WO1999038429A1 - Radiateur thermique - Google Patents

Radiateur thermique Download PDF

Info

Publication number
WO1999038429A1
WO1999038429A1 PCT/JP1999/000320 JP9900320W WO9938429A1 WO 1999038429 A1 WO1999038429 A1 WO 1999038429A1 JP 9900320 W JP9900320 W JP 9900320W WO 9938429 A1 WO9938429 A1 WO 9938429A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
heat source
human body
heating device
heating
Prior art date
Application number
PCT/JP1999/000320
Other languages
English (en)
French (fr)
Inventor
Masao Shiotani
Kazunori Hiroi
Hisato Haraga
Takenori Fukushima
Yumiko Kataoka
Shingo Tanaka
Hiroshi Tsuboi
Shigeru Ando
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18987998A external-priority patent/JPH11276387A/ja
Priority claimed from JP20583598A external-priority patent/JPH11230562A/ja
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to KR1020007008216A priority Critical patent/KR20010086225A/ko
Priority to JP2000529168A priority patent/JP4250866B2/ja
Priority to AU21834/99A priority patent/AU2183499A/en
Priority to US09/601,105 priority patent/US6294758B1/en
Publication of WO1999038429A1 publication Critical patent/WO1999038429A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K13/00Seats or covers for all kinds of closets
    • A47K13/24Parts or details not covered in, or of interest apart from, groups A47K13/02 - A47K13/22, e.g. devices imparting a swinging or vibrating motion to the seats
    • A47K13/30Seats having provisions for heating, deodorising or the like, e.g. ventilating, noise-damping or cleaning devices
    • A47K13/305Seats with heating devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0088Radiating heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared

Definitions

  • the present invention relates to a heat radiator having a contact surface with a human body.
  • a heating device that has a contact surface with the human body, such as a floor heating device or a heating toilet seat, conventionally transfers electricity generated by energizing the heat source to the insulator covering the heat source, and further conducts heat to the surface of the insulator.
  • the temperature of the surface of the insulator which is the contact surface with the human body, was raised to an appropriate temperature. Due to the large thickness of the insulator, even if the heat source radiated infrared light, all the infrared radiation emitted from the heat source was absorbed by the insulator and was not directly absorbed by the human body.
  • the present invention has been made in view of the above-described problems, and has as its object to provide a heating device having a contact surface with a human body, which has an immediate warming property.
  • the present invention relates to a heat radiator that radiates infrared rays toward a human body, and is a heat source that is energized and radiates infrared rays near a hot sensation point at a penetration depth into the human body. And an insulator covering a surface of the heat source directed to the human body, the surface constituting a contact surface with the human body, wherein the thickness of the insulator is less than the penetration depth of the infrared ray into the insulator.
  • a heat radiator is provided.
  • the energized heat source generates heat and emits infrared rays.
  • the heat generated by the heat source reaches the insulator surface by heat transfer and heat conduction.
  • the thickness of the insulator is less than the depth of penetration of infrared light into the insulator, and as a result, the insulator is thin, so the heat generated by the heat source can reach the insulator surface in a short time and reach the contact surface with the human body. Heat the insulator surface to an appropriate temperature in a short time. Part of the infrared radiation emitted from the heat source is absorbed by the insulator and converted into heat in the insulator.
  • the infrared light is absorbed and converted into heat at all portions in the thickness direction of the insulator.
  • the heat converted from infrared rays reaches the insulator surface by heat conduction.
  • Infrared rays are absorbed and converted into heat in all parts of the insulator in the thickness direction, and since the insulator is thin, the heat converted from infrared rays in the insulator reaches the insulator surface in a short time. Raise the temperature of the insulator surface, which is the contact surface with the human body, to an appropriate temperature in a short time.
  • the thickness of the insulator is less than the penetration depth of infrared light into the insulator, part of the infrared light emitted from the heat source passes through the insulator and radiates to the outside, and is absorbed by the human body in contact with the surface of the insulator. You. Since the depth of penetration of infrared light into the human body is near the thermal sensation point, almost all of it is absorbed and converted to heat before it reaches the vicinity of the thermal sensation point. Raise the temperature to an appropriate temperature.
  • the heat radiator according to the present invention can raise the temperature of the insulator surface, which is the contact surface with the human body, to an appropriate temperature in a short time, and can reduce the temperature of the human body in the vicinity of the hot spot. Since it can be heated directly to an appropriate temperature in a short time, it has a high immediate heating function. Therefore, the heating device incorporating the heat radiator according to the present invention has an immediate heating function.
  • Polyester resin such as polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and styrene resin such as acrylonitrile styrene, acrylonitrile butadiene styrene It is desirable to use it as a body. Because these resins have higher infrared transmission than other resins, much of the infrared radiation emitted from the heat source passes through the insulator and directly heats the human body. As a result, the immediate warming function of the heat radiator is further enhanced. Since the polyethylene terephthalate in the resin has a high transmittance of long-wavelength infrared rays that are easily absorbed by the human body, it is particularly effective for improving the immediate heating function of the heat radiator.
  • the heat source and the insulator are in close contact. Due to the close contact between the two, the heat transfer coefficient between the heat source and the insulator is improved, and the immediate heating function of the heat radiator is improved.
  • the heat source is a planar heating element, the adhesion between the heat source and the insulator can be improved.
  • the heat source is desirably a porous sheet heating element.
  • the adhesive penetrates into the pores of the sheet heating element to improve the adhesiveness between the sheet heating element and the insulator, and the porous sheet
  • the heating element is integrally molded with the resin insulator, the resin penetrates into the pores of the sheet heating element to improve the adhesion between the sheet heating element and the insulator. Function is improved.
  • a mixed paper of carbon fiber and natural pulp is suitable as a porous sheet heating element.
  • Carbon fiber is an efficient infrared radiator. Since the paper mixed with carbon fiber and natural pulp is porous and can withstand the melting temperature of resin, the sheet heating element made of paper mixed with carbon fiber and natural pulp is integrated with the resin insulator. Suitable for molding. It is desirable that voids are formed around the carbon fiber. Since the voids form a heat insulating layer, the temperature of the carbon fibers rises immediately after power is applied to the mixed paper, and infrared radiation starts. As a result, the immediate heat function of the heat radiator is improved.
  • the occupation ratio of the voids in the mixed paper is 60% by volume or more. If the occupation ratio of the voids in the mixed paper is 60% by volume or more, an air layer, which is a heat insulating layer, is reliably formed around the carbon fiber, so that the heating rate of the carbon fiber increases, and The time from the start of energization to the start of infrared radiation is reduced. As a result, the heat radiator's immediate heating function is improved.
  • An infrared reflector may be provided facing the surface of the heat source opposite to the surface facing the human body.
  • a heating device including the above-described heat radiator, comprising: a front surface resin layer facing a human body; and a back surface resin layer, wherein the front surface resin layer covers a surface of the heat radiator that is directed to a human body as a heat source
  • a heating device characterized in that a heat source of a heat radiator is sandwiched between an upper surface resin layer and a lower surface resin layer.
  • the surface resin layer has a thickness less than the penetration depth of infrared rays generated by the heat source, and as a result is thin, and thus does not have sufficient strength against external force.
  • a heat source is sandwiched between the backside resin layer and frontside resin layer, and the frontside resin layer is reinforced with the backside resin layer to provide an immediate heating function. And a heating device having sufficient strength against external force is obtained.
  • a preferred method of assembling the two together is as follows.
  • the front resin layer and the rear resin layer are mechanically joined, so that even if the two materials are difficult to adhere to each other, they can be securely assembled together. .
  • the wire is energized to melt the joint again and the two can be easily separated, so that the removal of the heat source becomes easy and the reuse of the heat source is promoted.
  • the integration of the front surface resin layer, the heat source, and the back surface resin layer is enhanced, and the strength of the heating device against external force is improved.
  • the adhesion between the surface resin layer and the heat source is improved, the immediate heating function of the heating device is improved.
  • the same effect as the method (1) is obtained, and in addition, the front resin layer, the heat source, and the rear resin layer can be integrally assembled in a series of continuous steps.
  • the labor for transporting the preformed surface resin layer or back resin layer, which is a semi-finished product, and the labor for setting the front resin layer or back resin layer in a low-pressure molding die can be saved.
  • the thickness of the surface resin layer can be made uniform and the thickness of the surface resin layer can be reduced. If the thickness of the surface resin layer is uniform, the surface temperature of the surface resin layer, which is the contact surface with the human body, becomes uniform, and the comfort of the heating device is enhanced. If the surface resin layer is thin, the amount of infrared rays passing through the surface resin layer increases, and the immediate heating function of the heating device improves.
  • the integration of the front surface resin layer, the heat source, and the back surface resin layer is enhanced, and the strength of the heating device against external force is improved.
  • the adhesion between the surface resin layer and the heat source is improved, the immediate heating of the heating device is improved.
  • the heat source may be colored in the same color as the color of the surface resin layer. If the heat source is colored in the same color as the surface resin layer, the heat source will not be seen through even if the surface resin layer is light-colored, and the user of the heating device will not feel uncomfortable.
  • the front surface resin layer and / or the back surface resin layer may be a foamed resin layer. If the front surface resin layer and / or the back surface resin layer is a foamed resin layer, the heating device becomes soft and the comfort of the heating device increases.
  • the heat source may be coated in advance with a resin film. If the heat source is coated with a resin film in advance, when the front surface resin layer, the heat source, and the back surface resin layer are integrally assembled, damage to the heat source is prevented, and handling of the heat source is facilitated to manufacture a heating device. Efficiency is improved.
  • the resin film facing the back surface resin layer may be an infrared reflection film. Infrared light radiated from the surface opposite to the surface of the heat source directed to the human body is reflected by the infrared reflection film and directed to the human body, improving the immediate heating function of the heating device.
  • a cushioning material may be interposed between the back surface resin layer and the heat source. If the front resin layer, heat source, and back resin layer are assembled together by any of the above methods (1) to (3), a mismatch in dimensions between the front resin layer and the back resin layer caused by a machining error will result. In some cases, sufficient integration may not be obtained. If the cushioning material is sandwiched between the back surface resin layer and the heat source, the mismatch between the dimensions of the surface resin layer and the back surface resin layer is absorbed by the buffer, so that sufficient integrity can be obtained.
  • the cushioning material may be formed integrally with the back surface resin layer. If the cushioning material is integrally molded with the backside resin layer, the time required to insert the cushioning material between the frontside resin layer and the backside resin layer when assembling the frontside resin layer, the heat source and the backside resin layer integrally is reduced. Savings, and the efficiency of heating equipment production is improved.
  • a heat insulating cushioning material may be used. If a heat-insulating cushioning material is used, the heat generated by the heat source will not be taken away by the cushioning material, and the heat efficiency of the heat source will be improved and the immediate heating function of the heating device will be improved.
  • the back surface resin layer may have a honeycomb structure.
  • a concave portion may be formed on the surface of the back surface resin layer in contact with the heat source, and a temperature sensor may be provided in the concave portion. If the temperature sensor is arranged close to the heat source, the heat source can be accurately controlled, and thus the heating device can be accurately controlled. If the heat source has uneven temperature depending on the location, adjust the thickness of the surface resin layer to It is desirable to set it large at the part facing the hot part and small at the part facing the low temperature part of the heat source.
  • the thickness of the surface resin layer is set to be large at the part facing the high temperature part of the heat source-small at the part facing the low temperature part of the heat source, the temperature distribution on the surface of the surface resin layer that is in contact with the human body will be constant Therefore, the comfort of the heating system is improved.
  • the heating device according to the present invention can be widely applied to room heating devices, toilet room heating devices, and the like.
  • Room heating devices include floor heating panels, wall heating panels, heating carts, panel heaters, and the like.
  • Toilet room heating devices include a heated toilet mat-panel heater, a heated toilet lid, a heated toilet seat, and the like.
  • Using a flexible surface heating element If a flexible front resin layer and a rear resin layer are used, the heating device according to the present invention can be used to heat the heating device such as a knee rest, winter clothes, a chair seat, a chair back, and a chair. It can also be applied to armrests, etc.
  • a human body detecting means for detecting a human body in the room, and a heat source control means for energizing the heat source only when the human body detecting means detects the human body may be provided. Activating the room heating system only when there is a human body in the room can reduce power consumption.
  • a heat source control unit that supplies power to the heat source based on a command from outside the toilet room may be provided. If such a heat source control means is provided, the toilet room heating device is activated immediately before using the toilet room to heat the toilet room to use the toilet room comfortably, and the toilet room heating device is used immediately after using the toilet room. Shutting down can reduce power consumption.
  • a heat source control unit that supplies electricity to the heat source only when the illumination of the toilet room is turned on may be provided.
  • the lighting in the toilet room is turned on only when the toilet room is used. If the above-mentioned heat source control means is provided, the toilet room heating device is operated only when the toilet room is in use, and power consumption is reduced. Can be saved.
  • a human body detecting unit for detecting a human body in the toilet room, and a heat source control unit for energizing the heat source only when the human body detecting unit detects the human body
  • the heat source control means may be configured so as to energize the heat source after a lapse of a predetermined time from the detection of the human body by the human body detection means. As soon as the human body enters the toilet room, the human body detection means detects the human body.
  • the toilet room heating device is activated. However, there is a remaining time before the human body is seated on the toilet seat. ( Since the toile room heating device according to the present invention is excellent in immediate heating, the contact surface of the toile room heating device with the human body has the remaining surface. In this time, it is possible to raise the temperature sufficiently to an appropriate temperature, so that the comfort of the heating system is not impaired.By delaying the start of the operation of the heating room, the power consumption can be reduced.
  • the time from when the human body detecting means detects the human body to when the human body is seated on the toilet seat is defined as T, from the start of energization to the heat source to the time when the surface resin layer is heated to a predetermined temperature.
  • the heat source control means may be configured so that the heat source is energized after a lapse of Tt from the time when the human body detecting means detects the human body, where t is the time. Power consumption can be reduced by delaying the start of the operation of the toilet room heating system by Tt.
  • the human body detecting means is configured to be able to measure the distance to the human body, and when the distance between the human body and the human body detecting means reaches a predetermined value, the heat source is energized.
  • the heat source control means may be configured as described above. If the human body detecting means is provided near the toilet seat, the toilet room heating device can be operated when the human body approaches the toilet seat to a predetermined distance. By delaying the start of the operation of the toilet room heating system, power consumption can be reduced.
  • a heat source having a positive temperature coefficient of resistance may be used. If the temperature coefficient of resistance of the heat source is positive, the resistance of the heat source increases as the temperature of the heat source increases, and the current flowing through the heat source decreases, so that the heat source approaches the predetermined temperature. As a result, overheating of the toilet room heating device is prevented.
  • a heat source control means for variably controlling the power supplied to the heat source may be provided.
  • the heat source control means may be configured to change the supplied power in a stepwise manner. By changing the supplied power in a stepwise manner, overheating of the toilet room heating device can be prevented.
  • the heat source control means may be configured to determine the power supply to the heat source by feedback control. By the feedback control, the temperature of the toilet room heating device can be quickly raised to an appropriate temperature, and overheating of the toilet room heating device can be prevented.
  • the heat source control means may be configured to determine the power supply to the heat source by learning control.
  • the learning control corrects the variation in the performance of the toilet room heater at the time of shipment based on the operation results during the first use, and the expected performance of the toilet room heater from the second use. Can be demonstrated.
  • seat detection means for detecting that the human body is seated on the toilet seat is provided, and the heat source control means is configured to reduce the amount of power supplied to the heat source when the seat detection means detects seating.
  • Toilet room heating system is kept warm by the human body temperature. Therefore, after the human body is seated on the toilet seat, comfort is not impaired even if the power supply to the toilet room heating device is reduced. By reducing the amount of power supplied to the toilet room heating system, power consumption can be reduced. [Brief description of drawings]
  • FIG. 1A is a sectional view of a heat radiator according to an embodiment of the present invention.
  • FIG. 1 (b) is a cross-sectional view along the line AA of FIG. 1 (a).
  • FIG. 2 is a plan view of a sheet heating element of the heat radiator according to the embodiment of the present invention.
  • FIG. 3 is a partially enlarged view of FIG.
  • FIG. 4 is a diagram showing the amount of radiant heat from the sheet heating element.
  • FIG. 5 is a sectional view of a heat radiator according to another embodiment of the present invention.
  • FIG. 6 (a) is a sectional view of a heating device according to an embodiment of the present invention.
  • FIG. 6 (b) is a cross-sectional view taken along line AA of FIG. 6 (a).
  • FIG. 7 is a top view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIGS. 9 (a) and 9 (b) are cross-sectional views of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 10 is a top view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 11 is a sectional view taken along the line AA of FIG.
  • FIG. 12 is a sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 13 is a sectional view showing a method of assembling the heating device of FIG.
  • FIG. 14 is a sectional view of a heating device and a mold showing a method of assembling the heating device of FIG.
  • FIG. 15 is a sectional view showing another method of assembling the heating device of FIG.
  • FIG. 16 is a sectional view showing another method of assembling the heating device of FIG.
  • FIG. 17 is a sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIGS. 18 (a) and 18 (b) are cross-sectional views of a heating device and a mold showing a method of assembling the heating device of FIG.
  • FIG. 19 is a sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 20 (a) and FIG. 20 (b) are cross-sectional views of a heating device and a mold showing a method of assembling the heating device of FIG.
  • FIG. 21 is a sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 22 is a sectional view of a heating device and a mold showing a method of assembling the heating device of FIG. 21.
  • FIG. 23 is a cross-sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 24 is a cross-sectional view of a sheet heating element covered with a resin film.
  • FIG. 25 is a sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 26 is a cross-sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 27 is a cross-sectional view of a heating device according to an embodiment of the present invention embodied as a heating toilet seat.
  • FIG. 28 is a bird's-eye view of a room in which a heating device according to an embodiment of the present invention is provided.
  • FIG. 29 is a bird's-eye view of a toilet room in which a heating device according to an embodiment of the present invention is provided.
  • FIG. 30 is a sectional view of a toilet room in which a heating device according to an embodiment of the present invention is provided.
  • FIG. 31 is a diagram showing the relationship between the current flowing through the planar heating element provided in the heating device according to the embodiment of the present invention and the temperature of the planar heating element.
  • FIG. 32 is a diagram showing a control example of the heating device according to the embodiment of the present invention.
  • FIG. 33 is a diagram showing a control example of the heating device according to the embodiment of the present invention.
  • FIG. 34 is a diagram illustrating a control example of the heating device according to the embodiment of the present invention.
  • FIG. 35 is a diagram showing a control example of the heating device according to the embodiment of the present invention.
  • a heat radiator according to an embodiment of the present invention will be described.
  • the heat radiator 1 covers a planar heat generating body 2 which is a heat source and a surface of the planar heat generating body 2 which is directed to a human body.
  • the free surface of insulator 3 forms the contact surface with the human body.
  • the planar heating element 2 generates heat when energized, and emits infrared rays whose depth of penetration into the human body is close to the temperature sensing point.
  • a warming point refers to a site where a temperature receptor for feeling warmth in the skin is distributed.
  • the warming point is at a distance of 200 to 300 m from the skin surface.
  • the infrared light When infrared light is emitted toward an object, the infrared light enters the object and travels through the object while being absorbed by the object. The remaining infrared rays that are not absorbed by the object pass through the object.
  • the absorption coefficient differs depending on the object, and the rate of change that changes according to the wavelength of infrared light also differs depending on the object.
  • the penetration depth is used as an indicator of whether infrared light can pass through an object.
  • the penetration depth is the distance traveled by infrared rays that enter the object until it is absorbed by the object and attenuated to 1/10, that is, the thickness at which the transmittance becomes 10%.
  • the penetration depth varies depending on the physical properties of the object and the wavelength of infrared rays.
  • the depth of penetration of infrared light with a wavelength of 2.5-50 / m into the human body is 200-300 / m.
  • the thickness of the insulator 3 is set to be less than the depth of penetration of the infrared rays into the insulator 3. If the insulator 3 is made of polypropylene resin, the penetration of infrared rays having a wavelength of 3 to 12 m into the insulator 3 The depth is about 1.5 mm. If the insulator 3 is made of acrylonitrile 'butadiene-styrene resin, the penetration depth of the infrared light having a wavelength of 3 to 12 m into the insulator 3 is about 390 m.
  • the sheet heating element 2 when a predetermined voltage is applied between the pair of electrodes 5 to energize the sheet heating element 2, the sheet heating element 2 generates heat and emits infrared rays.
  • the heat generated by the planar heating element 2 reaches the free surface of the insulator 3 by heat transfer and heat conduction.
  • the thickness of the insulator 3 is less than the depth of penetration of infrared rays into the insulator 3, and as a result, the thickness of the insulator 3 is thin, so that the heat generated by the surface heating element 2 can reach the free surface of the insulator 3 in a short time.
  • the free surface of the insulator 3 which is the contact surface with the human body, is heated to an appropriate temperature in a short time.
  • Part of the infrared radiation radiated from the surface of the sheet heating element 2 directed to the human body is absorbed by the insulator 3 and converted into heat in the insulator 3. Since the thickness of the insulator 3 is less than the penetration depth of the infrared ray into the insulator 3, the infrared ray is absorbed and converted into heat at all portions of the insulator 3 in the thickness direction. The heat converted from the infrared rays reaches the free surface of the insulator 3 by heat conduction. Since the infrared rays are absorbed and converted into heat at all portions of the insulator 3 in the thickness direction, and the insulator 3 is thin, the heat converted from the infrared rays within the insulator 3 is short. It reaches the free surface of the insulator 3 in a short time, and the free surface of the insulator 3, which is the contact surface with the human body, is heated to an appropriate temperature in a short time.
  • the thickness of the insulator 3 is less than the depth of penetration of infrared rays into the insulator, part of the infrared radiation radiated from the surface of the sheet heating element 2 directed to the human body passes through the insulator 3 and radiates to the outside. And is absorbed by the human body in contact with the free surface of the insulator 3. Since the depth of penetration of the infrared ray into the human body is near the thermal sensation point, it is completely absorbed and converted into heat before reaching the thermal sensation point, and the human body quickly absorbs the thermal sensation near the thermal sensation point. Raise the temperature to an appropriate temperature.
  • the heat radiator 1 can raise the free surface of the insulator 3 which is the contact surface with the human body to an appropriate temperature in a short time, and the heat radiator 1 is in the vicinity of the heat-sensitive point of the human body Since it can be heated directly to a suitable temperature in a short time by heating directly, it has a high immediate heating function. Therefore, the heating device incorporating the heat radiator 1 has an immediate heating function.
  • polyester resin such as polypropylene, polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, acrylonitrile styrene, acrylonitrile It is desirable to use styrene resins such as linole butadiene styrene. Since these resins have a higher infrared transmittance than other resins, most of the infrared rays emitted from the sheet heating element 2 pass through the insulator 3 and directly heat the human body. As a result, the rate of temperature rise near the thermal sensation point of the human body is increased, and the immediate heating function of the heat radiator 1 is further enhanced. Polyethylene terephthalate in the above resin has a high transmittance for long-wavelength infrared rays that are easily absorbed by the human body.
  • the sheet heating element 2 and the insulator 3 are in close contact with each other. Due to the close contact between the two, the heat transfer coefficient between the sheet heating element 2 and the insulator 3 is improved, the rate of temperature rise on the free surface of the insulator 3 is increased, and the heat radiator 1 has an immediate heating function. Is improved. Generally, the sheet heating element can be in close contact with an insulator covering the sheet heating element.
  • the sheet heating element 2 be porous.
  • the adhesive penetrates into the pores of the sheet heating element 2 to improve the adhesion between the sheet heating element 2 and the insulator 3,
  • the porous sheet heating element 2 and the resin insulator 3 are integrally formed, the resin penetrates into the pores of the sheet heating element 2 and the sheet heating element 2 and the insulator 3 Of the heat radiator 1 is improved.
  • a mixed paper of carbon fibers and natural pulp exemplified in FIGS. 2 and 3 is preferable.
  • the sheet heating element 2 exemplified in FIGS. 2 and 3 is prepared by mixing natural pulp 6 such as hemp pulp and a binder 17 made of PVA resin with carbon fiber 8 in water to form a pulp liquid. Then, the pulp solution is flowed on a papermaking net to form a wet sheet, and the wet sheet is mechanically dewatered using a roll for water squeezing and dried to form a dry sheet.
  • the dry sheet is heated to melt the binder 17, and the carbon fiber 8 and the natural pulp 6 are produced by bonding the point contact portions of the carbon fibers 8 together and the point contact portions of the carbon fibers 8 and the natural pulp 6.
  • Is a mixed paper Since the point contact state between the carbon fibers 8 is maintained by the binder 7, the sheet heating element 2 having a stable resistance value is obtained.
  • a predetermined voltage is applied between a pair of electrodes 5 attached to both ends of a sheet heating element 2 made of a mixed paper, a current flows through the carbon fiber 8, generating Joule heat and heating the carbon fiber 8, thereby causing infrared rays. Radiate.
  • the mixed paper exemplified in FIGS.
  • 2 and 3 contains 25% by weight of carbon fiber having a length of 1 to 5 mm, has a weight of 20.5 g Zm 2 and a thickness of about 20%. 0 m. As can be seen from FIG. 3, voids 9 are formed around the carbon fibers 8.
  • Carbon fiber 8 is an efficient infrared radiator. Since the mixed paper of carbon fiber 8 and natural pulp 6 is porous and can withstand the melting temperature of the resin, the sheet heating element 2 made of the mixed paper is suitable for integral molding with the resin insulator 3. I have. It is desirable that voids 9 are formed around the carbon fibers 8. Since the gap 9 forms a heat insulating layer, the temperature of the carbon fiber 8 rises immediately after power is supplied to the mixed paper, and infrared radiation starts. As a result, the immediate heating function of the heat radiator 1 is improved.
  • the occupation ratio of the voids 9 in the mixed paper is 60% by volume or more. If the occupation ratio of the voids 9 in the mixed paper is 60% by volume or more, an air layer, which is a heat insulating layer, is formed around the carbon fibers 8 reliably, and the heating rate of the carbon fibers 8 increases. The time from energizing the mixed paper to starting the emission of infrared radiation is reduced. As a result, the immediate warming function of the heat radiator 1 is improved.
  • the apparent density of about 0. 1 0 5 g Z cm 3 or less It is desirable. If the apparent density exceeds 0.15 g / cm 3 , the occupancy of the voids 9 will decrease, the heating rate of the carbon fibers 8 will decrease, and the immediate heating function of the heat radiator 1 will decrease.
  • the apparent density is 0 1 and 1 cm 3 of the composite paper, apparent density 0 5 g Z cm 3 of mixed paper of -. The spectral radiation dose to the rated power consumption.. From Fig. 4, it can be seen that the radiation amount of the mixed paper with low apparent density is larger than the radiation amount of the mixed paper with high apparent density.
  • an infrared reflector 10 and a heat insulator 11 may be inserted between the sheet heating element 2 and the insulator 4.
  • the infrared radiation emitted from the surface of the sheet heating element 2 opposite to the surface directed to the human body is reflected toward the human body by the infrared reflector 10 and contributes to the temperature rise of the human body. Immediate heating function is improved. Since the heat generated by the planar heating element 2 is prevented from being transmitted to the insulator 4 by the heat insulator 11, the rate of temperature rise of the insulator 3 is increased, and the instantaneous heating function of the heat radiator 1 is improved.
  • the heating device 12 includes a front surface resin layer 13 facing the human body and a back surface resin layer 14.
  • the surface resin layer 13 forms an insulator 3 which covers the surface of the sheet heating element 2 of the heat radiator 1 which faces the human body, and the heat radiator 1 is formed by the surface resin layer 13 and the back resin layer 14.
  • the sheet heating element 2 is sandwiched.
  • a pair of electrodes 5 is attached to both ends of the sheet heating element 2.
  • the surface resin layer 13 has a thickness less than the penetration depth of infrared rays generated by the sheet heating element 2 and is consequently thin, so that it does not have sufficient strength against external force.
  • the surface heating element 2 is sandwiched between the backside resin layer 14 and the frontside resin layer 13 and the frontside resin layer 13 is reinforced by the backside resin layer 14 to have an immediate heating function.
  • the heating device 12 having sufficient strength against external force is obtained.
  • the front resin layer 13 and the back resin layer 14 need to be integrally assembled. Focusing on the heating device 12 embodied as a heating toilet seat, a preferred example of a method of integrally assembling the front resin layer 13 and the back resin layer 14 will be described.
  • the heating device 12a embodied as a heating toilet seat has a front resin layer 13, a rear resin layer 14, a horseshoe-shaped sheet heating element 2 With You.
  • a pair of electrodes 5 is attached to both ends of the sheet heating element 2.
  • a power cord extends from electrode 5.
  • the back surface resin layer 14 has a honeycomb structure.
  • the sheet heating element 2 is sandwiched between the front resin layer 13 and the back resin layer 14. Surface The free surface of the resin layer 13 forms a contact surface with the human body.
  • a protrusion 13 a extending from the front resin layer 13 through the planar heating element 2 is passed through a through hole 14 a formed in the back resin layer 14, and is formed at an end of the protrusion 13 a.
  • a bulged portion 13b having a larger diameter than the through hole 14a is formed.
  • the front surface resin layer 13 and the rear surface resin layer 14 are mechanically joined via the projections 13a.
  • the protrusions 13 a extending from the surface resin layer 13 pass through the through holes formed in the sheet heating element 2. .
  • the planar heating element 2 is bonded to the surface resin layer 13.
  • the protrusion 13a is passed through the through hole 14a formed in the back surface resin layer 14, and the end of the protrusion 13a is melted by heating and the swelling portion 1 is formed.
  • Form 3b is
  • the front surface resin layer 13 and the back surface resin layer 14 are mechanically joined, so that even if the two materials are difficult to adhere to each other, they can be securely assembled together. You.
  • the heating device 12b embodied as a heating toilet seat has substantially the same structure as the above-described heating device 12a. However, in the heating device 12b, a bulge portion 13c is formed in advance at an end of the protrusion 13a extending from the surface resin layer 13.
  • the projections 13 a extending from the surface resin layer 13 pass through the through holes formed in the sheet heating element 2. .
  • the planar heating element 2 is bonded to the surface resin layer 13.
  • the protrusion 13a having the bulge 13c formed at the end is inserted into the through hole 14a formed in the back surface resin layer 14.
  • the bulged portion 13c having a larger diameter than the through hole 14a passes through the through hole 14a while being elastically deformed.
  • the front surface resin layer 13 and the back surface resin layer 14 are mechanically joined, so that even if the two materials are difficult to adhere to each other, they can be securely assembled together. You.
  • the heating device 12 c embodied as a heating toilet seat includes a front resin layer 13, a rear resin layer 14, and a horseshoe-shaped sheet heating element 2.
  • a pair of electrodes 5 are attached to both ends of the sheet heating element 2.
  • a power supply cord extends from the electrode 5.
  • the back resin layer 14 has a honeycomb structure.
  • the heating element 2 is sandwiched between the front resin layer 13 and the back resin layer 14.
  • the free surface of the front resin layer 13 forms a contact surface with a human body.
  • the portion and the outer peripheral portion form a contact portion between the front resin layer 13 and the back resin layer 14.
  • Wire 15 is disposed at the contact portion.
  • the contact portion between the front surface resin layer 13 and the back surface resin layer 14 is melt-bonded.
  • the wire 15 is attached in advance to the contact portion of the back resin layer 14 or the contact portion of the front resin layer 13 in a semi-submerged state.
  • the sheet heating element 2 is adhered to the front resin layer 13, the sheet heating element 2 is sandwiched between the front resin layer 13 and the back resin layer 14, and the inner periphery of the heating device 12 c is After bringing the front surface resin layer 13 and the back surface resin layer 14 into contact with the outer peripheral edge, a predetermined voltage is applied to a pair of electrodes 16 formed at the end of the wire 15 to apply the predetermined voltage to the wire 1. 5 is energized, and the contact portion between the front resin layer 13 and the back resin layer 14 is melt-bonded.
  • the planar heating element 2 can be easily removed. Can be removed and reused. Thereby, reuse of the sheet heating element 2 is promoted.
  • a heating device 12 d embodied as a heating toilet seat
  • the front resin layer 13 and the back resin layer 14 are integrally fused.
  • the sheet heating element 2 is placed on and bonded to the preformed back resin layer 14.
  • the back resin layer 14 is set on the lower mold 16 a of the low-pressure molding die 16. With the low-pressure mold 16 open, pour the resin 17 that forms the upper resin layer 13 into the lower mold 16a, and 6 b is closed and the heating device 12 d is formed by the low pressure forming method.
  • the front resin layer 13 and the back resin layer 14 are fused and firmly integrated, so that the strength of the heating device 12 d against external force is improved.
  • the adhesion between the surface resin layer 13 and the planar heating element 2 is improved, the immediate heating function of the heating device 12d is improved.
  • the sheet heating element 2 is placed on the preformed surface resin layer 13 and adhered, and the surface resin layer 13 is set on the upper die 16b of the low-pressure molding die 16 Then, with the low-pressure molding die 16 opened, the resin 17 forming the backside resin layer 14 is poured into the upper die 16 b, the lower die 16 a is closed, and the heating device 1 2 d is formed by the low-pressure molding method. May be molded. However, in this case, the low pressure molding die 16 is used in a state where it is turned upside down. In the above method 4, as shown in FIG. 15, protrusions 14 b for specifying the mounting position of the sheet heating element 2 may be formed on the preformed back resin layer 14. .
  • the projections 14b prevent the planar heating element 2 from being displaced, and the planar heating element 2 from being wrinkled due to the displacement.
  • a projection similar to the projection 14b may be formed on the surface resin layer 13.
  • irregularities or grooves 14c may be formed on the surface of the preformed back surface resin layer 14 on which the sheet heating element 2 is to be placed.
  • the surface resin layer 13 bites into the irregularities and grooves 14 c, increasing the bonding strength between the front resin layer 13 and the back resin layer 14, and the integrity of the two, and the strength of the heating device 12 d against external forces But
  • the heating device 12 e embodied as a heating toilet seat has a surface heat generation in cooperation with the surface resin layer 13, the surface heating element 2, and the surface resin layer 13.
  • a back resin layer 14 for sandwiching the body 2 and a back cover 18 are provided.
  • the back resin layer 14 has a honeycomb structure.
  • a hollow portion is formed between the back resin layer 14 and the back cover 18.
  • a low-pressure molding die 19 composed of an upper die 19a, a middle die 19b, and a lower die 19c is used.
  • Surface resin layer 1 3 Is subjected to low pressure molding. Only the upper mold 19a is removed, and the middle mold 19b prevents the molded surface resin layer 13 from shrinking and warping.
  • the sheet heating element 2 is placed on the front resin layer 13 and adhered thereto, and the resin forming the back resin layer 14 is poured into the lower mold 19c.
  • the upper mold 19 d is closed, and the back resin layer 14 is integrally formed with the front resin layer 13 by a low pressure molding method.
  • the molded body is taken out of the low-pressure molding die 19, and a back lid 18 formed in advance is attached.
  • the surface resin layer 13, the sheet heating element 2, and the rear resin layer 14 are integrally formed in a series of continuous steps. It is possible to assemble and save the labor of transporting the preformed front resin layer 13 or back resin layer 14 which is a semi-finished product, and set the front resin layer 13 or back resin layer 14 in a low-pressure molding die. This saves time and effort.
  • the hollow portion between the back resin layer 14 and the back cover 18 is used as a wiring space, and contributes to the weight reduction of the heating device 12 e.
  • the backside resin layer 14 may be formed first and held in a mold, and then the frontside resin layer 13 may be integrally formed with the backside resin layer 14.
  • the heating device 12f embodied as a heating toilet seat has a planar heating layer in cooperation with the surface resin layer 13, the planar heating element 2, and the surface resin layer 13. And a backside resin layer 14 for sandwiching the body 2.
  • the resin film 20 forming the surface resin layer 13 is transferred to the lower die 21a of the low-pressure molding die 21. Then, the sheet heating element 2 is placed on the resin film 20 and adhered thereto. As shown in FIG. 20 (b), the resin material 22 serving as the back resin layer 14 is placed on the lower mold 21a as shown in FIG. Pour, close upper mold 21b and apply low pressure.
  • the thickness of the surface resin layer 13 uniform and to make the surface resin layer 13 thin. If the thickness of the surface resin layer 13 is uniform, the temperature of the free surface of the surface resin layer 13 which is the contact surface with the human body becomes uniform, and the comfort of the heating device 12f is enhanced. If the surface resin layer 13 is thin, the amount of infrared rays passing through the surface resin layer 13 will increase, the rate of temperature rise near the point of thermal sensation of the human body will increase, and the immediate heating function of the heating device 12 f will be reduced. improves. (7) Method 7
  • the heating device 12 g embodied as a heating toilet seat has a surface heating layer 13, a sheet heating element 2, and a sheet heating layer 13 in cooperation with the surface resin layer 13. And a back surface resin layer 14 for sandwiching the body 2.
  • the sheet heating element 2 is set in the lower die 23a of the low-pressure molding die 23 and the lower die 23a is set.
  • the resin material 24 to be the backside resin layer 14 is poured, the upper die 23 b is closed, and low-pressure is applied, so that the backside resin layer 14 and the sheet heating element 2 are integrally assembled.
  • the backside resin layer 14 on which the sheet heating element 2 is assembled is set in another low-pressure molding die (not shown), and the resin material to be the front surface resin layer 13 is poured into the die. Close the mold and apply low pressure.
  • the integrity of the front resin layer 13, the planar heating element 2, and the rear resin layer 14 is improved, and the strength of the heating device 12g against external force is improved.
  • the adhesion between the surface resin layer 13 and the surface heating element 2 is improved, the rate of temperature rise on the free surface of the surface resin layer 13 is increased, and the immediate heating property of the heating device 12 g is improved.
  • the front surface resin layer 13 and the sheet heating element 2 may be integrally assembled, and then the rear surface resin layer 14 may be integrally assembled to the front surface resin layer 13.
  • a projection 23c for specifying the mounting position of the sheet heating element 2 is formed on the lower die 23a of the low-pressure molding die 23.
  • the projections 23 c can prevent the planar heating element 2 from being displaced and the surface heating element 2 from being wrinkled due to the positional deviation.
  • the sheet heating element 2 may be colored in the same color as the surface resin layer 13. If the sheet heating element 2 is colored in the same color as the color of the surface resin layer 13, the sheet heating element 2 cannot be seen through even if the surface resin layer 13 is light-colored, and the heating device The users of 1 2 a to 12 g do not feel uncomfortable.
  • the front surface resin layer 13 and / or the rear surface resin layer 14 may be a foamed resin layer. If the front resin layer 13 and / or the back resin layer 14 is a foamed resin layer, the heating devices 12a to 12g become soft, and the comfort of the heating devices 12a to 12g increases.
  • the heating devices 12a to 12g as shown in FIG. May be covered with a resin film 25. If the sheet heating element 2 is coated with the resin film 25 in advance, the surface heating layer 2 can be integrated with the surface resin layer 13, the sheet heating element 2, and the back resin layer 14. Damage is prevented, and the handling of the planar heating element 2 is facilitated, so that the production efficiency of the heating devices 12a to 12g is improved.
  • the resin film 25 facing the back resin layer 14 is formed. May be used as the infrared reflection film 25a. Infrared radiation emitted from the surface of the sheet heating element 2 opposite to the surface directed to the human body is reflected by the infrared reflection film 25a and directed to the human body, so the heating device 12a to 12g Immediate warming function is improved.
  • a buffer material 26 may be interposed between the back surface resin layer 14 and the sheet heating element 2, as shown in FIG.
  • the front surface resin layer 13 the sheet heating element 2, and the back surface resin layer 14 are integrally assembled by any one of the above methods 1 to 3, the front surface resin layer caused by a working error Due to the mismatch in dimensions between 13 and the backside resin layer 14, sufficient integration may not be obtained. If the cushioning material 26 is sandwiched between the backside resin layer 14 and the planar heating element 2, the size mismatch between the frontside resin layer 13 and the backside resin layer 14 is absorbed by the cushioning material 26. , Sufficient integration is obtained.
  • the cushioning material 26 when the cushioning material 26 is sandwiched between the back surface resin layer 14 and the sheet heating element 2, the cushioning material 26 is integrally formed with the back surface resin layer 14. Is also good. If the cushioning material 26 is integrally formed with the backside resin layer 14, the surface heating layer 2 and the backside resin layer 14 can be assembled together when the frontside resin layer 13, the sheet heating element 2 and the backside resin layer 14 are assembled together. The labor for inserting the buffer material 26 between the resin layer 14 and the resin layer 14 is omitted, and the production efficiency of the heating devices 12a to 12c is improved.
  • a heat insulating cushioning material 26 may be used. If the cushioning material 26 with heat insulation is used, the heat generated by the sheet heating element 2 will not be taken away by the cushioning material 26, and the heat efficiency of the sheet heating element 2 will be improved, and the heating device 1 2a Immediate heating function of ⁇ 12c is improved.
  • the backside resin layer 14 may have a honeycomb structure as in the heating devices 12a to 12c and 12e. By making the back resin layer 14 have a honeycomb structure, the heating devices 12a to 12c and 12e can be reduced in weight.
  • a concave portion 14d is formed on a surface of the back resin layer 14 in contact with the sheet heating element 2, and a temperature is formed in the concave portion 14d.
  • Sensor 27 may be provided. If the temperature sensor 27 is arranged close to the planar heating element 2, it is possible to accurately control the planar heating element 2 and, consequently, to accurately control the heating devices 12a to 12c. It can be carried out.
  • the thickness of the surface resin layer 13 is set to a value in the portion facing the high temperature portion of the planar heating element 2. It is desirable to set a large area and a small area at a portion facing the low-temperature portion of the sheet heating element 3.
  • the thickness of the portion of the surface resin layer 13 facing the electrode 5 is considered in consideration of the fact that the portion of the electrode 5 of the sheet heating element 2 becomes hotter than other portions. , It is set larger than other units.
  • the thickness of the surface resin layer 13 is changed from a portion facing the high-temperature inner edge of the sheet heating element 2 to a portion facing the low-temperature outer edge. It is desirable to decrease gradually toward. If the thickness of the surface resin layer 13 is set to be large at the part facing the high-temperature part of the sheet heating element 2 and small at the part facing the low-temperature part of the sheet heating element 2, it is the contact surface with the human body. Surface Since the temperature distribution on the free surface of the resin layer 13 becomes constant, the comfort of the heating device 12a to 12g is improved.
  • the heating device 12 including the heat radiator 1 can be widely applied to a room heating device, a toilet heating device, and the like.
  • the room heating device is designed to cover the contact surfaces with the human body, such as the floor heating panel 12h, the wall heating panel 12i, the heating car 12h, and the panel heater 12k. Having a heating device.
  • the toilet room heating system has a heater with a contact surface with the human body, such as a heating toilet mat 12 m, a panel heater 12 n, a heating toilet lid 12 p, and a heating toilet seat 12 q. Device.
  • the heating device 12 can be applied to a heating knee rest, a warm clothing, a chair seat, a chair backrest, a chair armrest, and the like.
  • a room heating device such as a floor heating panel 12 h, a wall heating panel 12 i, a heating power unit 12 j, and a panel heater 12 k shown in FIG. 28, an infrared detection sensor, a pyroelectric sensor, Doppler sensor, Microwave sensor, C02 sensor, Microphone sensor, etc., a human body detection device 28 that detects a human body in the room, and a surface only when the human body detection device 28 detects a human body A heat source control device 29 for supplying electricity to the heating element 2 may be provided. Activating the room heating system only when there is a human body in the room can reduce power consumption.
  • an operation switch 3 installed outside the toilet room
  • a heat source control device 31 a that supplies power to the sheet heating element 2 based on a command from 0 may be provided. If the heat source control device 31a is installed, the operation switch 30 is operated immediately before using the toilet room, the toilet room heating device is activated, the toilet room is heated, and the toilet room is used comfortably. It is possible to reduce the power consumption by shutting down the toilet heating system immediately after using the room.
  • Operation switch installed in the toilet room or outside the toilet room in the toilet room heating system shown in Fig. 29, such as the heating toilet mat 12m, panel heater 12n, heating toilet lid 12P, and heating toilet seat 12Q.
  • a heat source control device 3 1 b may be provided that energizes the planar heating element 2 only when the lighting device 3 3 is turned on and the lighting lamp 33 in the toilet room is turned on. In ordinary households, the lighting in the toilet room 33 is lit only when the toilet room is used. Therefore, if the heat source control device 31b is provided, the heating device for the toilet room will only be used while the toilet room is in use. To reduce power consumption.
  • Human body detection that detects the human body in the toilet room with the toilet room heating system shown in Fig. 29, such as a heating toilet mat 12 m, a panel heater 12 n, a heating toilet lid 12 p, and a heating toilet seat 12 Q
  • a device 34 and a heat source control device 31c that supplies electricity to the planar heating element 2 only when the human body detection device 34 detects a human body may be provided.
  • a device similar to the human body detector 28 in Fig. 28 is used for the human body detector 34. It may be used, or the seating detection device of the flush toilet seat device may be used for the human body detection device 34.
  • the sheet heating element 2 is energized after a predetermined time has passed since the human body detection device 34 detected the human body.
  • the heat source control device 31c may be configured as described above.
  • the human body detection device 34 detects the human body. There is an interval of 10 to 20 seconds from when the human body enters the toilet room to when he / she sits on the toilet seat 12q, so after a predetermined time has passed since the human body detection device 34 detected the human body, the toilet room heating was performed. Even if the device is activated, there is still time left before the human body sits on the toilet seat 1 2Q.
  • the contact surface of the toilet room heating device with the human body that is, the free surface of the surface resin layer 13 is sufficiently sufficient within the remaining time.
  • the temperature can be raised to an appropriate temperature.
  • Toilet room heating devices such as heating toilet mat 12 m, panel heater 12 n, heating toilet lid I 2 p, heating toilet seat 12 q, etc., come into contact with or extremely close to the human body sitting on toilet seat 12 Q. Since it approaches and heats the human body, the comfort of the toilet heater will not be impaired if the contact surface with the human body is heated to an appropriate temperature before the human body sits on the toilet seat 1 2 q. By delaying the start of operation of the toilet heating system, power consumption can be reduced.
  • the time from when the human body detection device 34 detects the human body to when the human body sits on the toilet seat 1 q is T, and the free surface of the surface resin layer 13 is specified from the start of energization of the sheet heating element 2.
  • the heat source control device 3 1 c is set so that the sheet heating element 2 is energized after T 1 t has passed since the human body detection device 34 detected the human body. It may be configured.
  • the contact surface of the toilet room heating device with the human body rises to an appropriate temperature, so the comfort of the toilet room heating device is not impaired. Power consumption can be reduced by delaying the start of operation of the toilet heating system by Tt.
  • the human body detecting device 34 is configured to measure the distance from the human body, and as shown in FIG. 30, the human body detecting device 34 is attached to the flush water tank provided with the toilet, and the human body detecting device 34 is mounted.
  • the heat source control device 3lc may be configured so as to energize the sheet heating element 2 when the distance from the human body measured by 4 becomes a predetermined value.
  • the planar heating element 2 of the heat radiator 1 A heating element having a positive temperature coefficient of resistance may be used. If the temperature coefficient of resistance of the sheet heating element 2 is positive, the resistance value of the sheet heating element 2 increases as the temperature of the sheet heating element 2 increases, as shown in FIG. Since the current flowing through the heater decreases, the planar heating element 2 approaches the predetermined temperature. As a result, overheating of the toilet room heating device is prevented.
  • a resistor having a positive temperature coefficient of resistance is a heating element in which carbon particles and a matrix resin are mixed.
  • the carbon particles When electricity is supplied to the heat generating element, the carbon particles generate heat and the temperature of the heat generating element rises.
  • the matrix resin thermally expands, the distance between the carbon particles increases, the electrical resistance increases, the current value decreases, and the temperature of the heating element decreases.
  • the temperature of the heating element decreases, the matrix resin shrinks, the distance between the carbon particles decreases, the electrical resistance decreases, the current value increases, and the temperature of the heating element increases.
  • the metal resistor is also a heating element having a positive temperature coefficient of resistance.
  • the heat source control devices 31a, 31b, 3 1 c may be configured to variably control the power supplied to the planar heating element 2.
  • the power supplied to the sheet heating element 2 of the heat radiator 1 By variably controlling the power supplied to the sheet heating element 2 of the heat radiator 1, overheating of the toilet room heating device can be prevented, and the toilet is always heated even when external conditions such as room temperature change.
  • the room heating device can be heated to an appropriate temperature.
  • the heat source control devices 31a, 31b, and 31c are changed so that the supplied power changes stepwise as shown in Fig. 32. It may be configured. By changing the supplied power in a stepwise manner, the temperature of the toilet room heating device can be quickly raised, and the overheating of the toilet room heating device can be prevented.
  • the heat source control devices 31 a, 31 b, As shown in FIG. 33, 31 c may be configured to determine the power supply to the planar heating element 2 by feedback control.
  • the appropriate surface temperature of the toilet room heating device is set as a set value
  • the current surface temperature of the toilet room heating device is used as a control variable
  • the difference between the two is set as a deviation
  • the PID calculation according to the deviation is performed, and the surface variable as the operation variable
  • the power to be supplied to the heating element 2 is determined, and the power is supplied to the planar heating element 2 to be controlled.
  • the P operation is a control that changes the manipulated variable in proportion to the deviation.
  • the I operation is a control that changes the manipulated variable in proportion to the time integral of the deviation.
  • the D operation is a control that changes the operation variable in proportion to the time derivative of the deviation. In the PID operation, these operations are combined to determine an operation variable.
  • the PID control enables quick and accurate optimal control.
  • the initial supply power in the control of FIG. 32 and the initial control constant in the control of FIG. 33 may be determined according to the ambient temperature in the toilet room. When the ambient temperature is low, the initial supply power can be increased and the initial control constant can be increased to increase the immediate heating of the toilet room heating system. When the ambient temperature is high, the initial supply power can be reduced. It is possible to prevent overheating of the toilet room heating system by reducing the initial control constant
  • the heat source control devices 31a, 31b, 31c are configured to determine the power supply to the planar heating element 2 by learning control. You may.
  • the control constants of the controls shown in Figs. 32 and 33 are determined so that the surface temperature of the toilet room heating device reaches the set value within a predetermined time. .
  • the control using the control constants causes the surface temperature of the toilet room heating device to reach a predetermined time t after the start of the control, as shown by the line a in FIG. At the set temperature To.
  • Predetermined time t after starting control Set temperature T at. In some cases, the temperature may only reach a temperature lower by ⁇ ⁇ ⁇ . In such a case, if the control constant is corrected according to the deviation ⁇ ⁇ ⁇ ⁇ by learning control and the power supplied to the planar heating element 2 is corrected, the toilet heating device will exhibit the expected performance from the next operation. be able to.
  • a heat source control device 3 1a, 3 1b, 3 1 is provided so that when the seat detection device 35 detects a seat, the amount of power supplied to the planar heating element 2 is reduced. You may comprise c.
  • the load sensor can be used as the seating detection device 35.
  • a heating device having a contact surface with a human body, the heating device having an immediate warming property.

Description

明 細 書
熱放射器
〔技術分野〕
本発明は人体との接触面を有する熱放射器に関するものである。
〔背景技術〕
床暖房装置、 暖房便座等の人体との接触面を有する暖房装置は、 従来、 熱源に 通電して発生させた熱を熱源を被覆する絶縁体へ熱伝達させ、 更に絶縁体の表面 まで熱伝導させて、 人体との接触面である絶縁体表面の温度を適温まで昇温させ るように構成されていた。 絶縁体の厚みが大きいので、 熱源が赤外線を放射する 場合でも、 熱源から放射された赤外線は絶縁体に全て吸収され、 人体に直接吸収 されることはなかった。
熱伝達と熱伝導とにより絶縁体の表面まで到達した熱によって人体を温めるよ うに構成された従来の暖房装置には、 熱伝達と熱伝導とによる熱の移動速度が低 いので、 絶縁体表面を適温まで昇温させるのに時間が掛かり、 即暖性に欠けると いう問題があった。
〔発明の開示〕
本発明は上記課題に鑑みてなされたものであり、 人体との接触面を有する暖房 装置であって、 即暖性のある暖房装置を提供することを目的とする。
上記課題を解決するために、 本発明においては、 赤外線を人体へ向けて放射す る熱放射器であって、 通電されて人体への浸透深度が温感ポイ ン ト付近の赤外線 を放射する熱源と、 熱源の人体へ差し向けられる面を被覆し表面が人体との接触 面を構成する絶縁体とを備え、 前記絶縁体の厚みが前記絶縁体への前記赤外線の 浸透深度未満であることを特徴とする熱放射器を提供する。
本発明に係る熱放射器においては、 通電された熱源は発熱して赤外線を放射す る。
熱源で発生した熱は熱伝達と熱伝導とにより絶縁体表面まで到達する。 絶縁体 は当該絶縁体への赤外線の浸透深度未満の厚みであり、 結果的に絶縁体は薄いの で、 熱源で発生した熱は短時間で絶縁体表面まで到達し、 人体との接触面である 絶縁体表面を短時間で適温まで昇温させる。 熱源から放射された赤外線の一部は絶縁体に吸収され絶縁体内で熱に変換され る。 絶縁体の厚みは当該絶縁体への赤外線の浸透深度未満なので、 絶縁体の厚み 方向の全ての部位で赤外線が吸収され熱に変換される。 赤外線から変換された熱 は、 熱伝導により絶縁体表面まで到達する。 絶縁体の厚み方向の全ての部位で赤 外線が吸収されて熱に変換されるので、 又絶縁体は薄いので、 絶縁体内で赤外線 から変換された熱は短時間で絶縁体表面まで到達し、 人体との接触面である絶縁 体表面を短時間で適温まで昇温させる。
絶縁体の厚みは当該絶縁体への赤外線の浸透深度未満なので、 熱源から放射さ れた赤外線の一部は絶縁体を通過して外部へ放射され、 絶縁体の表面に接触する 人体に吸収される。 赤外線の人体への浸透深度は温感ポイ ン ト付近なので、 温感 ポイ ン ト近傍へ到達するまでに略全て吸収されて熱に変換され、 人体の温感ポィ ン ト近傍部を短時間で適温まで昇温させる。
上記説明から分かるように、 本発明に係る熱放射器は、 人体との接触面である 絶縁体表面を短時間で適温まで昇温させることができ、 且つ人体の温感ポィ ン ト 近傍部を直接加温して短時間で適温まで昇温させることができるので、 高い即暖 機能を有する。 従って本発明に係る熱放射器が組み込まれた暖房装置は即暖機能 を有する。
ポリ プロピレン、 ポリエチレンテレフタ レ一 ト、 ポリ ブチレンテレフタ レー ト、 ポリエチレンナフタ レー ト等のポリエステル樹脂、 アク リ ロニ ト リル ' スチレン、 アク リ ロニ ト リル · ブタジエン · スチレン等のスチレン系樹脂を絶縁体と して使 用するのが望ま しい。 これらの樹脂は赤外線の透過率が他の樹脂に比べて高いの で、 熱源から放射された赤外線の多くの部分が絶縁体を通過して直接人体を加温 する。 この結果、 熱放射器の即暖機能が更に高まる。 上記樹脂中ポリエチレンテ レフタ レー トは、 人体に吸収され易い長波長の赤外線の透過率が高いので、 熱放 射器の即暖機能の向上に特に有効である。
熱源と絶縁体とは密着しているのが望ま しい。 両者が密着することにより、 熱 源と絶縁体との間の熱伝達率が向上し、 熱放射器の即暖機能が向上する。 熱源を 面状発熱体とすることにより、 熱源と絶縁体との間の密着性を高めることができ る。 熱源は多孔質の面状発熱体であるのが望ま しい。 多孔質の面状発熱体を絶縁体 に接着する場合には接着剤が面状発熱体の細孔に浸透して面状発熱体と絶縁体と の密着性が向上し、 多孔質の面状発熱体を樹脂製の絶縁体と一体成形する場合に は樹脂が面状発熱体の細孔に浸透して面状発熱体と絶縁体との密着性が向上する ので、 熱放射器の即暖機能が向上する。
多孔質の面状発熱体と して炭素繊維と天然パルプとの混抄紙は好適である。 炭 素繊維は効率の良い赤外線放射体である。 炭素繊維と天然パルプとの混抄紙は多 孔質であると共に樹脂の溶融温度に耐えられるので、 炭素繊維と天然パルプとの 混抄紙から成る面状発熱体は、 樹脂製の絶縁体との一体成形に適している。 炭素 繊維の周囲に空隙が形成されているのが望ま しい。 空隙は断熱層を形成するので、 混抄紙への通電後直ちに炭素繊維が昇温し、 赤外線の放射が始まる。 この結果熱 放射器の即暖機能が向上する。
混抄紙における空隙の占有率は 6 0体積%以上であるのが望ま しい。 混抄紙に おける空隙の占有率が 6 0体積%以上であると、 炭素繊維の周囲に断熱層である 空気層が確実に形成されるので、 炭素繊維の昇温速度が増大し、 混抄紙への通電 開始から赤外線の放射開始までの時間が短縮される。 この結果、 熱放射器の即暖 機能が向上する。
熱源の人体へ差し向けられる面とは反対側の面に対峙する赤外線反射体を設け ても良い。 熱源の人体へ差し向けられる面とは反対側の面に対峙する赤外線反射 体を設けることにより、 熱源から人体とは反対方向へ放射された赤外線を人体方 向へ反射させ、 人体の昇温に寄与させることができる。 この結果、 熱放射器の即 暖機能が向上する。
本発明においては、 上記熱放射器を備える暖房装置であって、 人体に向き合う 表面樹脂層と、 裏面樹脂層とを備え、 表面樹脂層が熱放射器の熱源の人体へ差し 向けられる面を被覆する絶縁体を形成し、 表面樹脂層と裏面樹脂層とにより熱放 射器の熱源がサン ドィ ツチされていることを特徴とする暖房装置を提供する。 表面樹脂層は熱源が発生させる赤外線の浸透深度未満の厚みであり、 結果的に 薄いので、 外力に対して十分な強度を有さない。 裏面樹脂層と表面樹脂層とで熱 源 サン ドィ ッチし、 裏面樹脂層で表面樹脂層を補強することにより、 即暖機能 を有し、 且つ外力に対して十分な強度を有する暖房装置が得られる。
表面樹脂層を裏面樹脂層で補強するためには、 表面樹脂層と裏面樹脂層とを一 体に組付ける必要がある。 両者を一体に組付ける好適な方法として以下が挙げら れる。
①表面樹脂層から熱源を貫通して延在する突起を裏面樹脂層に形成した貫通孔 に揷通し、 突起の端部を加熱溶融して膨出部を形成する。
②表面樹脂層から熱源を貫通して延在し端部に膨出部が形成された突起を裏面 樹脂層に形成した貫通孔に挿通する。
上記①、 ②の方法であれば、 表面樹脂層と裏面樹脂層とが機械的に接合される ので、 両者が接着し難い材料であっても、 確実に両者を一体に組付けることがで きる。
③表面樹脂層と裏面樹脂層とを当接させ、 裏面樹脂層の当接部又は表面樹脂層 の当接部に予め埋設したワイヤーに通電し前記当接部を溶融接着する。
上記③の方法であれば、 ヮィヤーに通電し接合部を再度溶融させて両者を容易 に分離できるので、 熱源の取り外しが容易になり、 熱源の再利用が促進される。
④予め成形された表面樹脂層又は裏面樹脂層に熱源を載置して低圧成形金型に セッ トし、 金型に裏面樹脂層又は表面樹脂層となる樹脂材料を流し込み、 金型を 閉じ低圧加圧する。
上記④の方法であれば、 表面樹脂層と熱源と裏面樹脂層との一体性が高まり、 暖房装置の外力に対する強度が向上する。 また表面樹脂層と熱源との密着性が向 上するので、 暖房装置の即暖機能が向上する。 低圧成形することにより、 成形中 の熱源の破損を防止することができる。
上記④の方法において、 予め成形された表面樹脂層又は裏面樹脂層に、 熱源の 載置位置を特定するための突起を形成することにより、 熱源の位置ずれ、 熱源が 面状発熱体である場合の位置ずれによるしわの発生を防止することができる。 上記④の方法において、 予め成形された裏面樹脂層の熱源を載置する面に、 凹 凸又は溝を形成することにより、 表面樹脂層を前記凹凸、 溝へ食い込ませ、 表面 樹脂層と裏面樹脂層の接合強度を高めて、 両者の一体性、 ひいては暖房装置の外 力に対する強度を高めることができる。 ⑤表面樹脂層又は裏面樹脂層を成形して低圧成形金型内に保持し、 表面樹脂層 又は裏面樹脂層に熱源を載せ、 金型に裏面樹脂層又は表面樹脂層となる樹脂材料 を流し込み、 金型を閉じ低圧加圧する。
上記⑤の方法であれば、 上記④の方法と同様の効果が得られるのに加えて、 一 連の連続した工程で表面樹脂層と熱源と裏面樹脂層とを一体に組付けることがで き、 半製品である予め成形された表面樹脂層又は裏面樹脂層を搬送する手間と、 当該表面樹脂層又は裏面樹脂層を低圧成形金型にセッ 卜する手間とを省く ことが できる。
⑥樹脂フィルムを低圧成形用金型に吸引密着させ、 樹脂フィ ルムに熱源を載せ、 金型に裏面樹脂層となる樹脂材料を流し込み、 金型を閉じ低圧加圧する。
上記⑥の方法であれば、 上記④の方法と同様の効果が得られるのに加えて、 表 面樹脂層の厚みを均一にし且つ表面樹脂層を薄くすることができる。 表面樹脂層 の厚みが均一であれば、 人体との接触面である表面樹脂層の表面温度が均一にな つて暖房装置の快適性が高まる。 表面樹脂層が薄ければ、 表面樹脂層を通過する 赤外線の量が増加するので、 暖房装置の即暖機能が向上する。
⑦熱源を第 1の低圧成形用金型にセッ 卜し、 金型に表面樹脂層又は裏面樹脂層 となる樹脂材料を流し込み、 金型を閉じ低圧加圧して表面樹脂層又は裏面樹脂層 と熱源とを一体に組付け、 熱源と一体に組付けた表面樹脂層又は裏面樹脂層を第 2の低圧成形用金型にセッ 卜し、 金型に裏面樹脂層又は表面樹脂層となる樹脂材 料を流し込み、 金型を閉じ低圧加圧する。
上記⑦の方法であれば、 表面樹脂層と熱源と裏面樹脂層との一体性が高まり、 暖房装置の外力に対する強度が向上する。 また表面樹脂層と熱源との密着性が向 上するので、 暖房装置の即暖性が向上する。
上記⑦の方法において、 低圧成形用金型に、 熱源の載置位置を特定するための 突起を形成することにより、 熱源の位置ずれ、 熱源が面状発熱体である場合の位 置ずれによるしわの発生を防止することができる。
上記①〜⑦の方法において、 熱源を表面樹脂層の色と同一の色に着色しても良 い。 熱源が表面樹脂層の色と同一の色に着色されていれば、 表面樹脂層が淡色で あっても熱源は透けて見えず、 暖房装置の使用者は違和感を抱かない。 上記①〜⑦の方法において、 表面樹脂層及び/又は裏面樹脂層を発泡樹脂層と しても良い。 表面樹脂層及び/又は裏面樹脂層が発泡樹脂層であれば、 暖房装置 が軟質になり、 暖房装置の快適性が増加する。
上記①〜⑦の方法において、 熱源を予め樹脂フィ ルムで被覆しても良い。 熱源 を予め樹脂フィ ルムで被覆しておけば、 表面樹脂層と熱源と裏面樹脂層とを一体 に組付ける時に、 熱源の損傷が防止され、 且つ熱源の取扱いが容易になって暖房 装置の製造効率が向上する。
熱源を予め樹脂フィルムで被覆する場合には、 裏面樹脂層に向かい合う樹脂フ ィルムを赤外線反射フイルムとしても良い。 熱源の人体へ差し向けられる面の反 対側の面から放射された赤外線が赤外線反射フィ ルムで反射されて人体へ差し向 けられるので、 暖房装置の即暖機能が向上する。
裏面樹脂層と熱源との間に緩衝材を挟んでも良い。 表面樹脂層と熱源と裏面樹 脂層とが上記①乃至③の何れかの方法で一体に組付けられている場合、 工作誤差 により生じた表面樹脂層と裏面樹脂層と間の寸法の不一致により十分な一体性が 得られない場合がある。 裏面樹脂層と熱源との間に緩衝材が挟まれていれば、 表 面樹脂層と裏面樹脂層と間の寸法の不一致が緩衝剤によって吸収されるので、 十 分な一体性が得られる。
緩衝材を裏面樹脂層と一体成形しても良い。 緩衝材を裏面樹脂層と一体成形す れば、 表面樹脂層と熱源と裏面樹脂層とを一体に組付ける際に、 表面樹脂層と裏 面樹脂層との間に緩衝材を挿入する手間が省け、 暖房装置の製造効率が向上する。 断熱性のある緩衝材を用いても良い。 断熱性のある緩衝材を用いれば、 熱源の 発生する熱が緩衝材に奪われるおそれが無く、 熱源の熱効率が向上し、 暖房装置 の即暖機能が向上する。
上記①〜⑦の方法において裏面樹脂層をハニカム構造としても良い。 裏面樹脂 層をハニカム構造とすることにより、 暖房装置が軽量化される。
上記①〜⑦の方法において裏面樹脂層の熱源と接する面に凹部を形成し凹部内 に温度センサを配設しても良い。 熱源に近接して温度センサを配設すれば熱源の 制御を正確に行うことができひいては暖房装置の制御を正確に行うことができる。 熱源に、 場所による温度むらが在る場合には、 表面樹脂層の厚みを、 熱源の高 温部に対峙する部位では大きく、 熱源の低温部に対峙する部位では小さく設定す るのが望ましい。 表面樹脂層の厚みを、 熱源の高温部に対時する部位では大きく - 熱源の低温部に対峙する部位では小さく設定すれば、 人体との接触面である表面 樹脂層の表面の温度分布が一定になるので、 暖房装置の快適性が向上する。
本発明に係る暖房装置は、 部屋暖房装置、 トイレ室暖房装置等に広く応用する ことができる。 部屋暖房装置として床暖房パネル、 壁暖房パネル、 暖房カーぺッ ト、 パネルヒータ等が挙げられる。 トイレ室暖房装置として、 暖房トイレマツ ト- パネルヒータ、 暖房便蓋、 暖房便座等が挙げられる。 柔軟な面状発熱体を使用し. 柔軟な表面樹脂層と裏面樹脂層とを使用すれば、 本発明に係る暖房装置を暖房膝 掛、 防寒服、 椅子の座部、 椅子の背もたれ、 椅子の肘掛け等に応用することも可 能である。
本発明に係る部屋暖房装置において、 部屋内に居る人体を検知する人体検知手 段と、 人体検知手段が人体を検知している時にのみ熱源に通電する熱源制御手段 とを設けても良い。 部屋内に人体が居る時にのみ部屋暖房装置を作動させること により、 電力消費を節減することができる。
本発明に係る トイレ室暖房装置において、 トイレ室外からの指令に基づいて熱 源に通電する熱源制御手段を設けても良い。 係る熱源制御手段を設けておけば、 トイレ室の使用直前にトイレ室暖房装置を作動させトイレ室を暖房して快適にト ィレ室を使用し、 トイレ室の使用直後にトィレ室暖房装置を停止させて電力消費 を節減することができる。
本発明に係る トィレ室暖房装置において、 卜ィレ室の照明が点灯している時に のみ熱源に通電する熱源制御手段を設けても良い。 一般家庭においては、 トイレ 室の照明はトィレ室の使用時にのみ点灯されるので、 上記の熱源制御手段を設け ておけば、 トィレ室の使用中にのみトィレ室暖房装置を作動させて、 電力消費を 節減することができる。
本発明に係る トイレ室暖房装置において、 トイレ室内に居る人体を検知する人 体検知手段と、 人体検知手段が人体を検知している時にのみ熱源に通電する熱源 制御手段とを設けても良い。 卜ィレ室内に人体が居る時にのみトィレ室暖房装置 を作動させることにより、 電力消費を節減することができる。 人体検知手段が人体を検知してから所定時間経過後に、 熱源に通電するように 熱源制御手段を構成しても良い。 人体がトィレ室に入ると直ちに人体検知手段が 人体を検知する。 人体がトイレ室へ入ってから便座に着座するまで 1 0秒乃至 2 0秒の間隔があるので、 人体検知手段が人体を検知してから所定時間経過後に卜 ィレ室暖房装置を作動させても、 人体が便座に着座するまでに残余の時間が在る ( 本発明に係る 卜ィレ室暖房装置は即暖性に優れるので、 当該トィレ室暖房装置の 人体との接触面は、 当該残余の時間内に十分に適温まで昇温することができる。 従って暖房装置の快適性は損なわれない。 トィレ室暖房装置の作動開始を遅らせ ることにより、 消費電力を節減することができる。
本発明に係る トイレ室暖房装置において、 人体検知手段が人体を検知してから 人体が便座に着座するまでの時間を Tとし、 熱源への通電開始から表面樹脂層が 所定温度まで昇温するまでの時間を tとした時に、 人体検知手段が人体を検知し てから T一 t経過後に、 熱源に通電するように熱源制御手段を構成しても良い。 トイレ室暖房装置の作動開始を T一 t遅らせることにより、 消費電力を節減する ことができる。
本発明に係る トイレ室暖房装置において、 人体検知手段を人体迄の距離を測定 することができるように構成し、 人体と人体検知手段との間の距離が所定値にな ると熱源に通電するように熱源制御手段を構成しても良い。 人体検知手段を便座 近傍に設けておけば、 人体が便座に所定距離まで接近した時にトィレ室暖房装置 を作動させることができる。 トイレ室暖房装置の作動開始を遅らせることにより- 消費電力を節減することができる。
本発明に係る トイレ室暖房装置において、 正の抵抗温度係数を有する熱源を使 用しても良い。 熱源の抵抗温度係数が正であれば、 熱源の温度上昇と共に熱源の 抵抗値が増加し、 熱源を流れる電流が減少するので、 熱源は所定の温度に漸近す る。 この結果、 トイレ室暖房装置の過熱が防止される。
本発明に係る 卜ィレ室暖房装置において、 熱源に供給する電力を可変制御する 熱源制御手段を設けても良い。 熱源に供給する電力を可変制御することにより、 トイレ室暖房装置の過熱を防止することができ、 また室温等の外的条件が変化し ても常にトイレ室暖房装置を適温まで昇温させることができる。 本発明に係る トイレ室暖房装置において、 供給電力を階段状に変化させるよう に熱源制御手段を構成しても良い。 供給電力を階段状に変化させることにより、 卜ィレ室暖房装置の過熱を防止することができる。
本発明に係る トイレ室暖房装置において、 フィードバック制御によって熱源へ の供給電力を決定するように熱源制御手段を構成しても良い。 フィードバック制 御により、 迅速に 卜ィレ室暖房装置を適温まで昇温させることができ、 且つ トイ レ室暖房装置の過熱を防止することができる。
本発明に係る トィレ室暖房装置において、 学習制御によって熱源への供給電力 を決定するように熱源制御手段を構成しても良い。 学習制御により、 出荷時の ト ィ レ室暖房装置の性能のバラツキを第 1回目の使用時の作動実績に基づいて修正 し、 第 2回目の使用時からはトィレ室暖房装置に所期の性能を発揮させることが できる。
本発明に係る トィレ室暖房装置において、 人体が便座に着座したことを検知す る着座検知手段を設け、 着座検知手段が着座を検知すると熱源への電力供給量を 低減するように熱源制御手段を構成しても良い。 人体が便座に着座した後は、 便 座に近接して置かれる暖房トイレマツ 卜には人体の足の部分が接触し、 暖房便座 や暖房便蓋には人体の臀部や背中が接触するので、 これらのトイレ室暖房装置は 人体の体温によって保温される。 従って、 人体が便座に着座した後は、 上記のト ィレ室暖房装置への電力供給量を減らしても、 快適性を損なわない。 トイレ室暖 房装置への電力供給量を減らすことにより、 消費電力を節減することができる。 〔図面の簡単な説明〕
第 1 ( a ) 図は本発明の実施例に係る熱放射器の断面図である。 第 1 ( b ) 図 は第 1 ( a ) 図の線 A— Aに沿った断面図である。
第 2図は本発明の実施例に係る熱放射器の面状発熱体の平面図である。
第 3図は第 2図の部分拡大図である。
第 4図は面状発熱体からの輻射熱量を示す図である。
第 5図は本発明の他の実施例に係る熱放射器の断面図である。
第 6 ( a ) 図は本発明の実施例に係る暖房装置の断面図である。 第 6 ( b ) 図 は第 6 ( a ) 図の線 A— Aに沿った断面図である。 第 7図は暖房便座として具現化された本発明の実施例に係る暖房装置の上面図 である。
第 8 ( a ) 図、 第 8 ( b ) 図は第 7図の線 A— Aに沿った断面図である。 第 9 ( a ) 図、 第 9 ( b ) 図は暖房便座として具現化された本発明の実施例に 係る暖房装置の断面図である。
第 1 0図は暖房便座として具現化された本発明の実施例に係る暖房装置の上面 図である。
第 1 1図は第 1 0図の線 A— Aに沿った断面図である。
第 1 2図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 1 3図は第 1 2図の暖房装置の組付け方法を示す断面図である。
第 1 4図は第 1 2図の暖房装置の組付け方法を示す暖房装置と金型の断面図で ある。
第 1 5図は第 1 2図の暖房装置の他の組付け方法を示す断面図である。
第 1 6図は第 1 2図の暖房装置の他の組付け方法を示す断面図である。
第 1 7図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 1 8 ( a ) 図、 第 1 8 ( b ) 図は第 1 7図の暖房装置の組付け方法を示す暖 房装置と金型の断面図である。
第 1 9図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 2 0 ( a ) 図、 第 2 0 ( b ) 図は第 1 9図の暖房装置の組付け方法を示す暖 房装置と金型の断面図である。
第 2 1図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 2 2図は第 2 1図の暖房装置の組付け方法を示す暖房装置と金型の断面図で ある。
第 2 3図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。 第 2 4図は樹脂フィルムで被覆された面状発熱体の断面図である。
第 2 5図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 2 6図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 2 7図は暖房便座として具現化された本発明の実施例に係る暖房装置の断面 図である。
第 2 8図は本発明の実施例に係る暖房装置が配設された部屋の鳥瞰図である。 第 2 9図は本発明の実施例に係る暖房装置が配設されたトイレ室の鳥瞰図であ る。
第 3 0図は本発明の実施例に係る暖房装置が配設された卜ィレ室の断面図てあ る。
第 3 1図は本発明の実施例に係る暖房装置が備える面状発熱体に流れる電流と 面状発熱体の温度との関係を示す図である。
第 3 2図は本発明の実施例に係る暖房装置の制御例を示す図である。
第 3 3図は本発明の実施例に係る暖房装置の制御例を示す図である。
第 3 4図は本発明の実施例に係る暖房装置の制御例を示す図である。
第 3 5図は本発明の実施例に係る暖房装置の制御例を示す図である。
〔発明を実施するための最良の形態〕
本発明の実施例に係る熱放射器を説明する。
第 1 ( a ) 図、 第 1 ( b ) 図に示すように、 熱放射器 1は、 熱源である面状発 熱体 2と、 面状発熱体 2の人体へ差し向けられる面を被覆する絶縁体 3と、 面状 発熱体 2の人体へ差し向けられる面とは反対側の面を被覆する絶縁体 4と、 面状 発熱体 2の両端に取り付けられた一対の電極 5とを備えている。 絶縁体 3の自由 表面は人体との接触面を形成している。
面状発熱体 2は通電されると発熱して人体への浸透深度が温感ポィン 卜付近の 赤外線を放射する。
温感ポィントとは皮膚内の温かさを感じる温度受容器が分布する部位を言う。 温感ポィン トは皮膚表面から 2 0 0〜 3 0 0 mの距離に在る。 赤外線を物体へ向けて放射すると、 赤外線は物体内へ入射し、 物体に吸収され ながら物体内を進行する。 物体に吸収されなかった残余の赤外線は物体を透過す る。 入射エネルギーを I と し透過エネルギーを I , とすると、 透過率て は r = I , I 。 で表される。 透過率て は物体の物性と厚さとに左右される。 透過率て と物体の吸収係数/ と物体の厚さ Xとの間には、 て = e x p (—〃 X ) なる関係 がある。 吸収係数 は物体によって異なり、 且つ赤外線の波長に応じて変化する 変化率も物体によって異なる。 赤外線が物体を透過できるか否かの指標と して浸 透深度が用いられる。 浸透深度とは物体内へ入射した赤外線が物体に吸収されて 1 / 1 0 に減衰するまでの進行距離、 すなわち透過率てが 1 0 %となる厚さを言 う。 浸透深度は物体の物性と赤外線の波長とによって変化する。 波長が 2 . 5 - 5 0 / mの赤外線の人体への浸透深度は 2 0 0 〜 3 0 0 // mである。
絶縁体 3の厚みは、 絶縁体 3への前記赤外線の浸透深度未満に設定されている 絶縁体 3がポリ プロピレン樹脂製の場合、 波長が 3 〜 1 2 mの赤外線の絶縁体 3への浸透深度は約 1 . 5 m mである。 絶縁体 3がァク リ ロニ ト リル ' ブタジェ ン · スチレン樹脂製の場合、 波長が 3 〜 1 2 mの赤外線の絶縁体 3への浸透深 度は約 3 9 0 mである。
熱放射器 1 においては、 一対の電極 5間に所定の電圧を印加して面状発熱体 2 に通電すると、 面状発熱体 2が発熱し赤外線を放射する。
面状発熱体 2で発生した熱は熱伝達と熱伝導とにより絶縁体 3の自由表面まで 到達する。 絶縁体 3は、 絶縁体 3への赤外線の浸透深度未満の厚みであり、 結果 的に絶縁体 3 は薄いので、 面伏発熱体 2で発生した熱は短時間で絶縁体 3の自由 表面まで到達し、 人体との接触面である絶縁体 3の自由表面を短時間で適温まで 昇温させる。
面状発熱体 2の人体へ差し向けられる面から放射された赤外線の一部は絶縁体 3 に吸収され絶縁体 3内で熱に変換される。 絶縁体 3の厚みは絶縁体 3への赤外 線の浸透深度未満なので、 絶縁体 3の厚み方向の全ての部位で赤外線が吸収され 熱に変換される。 赤外線から変換された熱は、 熱伝導により絶縁体 3の自由表面 まで到達する。 絶縁体 3の厚み方向の全ての部位で赤外線が吸収されて熱に変換 されるので、 又絶縁体 3 は薄いので、 絶縁体 3内で赤外線から変換された熱は短 時間で絶縁体 3の自由表面まで到達し、 人体との接触面である絶縁体 3の自由表 面を短時間で適温まで昇温させる。
絶縁体 3の厚みは当該絶縁体への赤外線の浸透深度未満なので、 面状発熱体 2 の人体へ差し向けられる面から放射された赤外線の一部は絶縁体 3を通過して外 部へ放射され、 絶縁体 3の自由表面に接触する人体に吸収される。 赤外線の人体 への浸透深度は温感ポィ ン ト付近なので、 温感ポィ ン ト近傍へ到達するまでに全 て吸収されて熱に変換され、 人体の温感ポィ ン ト近傍部を短時間で適温まで昇温 させる。
上記説明から分かるように、 熱放射器 1 は、 人体との接触面である絶縁体 3の 自由表面を短時間で適温まで昇温させることができ、 且つ人体の温感ポィ ン ト近 傍部を直接加温して短時間で適温まで昇温させることができるので、 高い即暖機 能を有する。 従って熱放射器 1が組み込まれた暖房装置は即暖機能を有する。 絶縁体 3の素材と して、 ポリ プロピレン、 ポリエチレンテレフタ レ一 ト、 ポリ ブチレンテレフタ レー 卜、 ポリエチレンナフタ レー ト等のポリエステル樹脂、 ァ ク リ ロニ ト リノレ ' スチレン、 ァク リ ロ二 ト リノレ . ブタジエン . スチレン等のスチ レン系樹脂を使用するのが望ま しい。 これらの樹脂は赤外線の透過率が他の樹脂 に比べて高いので、 面状発熱体 2から放射された赤外線の多く の部分が絶縁体 3 を通過して直接人体を加温する。 この結果、 人体の温感ポイ ン ト近傍の昇温速度 が増加し、 熱放射器 1の即暖機能が更に高まる。 上記樹脂中ポリエチレンテレフ タ レー トは、 人体に吸収され易い長波長の赤外線の透過率が高いので、 熱放射器
1の即暖機能の向上に特に有効である。
面状発熱体 2 と絶縁体 3とは密着しているのが望ま しい。 両者が密着すること により、 面状発熱体 2 と絶縁体 3 との間の熱伝達率が向上し、 絶縁体 3の自由表 面の昇温速度が増加し、 熱放射器 1 の即暖機能が向上する。 一般的に、 面状発熱 体は、 当該面状発熱体を被覆する絶縁体に密着することができる。
面状発熱体 2 は多孔質であるのが望ま しい。 多孔質の面状発熱体 2を絶縁体 3 に接着する場合には接着剤が面状発熱体 2の細孔に浸透して面状発熱体 2 と絶縁 体 3 との密着性が向上し、 多孔質の面状発熱体 2 と樹脂製の絶縁体 3 とを一体成 形する場合には樹脂が面状発熱体 2の細孔に浸透して面状発熱体 2 と絶縁体 3 と の密着性が向上し、 ひいては熱放射器 1の即暖機能が向上する。
多孔質の面状発熱体 2 と して第 2図、 第 3図に例示する炭素繊維と天然パルプ との混抄紙は好適である。 第 2図、 第 3図に例示する面状発熱体 2 は、 麻パルプ 等の天然パルプ 6 と P V A系の樹脂から成るバイ ンダ一 7 とを水中で炭素繊維 8 に混抄してパルプ液と し、 当該パルプ液を抄紙用の網の上に流してウエッ トシー トを形成し、 ゥエツ トシ一トを搾水用のロールを用いて機械的に脱水して乾燥さ せて ドライシ一 トを形成し、 ドライシー トを加熱してバイ ンダ一 7を溶融させ、 炭素繊維 8同志の点接触部、 炭素繊維 8 と天然パルプ 6 との点接触部を接着して 製造した炭素繊維 8 と天然パルプ 6 との混抄紙である。 炭素繊維 8同志の点接触 状態がバイ ンダー 7によって維持されるので、 安定した抵抗値を持つ面状発熱体 2が得られる。 混抄紙から成る面状発熱体 2の両端に取り付けた一対の電極 5間 に所定の電圧を印加すると、 炭素繊維 8に電流が流れ、 ジュール熱が発生して炭 素繊維 8が発熱し、 赤外線を放射する。 第 2図、 第 3図に例示する混抄紙は、 長 さ 1〜5 m mの炭素繊維を 2 5重量%含有し、 抨量が 2 0 . 5 g Z m 2 であり、 厚みが約 2 0 0 mである。 第 3図から分かるように、 炭素繊維 8の周囲に空隙 9が形成されている。
炭素繊維 8 は効率の良い赤外線放射体である。 炭素繊維 8 と天然パルプ 6 との 混抄紙は多孔質であると共に樹脂の溶融温度に耐えられるので、 混抄紙から成る 面状発熱体 2 は、 樹脂製の絶縁体 3 との一体成形に適している。 炭素繊維 8の周 囲に空隙 9が形成されているのが望ま しい。 空隙 9 は断熱層を形成するので、 混 抄紙への通電後直ちに炭素繊維 8が昇温し、 赤外線の放射が始まる。 この結果熱 放射器 1 の即暖機能が向上する。
上記混抄紙における空隙 9の占有率は 6 0体積%以上であるのが望ま しい。 上 記混抄紙における空隙 9の占有率が 6 0体積%以上であると、 炭素繊維 8の周囲 に断熱層である空気層が確実に形成されるので、 炭素繊維 8の昇温速度が増加し、 混抄紙への通電から赤外線の放射開始までの時間が短縮される。 この結果、 熱放 射器 1 の即暖機能が向上する。
上記混抄紙の厚みが約 2 0 0 mである場合には、 混抄紙の秤量を約 2 1 g / m 2 以下と して、 見かけ密度を約 0 . 1 0 5 g Z c m 3 以下にするのが望ま しい。 見かけ密度が 0 . 1 5 g / c m 3 を越えると空隙 9の占有率が低下し、 炭素繊維 8の昇温速度が減少し、 熱放射器 1 の即暖機能が低下する。 第 4図に、 見かけ密 度が 0 . 1 1 c m 3 の混抄紙と、 見かけ密度が 0 . 5 g Z c m 3 の混抄紙の- 定格消費電力に対する分光放射量を示す。 第 4図から、 見かけ密度が低い混抄紙 の放射量が見かけ密度が高い混抄紙の放射量より も多いことが分かる。
第 5図に示すように、 面状発熱体 2 と絶縁体 4 との間に赤外線反射体 1 0、 断 熱体 1 1 を揷入しても良い。 面状発熱体 2の人体へ差し向けられる面とは反対側 の面から放射された赤外線が、 赤外線反射体 1 0 により人体方向へ反射され人体 の昇温に寄与するので、 熱放射器 1 の即暖機能が向上する。 面状発熱体 2で発生 した熱の絶縁体 4への伝達が断熱体 1 1 により妨げられるので、 絶縁体 3の昇温 速度が増加し、 熱放射器 1 の即暖機能が向上する。
熱放射器 1 を備える暖房装置を以下に説明する。 第 6 ( a ) 図、 第 6 ( b ) 図 に示すように、 暖房装置 1 2 は、 人体に向き合う表面樹脂層 1 3 と、 裏面樹脂層 1 4 とを備えている。 表面樹脂層 1 3が熱放射器 1 の面状発熱体 2の人体へ差し 向けられる面を被覆する絶縁体 3を形成し、 表面樹脂層 1 3 と裏面樹脂層 1 4 と により熱放射器 1 の面状発熱体 2がサン ドイ ッチされている。 面状発熱体 2の両 端に一対の電極 5が取り付けられている。
表面樹脂層 1 3 は面状発熱体 2が発生させる赤外線の浸透深度未満の厚みであ り、 結果的に薄いので、 外力に対して十分な強度を有さない。 裏面樹脂層 1 4 と 表面樹脂層 1 3 とで面状発熱体 2をサン ドィ ッチし、 裏面樹脂層 1 4で表面樹脂 層 1 3を補強することにより、 即暖機能を有し、 且つ外力に対して十分な強度を 有する暖房装置 1 2が得られる。
表面樹脂層 1 3を裏面樹脂層 1 4で補強するためには、 表面樹脂層 1 3 と裏面 樹脂層 1 4 とを一体に組付ける必要がある。 暖房便座と して具現化された暖房装 置 1 2に着目して、 表面樹脂層 1 3 と裏面樹脂層 1 4 とを一体に組付ける好適な 方法例を説明する。
(1)方法 1
第 7図、 第 8 ( b ) 図に示すように、 暖房便座と して具現化された暖房装置 1 2 aは、 表面樹脂層 1 3 と裏面樹脂層 1 4 と馬蹄形の面状発熱体 2 とを備えてい る。 面状発熱体 2の両端に一対の電極 5が取り付けられている。 電極 5から電源 コードが延在している。 裏面樹脂層 1 4はハニカム構造を有している。 面状発熱 体 2は表面樹脂層 1 3と裏面樹脂層 1 4とによりサンドイッチされている。 表面 樹脂層 1 3の自由表面は人体との接触面を形成している。 表面樹脂層 1 3から面 状発熱体 2を貫通して延在する突起 1 3 aが、 裏面樹脂層 1 4に形成した貫通孔 1 4 aに揷通され、 突起 1 3 aの端部に貫通孔 1 4 aよりも大径の膨出部 1 3 b が形成されている。 突起 1 3 aを介して、 表面樹脂層 1 3と裏面樹脂層 1 4 とが 機械的に接合されている。
暖房装置 1 2 aを組み立てる際には、 第 8 ( a ) 図に示すように、 表面樹脂層 1 3から延在する突起 1 3 aを面状発熱体 2に形成した貫通孔に揷通する。 面状 発熱体 2を表面樹脂層 1 3に接着する。 第 8 ( b ) 図に示すように、 突起 1 3 a を裏面樹脂層 1 4に形成した貫通孔 1 4 aに揷通し、 突起 1 3 aの端部を加熱溶 融して膨出部 1 3 bを形成する。
本方法によれば、 表面樹脂層 1 3と裏面樹脂層 1 4 とが機械的に接合されるの で、 両者が接着し難い材料であっても、 確実に両者を一体に組付けることができ る。
(2)方法 2
第 9 ( b ) 図に示すように、 暖房便座として具現化された暖房装置 1 2 bは、 前述の暖房装置 1 2 aと略同様の構造を有している。 但し暖房装置 1 2 bにおい ては、 表面樹脂層 1 3から延在する突起 1 3 aの端部に予め膨出部 1 3 cが形成 されている。
暖房装置 1 2 bを組み立てる際には、 第 9 ( a ) 図に示すように、 表面樹脂層 1 3から延在する突起 1 3 aを面状発熱体 2に形成した貫通孔に揷通する。 面状 発熱体 2を表面樹脂層 1 3に接着する。 第 9 ( b ) 図に示すように、 端部に膨出 部 1 3 cが形成された突起 1 3 aを裏面樹脂層 1 4に形成した貫通孔 1 4 aに挿 通する。 貫通孔 1 4 aよりも大径の膨出部 1 3 cは弾性変形しつつ貫通孔 1 4 a を通過する。
本方法によれば、 表面樹脂層 1 3と裏面樹脂層 1 4 とが機械的に接合されるの で、 両者が接着し難い材料であっても、 確実に両者を一体に組付けることができ る。
(3)方法 3
第 1 0図、 第 1 1図に示すように、 暖房便座として具現化された暖房装置 1 2 cは、 表面樹脂層 1 3と裏面樹脂層 1 4と馬蹄形の面状発熱体 2とを備えている ( 面状発熱体 2の両端に一対の電極 5が取り付けられている。 電極 5から電源コー ドが延在している。 裏面樹脂層 1 4はハニカム構造を有している。 面状発熱体 2 は表面樹脂層 1 3と裏面樹脂層 1 4とによりサンドイッチされている。 表面樹脂 層 1 3の自由表面は人体との接触面を形成している。 暖房装置 1 2 cの内周縁部 と外周縁部とが、 表面樹脂層 1 3と裏面樹脂層 1 4 との当接部を形成している。 当該当接部にワイヤ— 1 5が配設されている。 ワイヤー 1 5近傍の表面樹脂層 1 3と裏面樹脂層 1 4 との当接部は溶融接着されている。
暖房装置 1 2 cを組み立てる際には、 裏面樹脂層 1 4の当接部又は表面樹脂層 1 3の当接部にワイヤー 1 5を予め半没状態で取り付けておく。 表面樹脂層 1 3 に面状発熱体 2を接着し、 表面樹脂層 1 3と裏面樹脂層 1 4とで面状発熱体 2を サン ドイ ッチし、 暖房装置 1 2 cの内周縁部と外周縁部とにおいて表面樹脂層 1 3と裏面樹脂層 1 4 とを当接させた後、 ワイヤ一 1 5の端部に形成した一対の電 極 1 6に所定電圧を印加してワイヤ一 1 5に通電し、 表面樹脂層 1 3と裏面樹脂 層 1 4 との当接部を溶融接着する。
本方法によれば、 ワイヤー 1 5に通電し表面樹脂層 1 3と裏面樹脂層 1 4 との 接合部を再度溶融させて両者を容易に分離できるので、 面状発熱体 2を容易に取 り外して再利用することができる。 これにより、 面状発熱体 2の再利用が促進さ れる。
(4)方法 4
第 1 2図に示すように、 暖房便座として具現化された暖房装置 1 2 dにおいて は、 表面樹脂層 1 3と裏面樹脂層 1 4とが一体的に融合している。
暖房装置 1 2 dの組立に際しては、 第 1 3図に示すように、 予め成形された裏 面樹脂層 1 4に面状発熱体 2載置して接着する。 第 1 4図に示すように、 裏面樹 脂層 1 4を低圧成形金型 1 6の下型 1 6 aにセッ 卜する。 低圧成形金型 1 6を開 いた状態で下型 1 6 aに上面樹脂層 1 3を形成する樹脂 1 7を流し込み、 上型 1 6 bを閉じて低圧成形法により暖房装置 1 2 dを成形する。
本方法によれば、 表面樹脂層 1 3と裏面樹脂層 1 4とが融合して強固に一体化 されるので、 暖房装置 1 2 dの外力に対する強度が向上する。 また表面樹脂層 1 3と面状発熱体 2 との密着性が向上するので、 暖房装置 1 2 dの即暖機能が向上 する。 低圧成形することにより、 成形中の面状発熱体 2の破損を防止することが できる。
上記の方法 4において、 予め成形された表面樹脂層 1 3に面状発熱体 2を載置 して接着し、 表面樹脂層 1 3を低圧成形金型 1 6の上型 1 6 bにセッ トし、 低圧 成形金型 1 6を開いた状態で上型 1 6 bに裏面樹脂層 1 4を形成する樹脂 1 7を 流し込み、 下型 1 6 aを閉じて低圧成形法により暖房装置 1 2 dを成形しても良 い。 但しこの場合には低圧成形金型 1 6を上下に逆転させた状態で使用する。 上記の方法 4において、 第 1 5図に示すように、 予め成形された裏面樹脂層 1 4に、 面状発熱体 2の載置位置を特定するための突起 1 4 bを形成しても良い。 突起 1 4 bにより、 面状発熱体 2の位置ずれ、 当該位置ずれによる面状発熱体 2 のしわの発生が防止される。 予め成形された表面樹脂層 1 3に面状発熱体 2を載 置する場合には、 表面樹脂層 1 3に突起 1 4 bと同様の突起を形成しても良い。 上記の方法 4において、 第 1 6図に示すように、 予め成形された裏面樹脂層 1 4の面状発熱体 2を載置する面に、 凹凸又は溝 1 4 cを形成しても良い。 表面樹 脂層 1 3が凹凸、 溝 1 4 cへ食い込み、 表面樹脂層 1 3と裏面樹脂層 1 4 との接 合強度が高まり、 両者の一体性、 ひいては暖房装置 1 2 dの外力に対する強度が
|¾まる。
(5)方法 5
第 1 7図に示すように、 暖房便座として具現化された暖房装置 1 2 eは表面樹 脂層 1 3と、 面状発熱体 2と、 表面樹脂層 1 3と協働して面状発熱体 2をサンド ィツチする裏面樹脂層 1 4と、 裏蓋 1 8とを備えている。 裏面樹脂層 1 4はハニ カム構造を有している。 裏面樹脂層 1 4と裏蓋 1 8との間に中空部が形成されて いる。
暖房装置 1 2 eの組立に際しては、 第 1 8 ( a ) 図に示すように、 上型 1 9 a と中型 1 9 bと下型 1 9 cとから成る低圧成形金型 1 9を用いて表面樹脂層 1 3 を低圧成形する。 上型 1 9 aのみを脱型し、 成形された表面樹脂層 1 3が収縮し て反り返るのを中型 1 9 bにより防止する。 第 1 8 ( b ) 図に示すように、 表面 樹脂層 1 3に面状発熱体 2を載置して接着し、 下型 1 9 cに裏面樹脂層 1 4を形 成する樹脂を流し込み、 上型 1 9 dを閉じて低圧成形法により裏面樹脂層 1 4を 表面樹脂層 1 3と一体成形する。 成形体を低圧成形金型 1 9から取り出し、 予め 成形した裏蓋 1 8を取り付ける。
上記の方法 5によれば、 上記方法 4と同様の効果が得られるのに加えて、 一連 の連続した工程で表面樹脂層 1 3と面状発熱体 2と裏面樹脂層 1 4とを一体に組 付けることができ、 半製品である予め成形された表面樹脂層 1 3又は裏面樹脂層 1 4を搬送する手間と、 表面樹脂層 1 3又は裏面樹脂層 1 4を低圧成形金型にセ ッ 卜する手間とを省く ことができる。 裏面樹脂層 1 4と裏蓋 1 8 との間の中空部 は配線用空間として利用され、 且つ暖房装置 1 2 e軽量化に寄与する。
上記の方法 5において、 裏面樹脂層 1 4を先に成形して金型内に保持し、 次い で表面樹脂層 1 3を裏面樹脂層 1 4と一体成形しても良い。
(6)方法 6
第 1 9図に示すように、 暖房便座として具現化された暖房装置 1 2 f は表面樹 脂層 1 3と、 面状発熱体 2と、 表面樹脂層 1 3と協働して面状発熱体 2をサン ド ィッチする裏面樹脂層 1 4 とを有している。
暖房装置 1 2 f の組立に際しては、 第 2 0 ( a ) 図に示すように、 表面樹脂層 1 3を形成する樹脂フィ ルム 2 0を低圧成形用金型 2 1 の下型 2 1 aに吸引密着 させ、 樹脂フィルム 2 0に面状発熱体 2を載せて接着し、 第 2 0 ( b ) 図に示す ように、 下型 2 1 aに裏面樹脂層 1 4となる樹脂材料 2 2を流し込み、 上型 2 1 bを閉じ低圧加圧する。
上記の方法 6によれば、 上記の方法 4と同様の効果が得られるのに加えて、 表 面樹脂層 1 3の厚みを均一にし且つ表面樹脂層 1 3を薄くすることができる。 表 面樹脂層 1 3の厚みが均一であれば、 人体との接触面である表面樹脂層 1 3の自 由表面の温度が均一になって暖房装置 1 2 f の快適性が高まる。 表面樹脂層 1 3 が薄ければ、 表面樹脂層 1 3を通過する赤外線の量が増加し、 人体の温感ポイン ト近傍の昇温速度が増加し、 暖房装置 1 2 f の即暖機能が向上する。 (7)方法 7
第 2 1図に示すように、 暖房便座として具現化された暖房装置 1 2 gは、 表面 樹脂層 1 3と、 面状発熱体 2と、 表面樹脂層 1 3と協働して面状発熱体 2をサン ドィッチする裏面樹脂層 1 4とを有している。
暖房装置 1 2 gの組立に際しては、 第 2 2図に示すように、 面状発熱体 2を低 圧成形用金型 2 3の下型 2 3 aにセッ トし、 下型 2 3 aに裏面樹脂層 1 4となる 樹脂材料 2 4を流し込み、 上型 2 3 bを閉じ低圧加圧して裏面樹脂層 1 4 と面状 発熱体 2 とを一体に組付ける。 次いで、 面状発熱体 2がー体に組付けられた裏面 樹脂層 1 4を図示しない他の低圧成形用金型にセッ トし、 当該金型に表面樹脂層 1 3となる樹脂材料を流し込み、 金型を閉じ低圧加圧する。
上記の方法 7によれば、 表面樹脂層 1 3と面状発熱体 2と裏面樹脂層 1 4 との 一体性が高まり、 暖房装置 1 2 gの外力に対する強度が向上する。 また表面樹脂 層 1 3 と面伏発熱体 2との密着性が向上するので、 表面樹脂層 1 3の自由表面の 昇温速度が増加し、 暖房装置 1 2 gの即暖性が向上する。
上記の方法 7において、 先ず表面樹脂層 1 3と面状発熱体 2とを一体的に組付 け、 次いで裏面樹脂層 1 4を表面樹脂層 1 3に一体的に組付けても良い。
上記の方法 7において、 第 2 2図に示すように、 低圧成形用金型 2 3の下型 2 3 aに、 面状発熱体 2の載置位置を特定するための突起 2 3 cを形成しても良い ( 突起 2 3 cにより、 面状発熱体 2の位置ずれ、 当該位置ずれによる面状発熱体 2 のしわの発生を防止することができる。
暖房装置 1 2 a〜 1 2 gにおいて、 面状発熱体 2を表面樹脂層 1 3の色と同一 の色に着色しても良い。 面状発熱体 2が表面樹脂層 1 3の色と同一の色に着色さ れていれば、 表面樹脂層 1 3が淡色であっても面状発熱体 2は透けて見えず、 暖 房装置 1 2 a ~ 1 2 gの使用者は違和感を抱かない。
暖房装置 1 2 a〜 1 2 gにおいて、 第 2 3図に示すように、 表面樹脂層 1 3及 び/又は裏面樹脂層 1 4を発泡樹脂層としても良い。 表面樹脂層 1 3及び 又は 裏面樹脂層 1 4が発泡樹脂層であれば、 暖房装置 1 2 a〜 1 2 gが軟質になり、 暖房装置 1 2 a〜 1 2 gの快適性が増加する。
暖房装置 1 2 a〜 1 2 gにおいて、 第 2 4図に示すように、 面状発熱体 2を予 め樹脂フイ ルム 2 5で被覆しても良い。 面状発熱体 2を予め樹脂フィ ルム 2 5で 被覆しておけば、 表面樹脂層 1 3と面状発熱体 2と裏面樹脂層 1 4とを一体に組 付ける時に、 面状発熱体 2の損傷が防止され、 且つ面状発熱体 2の取扱いが容易 になって暖房装置 1 2 a〜 1 2 gの製造効率が向上する。
暖房装置 1 2 a〜 1 2 gにおいて、 面状発熱体 2を予め樹脂フィ ルム 2 5で被 覆する場合、 第 2 4図に示すように、 裏面樹脂層 1 4に向かい合う樹脂フィ ルム 2 5を赤外線反射フィ ルム 2 5 aとしても良い。 面状発熱体 2の人体へ差し向け られる面の反対側の面から放射された赤外線が赤外線反射フイ ルム 2 5 aで反射 されて人体へ差し向けられるので、 暖房装置 1 2 a ~ 1 2 gの即暖機能が向上す る。
暖房装置 1 2 a ~ 1 2 cにおいて、 第 2 5図に示すように、 裏面樹脂層 1 4と 面状発熱体 2との間に緩衝材 2 6を挟んでも良い。 表面樹脂層 1 3と面状発熱体 2と裏面樹脂層 1 4とが上記の方法 1乃至 3中の何れかの方法で一体に組付けら れている場合、 工作誤差により生じた表面樹脂層 1 3と裏面樹脂層 1 4 と間の寸 法の不一致により十分な一体性が得られない場合がある。 裏面樹脂層 1 4 と面状 発熱体 2との間に緩衝材 2 6が挟まれていれば、 表面樹脂層 1 3と裏面樹脂層 1 4 と間の寸法の不一致が緩衝材 2 6によって吸収されるので、 十分な一体性が得 られる。
暖房装置 1 2 a〜 1 2 cにおいて、 裏面樹脂層 1 4 と面状発熱体 2 との間に緩 衝材 2 6を挟む場合、 緩衝材 2 6を裏面樹脂層 1 4と一体成形しても良い。 緩衝 材 2 6を裏面樹脂層 1 4と一体成形すれば、 表面樹脂層 1 3と面状発熱体 2と裏 面樹脂層 1 4とを一体に組付ける際に、 面状発熱体 2と裏面樹脂層 1 4との間に 緩衝材 2 6を挿入する手間が省け、 暖房装置 1 2 a〜 1 2 cの製造効率が向上す る。
暖房装置 1 2 a〜 1 2 cにおいて、 裏面樹脂層 1 4と面状発熱体 2との間に緩 衝材 2 6を挟む場合、 断熱性のある緩衝材 2 6を用いても良い。 断熱性のある緩 衝材 2 6を用いれば、 面状発熱体 2で発生する熱が緩衝材 2 6に奪われるおそれ が無く、 面状発熱体 2の熱効率が向上し、 暖房装置 1 2 a〜 1 2 cの即暖機能が 向上する。 暖房装置 1 2 a ~ 1 2 c、 1 2 eのように、 裏面樹脂層 1 4をハニカム構造と しても良い。 裏面樹脂層 1 4をハニカム構造とすることにより、 暖房装置 1 2 a ~ 1 2 c、 1 2 eが軽量化される。
暖房装置 1 2 a ~ 1 2 cにおいて、 第 2 6図に示すように、 裏面樹脂層 1 4の 面状発熱体 2と接する面に凹部 1 4 dを形成し、 凹部 1 4 d内に温度センサ 2 7 を配設しても良い。 面状発熱体 2に近接して温度センサ 2 7を配設すれば、 面状 発熱体 2の制御を正確に行うことができ、 ひいては暖房装置 1 2 a ~ 1 2 cの制 御を正確に行うことができる。
暖房装置 1 2 a ~ 1 2 gにおいて、 面状発熱体 2に場所による温度むらが在る 場合には、 表面樹脂層 1 3の厚みを、 面状発熱体 2の高温部に対峙する部位では 大きく、 面状発熱体 3の低温部に対峙する部位では小さく設定するのが望ましい。 第 2 7図に示す例では、 面状発熱体 2の電極 5の部位が他の部位に比べて高温に なることを勘案して、 表面樹脂層 1 3の電極 5に対峙する部位の厚みを、 他の部 位に比べて大きく設定している。 第 7図、 第 1 0図に示す馬蹄形の面状発熱体 2 においては、 電極 5間距離が内縁部から外縁部へ向けて漸増するので、 発熱温度 が内縁部から外縁部へ向けて漸減する。 従って、 馬蹄形の面状発熱体 2を使用す る場合には、 表面樹脂層 1 3の厚みを、 面状発熱体 2の高温の内縁部に対峙する 部位から低温の外縁部に対峙する部位へ向けて漸減させるのが望ましい。 表面樹 脂層 1 3の厚みを、 面状発熱体 2の高温部に対峙する部位では大きく、 面状発熱 体 2の低温部に対峙する部位では小さく設定すれば、 人体との接触面である表面 樹脂層 1 3の自由表面の温度分布が一定になるので、 暖房装置 1 2 a〜 1 2 gの 快適性が向上する。
熱放射器 1を備える暖房装置 1 2は、 部屋暖房装置、 トィレ室暖房装置等に広 く応用することができる。 部屋暖房装置として、 第 2 8図に示すように、 床暖房 パネル 1 2 h、 壁暖房パネル 1 2 i、 暖房カーぺッ 卜 1 2 j、 パネルヒータ 1 2 k等の人体との接触面を有する暖房装置が挙げられる。 トイレ室暖房装置として、 第 2 9図に示すように、 暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便 蓋 1 2 p、 暖房便座 1 2 q等の人体との接触面を有する暖房装置が挙げられる。 柔軟な面状発熱体 2を使用し、 柔軟な表面樹脂層 1 2と裏面樹脂層 1 4 とを使用 すれば、 本発明に係る暖房装置 1 2を暖房膝掛、 防寒服、 椅子の座部、 椅子の背 もたれ、 椅子の肘掛け等に応用することも可能である。
第 2 8図に示す床暖房パネル 1 2 h、 壁暖房パネル 1 2 i、 暖房力一ぺッ ト 1 2 j、 パネルヒータ 1 2 k等の部屋暖房装置において、 赤外線検知センサ、 焦電 センサ、 ドップラーセンサ、 マイ ク ロ波センサ、 C 0 2センサ、 マイ ク ロホンセ ンサ等の部屋内に居る人体を検知する人体検知装置 2 8と、 人体検知装置 2 8が 人体を検知している時にのみ面状発熱体 2に通電する熱源制御装置 2 9とを設け ても良い。 部屋内に人体が居る時にのみ部屋暖房装置を作動させることにより、 電力消費を節減することができる。
第 2 9図に示す暖房トイ レマツ 卜 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 P、 暖房便座 1 2 Q等のトイレ室暖房装置において、 トィレ室外に設置した操作 スィ ッチ 3 0からの指令に基づいて面状発熱体 2に通電する熱源制御装置 3 1 a を設けても良い。 熱源制御装置 3 1 aを設けておけば、 トィレ室の使用直前に操 作スィ ッチ 3 0を操作し トイレ室暖房装置を作動させトイレ室を暖房して快適に トイレ室を使用し、 トイレ室の使用直後にトイレ室暖房装置を停止させて電力消 費を節減することができる。
第 2 9図に示す暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 P、 暖房便座 1 2 Q等のトイレ室暖房装置において、 トイレ室内またはトイレ室 外に設置した操作スィツチ 3 2が操作され、 トィレ室の照明灯 3 3が点灯してい る時にのみ面状発熱体 2に通電する熱源制御装置 3 1 bを設けても良い。 一般家 庭においては、 トィレ室の照明灯 3 3はトイレ室の使用時にのみ点灯されるので、 熱源制御装置 3 1 bを設けておけば、 卜ィレ室の使用中にのみトィレ室暖房装置 を作動させて、 電力消費を節減することができる。
第 2 9図に示す暖房トイレマッ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 p、 暖房便座 1 2 Q等のトイレ室暖房装置において、 トイレ室内に居る人体を検 知する人体検知装置 3 4と、 人体検知装置 3 4が人体を検知している時にのみ面 状発熱体 2に通電する熱源制御装置 3 1 cとを設けても良い。 トィレ室内に人体 が居る時にのみトイレ室暖房装置を作動させることにより、 電力消費を節減する ことができる。 第 2 8図の人体検知装置 2 8と同様の装置を人体検知装置 3 4に 使用しても良く、 或いは洗浄便座装置の着座検知装置を人体検知装置 3 4 に使用 しても良い。
第 2 8図の人体検知装置 2 8 と同様の装置を人体検知装置 3 4 に使用する場合、 人体検知装置 3 4が人体を検知してから所定時間経過後に、 面状発熱体 2 に通電 するように熱源制御装置 3 1 cを構成しても良い。 人体がトイ レ室に入ると直ち に人体検知装置 3 4が人体を検知する。 人体がトィ レ室へ入ってから便座 1 2 q に着座するまで 1 0秒乃至 2 0秒の間隔があるので、 人体検知装置 3 4が人体を 検知してから所定時間経過後に トイ レ室暖房装置を作動させても、 人体が便座 1 2 Qに着座するまでに残余の時間が在る。 熱放射器 1 を備える トイ レ室暖房装置 は即暖性に優れるので、 トイ レ室暖房装置の人体との接触面、 即ち表面樹脂層 1 3の自由表面は、 当該残余の時間内に十分に適温まで昇温することができる。 暖 房 トイ レマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 I 2 p、 暖房便座 1 2 q 等の トイ レ室暖房装置は、 便座 1 2 Qに着座した人体に接触し或いは極く接近し て、 人体を暖房するものなので、 人体が便座 1 2 qに着座するまでに、 人体との 接触面が適温まで昇温していれば、 トイ レ暖房装置の快適性は損なわれない。 卜 ィ レ室暖房装置の作動開始を遅らせることにより、 消費電力を節減することがで さる。
人体検知装置 3 4が人体を検知してから人体が便座 1 2 qに着座するまでの時 間を Tと し、 面状発熱体 2への通電開始から表面樹脂層 1 3の自由表面が所定温 度まで昇温するまでの時間を t と した時に、 人体検知装置 3 4が人体を検知して から T一 t経過後に、 面状発熱体 2に通電するように熱源制御装置 3 1 cを構成 しても良い。 人体が便座 1 2 Qに着座するまでに トイ レ室暖房装置の人体との接 触面は適温まで昇温するので、 トイ レ室暖房装置の快適性は損なわれない。 トイ レ室暖房装置の作動開始を T一 t遅らせることにより、 消費電力を節減すること ができる。
人体検知装置 3 4を人体との距離を測定することができるように構成し、 第 3 0図に示すように、 人体検知装置 3 4を便器に併設した洗浄水タンクに取付け、 人体検知装置 3 4が測定した人体との距離が所定値になると面状発熱体 2 に通電 するように熱源制御装置 3 l cを構成しても良い。 カメラのオー トフォーカス用 のセンサを距離測定の可能な人体検知装置 3 4として使用することができる。 熱 放射器 1を備える トィレ室暖房装置は即暖性に優れるので、 人体が便座 1 2 Qに 所定距離まで接近した時にトィレ室暖房装置を作動させても、 トィレ室暖房装置 の人体との接触面は、 人体が便座 1 2 Qに着座するまでに適温まで昇温する。 従 つて、 トイ レ室暖房装置の快適性は損なわれない。 トイレ室暖房装置の作動開始 を遅らせることにより、 消費電力を節減することができる。
第 2 9図に示す暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 P、 暖房便座 1 2 Q等のトイレ室暖房装置において、 熱放射器 1の面状発熱体 2 として正の抵抗温度係数を有する発熱体を使用しても良い。 面状発熱体 2の抵抗 温度係数が正であれば、 第 3 1図に示すように、 面状発熱体 2の温度上昇と共に 面状発熱体 2の抵抗値が増加し、 面状発熱体 2を流れる電流が減少するので、 面 状発熱体 2は所定の温度に漸近する。 この結果、 トイレ室暖房装置の過熱が防止 される。 前記所定温度を体温に近い適温に設定しておけば、 トイレ室暖房装置の 人体との接触面は自動的に適温まで昇温する。 抵抗温度係数が正の抵抗体の例と してカーボン粒子とマ ト リ クス樹脂とを混合した発熱素子が挙げられる。 当該発 熱素子に通電するとカーボン粒子が発熱して発熱素子の温度が上昇する。 発熱素 子の温度が上昇するとマ トリクス樹脂が熱膨張し、 カーボン粒子間距離が増加し て電気抵抗が増加し、 電流値が減少して発熱素子の温度が下降する。 発熱素子の 温度が下降するとマ トリクス樹脂が収縮し、 力一ボン粒子間距離が減少して電気 抵抗が減少し、 電流値が増加して発熱素子の温度が上昇する。 上記現象が繰り返 されて発熱素子は一定の温度に保持される。 金属抵抗体も正の抵抗温度係数を有 する発熱体である。
第 2 9図に示す暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 P、 暖房便座 1 2 Q等のトイレ室暖房装置において、 熱源制御装置 3 1 a、 3 1 b、 3 1 cを、 面状発熱体 2に供給する電力を可変制御するように構成しても良 い。 熱放射器 1の面状発熱体 2に供給する電力を可変制御することにより、 トイ レ室暖房装置の過熱を防止することができ、 また室温等の外的条件が変化しても 常にトイ レ室暖房装置を適温まで昇温させることができる。
第 2 9図に示す暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 p、 暖房便座 1 2 Q等のトイレ室暖房装置において、 熱源制御装置 3 1 a、 3 1 b、 3 1 cを、 第 3 2図に示すように、 供給電力を階段状に変化させるように構 成しても良い。 供給電力を階段状に変化させることにより、 トイレ室暖房装置の 温度の立ち上がりを速くすることができ、 又トイレ室暖房装置の過熱を防止する ことができる。
第 2 9図に示す暖房トイレマツ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 p、 暖房便座 1 2 Q等のトイレ室暖房装置において、 熱源制御装置 3 1 a、 3 1 b、 3 1 cを、 第 3 3図に示すように、 フィ 一ドバック制御によって面状発熱体 2への供給電力を決定するように構成しても良い。 トィレ室暖房装置の適正表面 温度を設定値とし、 トイレ室暖房装置の現在の表面温度を制御変数とし、 両者の 差を偏差とし、 偏差に応じた P I D演算を行って、 操作変数である面状発熱体 2 への供給電力を決定し、 当該電力を制御対象である面状発熱体 2へ供給する。 雰 囲気温度の急激な変化等が外乱となって制御変数に影響を与える。 P演算は偏差 に比例して操作変数を変化させる制御である。 I演算は偏差の時間積分に比例し て操作変数を変化させる制御である。 D演算は偏差の時間微分に比例して操作変 数を変化させる制御である。 P I D演算ではこれらの演算を組み合わせて操作変 数を決定する。 P I D制御により速く的確な最適制御が可能となる。
第 3 4図に示すように、 制御開始時の偏差が大きい場合には D制御を省いて即 暖性を確保し (第 3 4図のライ ン a ) 、 制御開始時の偏差が小さい場合には P制 御を省いてオーバーシュ一卜を防止する (第 3 4図のライ ン b ) 。 一般に制御開 始時には D制御を省き、 偏差が小さくなった時点で D制御を開始することにより- 即暖性が得られる。
トイレ室内の雰囲気温度に応じて、 第 3 2図の制御における初期供給電力、 第 3 3図の制御における初期制御定数を決定するようにしても良い。 雰囲気温度が 低い場合には初期供給電力を大きく し又初期制御定数を大きく してトイレ室暖房 装置の即暖性を高めることができ、 雰囲気温度が高い場合には初期供給電力を小 さく し又初期制御定数を小さく してトイレ室暖房装置の過熱を防止することがで きる
第 2 9図に示す暖房トイレマッ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 P、 暖房便座 1 2 q等のトイレ室暖房装置において、 熱源制御装置 3 1 a、 3 1 b、 3 1 cを、 学習制御によって面状発熱体 2への供給電力を決定するように構 成しても良い。 トイレ室暖房装置の工場出荷の際に、 トイレ室暖房装置の表面温 度が所定時間内に設定値に達するように、 第 3 2図、 第 3 3図に示す制御の制御 定数が決定される。 当該制御定数を用いた制御により、 第 3 5図のライ ン aで示 すように、 トイレ室暖房装置の表面温度が、 制御開始後所定時間 t。 で設定温度 T o に到達することが予定されている。 しかし、 面状発熱体 2の性能のバラツキ、 表面樹脂層 1 3の厚みのバラツキ等により、 実際の稼働時に、 第 3 5図のライン bで示すように、 トイレ室暖房装置の表面温度が、 制御開始後所定時間 t。 で設 定温度 T。 よりも Δ Τ低い温度までしか到達しない場合がある。 かかる場合に、 学習制御により偏差 Δ Τに応じて制御定数を修正し、 面状発熱体 2への供給電力 を修正すれば、 次回の稼働からは、 トイレ暖房装置は所期の性能を発揮すること ができる。
第 2 9図に示す暖房トイレマッ ト 1 2 m、 パネルヒータ 1 2 n、 暖房便蓋 1 2 p、 暖房便座 1 2 q等のトィレ室暖房装置において、 人体が便座 1 2 qに着座し たことを検知する着座検知装置 3 5を設け、 着座検知装置 3 5が着座を検知する と面状発熱体 2への電力供給量を低減するように熱源制御装置 3 1 a、 3 1 b、 3 1 cを構成しても良い。 荷重センサを着座検知装置 3 5として使用することが できる。 人体が便座 1 2 Qに着座した後は、 便座 1 2 Qに近接して置かれる暖房 トイ レマッ ト 1 2 mには人体の足の部分が接触し、 暖房便座 1 1 Qや暖房便蓋 1 2 pには人体の臀部や背中が接触し、 またパネルヒータ 1 1 nも人体に極めて接 近するので、 これらのトイレ室暖房装置は人体の体温によって保温される。 従つ て、 人体が便座 1 2 qに着座した後は、 上記のトィレ室暖房装置への電力供給量 を減らしても、 快適性を損なわない。 トイレ室暖房装置への電力供給量を減らす ことにより、 消費電力を節減することができる。
〔産業上の利用可能性〕
本発明により、 人体との接触面を有する暖房装置であって、 即暖性のある暖房 装置が提供される。

Claims

請 求 の 範 囲
( 1 ) 赤外線を人体へ向けて放射する熱放射器であって、 通電されて人体への浸 透深度が温感ポィ ン ト付近の赤外線を放射する熱源と、 熱源の人体へ差し向けら れる面を被覆し表面が人体との接触面を構成する絶縁体とを備え、 前記絶縁体の 厚みが前記絶縁体への前記赤外線の浸透深度未満であることを特徴とする熱放射 器。
( 2 ) 絶縁体はポリエステル樹脂又はスチレン系樹脂であることを特徴とする請 求の範囲第 1項に記載の熱放射器。
( 3 ) 熱源と絶縁体とが密着していることを特徴とする請求の範囲第 1項又は第 2項に記載の熱放射器。
( 4 ) 熱源は多孔質の面状発熱体であることを特徴とする請求の範囲第 3項に記 載の熱放射器。
( 5 ) 多孔質の面状発熱体は炭素繊維と天然パルプとの混抄紙であり、 炭素繊維 の周囲に空隙が形成されていることを特徵とする請求の範囲第 4項に記載の熱放 射器。
( 6 ) 混抄紙における空隙の占有率が 6 0体積%以上であることを特徴とする請 求の範囲第 5項に記載の熱放射器。
( 7 ) 熱源の人体へ差し向けられる面とは反対側の面に対峙する赤外線反射部材 を備えることを特徴とする請求の範囲第 1項記に載の熱放射器。
( 8 ) 請求の範囲第 1項乃至第 7項の何れか 1項に記載の熱放射器を備える暖房 装置であって、 人体に向き合う表面樹脂層と、 裏面樹脂層とを備え、 表面樹脂層 が熱放射器の熱源の人体へ差し向けられる面を被覆する絶縁体を形成し、 表面樹 脂層と裏面樹脂層とにより熱放射器の熱源がサン ドイ ッチされていることを特徴 とする暖房装置。
( 9 ) 表面樹脂層から熱源を貫通して延在する突起を裏面樹脂層に形成した貫通 孔に挿通し、 突起の端部を加熱溶融して膨出部を形成することにより、 表面樹脂 層と熱源と裏面樹脂層とがー体に組付けられていることを特徴とする請求の範囲 第 8項に記載の暖房装置。 ( 1 0 ) 表面樹脂層から熱源を貫通して延在し端部に膨出部が形成された突起を 裏面樹脂層に形成した貫通孔に揷通させることにより、 表面樹脂層と熱源と裏面 樹脂層とがー体に組付けられていることを特徴とする請求の範囲第 8項に記載の ( 1 1 ) 表面樹脂層と裏面樹脂層とを当接させ、 裏面樹脂層の当接部又は表面樹 脂層の当接部に予め埋設したワイヤーに通電し前記当接部を溶融接着することに より、 表面樹脂層と熱源と裏面樹脂層とがー体に組付けられていることを特徴と する請求の範囲第 8項に記載の暖房装置。
( 1 2 ) 予め成形された表面樹脂層又は裏面樹脂層に熱源を載置して低圧成形用 金型にセッ 卜し、 金型に裏面樹脂層又は表面樹脂層となる樹脂材料を流し込み、 金型を閉じ低圧加圧することにより、 表面樹脂層と熱源と裏面樹脂層とがー体に 組付けられていることを特徴とする請求の範囲第 8項に記載の暖房装置。
( 1 3 ) 予め成形された表面樹脂層又は裏面樹脂層に、 熱源の載置位置を特定す るための突起が形成されていることを特徴とする請求の範囲第 1 2項に記載の暖 房装置。
( 1 4 ) 予め成形された裏面樹脂層の熱源を載置する面に、 凹凸又は溝が形成さ れていることを特徴とする請求の範囲第 1 2項に記載の暖房装置。
( 1 5 ) 表面樹脂層又は裏面樹脂層を成形して金型内に保持し、 表面樹脂層又は 裏面樹脂層に熱源を載せ、 金型に裏面樹脂層又は表面樹脂層となる樹脂材料を流 し込み、 金型を閉じ低圧加圧することにより、 表面樹脂層と熱源と裏面樹脂層と がー体に組付けられていることを特徴とする請求の範囲第 8項に記載の暖房装置 <
( 1 6 ) 樹脂フィ ルムを低圧成形用金型に吸引密着させ、 樹脂フィ ルムに熱源を 載せ、 金型に裏面樹脂層となる樹脂材料を流し込み、 金型を閉じ低圧加圧するこ とにより、 表面樹脂層と熱源と裏面樹脂層とがー体に組付けられていることを特 徵とする請求の範囲第 8項に記載の暖房装置。
( 1 7 ) 熱源を第 1の低圧成形用金型にセッ トし、 金型に表面脂層又は裏面樹脂 層となる樹脂材料を流し込み、 金型を閉じ低圧加圧して表面樹脂層又は裏面樹脂 層と熱源とを一体に組付け、 熱源と一体に組付けた表面樹脂層又は裏面樹脂層を 第 2の低圧成形用金型にセッ 卜し、 金型に裏面樹脂層又は表面樹脂層となる樹脂 材料を流し込み、 金型を閉じ低圧加圧することにより、 表面樹脂層と熱源と裏面 樹脂層とがー体に組付けられていることを特徴とする請求の範囲第 8項に記載の
( 1 8 ) 第 1の低圧成形用金型に、 熱源の載置位置を特定するための突起が形成 されていることを特徴とする請求の範囲第 1 7項に記載の暖房装置。
( 1 9 ) 熱源は、 表面樹脂層の色と同一の色に着色されていることを特徴とする 請求の範囲第 8項に記載の暖房装置。
( 2 0 ) 表面樹脂層及び/又は裏面樹脂層が発泡樹脂層であることを特徴とする する請求の範囲第 8項に記載の暖房装置。
( 2 1 ) 熱源が予め樹脂フィ ルムで被覆されていることを特徴とするする請求の 範囲第 8項に記載の暖房装置。
( 2 2 ) 裏面樹脂層に向かい合う樹脂フィ ルムが赤外線を反射することを特徴と する請求の範囲第 2 1項に記載の暖房装置。
( 2 3 ) 裏面樹脂層と熱源との間に緩衝材が挟まれていることを特徴とする請求 の範囲第 9項乃至第 1 1項の何れか 1項に記載の暖房装置。
( 2 4 ) 緩衝材は裏面樹脂層と一体成形されていることを特徴とする請求の範囲 第 2 3項に記載の暖房装置。
( 2 5 ) 緩衝材は断熱材であることを特徴とする請求の範囲第 2 3項又は第 2 4 項に記載の暖房装置。
( 2 6 ) 裏面樹脂層がハニカム構造であることを特徴とする請求の範囲第 8項に 記載の暖房装置。
( 2 7 ) 裏面樹脂層の熱源と接する面に凹部が形成され、 凹部内に温度センサが 配設されていることを特徴とする請求の範囲第 8項に記載の暖房装置。
( 2 8 ) 表面樹脂層の厚みが、 熱源の高温部に対峙する部位では大きく、 熱源の 低温部に対峙する部位では小さく設定されていることを特徵とする請求の範囲第
8項に記載の暖房装置。
( 2 9 ) 部屋内に居る人体を検知する人体検知手段と、 人体検知手段が人体を検 知している時にのみ熱源に通電する熱源制御手段を備えることを特徴とする請求 の範囲第 8項乃至第 2 8項の何れか 1項に記載の部屋暖房装置。 ( 3 0 ) トイレ室外からの指令に基づいて熱源に通電する熱源制御手段を備える ことを特徴とする請求の範囲第 8項乃至第 2 8項の何れか 1項に記載のトイレ室
( 3 1 ) トイレ室の照明が点灯している時にのみ熱源に通電する熱源制御手段を 備えることを特徴とする請求の範囲第 8項乃至第 2 8項の何れか 1項に記載の卜 ィレ室暖房装置。
( 3 2 ) トイレ室内に居る人体を検知する人体検知手段と、 人体検知手段が人体 を検知している時にのみ熱源に通電する熱源制御手段とを備えることを特徴とす る請求の範囲第 8項乃至第 2 8項の何れか 1項に記載のトイレ室暖房装置。
( 3 3 ) 熱源制御手段は、 人体検知手段が人体を検知してから所定時間経過後に 熱源に通電することを特徴とする請求の範囲第 3 2項に記載の卜ィレ室暖房装置 (
( 3 4 ) 人体検知手段が人体を検知してから人体が便座に着座するまでの時間を Tとし、 熱源への通電開始から表面樹脂層が所定温度まで昇温するまでの時間を t とした時に、 熱源制御手段は、 人体検知手段が人体を検知してから T一 t経過 後に熱源に通電することを特徴とする請求の範囲第 3 2項に記載の卜ィレ室暖房 装置。
( 3 5 ) 人体検知手段は人体迄の距離を測定することができ、 熱源制御手段は、 人体と人体検知手段との間の距離が所定値になると熱源に通電することを特徴と する請求の範囲第 3 2項に記載のトィレ室暖房装置。
( 3 6 ) 熱源の抵抗温度係数が正であることを特徵とする請求の範囲第 3 0項乃 至第 3 5項の何れか 1項に記載のトィレ室暖房装置。
( 3 7 ) 熱源制御手段は熱源に供給する電力を可変制御することを特徴とする請 求の範囲第 3 0項乃至第 3 5項の何れか 1項に記載のトィレ室暖房装置。
( 3 8 ) 熱源制御手段は、 熱源への供給電力を階段状に変化させることを特徴と する請求の範囲第 3 7項に記載のトイレ室暖房装置。
( 3 9 ) 熱源制御手段は、 フィードバック制御により熱源への供給電力を決定す ることを特徴とする請求の範囲第 3 7項に記載のトィレ室暖房装置。
( 4 0 ) 熱源制御手段は、 学習制御により熱源への供給電力を決定することを特 徴とする請求の範囲第 3 7項に記載のトィレ室暖房装置。 ( 4 1 ) 人体が便座に着座したことを検知する着座検知手段を備え、 熱源制御手 段は、 着座検知手段が着座を検知すると熱源への電力供給量を低減することを特 徴とする請求の範囲第 3 0項乃至第 4 0項の何れか 1項に記載のトィレ室暖房装
PCT/JP1999/000320 1998-01-28 1999-01-27 Radiateur thermique WO1999038429A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020007008216A KR20010086225A (ko) 1998-01-28 1999-01-27 열 방사기
JP2000529168A JP4250866B2 (ja) 1998-01-28 1999-01-27 暖房装置
AU21834/99A AU2183499A (en) 1998-01-28 1999-01-27 Heat radiator
US09/601,105 US6294758B1 (en) 1998-01-28 1999-01-27 Heat radiator

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP10/30455 1998-01-28
JP3045598 1998-01-28
JP6481398 1998-02-27
JP10/64813 1998-02-27
JP10/125260 1998-04-20
JP12526098 1998-04-20
JP10/189879 1998-06-19
JP18987998A JPH11276387A (ja) 1998-01-28 1998-06-19 暖房便座または暖房便蓋の製造方法
JP20583598A JPH11230562A (ja) 1997-12-08 1998-07-06 トイレ暖房装置
JP10/205835 1998-07-06
JP22104498 1998-07-21
JP10/221044 1998-07-21
JP23502298 1998-08-06
JP10/235020 1998-08-06
JP10/235022 1998-08-06
JP23502098 1998-08-06

Publications (1)

Publication Number Publication Date
WO1999038429A1 true WO1999038429A1 (fr) 1999-08-05

Family

ID=27572112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000320 WO1999038429A1 (fr) 1998-01-28 1999-01-27 Radiateur thermique

Country Status (6)

Country Link
US (1) US6294758B1 (ja)
JP (1) JP4250866B2 (ja)
KR (1) KR20010086225A (ja)
CN (1) CN1119117C (ja)
AU (1) AU2183499A (ja)
WO (1) WO1999038429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718128B2 (en) * 2000-06-28 2004-04-06 Fisher & Paykel Healthcare Limited Radiant warmer with distance determination between heater and patient
US6735379B2 (en) 2000-06-28 2004-05-11 Fisher & Paykel Healthcare Limited Energy sensor

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363285B1 (en) * 2000-01-21 2002-03-26 Albert C. Wey Therapeutic sleeping aid device
KR100337609B1 (ko) * 2000-08-26 2002-05-22 서영석 세라믹 탄소섬유지 면상발열체
US7306283B2 (en) 2002-11-21 2007-12-11 W.E.T. Automotive Systems Ag Heater for an automotive vehicle and method of forming same
US7087076B2 (en) * 2003-08-21 2006-08-08 Kimberly-Clark Worldwide, Inc. Reflective heat patch
JP4494460B2 (ja) * 2004-03-08 2010-06-30 ヴィー・エー・テー・オートモーティヴ・システムス・アクチェンゲゼルシャフト 平形加熱要素
WO2006131785A2 (en) * 2004-03-22 2006-12-14 W.E.T. Automotive Systems Ag Heater for an automotive vehicle and method of forming same
US7161118B1 (en) * 2004-07-15 2007-01-09 Modeste Sr David M Toilet seat heating device
US7783361B2 (en) * 2004-09-03 2010-08-24 Ct Investments Ltd. Radiant therapeutic heater
US20060076325A1 (en) * 2004-10-13 2006-04-13 Cheng-Ping Lin Heating device having electrothermal film
US20060076343A1 (en) * 2004-10-13 2006-04-13 Cheng-Ping Lin Film heating element having automatic temperature control function
US8109982B2 (en) * 2005-06-23 2012-02-07 Morteza Naghavi Non-invasive modulation of the autonomic nervous system
WO2007000981A1 (ja) * 2005-06-29 2007-01-04 Matsushita Electric Industrial Co., Ltd. 便座装置およびそれを備えるトイレ装置
JP2007018981A (ja) * 2005-07-11 2007-01-25 Nippon Sheet Glass Co Ltd 窓ガラスへの端子取付け構造
JP2009518785A (ja) 2005-12-11 2009-05-07 ヴィー・エー・テー・オートモーティヴ・システムス・アクチェンゲゼルシャフト 平型ヒータ
US20100126978A1 (en) * 2005-12-29 2010-05-27 Phyllis Dawn Semmes Under desk, safety foot warmer
US20070172215A1 (en) * 2006-01-20 2007-07-26 Charves Chang Far infrared heater
EP2094141B1 (de) * 2006-12-01 2020-09-02 Raymond Lüdi Wc-sitz und damit ausgerüstetes wc
JP5405729B2 (ja) * 2007-03-12 2014-02-05 パナソニック株式会社 便座装置
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101409962B (zh) * 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
CN101400198B (zh) * 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
DE112008002682A5 (de) 2007-10-18 2010-07-01 W.E.T. Automotive Systems Ag Elektrische Leiteinrichtung
US20090211002A1 (en) * 2008-02-21 2009-08-27 Norgaard Christopher T Holding Tank Heating System
ES1067976Y (es) * 2008-04-30 2008-11-01 Violante Gutierrez Ascanio S L Aparato de calefaccion
US20090299419A1 (en) * 2008-05-27 2009-12-03 Scott Andrew West Blood flow stimulation bandage
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US20100000669A1 (en) * 2008-06-13 2010-01-07 Tsinghua University Carbon nanotube heater
US8702164B2 (en) 2010-05-27 2014-04-22 W.E.T. Automotive Systems, Ltd. Heater for an automotive vehicle and method of forming same
DE102011105675A1 (de) 2010-07-15 2012-01-19 W.E.T. Automotive Systems Ag Elektrische Leitung
JP2012056531A (ja) * 2010-09-13 2012-03-22 Denso Corp 車両用輻射熱暖房装置
DE102011114949A1 (de) 2010-10-19 2012-04-19 W.E.T. Automotive Systems Ag Elektrischer Leiter
CN102462537B (zh) * 2010-11-09 2015-04-01 Ge医疗系统环球技术有限公司 加热床、加热方法以及医疗系统
DE102012000977A1 (de) 2011-04-06 2012-10-11 W.E.T. Automotive Systems Ag Heizeinrichtung für komplex geformte Oberflächen
US10201039B2 (en) 2012-01-20 2019-02-05 Gentherm Gmbh Felt heater and method of making
KR20130112605A (ko) * 2012-04-04 2013-10-14 현대자동차주식회사 배터리 셀 모듈용 방열 플레이트 및 이를 갖는 배터리 셀 모듈
DE102013006410A1 (de) 2012-06-18 2013-12-19 W.E.T. Automotive Systems Ag Flächengebilde mit elektrischer Funktion
DE102012017047A1 (de) 2012-08-29 2014-03-06 W.E.T. Automotive Systems Ag Elektrische Heizeinrichtung
DE102012024903A1 (de) 2012-12-20 2014-06-26 W.E.T. Automotive Systems Ag Flächengebilde mit elektrischen Funktionselementen
TWM453511U (zh) * 2013-01-23 2013-05-21 Overtake Technology Co Ltd 能量晶片之結構
KR101774798B1 (ko) 2013-05-02 2017-09-05 젠썸 캐나다 유엘씨 액체 저항성 발열 요소
CN107484265B (zh) 2013-05-15 2020-11-24 捷温加拿大有限公司 组合式的加热器和传感器及用于加热和感测的方法
CN106061797B (zh) 2013-10-11 2018-09-25 捷温加拿大有限公司 占用感测和加热装置
CN103953963A (zh) * 2014-03-16 2014-07-30 王兆进 一种浴室用薄膜型取暖器
WO2015175335A1 (en) 2014-05-13 2015-11-19 Gentherm Gmbh Temperature control device for a steering device
US20160021705A1 (en) 2014-07-17 2016-01-21 Gentherm Canada Ltd. Self-regulating conductive heater and method of making
CN105266946A (zh) * 2014-07-18 2016-01-27 深圳市福田区青少年科技教育协会 热敷装置
DK3177192T3 (da) 2014-08-04 2021-10-18 Hamberger Industriewerke Gmbh WC-siddearmatur og fremgangsmåde til fremstilling deraf
EP3691408A1 (en) 2015-01-12 2020-08-05 LaminaHeat Holding Ltd. Fabric heating element
DE202016003055U1 (de) * 2015-01-16 2017-02-21 Könighaus Gmbh Besonders energiearme robuste Heizanordnung für viele Einsatzmöglichkeiten
US20180105017A1 (en) * 2015-04-07 2018-04-19 Denso Corporation Heater device
CN108141914A (zh) 2015-10-19 2018-06-08 拉米纳热能控股有限公司 具有定制或非均匀电阻和/或不规则形状的层状加热元件及制造方法
US20180124871A1 (en) 2016-10-31 2018-05-03 Gentherm Gmbh Carbon veil heater and method of making
DE102017001097A1 (de) 2017-02-07 2018-08-09 Gentherm Gmbh Elektrisch leitfähige Folie
CN108354502A (zh) * 2018-03-05 2018-08-03 九牧厨卫股份有限公司 一种马桶座圈及制备方法
CN108433627B (zh) * 2018-03-05 2024-01-05 九牧厨卫股份有限公司 一种马桶座圈金属层的制备方法、马桶座圈及其生产方法
IT201800004089A1 (it) * 2018-03-29 2019-09-29 Ceadesign Srl Vaso sanitario perfezionato
USD911038S1 (en) 2019-10-11 2021-02-23 Laminaheat Holding Ltd. Heating element sheet having perforations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191998U (ja) * 1983-06-08 1984-12-20 愛知電機株式会社 暖房便座
JPS60170992U (ja) * 1984-04-23 1985-11-13 三菱瓦斯化学株式会社 面状発熱体
JPS6332888A (ja) * 1986-07-24 1988-02-12 アイシン精機株式会社 暖房便座用面状発熱体
JPH0547456A (ja) * 1991-02-25 1993-02-26 Aisin Seiki Co Ltd 面状発熱式射出成形品の成形方法
JPH0615595Y2 (ja) * 1986-06-06 1994-04-27 誠一 佐野 腰掛式便器
JPH08273810A (ja) * 1995-04-01 1996-10-18 Sony Chem Corp 面状発熱体及びその製造方法
JPH0923889A (ja) * 1995-07-12 1997-01-28 Hoechst Ag メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法
JPH09140632A (ja) * 1995-11-20 1997-06-03 Aiwa Co Ltd 便座用ヒーター

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564207A (en) * 1969-07-24 1971-02-16 Infra Red Systems Inc Electric infrared heater
US3805024A (en) * 1973-06-18 1974-04-16 Irex Corp Electrical infrared heater with a coated silicon carbide emitter
US3878361A (en) * 1973-06-29 1975-04-15 Sierracin Corp Body covering and warming apparatus
US3961157A (en) * 1975-01-06 1976-06-01 Safeway Products Inc. Electrical radiant heater panel
US3968344A (en) * 1975-06-30 1976-07-06 Lawrence Peska Associates, Inc. Warmth into or on toilet seats
CA1089904A (en) * 1978-02-03 1980-11-18 Joseph M. Bender Radiant therapeutic heater
JPS60170992A (ja) 1984-02-16 1985-09-04 Fujikura Ltd 光集積回路
JPS59191998A (ja) 1984-03-30 1984-10-31 Matsushita Electric Ind Co Ltd スピ−カ用振動板
JPH041675Y2 (ja) * 1985-08-06 1992-01-21
US4825868A (en) * 1987-06-22 1989-05-02 Tensho Electric Industrial Co., Ltd. Far infrared ray radiating mattress
US5010234A (en) * 1987-12-04 1991-04-23 Fernand Scherrer Device for air-conditioning premises with exchange of heat energy by low temperature infrared radiation
JP2564844Y2 (ja) * 1989-06-01 1998-03-11 アイシン精機株式会社 暖房便座のリード線
US5986163A (en) * 1992-06-19 1999-11-16 Augustine Medical, Inc. Normothermic heater wound covering
JP3162491B2 (ja) 1992-07-03 2001-04-25 東洋刃物株式会社 ペーパーカッタ装置及びその組立方法
CA2188811A1 (en) * 1994-04-28 1995-11-09 Teikoku Hormone Mfg. Co., Ltd. Air mat for operating table
JPH08206147A (ja) * 1995-02-06 1996-08-13 Akio Usui 発熱体及びこれを用いる貼付剤
JP3239671B2 (ja) * 1995-03-08 2001-12-17 松下電器産業株式会社 フィルム状ヒーター、保温座席、蒸着ボートおよび加熱炉
US6115540A (en) * 1996-04-30 2000-09-05 Klopotek; Peter J. Radiative keyboard heating apparatus
KR100196211B1 (ko) * 1997-04-03 1999-06-15 이남용 돌침대
US5910267A (en) * 1997-09-24 1999-06-08 Stricker; Jesse C. Infrared heater
US6004344A (en) * 1998-02-04 1999-12-21 Sun Medical Co., Ltd. Infrared ray irradiation apparatus and infrared ray irradiation source used therein
US5940895A (en) * 1998-04-16 1999-08-24 Kohler Co. Heated toilet seat

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191998U (ja) * 1983-06-08 1984-12-20 愛知電機株式会社 暖房便座
JPS60170992U (ja) * 1984-04-23 1985-11-13 三菱瓦斯化学株式会社 面状発熱体
JPH0615595Y2 (ja) * 1986-06-06 1994-04-27 誠一 佐野 腰掛式便器
JPS6332888A (ja) * 1986-07-24 1988-02-12 アイシン精機株式会社 暖房便座用面状発熱体
JPH0547456A (ja) * 1991-02-25 1993-02-26 Aisin Seiki Co Ltd 面状発熱式射出成形品の成形方法
JPH08273810A (ja) * 1995-04-01 1996-10-18 Sony Chem Corp 面状発熱体及びその製造方法
JPH0923889A (ja) * 1995-07-12 1997-01-28 Hoechst Ag メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法
JPH09140632A (ja) * 1995-11-20 1997-06-03 Aiwa Co Ltd 便座用ヒーター

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718128B2 (en) * 2000-06-28 2004-04-06 Fisher & Paykel Healthcare Limited Radiant warmer with distance determination between heater and patient
US6735379B2 (en) 2000-06-28 2004-05-11 Fisher & Paykel Healthcare Limited Energy sensor

Also Published As

Publication number Publication date
CN1119117C (zh) 2003-08-27
CN1293549A (zh) 2001-05-02
KR20010086225A (ko) 2001-09-10
US6294758B1 (en) 2001-09-25
AU2183499A (en) 1999-08-16
JP4250866B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4250866B2 (ja) 暖房装置
JP2000210230A (ja) 暖房便座
JP2012035844A (ja) 車両用暖房装置
JP4513301B2 (ja) 暖房便座
JP4635438B2 (ja) 暖房便座
JP6090704B2 (ja) 暖房便座
JPH05266965A (ja) 遠赤外線放射積層体
JP4775275B2 (ja) 暖房便座とそれを搭載したトイレ装置
JP2007252941A (ja) 暖房便座
JP2007143717A (ja) 暖房便座装置
JP4068648B2 (ja) 便座装置およびそれを備えるトイレ装置
JP2008043724A (ja) 暖房便座
JP2006305096A (ja) 暖房便座
JP2003125981A (ja) 暖房便座
JP2000215967A (ja) 面状ヒ―タ
JP4513300B2 (ja) 暖房便座
JP2001008859A (ja) 暖房便座
JPH0626610Y2 (ja) 便器の凍結防止用ヒーターシート
JP5369386B2 (ja) 暖房便座およびそれを備えた衛生洗浄装置
JP4067008B2 (ja) 暖房便座
JP5050630B2 (ja) 便座装置およびそれを備えるトイレ装置
JP2000014598A (ja) 暖房便座
JP2010089628A (ja) 暖房装置
JP2006305097A (ja) 暖房便座
JPH11299694A (ja) 暖房便座

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99804161.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HR HU ID IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007008216

Country of ref document: KR

Ref document number: 09601105

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020007008216

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007008216

Country of ref document: KR