • the optical switching device 30 when no electric power is applied, the optical switching device 30 becomes curved with elastic force, and presses the optical switching portion 30 toward the light guide portion 20 with an appropriate force together with the elasticity of the yoke 50, and contrasts. This makes it possible to realize an optical switching element with high performance.
  • the optical switching element 1 includes a light guide section 20 and a switch. Since the switching unit 30 and the driving unit 40 form a hierarchical structure, the optical switching unit 30 or the driving unit 40 according to each of the above-described embodiments can be freely combined to suit the application.
  • the optical switching element 1 can be configured. Further, the optical switching element of the present invention is not limited to an image display device, but has a very wide application range, such as a linear light valve for an optical printer and a spatial light modulator for a three-dimensional hologram memory.
  • the optical switching element according to the present invention is applicable not only to the field where the optical switching element using liquid crystal is applied, but also to the field where the operating speed and the light intensity are insufficient in the optical switching element using liquid crystal and the applied equipment.
  • the optical switching element of the present invention can be finely processed, it can be made smaller and thinner than the conventional liquid crystal optical switching element, and can be highly integrated.
  • the optical switching element of the present invention provides an evanescent light leaking from the total reflection surface by bringing the extraction surface into contact with the light guide portion having the total reflection surface capable of totally reflecting and transmitting light.
  • An image can be formed by capturing light, and the extracted light is optically switched by laminating the light guide section, the reflective optical switching section, and the drive section in this order in the emission direction.
  • a bright light switching element that reflects light almost perpendicular to the direction of the light guide section and has no loss of light in the drive section can be provided.
  • the position of the optical switching section is determined by the driving section, and the installation space for the panel member, which is an elastic body, is provided, so that the light guide section is a flat member, and the optical switching section is also provided.
  • the area of the extraction surface can be increased. Therefore, it is possible to provide a bright and high-contrast optical switching element having a large aperture ratio.
  • the optical switching element of the present invention it is possible to provide an image display device capable of obtaining a high-quality image. Can be provided.
  • the driving voltage can be reduced without sacrificing the characteristics of the switching portion.
  • the drive voltage can be reduced to a fraction of an order of magnitude less than an order of magnitude or lower. Therefore, it is possible to provide a spatial light modulator that can move the switching section at a high speed, has a short response time, and has a fast response speed, and can be driven at a low voltage, and a control method thereof.
  • the switching element or the image display device can be directly driven by the semiconductor control device. Therefore, it is possible to greatly reduce the cost of these switching elements or image display devices. Further, since the driving voltage can be reduced, the power consumption of the switching element or the image display device can be significantly reduced. Therefore, according to the present invention, it is possible to drive a switching element or an image display device with limited electric power such as a battery by using an evanescent wave having excellent high-speed response characteristics. Therefore, the present invention is very useful for applying an optical switching element using an evanescent wave that modulates light by moving the position of a switching section in various fields in the future.
  • the resistance received from fluid such as air or inert gas existing around the switching part is reduced. can do.
  • the resistance when moving the switching section is reduced, and the switching section can be moved at a higher speed by using electrostatic force, etc., and a spatial light modulator having a short response time and a fast response speed can be provided. Can be provided.
  • the drag is reduced, it is possible to further reduce the power consumption.
  • an optical switching element having a high response speed under general environmental conditions such as in the air can be provided.
  • the optical switching element of the present invention can operate at high speed and obtain a high contrast, it can be used for an image display device, a linear light valve of an optical printer, a spatial light modulator for a three-dimensional hologram memory, and the like. Its application range is very widely available.
  • the optical switching device of the present invention is applied not only to the field where the conventional optical switching device using liquid crystal is applied, but also to the field where the operating speed and light intensity of the optical switching device using liquid crystal are insufficient and the applied equipment. Switching elements are particularly suitable.

Description

明 細 書 光スィ ツチング素子および画像表示装置 技術分野
本発明は、 光通信、 光演算、 光記憶装置、 光プリ ンター、 画像表 示装置等に使用される光スィ ツチング素子 (ライ トバルブ) に関す るものであり、 特に画像表示装置に適した光スィ ツチング素子およ び画像表示装置に関するものである。 背景技術
従来の光スィ ツチング素子は液晶を用いたものが知られている。 第 4 3図にその概略構成を示すように、 従来の光スイ ッチング素子 9 0 0は、 偏光板 9 0 1および 9 0 8、 ガラス板 9 0 2および 9 0 3、 透明電極 9 0 4および 9 0 5、 液晶 9 0 6および 9 0 7より構 成され、 透明電極間に電圧を印加することによ り液晶分子の方向を 変えて偏光面を回転させ光スィ ツチングを行うものであった。 そし て、 従来の画像表示装置は、 このような光スイ ッチング素子 (液晶 セル) を二次元に並べた液晶パネルを用い、 階調表現は印加電圧を 調整することによ り液晶分子の向く方向をコン トロールするもので あった。
しかしながら、 液晶は高速応答特性が悪く、 たかだか数ミ リ秒程 度の応答速度でしか動作しない。 このため高速応答を要求される、 光通信、 光演算、 ホログラムメモリー等の光記憶装置、 光プリ ンタ —等へ液晶を用いた光スイ ッチング素子を適用することは難しかつ た。 また、 液晶を用いた光スイ ッチング素子では、 偏光板により光 の利用効率が低下してしまう という問題もあった。 また、 画像表示装置においては、 近年、 いっそう高品位な画像品 質が要求されており、 液晶を用いた光スイ ッチング素子よりさらに 階調表現が正確な表示を行える光スィ ツチング素子が求められてい る。
そこで、 本発明は、 光のロスが少なく、 高速応答が可能な光スィ ツチング素子を提供することを目的としている。 さらに、 均質なコ ン トラス トが得られ、 画質の良い表示が得られる光スィ ツチング素 子を提供することを目的としている。 発明の開示
このため、 本発明においては、 光を全反射して伝達可能な導光部 に対しスィ ツチング部の透光性の抽出面を接触させてエバネセン ト 光を抽出し、 スィ ツチング部の 1波長程度あるいはそれ以下の微小 な動きによって、 光を高速でオンオフ制御可能な光スィ ツチング素 子を用い、 さらに、 スイ ッチング部を反射型にして、 導光部、 光ス イ ッチング部およびこのスイ ッチング部を駆動する駆動手段を光の 照射方向からこの順番に配置して階層構造化している。 そして、 出 射される光量が大きく、 その出射される光のロスは少なく、 さらに、 高速応答が可能な光スィ ツチング素子を実現している。 すなわち、 本発明の光スイ ッチング素子は、 光を全反射して伝達可能な全反射 面を備えた導光部と、 この全反射面から漏出したエバネセン ト光を 抽出可能な透光性の抽出面を備え、 抽出した光を導光部の方向に反 射可能なスィ ツチング部と、 このスィ ッチング部を抽出面がエバネ セン ト光を抽出可能な抽出距離以下の第 1の位置、 および抽出距離 以上に離れた第 2の位置に移動可能な駆動手段とを有し、 導光部、 スィ ッチング部および駆動手段が光の出射方向に対しこの順番で配 置されている。 本発明の光スイ ッチング素子は、 導光部、 スイ ッチング部および それを駆動する駆動手段をこの順番で積み重ねることができ、 光ス ィ ツチング素子を導光部、 スィ ツチング部およびその駆動手段の 各々の部分の機能を備えたほぼ独立した層構造のパーヅを積み重ね た積層構成、 すなわち、 階層構造にすることができる。 従って、 各々の部分を最適化することが容易である。 特に、 本発明の光スィ ツチング素子は、 スィ ツチング部によって光が導光部に向かって反 射され、 駆動手段は光が透過しない形態となっている。 従って、 駆 動手段は光学的な考慮をはらわずに最適化することが可能である。 このため、 スイ ッチング部を駆動手段の側からサポートすること で、 導光部を光スイ ッチング部の側に構造物が必要なくなり、 単純 な平面のパネル構造にできる。 スィ ツチング部を支持する部分を設 けなければ、 導光部の全反射側のすべての面積を光を抽出する面、 すなわち、 スィ ツチング部が接触する面として使用することができ るので、 光が出射する開口面積が大きく、 開口率の高い、 光量の大 きな光スイ ッチング素子を実現できる。 また、 パネル構造であれば、 全反射面に対峙する面を、 抽出された光が出射する出射面にするこ とができる。 さらに、 駆動手段は、 駆動手段を制御する I C基板上 に形成することも可能であり、 画面制御用の I Cチップと一体化し た光スィ ツチング素子を実現することも可能である。
このような本発明の光スィ ツチング素子は、 それ 1つまたは複数 組み合わせて画素を表示することが可能であり、 複数の光スィ ツチ ング素子を 2次元的に配置し、 さらに、 導光部は白色または 3原色 の光が伝達可能なようにすることによ り画像表示装置を構成するこ とができる。 この画像表示装置は、 高速で解像度の高い画像表示が 可能であり、 さらに、 画像表示装置を階層構造化できるので、 低コ ス トで提供することができる。 また、 I Cチップと一体化した画像 表示装置とすることももちろん可能となる。
反射型のスィ ツチング部とするために、 抽出された光を出射する 出射体として、 抽出面によって抽出された光を反射するマイクロプ リズムまたは光散乱性のものを用いることができ、 出射光の方向を 制御して導光部の全反射面に対して垂直方向に近づけることができ る。
駆動手段には、 スィ ツチング部を弾性的に支持する支持部材と、 スイ ッチング部を少なく とも 1組の電極の間で働く静電力によって 駆動する静電駆動手段とを設けることによりスイ ッチング部を第 1 および第 2の位置に動かすことができる。 支持部材は、 静電駆動手 段による静電力が働いていないときにスィ ツチング部を第 1の位置 で導光部に向かって加圧することが望ましい。 静電駆動手段は、 電 力を用いて制御が容易であるが電圧あるいは電流の変動に伴って駆 動力が変化する。 これに対し、 弾性体を用いた駆動力は機械的で安 定している。 従って、 スイ ッチング部の抽出面を導光部の全反射面 に接近させて光スィ ツチング素子をオン状態にする駆動力として安 定した弾性体を用いた支持部材を用い、 適当な距離を開けることに よって光をオフ状態にする駆動力として制御が容易な電力を用いた 静電駆動手段を採用することにより、 安定した光量が確保でき、 制 御能力の高い光スィ ツチング素子を提供することができる。
支持部材は、 スイ ッチング部が第 1の位置になったときに橈んだ 状態が残るように設定することが望ましい。 橈んだ状態を残すこと により、 オン状態では、 導光部の全反射面に対し抽出面が支持部材 の弾性力によって加圧された状態となるので抽出面が全反射面に密 着され、 オンのときは明る く、 オン ' オフのコン トラス トの高い光 スイ ッチング素子を提供することができる。 また、 支持部材に撓み を持たせることによ り、 振動、 温度変化あるいはその他の経時変化 による導光部とスィ ツチング部の間隔、 あるいはスィ ツチング部と 駆動手段の間隔などの変化したときに、 それを吸収することが可能 となる。
さらに、 スイ ッチング部はスぺーサを介して支持部材から支持す ることが望ましく、 このスぺ一ザには、 電極の距離を狭くする機能 と、 支持部材が弾性変形するスペースを確保する機能とを持たせる ことができる。 このようなスぺーサとしては、 駆動手段を下として 見たときに断面が T字形あるいは逆台形状などのスぺ一ザがある。 電極間が短くなれば、 駆動電圧を低くすることができ、 高速動作が 可能となる。
また、 このような形状のスぺーサであれば、 支持部材として、 ス ィ ツチング部の境界近傍の支柱部で一端が支持され、 他端がスィ ッ チング部に繋がった板状のパネ部材を採用でき、 パネ部材の有効長 が長く とれ、 スイ ッチング部を加圧する力を調整することが可能で ある。 従って、 静電駆動手段の駆動力が小さ く ともオンオフ動作が 確実に行える弾性力が得られるように調整できる。 また、 T字形あ るいは逆台形状のスぺ一サを採用することにより、 スイ ッチング部 の面積を割かずにパネ部材の有効長を確保できるので、 光が出射さ れる開口率が高く、 画像表示装置を構成したときに隣接する光スィ ツチング素子同士がほとんど繋がったシ一ムレスとなる光スィ ツチ ング素子を提供することができる。
パネ部材は、 コィルバネなどの任意な形状のものを用いることが できる。 しかしながら、 パネ部材は、 スィ ツチング部 (素子) の境 界近傍の支柱部で一端が支持され、 他端が光スィ ツチング部に繋が つた板状のパネを採用することによ り、 パネ部材により光スイ ッチ ング部の位置決めを行うことができる。 この際、 パネ部材には、 境 界近傍にスリ ッ トまたは穴が形成された板状のパネを採用すること により、 隣接する光スイ ッチング部に対する影響を防止でき、 また、 パネ部材の弾性係数をスィ ツチング部を駆動するのに適当な値に設 定することができる。
このような板状のパネは、 境界近傍に設けられた支柱に一端が接 続され、 光スイ ッチング部から放射状に延びた幅の狭いパネ部材と なる。 このようなパネ部材に対し、 電極をスイ ッチング部から放射 状に広がっている構造にすることによ り、 電極面積を広くできるの で、 低電圧で高い駆動力が得られ、 駆動電圧を下げることができる ( また、 パネ部材は、 境界に沿って延びた螺旋状の部分を備えた板状 のパネとすることによ り、 面積を増やさずにパネの有効長を長くで きるので、 光スイ ッチング部を駆動するための電圧を下げ、 消費電 力を低減することができる。 さらに、 二重螺旋構造を用いることも できる。 また、 パネの屈曲部 (両支点の中間部) を、 他の部分より 薄くすることにより弾性係数を下げてパネの有効長を長く したのと 同じ効果を得ることも可能である。 このような板パネの支持部は、 境界近傍に規則的に配置され、 複数の光スィ ツチング素子を用いて 画像表示装置を構成したときに隣接するスィ ツチング素子と共用す るように構成することができる。
支柱部は光スィ ツチング素子同士の境界に沿って長く延びた突起 のようなものであっても良いが、 境界に沿って断続的に存在する支 柱を採用することにより、 支持部の占めるスペースを減らすことが 可能であり、 そのスペースを電極あるいは他のスペースとして用い ることができる。 また、 支柱はランダムに配置することも可能であ るが、 所定の規則に沿って配置することによ りシンメ ト リで組み立 てやすく性能の安定した光スイ ッチング素子および画像表示装置を 提供することができる。
さらに、 パネ部材としては、 ボロン ド一プされたシリコン薄膜の ような導電性のある薄膜部材を採用することができ、 静電駆動手段 の電極を兼ねた構造にすることが可能である。
一方、 導光部とパネ部材との間に補助支柱部を設け、 さらに、 バ ネ部材に上記のようなス リ ッ トあるいは穴などを設けずに、 スイ ツ チング部の側をほぼ密封できる板状のパネにして、 スイ ッチング部 を駆動手段よ り負圧にすることができる。 これにより、 外気圧によ つてパネ部材が補助支柱部に押しつけられ、 スィ ツチング部との隙 間を均等に保つことができる。 また、 圧力差によってオンのときに スイ ッチング部が導光部に密着される。 従って、 安定した動作が行 われ、 コン トラス トの高い光スイ ッチング素子を提供することがで ぎる。
また、 駆動手段を密封した空間に設置し、 スイ ッチング部を有す る光スィ ツチング素子の内部が密封された空間にすると、 その圧力 を低くするか、 または、 不活性ガス等の気体を空気と置換し内部の 圧力を低くできる。 これによ り、 スイ ッチング動作時の気体の流動 抵抗を低くできるので、 気体によるダンパー効果などの摩擦が生じ なくなり、 駆動電圧を下げ、 駆動速度を上げ、 さらにオンオフの切 り替えを高速で行うことができる。 よって、 高速応答が可能な光ス イ ッチング素子の提供が可能となる。
スィ ツチング部の駆動制御について
このような弾性力と静電力を組み合わせてスイ ッチング部を駆動 する光スィ ツチング素子においては、 できるだけ低い駆動電圧で安 定した動作を行わせることが重要な課題である。
スイ ッチング部が光をオンオフするために移動する距離を d、 駆 動電圧を V dとすると、 その過程で作用する弾性力 F gと静電力 F Sは次のように表すことができる。 F g = K χ ( 1 )
F s = C x V d 2 / ( d - x ) 2 ( 2 )
ここで xはスイ ッチング部の移動距離であり、 Kは支持部材の弾性 係数、 Cは電極の面積に比例し、 さらに誘電率などを加味した定数 である。 スイ ッチング部の移動位置は、 弾性力 F gと静電力 F sが つりあつた安定位置となるので、 駆動電圧 V dを下げるためには弾 性力 F gを下げ、 また、 移動距離 dを短くすることが望ましい。 し かしながら、 弾性係数 Kを下げるとスィ ツチング部の移動速度が低 下して応答速度が低くなる。 また、 移動距離 Xを短くするとオンォ フのコン トラス トが得られにく くなる。 したがって、 駆動電圧 V d を下げることが難しい。 さらに、 弾性力 F gと静電力 F sがつりあ つた安定位置がオンオフの位置であると、 スイ ッチング部の姿勢が 安定しない可能性があり光の変調能力が劣化する可能性がある。 ェ パネセン ト波を利用したスィ ツチング素子では全反射面と抽出面と の間に微少な隙間が生じると、 抽出できる光の量が減少する。
そこで、 以下では、 移動距離 dあるいは弾性定数 Kを一定に保つ た条件でも駆動電圧 V dを下げることができ、 さらに、 スィ ッチン グ部の姿勢を安定して制御し、 高速で、 光のコン トラス トが大きく . さらに低電圧で駆動できるようにしている。
このため、 本発明においては、 スイ ッチング部を駆動する電極間 に駆動電圧と同極性で一定のバイァス電圧を印加することにより、 スイ ッチング部を駆動する駆動電圧を低減している。 さらに、 それ と共に、 バイァス電圧が印加された状態でもスィ ツチング部をオン オフする位置、 特にオンする位置で安定して姿勢が保持できるよう に、 オンの位置ではバイアス電圧による力よ り も大きな保持力が確 保できるようにしている。 すなわち、 静電駆動手段に、 スィ ッチン グ部を駆動する駆動電圧と、 この駆動電圧と同極性で、 静電力また は弾性力により少なく とも第 1の位置でスイ ッチング部を安定して 保持する保持力を確保可能な一定のバイァス電圧とを印加可能な駆 動制御手段を設けるようにしている。 また、 本発明の空間光変調装 置の制御方法は、 静電駆動手段に対し、 スイ ッチング部を駆動する 駆動電圧と、 この駆動電圧と同極性で、 静電力または弾性力により 少なく とも第 1の位置にスイ ッチング部を安定して保持する保持力 を確保可能な一定のバイァス電圧とを印加する制御工程を有するこ とを特徴としている。
一定のバイアス電圧を印加しておく ことにより、 スィ ツチング部 を駆動する際に印可する駆動電圧は低くできるので駆動制御手段の 電源電圧を下げることができる。 したがって、 駆動制御手段を構成 する制御回路などの耐電圧を下げて構成を簡素化でき、 さらに、 消 費電力も下げることができる。 また、 第 1の位置にスイ ッチング部 を保持可能な十分な保持力を確保することによ り、 バイアス電圧を 印加した状態でスィ ツチング部の姿勢を安定させることができる。 このため、 スィ ツチング部が第 1の位置にあるときでも継続してバ ィァス電圧を印加することが可能であり、 バイァス電圧の制御が不 要または簡略になる。
さらに、 第 1 または第 2の位置のうち、 駆動電圧によって保持力 が得られる位置に、 電極の間に最小ギャップを確保するス ト ッパー を設け、 第 1 または第 2の位置にスイ ッチング部があるときにバイ ァス電圧による静電力が無限に大き くならず一定の範囲に止るよう にすると共に、 ス ト ッパ一の位置では支持部材の弾性力に達しない 程度のバイアス電圧とすることが望ましい。 このようにすれば、 駆 動電圧のオンオフのみでスィ ツチング部を動かすことができるので. 常に一定のバイアス電圧を印加することが可能となり、 バイアス電 圧の制御が不要となる。 一方、 周期的に支持部材の第 1 または第 2の位置での弾性力より も小さくなるようにバイアス電圧を変化させても良い。 例えば、 動 作クロックに同期してバイアス電圧を変化させることにより、 動作 クロックのタイ ミ ングで第 1 または第 2の位置から支持部材の弾性 力によってスイ ッチング部を動かすことができる。 したがって、 駆 動電圧と連動してバイァス電圧を制御しなくても、 バイアス電圧を 一定のタイ ミ ングで変動させるだけで、 スィ ツチング部に駆動電圧 の変化に応答した動作を行わせることができる。 このため、 バイァ ス電圧の制御は容易である。 さらに、 バイアス電圧を支持部材の弹 性力以上にすることも可能となるので、 駆動電圧をさらに低減する ことができる。
また、 電極の間に最小ギャップを確保するス ト ッパーを設けてお く ことによりバイアス電圧による静電力を一定の範囲に収められる ので、 バイアス電圧を周期的にス ト ッパーの位置で支持部材の弾性 力に達しない値にすることによってスィ ツチング部を駆動電圧に応 答させることができる。 したがって、 バイアス電圧の変動幅を抑え ることが可能となり、 バイァス電圧の制御にかかる回路を簡易にで き、 また、 消費電力を下げることができる。
スイ ッチング部を第 1の位置に保持する保持力は、 支持部材によ りスィ ツチング部が第 2の位置から第 1の位置に移動するようにし、 支持部材の弾性力によって第 1の位置に保持するようにして得るこ とができる。 すなわち、 第 1の位置をバイアス電圧による静電力と 支持部材の弾性力が平衡になる安定点ではなく、 支持部材の弾性力 が静電力よりも大き くなるようにすることによ り安定した保持力を 得ることができる。 また、 静電力は式 ( 2 ) に示したように距離の 二乗に反比例して増加する。 このため、 支持部材が適当に変位した 弾性力が働く位置を第 1の位置とすることによ り、 支持部材の弾性 力と 1つまたは複数の位置で安定点のある駆動電圧であっても、 第 1の位置から第 2の位置では安定点のない駆動電圧であれば、 支持 部材の弹性力との間で安定点を持たない駆動電圧より低い電圧によ つてスィ ツチング部を安定して駆動することができる。 したがって、 バイアス電圧を設定しない場合でも駆動電圧を低減できる。 もちろ ん、 バイアス電圧との組み合わせにより、 さらに駆動電圧を低減で きる。
また、 支持部材を静電力が働かないときにスィ ツチング部を第 1 および第 2の位置の略中間で支持可能なものとし、 静電駆動手段と してスイ ッチング部を第 1の位置に保持する第 1の電極ペアと、 第 2の位置に保持する第 2の電極ペアを設け交互に駆動電圧を印加す ることによ り、 それそれの位置で静電力によって保持力を得ること ができる。 さらに、 第 1および第 2の位置の間隔は変えずに、 それ それの電極ペアで動かす距離を半減することができるので、 式 ( 2 ) に示したように静電力 F sの働く間隔を実質的に半分に縮め、 駆動電圧を大幅に低減することができる。 したがって、 バイアス電 圧を設定しない場合でも駆動電圧を低減できる。 もちろん、 バイァ ス電圧と組み合わせることによ り、 さらに駆動電圧を低減できる。 このように、 本発明の光スイ ッチング素子およびその制御方法で は、 スイ ッチング部の第 1および第 2の位置の間隔を変えずに、 ま た、 支持部材の弾性係数も変えずに駆動電圧を低減することが可能 である。 したがって、 高速動作が可能で、 コ ン ト ラス トの大きな光 スィ ツチング素子を低電圧で駆動することが可能となる。 このよう な制御方法は、 本発明に限らず、 光を制御できるスイ ッチング要素 を機械的に動かして高速で変調できるすべての空間光変調装置にも 適用できる。 そして、 低コス トで、 消費電力も少ない高速動作可能 な空間光変調装置を提供できる。 スィ ツチング部の姿勢制御について
エバネセン ト光を利用した光スィ ツチング素子において、 動作速 度をさらに高速にすることは常に重要な課題である。 そこで、 以下 では、 さらに、 平面的な抽出面を要素として備えたスイ ッチング部 を移動制御して光を変調する空間光変調装置である光スイ ッチング 素子の動作速度をさらに高速化するようにしている。
本願発明者らが抽出面などの平面的な要素を備えた光スィ ッチン グ素子の動作を研究したところ、 微少な距離を高速で移動しながら 行われるスイ ツチング動作においては、 スィ ッチング部の抽出面と 全反射面との間に封入される空気あるいは不活性ガスなどの流体の 抵抗、 あるいは、 スイ ッチング部が移動する際の抵抗が無視できな ぃ抗力となっており、 このような流体の抵抗を抑制することにより 動作速度を大幅に向上できることを見出した。 このような流体抵抗 を低減するには、 上述した 1つの形態に示したように、 真空中で光 スイ ッチング素子を動作させれば良いが、 スイ ッチング部あるいは 駆動部の周辺環境を真空にするためには耐圧容器などの付加部材が 必要となり大型化およびコス ト高の原因となる。 また、 製造過程に おいても、 真空にするための工程が必要である。 さらに、 真空雰囲 気でのみ使用可能な光スィ ツチング素子では、 使用中に真空雰囲気 が破られると一気に性能が低下したり、 あるいは動作不能になる恐 れがあるので信頼性についても問題がある。
そこで、 以下では、 流体の抵抗をスイ ッチング部の動き (姿勢) によって低減している。 すなわち、 駆動手段により、 スイ ッチング 部の抽出面の向きを、 移動初期、 移動中または移動末期に、 第 1の 位置で抽出面が向く第 1の方向に対し傾けることを特徴としている まず、 スイ ッチング部を移動初期に傾けることにより、 スィ ッチン グ部が移動を開始するときにスィ ツチング部が離脱するために生じ —る空間にスムーズに流体を流入させることができるので流体による 抵抗を削減することができる。 また'、 移動中にスイ ッチング部を傾 けることによ り、 平面要素が進行方向に対し傾くのでスイ ッチング 部が移動する際に受ける流体の抵抗を削減することができる。 そし て、 移動末期にスイ ッチング部を傾けることによ り、 スイ ッチング 部が停止する際に閉じる空間から流体をスムーズに排出することが できるので、 流体による抵抗を削減することができる。
このようにスィ ツチング部の移動初期、 移動中および移動末期の 少なく ともいずれかに平面要素の向きを傾けることにより流体の抵 抗を削減することができ、 移動初期、 移動中および移動末期の全て あるいはいずれか 2つの状態で傾けることによ り、 さらに流体によ る抵抗を削減.することができる。 スイ ッチング部の移動中の抵抗が 減るので、 移動速度は速くなり、 変調処理速度を向上することがで きる。 また、 スイ ッチング部の周囲の圧力を下げたり、 あるいは真 空にしなくても流体による抵抗を削減できるので、 光スイ ッチング 素子を圧力容器に入れずに通常の環境で高速で動かすことができる < したがって、 動作速度が速く、 信頼性の高い光スイ ッチング素子を 低コス 卜で提供することができる。
特に、 本発明のエバネセン ト光を用いた光スィ ツチング素子では、 スイ ッチング部の抽出面が第 1の位置で全反射面に接し、 全反射面 から抽出面が離れるとき、 あるいは密着するときに流体の動きが制 限される。 したがって、 スイ ッチング部が移動する際の抵抗が大き くなる。 これに対し、 さらに、 移動初期あるいは移動末期にスイ ツ チング部を傾けることによ り、 抽出面と全反射面との間に生ずる空 間に流体をスムーズに流入あるいは排出することができる。 したが つて、 動作速度を大幅に向上することができる。
もちろん、 このような姿勢制御は、 平面要素を用いた本発明の光 スィ ッチング素子以外の空間光変調装置にも適用することができる < スィ ツチング部の姿勢は、 その重心に対し非対称な分布を備えた 駆動力を印加することによ り、 スイ ッチング部を非対称な状態、 す なわち、 傾いた状態にできるので、 移動初期、 移動中あるいは移動 末期にスイ ッチング部を傾けることができる。 非対称な分布を備え た駆動力を印加する方法としては、 スィ ツチング部の重心を立体中 心からずらすことにより、 スィ ツチング部に対し配置的には対称な 分布の駆動力を、 重心に対しては非対称な状態にすることができ、 これによ りスィ ツチング部を傾けることができる。
また、 駆動手段に、 スイ ッチング部を弾性的に支持する支持部材 を設け、 この支持部材の弹性定数の分布を、 少なく とも 1部におい てスィ ツチング部の重心に対し非対称となるようにすることによつ ても、 重心に対し非対称な駆動力をスィ ッチング部に対し印加する ことができる。 さらに、 駆動手段が、 静電駆動手段となる、 スイ ツ チング部に設けられた第 1の電極と、 この第 1の電極に対峙する位 置に設けられた第 2の電極とを備えている場合は、 第 1 または第 2 の電極の形状またはそれらの間隔の少なく とも 1部をスイ ッチング 部の重心に対し非対称な状態にすることによ り、 非対称な駆動力を スイ ッチング部に対し印加することができる。
また、 上記の第 1 または第 2の電極をスィ ッチング部の重心に対 しそれそれ非対称な形状の第 1および第 2の区画に分け、 これらの 区画に異なったタイ ミ ングで、 または、 異なった電圧の電力を供給 することによつても、 非対称な駆動力をスィ ッチング部に対し印加 することができる。
さらに、 スイ ッチング部は第 2の位置において、 第 1の位置の向 きに対し平行である必要はなく、 むしろ第 2の位置において傾いた 状態にすることにより、 移動初期、 移動中および移動末期の傾いた 状態との間でスムーズに移行することができる。 したがって、 さら に流体の抵抗を減らすことができ、 動作速度を向上することができ る。
第 2の位置でスィ ツチング部を傾いた状態にするには、 駆動手段 の支持部材の弾性定数をスィ ツチング部の重心に対し非対称にした り、 第 1および第 2の電極の間隔を変えたり、 スイ ッチング部が第 2の位置で接触する支持台とスイ ッチング部との間隔をスィ ッチン グ部の重心に対し非対称にする方法がある。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る光スイ ッチング素 子の概略構成を示す断面図である。
第 2図は、 第 1図に示す光スイ ッチング素子の構成を拡大して示 す断面図である。
第 3図は、 エバネセン ト波の透過率を全反射面と抽出面との距離 に対して示すグラフである。
第 4図は、 図 1に示す光スイ ッチング素子のパネ部材の構成を基 板の方向から見た様子を示す図である。
第 5図は、 第 4図に示したパネ部材と異なる例を示す図である。 第 6図は、 第 4図に示したパネ部材とさらに異なる例を示す図で ある。
第 7図は、 第 4図に示したパネ部材とさらに異なる例を示す図で ある。
第 8図は、 第 1図に示す画像表示装置を用いた投写装置の例を示 す図である。
第 9図は、 上記と異なる光スィ ツチング素子の概略構成を示す図 である。 第 1 0図は、 第 1図に示す光スイ ッチング素子における弾性力
(ばね力) と静電力との関係をスィ ツチング部の移動量 (変位) に 対して示す図である。
第 1 1図は、 第 1図に示す光スイ ッチング素子を駆動電圧をバイ ァス電圧によって駆動する様子を示すタイ ミ ングチャートである。 第 1 2図は、 本発明の第 2の実施の形態にかかる光スィ ツチング 素子の構成例を示す図である。
第 1 3図は、 第 1 2図に示すスイ ッチング素子の駆動電力を図 1 に示すスイ ッチング素子の駆動電力と比較するためのグラフである ( 第 1 4図は、 第 1 2図に示す光スィ ツチング素子における弾性力
(ばね力) と静電力との関係をスイ ッチング部の移動量 (変位) に 対して示す図である。
第 1 5図は、 第 1 2図に示す光スイ ッチング素子を駆動電圧をバ ィァス電圧によって駆動する様子を示すタイ ミ ングチャートである ( 第 1 6図は、 本発明の第 3の実施の形態に係るエバネセン ト光を 用いた光スイ ッチング素子の概要を示す図であり、 ( a ) はスィ ヅ チング部が第 1の位置にあるォン状態を示し、 ( b ) はスィ ッチン グ部が第 2の位置にあるオフ状態を示している。
第 1 7図は、 第 1 6図に示す光スィ ッチング素子のスィ ツチング 部の構成をア ドレス電極の側から示す図である。
第 1 8図は、 第 1 6図に示す光スイ ッチング素子において、 オン 状態 (第 1 の位置) からオフ状態 (第 2の位置) へ移動する様子を 順番に模式的に示す断面図である。
第 1 9図は、 第 1 6図に示す光スイ ッチング素子において、 ア ド レス電極およびベース電極間の間隔を経過時間と共に示す図であり . 第 1 9図 ( a ) はオンからオフに移行する経過を示し、 第 1 9図 ( b ) はオフからオンに移行する経過を示してある。 第 2 0図は、 第 3の実施の形態に係る異なった光スイ ッチング素 子の構成例を示す図である。
第 2 1図は、 第 3の実施の形態に係る、 さらに異なった光スイ ツ チング素子の構成例を示す図である。
第 2 2図は、 第 3の実施の形態に係る、 さらに異なった光スイ ツ チング素子の構成例を示す図である。
第 2 3図は、 第 3の実施の形態に係る、 さらに異なった光スイ ツ チング素子の構成例を示す図である。
第 2 4図は、 第 3の実施の形態に係る、 さらに異なった光スイ ツ チング素子の構成例を示す図である。
第 2 5図は、 第 3の実施の形態に係る、 さらに異なった光スイ ツ チング素子の構成例を示す図である。
第 2 6図は、 第 2 5図に示した光スィ ツチング素子の断面図であ る
第 2 7図は、 第 1 6図に示した光スイ ッチング素子において、 第
1の方向に対し傾いた状態で第 2の位置に停止する例を示す図であ る。
第 2 8図は、 第 2 7図に示した光スイ ッチング素子のさらに異な る例を示す図である。
第 2 9図は、 第 2 7図に示した光スィ ッチング素子のさらに異な る例を示す図である。
第 3 0図は、 本発明の第 4の実施の形態に係る光スイ ッチング素 子の概略構成を示す図であり、 重心の位置をずら した例を示す図で ある。
第 3 1図は、 本発明の第 5の実施の形態に係る光スイ ッチング素 子の概略構成を示す図であり、 アドレス電極の形状を非対称にした 例を示す図である。 第 3 2図は、 第 3 1図に示した第 5の実施の形態に係る光スィ ッ チング素子の異なる例を示す図である。
第 3 3図は、 第 3 1図に示した第 5の実施の形態に係る光スイ ツ チング素子のさらに異なる例を示す図である。
第 3 4図は、 第 3 1図に示した第 5の実施の形態に係る光スィ ヅ チング素子のさらに異なる例を示す図である。
第 3 5図は、 本発明の第 6の実施の形態に係る電極を分割した光 スィ ツチング素子の例を示す図である。
第 3 6図は、 第 3 5図に示す光スィ ツチング素子の動作を示す図 であり、 第 1の位置および第 1の位置から移動開始後の状態を示す 図である。
第 3 7図は、 第 3 5図に示す光スィ ツチング素子の動作を示す図 であり、 移動中および第 2の位置で停止した状態を示す図である。 第 3 8図は、 第 3 5図に示した光スィ ッチング素子の制御動作を 示すタイムチャートである。
第 3 9図は、 第 3 5図に示した第 6の実施の形態に係る光スィ ッ チング素子の異なる例を示す図であり、 第 1の位置および第 1の位 置から移動開始後の状態を示す図である。
第 4 0図は、 第 3 9図に続き、 移動中および第 2の位置で停止し た状態を示す図である。
第 4 1図は、 第 3 9図および第 4 0図に示す光スィ ツチング素子 の制御動作を示すタイ ミ ングチヤ一 卜である。
第 4 2図は、 ピエゾ素子を用いた光スィ ツチング素子を示す図で ある。
第 4 3図は、 従来の液晶を用いた光スイ ッチング素子を示す図で ある。 発明を実施するための最良の形態
〔第 1の実施の形態〕
スィ ツチング素子の概略構成
第 1図に、 本発明に係る空間光変調装置である光スィ ツチング素 子 1の概略構成と、 これら光スイ ッチング素子 1 を複数個 2次元的 にアレイ状に並べて構成した画像表示装置 2の概略構成を断面で示 してある。 また、 第 2図に光スイ ッチング素子 1のスイ ッチング部 を中心とした概略構成を拡大して示してある。 本発明の光スィ ッチ ング素子 1は、 導入光 1 0を全反射して伝達可能な導光部 2 0の全 反射面 2 2に対し、 透光性の抽出面 3 2を備えたスイ ッチング部 3 0を接触させてエバネセン ト波を抽出することができるスィ ッチン グ素子である。 そして、 抽出された光はスイ ッチング部 3 0で導光 部 2 0の方向に反射されて出射光 1 1 となり、 導光部 2 0の出射面 2 1 を通って外部へ出力される。 この光スイ ッチング素子 1は、 ス イ ッチング部 3 0の 1波長程度あるいはそれ以下の微小な動きによ つて、 入射光 1 0を高速で変調 (オンオフ制御) することができ、 このため、 静電力とばね力を用いてスィ ツチング部 3 ◦を駆動する 駆動部 4 0 と、 この駆動部 4 0に電力を供給して制御する制御部 7 0が設けられている。 これらの導光部 2 0、 スイ ッチング部 3 0の 層、 この光スイ ッチング部 3 0を動かす駆動部 4 0の層、 および駆 動部 4 0を制御する駆動用 I Cが構成されたシ リ コン基板 7 0が層 をなし、 それらが順番に積層されている。 したがって、 本例の光ス ィ ツチング素子 iは、 各々の機能部分が階層的に積み重ねちれた階 層構造となっている。
光スイ ッチング素子 1の構成を更に詳しく説明すると、 光スイ ツ チング素子 1は、 ガラスあるいは透明プラスチック製で入射光 1 0 の透過率の高い光ガイ ド (導光部、 カバ一ガラス) 2 0を備えてお り、 全反射面 2 2で入射光 1 0が全反射するように全反射面 2 2に 対し適当な角度で入射光 1 0が入射される。 そして、 図 2のスイ ツ チング素子 1 aに示すように、 スイ ッチング部 3 0の抽出面 3 2が 全反射面 2 2に接近あるいは密着してエバネセン ト光を抽出できる 位置 (第 1の位置あるいはオン) P 1 になると、 導光部 2 0から入 射光 1 0がスイ ッチング部 3 0に抽出される。 スイ ッチング部 3 0 は、 導光部の全反射面 2 2の側が平坦な抽出面 3 2 となった三角柱 状のマイクロプリズム 3 4を出射体として備えている。 このため、 底面の抽出面 3 2から抽出した光はマイクロプリズム 3 4の反射面 3 4 aで全反射面 2 2にほぼ垂直な方向に反射され、 導光部 2 0を 経て反対側の出射面 2 1から出射される。
一方、 第 2図のスイ ッチング素子 l bに示すように、 スィ ッチン グ部 3 0が第 1の位置から離れて、 抽出面 3 2が全反射面 2 2から 離れた位置 (第 2の位置あるいはオフ) P 2になると、 入射光 1 0 は全反射面 2 2で全反射され導光部 2 0からエバネセン ト光として 抽出されない。 したがって、 出射光 1 1は得られない。
第 3図にエバネセン ト波の透過率の例をいくつか示してある。 全 反射されている面に透明体を近接すると、 エバネセン ト波が透明体 側に漏れ出て光が透過する。 エバネセン ト波の透過率は、 媒体の屈 折率や入射角度などによって相違する。 第 3図には、 波長人が 5 0 0 n mの光に対して入射角を 5 0 ° としたときにエバネセン ト波の 透過率 (%) を全反射面 2 2 と抽出面 (透明体) 3 2 との間隔 ( m ) に対して測定した透過曲線 L 1 を示してある。 同様に入射角 6 0 ° のときの特性曲線 L 2、 入射角 7 0 ° の特性曲線 L 3、 入射角 8 0 ° の特性曲線 L 4も示してある。 これら特性曲線は、 ほぼ同じ ような傾向を示しており、 抽出面 3 2が全反射面 2 2に 0 . 1〜 0 0 5〃m以下に接近する (第 1の位置) と透過率が 5 0 %程度にな る。 一方、 抽出面 3 2が全反射面 2 2から 0 . 2 〃m以上離れる (第 2の位置) と透過率は 1 0 %以下になり、 さらには、 抽出面 3 2の距離が 0 . 3 mを越えると透過率はほぼ 0 %になる。 従って、 第 2図の光スィ ツチング素子 1 aで示すオン状態と、 光スィ ッチン グ素子 l bで示すオフ状態とでは、 抽出面 3 2を 0 . 2〜 0 . 3 〃 m程度移動させるだけで良い。 このため、 本例の光スイ ッチング素 子 1 を用いることにより、 高速で画素を制御でき、 コン トラス トの 高い画像を得ることができる。 また、 抽出面 3 2の移動距離が短く て済むので、 抽出面を備えたスイ ッチング部 3 0を駆動するための 電極間の間隔も短くなる。 従って、 これらの電極によって静電力に よりスイ ッチング部 3 0を動かすための駆動電圧も小さくなり、 消 費電力が少なく、 高速動作が可能でコン トラス 卜の大きな画像表示 装置 2を提供することができる。 駆動部の構成
スイ ッチング部 3 0を駆動する駆動部 4 0の構成を更に詳しく説 明する。 スイ ッチング部 3 0の下方には、 シリコン基板 7 0の側 (下側) に設けられたベース電極 6 2 と、 シ リ コン基板 7 0の上面 にベース電極 6 2に対峙するように設けられた電極 6 0 とを備えて おり、 これらの電極 6 0および 6 2の組み合わせで静電力を発生し. スィ ツチング部 3 0を駆動するできるようになつている。 さらに、 駆動部 4 0は、 スイ ッチング部 3 0の周囲に配置された支柱部 (ポ ス ト) 4 4からスイ ッチング部 3 0に延びた薄膜状で弾性のあるョ —ク (支持部材) 5 0を備えている。 したがって、 本例のスイ ッチ ング素子 1 においては、 1組の電極 6 0および 6 2からなる静電駆 動手段の静電力 F s と、 ヨーク 5 0の弾性力 F gにより、 スィ ッチ ング部 3 0をスィ ツチング素子 1 aに示す第 1の位置 P 1、 および スィ ヅチング素子 1 bに示す第 2の位置 P 2に動かせるようになつ ている。
このような動きを行うスィ ツチング部 3 0はスぺーサ 4 2により ヨーク 5 0から支持されている。 スベーサ 4 2は、 断面がほぼ丁字 形をしている。 このため、 スぺーサ 4 2の中心は基板 7 0の表面 7 1 に向かって延び、 スぺーサ 4 2の下面 4 2 aと基板表面 7 1の隙 間 (第 1のスペース) 4 5は狭くなつている。 また、 スぺ一サ 4 2 の両側 (周囲) 4 2 bは、 基板表面 7 1から離れるので、 周囲 4 2 bと基板表面 7 1 との隙間 (第 2のスペース) は広くなつている。 そして、 狭い第 1のスペース 4 5 を挟むように、 電極 6 2および 6 0が設けられている。 一方、 広い第 2のスペース 4 6には、 パネ部 材であるヨーク 5 0が設けられており、 スイ ッチング素子 1の境界 に設けられた支柱 4 4 とスぺーサ 4 2を接続し、 スぺーサ 4 2を介 してスィ ツチング部 3 0を弾性的に支持すると共に、 スィ ツチング 部 3 0の位置决めもおこなっている。
第 2図の光スイ ッチング素子 l aおよび l bに示すように、 丁字 形のスぺーサ 4 2で形成された第 2のスペース 4 6で、 板状のパネ 部材 5 0が変形できるようになつており、 電極 6 ◦および 6 2の間 隔 (第 1のスペース) を広げずに、 パネ部材 5 ◦の設置スペースが 確保できている。 従って、 静電駆動手段を構成する電極 6 0および 6 2の間隔が狭くなり、 駆動電圧を低く し、 消費電力を抑えること ができる。
また、 このような T字形のスぺ一サ 4 2を採用することにより、 プリズム 3 4、 すなわちスィ ツチング部 3 0の下にパネ部材 5 0の 設置スペースとなる第 2のスペース 4 6 を設けることができる。 し たがって、 スイ ッチング部 3 0の下層にパネ部材 5 0も含めた駆動 部 4 0を構成する全ての部分を配置することができ、 上述したよう に、 光スイ ッチング素子 1 を階層的な配置にすることができる。 バ ネ部材 5 0のスペースを駆動部 4 0の層で処理することにより、 光 スイ ッチング部 3 0の層では、 隣接する光スイ ッチング素子 1 aお よび 1 bの間にパネ部材 5 0を設置するためのスペースが不要であ る。 従って、 プリズム 3 4の面積を大きくすることが可能となり、 導光部 2 0から光を抽出できる面積率 (開口率) を高く し、 出射さ れる光量の大きな明るい光スイ ッチング素子を提供することができ る。
さらに、 本例の光スイ ッチング素子 1では、 駆動部 4 0の層に支 柱 4 4を設けて駆動部 4 0でスイ ッチング部 3 0をサポートできる ようにしている。 このため、 導光部 2 0にプリズム 3 4を支持する 構造をエッチングなどを用いて形成する必要がない。 従って、 導光 部 2 0の全反射面 2 2は、 複数の光スィ ッチング素子 1に対してフ ラッ トな平面となり、 シンプルな形状の部材を導光部 2 0 として採 用できる。 そして、 バネ部材 5 0がスィ ツチング部 3 0の間に存在 しないので、 スイ ッチング部 3 0の間は最小限にでき、 光スイ ッチ ング素子 1 aおよび 1 bを間隔を殆ど開けずに配置することが可能 となる。 従って、 本例の光スイ ッチング素子を用いることによ り画 素同士の間が殆ど開かない、 画素の境目が判らないシームレスな、 あるいはシ一ムレスに近い画像を形成可能な画像表示装置 2を提供 することができる。
さらに、 本例の光スイ ッチング素子 1 においては、 光スイ ッチン グ素子 1 aに示すように、 オン状態では静電気力を用いずにパネ部 材 5 0の力でマイクロプリズム 3 4の抽出面 3 2を導光部 2 0の全 反射面 2 2に押しつけるようにしている。 また、 オン状態では、 さ らに、 パネ部材 5 0に多少の変位 5 1を持たせ、 プリズム 3 4を全 反射面 2 2に押圧できるようにしている。 電力を用いて制御される 静電気力は、 制御が容易であるが供給電圧が変動すると抽出面 3 2 を全反射面 2 2に押しつける力が変化する。 第 3図に示したように, 電圧が下がって押圧が不足し、 抽出面 3 2 と全反射面 2 2 との隙間 が 0 . 1 〜 0 . 1 5 m程度になると透過量は 2 0 %近傍あるいは それ以下となり、 オンオフのコン トラス トが低下してしまう。 これ に対し、 パネ部材 5 0によって得られる力は、 機械的で電圧変動に 関係なく安定している。 従って、 本例のスイ ッチング素子 1 におい ては、 オン状態にする駆動力として安定したパネ部材 5 0の力を用 レ 一方、 オフ状態にする駆動力として制御が容易な静電気力を用 いることにより、 安定した光量を確保すると共に、 制御能力の高い 光スイ ッチング素子を提供できるようにしている。
さらに、 オン状態のパネ部材 5 0に変位 (橈み) 5 1 を持たして おく ことにより、 適度な力で抽出面 3 2を全反射面 2 2に押し当て ることが可能となる。 従って、 振動、 温度変化あるいはその他の経 時変化による導光部とスイ ッチング部の間隔、 あるいは光スィ ッチ ング部と駆動部の間隔などが変化した場合でもそれを吸収して、 ォ ンオフのコン トラス トが低下するのを防止できる。 さらに、 本例の スィ ッチング素子 1は、 上述したように T字形のスぺ一サ 4 2によ つてパネ部材 5 0の設置スペースとして広いスペース 4 6が確保さ れているので、 その内部でバネ部材 5 0を変位させておく ことが可 能である。 この橈み 5 1の程度はオフ状態の間隔と同じ、 すなわち. 0 . 1 〜 0 . 2〃m程度が好ましい。
さらに、 本例のパネ部材 5 0は、 ボロン ド一プされたシリコン製 の薄膜 4 9で形成されており、 導電性がある。 従って、 広いスぺ一 ス 4 6の領域では、 この薄膜 4 9をパネ部材 5 0 として機能させ、 狭いスペース 4 5の領域では、 スぺ一サ 4 2にこの薄膜 4 9を固定 して電極 6 2 どして機能させることができる。 支持部材 (パネ部材) の構成
このように、 本例の光スイ ッチング素子 1の駆動部 4 0は、 弾性 力を発揮する支持部材 (パネ部材あるいはヨーク) 5 0 と、 電極 6 0および 6 2による静電駆動手段とを備え、 スイ ッチング部 3 0を 高速で駆動できるようになつている。 これらの内、 パネ部材 5 0は、 弾性係数を適度な値にすることが重要である。 弾性係数が高すぎる と、 短い間隔でも動かすのに非常に力が必要になり、 大きな静電気 力が要求されるので、 駆動電圧が高くなつてしまう。 一方、 弾性係 数が低すぎると、 プリズム 3 4の抽出面 3 2 を全反射面 2 2に押し つける力が得られるなくなる。 画像表示装置 2に用いられて画素を 構成するような光スィ ツチング素子 1のサイズは、 十数ミクロンか ら数百ミ クロンであり、 このようなマイクロマシンにおいては、 ノ ネ部材 5 0の有効長を長く して弾性係数を低く抑えることが重要で ある。 このため、 本例の光スイ ッチング素子 1 においては、 丁字形 のスぺーサ 4 2を用いて確保された広くスペース 4 6内にパネ部材 5 0を配置して有効長を長くすると共にさらにパネ部材 5 0を細く して有効長を長くするようにしている。
また、 パネ部材 5 0を構成するシリコン薄膜 4 9 としてボロン ド ープされた導電性のある薄膜を採用することにより、 パネ部材 5 0 を電極 6 2 として使用することが可能である。 このようにパネ部材 5 0を電極として利用できるものには、 導電性薄膜材、 例えば A 1 膜、 P t膜および A g膜などがある。
第 4図に、 本例の光スイ ッチング素子 1の駆動部 4 0の配置を底 面 (基板 7 0の側) よ り見た様子を示してある。 シリコン薄膜 4 9 は、 四方の支柱 4 4からスぺ一サ 4 2の底面 4 2 aに向かって放射 状に延びたパネ部材 5 0 (明示するために縦線で示してある) を形 成するために、 隣接する他のスィ ツチング素子との境界になる支柱 4 4の周囲が大きくカツ 卜されて穴 5 9が形成されている。 また、 底面 4 2 aに残ったシリコン薄膜 4 9はほぼ四角形の電極 6 2 (明 示するために斜線で示してある) を形成している。 このように、 幅 の狭い板状のパネ部材 5 0を形成することにより、 有効長を長く し て駆動電圧を下げることができる。 また、 画像表示装置においては、 隣接する光スイ ッチング素子との接続部分が細くなるので、 光スィ ツチング素子で構成される画素の間でオンオフ状態が相互に影響を 及ぼすのを未然に防ぐことができる。
第 5図に、 本例の上記と異なったパネ部材 5 0の例を示してある c 本例では、 シ リ コン薄膜 4 9に、 スぺ一サ 4 2から支柱 4 4の方向 に延びた放射状にスリ ッ ト 5 8を形成して細長いパネ部材 5 0を形 成すると共に、 スぺ一サ 4 2の底面 4 2 aに取り付けられた電極 6 2から放射状の電極 6 2 aをさらに広げて形成し、 電極の面積を広 く確保している。 このように、 電極 6 2の面積を広げることにより、 スイ ッチング部 3 0を駆動するために印加する駆動電圧を小さ くす ることが可能となる。
第 6図に、 上記とさらに異なったパネ部材 5 0の例を示してある ( 第 6図 ( a ) および ( b ) には、 画像表示装置を構成するために 2 次元的に配置された複数の光スィ ツチング素子 1のうち、 4つの光 スィ ッチング素子 1が配置された状態をシリコン基板 7 0の側から 見た様子を示してある。 本例においては、 シリコン薄膜 4 9にそれ それの光スィ ツチング素子 1の境界に沿った方向にスリ ッ ト 5 8を 形成されており、 スぺ一サ 4 2の周囲、 すなわち、 光スイ ッチング 素子 1の境界に沿って螺旋状に延びたパネ部材 5 0を構成している, このように、 パネ部材 5 0を境界に沿った方向に延ばすことにより . パネ部材 5 0の有効長をさらに長くすることができ、 その一方で、 スぺーサ 4 2の底面 4 2 aを広げて電極 6 2の面積を広く確保する ことができる。 従って、 これらの効果により、 駆動電圧を大幅に下 げることが可能となる。 第 6図 ( b ) は、 さらに、 スリ ッ ト 5 8を 長く してパネ部材 5 0がスィ ヅチング素子 1の境界に沿った 2辺に 達するまで長く螺旋状にさらに確保できるようにした例であり、 ノ ' ネ部材 5 0の有効長をいつそう長し、 駆動電圧を下げることができ る。 もちろん、 さらにスリ ッ ト 5 8を長く して、 境界に沿って有効 長の長いパネ部材 5 0を形成することも可能である。
第 8図に、 さらに異なったバネ部材の例を示してある。 本例では、 パネ部材 5 0がスぺーサ 4 2 と接する部分、 あるいは支柱 4 4と接 続されている部分と比較し、 それらの間の中央部 5 5の厚みを薄く して弾性係数を下げ、 駆動電圧を低減できるようにしている。 この ように、 上記に示した幾つかの例あるいはこれらを組み合わせるこ とにより、 パネ部材 5 0の弾性係数を下げることができるので、 光 スィ ツチング部 3 0を動かすために電極 6 0および 6 2に印加して 静電気力を発生される駆動電圧を小さくすることができる。 従って、 低電気消費量で稼動可能な光スイ ッチング素子 1 を提供することが でき、 画像表示装置 2の全体の電力を押さえることが可能となる。 本例の光スィ ツチング素子 1は、 導光部 2 0、 光スイ ッチング部 3 0および駆動部 4 0が順番に積層された構造を採用し、 反射型の 光スイ ッチング部 3 0 とすることにより、 出射方向が積層された方 向、 すなわち、 導光部 2 0を向いた光スイ ッチング素子であり、 駆 動部 4 0を抽出した光が通過しない構成の光スイ ッチング素子を提 供することができる。 従って、 駆動部 4 0は光学的な特性を考慮せ ずに設計できるので、 光スイ ッチング部 3 0を支持し駆動する構成 を上述したように全て駆動部 4 0で実現するように最適化すること が可能となり、 光スイ ッチング部 3 0および導光部 2 0の構成を非 常にシンプルにすることができる。 そして、 導光部 2 0、 光スイ ツ チング部 3 0および駆動部 4 0を層構造にして独立した設計が可能 となり、 導光部 2 ◦は全反射面 2 2がフラッ トな平板状の部材を用 いることができる。 また、 スイ ッチング部 3 0には抽出面 3 2の広 いプリズムなどの出射体 3 4を用いることができる。 さらに、 駆動 部 4 0には、 オンオフ動作を高速で安定して行える信頼性の高いメ 力二ズムを採用することができる。 このため、 本発明により光量が 多く光のロスの少ない光スィ ツチング素子を提供可能であり、 さら に、 オンオフのコン トラス 卜も高く画質の良い光スィ ツチング素子 を提供することができる。
さらに、 本例の光スイ ッチング素子 1は、 駆動部 4 0を駆動回路 などが構成されたシリコン I C基板上に、 エツチングなどの微細加 ェに適した半導体製造技法あるいはマイクロマシンの製造技術を用 いて製造することができ、 複数の光スィ ツチング素子 1を高密度で 集積化することも容易である。 従って、 本発明の光スイ ッチング素 子を用いることにより、 薄くて解像度の高い画像表示装置 2を提供 することができる。
図 8に、 本発明に係る画像表示装置 2を用いた投射装置 6を示し てある。 本例の投写装置 6は、 導光部 2の全反射面 2 2に、 駆動回 路と共に光スイ ッチング部 3 0および駆動部 4 0が搭載された I C チップ 5が取り付けられている。 画像表示装置 2の導光部 2 0には、 一方に入射用の面 8 1が用意されており、 この面に向かって光源か ら赤緑青 (R G B ) 、 またはシアン、 マゼンダ、 イエロ一などの光 の 3原色が時分割で入射される。 本例の光源 8 0は、 白色のメタル ハラィ ドランプ 8 0 aと、 モ一夕で回転される 3色分割フィル夕 8 O bとを備えており、 3色分割フィル夕 8 0 bで色分割された光線 がコ リメ一夕レンズ 8 0 cを通して並行光束化されて入射面 8 1か ら導光部 2 0に入射される。 そして、 全反射面 2 2に到達した入射 光 1 0は、 I Cチップ 5 を用いて構成された個々の光スィ ヅチング 素子によって反射されて導光部 2 0を透過する出射光 1 1 となって 出射され、 投射レンズ 8 5 を通ってスク リーンなどに投写されて所 望の画像が形成される。 一方、 光スィ ツチング素子によって出射光 に変換されなかった入射光 1 0は、 全反射によって導光部 2 0の入 射面 8 1 と反対側の反射面 8 2に到達し、 この面で反射されて再び 導光部 2 0内を伝達し、 光スイ ッチング素子に到達する。
このように、 本例の画像表示装置 2は、 時分割され入射光に同期 して I Cチップ 5により構成された光スイ ッチング素子を操作する ことによ りカラー画像を投射することができる。 もちろん、 白色光 を入射光 1 0 として採用し、 波長選択性のある光抽出部を用いた光 スイ ッチング素子によってカラ一画像を投射も可能である。
第 9図に、 本発明に係る光スィ ツチング素子の異なった例を示し てある。 光スィ ッチング素子 1 も、 導光部 2 0 と、 光スイ ッチング 3 0 と、 駆動部 4 0 とがこの順番に I C部 7 0の基盤に積層されて おり、 上述した例と共通する部分については同じ符号を付して説明 を省略する。 なお、 以降に説明する実施例においても共通する部分 は同じ符号を付して詳しい説明は省略する。
本例の光スイ ッチング素子 1では、 パネ部材 5 0および電極 6 2 を兼ねて支柱 4 4およびスぺーサ 4 2を接続するように設置された 薄膜 4 9が導光部 2 0に対して補助柱 4 8によって支持されており . 抽出面 3 2 と全反射面 2 2 との間隔が光スィ ッチング素子 1の間で ほぼ均等に保たれるようになつている。 さらに、 薄膜 4 9には穴あ るいはス リ ッ トが形成されておらず、 スィ ツチング部 3 0の層を薄 膜 4 9 と導光部 2 0で密封できるようになつている。 そして、 スィ ツチング部 3 0の圧力が外気に対し負圧になるように調整されてい る。 これにより薄膜 4 9が補助柱 4 8に密着され、 複数の光スイ ツ チング素子 1 を 2次元的に並べて画像表示装置 2を構成したときに 薄膜 4 9 と全反射面 2 2 との間隔、 すなわち、 薄膜 4 9に取り付け られた光スィ ツチング部 3 0の抽出面 3 2 と導光部 2 0の全反射面
2 2 との隙間をほぼ均等に保つことができる。 従って、 複数の光ス イ ッチング素子 1で構成される画像表示装置 2の全画素で安定した スィ ヅチング動作が行われ、 全ての画素で高いコン トラス トを得る ことができる。 この補助柱 4 8は、 全ての画素を構成するスィ ッチ ング素子に設ける必要はなく、 適当な間隔を開けたり、 あるいはラ ンダムに配置してももちろん良い。
さらに、 スイ ッチング部 3 0の側が負圧になるように調整されて いるので、 外気圧によって光スィ ツチング部 3 0の抽出面 3 2は全 反射面 2 2に対し押圧される。 従って、 本例の光スィ ツチング素子 1 においては、 パネ部材 5 0の力に加えて大気圧も利用して抽出面
3 2を全反射面 2 2に対し密着させて、 高いコ ン トラス トを得るこ とができる。
また、 本例の光スイ ッチング素子 1 においては、 パネ部材 5 0 と プリズム 3 4の間に位置するスぺーサ 4 2 として T字形に代わり逆 台形状のものを採用している。 このように、 逆台形状のスぺーサ 4 2 を用いてもパネ部材 5 0を配置する広いスペース 4 6 と、 電極 6 0および 6 2 を配置する狭いスペース 4 5 を確保することが可能で ある。
さらに、 スイ ッチング部 3 0に加えて、 駆動部 4 0も密封し、 導 光部 2 0およびシ リ コン基板 7 0で囲われた領域全体を密封して負 圧にすることも可能である。 この領域の圧力を下げることにより、 光スィ ツチング部 3 0および駆動部 4 0を構成するプリズム 3 4、 パネ部材 5 0などがスイ ッチング動作するために動く ときに気体の 流動抵抗がなくなり、 ダンバ一効果などによる抵抗が大幅に低下す る。 従って、 オンオフ動作のときの駆動速度を上げることが可能と なり、 また、 駆動力を低減できるので、 高速動作が可能で消費電力 の低いスィ ッチング素子および画像表示装置を提供することができ る。 また、 上記密封された空間を水分を含まない気体で置換し、 し かも外部よ り負圧にすることにより、 上述の効果に加え、 吸着等の 原因となる水分を除去でき、 しかも、 不活性ガスであれば、 酸化等 の変質を防止できる。 駆動部の制御
以下では、 本例の光スイ ッチング素子 1の駆動部 4 0の制御方法 についてさらに詳細に説明する。 図 2に示すように、 本例のスイ ツ チング素子は、 電極 6 0および 6 2の間にス ト ッパー 6 5が設置さ れている。 このス ト ッパー 6 5によ り、 シリコン基板に構成される 駆動制御部 7 0から電極 6 0に駆動電圧 V dが供給されて電極 6 0 および 6 2の間に静電力 F sが発生し、 その力によってスィ ッチン グ部 3 0が第 2の位置 P 2に移動したときにス ト ッパー 6 5の位置 で停止し、 電極 6 0および 6 2は密着することなく適当な隙間 (ギ ヤップ) Gが確保できるようになつている。 このス ト ッパー 6 5は、 スィ ツチング部 3 0が移動したときに電極同士が衝突しないための 機能に加え、 以下に示すように、 停止位置において静電力が無限大 になってしまうのを防止し、 低い電圧で高速の制御ができるように する機能も果たしている。
第 1 0図に、 本例のスィ ツチング素子 1の駆動部 4 ◦における静 電力 F s と弾性力 (ばね力) F gの関係を示してある。 静電力 F s は、 駆動電圧 V dを 1 0、 2 0、 3 0、 4 0および 5 0 Vにしたと きの力をそれそれ示してある。 第 1 0図に示したスイ ッチング素子 1は、 電極 6 0および 6 2の間隔が 0 . 5 mであり、 静電力 F s が加えられたときにス ト ッパー 6 5によってこれらの電極 6 0およ び 6 2の間には 0. 1 mのギャップ Gが開く ようになつている。 また、 ヨーク 5 0は第 1の位置 P 1で 0. 5〃m変位 (初期変位 X 0 ) した状態になるように設定されている。 したがって、 スィ ッチ ング部 3 0は、 ヨーク 5 0の変位 Xで考えると第 1の位置 P 1から 第 2の位置 P 2 (ス ト ッパー位置) まで初期変位 χ θの 0. 5〃m から 0. 9〃111の 0. 4 mの間隔 d Oを移動し、 これに伴って式 ( 1 ) に示した弾性力 F gが発生する。 また、 この間隔 d Oの中で は、 駆動電圧 V dが印加されているときは、 式 ( 2 ) に示したよう に、 電極間 dが 0. 5 mの間を変位 Xで移動したときの静電力 F sが発生する。
まず、 第 1の位置 P 1から第 2の位置 P 2にスイ ッチング部 3 0 を動かす駆動電圧 V dについて検討する。 第 1の位置 P 1から第 2 の位置 P 2に向かってばね力 F gに逆らってスイ ッチング部 3 0を 移動するためには、 常にばね力 F gよ り大きな静電力 F sが得られ る駆動電圧 V dを電極 6 0および 6 2に印加する必要がある。 すな わち、 ばね力 F gと安定点を持たないような静電力 F sを発揮でき る駆動電圧 V dを印加する必要がある。 第 1 0図に示した例では、 安定点をもたない静電力 F sを発生させる電圧は 5 0 Vであり、 駆 動電圧 V dとして 5 0 Vを印加すれば確実にスィ ツチング部 3 0を 第 2の位置 P 2に移動できる。 しかしながら、 上述したように、 本 例のスィ ッチング素子 1では、 ヨーク 5 0が第 1の位置 P 1におい てヨーク (パネ部材) の橈み 5 1 として設定された初期変位 X 0を 持っており、 この初期変位 X 0以下の変位 Xにおいて安定点がある 駆動電圧 V dであっても問題なくスィ ッチング部 3 0を移動できる すなわち、 静電力 F sは距離 ( d — X ) の二乗に反比例するので、 初期変位 X 0があり、 ヨークの変位 Xに対して電極間距離 ( d - X ) が実質的に小さくなつている場合は、 低い電圧を駆動電圧 V d として採用できる。 第 1 0図では、 駆動電圧 V dが 4 0 Vのときが それに相当する。 駆動電圧 V dが 4 0 Vでは、 変位 Xが初期変位 X 0 よりも小さな領域ではばね力 F gと静電力 F sが等しくなつてス イ ッチング部 3 0の動きが停止する安定点 s 1および s 2があり、 駆動電圧には適さない。 しかしながら、 変位 Xが初期変位 χ θ以上 の領域では常に静電力 F sがばね力 F gより も大きくなり、 安定点 がないので駆動電圧 V dとして採用できる。
このように、 初期変位 X 0を導入することにより、 第 1の位置 P 1でスイ ッチング部 4 0を安定して保持することができ、 さらに、 駆動電圧 V dを 5 0 Vから 4 0 Vに低減することができる。
さらに、 初期変位 X 0によって第 1の位置 P 1でばね力 F gが働 いているので、 このばね力 F g以下の静電力 F sを与える電圧をバ ィァス電圧 V bとして電極 6 0および 6 2の間に印加することがで きる。 例えば、 第 1 0図において 1 0 Vをバイアス電圧 V bとして 設定すると、 第 1の位置 P 1 において、 このバイアス電圧 V bによ る静電力 F sは図中の B 1の値となる。 したがって、 バイアス電圧 V bを印加した状態でも第 1の位置 P 1 におけるばね力 F gとの差 F k lが保持力として働くので、 スイ ッチング部 3 0を安定して保 持できる。 一方、 バイァス電圧 V bを印加しておく と、 駆動電圧 V dとして 3 0 Vを印加することにより駆動電圧 V dが 4 0 Vのとき の静電力 F sを得ることができるので、 スイ ッチング部 3 0を駆動 することができる。 したがって、 駆動電圧 V dをさらに 1 0 V下げ ることができる。
バイアス電圧 V bは、 図 1 に示した画像表示装置 2を構成するス ィ ツチング素子 1 に対し共通に印加することが可能である。 例えば、 駆動電圧 V dの基準電圧が 0 Vで、 ここのスイ ッチング素子 1を駆 動する電極 6 0に高電位の駆動電圧 V dを印加して駆動するときは、 これらのスィ ツチング素子 1 に共通するベース電極 6 2に— 1 0 V を一律に印加することによ り駆動電圧 V dと同極性のバイァス電圧 V bを設定できる。 もちろん、 駆動電圧 V dの基準電圧が 1 0 V上 昇するようにバイアス電圧 V bを設定するように駆動制御部 (制御 部) 7 0を構成することも可能である。
さらに、 本例のスイ ッチング素子 1 においては、 第 2の位置 P 2 で電極 6 0および 6 2の間にス ト ッパー 6 5 によるギャップ Gが存 在するので、 静電力 F sが無限に大きくなることはない。 このため、 バイアス電圧 V bが 1 0 Vのときは、 それによつて発生する静電力 F sが第 2の位置 P 2において図中の C 1の値であり、 ばね力 F g に達していない。 したがって、 駆動電圧 V dがなくなると、 バイァ ス電圧 V bが印加された状態でも第 2の位置 P 2においてばね力 F が静電力 F sよりも大きくなり、 スイ ッチング部 3 0はばね力 F gによって第 2の位置 P 2から第 1の位置 P 1 に移動する。 したが つて、 バイァス電圧 V bを印加した状態でも駆動電圧 V dを制御す るだけでスィ ツチング部 3 0をオンオフ制御することができる。 このように、 第 2の位置 P 2において、 ばね力 F gに達しないバ ィァス電圧 V bを印加する場合は、 一定の電圧のバイァス電圧 V b をすベてのスィ ツチング素子に対し連続して印加することが可能で あり、 バイアス電圧 V bの制御は非常に簡単となる。 このため、 制 御部 7 0の構成を複雑にしないでバイアス電圧 V bを印加すること ができ、 駆動電圧 V dをバイアス電圧 V b分だけ低減することがで きる。 したがって、 制御部 7 0の耐圧を下げたり、 構成を簡易にで きるので、 制御部 7 0のサイズを縮小でき、 さらに低コス トで製造 することができる。 さらに、 駆動電圧の電源電圧を下げることがで きるので、 消費電力も抑えることができる。 一方、 第 1の位置 P 1 ではスイ ッチング部 3 0を安定に保持する保持力 F k 1を確保する ことができる。 また、 スイ ッチング部 3 0の移動距離 d 0は変えな くて良いので十分なコン トラス 卜を得ることができる。 さらに、 ョ —ク 5 0の弾性係数 Kも変える必要がないので、 スィ ヅチング部 3 0の駆動速度もほとんど変化しない。 バイアス電圧 V bを印加して も第 1 0図から分かるように、 バイアス電圧 V bによる静電力 F s は距離の二乗に反比例して急激に減少するので、 第 2の位置 P 2か ら第 1の位置 P 1 に移動する際の速度にはそれほどの影響力はない。 次に、 バイアス電圧 V bが 2 0 Vのときを検討する。 第 1の位置 P 1 においてパイァス電圧 V b ( 2 0 V ) による静電力 F sは、 図 中の B 2の値になる。 したがって、 ばね力 F gとの差として保持力 F k 2が得られるので、 スイ ッチング部 3 0を安定して保持するこ とができる。 一方、 スイ ッチング部 3 0を駆動するために必要とな る 4 0 Vの静電力 F sを得るために 2 0 Vの駆動電圧 V dを印加す れば良く、 上記のケースよ りさらに駆動電圧 V dを 1 0 V低減する ことができる。 しかしながら、 第 2の位置 P 2においては、 バイァ ス電圧 V bが 2 0 Vであると、 静電力 F sがばね力 F gを上回るの で駆動電圧 V dをオフにしてもスィ ツチング部 3 0は第 2の位置 P 2から第 1の位置 P 1に移動しない。 このため、 第 2の位置 P 2か らスイ ッチング部 3 0が移動するようにするには、 バイアス電圧 V bを 0にするか、 あるいは、 ばね力 F gよりも小さな値となる電圧、 例えば 1 0 Vに低下する必要がある。 このようなバイアス電圧 V b の制御は、 スイ ッチング部 3 0を第 2の位置 P 2から第 1の位置 P 1 に移動するタイ ミ ングで行えば良い。 しかしながら、 例えば、 ス ィ ツチング部 3 0を駆動するクロック信号に同期して周期的に行う ことも可能である。 第 1の位置 P 1 においてバイアス電圧 V bが変 . 動しても、 保持力 F k 2が増加するだけであり、 また、 第 2の位置 P 2にスイ ッチング部 3 0を保持している場合は駆動電圧 V dが印 加されているので、 バイアス電圧 V bをオフにしてもスィ ツチング 部 3 0は動かない。 バイ アス電圧 V bをクロック信号などと同期し て周期的に変化させるのであれば、 図 1 に示したようにアレイ状に 配置された複数のスィ ツチング素子 1のベース電極 6 2の電位を一 律に制御するだけで良い。 したがって、 バイアス電圧 V bの制御回 路を複雑にしないで駆動電圧 V dをさらに低減することができる。 第 1 1図に、 駆動電圧 V dおよびバイ アス電圧 V bを用いてスィ ツチング部 3 0を制御する様子をタイ ミ ングチャー トを用いて示し てある。 時刻 t 1 にバイアス電圧 V bが 2 0 Vから 1 0 Vに減り、 駆動電圧 V dが 0 Vなると、 第 2の位置 P 2にあったスイ ッチング 部 3 0はばね力 F gによって第 1の位置 P 1 に移動する。 時刻 t 2 にバイァス電圧 V bが 1 0 Vから 2 0 Vに増力□しても第 1の位置 P 1ではばね力 F gの方が大きいのでスィ ツチング部 3 0の位置は安 定して保持できる。 時刻 t 1から 1 クロック後の時刻 t 3に 2 0 V の駆動電圧 V dが印加され、 それと同じタイ ミ ングでバイァス電圧 V bが 1 0 Vに減る。 したがって、 時刻 t 3では電極間に 3 0 Vの 電位差による静電力 F sが働くだけになるのでスィ ッチング部 3 0 は動かない。 しかしながら、 時刻 t 4にバイ アス電圧 V bが増加す ると、 電極間に 4 0 Vの電位差による静電力 F sが働き、 スィ ッチ ング部 3 0は第 1の位置 P 1から第 2の位置 P 2に移動する。 時刻 t 3から 1 クロ ック後の時刻 t 5 に駆動電圧 V dが 0 Vになると時 刻 t 1 と同様にスィ ッチング部 3 0が第 2の位置 P 2から第 1の位 置 P 1 に移動する。 このように、 バイアス電圧 V bをクロック周期 で第 2の位置 P 2でばね力 F gに達しないように増減することによ り、 ばね力 F gを上回るバイアス電圧 V bを印加することが可能で あり、 さらに、 駆動電圧 V dに応じてスイ ッチング部 3 0を動かす ことが可能となる。 したがって、 駆動電圧 V dはバイアス電圧 V b の分だけ低くすることができる。 このため、 駆動電圧 V dを制御す る制御部 7 0の構成を更に簡略化でき、 耐電圧も低くできるのでコ ンパク 卜にできる。 また、 駆動電圧の電源電圧も低くできるので消 費電力を削減できる。
さらに、 時刻 t 6に駆動電圧 V dが高レベルになってスィ ッチン グ部 3 0が第 2の位置に移動した後、 次のク口ック周期である時刻 t 7で駆動電圧 V dが維持されるとバイ アス電圧 V bが減っても電 極間には 3 0 Vの電位が印加された状態となるので静電力 F sがば ね力 F gを上回りスイ ッチング部 3 0は移動しない。 同様に、 時刻 t 8に駆動電圧 V dが 0 Vになってスィ ツチング部 3 0が第 1の位 置 P 1に移動し、 次のク口ック周期で時刻 t 9 に駆動電圧 V dが印 加されないと、 バイ アス電圧 V bが増減しても第 1 の位置 P 1では 静電力 F sがばね力 F gを上回らないのでスイ ッチング部 3 0は移 動しない。 このよう に、 バイアス電圧 V bを周期的に増減させても、 駆動電圧 V dによってスイ ッチング部 3 0の全ての動きを制御する ことができる。 本例では、 駆動電圧 V dが高レベルに変化するとき にスィ チング部 3 0の動作にバイァス電圧 V bが増減する間だけ 遅れが生ずることになるが、 バイアス電圧 V bが増減する時間はば ね力 F gによってスイ ッチング部 3 0が始動する間だけで良いので 非常に短い時間で良く、 画像表示などにおいて影響が生ずる可能性 は非常に小さい。
本例では、 バイアス電圧 V bを 1 0 — 2 0 Vの範囲で増減してい るが、 バイアス電圧 V bを 0— 2 0 Vの範囲で変化させても良いこ とはもちろんである。 しかしながら、 第 2の位置 P 2でス ト ッパー 6 5 を設けてあるために静電力 F sが無限大に大き くなることはな く、 バイアス電圧 V bを 1 0 Vに低減するだけでばね力 F "が上回 つてスィ ツチング部 3 0を移動できることは上述した通りである。 したがって、 バイアス電圧 V bの変動範囲も 1 0— 2 0 Vの範囲と して、 バイアス電圧 V bの制御にかかる回路を簡略化でき、 また、 ベース電圧の増減に伴う消費電力も低減することができる。
もちろん、 上記に示した駆動電圧およびバイアス電圧はそれぞれ のケースを検討するために例示した値であり、 上述した条件を満た す電圧であれば、 以上に示した値でなくても対応する効果が得られ ることはもちろんである。 また、 本例に示した駆動電圧およびバイ ァス電圧の値は、 第 1 0図に仮定した条件における値であり、 本発 明にかかる駆動電圧およびバイァス電圧が本明細書に例示した値に 限定されないこともちろんである。
〔第 2の実施の形態〕
第 1 2図に、 本発明にかかる上記と異なる光スイ ッチング素子 1 を示してある。 本例の光スイ ッチング素子 1 も、 エバネセン ト波を 抽出して出射光 1 2を照射可能な光スイ ッチング素子であり、 導光 部 2 0、 反射型の光スィ ッチング部 3 0、 区動部 4 0および制御部 7 0がこの順番に積層された階層構造になっている。 このため、 上 記の実施の形態と共通する部分については、 同じ符号を付して説明 を省略する。 本例の光スイ ッチング素子 1は、 駆動部 4 0にスイ ツ チング部 3 0を第 1の位置 P 1から第 2の位置 P 2に動かすための 電極 6 0および 6 2のペア (以下では第 2の電極ペアとする) E 2 に加え、 第 2の位置 P 2から第 1の位置 P 1 に動かすための電極 6 4および 6 6のペア (以下では第 1の電極ペア) E 1が設けられて いる。 このため、 スぺ一サ 4 2からプリズム 3 4を支持するための バッファ部材 3 5の側面に、 略コの字方のき り欠き 3 8が対称な位 置に設けられている。 そして、 このスペース 3 8に支柱 4 4から延 ばした補助柱 4 7が挿入されており、 柱側に電極なる電極 6 6が固 定され、 バッ ファ部材 4 5の側にベース電極 (共通電極) となる電 極 6 4が固定されている。 このため、 本例の光スイ ッチング素子 1 においては、 第 1および第 2の電極ペア E 1および E 2を備えた静 電駆動手段によ りオンオフの両方の状態を制御することができるの で、 より安定した駆動制御が可能であり、 いっそう信頼性の高い光 スイ ッチング素子 1を提供することができる。
本例の光スイ ッチング素子 1 においては、 さらに、 ヨーク 5 0は 第 1の位置 P 1および第 2の位置 P 2の中間位置 P 3が平衡、 すな わち、 変位 Xが 0 となるように設定されている。 このため、 スイ ツ チング部 3 0は、 第 1の位置 P 1から中間位置までヨーク 5 0の弾 性力 F gで移動し、 その後、 電極 6 0および 6 2の第 2のペア E 2 の静電力 F sで第 2の位置 P 2 まで移動する。 逆方向には、 第 2の 位置 P 2から中間位置 P 3まで弾性力 F gで移動し、 その後は、 電 極 6 4および 6 6の第 1のペア E 1の静電力 F sで第 1の位置 P 1 まで移動する。 そして、 第 1の位置 P 1では、 第 1のペア E 1の静 電力 F sが保持力となって働く。 また、 電極 6 4および 6 6の間隔 は、 第 1の位置 P 1 において全反射面 2 2がス ト ッパ一となってギ ヤ ップ Gが開く ように設定されており、 第 2の位置 P 2 と同様に第 1の位置 P 1 においても静電力 F sを一定の範囲に止められるよう になっている。
パネ部材であるヨーク 5 0の平衡な位置が第 1および第 2の位置 の中間位置 P 3であり、 第 1および第 2の電極ペア E 1および E 2 によって中間位置から第 1の位置 P 1の間と中間位置から第 2の位 置 P 2の間を駆動する駆動部 4 0においては、 それそれの電極ペア E 1および E 2が静電駆動手段として機能する間隔は第 1および第 2の位置の間隔 d 0の半分でよい。 したがって、 スイ ッチング部 3 0の移動間隔 d 0は変えずに、 静電力 F sが働く間隔を半分にでき るので、 上記の式 ( 2 ) から分かるように間隔 dを半分にすること ができ、 これに伴い同じ静電力 F sを得るための駆動電圧 V dも半 分となる。 さらに、 第 1の位置 P 1 において静電力 F sを保持力と して利用できるので、 ばね力 F gで保持力を確保するための初期変 位 χ θは不要となる。 したがって、 この初期変位 X 0に対抗するた めに要求された静電力 F sの分も不要となるので、 さらに駆動電圧 V dを下げることができる。
第 1 3図に基づきさらに説明する。 第 1 3図において、 ヨークの . 変位 Xが 0の位置が第 1の位置 P 1 とし、 変位 Xが 0 . 5〃mの位 置が第 2の位置 P 2 とすると、 この駆動系は、 第 1の位置 P 1で保 持力は得られないが、 ばね力 F gによって第 2の位置 P 2から第 1 の位置 P 1 にスイ ッチング部 3 0 を移動することができるものとな る。 このようなばね力 F gに対し、 第 1の位置 P 1から第 2の位置 P 2 まで安定点のない静電力 F sを得ることができる駆動電圧 V d であれば、 スィ ツチング部 3 0を第 1の位置 P 1から第 2の位置 P 2 に移動することができる。 第 1 3図に示した例では、 駆動電圧 V dが 2 0 Vのときにばね力 F gに逆らってスイ ッチング部 3 0を移 動することができる。 したがって、 このケースは、 第 1 0図に示し たものと同じ構成のスイ ッチング素子で、 ばね力 F gによって第 1 の位置 P 1で保持力が得られない場合に相当する。 すなわち、 保持 力が得られない程度のばね力 F gに逆らってスィ ツチング部 3 0を 駆動するのに 2 0 Vの駆動電圧 V dが必要となっている。
一方、 第 1 2図に示した 2つの電極ペア E 1および E 2 を備えた 本例のスイ ッチング素子 1 においては、 第 1 3図にカギ括弧で示し たようにコアの変位 Xが 0の位置を中間位置 P 3 とし、 コアの変位 Xが 0 . 2 5の位置を第 1の位置 P 1 または第 2の位置 P 2 とする ことができる。 そして、 電極 6 0および 6 2からなる第 2の電極ぺ ァ E 2が中間位置 P 3からばね力 F gに逆らってスイ ッチング部 3 0を第 2の位置 P 2に動かし、 同様に、 電極 6 4および 6 6からな る第 1の電極ペア E 1が中間位置 P 3からばね力 F gに逆らってス イ ッチング部 3 0を第 1の位置 P 1 に動かす。 電極ペア E 1および E 2によってスィ ツチング部 3 0を駆動する様子は同じなので、 電 極ペア E 2に基づき説明すると、 中間位置 P 3からばね力 F gに逆 らつてスイ ッチング部 3 0を動かすためには、 中間位置 P 3から第 2の位置 P 2の間で安定点を持たない静電力 F sが得られる駆動電 圧 V dを印加すれば良い。 本例では、 7 Vの駆動電圧 V dを印加す ればスィ ツチング部 3 0を中間位置 P 3から第 2の位置 P 2に動か すことができる。 したがって、 本例のスイ ッチング素子 1 において は、 2つの電極ペア E 1および E 2に 7 Vの駆動電圧 V dを交互に 印加することによりスイ ッチング部 3 0を駆動できる。 このため、 上記と比較すると駆動電圧 V dを 2 0 Vから 7 Vへと、 略 1 / 3に 削減することが可能となる。 さらに、 中間位置 P 3から第 1の位置 P 1 に静電力 F sを用いて動かし、 その静電力 F sで保持できるの で、 第 1の位置 P 1 にスイ ッチング部 3 0を保持する保持力を得る ことも可能となる。
さらに、 上記の実施の形態と同様に、 本例においてもバイアス電 圧 V bを印加することによ り、 さらに駆動電圧 V dを下げることが できる。 第 1 4図は、 第 1 3図に示したばね力 F と静電力 F sを 拡大して示したものであり、 さらに、 電圧 V dが 5 V , 4 Vおよび 2 Vの静電力 F sを加えて示してある。 バイアス電圧 V bとして 2 Vを電極 6 0および 6 2、 6 4および 6 6の間に印加すると、 中間 位置 P 3においては 5 Vの駆動電圧 V dを印加することにより駆動 電圧 V dが 7 Vのときの静鼋カ F sが得られる。 したがって、 5 V の駆動電圧 V dでスイ ッチング部 3 0を駆動することができる。 ま た、 第 1の位置 P 1 または第 2の位置 P 2においては、 バイアス電 圧 V bが 2 Vの静電力 F sよ りもばね力 F gの方が大きくなるので、 5 Vの駆動電圧 V dをオンオフするだけでスィ ツチング部 3 0を駆 動することができる。 また、 2つの電極ペア E 1および E 2に同じ バイアス電圧 V bを印加するので、 中間位置 P 3ではバイアス電圧 V bによる静電力 F sがつりあい、 中間位置 P 3が変動することは 少ない。 一方、 いずれかの位置に向かってスイ ッチング部 3 0が移 動を開始すると他方の電極ペアの間隔は広くなり、 静電力 F sが距 離の二乗に反比例して減少する。 したがって、 いったん何れかの電 極ペアの方向にスィ ツチング部 3 0が移動を開始すると、 他方の電 極ペア間のバイァス電圧 V bによる影響はほとんど生じない。
このようなバイアス電圧 V bは、 スイ ッチング部 3 0と共に移動 する第 2の電極ペア E 2のベース電極 6 2 と、 第 1の電極ペア E 1 のベース電極 6 4に共通の電位を印加しておく ことにより供給でき る。 さらに、 駆動電圧 V dと同極性のバイアス電圧を印加するには- 駆動電圧の基準電圧よ りも低い電圧、 例えば基準電圧が 0 Vである ときに一 2 Vをバイアス電圧 V bとしてベース電極 6 2および 6 4 に共通に印加しておく ことにより実現できる。
バイァス電圧 V bを更に上げて 4 Vのバイァス電圧 V bを印加す ることも可能である。 この場合、 3 Vの駆動電圧 V dを印加するこ とにより 7 Vの静電力 F sを得ることが可能であり、 スイ ッチング 部 3 0を 3 Vの駆動電圧 V dで駆動することができる。 中間位置 P 3では、 バイアス電圧 V bが 2つの電極ペア間でつりあっているの で、 3 Vの静電力 F sのみが有効であるが、 ばね力 F gが 0である のでスィ ッチング部 3 0は移動を開始し、 いつたん移動を始めると 上述したように他の電極ペアのバイアス電圧 V bの影響はほとんど なくなるので、 ばね力 F gと安定点が生ずることなく、 スムーズに スィ ツチング部 3 0を移動できる。
一方、 第 1の位置 P 1あるいは第 2の位置 P 2においては、 4 V のバイアス電圧 V bによる静電力 F sの方がばね力 F gよりも強く なるので、 駆動電圧 V dをオフにしてもスイ ッチング部 3 0は移動 を開始しない。 したがって、 この場合は、 クロック信号と同期して バイアス電圧 V bを 0 Vまたはばね力 F gが勝る 2 Vに減らす必要 がある。 そして、 4 Vのバイアス電圧 V bをクロック信号と同期し て増減することにより、 3 Vの駆動電圧 V dを交互に第 1および第 2の電極ペアに与えることによりスィ ツチング部 3 0を駆動するこ とができる。 したがって、 本例のスイ ッチング素子 1 においては、 上記の実施の形態で説明した最も一般的に採用される 5 0 Vという 高電圧の駆動電圧を 3 Vという半導体回路で使いやすい電圧レベル まで低減することができる。 このため、 制御部 7 0の回路規模を非 常に縮小することが可能となり、 また、 消費電力も大幅に低減でき る。
第 1 5図に、 本例のスィ ツチング素子 1のスィ ツチング部 3 0を 駆動電圧 V dおよびバイアス電圧 V bを用いてスイ ッチング部 3 0 を制御する様子をタイ ミ ングチャートを用いて示してある。 時刻 t 1 1にバイアス電圧 V bが 4 Vから 2 Vに減り、 スイ ッチング部 3 0を第 2の位置 P 2に向かって駆動する第 2の電極ペア E 2の駆動 電位 V d 2をオフ ( 3 Vから 0 V ) にすると、 第 2の電極ペア E 2 の全電圧は 7 Vから 2 Vに減少する。 したがって、 ばね力 F gが静 電力 F sよりも大きくなるので、 スイ ッチング部 3 0が第 2の位置 P 2から中間位置 P 3に向かって移動する。 時刻 t 1 2に、 スイ ツ チング部 3 0を第 1の位置 P 1 に向かって駆動する第 1の電極ペア E 1の駆動電位 V d 1がオン ( 0 Vから 3 V ) になり、 バイアス電 — 圧 V bが 4 Vになると、 第 1の電極ペア E 1の全電圧は 7 Vとなり、 スイ ッチング部 3 0は第 1の位置 P 1 に移動して、 その位置で保持 される。 このとき、 バイアス電圧 V bによって、 第 2の電極ペア E 2の全電圧が 4 Vになるが、 第 2の電極ペア E 2の間隔が広く開い ているので、 その静電力 F sはほとんど無視できる状態となる。 時刻 t 1 1から 1 クロック後の時刻 t 1 3にバイアス電圧 V bが 4 Vから 2 Vに減り、 第 1の電極ペア E 1の駆動電圧 V d 1がオフ になると、 スイ ッチング部 3 0は第 1の位置 P 1から中間位置 P 3 に向かって移動を開始する。 そして、 時刻 t 1 4に第 2の電極ペア E 2の駆動電圧 V d 2がオンになり、 バイアス電圧 V bが 4 Vにな ると、 第 2の電極ペア E 2の全電圧は 7 Vとなるので、 スイ ッチン グ部 3 0は第 2の位置 P 2に動いて保持される。
さらに、 時刻 t 1 3から 1 クロック後の時刻 t 1 5にバイアス電 圧 V bが減り、 駆動電圧 V d 2がオフになり、 それに続いて駆動電 圧 V d 1がオンになるとスイ ッチング部 3 0は第 2の位置 P 2から 第 1の位置 P 1に移動する。 この状態で、 時刻 t 1 5から 1 クロヅ ク後の時刻 t 1 6にバイアス電圧 V bが減っても、 駆動電圧 V d 1 がオンの状態だと、 第 1の電極ペア E 1の全電圧は 5 Vに維持され るので、 スイ ッチング部 3 0は第 1の位置 P 1 に保持された状態と なる。 逆に、 時刻 t 1 7に駆動電圧 V d 1がオフになり、 駆動電圧 V d 2がオンになってスイ ッチング部 3 0が第 2の位置に動いた後、 クロック周期で時刻 t 1 8および時刻 t 1 9 にバイアス電圧 V bが 4 Vから 2 Vに減っても駆動電圧 V d 2がオンになっているのでス イ ッチング部 3 0は第 2の位置 P 2に保持される。 そして、 時刻 t 2 0に駆動電圧 V d 2がオフになり、 駆動電圧 V d 1がオンになる とスイ ッチング部 3 0は第 2の位置 P 2から第 1の位置 P 1に移動 する。 このように、 本例のスイ ッチング素子 1 においては、 駆動電圧 V dを 0— 3 Vで変化させることによ り、 スィ ツチング部 3 0を駆動 することができる。 また、 バイアス電圧 V bも 2— 4 Vの範囲をク ロック周期で変化させるだけでよい。 したがって、 本例のスィ ッチ ング素子 1はスイ ッチング部 3 0を駆動するための電圧を大幅に低 減することができ、 通常のバッテリの電源レベルで駆動することが 可能となる。 さらに、 これに共ない、 図 1 に示した複数のスィ ッチ ング素子をアレイ状に配置した画像表示装置もバッテリの電圧レべ ルの電圧で駆動することができる。 このように駆動電圧を下げるこ とによ り、 制御回路で制御可能な電圧レベルを下げることができ、 また、 耐電圧特性も低くて良いので、 スイ ッチング素子およびこれ を用いた画像表示装置を従来の半導体集積回路で直接駆動すること も可能となる。 また、 電源電圧が低くてよいので、 消費電力も大幅 に低減できる。 一方、 スイ ッチング素子としての性能、 例えば、 ョ —ク 5 0の弾性係数、 スイ ッチング素子の移動距離、 さらには、 ス イ ッチング部 3 0をオン位置で保持する能力などをそのまま維持す ることができる。 したがって、 コン トラス トが高く、 高速で安定し た動作ができるスイ ッチング素子を低コス トで供給することができ る。 また、 このスイ ッチング素子をアレイ状に配置することにより- 解像度が高く、 明るい画像を高速で表示でき、 低消費電力の画像表 示装置を低コス トで提供することができる。
なお、 このような駆動制御は、 エバネセン ト波を利用した光スィ ツチング素子に限らず、 他の、 スイ ッチング部となる平面要素を平 行に動かす空間光変調装置、 さらには、 マイクロ ミラ一デバイスの ように平面要素の角度を変えて光をオンオフする空間光変調装置な ど、 スイ ッチング部の位置を変えて入射光を変調したり、 偏光方向 あるいは反射光の位相を変化させるなどのさまざまなタイプの空間 光変調装置に適用できる。 スィ ッチング部の姿勢制御
〔第 2の実施の形態〕
第 1 6図に、 上記と異なる光スイ ッチング素子 1 を示してある。 本例の光スイ ッチング素子 1 も、 エバネセン ト波を利用した光スィ ツチング素子である。 上記と共通する部分については同じ符号を付 して説明を省略する。 本例の光スイ ッチング素子 1 も、 第 1 6図 ( a ) に示すように、 スイ ッチング部 3 0の抽出面 3 2が全反射面 2 2 と平行な向き (第 1の方向) で接近あるいは密着してエバネセ ン 卜光を抽出できる位置 (第 1の位置) になると、 導光部 2 0から 入射光 1 0がスイ ッチング部 3 0に抽出される。 そして、 マイクロ プリズム 3 4によりほぼ垂直な出射光 1 1 となり出力される。 第 1 6図 ( b ) に示すように、 スイ ッチング部 3 0が第 1の位置から離 れ、 抽出面 3 2が全反射面 2 2から離れた位置 (第 2の位置) にな ると、 入射光 1 0は全反射面 2 2で全反射され導光部 2 0からエバ ネセン ト光として抽出されず、 出射光 1 1は得られない。
光スィ ッチング素子のスィ ッチング部の動きは駆動部 4 0のパネ 部材であるヨークと電極を用いた静電駆動手段によって制御される が、 本例の光スイ ッチング素子においてはスイ ッチング部がその中 心に対して非対称な動きを行うようになっている。 このため、 図面 上の左右に配置されたヨーク 5 0 とヨーク 5 2の材質、 厚み、 幅な どが変えられている。
第 1 7図にはヨーク 5 0および 5 2の幅が異なる例である。 第 1 7図は、 スイ ッチング部 3 0を下 (駆動部 4 0の方向) から見た様 子であり、 略直方体状の対称な形状のスイ ッチング部 3 0は、 その 立体中心点 (体心) 1 4 aに対して対称な 4方向に放射状に延びて いるヨーク 5 0および 5 2によりボス ト 4 4から支持されている。 光スィ ツチング素子 1の体心 1 4 aを通り図面の上下に延びる方向 に立体中心線 1 4を仮定すると、 この立体中心線 1 4の図面上の左 側の区画 1 2 aと右側の区画 1 2 bに配置された各々 2本のヨーク 5 0 とヨーク 5 2は材質および厚みは同じで、 幅が変えられている ( すなわち、 ヨーク 5 0の幅 Wがヨーク 5 2の幅 Wよ りも狭くなつて いる。 このため、 駆動部 4 0の一部として弾性的にスイ ッチング部 3 0を支持するヨーク 5 0 とヨーク 5 2は、 その弾性力、 すなわち、 バネ係数が異なり、 左側の区画 1 2 aの弾性力が右側の区画 1 2 b の弾性力より も弱くなる。 したがって、 本例の光スイ ッチング素子 においては、 スイ ッチング部 3 0が立体中心線 1 4の左右で異なつ た弾性定数のヨーク (支持部材) 5 0および 5 2で支持されている ( 一方、 スィ ッチング部自体は左右の形状が対称なので体心 1 4 aと 重心 1 4 bの位置は一致している。 このため、 スイ ッチング部 3 0 は重心 1 4 bに対し左右で非対称な弾性定数を備えた支持部材によ つて支持されていることになり、 駆動部 4 0の静電駆動手段である 電極 6 2および 6 0に電力を供給して静電力でスィ ツチング部 3 0 を駆動すると、 左右でアンバランスな力がスイ ッチング部 3 0に作 用する。 この結果、 スイ ッチング部 3 0は全反射面 2 2に対し水平 に動かず、 傾いた状態で移動する。
第 1 8図に、 本例のスィ ツチング部 3 0が傾いた状態で移動する 様子を段階的に示してある。 第 1 8図 ( a ) は第 1 6図 ( a ) に示 したスィ ツチング部 3 0が第 1の位置にある状態を示しており、 こ の第 1の位置では、 スイ ッチング部 3 0の抽出面 3 2が導光部 2 0 の全反射面 2 2に接し、 第 1の方向 A、 すなわち、 本例においては 図面の上方を向き、 光スィ ツチング素子 1は出射光を出力するオン 状態になっている。 この第 1の位置においては、 駆動部 4 0の電極 6 2および 6 0に対して電源部 6 1から電力は供給されておらず、 スイ ッチング部 3 0はヨーク 5 0および 5 2の発生する弾性力によ つて導光部 2 0の全反射面 2 2に押し付けられ、 抽出面 3 2 と全反 射面 2 2がほぼ密着した状態となっている。
次に、 第 1 8図 ( b ) に示すように、 電源部 6 1をオンし、 駆動 部 4 0の電極 6 2 と電極 6 0に電力を供給するとこれらの電極 6 2 および 6 0の間に静電力が働きスィ ツチング部 3 0が基板 7 0の電 極 6 0に引寄せられる。 本例においては、 スイ ッチング部 3 0の電 極 6 2および基板 7 0の電極 6 0の面積、 形状および間隔は立体中 心線 1 4に対し対称に分布しているので、 左右対称な静電力がスィ ツチング部 3 0に作用する。 しかしながら、 静電力に対抗するよう に働く ヨーク 5 0および 5 2の弾性力は、 上述したようにヨーク 5 0および 5 2の幅が異なるので左右で弾性係数が異なり、 発生する 弾性力も異なる。 この結果、 スイ ッチング部 3 0に作用する駆動力 の分布は立体中心線 1 4の左右で異なり、 第 1 8図 ( b ) に示した スィ ツチング部 3 0を第 1の位置から第 2の位置に移動する過程の 移動初期においては左側の区画 1 2 aの駆動力が右側の区画 1 2 b の駆動力よ りも大きくなる。 したがって、 スイ ッチング部 3 0の左 側の区画 1 2 aの方が先に移動を開始し、 これに続いて右側の区画 1 2 bが移動を開始し、 移動初期において抽出面 3 2が第 1の方向 Aに対し傾いた状態となる。
抽出面 3 2が傾いた状態で移動を開始すると、 第 1 8図 (b ) に 示すように、 抽出面 3 2はその左側から徐々に全反射面 2 2から剥 離し、 抽出面 3 2 と全反射面 2 2 との間に空間 1 7が形成される。 そして、 この空間 1 7にスイ ッチング部 3 0の周囲の流体、 本例に おいては空気 1 6が流入し、 スイ ッチング部 3 0が第 2の位置に向 かって第 1の方向 Aと反対側の矢印 Xの方向に移動を開始する。 そ して、 スイ ッチング部 3 0が移動すると、 空間 1 7は徐々に右側に 広がりながら大きくなり、 その空間 1 7に徐々に空気 1 6が流入す る。 このように、 抽出面 3 2が傾いた状態で移動が開始されると、 初期に全反射面 2 2 との間に形成される空間の体積は非常に小さく、 そこに流入する空気の量も少なくて済むので空気抵抗は非常に小さ い。 これに対し、 抽出面 3 2を第 1の方向 Aに向けて全反射面 2 2 と平行な状態に保ったまま移動を開始すると、 移動初期に抽出面 3 2の全体が剥離するために形成される隙間が非常に大きくなり、 流 入する空気の量も多くなる。 したがって、 空気の抵抗は非常に大き い。 このため、 本例のように、 移動初期に抽出面 3 2の向きを第 1 の方向 Aに対し傾けることにより、 空気抵抗を減少することが可能 であり、 移動初期における駆動力が小さ くて済み、 移動が開始され るまでの時間を短縮することができる。
特に、 本例のエバネセン ト光を利用した光スィ ツチング素子 1 に おいては、 抽出面 3 2 と全反射面 2 2 との間に若干の隙間が生じ、 さらに抽出面 3 2の角度が変わるとエバネセン ト光の抽出量が極端 に低下すると共に出射光の方向も変わる。 したがって、 出射光が所 定の方向に出力されるオンの状態から出射光が出力されない、 ある いは出射光の方向が変わるオフの状態にすばやく変化する。 このた め、 移動初期に抽出面 3 2の角度を変えることにより、 オン状態か らオフ状態への移行速度を非常に速くすることができる。
スイ ッチング部 3 0は第 1 8図 ( b ) に示すように、 移動中も進 行方向 Xに対し傾いた状態となる。 したがって、 移動方向 Xに存在 する流体 (空気) に対し、 スイ ッチング部 3 0の底面、 すなわち、 電極 6 2は傾いた状態で進み、 空気 1 6はスイ ッチング部 3 0の電 極 6 2の進行方向に対し傾いた表面に沿ってスムーズに流れ空気抵 抗は小さい。 これに対し、 抽出面 3 2を第 1の方向 Aに保ったまま. 電極 6 2が進行方向 Xに垂直な状態で移動すると、 電極 6 2 と電極 6 0 との間で空気 1 6を圧縮するようになるので、 空気抵抗は大き い。 このように、 移動中においても、 スイ ッチング部 3 0の抽出面 3 2を傾けることにより、 空気抵抗を減らすことができ、 移動速度 を速くすることができる。
第 1 8図 ( d ) は、 先に第 1 6図 ( b ) で説明したスィ ツチング 部 3 0が基板 Ί 0の電極 6 0にもつとも接近して停止した第 2の状 態を示しており、 本例の光スイ ッチング素子 1においては、 この第 2の位置でスィ ツチング部 3 0の抽出面 3 2は第 1の位置と同様の 方向 Aを向く ようになつている。 しかしながら、 第 1 8図 ( c ) に 示すように、 スイ ッチング部 3 0が停止直前の移動末期においても、 抽出面 3 2は第 1の方向 Aに対し傾いている。 このため、 電極 6 2 と電極 6 0 との間の空間は、 立体中心線 1 4に対し左側の区画 1 2 aの側から徐々に小さくなる。 したがって、 電極 6 2 と電極 6 0 と の間の空気は空間 1 7が斜めに徐々に狭くなるので、 右側の区画 1 2 bの方向にスムーズに流れ、 電極 6 2 と電極 6 0 との間から放出 される。 この結果、 移動末期においても電極 6 2 と電極 6 0 との間 にある流体 (空気) 1 6による抵抗は非常に小さくなり、 スィ ッチ ング部 3 0は第 2の位置にすばやく到達する。 また、 移動末期にお いてスイ ッチング部 3 0が空気抵抗を受け難いので安定した位置に 停止する。
本例の光スィ ツチング素子 1は、 電源部 6 1 をオフすることによ り、 電極 6 2および 6 0の間の静電力がなくなるので、 駆動部 4 0 のヨーク 5 0および 5 2の弾性力でスィ ツチング部 3 0が第 1 8図 ( d ) に示した第 2の位置から、 図 1 8図 ( a ) に示した第 1の位 置に移動する。 この際は、 右側の区画 1 2 bのヨーク 5 2の弾性力 が左側の区画 1 2 aのヨーク 5 0の弾性力よ りも大きくなるので、 スイ ッチング部 3 0に対しては右側に大きな駆動力が作用する。 し たがって、 抽出面 3 2が第 1の方向 Aに対し図面の左側に傾いた状 態で移動を開始し、 第 1 8図 ( a ) ないし ( d ) に示した状態を逆 の順番で迪り第 2の位置から第 1の位置に移動する。 このため、 ス イ ッチング部 3 0が第 2の位置から第 1の位置に移動する際もスィ ツチング部 3 0の周囲に存在する気体の抵抗を抑制することができ、 移動速度を向上することができる。 このように、 本発明の光スイ ツ チング素子 1は、 オンオフ動作 (変調動作) の際に、 いずれの方向 に移動するときもスィ ツチング部 3 0が第 1の方向 Aに対し傾いて 剥がれ始め、 傾いた状態で移動し、 さらに傾いた状態から第 1の方 向 Aに向きながら停止する。 このため、 いずれの状態でもスィ ッチ ング部 3 0が受ける空気 1 6の抵抗を小さ くすることができ、 高速 で移動し、 応答速度の速い光スイ ッチング素子、 すなわち、 空間光 変調装置を提供することができる。
第 1 9図に、 本例の光スイ ッチング素子 1の移動時間を、 スイ ツ チング部 3 0が傾かずに移動する光スィ ツチング素子の移動時間と 比較して示してある。 第 1 9図 ( a ) は、 スイ ッチング部 3 0が第 1の位置から第 2の位置、 すなわち、 オン状態からオフ状態に切換 わる際の電極 6 0 と電極 6 2の距離 (間隔) dと、 切換え所要時間 (経過時間) Tとの関係を示してある。 スイ ッチング部 3 0の抽出 面 3 2が常に第 1の方向 Aを向いて移動し、 電極 6 2が電極 6 0に 対し常に平行に移動する場合は、 スイ ッチング部 3 ◦に対し先に式 ( 2 ) に示した静電力 F s と、 先に式 ( 1 ) に示したヨーク 5 0お よび 5 2の弾性力 F gと、 さらに、 空気の抵抗力 F aが主に作用し、 一点鎖線 9 1 aに示すようなカーブを描いて移動する。
これに対し、 本例の光スイ ッチング素子 1 においては、 空気の抵 抗カ; F aが上述したように削減されるので、 静電力 F sが大きくス イ ッチング部 3 0に作用する。 その結果、 実線 9 0 aに示すように、 絰過時間 Tが Δ Τ 1 ( t 2 - t 1 ) ほど短縮され、 スイ ッチング部 3 0の移動速度、 すなわち、 応答速度が向上する。
第 1 9図 ( b ) は、 第 2の位置から第 1の位置、 すなわち、 オフ 状態からオン状態に切換わる際のスィ ッチング部 3 0の移動経過を 示してある。 第 2の位置から第 1の位置に移動する間は、 上述した ように静電力 F sは作用せず、 スィ ツチング部 3 0に対してはョー ク 5 0および 5 2の弾性力 F gと、 空気抵抗 F aが作用する。 そし て、 スィ ツチング部 3 0の向きを第 1の方向 Aに保ったまま移動す る場合は、 空気抵抗 F aが大きく作用し、 一点鎖線 9 1 bのように スイ ッチング部 3 0が移動する。 これに対し、 本例の光スィ ッチン グ素子 1においては、 空気抵抗 F aが削減されているので、 実線 9 O bに示すように Δ Τ 2 ( t 5 - t 4 ) ほど速く移動できる。 した がって、 本例の光スイ ッチング素子 1は、 オンからオフに移動する 速度も、 オフからオンに移動する速度も速くなり、 全体の応答速度 を向上することができる。
このように、 スイ ッチング部 3 0を第 1の位置から第 2の位置、 あるいはその逆方向に移動するときに、 抽出面 3 2の向きを傾ける ことにより空気抵抗を小さ く し、 応答速度を速くすることができる < スイ ッチング部 3 0を傾けて移動するには、 上記のように、 スイ ツ チング部 3 0の重心 1 4 bに対し非対称な分布の駆動力を作用させ れば良く、 このため、 上記では、 重心 1 4 bを通る立体中心線 1 4 に対する左右に位置するヨーク 5 0および 5 2の幅を変えてそれそ れのヨークのばね係数を変え、 スイ ッチング部 3 0にヨーク 5 0お よび 5 2から印加される左右の弾性力の分布を非対称にしている。 ヨークのばね係数を変える要素はヨークの幅 Wだけに限定をされな いことはもちろんである。 例えば、 第 2 0図に、 ヨーク 5 0および 5 2の厚み Uを変えて、 ばね係数を調整することができる。 第 2 0 図に示した例では、 立体中心線 1 4の左側の区画 1 2 aに位置する ヨーク 5 0の厚み Uを右側の区画 1 2 bに位置するヨーク 5 2の厚 み Uより薄く してあり、 上記の例と同様にヨーク 5 0のばね係数が ヨーク 5 2のばね係数より も小さ くなるようにしている。 したがつ て、 第 2 0図に示した光スイ ッチング素子 1 においても、 スイ ッチ ング部 3 0は上記と同様に動き、 応答速度を速くすることができる ( さらに、 上記では、 ヨーク 5 0および 5 2の幅 Wあるいは厚み U によってヨークの断面積を変えることによってそれそれのヨーク 5 0および 5 2のばね係数を変えているが、 第 2 1図に示すようにョ —ク 5 0および 5 2の材質を変えてばね係数を変えることも可能で ある。 第 2 1図に示した光スィ ツチング素子 1 においては、 左側の 区画 1 2 aに位置するヨーク 5 0 と、 右側の区画 1 2 bに位置する ヨーク 5 2にばね係数の異なった材質、 例えば、 ボロン ド一プされ たシリコン膜であれば、 ボロンの濃度を変えたり、 あるいは、 他の 不純物を ドープすることによってばね係数を変えた部材を用いてい る。 もちろん、 シリコン膜の代わりに、 有機性樹脂の薄膜などをば ね係数の異なるヨークの材料として採用することも可能である。
また、 第 2 2図に示すように、 一方のヨークに材質の同じ薄膜、 あるいは材質の異なる薄膜を貼り付けることによつても左右のョ一 ク 5 0および 5 2のばね係数を変えることができる。 第 2 2図に示 した光スィ ツチング素子 1 においては、 右側の区画 1 2 bに位置す るヨーク 5 2を材質の異なる 2つの層 5 2 aおよび 5 2 bによって 形成しており、 他方の区画 1 2 aに位置するヨーク 5 0は 1つの材 質によって形成している。 このような方法によっても左右に配置さ れたヨーク 5 0および 5 2のばね係数を調整することが可能であり 上述したように、 スイ ッチング部 3 0を傾いた状態で移動させるこ とができる。
さらに、 上記では、 ヨーク 5 0および 5 2のばね係数を変えるこ とにより、 スイ ッチング部 3 0に印加される弾性力の分布を非対称 にしているが、 ヨーク 5 0および 5 2の配置を左右で変え、 スイ ツ チング部 3 0の重心 1 4 bの周囲のばね常数の分布を非対称にする ことも可能である。
第 2 3図は、 先に説明した第 1 7図に対応する図面であり、 本例 の光スィ ツチング素子 1 においては、 立体中心線 1 4の左側の区画 1 2 aに 1本のヨーク 5 0を配置し、 右側の区画 1 2 bに 2本のョ —ク 5 2を配置してある。 このようなヨーク 5 0および 5 2の配置 を採用すると、 右側の区画 1 2 bの方がヨーク 5 2の本数が多く、 弾性力が大きくなる。 したがって、 左右の弾性力の分布がアンバラ ンスになるので、 上述した例と同様にスイ ッチング部 3 0は第 1の 位置の向き (第 1の方向) に対し傾いた状態で移動し、 空気抵抗を 小さ くすることができる。
第 2 4図には、 立体中心線 1 4の左側の区画 1 2 aにはヨークを 配置せず、 右側の区画 1 2 bにのみヨーク 5 2を配置してスィ ツチ ング部 3 0を支持した例を示してある。 この光スイ ッチング素子 1 においては、 スイ ッチング部 3 0が右側の区画 1 2 bでのみ弾性的 に支持されるので、 立体中心線 1 4に対し非対称な駆動力がスイ ツ チング部 3 0に作用する。 したがって、 上記と同様に移動の初期、 間および末期においてスィ ツチング部 3 0は傾いた状態となり、 移 動中の空気抵抗を削減できので、 応答速度の速い光スィ ツチング素 子 1 を提供することができる。
この第 2 4図では、 立体中心に対して片側の区画 1 2 bにのみョ ークを配置しているが、 ヨーク 5 0あるいは 5 2の本数、 形状およ び材質などは上記にて説明したものに限定されることはなく、 例え ば 1本のヨークでスィ ツチング部 3 0を支持することも可能である c 第 2 5図および第 2 6図はその一例であり、 第 2 4図とは反対側の 区画 1 2 aに設けられた 1本のヨーク 5 0によってスイ ッチング部 3 0が支持されている。 この例でも、 立体中心線 1 4に対し非対称 な駆動力が作用し、 スイ ッチング部 3 0は移動中に傾いた状態とな る。
なお、 上記においては、 第 1 6図 ( b ) あるいは第 1 8図 ( d ) に示すように、 スィ ツチング部 3 0が電極 6 0にもつとも近づいた 第 2の位置において電極 6 2 と電極 6 0が平行になり、 抽出面 3 2 が第 1の位置の向き Aと略同じ方向を向いて停止する例を示してあ る。 しかしながら、 第 2の位置において抽出面 3 2が第 1の方向 A に対し傾いた状態とすることも有効である。
第 2 7図は、 スイ ッチング部 3 0が移動末期に傾いた状態となり、 そのままの状態でヨーク 5 2の弾性力 F gと、 電極 6 2および 6 0 によって生ずる静電力 F s とがつりあい停止する例を示してある。 すなわち、 本例の光スィ ツチング素子 1のヨーク 5 0および 5 2は、 左側の区画 1 2 aのヨーク 5 0のばね係数が、 右側の区画 1 2 の ヨーク 5 2のばね係数より も小さく、 静電力 F sが働いたときに、 左側の区画 1 2 aにおいてはスィ ツチング部 3 0の電極 6 2が電極 6 0の近傍に達しス ト ツパ 6 5で停止しているのに対し、 右側の区 画 1 2 bでは電極 6 2が電極 6 0の近傍に達しないところで力がつ りあっている。 したがって、 スイ ッチング部 3 0は傾いた状態で停 止している。
このような傾いた状態で停止していると、 移動末期に傾いた状態 から電極 6 2が電極 6 0 と平行な位置になるまで移動する時間を省 く ことができ、 また、 逆に移動初期に電極 6 2が電極 6 0から傾い た状態で剥離する時間も省く ことができる。 さらに、 第 2の位置で は、 抽出面 3 2の向きが全反射面 2 2 と平行である必要はなく、 光 スィ ツチング素子 (空間光変調装置) としての性能上はまったく問 題がない。 そして、 スイ ッチング部 3 0は移動を開始するとすでに 傾いた状態になっているので、 空気抵抗が少なくでき高速に移動で きる。 このように、 第 2の位置においてスイ ッチング部 3 0を傾い た状態にすると、 移動中の空気抵抗を削減できると共に、 スィ ッチ ング部 3 0の姿勢を変える時間も省く ことが可能であり、 さらに応 答時間を短縮し、 非常に高速で動作可能な光スィ ツチング素子を提 供することができる。
第 2 8図に示した光スイ ッチング素子 1 も、 第 2の位置において スイ ッチング部 3 0が傾いた状態で停止するようになつている。 こ のため、 本例の光スイ ッチング素子においては、 第 2の位置でスィ ツチング部 3 0を支持する左右のス ト ヅ パ 6 5 aおよび 6 5 bの高 さを変え、 スィ ヅチング部 3 0の立体中心線 1 4の左右でスィ ツチ ング部 3 0の移動可能な間隔を非対称にしている。 このように高さ の異なるス ト ツバ 6 5 aおよび 6 5 bを設けることにより、 スィ ヅ チング部 3 0の電極 6 2の右側の部分は、 先にス トツパ 6 5 bに当 たって停止し、 傾いた状態となる。 したがって、 ヨーク 5 0および 5 2あるいは電極 6 2および 6 0が左右対称な分布となっていても 第 2の位置ではスイ ッチング部 3 0は傾いた状態となり、 この状態 から移動開始するとき、 あるいはこの状態に停止する移動末期にお ける空気の抵抗を少なくすることができる。 したがって、 スィ ッチ ング部 3 0の移動時間を短縮でき、 応答速度の速い光スィ ツチング 素子を提供することができる。 なお、 上記に示した例でも同様であ るが、 これらのス ト ツバ 6 5 aあるいは 6 5 bは、 スイ ッチング部 の電極 6 2が基板の電極 6 0に直に接触するのを防止する度当たり となり、 それそれの電極が接触して短絡したり、 あるいは、 電荷に よる吸着が発生してはがれなくなるのを防止する機能も備えている c 第 2 9図には、 基板の電極 6 0の一方の側にのみス ト ヅ パ 6 5 c を設けた光スイ ッチング素子 1 を示してある。 上記のように、 ス ト ッパ 6 5の高さをスィ ッチング部 3 0の重心 (立体中心線) の左右 で非対称にする代わりに、 ス ト ツバ 6 5の配置を立体中心線 1 4の 左右で非対称にすることによつても、 第 2の位置でスイ ッチング部 3 0を傾いた状態で停止できる。 ス ト ッパ 6 5の分布を非対称にす る場合は、 電極 6 2 と電極 6 0が接触する可能性があるので、 本例 においては、 電極 6 2の外面を絶縁部材の層 6 9でコ一ティ ングし て電極 6 2 と電極 6 0が直に接触することがないようにしている。
〔第 4の実施の形態〕
以上の例では、 スイ ッチング部 3 0に対し、 その重心に対し非対 称な駆動力を作用させ、 スイ ッチング部 3 0を傾けた状態で移動す るために、 ヨーク 5 0あるいは 5 2のばね係数、 配置などを変えて 重心に対する弾性力の分布を制御しているが、 逆に、 スイ ッチング 部 3 0の重心 1 4 bの位置を非対称な位置に移動することによって 重心 1 4 bの周りの駆動力の分布を非対称にすることも可能である ( 第 3 0図に、 スイ ッチング部 3 0の立体中心線 1 4の左側の区画 1 2 aに重り (バランサ) 3 1 を追設して重心 1 4 bを左側の区画 1 2 aに移設した光スィ ヅチング素子 1 を示してある。 本例の光ス イ ツチング素子 1においては、 重心 1 4 bが体心 1 4 aを通る立体 中心線 1 4から左側にずれているので、 左右の区画 1 2 aおよび 1 2 bの質量が異なる。 したがって、 スイ ッチング部 3 0が鉛直方向 に移動するように配置されているのであれば、 この左右の区画 1 2 aおよび 1 2 bの質量の相違は、 重力加速度の相違、 すなわち重量 相違として作用する。 このため、 左右の区画 1 2 aおよび 1 2 bに 同じ弾性力 F eおよび静電力 F sが作用しても左の区画 1 2 aが重 いので上記の実施の形態と同様にスィ ツチング部 3 0は傾いて移動 する。 一方、 スイ ッチング部 3 0が水平方向に移動するように配置 されているのであれば、 弾性力 F eおよび静電力 F sの作用する質 量が相違するので、 移動するときの加速度が異なる。 したがって、 この場合でもスィ ツチング部 3 0は傾いた状態で移動する。
このように、 本例の光スイ ッチング素子 1においても、 スィ ヅチ ング部 3 0は移動初期、 移動中および移動末期において傾いた状態 で移動するのでスィ ツチング部 3 0の周囲の流体 (多くは空気であ り、 もちろん窒素などの不活性気体であってももちろん良い) から 受ける抵抗力を削減することができる。 したがって、 上記の実施の 形態と同様に応答速度のさらに速い光スィ ツチング素子を提供する ことができる。 〔第 5の実施の形態〕
さらに、 静電力 F sの分布を調整してスィ ツチング部 3 0に対す る駆動力の分布を重心 1 4 bに対し非対称にすることも可能であり、 これによりスィ ツチング部 3 0を傾けて移動させることができる。 静電力 F sは、 先に式 ( 2 ) で示したように、 電極の面積および電 圧 Vに比例し、 電極間の距離の二乗に反比例するので、 これらの要 素のいずれかについて、 その重心 1 4 bの周りの分布を非対称にす ることにより非対称な静電力を得ることができる。
第 3 1図は、 先に示した第 1 7図に対応する図面であり、 スイ ツ チング部 3 0の下面 3 7に設けられた電極 6 2の形状を立体中心線 1 4の左右でアンバランスにして重心 1 4 bに対し非対称な静電力 F sが得られるようにしている。 すなわち、 本例の電極 6 2は、 左 側の区画 1 2 aの面積が右側の区画 1 2 bの面積に対して広いほぼ 台形状となっている。 したがって、 左側の区画 1 2 aで発生する静 電力が右側の区画 1 2 bで発生する静電力より大きい。 このため、 スイ ッチング部 3 0を静電力を用いて第 1の位置から第 2の位置に 移動するときに静電力の大きな左側の区画 1 2 aが先に移動を開始 し、 その結果、 スイ ッチング部 3 0は上記の実施の形態と同様に傾 いた状態で移動する。 一方、 第 2の位置から第 1の位置に移動する ときは、 本例の光スィ ッチング素子 1では静電力が作用しないので ヨーク 5 0および 5 2による弾性力が左右の区画で一定であるとす ると略平行な状態でスィ ヅチング部 3 0は移動する。
なお、 スィ ッチング部の電極 6 2の形状がスィ ツチング部 3 0の 底面 3 7の形状に一致しないと、 電極 6 2に対し電力を供給する役 目を兼ね備えたヨーク 5 0および 5 2 との電気的な接続が取り難く なる。 このため、 本例においては、 スイ ッチング部 3 0の底面 3 7 の縁にそって接続用の電極 6 2 t を設けて電極 6 2 とヨーク 5 2 と を電気的に接続している。
第 3 2図に、 立体中心線 1 4の左右の区画 1 2 aおよび 1 2 bで 電極 6 2の面積を変えた異なった例を示してある。 本例の光スイ ツ チング素子 1においては、 スイ ッチング部の電極 6 2がほぼ T字型 となっており、 左側の区画 1 2 aに底面 3 7 よりやや大き目のほぼ 長方形状の電極 6 2 aが設けられ、 これに接続するように、 右側の 区画 1 2 bにはそのほぼ中央に左側の電極 6 2 aの半分程度の面積 で方形の電極 6 2 bが設けられている。 本例に限らず、 電極 6 2が スイ ッチング部 3 0の立体中心線 1 4対し非対称で面積が異なるよ うな形状であれば、 左右の区画 1 2 aおよび 1 2 bで生ずる静電力 の大きさが異なるので、 上記のようにスイ ッチング部 3 0を傾いた 状態で駆動することができる。 したがって、 空気抵抗が少なく、 応 答速度の速い光スィ ツチング素子を提供することができる。 もちろ ん、 スィ ッチング部の電極 6 2の代わりに、 基板の電極 6 0の形状 を変えることも可能であり、 あるいは両方の電極 6 2および 6 0の 形状を非対称にして静電力の分布を非対称にすることも可能である 第 3 3図に、 電極 6 2あるいは電極 6 0の形状を非対称にする代 わりに、 電極 6 2および電極 6 0 との間隔 dを立体中心線 1 4に対 し非対称にした例を示してある。 本例の光スィ ツチング素子 1にお いては、 左側の区画 1 2 aの電極 6 2 aの厚みに対し、 右側の区画 1 2 bの電極 6 2 bの厚みが大きくなつている。 したがって、 スィ ツチング部 3 0がオン状態の第 1の位置に居るときは、 右側の区画 1 2 bの電極 6 2 bと電極 6 0の間隔 dが、 左側の区画 1 2 aの間 隔 dよりも狭くなつている。 このため、 電極 6 2および電極 6 0に 電力が供給されると、 右側の区画 1 2 bの静電力の方が左側の区画 1 2 aの静電力より も大きくなる。 したがって、 本例の光スイ ッチ ング素子においては、 スイ ッチング部 3 0が第 1の位置から第 2の 位置に移動するときは、 上記の実施の形態と異なり、 右側の区画 1 2 bの側から剥離して傾いた状態で移動を開始する。
一方、 第 2の位置に到達した移動末期においては、 厚みの大きな 右側の電極 6 2 bの方が先に電極 6 0に当たり、 次に左側の電極 6 2 aが電極 6 0に当たつて停止する。 このため、 移動開始のときと は異なった向きに傾いてスイ ッチング部 3 0は停止する。 さらに、 この第 2の位置から第 1の位置に移動するときは、 静電力が切られ るので、 ヨーク 5 0および 5 2の弾性力によってスィ ツチング部 3 0が移動する。 この際、 第 2の位置においてスイ ッチング部 3 0は 傾いた状態になっているので、 移動初期および移動中も傾いたまま となり、 さらに、 第 1の位置に到達すると、 スイ ッチング部 3 0の 抽出面 3 2が導光部 2 0の全反射面 2 2に当たる。 このため、 抽出 面 3 2の向きは傾いた状態から全反射面 2 2に密着する向きに方向 を変え、 オン状態となる。
このように、 本例の光スイ ッチング素子 1は、 移動初期、 移動中 および移動末期において傾いた状態となり、 さらに、 第 2の位置に おいても傾いた状態で停止する。 したがって、 移動速度が速く、 ォ ン.オフの移動期間も短くなり、 応答速度の速い光スイ ッチング素子 を提供することができる。
なお、 本例においては、 電極 6 2の厚みを左右で変えて、 電極 6 2が電極 6 0に当たって停止するようにしている。 このため、 直に 電極 6 2 と電極 6 0が接触すると短絡などの問題があるので、 電極 6 2を絶縁部材 6 9でコーティ ングして直に接触するのを防いでい る。
第 3 4図に、 スィ ツチング部の電極 6 2の代わりに、 基板の電極 6 0の厚みを変えた例を示してある。 本例の光スィ ッチング素子 1 においては、 立体中心線 1 4の左側の区画 1 2 aの電極 6 0 aの厚 みに対し、 右側の区画 1 2 bの電極 6 O bの厚みを大きく してある, したがって、 図 1 6に基づき説明した例と同様に、 スイ ッチング部 3 0が第 1の位置にあるときは、 右側の区画 1 2 bの電極 6 0 と電 極 6 2の間隔 dが左側の区画 1 2 aよりも短くなり、 より大きな静 電力が発生する。 このため、 上記の例と同様にスイ ッチング部 3 0 は傾いて移動を開始する。
一方、 第 2の位置でスイ ッチング部 3 0が停止するときは第 3 4 図に示してあるように、 電極 6 0の高さが左右で異なるので、 この 電極 6 0にスィ ツチング部 3 0が当たって傾いた状態で停止する。 このため、 第 2の位置から第 1の位置に移動するときは、 本例でも スイ ッチング部 3 0は傾いた状態で移動し
、 いずれの方向でも空気による抵抗を削減し応答速度を改善するこ とができる。 〔第 6の実施の形態〕
上記の例では、 電極 6 2および 6 0の面積あるいは間隔を変えて 静電力の分布を非対称にしているが、 さらに、 静電力を印加する夕 ィ ミ ングを変えることにより、 スィ ツチング部 3 0の重心に対し非 対称な分布を持った駆動力を作用させることができる。
第 3 5図に、 立体中心線 1 4の左右の区画 1 2 aおよび 1 2 bで 静電力を印加する夕イ ミ ングを変えられるようにスイ ッチング部 3 0の電極 6 2を左右 6 2 aおよび 6 2 bに分割した光スィ ツチング 素子 1を示してある。 本例においては、 電極 6 2が立体中心線 1 4 に沿って 2つの電極 6 2 aおよび 6 2 bに分割されており、 ここの 電極 6 2 aおよび 6 2 bは立体中心線 1 4に対し対称な形状になつ ている。 したがって、 ここの電極 6 2 aおよび 4 2 bに別々のタイ ミングで電力を供給することにより、 立体中心線 1 4に対し非対称 な分布を持つ駆動力をスイ ッチング部 3 0に作用させることができ る。
第 3 6図および第 3 7図に、 本例の光スィ ッチング素子 1の動作 を示してある。 また、 第 3 8図に、 それそれの電極 6 2 aおよび 6 2 bに電力を供給する電源部 6 1 aおよび 6 1 bの動作 (制御) を タイ ミ ングチャートを用いて示してある。 まず、 第 3 6図 ( a ) に 示すように、 左右の電極 6 2 aおよび 6 2 bに電源部 6 1 aおよび 6 1 bから電力が供給されていないときは、 駆動部 4 0のヨーク 5 0および 5 2によってスィ ツチング部 3 0は抽出面 3 2が全反射面
2 2に密着したオン状態 (第 1の位置) となっている。
次に、 時刻 t 3 1に電源部 6 1 aのスィ ッチが入り、 左側の区画 1 2 aの電極 6 2 aに電力が供給されると、 左側の区画 1 2 aでは 静電力が作用する。 時刻 t 1 2に静電力が適当な力に達すると、 第
3 6図 ( b ) に示すように、 スイ ッチング部 3 0は傾いた状態で移 動を開始し、 抽出面 3 2が全反射面 2 2に対し斜めになつて隙間 (空間) 1 7が形成されオフ状態となる。 この空間 1 7は徐々に大 き くなるので空気 1 6がスムーズに流入し、 空気抵抗が少ない状態 でスィ ツチング部 3 0の移動が速やかに進む。
時刻 t 3 1 から時間 T 1 0だけ遅れた時刻 t 3 3に右側の区画 1
2 bの電極 6 2 bに電力を供給する電源部 6 l bがオンすると、 右 側の区画 1 2 bでも静電力がスィ ツチング部 3 0に作用する。 この 結果、 第 3 7図 ( a ) に示すように、 スイ ッチング部 3 0は適当な 角度に傾いた状態で右側の部分にも剥離力が作用して、 角度を保つ た状態で第 2の位置に向かって移動を行う。 この移動中もスィ ッチ ング部 3 0は、 移動方向に対して傾いた状態となっているので、 空 気抵抗は少なく、 高速で移動することができる。 あるいは、 所定を 応答速度を得るために必要な静電力が小さくて良いので、 光スィ ッ チング素子 1 を駆動するために必要な電力消費を少なくすることが できるという効果もある。
第 3 7図 ( b ) に示すように、 スイ ッチング部 3 0が電極 6 0に 接近して停止する第 2の位置に達すると、 第 3 7図 ( a ) から
( b ) に移行する移動末期においてスィ ッチング部 3 0が傾いた状 態から略平行な状態になり、 電極 6 0 と電極 6 2 との間の空気もス ムーズに排出される。 このように、 本例の光スイ ッチング素子 1 に おいても、 移動初期、 移動中および移動末期においてスイ ッチング 部 3 0が傾いた状態となるので、 応答速度をさらに向上でき、 ある いは、 光スイ ッチング素子の駆動電力を低減することも可能となる , スイ ッチング部 3 0が第 2の位置から第 1の位置に移動する際も- 時刻 t 1 4に右側の区画 1 2 bの電極 6 2 bに対する電力供給を遮 断すると、 右側の区画 1 2 bの静電力がなくなるので、 ヨーク 5 2 の弾性力によってスィ ツチング部 3 0が傾いた状態で移動を開始す る。 そして、 それから時間 T 1 1遅れた時刻 t 3 5に左側の区画 1
2 aの電極 6 2 aに対する電力供給も遮断すると、 スイ ッチング部
3 0は適当な角度に傾いた状態で第 2の位置から第 1の位置に移動 する。 そして、 時刻 t 3 6 にスイ ッチング部 3 0が第 1の位置に到 達し、 抽出面 3 2が全反射面 2 2に平行で密着した状態になると、 本例の光スィ ツチング素子 1は、 入射光を出射光として変調して出 力するオン状態になる。
このように、 本例、 および上記の実施の形態で説明した光スイ ツ チング素子 1は、 オンからオフ、 そしてオフからオンと空気中ある いは不活性ガス中などの流体中で高速で動かすことが可能であり、 真空にしなくても応答速度が速い、 あるいは低消費電力の空間光変 調装置を実現できる。
第 3 9図および第 4 0図は基板の電極 6 0を左右に分割した例を 示してある。 また、 これらの左右に分割した電極 6 0 aおよび 6 0 bに対し、 タイ ミングおよび電圧 Vを変えて電力を供給する様子を 第 4 1図のタイ ミングチャートを用いて示してある。 第 3 9図 ( a ) に示すように、 本例の光スイ ッチング素子 1においては、 電 極 6 0が立体中心線 1 4の左右の区画 1 2 aおよび 1 2 bの電極 6
0 aおよび 4 6 bに分離され、 互いに絶縁されており、 電源部 6 1 から個別に制御することにより双方の区画 1 2 aおよび 1 2 bで生 じる静電力を制御することができるようになつている。 このため、 電源部 6 1は、 左側の電極 6 0 aに接続されている電源ュニッ ト 6 1 aと、 右側の電極 6 0 bに接続されている電源ュニッ ト 6 1 bを 備えており、 さらに、 これらの電源ユニッ ト 6 l aおよび 6 l bか らそれそれの電極 6 0 aおよび 6 0 bに供給される電圧を制御する ことができるコン トロールュニッ ト 6 1 cを備えている。 本例の光 スィ ツチング素子 1 も上記の例と同様に、 電極 6 2および 6 0に電 力が供給されていない状態では、 ヨーク 5 0および 5 2の弾性力に よってスイ ッチング部 3 0は第 1の位置にあり、 オン状態となって いる。
時刻 t 4 1に、 電源ュニッ ト 6 1 aから左側の電極 6 0 aに電圧 V 1の電力が供給され、 電源ュニッ ト 6 1 bから右側の電極 6 0 b に電圧 V 2の電力が供給される。 この際、 左側の電極 6 0 aに供給 される電圧 V 1の値を、 右側の電極 6 0 bに供給される電圧 V 2よ りも高く設定しておく ことにより、 スィ ツチング部 3 0の左側の区 画 1 2 aで右側の区画 1 2 bよ りも大きな静電力が作用する。 その 結果、 スイ ッチング部 3 0の重心 1 4 bに対し左右で非対称な駆動 力が働くので、 第 3 9図 ( b ) に示すように、 スイ ッチング部 3 0 が回転しながら移動を開始し、 抽出面 3 2が傾きながら左側の区画 1 2 aの側から剥がれ始める。 したがって、 本例の光スイ ッチング 素子 1においても上記の各実施の形態と同様に空気抵抗が少なく、 スムーズにスイ ッチング部 3 0を移動させることができる。
さらに、 時刻 t 4 2に、 コ ン ト ロールユニッ ト 6 1 cにより、 電 源ュニッ ト 6 1 aおよび 6 1 bから左右の電極 6 0 aおよび 6 0 b に略同じ電圧 V 3の電力を供給するようにすると、 第 4 0図 ( a) に示すように、 適当な角度までスィ ツチング部 3 0が回転した状態 でスイ ッチング部 3 0が第 2の位置まで移動する。 そして、 第 4 0 図 ( b ) に示すように電極 6 2がス ト ヅパ 6 5 eに当たり、 第 2の 位置で停止する。 この移動末期においても、 上記の各実施の形態と 同様にスイ ッチング部 3 0は傾いた状態から平行な状態に回転し、 その間の空間の空気を速やかに排出して停止する。 また、 本例の光 スイ ッチング素子 1においては、 基板の電極 6 0 aおよび 6 0 bは. ス ト ツバとなる部分 6 5 eが突出した非平坦な形状に加工されてお り、 スィ ッチング部の電極 6 2が基板の電極 6 0 aあるいは 6 0 b に密着しないようになっている。
さらに、 スイ ッチング部 3 0を第 2の位置から第 1の位置に移動 するときは、 第 4 1図に示したように時刻 t 4 3に右側のベース電 極 6 0 bに対する電力供給を遮断し、 左側のベース電極 6 0 aに対 する電力を徐々に低下させることができる。 これにより、 右側の区 画 1 2 bにおいては、 ヨーク 5 2の弾性力によってスィ ツチング部 3 0がすく、に移動を開始し、 これに対し、 左側の区画 1 2 aにおい ては、 ベース電極 6 0 aと電極 6 2 との間に静電力が作用し、 徐々 にその力が低下していく ようになる。 したがって、 スイ ッチング部 3 0は第 2の位置から移動を開始するときも適当な角度まで回転し、 傾いた状態になった後に第 1の位置に向かって移動する。 したがつ て、 第 2の位置から第 1の位置に移動する際も、 空気抵抗が低減さ れ、 高速でスイ ッチング部 3 0を動かすことができる。
以上に説明した光スイ ッチング素子 1は、 入射光をオンオフ制御 可能な空間光変調装置としての機能を備えており、 これらの光スィ ッチング素子 1を単体で利用することはもちろん可能であり、 さら に、 アレイ状に配置して画像表示装置はもちろん、 光通信、 光演算- 光記録などの多種多様な分野に応用することができる。 そして、 ス イ ツチング部を移動する際にオン状態の向きから傾けることにより - スィ ツチング部の周囲の流体から受ける抵抗を大幅に低減すること ができる。 このため、 通常の空気中あるいは不活性ガス中などの雰 囲気で本発明の空間光変調装置は使用することが可能であり、 高速 動作が可能で、 応答速度が速く、 さらに信頼性の高い空間光変調装 置を得ることができる。 また、 逆に、 流体の抵抗を小さ くできるの で、 空間光変調装置を駆動するための電力消費を低減することがで ぎる。
なお、 このような姿勢制御は、 エバネセン ト波を利用した光スィ ツチング素子に限らず、 スイ ッチング部の抽出面に変わる平面要素 を動かすことにより干渉特性を変化させて入射光を変調したり、 偏 光方向あるいは反射光の位相を変化させるなどのさまざまなタイプ の空間光変調装置に適用できる。
また、 以上の例では、 薄膜材からなるヨークを弾性材として用い た例を説明しているが、 もちろん、 コイルばねなどの他の形状の弾 性材を採用することも可能である。 さらに、 駆動部として弾性的に 支持する支持部材 (ヨークあるいはパネ部材) と静電駆動手段との 組み合わせで説明しているが、 これらの他に、 スイ ッチング部を駆 動する動力としてピエゾ素子などの圧電素子を駆動源として用いる ことも可能である。 第 4 2図に、 ピエゾ素子 9 9 を用いた例を示し てある。 この光スィ ツチング素子 1では、 光スィ ツチング部 3 0 と してマイクロプリズムの代わりに複数の反射体を含んだ反射型の出 射体 3 6を採用している。 従って、 オン状態で抽出面 3 2によって 捉えられたエバネセン ト光は出射体 3 6で導光部 2 0の側に適度な 角度で散乱され、 広い視野角で見える画像を形成することができる < さらに、 本例の光スィ ツチング素子 1ではスィ ツチング部 3 0を 駆動する駆動部として静電力の代わりにピエゾ素子 9 9による電歪 力を用いている。 本例のピエゾ素子 9 9は、 分極方向が異なる 2層 を積層したバイモルフタイプであり、 電力を与えると湾曲した状態 から直線状態に延びてパネ部材であるヨーク 5 0を引っ張り、 光ス ィ ツチング素子 1 をオフ状態にできるようになっている。 一方、 電 力を与えないと湾曲した弾性力のある状態となり、 ヨーク 5 0の弾 性力と共に適当な力で光スイ ッチング部 3 0を導光部 2 0に向けて 押圧し、 コン トラス トの高い光スイ ッチング素子を実現できるよう になっている。
なお、 本発明に係る光スイ ッチング素子 1は、 導光部 2 0、 スィ ツチング部 3 0、 および駆動部 4 0が階層構造を成しているので、 上述した各々の実施の形態に係る光スィ ツチング部 3 0あるいは駆 動部 4 0を自由に組み合わせて用途に適した光スイ ッチング素子 1 を構成することができる。 また、 本発明の光スイ ッチング素子は、 画像表示装置に限定されるものではなく、 光プリンターのライン状 ライ トバルブ、 三次元ホログラムメモリ用の光空間変調器などその 応用範囲は非常に広く、 従来の液晶を用いた光スィ ツチング素子が 適用されている分野はもちろん、 液晶を用いた光スィ ツチング素子 では動作速度や光強度が不足する分野および応用機器に対して、 本 発明の光スイ ッチング素子は特に適している。 さらに、 本発明の光 スィ ツチング素子は微細加工が可能であるので、 従来の液晶の光ス イ ッチング素子よりも小型化、 薄型化を図ることができ、 高集積化 することも可能である。 以上に説明したように、 本発明の光スイ ッチング素子は、 光を全 反射して伝達可能な全反射面を備えた導光部に抽出面を接し、 全反 射面から漏出するエバネセン ト光を捉えて画像を形成可能とするも のであり、 導光部、 反射型の光スイ ッチング部および駆動部を出射 方向に対しこの順番に積層することによ り、 抽出した光を光スイ ツ チング部で導光部の方向にほぼ垂直に反射し、 駆動部における光の 損失がない明るい光スィ ツチング素子を提供することができる。 さ らに、 このような積層構造を採用することによ り、 導光部、 光スィ ッチング部および駆動部の各々の階層を最適な構造にすることが可 能であり、 また、 機能あるいは構造の異なる階層を自由に組み合わ せることも可能となる。 特に、 駆動部で光スイ ッチング部の位置決 めを行い、 さらに弾性体であるパネ部材の設置スペースを設けるこ とによ り、 導光部をフラッ 卜な部材とし、 また、 光スィ ツチング部 の抽出面の面積を大きくすることができる。 従って、 開口率の大き な明る くコン トラス 卜の高い光スィ ヅチング素子を提供することが 可能となり、 本発明の光スイ ッチング素子を用いることにより、 画 質の良い画像が得られる画像表示装置を提供することができる。 また、 スイ ッチング部をオン位置で保持できる適当な範囲のバイ ァス電圧を加えることにより、 スイ ッチング部の特性を犠牲にする ことなく駆動電圧を低減できる。 さらに、 静電力を与える電極ペア を 2組も受けることにより、 駆動電圧を数分の 1から 1桁少ない電 圧、 あるいはそれ以下の電圧に低減することができる。 したがって、 高速でスイ ッチング部を動かすことができ、 応答時間が短く、 応答 速度の早い空間光変調装置であって、 低電圧で駆動できる空間光変 調装置およびその制御方法を提供できる。
このように、 駆動電圧を大幅に下げることができるので、 半導体 制御装置によって直にスィ ッチング素子あるいは画像表示装置を駆 動することが可能となる。 このため、 これらのスイ ッチング素子あ るいは画像表示装置を大幅にコス トダウンすることが可能となる。 さらに、 駆動電圧を引き下げできるので、 スイ ッチング素子あるい は画像表示装置の消費電力も大幅に低減することが可能となる。 し たがって、 本発明により高速応答特性に優れたエバネセン ト波など を用いてスィ ツチング素子あるいは画像表示装置を電池などの限ら れた電力で駆動できるようにすることができる。 このため、 本発明 は、 スイ ッチング部の位置を動かして光を変調するエバネセン ト波 を用いた光スイ ッチング素子を、 今後、 様々な分野で適用するため に非常に有用なものである。
さらに、 平面要素である抽出面の向きを第 1の位置における第 1 の方向から傾いた状態にすることにより、 スィ ツチング部の周囲に 存在する空気あるいは不活性ガスなどの流体から受ける抵抗を低減 することができる。 このため、 スイ ッチング部を移動する際の抗カ が減り、 静電力などを用いて、 さらに高速でスイ ッチング部を動か すことができ、 応答時間が短く、 応答速度の早い空間光変調装置を 提供することができる。 また、 抗力が低減されるので、 いっそう消 費電力を低減することも可能となる。 そして、 空気中などの一般的 な環境条件で応答速度の速い光スィ ツチング素子を提供できる。 産業上の利用の可能性
本発明の光スイ ッチング素子は、 高速動作が可能で、 高いコン ト ラス トが得られるので、 画像表示装置、 光プリ ンターのライン状ラ ィ トバルブ、 三次元ホログラムメモリ用の光空間変調器などその応 用範囲は非常に広く利用できる。 従来の液晶を用いた光スィ ッチン グ素子が適用されている分野はもちろん、 液晶を用いた光スィ ツチ ング素子では動作速度や光強度が不足する分野および応用機器に対 して本発明の光スイ ッチング素子は特に適している。

Claims

請 求 の 範 囲
1 . 光を全反射して伝達可能な全反射面を備えた導光部と、 前記全反射面から漏出したエバネセン ト光を抽出可能な透光性の 抽出面を備え、 抽出した光を前記導光部の方向に反射可能なスィ ッ チング部と、
このスィ ツチング部を前記抽出面がエバネセン ト光を抽出可能な 抽出距離以下の第 1の位置、 および前記抽出距離以上に離れた第 2 の位置に移動可能な駆動手段とを有し、
前記導光部、 スィ ツチング部および駆動手段が光の出射方向に対 しこの順番で配置されている光スィ ツチング素子。
2 . 請求項 1 において、 前記導光部、 スイ ッチング部および駆動 手段は積層されている光スィ ツチング素子。
3 . 請求項 1 において、 前記導光部は、 全反射面に構造物のない フラッ トなパネル状の部材である光スィ ッチング素子。 . 請求項 1 において、 前記駆動手段は、 I C基板上に配置され ている光スィ ツチング素子。
5 . 請求項 1 において、 前記スイ ッチング部は、 前記抽出面によ つて抽出された光を反射するマイクロプリズムまたは光散乱性の出 射体を備えている光スイ ッチング素子。
6 . 請求項 1 において、 前記駆動手段は、 前記スイ ッチング部を 弾性的に支持する支持部材と、 前記スイ ツチング部を少なく とも 1組の電極の間で働く静電力に よって駆動する静電駆動手段とを備えている光スィ ツチング素子。
7 . 請求項 6において、 前記支持部材は、 前記静電駆動手段によ る静電力が働いていないときに前記スィ ッチング部を前記第 1の位 置で前記導光部に向かって加圧可能である光スィ ツチング素子。
8 . 請求項 7において、 前記支持部材は、 前記スイ ッチング部が 前記第 1の位置になったときに橈んだ状態が残るように設定された パネ部材である光スィ ツチング素子。
9 . 請求項 6において、 前記スイ ッチング部はスぺ一サを介して 前記支持部材から支持されており、 このスぺーサは、 前記電極の距 離を狭くする機能と、 前記支持部材が弾性変形するスペースを確保 する機能とを備えている光スイ ッチング素子。
1 0 . 請求項 9において、 前記支持部材は、 前記スイ ッチング部 の境界近傍の支柱部で一端が支持され、 他端が前記スィ ツチング部 に繋がつた板状のバネ部材であり、
前記スぺーサは断面が T字形あるいは逆台形状である光スィ ツチ ング素子。
1 1 . 請求項 1 0において、 前記パネ部材は、 前記境界近傍にス リ ッ トまたは穴が形成されている光スィ ツチング素子。
1 2 . 請求項 1 0において、 前記パネ部材は、 前記境界近傍に設 けられた支柱に前記一端が接続され、 前記光スィ ツチング部から放 射状に延びた幅の狭い板状である光スィ ツチング素子。
1 3. 請求項 1 0において、 前記パネ部材は、 前記境界に沿って 延びた螺旋状の部分を備えた板状である光スィ ツチング素子。
14. 請求項 1 0において、 前記パネ部材は、 中央付近の厚みが 薄くなつた板状である光スイ ッチング素子。
1 5. 請求項 1 0において、 前記パネ部材を前記導光部の側から 支持する補助支柱部を有し、 さらに、
前記パネ部材は、 前記スィ ツチング部の側をほぼ密封できる板状 であり、 前記スィ ッチング部の側が前記駆動手段の側より負圧にな つている光スィ ツチング素子。
1 6. 請求項 1 0において、 前記光スイ ッチング素子の内部が密 封された空間になっており、 駆動手段が密封された空間に設置され ており、 圧力の低い状態で前記スイ ツチング部を駆動可能である光 スィ ヅチング素子。
1 7. 請求項 1 0において、 前記支柱部は前記境界近傍に規則的 に、 または、 ランダムに配置されている光スイ ッチング素子。
1 8. 請求項 1 0において、 前記パネ部材は導電性の部材であり . 少なく ともその 1部が前記静電駆動手段の電極を兼ねている光スィ ッチング素子。
1 9. 請求項 6において、 前記静電駆動手段に、 前記スィ ッチン グ部を駆動する駆動電圧と、 この駆動電圧と同極性で、 静電力また は弾性力により少なく とも前記第 1の位置で前記スィ ッチング部を 安定して保持する保持力を確保可能な一定のバイァス電圧とを印加 可能な駆動制御手段を有する光スィ ツチング素子。
2 0 . 請求項 1 9において、 前記第 1 または第 2の位置のうち、 前記駆動電圧によって保持力が得られる位置に、 前記電極の間に最 小ギャップを確保するス ト ッパーが設けられており、
前記駆動制御手段は、 前記ス ト ッパーの位置で前記支持部材の弹 性力に達しない前記バイァス電圧を印加する光スィ ツチング素子。
2 1 . 請求項 1 9において、 前記駆動制御手段は、 周期的に前記 支持部材の前記第 1 または第 2の位置での弾性力よりも小さくなる 前記バイアス電圧を印加する光スイ ッチング素子。
2 2 . 請求項 2 1 において、 前記第 1 または第 2の位置のうち、 前記静電駆動手段の静電力によつて保持力が得られる位置に、 前記 電極の間に最小ギヤップを確保するス ト ッパーが設けられており、 前記駆動制御手段は、 周期的に前記ス ト ッパーの位置で前記支持 部材の弾性力に達しない前記バイァス電圧を印加する光スィ ッチン グ素子。
2 3 . 請求項 1 9において、 前記スィ ツチング部は、 前記支持部 材により前記第 2の位置から第 1の位置に移動し、 前記支持部材の 弾性力によって前記第 1の位置に保持され、
前記駆動制御手段は、 前記スィ ツチング部を前記第 1の位置から 第 2の位置に移動するときに前記第 1および第 2の位置の間でのみ 安定状態が成立しない駆動電圧を前記静電駆動手段に印加する光ス イ ツチング素子。
2 4 . 請求項 1 9において、 前記支持部材は静電力が働かないと きに前記スィ ツチング部を前記第 1および第 2の位置の略中間で支 持可能であり、
前記静電駆動手段は、 前記スィ ツチング部を前記第 1の位置に保 持する第 1の電極ペアと、 前記第 2の位置に保持する第 2の電極べ ァを備えており、
前記駆動制御手段は、 前記第 1および第 2の電極ペアに交互に駆 動電圧を印加する光スィ ツチング素子。
2 5 . 請求項 6において、 前記支持部材は、 弾性力によって前記 第 2の位置から第 1の位置に移動可能とすると共に第 1の位置で前 記スィ ツチング部を保持可能であり、
前記静電駆動手段に、 前記スィ ツチング部を前記第 1の位置から 第 2の位置に移動するときに前記第 1および第 2の位置の間でのみ 安定状態が成立しない駆動電圧を印加する駆動制御手段を有する光 スィ ッチング素子。
2 6 . 請求項 6において、 前記支持部材は、 静電力が働かないと きに前記スィ ッチング部を前記第 1および第 2の位置の略中間で支 持可能であり、
前記静電駆動手段は、 前記スィ ツチング部を前記第 1の位置に保 持する第 1の電極ペアと、 前記第 2の位置に保持する第 2の電極べ ァを備えており、
この静電駆動手段の前記第 1および第 2の電極ペアに交互に駆動 電圧を印加する供給する駆動制御手段を有する光スィ ツチング素子
2 7 . 請求項 1 において、 前記駆動手段が、 前記スイ ッチング部 の抽出面の向きを、 移動初期、 移動中または移動末期に、 前記第 1 の位置で前記抽出面が向く第 1の方向に対し傾ける光スイ ッチング 素子。
2 8 . 請求項 2 7において、 前記駆動手段は、 前記スィ ツチング 部に対し、 その重心に対し非対称な分布を備えた駆動力を印加可能 である光スイ ッチング素子。
2 9 . 請求項 2 8において、 前記スイ ッチング部の重心が該スィ ッチング部の立体中心からずれている光スィ ッチング素子。 3 0 . 請求項 2 8において、 前記駆動手段は、 前記スイ ッチング 部を弾性的に支持する支持部材を備えており、 この支持部材は、 弾 性定数の分布が前記スィ ッチング部の重心に対し非対称となる部分 を具備している光スイ ッチング素子。 3 1 . 請求項 2 8において、 前記駆動手段は、 前記スイ ッチング 部に設けられた第 1の電極と、 この第 1の電極に対峙する位置に設 けられた第 2の電極とを備えており、 前記第 1の電極の形状、 第 2 の電極の形状、 または第 1および第 2の電極の間隔が前記スイ ッチ ング部の重心に対し非対称となる部分を具備している光スィ ッチン グ素子。
3 2 . 請求項 2 8において、 前記駆動手段は、 前記スィ ツチング 部に設けられた第 1の電極と、 この第 1の電極に対峙する位置に設 けられた第 2の電極とを備え、 前記第 1 または第 2の電極が前記ス ィ ツチング部の重心に対し非対称な形状の第 1および第 2の区画を 形成するように分割されており、 さらに、
前記第 1および第 2の区画に異なったタイ ミ ングまたは電圧の電 力を供給可能な駆動制御手段電力供給部を備えていることを特徴と する光スイ ッチング素子。
3 3 . 請求項 2 7において、 前記スイ ッチング部の抽出面は、 前 記第 2の位置で前記第 1の方向に対し傾いている光スィ ツチング素 子。
3 4 . 請求項 3 3において、 前記駆動手段は、 前記スイ ッチング 部を弾性的に支持する支持部材を備えており、 この支持部材は、 弾 性定数の分布が前記スィ ツチング部の重心に対し非対称となる部分 を具備している光スィ ツチング素子。
3 5 . 請求項 3 3において、 前記駆動手段は、 前記スイ ッチング 部に設けられた第 1の電極と、 この第 1の電極に対峙する位置に設 けられた第 2の電極とを備えており、 前記第 1および第 2の電極の 間隔が前記スィ ツチング部の重心に対し非対称となる部分を具備し ている光スィ ツチング素子。
3 6 . 請求項 3 3において、 前記スィ ツチング部が前記第 2の位 置で接触する支持台を有し、 この支持台と前記スイ ッチング部との 間隔が前記スィ ツチング部の重心に対し非対称となる部分を具備し ている光スィ ツチング素子。
3 7 . 請求項 1 に記載の光スイ ッチング素子を複数有し、 これら の光スイ ッチング素子が 2次元的に配置され、 前記導光部は白色ま たは 3原色の光が伝達可能なように接続されている画像表示装置。
3 8 . 導入された光を全反射して伝達可能な全反射面を備えた導 光部の前記全反射面に第 1の位置で接し全反射面から漏出したエバ ネセン ト光を抽出すると共に、 この第 1の位置から離れた第 2の位 置に移動可能な少なく とも 1つのスイ ッチング部と、 このスィ ッチ ング部を弾性的に支持すると支持部材と、 前記スイ ッチング部を少 なく とも 1組の電極を備えた静電駆動手段とを有し、 この静電駆動 手段によって前記スィ ツチング部を駆動可能な光スイ ッチング素子 の制御方法であつて、
前記静電駆動手段に対し、 前記スィ ツチング部を駆動する駆動電 圧と、 この駆動電圧と同極性で、 静電力または弾性力により少なく とも前記第 1の位置に前記スィ ツチング部を安定して保持する保持 力を確保可能な一定のバイアス電圧とを印加する制御工程を有する 光スィ ツチング素子の制御方法。 3 9 . 請求項 3 8において、 前記第 1 または第 2の位置のうち、 前記駆動電圧によつて保持力が得られる位置に、 前記電極の間に最 小ギヤップを確保するス ト ッパーが設けられており、
前記制御工程では、 前記ス ト ッパーの位置で前記支持部材の弹性 力に達しない前記バイァス電圧を印加する光スィ ツチング素子の制 御方法。
4 0 . 請求項 3 8において、 前記制御工程では、 周期的に前記支 持部材の前記第 1 または第 2の位置での弾性力よりも小さ くなる前 記バイァス電圧を印加する光スィ ツチング素子の制御方法。 1 . 請求項 3 8において、 前記第 1 または第 2の位置のうち、 前記静電駆動手段の静電力によって保持力が得られる位置に、 前記 電極の間に最小ギヤップを確保するス ト ッパーが設けられており、 前記制御工程では、 前記バイアス電圧を、 周期的に前記ス ト ッパ 一の位置で前記支持部材の弾性力に達しないようにする光スィ ッチ ング素子の制御方法。
4 2 . 請求項 3 8において、 前記スィ ツチング部は、 前記支持部 材により前記第 2の位置から第 1の位置に移動し、 前記支持部材の 弾性力によって前記第 1の位置に保持されるようになつており、 前記制御工程では、 前記スィ ツチング部を前記第 1の位置から第 2の位置に移動するときに前記第 1および第 2の位置の間でのみ安 定状態が成立しない前記駆動電圧を前記静電駆動手段に印加する光 スイ ッチング素子の制御方法。
4 3 . 請求項 3 8において、 前記支持部材は静電力が働かないと きに前記スィ ツチング部を前記第 1および第 2の位置の略中間で支 持し、 前記静電駆動手段は、 前記スイ ッチング部を前記第 1の位置 に保持する第 1の電極ペアと、 前記第 2の位置に保持する第 2の電 極ペアを備えており、
前記制御工程では、 これら第 1および第 2の電極ペアに交互に前 記駆動電圧を印加することを特徴とする光スイ ッチング素子の制御 方法。
4 4 . 導入された光を全反射して伝達可能な全反射面を備えた導 光部の前記全反射面に第 1の位置で接し全反射面から漏出したエバ ネセン ト光を抽出すると共に、 この第 1の位置から離れた第 2の位 置に移動可能な少なく とも 1つのスィ ツチング部と、 このスィ ツチ ング部を弾性的に支持すると支持部材と、 前記スィ ツチング部を少 なく とも 1組の電極を備えた静電駆動手段とを有し、 この静電駆動 手段によって前記スィ ツチング部を駆動可能な光スィ ツチング素子 の制御方法であって、
前記電極の少なく ともいずれかが前記スィ ッチング部の重心に対 し非対称な形状の第 1および第 2の区画に分割されており、 それら第 1および第 2の区画に対し、 異なったタイ ミ ングまたは 電圧で電力を供給する工程を有する光スィ ッチング素子の制御方法
PCT/JP1998/005366 1998-01-20 1998-11-27 Dispositif de commutation optique et dispositif d'affichage d'images WO1999036824A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69830153T DE69830153T2 (de) 1998-01-20 1998-11-27 Optische schaltvorrichtung und bildanzeigevorrichtung
KR1019997008584A KR100604621B1 (ko) 1998-01-20 1998-11-27 광 스위칭 소자, 그의 제어 방법 및 화상 표시 장치
US09/381,495 US6381381B1 (en) 1998-01-20 1998-11-27 Optical switching device and image display device
EP98955980A EP0969306B1 (en) 1998-01-20 1998-11-27 Optical switching device and image display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP914898A JP3658965B2 (ja) 1998-01-20 1998-01-20 光スイッチング素子及び画像表示装置
JP10/9148 1998-01-20
JP13077698A JP3855454B2 (ja) 1998-05-13 1998-05-13 空間光変調装置および空間光変調装置の制御方法
JP10/130776 1998-05-13
JP10/243834 1998-08-28
JP24383498A JP4029489B2 (ja) 1998-08-28 1998-08-28 空間光変調装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO1999036824A1 true WO1999036824A1 (fr) 1999-07-22

Family

ID=27278351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005366 WO1999036824A1 (fr) 1998-01-20 1998-11-27 Dispositif de commutation optique et dispositif d'affichage d'images

Country Status (5)

Country Link
US (2) US6381381B1 (ja)
EP (1) EP0969306B1 (ja)
KR (1) KR100604621B1 (ja)
DE (1) DE69830153T2 (ja)
WO (1) WO1999036824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879753B2 (en) 2001-06-15 2005-04-12 Ngk Insulators, Ltd. Display device

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036824A1 (fr) * 1998-01-20 1999-07-22 Seiko Epson Corporation Dispositif de commutation optique et dispositif d'affichage d'images
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6643426B1 (en) * 1999-10-19 2003-11-04 Corning Incorporated Mechanically assisted release for MEMS optical switch
EP1158332A1 (en) * 1999-12-27 2001-11-28 Ngk Insulators, Ltd. Display and method for manufacturing the same
JP3571694B2 (ja) 1999-12-27 2004-09-29 日本碍子株式会社 表示装置及びその製造方法
JP2003524215A (ja) * 2000-02-24 2003-08-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光導波路を具える表示装置
JP4404174B2 (ja) * 2000-04-19 2010-01-27 ソニー株式会社 光スイッチング素子およびこれを用いたスイッチング装置並びに画像表示装置
US7227511B2 (en) * 2000-04-24 2007-06-05 Microsoft Corporation Method for activating an application in context on a remote input/output device
US7030837B1 (en) * 2000-04-24 2006-04-18 Microsoft Corporation Auxiliary display unit for a computer system
US6917373B2 (en) 2000-12-28 2005-07-12 Microsoft Corporation Context sensitive labels for an electronic device
JP4343393B2 (ja) * 2000-04-26 2009-10-14 キヤノン株式会社 光変調素子、および該光変調素子を用いたプロジェクション光学系
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7405884B2 (en) * 2000-12-21 2008-07-29 Olympus Corporation Optical apparatus
TW548437B (en) * 2001-03-02 2003-08-21 Unaxis Balzers Ag Optical component and its production method as well as optical switch
US6542653B2 (en) * 2001-03-12 2003-04-01 Integrated Micromachines, Inc. Latching mechanism for optical switches
JP3724432B2 (ja) * 2001-04-19 2005-12-07 株式会社ニコン 薄膜弾性構造体及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
AU2002308501A1 (en) * 2001-07-13 2003-01-29 Rosemount Inc. Optical switch with moveable holographic optical element
JP3909812B2 (ja) * 2001-07-19 2007-04-25 富士フイルム株式会社 表示素子及び露光素子
US6798959B2 (en) 2001-09-03 2004-09-28 Ngk Insulators, Ltd. Display device and method for producing the same
JP4089215B2 (ja) * 2001-09-17 2008-05-28 株式会社ニコン マイクロアクチュエータ、並びに、これを用いたマイクロアクチュエータ装置、光スイッチ及び光スイッチアレー
JP4036643B2 (ja) * 2001-12-21 2008-01-23 オリンパス株式会社 光偏向器及び光偏向器アレイ
US6791735B2 (en) * 2002-01-09 2004-09-14 The Regents Of The University Of California Differentially-driven MEMS spatial light modulator
MXPA04008313A (es) * 2002-02-26 2005-07-05 Uni Pixel Displays Inc Pantallas opticas de panel plano mejoradas.
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
JP2005519323A (ja) * 2002-03-01 2005-06-30 ローズマウント インコーポレイテッド 三次元導光板を有する光学スイッチ
US6909824B1 (en) * 2002-03-05 2005-06-21 Avi Messica Mechanically actuated evanescent-wave coupled optical devices
FI117453B (sv) * 2002-07-05 2006-10-13 Runar Olof Ivar Toernqvist Displaymodul
JP4025990B2 (ja) * 2002-09-26 2007-12-26 セイコーエプソン株式会社 ミラーデバイス、光スイッチ、電子機器およびミラーデバイス駆動方法
TW200413776A (en) * 2002-11-05 2004-08-01 Matsushita Electric Ind Co Ltd Display element and display using the same
WO2004107015A1 (en) * 2003-06-03 2004-12-09 Koninklijke Philips Electronics N.V. Display device with multiple channel wave guide
JP3810788B2 (ja) * 2003-06-20 2006-08-16 シャープ株式会社 表示装置
KR100778950B1 (ko) * 2003-07-18 2007-11-22 닛본 덴끼 가부시끼가이샤 스위칭 소자, 스위칭 소자의 구동 방법, 논리 집적 회로 및 메모리 소자
US7141915B2 (en) * 2003-07-22 2006-11-28 Ngk Insulators, Ltd. Actuator device
EP1648038B1 (en) * 2003-07-22 2011-02-16 NGK Insulators, Ltd. Actuator element and device having actuator element
JP2005092174A (ja) * 2003-08-12 2005-04-07 Fujitsu Ltd マイクロ揺動素子
US7760415B2 (en) * 2003-11-01 2010-07-20 Silicon Quest Kabushiki-Kaisha Micro mirror device
US6876485B1 (en) * 2003-11-07 2005-04-05 Reflectivity, Inc Micromirrors with asymmetric stopping mechanisms
JP2005189681A (ja) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd 画像表示装置および画像表示制御装置
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
US7373026B2 (en) * 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7893919B2 (en) * 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7612932B2 (en) * 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7130104B2 (en) * 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7405861B2 (en) 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7092143B2 (en) * 2004-10-19 2006-08-15 Reflectivity, Inc Micromirror array device and a method for making the same
US7158279B2 (en) * 2004-10-19 2007-01-02 Texas Instruments Incorporated Spatial light modulators with non-uniform pixels
US7320899B2 (en) * 2004-10-21 2008-01-22 Hewlett-Packard Development Company, L.P. Micro-displays and their manufacture
US20080068697A1 (en) * 2004-10-29 2008-03-20 Haluzak Charles C Micro-Displays and Their Manufacture
US8247945B2 (en) * 2005-05-18 2012-08-21 Kolo Technologies, Inc. Micro-electro-mechanical transducers
CN101589543B (zh) 2005-05-18 2012-10-31 科隆科技公司 微机电换能器
US20060291769A1 (en) * 2005-05-27 2006-12-28 Eastman Kodak Company Light emitting source incorporating vertical cavity lasers and other MEMS devices within an electro-optical addressing architecture
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) * 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
CA2608164A1 (en) * 2005-06-17 2006-12-21 Kolo Technologies, Inc. Micro-electro-mechanical transducer having an insulation extension
US7880565B2 (en) 2005-08-03 2011-02-01 Kolo Technologies, Inc. Micro-electro-mechanical transducer having a surface plate
US20070052671A1 (en) * 2005-09-02 2007-03-08 Hewlett-Packard Development Company Lp Pixel element actuation
JP2009509786A (ja) 2005-09-30 2009-03-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mems装置及びmems装置における相互接続
US7499206B1 (en) * 2005-12-09 2009-03-03 Brian Edward Richardson TIR light valve
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7486854B2 (en) * 2006-01-24 2009-02-03 Uni-Pixel Displays, Inc. Optical microstructures for light extraction and control
US7652814B2 (en) 2006-01-27 2010-01-26 Qualcomm Mems Technologies, Inc. MEMS device with integrated optical element
JP2007225910A (ja) * 2006-02-23 2007-09-06 Tsumura Sogo Kenkyusho:Kk 画像投影装置
US7450295B2 (en) * 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US20070268201A1 (en) * 2006-05-22 2007-11-22 Sampsell Jeffrey B Back-to-back displays
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
JP2008070863A (ja) * 2006-08-14 2008-03-27 Ricoh Co Ltd 振動ミラー、光書込装置および画像形成装置
US7751663B2 (en) * 2006-09-21 2010-07-06 Uni-Pixel Displays, Inc. Backside reflection optical display
US7629197B2 (en) 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7742220B2 (en) 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7643199B2 (en) * 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7630121B2 (en) * 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7434482B1 (en) * 2007-07-25 2008-10-14 Applied Technologies Associates, Inc. Feedback-controlled piezoelectric force measuring apparatus
KR20100066452A (ko) 2007-07-31 2010-06-17 퀄컴 엠이엠스 테크놀로지스, 인크. 간섭계 변조기의 색 변이를 증강시키는 장치
US7570415B2 (en) 2007-08-07 2009-08-04 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US8072402B2 (en) 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
EP2201368B1 (en) * 2007-10-12 2015-07-22 Nxp B.V. A sensor, a sensor array, and a method of operating a sensor
WO2009052326A2 (en) 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaics
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
CN101836137A (zh) 2007-10-23 2010-09-15 高通Mems科技公司 基于微机电系统的可调整透射装置
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US20090141336A1 (en) * 2007-11-30 2009-06-04 Lumination Llc Projection display devices employing frustrated total internal reflection
US7715079B2 (en) 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
US8548289B2 (en) * 2007-12-14 2013-10-01 Rambus Delaware Llc Apparatus and method for reducing pixel operational voltage in MEMS-based optical displays
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US7859740B2 (en) 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7855826B2 (en) 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8272770B2 (en) 2009-01-02 2012-09-25 Rambus International Ltd. TIR switched flat panel display
WO2010077367A2 (en) * 2009-01-02 2010-07-08 Brian Edward Richardson Optic system for light guide with controlled output
US8152352B2 (en) 2009-01-02 2012-04-10 Rambus International Ltd. Optic system for light guide with controlled output
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US7864403B2 (en) 2009-03-27 2011-01-04 Qualcomm Mems Technologies, Inc. Post-release adjustment of interferometric modulator reflectivity
KR20120030460A (ko) 2009-05-29 2012-03-28 퀄컴 엠이엠스 테크놀로지스, 인크. 조명장치 및 그의 제조방법
US8152318B2 (en) 2009-06-11 2012-04-10 Rambus International Ltd. Optical system for a light emitting diode with collection, conduction, phosphor directing, and output means
US8297818B2 (en) 2009-06-11 2012-10-30 Rambus International Ltd. Optical system with reflectors and light pipes
US20100315836A1 (en) * 2009-06-11 2010-12-16 Brian Edward Richardson Flat panel optical display system with highly controlled output
US8416224B2 (en) * 2009-07-31 2013-04-09 Edward Pakhchyan Method of operating an array of electromechanical pixels resulting in efficient and reliable operation of light modulating elements
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
EP2501990A4 (en) * 2009-11-18 2014-03-26 Rambus Int Ltd OPTICS WITH INTERNAL COLLECTION REFLECTOR FOR LIGHT EMITTING DIODES
JP2013524287A (ja) 2010-04-09 2013-06-17 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 電気機械デバイスの機械層及びその形成方法
KR20130091763A (ko) 2010-08-17 2013-08-19 퀄컴 엠이엠에스 테크놀로지스, 인크. 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
TW201300702A (zh) 2011-05-13 2013-01-01 Rambus Inc 照明組件
US9551837B2 (en) * 2011-11-01 2017-01-24 Infineon Technologies Ag Silicon optical line multiplexer devices
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9291340B2 (en) 2013-10-23 2016-03-22 Rambus Delaware Llc Lighting assembly having n-fold rotational symmetry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113360A (en) * 1977-03-28 1978-09-12 Siemens Aktiengesellschaft Indicating device for illustrating symbols of all kinds
JPH02254405A (ja) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd 空間光変調器
JPH07287176A (ja) * 1994-04-01 1995-10-31 Ngk Insulators Ltd ディスプレイ素子及びディスプレイ装置
JPH1078549A (ja) * 1996-07-10 1998-03-24 Ngk Insulators Ltd 表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018099A1 (de) * 1980-05-12 1981-11-19 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur mehrfarbigen optischen darstellung von informationen
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5771321A (en) * 1996-01-04 1998-06-23 Massachusetts Institute Of Technology Micromechanical optical switch and flat panel display
EP0853252B1 (en) * 1996-12-16 2004-03-10 Ngk Insulators, Ltd. Display device
US5808780A (en) * 1997-06-09 1998-09-15 Texas Instruments Incorporated Non-contacting micromechanical optical switch
WO1999036824A1 (fr) * 1998-01-20 1999-07-22 Seiko Epson Corporation Dispositif de commutation optique et dispositif d'affichage d'images
JP3209208B2 (ja) 1999-01-27 2001-09-17 日本電気株式会社 半導体装置及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113360A (en) * 1977-03-28 1978-09-12 Siemens Aktiengesellschaft Indicating device for illustrating symbols of all kinds
JPH02254405A (ja) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd 空間光変調器
JPH07287176A (ja) * 1994-04-01 1995-10-31 Ngk Insulators Ltd ディスプレイ素子及びディスプレイ装置
JPH1078549A (ja) * 1996-07-10 1998-03-24 Ngk Insulators Ltd 表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0969306A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879753B2 (en) 2001-06-15 2005-04-12 Ngk Insulators, Ltd. Display device

Also Published As

Publication number Publication date
US20020031294A1 (en) 2002-03-14
US6438282B1 (en) 2002-08-20
DE69830153T2 (de) 2005-10-13
EP0969306A4 (en) 2003-06-25
EP0969306B1 (en) 2005-05-11
KR20010005526A (ko) 2001-01-15
EP0969306A1 (en) 2000-01-05
DE69830153D1 (de) 2005-06-16
KR100604621B1 (ko) 2006-07-28
US6381381B1 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
WO1999036824A1 (fr) Dispositif de commutation optique et dispositif d&#39;affichage d&#39;images
US7443568B2 (en) Method and system for resonant operation of a reflective spatial light modulator
US7505195B2 (en) Reflective spatial light modulator with high stiffness torsion spring hinge
JP4649561B2 (ja) 両面表示可能なディスプレイを有する反射ディスプレイデバイス
US5835256A (en) Reflective spatial light modulator with encapsulated micro-mechanical elements
JP4563892B2 (ja) 非平坦部を持つバックプレートを用いた微小電気機械システムを防護する為のシステム及び方法
US7447417B2 (en) Backlight assembly and display device having the same
JP2006099073A (ja) 反スティクションコーティングをmems装置に提供するシステムおよび方法
JP2008542843A (ja) 内部分極を伴うインターフェロメトリックモジュレータおよび駆動方法
CN101960355A (zh) 透射模式中的干涉式调制器
KR20060092896A (ko) 백플레이트 상에 전자 회로를 제공하는 방법 및 기기
JP2006099083A (ja) モジュレータ内における熱反応を処理するためのデバイス及び方法
JP2002277771A (ja) 光変調装置
JP2004330412A (ja) 微小電気機械素子の電荷制御
CN1309782A (zh) 带有自限制微型机械元件的双层介质反射空间光调制器
TWI515454B (zh) 具有組織於離軸配置中之光調變像素之顯示器
TWI533026B (zh) 用於微機電(mems)光調變器之不對稱路程
KR20080078667A (ko) 세트 및 래치 전극을 가지는 미소 기전 시스템 스위치
JP3658965B2 (ja) 光スイッチング素子及び画像表示装置
JP3855454B2 (ja) 空間光変調装置および空間光変調装置の制御方法
CN100343717C (zh) 带有自限制微型机械元件的双层介质反射空间光调制器
TW201429865A (zh) 支持一電機械器件之一可移動元件之系統及方法
KR20060050658A (ko) 광변조기 모듈 패키지 구조
KR0131569B1 (ko) 투사형 화상 표시 장치의 광로 조절 장치 구조
JP2000330041A (ja) 静電アクチュエータ、光スイッチング素子、画像表示装置およびそれらの制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997008584

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998955980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09381495

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998955980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008584

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998955980

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997008584

Country of ref document: KR