WO2000075965A3 - Power mosfet and method of making the same - Google Patents

Power mosfet and method of making the same Download PDF

Info

Publication number
WO2000075965A3
WO2000075965A3 PCT/US2000/015189 US0015189W WO0075965A3 WO 2000075965 A3 WO2000075965 A3 WO 2000075965A3 US 0015189 W US0015189 W US 0015189W WO 0075965 A3 WO0075965 A3 WO 0075965A3
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
body regions
trenches
epitaxial layer
power mosfet
Prior art date
Application number
PCT/US2000/015189
Other languages
French (fr)
Other versions
WO2000075965A2 (en
Inventor
Richard A Blanchard
Original Assignee
Gen Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Semiconductor Inc filed Critical Gen Semiconductor Inc
Priority to EP00939505A priority Critical patent/EP1192640A2/en
Priority to AU54584/00A priority patent/AU5458400A/en
Priority to JP2001502145A priority patent/JP4860858B2/en
Publication of WO2000075965A2 publication Critical patent/WO2000075965A2/en
Publication of WO2000075965A3 publication Critical patent/WO2000075965A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A power MOSFET is provided that includes a substrate (2) of a first conductivity type. An epitaxial layer (1) also of the first conductivity type is deposited on the substrate. First and second body regions (5a, 6a, 5b, 6b) are located in the epitaxial layer and define a drift region between them. The body regions have a second conductivity type. First and second source regions (7, 8) of the first conductivity type are respectively located in the first and second body regions. A plurality of trenches (44, 46) are located below the body regions in the drift region of the epitaxial layer. The trenches, which extend toward the substrate from the first and second body regions, are filled with a material that includes a dopant of the second conductivity type. The dopant is diffused from the trenches into portions of the epitaxial layer adjacent the trenches so as to form semiconductor regions (40, 42) of the second conductivity type under the body regions.
PCT/US2000/015189 1999-06-03 2000-06-02 Power mosfet and method of making the same WO2000075965A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00939505A EP1192640A2 (en) 1999-06-03 2000-06-02 Power mosfet and method of making the same
AU54584/00A AU5458400A (en) 1999-06-03 2000-06-02 High voltage power mosfet having low on-resistance
JP2001502145A JP4860858B2 (en) 1999-06-03 2000-06-02 High voltage power MOSFET with low on-resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13740899P 1999-06-03 1999-06-03
US60/137,408 1999-06-03
US09/586,407 2000-06-02
US09/586,407 US6593619B1 (en) 1999-06-03 2000-06-02 High voltage power MOSFET having low on-resistance

Publications (2)

Publication Number Publication Date
WO2000075965A2 WO2000075965A2 (en) 2000-12-14
WO2000075965A3 true WO2000075965A3 (en) 2001-05-03

Family

ID=26835219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/015189 WO2000075965A2 (en) 1999-06-03 2000-06-02 Power mosfet and method of making the same

Country Status (7)

Country Link
US (4) US6593619B1 (en)
EP (1) EP1192640A2 (en)
JP (1) JP4860858B2 (en)
KR (2) KR100829052B1 (en)
CN (1) CN1171318C (en)
AU (1) AU5458400A (en)
WO (1) WO2000075965A2 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829052B1 (en) * 1999-06-03 2008-05-19 제네럴 세미컨덕터, 인코포레이티드 A power mosfet, a method of forming a power mosfet, and another power mosfet made by the method
FR2800515B1 (en) * 1999-11-03 2002-03-29 St Microelectronics Sa PROCESS FOR MANUFACTURING VERTICAL POWER COMPONENTS
US7186609B2 (en) * 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
US6660571B2 (en) * 2000-06-02 2003-12-09 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6608350B2 (en) * 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US6818513B2 (en) * 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US7132712B2 (en) * 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6710403B2 (en) * 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US6465304B1 (en) * 2001-10-04 2002-10-15 General Semiconductor, Inc. Method for fabricating a power semiconductor device having a floating island voltage sustaining layer
JP3701227B2 (en) * 2001-10-30 2005-09-28 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US6566201B1 (en) * 2001-12-31 2003-05-20 General Semiconductor, Inc. Method for fabricating a high voltage power MOSFET having a voltage sustaining region that includes doped columns formed by rapid diffusion
US6846746B2 (en) * 2002-05-01 2005-01-25 Applied Materials, Inc. Method of smoothing a trench sidewall after a deep trench silicon etch process
DE10235371A1 (en) * 2002-08-02 2004-02-12 Robert Bosch Gmbh Production of a micromechanical device used in integrated optical arrangements comprises preparing an SOI or EOI substrate having a silicon functional layer, forming a trench extending through the functional layer, and further processing
JP3634830B2 (en) * 2002-09-25 2005-03-30 株式会社東芝 Power semiconductor device
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
CN1311561C (en) * 2003-03-13 2007-04-18 世界先进积体电路股份有限公司 Structure of metallic oxide semiconductor transistor with side diffusion and producing method thereof
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
KR100994719B1 (en) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 Superjunction semiconductor device
JP4813762B2 (en) * 2003-12-25 2011-11-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
US7268395B2 (en) 2004-06-04 2007-09-11 International Rectifier Corporation Deep trench super switch device
US7352036B2 (en) * 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
KR100582374B1 (en) * 2004-09-08 2006-05-22 매그나칩 반도체 유한회사 High voltage transistor and method for fabricating the same
JP2008536316A (en) * 2005-04-06 2008-09-04 フェアチャイルド・セミコンダクター・コーポレーション Trench gate field effect transistor and method of forming the same
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
WO2007122646A1 (en) * 2006-04-21 2007-11-01 Stmicroelectronics S.R.L. Process for manufacturing a power semiconductor device and corresponding power semiconductor device
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US7381618B2 (en) * 2006-10-03 2008-06-03 Power Integrations, Inc. Gate etch process for a high-voltage FET
KR20100134375A (en) * 2009-06-15 2010-12-23 삼성전자주식회사 Memory system conducting refresh operation
EP2208229A4 (en) 2007-09-21 2011-03-16 Fairchild Semiconductor Superjunction structures for power devices and methods of manufacture
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7960781B2 (en) * 2008-09-08 2011-06-14 Semiconductor Components Industries, Llc Semiconductor device having vertical charge-compensated structure and sub-surface connecting layer and method
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
CN101728430B (en) * 2008-10-17 2011-06-29 尼克森微电子股份有限公司 High-pressure metal-oxide-semiconductor component and manufacturing method thereof
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
FR2970811B1 (en) * 2011-01-24 2013-01-25 Commissariat Energie Atomique FIELD EFFECT DEVICE HAVING AN AMINOUS CONTREELECTRODE AND METHOD OF MAKING
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
WO2012158977A2 (en) 2011-05-18 2012-11-22 Vishay-Siliconix Semiconductor device
TWI446459B (en) * 2012-02-14 2014-07-21 Anpec Electronics Corp Manufacturing method of power transistor device with super junction
US9093520B2 (en) * 2013-08-28 2015-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. High-voltage super junction by trench and epitaxial doping
JP6340200B2 (en) * 2014-01-27 2018-06-06 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US9312382B2 (en) 2014-07-22 2016-04-12 Empire Technology Development Llc High voltage transistor device with reduced characteristic on resistance
US10263070B2 (en) 2017-06-12 2019-04-16 Alpha And Omega Semiconductor (Cayman) Ltd. Method of manufacturing LV/MV super junction trench power MOSFETs
CN109326653A (en) * 2018-11-09 2019-02-12 上海昱率科技有限公司 Power device and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
DE19748523A1 (en) * 1997-11-03 1999-05-12 Siemens Ag Semiconductor device
DE19800647C1 (en) * 1998-01-09 1999-05-27 Siemens Ag SOI HV switch with FET structure

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US70418A (en) * 1867-11-05 Moritz crohjt
US94635A (en) * 1869-09-07 Improvement in grain-mills
US3658584A (en) * 1970-09-21 1972-04-25 Monsanto Co Semiconductor doping compositions
US5191396B1 (en) 1978-10-13 1995-12-26 Int Rectifier Corp High power mosfet with low on-resistance and high breakdown voltage
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
JPS61135109A (en) * 1984-12-06 1986-06-23 Canon Inc Manufacture of semiconductor device
GB8504726D0 (en) * 1985-02-23 1985-03-27 Standard Telephones Cables Ltd Integrated circuits
US4782036A (en) * 1986-08-29 1988-11-01 Siemens Aktiengesellschaft Process for producing a predetermined doping in side walls and bases of trenches etched into semiconductor substrates
US4819052A (en) * 1986-12-22 1989-04-04 Texas Instruments Incorporated Merged bipolar/CMOS technology using electrically active trench
US5404040A (en) 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
US5326711A (en) * 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
DE4332057A1 (en) * 1993-09-21 1995-03-30 Siemens Ag Integrated micromechanical sensor device and method for its production
JPH08264772A (en) * 1995-03-23 1996-10-11 Toyota Motor Corp Field-effect type semiconductor element
JPH09213939A (en) * 1996-01-30 1997-08-15 Nec Corp Semiconductor device
EP0879481B1 (en) * 1996-02-05 2002-05-02 Infineon Technologies AG Field effect controlled semiconductor component
DE19611045C1 (en) 1996-03-20 1997-05-22 Siemens Ag Field effect transistor e.g. vertical MOS type
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
GB2314206A (en) * 1996-06-13 1997-12-17 Plessey Semiconductors Ltd Preventing voltage breakdown in semiconductor devices
US5789802A (en) * 1996-06-21 1998-08-04 Advanced Micro Devices, Inc. Dopant profile spreading for arsenic source/drain
JPH10108564A (en) 1996-10-04 1998-04-28 Takagi Ind Co Ltd Cultivating substrate and cultivating device
JP3938964B2 (en) * 1997-02-10 2007-06-27 三菱電機株式会社 High voltage semiconductor device and manufacturing method thereof
JPH1143321A (en) 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of quartz raw material powder
EP1029358A1 (en) 1997-11-03 2000-08-23 Infineon Technologies AG High voltage resistant edge structure for semiconductor elements
JP4000669B2 (en) * 1998-06-12 2007-10-31 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JP4061711B2 (en) * 1998-06-18 2008-03-19 株式会社デンソー MOS transistor and manufacturing method thereof
EP0973203A3 (en) 1998-07-17 2001-02-14 Infineon Technologies AG Semiconductor layer with lateral variable doping and its method of fabrication
US6452230B1 (en) * 1998-12-23 2002-09-17 International Rectifier Corporation High voltage mosgated device with trenches to reduce on-resistance
KR100829052B1 (en) * 1999-06-03 2008-05-19 제네럴 세미컨덕터, 인코포레이티드 A power mosfet, a method of forming a power mosfet, and another power mosfet made by the method
DE19935442C1 (en) * 1999-07-28 2000-12-21 Siemens Ag Power trench-metal oxide semiconductor transistor is produced using a temporary layer to allow formation of a trench insulating film which is thicker at the trench lower end than at the trench upper end
DE60136742D1 (en) 2000-11-08 2009-01-08 Kimberly Clark Co FOAM TREATMENT OF TISSUE PRODUCTS
US6608350B2 (en) 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
DE19748523A1 (en) * 1997-11-03 1999-05-12 Siemens Ag Semiconductor device
DE19800647C1 (en) * 1998-01-09 1999-05-27 Siemens Ag SOI HV switch with FET structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN X: "THEORY OF A NOVEL VOLTAGE SUSTAINING (CB) LAYER FOR POWER DEVICES", CHINESE JOURNAL OF ELECTRONICS, vol. 7, no. 3, July 1998 (1998-07-01), TECHNOLOGY EXCHANGE LTD, HONG KONG, HK, pages 211 - 216, XP000900759, ISSN: 1022-4653 *

Also Published As

Publication number Publication date
AU5458400A (en) 2000-12-28
KR20020010686A (en) 2002-02-04
US20020066924A1 (en) 2002-06-06
US8513732B2 (en) 2013-08-20
EP1192640A2 (en) 2002-04-03
US6992350B2 (en) 2006-01-31
US6593619B1 (en) 2003-07-15
JP4860858B2 (en) 2012-01-25
US20040036138A1 (en) 2004-02-26
US6689662B2 (en) 2004-02-10
JP2003524291A (en) 2003-08-12
KR20070044487A (en) 2007-04-27
KR100773380B1 (en) 2007-11-06
CN1360738A (en) 2002-07-24
WO2000075965A2 (en) 2000-12-14
US20060125003A1 (en) 2006-06-15
KR100829052B1 (en) 2008-05-19
CN1171318C (en) 2004-10-13

Similar Documents

Publication Publication Date Title
WO2000075965A3 (en) Power mosfet and method of making the same
WO2001099177A3 (en) Trench mosfet with double-diffused body profile
AU2002338615A1 (en) Power semiconductor devices and methods of forming same
EP1988579A3 (en) Power MOSFET having a trench gate electrode
WO2002019432A3 (en) Trench mosfet with structure having low gate charge
AU2002367408A8 (en) A method for forming a power semiconductor as in figure 5 having a substrate (2), a voltage sustaining epitaxial layer (1) with at least a trench (52), a doped region (5a) adjacent and surrounding the trench.
TW371367B (en) Method for fabricating semiconductor device
WO2002084745A3 (en) Power semiconductor devices and methods of forming same
EP2280412A3 (en) Semiconductor substrate comprising at least a buried insulating cavity
EP2264747A3 (en) Method of making a high-voltage transistor
WO1999021215A3 (en) Methods of forming power semiconductor devices having merged split-well body regions therein and devices formed thereby
TW337040B (en) Method of doping trench sidewalls before trench etching
EP1065727A3 (en) Edge termination for silicon power devices
EP0923137A3 (en) Trenched field effect transistor and method of its manufacture
TW344899B (en) Semiconductor device and process for producing the same
EP1239523A3 (en) Power accumulation-mode MOSFET having a trench gate electrode
TW354430B (en) Photodiode and method for fabricating the same
WO2000030181A3 (en) Field effect-controlled transistor and method for producing the same
WO2003071585A3 (en) High voltage power mosfet having low on-resistance
EP1056134A3 (en) Trench-gated device having trench walls formed by selective epitaxial growth and process for forming the device
WO2000065636A8 (en) A bipolar transistor
TW350124B (en) Manufacturing method of semiconductor devices
TW335554B (en) Semiconductor component with compensation implantation and method for production
TW200721371A (en) System and method for improving mesa width in a semiconductor device
WO2000072360A3 (en) Junction insulated lateral mosfet for high/low side switches

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00808381.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020017015455

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 502145

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000939505

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017015455

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000939505

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642