WO2001008080A2 - Method for identifying objects on a moving conveyor - Google Patents

Method for identifying objects on a moving conveyor Download PDF

Info

Publication number
WO2001008080A2
WO2001008080A2 PCT/FR2000/002139 FR0002139W WO0108080A2 WO 2001008080 A2 WO2001008080 A2 WO 2001008080A2 FR 0002139 W FR0002139 W FR 0002139W WO 0108080 A2 WO0108080 A2 WO 0108080A2
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
antenna
plane
identification system
axis
Prior art date
Application number
PCT/FR2000/002139
Other languages
French (fr)
Other versions
WO2001008080A3 (en
Inventor
Lassina Sanogo
Pierre Bonnefoy
Original Assignee
Tagsys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tagsys filed Critical Tagsys
Publication of WO2001008080A2 publication Critical patent/WO2001008080A2/en
Publication of WO2001008080A3 publication Critical patent/WO2001008080A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10346Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the far field type, e.g. HF types or dipoles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10415Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM
    • G06K7/10425Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device
    • G06K7/10435Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device the interrogation device being positioned close to a conveyor belt or the like on which moving record carriers are passing

Definitions

  • the present invention relates to a dynamic system for automatically identifying objects on a moving conveyor.
  • the present invention essentially applies to the identification of objects moving in one dimension on a conveyor. All the objects are each provided with an electronic label responding to the request of a detection member constituted by a radiofrequency transmission-reception system.
  • the conveyor generally comprises a metal portion which absorbs a large part of the electromagnetic field emitted by the detection member.
  • the detection members such as the antennas for example, generally have field holes along their axes of symmetry when the electronic tag to be identified is not located in a plane parallel to the plane of the antenna. . ' '' 1
  • electronic labels are fixed randomly on objects arranged randomly on a conveyor which move in a rectilinear manner. It is thus possible that certain objects cross the field of the antenna close to an axis of symmetry, without being detected.
  • the invention seeks to provide a dynamic identification system which allows the detection of any object moving on a metal conveyor, and regardless of the orientation of the electronic label worn by the object to be identified.
  • Radio Frequency Identification in English
  • RFID Radio Frequency Identification in English
  • a detection device such as an antenna detecting electronic tags assigned respectively to different objects.
  • the detection members can be of different shapes and positioned in different ways.
  • Figure 1 illustrates the application in which the invention is located, that is to say in the context of objects moving rectilinearly on a metal conveyor.
  • the conveyor 20 has a movement axis 25 along which objects 51, 52, 53 each carrying an electronic label 10 evolve.
  • the conveyor generally has a width greater than the objects 50, 51, 52 that it conveys. It is therefore necessary that the field emitted by the detection member covers the entire width of the conveyor in order to detect all the objects whatever the distance at which they are from the edges.
  • an identification system using “gate” antennas that is to say two antennas placed opposite each side of the conveyor, has the disadvantage of having a very weak field in the center because the metallic environment of the conveyor absorbs a large part of the electromagnetic field emitted.
  • an antenna situated in a plane parallel to the plane of the conveyor, and not far from the latter is more suitable.
  • Such an antenna can have different geometric shapes.
  • Another problem which the invention seeks to solve consists in detecting an object on a moving conveyor whatever the orientation of the electronic label placed on said object.
  • the electronic label 10 can systematically be fixed on the top of the box in order to be in a plane parallel to that of the detection device (object 52). In such a configuration, identification is ensured.
  • the electronic label can be fixed along a plane perpendicular to the conveyor and can be randomly oriented relative to the plane of the front of the detection antenna.
  • the edge of the antenna is called its edge perpendicular to the axis of the conveyor.
  • each diameter of the antenna includes a field hole for orientation of the label perpendicular to the plane of the antenna.
  • covering the entire width of the conveyor is therefore more suitable for the application of object identification on a moving conveyor 20.
  • a rectangular antenna has two axes of symmetry 105 and 106 which constitute field holes for an electronic label 10 perpendicular to the plane of the conveyor 20 as is the case of the objects 51 and 53 of FIG. 1.
  • the invention proposes to provide a dynamic identification system comprising a device for detecting a particular geometry.
  • the present invention more particularly relates to an automatic object identification system moving on a moving conveyor comprising a detection member, each object being provided with an electronic label.
  • the identification system is characterized in that the detection member is constituted by a rotating field antenna composed of two loops located in the same plane and coupled in phase quadrature on an overlap zone , the antenna being of generally rectangular shape and situated in a plane parallel to the plane of the conveyor.
  • the rotating field obtained by coupling on a zone of overlap of two loops in which currents respectively phase shifted by ⁇ / 2 circulate, makes it possible to stir the field over the entire detection volume of the antenna.
  • the phase quadrature introduces a phase rotation between the two branches of the overlap zone which causes an alternation of change of sign of the electromagnetic field.
  • the rotating field is obtained by injection of two phase-shifted currents of ⁇ / 2 dan the two loops of the antenna.
  • the rotating field e. c t obtained by induction of a current in a passive loop from a current injected into an active loop, the induced current being phase-shifted by ⁇ / 2 with respect to the injected current.
  • the surface of the overlap area of the rotating field antenna is adjustable.
  • the rotating field antenna is also oriented so that its axis of symmetry makes an angle with the axis of moving the conveyor.
  • the identification system is characterized in that the detection member is constituted by an antenna of generally rectangular shape located in a plane parallel to the plane of the conveyor and oriented so that its axis of symmetry makes an angle with the axis of movement of the conveyor.
  • the angle between the axis of symmetry of the antenna and the axis of the conveyor is between 5 ° and 40 °.
  • the electronic labels are located in any plane relative to the plane of the conveyor.
  • the antenna is located above the plane of the conveyor.
  • the antenna is located below the plane of the conveyor.
  • the antenna is located at a distance less than or equal to 40 cm from the plane of the conveyor.
  • the artenn ⁇ is integrated into the plane of the conveyor.
  • r- Seloi ' a feature, the antenna cost , ⁇ J * the width of the conveyor.
  • the invention exploits a new antenna geometry in the context of an application to moving conveyors in order to ensure the detection of any object moving on such a conveyor whatever the orientation of the electronic label of the object.
  • FIG. 6 schematically illustrates a second embodiment of the invention
  • Figures 7a and 7b illustrate the field for a label parallel to the plane of the conveyor, respectively for the first and the second embodiment of the invention
  • Figures 8a and 8b illustrate the field for a label perpendicular to the plane of the conveyor and parallel to the front of the antenna, respectively for the first and the second embodiment of the invention
  • Figures 9a and 9b illustrate the lice field a label perpendicular to the plane of the conveyor and perpendicular to the front " of the antenna, respectively for the 'first and the second embodiment of the invention.
  • FIG. 2 illustrates a first embodiment of the invention.
  • the identification system according to the invention comprises a detection member constituted by an antenna 110.
  • the antenna 110 is of generally rectangular shape, that is to say that it has two axes of symmetry 105 and 106. It can have slightly rounded edges without losing its generally rectangular shape .
  • the antenna 110 is placed in a plane parallel to the plane of the conveyor 20 in order to cover its entire width.
  • the detection member is constituted by a rotating field antenna 110 composed of two loops Bi and B 2 located in the same plane and coupled on an overlap zone C , conductive strands 111 and 112 of each loop delimiting this area C.
  • Currents Ii and I 2 in phase quadrature, flow respectively in each branch Bi and B 2 .
  • the phase quadrature between the currents Ii and I 2 of the two strands 111 and 112 can be obtained in different ways.
  • the two loops Bi and B 2 are respectively controlled by two current amplifiers which inject into each loop alternating currents Ii and I 2 . These amplifiers' are previously set in phase quadrature with respect to each other.
  • the rotating field antenna 110 consists of an active loop Bi and a passive loop B 2 .
  • the active loop Bi receives an alternating current Ii injected by a current amplifier.
  • This current Ii induces a current I 2 in the passive loop B 2 by a phenomenon of induction in the overlap zone C of the antenna 110.
  • the induced current I 2 is phase-shifted by ⁇ / 2 relative to the injected current Ii.
  • This quadrature phase coupling allows the electromagnetic field of the antenna 110 to be mixed so as to eliminate the field holes and to guarantee a minimum field intensity over the entire area covered. through the antenna.
  • This coupling allows the antenna 110 to generate a rotating field for detecting an electronic tag whatever its orientation, even when it is perpendicular to the plane of the conveyor and perpendicular to the front of the antenna ( Figure 9a).
  • FIGS. 4a and 4b illustrate the effects of the quadrature phase coupling of the two loops Bi and
  • Such a rotating field can be likened to the field generated by a rotating magnet placed opposite a fixed magnet.
  • the intensity of the electromagnetic field in this zone C is very strong, while when the same strands are in phase opposition, the intensity of the electromagnetic field _ in zone C becomes almost zero.
  • the width of the overlap zone C is adjustable in order to allow optimal adjustment of the stirring of the electromagnetic field over the entire detection volume of the antenna 110.
  • FIG. 5 reports on a graph the temporal behaviors of the two currents ⁇ x and ⁇ 2 .
  • FIG. 6 illustrates the second embodiment of the identification system according to the invention for which the detection member is constituted by a single loop antenna 100.
  • Such an antenna 100 is of generally rectangular shape, and is placed in a plane parallel to the plane of the conveyor 20 in order to cover its entire width.
  • the field hole generated by the axis of symmetry 106 appears for an electronic label 10 perpendicular to the plane of the conveyor and parallel to the plane of the front of the antenna (FIG. 8b).
  • this field hole is perpendicular to the axis of movement 25 of the object 51 to be identified. The latter will therefore necessarily be detected by crossing areas of higher intensity field.
  • the field hole generated by the axis of symmetry 105 appears for an electronic label 10 perpendicular to the plane of the conveyor and perpendicular to the front of the antenna (see FIG. 9b). It is therefore possible that the object 53 crosses the field of the antenna 100 close to this axis of symmetry 105 without being able to be identified.
  • a rotation is therefore carried out so as to place the antenna 100 in an orientation such that its axis of symmetry 105 has an offset angle ⁇ with the axis of movement 25 of the conveyor 20.
  • an object to be identified 53 evolving along the axis of movement 25 of the conveyor 20, cannot cross the entire surface covered by the antenna 100 along its axis of symmetry 105. It will therefore necessarily be detected by crossing an area in which there is a minimum of field.
  • Figures 7a to 9b show electromagnetic field simulations of a rectangular antenna located in a plane parallel to the conveyor. These figures illustrate the different possible distributions of electromagnetic field according to the orientation of the label 10 for a single loop antenna 100 and for a rotating field antenna 110.
  • the orientation of the antenna 100, 110 depends on the modes of implementation and the applications, depending on the width of the conveyor and the size of the " - objects conveyed, the offset angle ⁇ can vary between 5 ° and
  • the antenna 100, 110 can be located above the conveyor 20, below or it can be integrated into the conveyor.
  • the antenna 100, 110 When the antenna 100, 110 is above the conveyor 20, it is located in a plane parallel to a variable distance depending on the applications. It must not be too far away in order to detect all the objects despite the high absorption of the metal conveyor, and it must not be too low so as not to hinder the movement of the conveyed objects.
  • the antenna 100, 110 When the antenna 100, 110 is below the conveyor 20, the latter must necessarily be modified to allow the antenna to detect " the objects without its field being completely absorbed by the metal of the conveyor.
  • a portion of the conveyor can be cut and replaced by plastic for example, the antenna being fixed under this portion.
  • the antenna 100, 110 is preferably located at a distance less than or equal to 40 cm from the plane of the conveyor.
  • a particularly advantageous mode of implementation from an industrial point of view consists in integrating the antenna 100 into the conveyor 20. As previously, a portion of the conveyor is cut out and replaced by a plastic portion in which the antenna 100 is placed.
  • This variant allows the antenna 100 to be brought as close as possible to the electronic labels of the moving objects in order to optimize their identification.
  • An experimental realization was carried out -with a rotating field antenna 110 located 20 cm above the plane of the conveyor 20 and offset by an angle ⁇ of 15 °.

Abstract

The invention concerns a system for automatically identifying objects being transported on a moving conveyor (20) comprising a detection member, each object being provided with an electronic label. The invention is characterised in that the detection member consists of a rotary field antenna (110) consisting of two loops (B1, B2) located in the same plane and coupled in phase quadrature over an overlapping zone, the antenna (10) being generally rectangular in shape and located in a plane parallel to the conveyor (20). In another embodiment, the antenna (10) can further be oriented such that its axis of symmetry (105) forms an angle (α) with the displacement axis (25) of the conveyor (20).

Description

SYSTEME D'IDENTIFICATION D'OBJETS SUR UN CONVOYEUR EN SYSTEM FOR IDENTIFYING OBJECTS ON A CONVEYOR
MOUVEMENT .MOVEMENT .
La présente invention concerne un système dynamique d'identification automatique d'objets sur un convoyeur en mouvement .The present invention relates to a dynamic system for automatically identifying objects on a moving conveyor.
La présente invention s'applique essentiellement à l'identification d'objets se déplaçant dans une seule dimension sur un convoyeur. Tous les objets sont munis chacun d'une étiquette électronique répondant à la sollicitation d'un organe de détection constitué par un système d'émission-réception à radiofréquence . Plusieurs problèmes sont relatifs à une telle identification. Tout d'abord, le convoyeur comporte généralement une portion métallique qui absorbe une grande partie du champ électromagnétique émis par l'organe de détection. D'autre part, les organes de détection tels que les antennes par exemple, présentent généralement des trous de champ le long de leurs axes de symétrie lorsque l'étiquette électronique à identifier ne se situe pas dans un plan parallèle εa plan de l'antenne. ' ' ' 1 Or, dans l'application qui nous intéresse, >e^ étiquettes électroniques sont fixées aléatoirement sur des objets disposés aléatoirement sur un convoyeur qui se déplacent de manière rectiligne. Il est ainsi possible que certains objets traversent le champ de l'antenne proche d'un axe de symétrie, sans être détectés .The present invention essentially applies to the identification of objects moving in one dimension on a conveyor. All the objects are each provided with an electronic label responding to the request of a detection member constituted by a radiofrequency transmission-reception system. Several problems relate to such identification. First of all, the conveyor generally comprises a metal portion which absorbs a large part of the electromagnetic field emitted by the detection member. On the other hand, the detection members such as the antennas for example, generally have field holes along their axes of symmetry when the electronic tag to be identified is not located in a plane parallel to the plane of the antenna. . ''' 1 Now, in the application which interests us,> e ^ electronic labels are fixed randomly on objects arranged randomly on a conveyor which move in a rectilinear manner. It is thus possible that certain objects cross the field of the antenna close to an axis of symmetry, without being detected.
L'invention cherche à réaliser un système d'identification dynamique qui permette la détection de tout objet se déplaçant sur un convoyeur métallique, et ce quel que soit l'orientation de l'étiquette électronique portée par l'objet à identifier.The invention seeks to provide a dynamic identification system which allows the detection of any object moving on a metal conveyor, and regardless of the orientation of the electronic label worn by the object to be identified.
Il existe plusieurs systèmes d'identification par radiofréquence (RFID : Radio Frequency Identification en anglais) comprenant un organe de détection tel qu'une antenne détectant des étiquettes électroniques attribuées respectivement à différents objets.There are several radio frequency identification systems (RFID: Radio Frequency Identification in English) comprising a detection device such as an antenna detecting electronic tags assigned respectively to different objects.
Selon les applications, les organes de détection peuvent être de différentes formes et positionnés de différentes façons. |Depending on the applications, the detection members can be of different shapes and positioned in different ways. |
La figure 1 illustre l'application dans laquelle se situe l'invention, c'est à dire dans le cadre d'objets se déplaçant de manière rectiligne sur un convoyeur métallique. Le convoyeur 20 présente un axe de déplacement 25 selon lequel des objets 51, 52, 53 portant chacun une étiquette électronique 10 évoluent. Le convoyeur présente généralement une largeur supérieure aux objets 50, 51, 52 qu'il convoie. Il est par conséquent nécessaire que le champ émis par l'organe de détection couvre la totalité de la largeur du convoyeur afin de détecter tous les objets quelque soit la distance à laquelle ils se trouvent des bords.Figure 1 illustrates the application in which the invention is located, that is to say in the context of objects moving rectilinearly on a metal conveyor. The conveyor 20 has a movement axis 25 along which objects 51, 52, 53 each carrying an electronic label 10 evolve. The conveyor generally has a width greater than the objects 50, 51, 52 that it conveys. It is therefore necessary that the field emitted by the detection member covers the entire width of the conveyor in order to detect all the objects whatever the distance at which they are from the edges.
Ainsi, un système d'identification utilisant des antennes « porte », c' est à dire deux antennes placées en vis à vis de chaque côté du convoyeur, présente l'inconvénient d'avoir un champ très faible au centre car l'environnement métallique du convoyeur absorbe une grande partie du champ électromagnétique émis. Pour une telle application, une antenne située dans un plan parallèle au plan du convoyeur, et peu éloignée de ce dernier convient mieux. Une telle antenne peut présenter différentes formes géométriques. Or, un autre problème que l'invention cherche à résoudre consiste à détecter un objet sur un convoyeur en mouvement quelque soit l'orientation de l'étiquette électronique placée sur ledit objet. Ainsi, dans le cas d'un objet de forme simple et reproductible, présentant une surface plane parallèle au plan du convoyeur, comme une boîte par exemple, l'étiquette électronique 10 peut systématiquement être fixée sur le dessus de la boîte afin d'être dans un plan parallèle à celui de l'organe de détection (objet 52) . Dans une telle configuration, l'identification est assurée .Thus, an identification system using “gate” antennas, that is to say two antennas placed opposite each side of the conveyor, has the disadvantage of having a very weak field in the center because the metallic environment of the conveyor absorbs a large part of the electromagnetic field emitted. For such an application, an antenna situated in a plane parallel to the plane of the conveyor, and not far from the latter is more suitable. Such an antenna can have different geometric shapes. Another problem which the invention seeks to solve consists in detecting an object on a moving conveyor whatever the orientation of the electronic label placed on said object. Thus, in the case of an object of simple and reproducible shape, having a flat surface parallel to the plane of the conveyor, such as a box for example, the electronic label 10 can systematically be fixed on the top of the box in order to be in a plane parallel to that of the detection device (object 52). In such a configuration, identification is ensured.
Cependant, il existe des applications dans lesquelles les objets à identifier ne présentent pas une telle forme simple, ou pour lesquelles des précautions de positionnement de l'étiquette 10 n'ont pas été prises. Sur de tels objets (51 et 53), l'étiquette électronique peut être fixée selon un plan perpendiculaire au convoyeur et peut être orientée aléatoirement par rapport au plan du front de l'antenne de détection. On appelle front de l'antenne son bord perpendiculaire à l'axe du convoyeur.However, there are applications in which the objects to be identified do not have such a simple shape, or for which precautions in positioning the label 10 have not been taken. On such objects (51 and 53), the electronic label can be fixed along a plane perpendicular to the conveyor and can be randomly oriented relative to the plane of the front of the detection antenna. The edge of the antenna is called its edge perpendicular to the axis of the conveyor.
Li géométrie de l'antenne est alors importante. En effet, il existe des systèmes d'identification utilisant des antennes de forme circulaire, mais cette géométrie est particulièrement mal adaptée à la détection d'objets sur un convoyeur en mouvement car chaque diamètre de l'antenne comprend un trou de champ pour une orientation de l'étiquette perpendiculaire au plan de l'antenne.The geometry of the antenna is therefore important. Indeed, there are identification systems using circular antennas, but this geometry is particularly ill-suited to the detection of objects on a moving conveyor because each diameter of the antenna includes a field hole for orientation of the label perpendicular to the plane of the antenna.
Ces trous de champ ne sont pas gênants pour des applications dans lesquelles les objets se déplacent selon deux ou trois dimensions car ils traverseront alors nécessairement une zone de champ d' intensité suffisante pour être détectés. C'est le cas de la Surveillance Electronique d'Article (SEA) utilisée dans tous les grands magasins par exemple.These field holes are not annoying for applications in which the objects move in two or three dimensions because they will then necessarily cross an area of intensity field. sufficient to be detected. This is the case of Electronic Article Surveillance (SEA) used in all department stores for example.
Néanmoins, dans le cas d'un objet se déplaçant selon une seule dimension, comme c'est le cas d'un objet immobile sur un convoyeur en mouvement, il est possible que l'objet traverse le champ de l'antenne circulaire selon un diamètre de celle-ci et il ne sera alors pas détecté. Une antenne de forme rectangulaire 100, | couvrant toute la largeur du convoyeur, est par conséquent plus adaptée à l'application d'identification d'objets sur un convoyeur 20 en mouvement.However, in the case of an object moving in one dimension, as is the case of an object stationary on a moving conveyor, it is possible that the object crosses the field of the circular antenna according to a diameter and it will not be detected. A rectangular antenna 100, | covering the entire width of the conveyor, is therefore more suitable for the application of object identification on a moving conveyor 20.
Une antenne de forme rectangulaire présente deux axes de symétrie 105 et 106 qui constituent des trous de champ pour une étiquette électronique 10 perpendiculaire au plan du convoyeur 20 comme c' est le cas des objets 51 et 53 de la figure 1.A rectangular antenna has two axes of symmetry 105 and 106 which constitute field holes for an electronic label 10 perpendicular to the plane of the conveyor 20 as is the case of the objects 51 and 53 of FIG. 1.
Dans une telle configuration, en particulier si l'étiquette électronique d'un objet à identifier est perpendiculaire au plan du convoyeur et perpendiculaire au plan du front de l'antenne (voir figure 9b, cas de l'objet 53 de la figure 1), et qu'elle traverse le champ de l'antenne en son centre, elle ne pourra pas être détectée.In such a configuration, in particular if the electronic label of an object to be identified is perpendicular to the plane of the conveyor and perpendicular to the plane of the front of the antenna (see FIG. 9b, case of object 53 of FIG. 1) , and that it crosses the antenna field at its center, it cannot be detected.
Afin de pallier ces inconvénients et de permettre l'identification fiable d'objets sur un convoyeur métallique en mouvement quelque soit l'orientation de leur étiquette électronique, l' invention propose de réaliser un système d' identification dynamique comprenant un organe de détection d'une géométrie particulière .In order to overcome these drawbacks and to allow reliable identification of objects on a moving metal conveyor whatever the orientation of their electronic label, the invention proposes to provide a dynamic identification system comprising a device for detecting a particular geometry.
La présente invention a plus particulièrement pour objet un système d'identification automatique d'objets se déplaçant sur un convoyeur en mouvement comprenant un organe de détection, chaque objet étant muni d'une étiquette électronique.The present invention more particularly relates to an automatic object identification system moving on a moving conveyor comprising a detection member, each object being provided with an electronic label.
Selon un premier mode de réalisation, le système d'identification est caractérisé en ce que l'organe de détection est constitué par une antenne à champ tournant composée de deux boucles situées dans le même plan et couplées en quadrature de phase sur une zone de recouvrement, l'antenne étant de forme générale rectangulaire et située dans un plan parallèle, au plan du convoyeur.According to a first embodiment, the identification system is characterized in that the detection member is constituted by a rotating field antenna composed of two loops located in the same plane and coupled in phase quadrature on an overlap zone , the antenna being of generally rectangular shape and situated in a plane parallel to the plane of the conveyor.
Le champ tournant, obtenu par couplage sur une zone de recouvrement de deux boucles dans lesquelles circulent des courants respectivement déphasés de π/2, permet de brasser le champ sur l'ensemble du volume de détection de l'antenne. En effet, la quadrature de phase introduit une rotation de phase entre les deux branches de la zone de recouvrement qui entraîne une alternance de changement de signe du champ électromagnétique.The rotating field, obtained by coupling on a zone of overlap of two loops in which currents respectively phase shifted by π / 2 circulate, makes it possible to stir the field over the entire detection volume of the antenna. Indeed, the phase quadrature introduces a phase rotation between the two branches of the overlap zone which causes an alternation of change of sign of the electromagnetic field.
Selon une première variante, le champ tournant est obtenu par injection de deux courants déphasés de π/2 dan les deux boucles de l'antenne.According to a first variant, the rotating field is obtained by injection of two phase-shifted currents of π / 2 dan the two loops of the antenna.
Selon une autre variante, le champ tournant e.ct obtenu par induction d'un courant dans une boucle passive à partir d'un courant injecté dans une boucle active, le courant induit étant déphasé de π/2 par rapport au courant injecté.According to another variant, the rotating field e. c t obtained by induction of a current in a passive loop from a current injected into an active loop, the induced current being phase-shifted by π / 2 with respect to the injected current.
Selon une caractéristique, la surface de la zone de recouvrement de l'antenne à champ tournant est ajustable.According to one characteristic, the surface of the overlap area of the rotating field antenna is adjustable.
Selon une variante de réalisation, l'antenne à champ tournant est en outre orientée de manière à ce que son axe de symétrie réalise un angle avec l'axe de déplacement du convoyeur.According to an alternative embodiment, the rotating field antenna is also oriented so that its axis of symmetry makes an angle with the axis of moving the conveyor.
Selon un deuxième mode de réalisation, le système d'identification est caractérisé en ce que l'organe de détection est constitué par une antenne de forme générale rectangulaire située dans un plan parallèle au plan du convoyeur et orientée de manière à ce que son axe de symétrie réalise un angle avec l'axe de déplacement du convoyeur .According to a second embodiment, the identification system is characterized in that the detection member is constituted by an antenna of generally rectangular shape located in a plane parallel to the plane of the conveyor and oriented so that its axis of symmetry makes an angle with the axis of movement of the conveyor.
Selon une caractéristique, l'angle entre l'axe de symétrie de l'antenne et l'axe du convoyeur est compris entre 5° et 40°.According to one characteristic, the angle between the axis of symmetry of the antenna and the axis of the conveyor is between 5 ° and 40 °.
Selon une autre caractéristique, les étiquettes électroniques sont situées dans un plan quelconque par rapport au plan du convoyeur. Selon un premier mode de mise en œuvre, l'antenne est située au dessus du plan du convoyeur.According to another characteristic, the electronic labels are located in any plane relative to the plane of the conveyor. According to a first embodiment, the antenna is located above the plane of the conveyor.
Selon un deuxième mode de mise en œuvre, l'antenne est située en dessous du plan du convoyeur.According to a second embodiment, the antenna is located below the plane of the conveyor.
Selon une particularité de ces modes de mise en œuvre, l'antenne est située à une distance inférieure ou égale à 40 cm au plan du convoyeur.According to a feature of these modes of implementation, the antenna is located at a distance less than or equal to 40 cm from the plane of the conveyor.
Selon un troisième mode de mise en œuvre, • 'artennε est intégiee au plan du convoyeur. r- Seloi' une caractéristique, l'antenne coυ, ι J * la largeur du convoyeur.According to a third mode of implementation, the artennε is integrated into the plane of the conveyor. r- Seloi ' a feature, the antenna cost , ι J * the width of the conveyor.
L' invention exploite une géométrie d' antenne nouvelle dans le cadre d'une application aux convoyeurs en mouvement afin d'assurer la détection de tout objet se déplaçant sur un tel convoyeur quel que soit l'orientation de l'étiquette électronique de l'objet.The invention exploits a new antenna geometry in the context of an application to moving conveyors in order to ensure the detection of any object moving on such a conveyor whatever the orientation of the electronic label of the object.
D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description qui est faite ci-après et qui est donnée à titre d'exemple illustratif et non limitatif et en regard des dessins sur lesquels : la figure 1, déjà décrite, est un schéma d'un convoyeur portant des objets à identifier ; - la figure 2 illustre schématiquement un premier mode de réalisation de l'invention ; la figure 3 illustre schématiquement un troisième mode de réalisation de l'invention ; les figures 4a et 4b illustrent le principe d'un champ tournant ; la figure 5 est un graphe des courants d'une antenne à champ tournant ; la figure 6 illustre schématiquement un deuxième mode de réalisation de l'invention ; - les figures 7a et 7b illustrent le champ pour une étiquette parallèle au plan du convoyeur, respectivement pour le premier et le second mode de réalisation de l'invention ; les figures 8a et 8b illustrent le champ pour une étiquette perpendiculaire au plan du convoyeur et parallèle au front de l'antenne, respectivement pour le premier et le second mode de réalisation de l'invention ;Other features and advantages of the invention will become apparent on reading the description which is given below and which is given by way of illustrative and nonlimiting example and with reference to the drawings in which: FIG. 1, already described, is a diagram of a conveyor carrying objects to be identified; - Figure 2 schematically illustrates a first embodiment of the invention; Figure 3 schematically illustrates a third embodiment of the invention; Figures 4a and 4b illustrate the principle of a rotating field; Figure 5 is a graph of the currents of a rotating field antenna; FIG. 6 schematically illustrates a second embodiment of the invention; - Figures 7a and 7b illustrate the field for a label parallel to the plane of the conveyor, respectively for the first and the second embodiment of the invention; Figures 8a and 8b illustrate the field for a label perpendicular to the plane of the conveyor and parallel to the front of the antenna, respectively for the first and the second embodiment of the invention;
-" les figures 9a et 9b illustrent le champ poux une étiquette perpendiculaire au plan du convoyeur et perpendiculaire au front" de l'antenne, respectivement pour le' premier et le second mode de réalisation de l'invention.- " Figures 9a and 9b illustrate the lice field a label perpendicular to the plane of the conveyor and perpendicular to the front " of the antenna, respectively for the 'first and the second embodiment of the invention.
La figure 2 illustre un premier mode de réalisation de l'invention. Le système d'identification selon l'invention comporte un organe de détection constitué par une antenne 110. Selon une première caractéristique essentielle à l'invention, l'antenne 110 est de forme générale rectangulaire, c'est à dire qu'elle présente deux axes de symétrie 105 et 106. Elle peut présenter des bords légèrement arrondis sans perdre sa forme générale rectangulaire .FIG. 2 illustrates a first embodiment of the invention. The identification system according to the invention comprises a detection member constituted by an antenna 110. According to a first characteristic essential to the invention, the antenna 110 is of generally rectangular shape, that is to say that it has two axes of symmetry 105 and 106. It can have slightly rounded edges without losing its generally rectangular shape .
Selon une seconde caractéristique essentielle à l'invention, l'antenne 110 est placée dans un plan- parallèle au plan du convoyeur 20 afin de couvrir toute sa largeur. _According to a second characteristic essential to the invention, the antenna 110 is placed in a plane parallel to the plane of the conveyor 20 in order to cover its entire width. _
Selon une troisième caractéristique essentielle à ce mode de réalisation de l'invention, l'organe de détection est constituée par une antenne à champ tournant 110 composée de deux boucles Bi et B2 situées dans le même plan et couplées sur une zone de recouvrement C, des brins conducteurs 111 et 112 de chaque boucle délimitant cette zone C. Des courants Ii et I2, en quadrature de phase, circulent respectivement dans chaque branche Bi et B2. La quadrature de phase entre les courants Ii et I2 des deux brins 111 et 112 peut être obtenue de différentes façons.According to a third characteristic essential to this embodiment of the invention, the detection member is constituted by a rotating field antenna 110 composed of two loops Bi and B 2 located in the same plane and coupled on an overlap zone C , conductive strands 111 and 112 of each loop delimiting this area C. Currents Ii and I 2 , in phase quadrature, flow respectively in each branch Bi and B 2 . The phase quadrature between the currents Ii and I 2 of the two strands 111 and 112 can be obtained in different ways.
Selon une première méthode, les deux boucles Bi et B2 sont respectivement pilotées par deux amplificateurs de courant qui injectent dans chaque boucle des courants alternatifs Ii et I2. Ces amplificateurs' sont préalablement réglés en quadrature de phase l'un par rapport à l'autre.According to a first method, the two loops Bi and B 2 are respectively controlled by two current amplifiers which inject into each loop alternating currents Ii and I 2 . These amplifiers' are previously set in phase quadrature with respect to each other.
Selon une seconde méthode, l'antenne à champ tournant 110 est constituée d'une boucle active Bi et d'une boucle passive B2.According to a second method, the rotating field antenna 110 consists of an active loop Bi and a passive loop B 2 .
La boucle active Bi reçoit un courant alternatif Ii injecté par un amplificateur de courant. Ce courant Ii induit un courant I2 dans la boucle passive B2 par un phénomène d' induction dans la zone de recouvrement C de l'antenne 110. Selon des propriétés physiques connues, le courant induit I2 est déphasé de π/2 par rapport au courant injecté Ii. Ce couplage en quadrature de phase, qui sera explicité plus loin, permet un brassage du champ électromagnétique de l'antenne 110 de manière à éliminer les trous de champ et à garantir un minimum d'intensité de champ sur l'ensemble de la zone couverte par l'antenne. - -The active loop Bi receives an alternating current Ii injected by a current amplifier. This current Ii induces a current I 2 in the passive loop B 2 by a phenomenon of induction in the overlap zone C of the antenna 110. According to known physical properties, the induced current I 2 is phase-shifted by π / 2 relative to the injected current Ii. This quadrature phase coupling, which will be explained later, allows the electromagnetic field of the antenna 110 to be mixed so as to eliminate the field holes and to guarantee a minimum field intensity over the entire area covered. through the antenna. - -
Ce couplage permet à l'antenne 110 de générer un champ tournant afin de détecter ' une étiquette électronique quel que soit son orientation, même lorsqu' elle est perpendiculaire au plan du convoyeur et perpendiculaire au front de l'antenne (figure 9a) .This coupling allows the antenna 110 to generate a rotating field for detecting an electronic tag whatever its orientation, even when it is perpendicular to the plane of the conveyor and perpendicular to the front of the antenna (Figure 9a).
Néanmoins, même si un minimum d'intensité de champ est garanti, comme cela est clairement illustré sur les figures 7a, 8a et 9a, ce champ n'est pas uniforme et certaines zones présentent des minimums de champ. En particulier pour une étiquette 10 située dans le plan de l'antenne 110, deux minimums apparaissent selon l'axe de symétrie 105 (figure 7a). Or, dans un environnement métallique, il er.t nécrssaire de garantir un champ relativement élevé sur toutes les trajectoires possibles d'une étiquette 10.However, even if a minimum field strength is guaranteed, as is clearly illustrated in FIGS. 7a, 8a and 9a, this field is not uniform and certain zones have minimum fields. In particular for a label 10 located in the plane of the antenna 110, two minima appear along the axis of symmetry 105 (FIG. 7a). However, in a metallic environment, it is necessary to guarantee a relatively high field on all the possible trajectories of a label 10.
C'est pourquoi, selon une variante de réalisation, illustré sur la figure 3, l'antenne à champ tournant 110 est en outre orientée de manière à ce que son axe de symétrie 105 présente un angle de décalage α avec l'axe de déplacement 25 du convoyeur. Ainsi, une étiquette, qui de par l'application, se déplace selon une direction linéaire 25, ne pourra pas traverser toute la zone de détection de l'antenne 110 selon un minimum de champ. Les figures 4a et 4b illustrent les effets du couplage en quadrature de phase des deux boucles Bi etThis is why, according to an alternative embodiment, illustrated in FIG. 3, the rotating field antenna 110 is also oriented so that its axis of symmetry 105 has an angle of offset α with the axis of movement. 25 of the conveyor. Thus, a label, which by application, moves in a linear direction 25, cannot cross the entire detection area of the antenna 110 with a minimum of field. FIGS. 4a and 4b illustrate the effects of the quadrature phase coupling of the two loops Bi and
B2 de l'antenne à champ tournant 110. Un tel champ tournant peut être assimilé au champ engendré par un aimant tournant placé face à un aimant fixe.B 2 of the rotating field antenna 110. Such a rotating field can be likened to the field generated by a rotating magnet placed opposite a fixed magnet.
Lorsque les brins conducteurs 111 et 112 de la zone de recouvrement C sont en phase, l'intensité du champ électromagnétique dans cette zone C est très forte, alors que lorsque les mêmes brins sont en opposition de phase, l'intensité du champ électromagnétique _ dans la zone C devient quasi nulle.When the conductive strands 111 and 112 of the overlap zone C are in phase, the intensity of the electromagnetic field in this zone C is very strong, while when the same strands are in phase opposition, the intensity of the electromagnetic field _ in zone C becomes almost zero.
Avantageusement, la largeur de la zone de recouvrement C est ajustable afin de permettre un réglage optimal du brassage du champ électromagnétique sur l'ensemble du volume de détection de l'antenne 110.Advantageously, the width of the overlap zone C is adjustable in order to allow optimal adjustment of the stirring of the electromagnetic field over the entire detection volume of the antenna 110.
La figure 5 rapporte sur un graphe les comportements temporels des deux courants ιx et ι2.FIG. 5 reports on a graph the temporal behaviors of the two currents ι x and ι 2 .
Lorsque l'on réalise la somme des valeurs des courants iχ et ι2 (courbe en pointillés) on passe par une alternance de valeurs positives et négatives. Ces changements de signe des courants circulant dans l'antenne 110 entraînent des chanαeπtents de sens du champ électromagnétique.When one realizes the sum of the values of the currents iχ and ι 2 (dotted curve) one goes through an alternation of positive and negative values. These changes in sign of the currents flowing in the antenna 110 cause changes in the direction of the electromagnetic field.
La fréquence des courants ιx et/ou l2 injectée αans les boucles BX et B2, ou uniquement dans la boucle active Bi sont par exemple de 13MHz. L'alternance de changement de sens du champ électromagnétique sera alors suffisamment rapprochée pour brasser le champ sur l'ensemble du volume couvert par l'antenne 110. La figure 6 illustre le deuxième mode de réalisation du système d' identification selon l'invention pour lequel l'organe de détection est constitué par une antenne à boucle simple 100. Une telle antenne 100 est de forme générale rectangulaire, et est placée dans un plan parallèle au plan du convoyeur 20 afin de couvrir toute sa largeur.The frequency of the currents ι x and / or l 2 injected α in the loops B X and B 2 , or only in the active loop Bi are for example 13 MHz. The alternation of change of direction of the electromagnetic field will then be close enough to stir the field over the entire volume covered by the antenna 110. FIG. 6 illustrates the second embodiment of the identification system according to the invention for which the detection member is constituted by a single loop antenna 100. Such an antenna 100 is of generally rectangular shape, and is placed in a plane parallel to the plane of the conveyor 20 in order to cover its entire width.
Le trou de champ engendré par l'axe de symétrie 106 apparaît pour une étiquette électronique 10 perpendiculaire au plan du convoyeur et parallèle au plan du front de l'antenne (figure 8b). Cependant ce trou de champ est perpendiculaire à l'axe de déplacement 25 de l'objet 51 à identifier. Ce dernier sera donc nécessairement détecté en traversant des zones de champ d'intensité plus forte.The field hole generated by the axis of symmetry 106 appears for an electronic label 10 perpendicular to the plane of the conveyor and parallel to the plane of the front of the antenna (FIG. 8b). However, this field hole is perpendicular to the axis of movement 25 of the object 51 to be identified. The latter will therefore necessarily be detected by crossing areas of higher intensity field.
En revanche, le trou de champ engendré par l'axe de symétrie 105 apparaît pour une étiquette électronique 10 perpendiculaire au plan du convoyeur et perpendiculaire au front de l'antenne (voir la figure 9b) . Il est par conséquent possible que l'objet 53 traverse le champ de l'antenne 100 proche de cet axe de symétrie 105 sans pouvoir être identifié.On the other hand, the field hole generated by the axis of symmetry 105 appears for an electronic label 10 perpendicular to the plane of the conveyor and perpendicular to the front of the antenna (see FIG. 9b). It is therefore possible that the object 53 crosses the field of the antenna 100 close to this axis of symmetry 105 without being able to be identified.
Selon une caractéristique essentielle à ce mode de réalisation de l'invention, une rotation est donc réalisée de manière à placer l'antenne 100 dans une orientation telle que son axe de symétrie 105 présente un angle de décalage α avec l'axe de déplacement 25 du convoyeur 20. Ainsi, un objet à identifier 53, évoluant selon l'axe de déplacement 25 du convoyeur 20, ne pourra pas traverser toute la surface couverte par l' antenne 100 selon son axe de symétrie 105. Il sera donc nécessairement détecté en traversant une zone dans laquelle il y a un minimum de champ.According to a characteristic essential to this embodiment of the invention, a rotation is therefore carried out so as to place the antenna 100 in an orientation such that its axis of symmetry 105 has an offset angle α with the axis of movement 25 of the conveyor 20. Thus, an object to be identified 53, evolving along the axis of movement 25 of the conveyor 20, cannot cross the entire surface covered by the antenna 100 along its axis of symmetry 105. It will therefore necessarily be detected by crossing an area in which there is a minimum of field.
Les figures 7a à 9b représentent des simulations de champ électromagnétique d'une antenne rectangulaire située dans un plan parallèle au convoyeur. Ces figures illustrent les différentes répartitions possibles du champ électromagnétique selon l'orientation de l'étiquette 10 pour une antenne à boucle simple 100 et pour une antenne à champ tournant 110.Figures 7a to 9b show electromagnetic field simulations of a rectangular antenna located in a plane parallel to the conveyor. These figures illustrate the different possible distributions of electromagnetic field according to the orientation of the label 10 for a single loop antenna 100 and for a rotating field antenna 110.
On voit clairement sur ces figures l'avantage apportée par la rotation α de l'antenne 100, 110 afin d' éviter que les trous ou les minimums de champ soient dans l'axe de déplacement 25 des objets sur le convoyeur 20.It is clearly seen in these figures the advantage provided by the rotation α of the antenna 100, 110 in order to prevent the holes or the field minima being in the axis of movement 25 of the objects on the conveyor 20.
L'orientation de l'antenne 100, 110 dépend des modes de mise en œuvre et des applications, ^elon la largeur du convoyeur et la grosseur des"- objets convoyés, l'angle de décalage α peut varier entre 5° etThe orientation of the antenna 100, 110 depends on the modes of implementation and the applications, depending on the width of the conveyor and the size of the " - objects conveyed, the offset angle α can vary between 5 ° and
40°, et préférentielle ent entre 10° et 20°.40 °, and preferential between 10 ° and 20 °.
Selon les modes de mise en œuvre, l'antenne 100, 110 peut être située au-dessus du convoyeur 20, au- dessous ou encore elle peut être intégrée au convoyeur.According to the modes of implementation, the antenna 100, 110 can be located above the conveyor 20, below or it can be integrated into the conveyor.
Lorsque l'antenne 100, 110 est au-dessus du convoyeur 20, elle se situe dans un plan parallèle à une distance variable selon les applications. Elle ne doit pas être trop éloignée afin de détecter tous les objets malgré la forte absorption du convoyeur métallique, et elle ne doit pas être trop basse afin de ne pas gêner le mouvement des objets convoyés.When the antenna 100, 110 is above the conveyor 20, it is located in a plane parallel to a variable distance depending on the applications. It must not be too far away in order to detect all the objects despite the high absorption of the metal conveyor, and it must not be too low so as not to hinder the movement of the conveyed objects.
Lorsque l'antenne 100, 110 est au-dessous du convoyeur 20, ce dernier doit nécessairement être modifié pour permettre à l'antenne de détecter" les objets sans que son champ soit totalement absorbé par le métal du convoyeur. Ainsi, une portion du convoyeur peut être découpée et remplacée par du plastique par exemple, l'antenne étant fixée sous cette portion.When the antenna 100, 110 is below the conveyor 20, the latter must necessarily be modified to allow the antenna to detect " the objects without its field being completely absorbed by the metal of the conveyor. Thus, a portion of the conveyor can be cut and replaced by plastic for example, the antenna being fixed under this portion.
Qu'elle soit au dessus, ou en dessous, l'antenne 100, 110 est préférentiellement située à une distance inférieure ou égale à 40 cm du plan du convoyeur. Un mode de mise en œuvre particulièrement avantageux sur le plan industriel consiste à intégrer l'antenne 100 dans le convoyeur 20. De même que précédemment, une portion du convoyeur est découpée et remplacée par une portion plastique dans laquelle est placée l'antenne 100.Whether it is above or below, the antenna 100, 110 is preferably located at a distance less than or equal to 40 cm from the plane of the conveyor. A particularly advantageous mode of implementation from an industrial point of view consists in integrating the antenna 100 into the conveyor 20. As previously, a portion of the conveyor is cut out and replaced by a plastic portion in which the antenna 100 is placed.
Cette variante permet de rapprocher l'antenne 100 au plus près des étiquettes électroniques des objets en mouvement afin d'optimiser leur identification. Une réalisation expérimentale a été menée -avec une antenne 110 à champ tournant située à 20 cm aυ dessus du plan du convoyeur 20 et décalée d'un angle α de 15°. This variant allows the antenna 100 to be brought as close as possible to the electronic labels of the moving objects in order to optimize their identification. An experimental realization was carried out -with a rotating field antenna 110 located 20 cm above the plane of the conveyor 20 and offset by an angle α of 15 °.

Claims

REVENDICATIONS
1. Système d'identification automatique d'objets se déplaçant sur un convoyeur (20) en mouvement comprenant un organe de détection, chaque objet étant muni d'une étiquette électronique (10), caractérisé en ce que l'organe de détection est constitué par une antenne à champ tournant (110) composée de deux boucles (Bi , B2) situées dans le même plan et couplées en quadrature de phase sur une zone de recouvrement (C) , l'antenne (110) étant de forme générale rectangulaire et située dans un plan parallèle au plan du convoyeur (20) .1. Automatic identification system for objects moving on a moving conveyor (20) comprising a detection member, each object being provided with an electronic label (10), characterized in that the detection member consists by a rotating field antenna (110) composed of two loops (Bi, B 2 ) located in the same plane and coupled in phase quadrature on an overlap zone (C), the antenna (110) being of generally rectangular shape and located in a plane parallel to the plane of the conveyor (20).
2. Système d'identification selon la revendication 1, caractérisé en ce que chaque boucle (Bi , B2) reçoit respectivement un courant (Ii , I∑) injecté, lesdits courants (Ii , I ) étant déphasés de π/2 l'un par rapport à l'autre.2. Identification system according to claim 1, characterized in that each loop (Bi, B 2 ) receives respectively a current (Ii, I∑) injected, said currents (Ii, I) being phase shifted by π / 2 l ' one over the other.
3. Système d'identification selon la revendication 1, caractérisé en ce que les boucles (Bi , B ) de l'antenne (110) sont constituées d une boucle active3. Identification system according to claim 1, characterized in that the loops (Bi, B) of the antenna (110) consist of an active loop
(Bi) dans laquelle est injecté un courant (Ii), et d'une boucle passive (B2) dans laquelle un courant (I2) est induit, déphasé de π/2 par rapport au courant (Ii) de la boucle active (Bx) .(Bi) in which a current (Ii) is injected, and a passive loop (B 2 ) in which a current (I 2 ) is induced, phase-shifted by π / 2 relative to the current (Ii) of the active loop (B x ).
4. Système d'identification selon la revendication 1, caractérisé en ce que la surface de la zone de recouvrement (C) est ajustable.4. Identification system according to claim 1, characterized in that the surface of the overlap zone (C) is adjustable.
5 . Système d' identi f ication selon l ' une des revendications 1 à 4 , caractérisé en ce que l ' antenne à champ tournant (110) est en outre orientée de manière à ce que son axe de symétrie (105) réalise un angle (α) avec l'axe de déplacement (25) du convoyeur (20).5. Identification system according to one of Claims 1 to 4, characterized in that the antenna with rotating field (110) is further oriented so that its axis of symmetry (105) makes an angle (α) with the axis of movement (25) of the conveyor (20).
6. Système d'identification automatique d'objets se déplaçant sur un convoyeur (20) en mouvement comprenant un organe de détection, chaque objet étant muni d'une étiquette électronique (10), caractérisé en ce que l'organe de détection est constitué par une antenne (100) de forme générale rectangulaire située: dans un plan parallèle au plan du convoyeur (20) et orientée de manière à ce que son axe de symétrie (105) réalise un angle (α) avec l'axe de déplacement (25) du convoyeur6. Automatic identification system for objects moving on a moving conveyor (20) comprising a detection member, each object being provided with an electronic label (10), characterized in that the detection member consists by an antenna (100) of generally rectangular shape located: in a plane parallel to the plane of the conveyor (20) and oriented so that its axis of symmetry (105) makes an angle (α) with the axis of movement ( 25) of the conveyor
(20) .(20).
7. Système d'identification selon l'une des revendications 5 ou 6, caractérisé en ce que l'angle7. Identification system according to one of claims 5 or 6, characterized in that the angle
(α) entre l'axe de symétrie (105) de l'antenne (100, 110) et l'axe de déplacement (25) du convoyeur (20) est compris entre 5° et 40°.(α) between the axis of symmetry (105) of the antenna (100, 110) and the axis of movement (25) of the conveyor (20) is between 5 ° and 40 °.
8. Système d'identification selon l'une quelconque des revendications précédentes, caractérisé en ce que les étiquettes électroniques (10) sont situées αans un plan quelconque par rapport au plan du convoyeur (20) .8. Identification system according to any one of the preceding claims, characterized in that the electronic labels (10) are located αans any plane relative to the plane of the conveyor (20).
9. Système d'identification selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'antenne (100, 110) est située au dessus du plan du convoyeur (20) .9. Identification system according to any one of claims 1 to 8, characterized in that the antenna (100, 110) is located above the plane of the conveyor (20).
10. Système d'identification selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'antenne (100, 110) est située en dessous du plan du convoyeur (20) .10. Identification system according to any one of claims 1 to 8, characterized in that the antenna (100, 110) is located below the plane of the conveyor (20).
11. Système d'identification selon l'une des revendications 9 ou 10, caractérisé en ce que l'antenne (100, 110) est située à une distance inférieure ou égale à 40 cm du plan du convoyeur (20) .11. Identification system according to one of claims 9 or 10, characterized in that the antenna (100, 110) is located at a distance less than or equal to 40 cm from the plane of the conveyor (20).
12. Système d'identification selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'antenne (100) est intégrée au plan du convoyeur (20) .12. Identification system according to any one of claims 1 to 8, characterized in that the antenna (100) is integrated into the plane of the conveyor (20).
13. Système d'identification selon l'une quelconque des revendications précédentes, caractérisé en ce que l'antenne (100, 110) couvre toute la largeur du convoyeur (20) . 13. Identification system according to any one of the preceding claims, characterized in that the antenna (100, 110) covers the entire width of the conveyor (20).
PCT/FR2000/002139 1999-07-28 2000-07-26 Method for identifying objects on a moving conveyor WO2001008080A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/09819 1999-07-28
FR9909819A FR2797123A1 (en) 1999-07-28 1999-07-28 OBJECT IDENTIFICATION SYSTEM ON A MOVING CONVEYOR

Publications (2)

Publication Number Publication Date
WO2001008080A2 true WO2001008080A2 (en) 2001-02-01
WO2001008080A3 WO2001008080A3 (en) 2001-08-16

Family

ID=9548637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002139 WO2001008080A2 (en) 1999-07-28 2000-07-26 Method for identifying objects on a moving conveyor

Country Status (2)

Country Link
FR (1) FR2797123A1 (en)
WO (1) WO2001008080A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074873A1 (en) * 2003-02-18 2004-09-02 Tagsys Sa System for minimizing coupling nulls within an electromagnetic field
WO2004102731A2 (en) * 2003-05-12 2004-11-25 Gaming Partners International Read and/or write station for electronic gaming chips

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956751B2 (en) * 2006-08-23 2011-06-07 Tagsys Sas System for minimizing coupling nulls

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186483A2 (en) * 1984-12-21 1986-07-02 Senelco Limited Transponder systems
WO1991010206A1 (en) * 1989-12-20 1991-07-11 Cryptag Limited Transmission system
EP0496609A1 (en) * 1991-01-23 1992-07-29 Texas Instruments Holland B.V. Interrogating station for objects to be identified
EP0645840A1 (en) * 1993-09-24 1995-03-29 N.V. Nederlandsche Apparatenfabriek NEDAP Antenna configuration of an electromagnetic detection system and an electromagnetic detection system comprising such antenna configuration
WO1995014938A1 (en) * 1993-11-26 1995-06-01 Magellan Technology Pty. Ltd. Location apparatus and method
WO1995028748A1 (en) * 1994-04-18 1995-10-26 Finlayson, Dorothy, Elizabeth Antenna arrangement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186483A2 (en) * 1984-12-21 1986-07-02 Senelco Limited Transponder systems
WO1991010206A1 (en) * 1989-12-20 1991-07-11 Cryptag Limited Transmission system
EP0496609A1 (en) * 1991-01-23 1992-07-29 Texas Instruments Holland B.V. Interrogating station for objects to be identified
EP0645840A1 (en) * 1993-09-24 1995-03-29 N.V. Nederlandsche Apparatenfabriek NEDAP Antenna configuration of an electromagnetic detection system and an electromagnetic detection system comprising such antenna configuration
WO1995014938A1 (en) * 1993-11-26 1995-06-01 Magellan Technology Pty. Ltd. Location apparatus and method
WO1995028748A1 (en) * 1994-04-18 1995-10-26 Finlayson, Dorothy, Elizabeth Antenna arrangement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074873A1 (en) * 2003-02-18 2004-09-02 Tagsys Sa System for minimizing coupling nulls within an electromagnetic field
WO2004102731A2 (en) * 2003-05-12 2004-11-25 Gaming Partners International Read and/or write station for electronic gaming chips
WO2004102731A3 (en) * 2003-05-12 2005-01-13 Gaming Partners Int Read and/or write station for electronic gaming chips
AU2004239882B2 (en) * 2003-05-12 2009-12-10 Gaming Partners International Read and/or write station for electronic gaming chips

Also Published As

Publication number Publication date
FR2797123A1 (en) 2001-02-02
WO2001008080A3 (en) 2001-08-16

Similar Documents

Publication Publication Date Title
EP2027658B1 (en) Device with no radiofrequency contact comprising several antennas and associated antenna selection circuit
EP1828955B1 (en) Antenna arrangement
EP2030050B1 (en) Detection system suitable for identifying and tracking buried pipes or others bodies buried in the ground or embedded in civil engineering works
EP0022390B1 (en) Method of marking and identifying objects coded by means of electric conducting elements
BE1005991A3 (en) Device and method for detection and protection.
FR2512557A1 (en) ANTI-THEFT MARKER OR LABEL AND SURVEILLANCE DEVICE HAVING THE SAME
FR2512558A1 (en) ELECTRICAL MONITORING APPARATUS WITH MOBILE ANTENNA ELEMENTS
FR2926929A1 (en) PRINTED ANTENNA HAVING A BI-BEAM DIAGRAM
FR2802710A1 (en) RADIO FREQUENCY ANTENNA FOR DEVICE FOR INTERROGATION OF OBJECTS CARRYING A RADIO FREQUENCY ANTENNA ASSOCIATED WITH AN ELECTRICAL CIRCUIT
WO2013160611A1 (en) Radio-frequency identification device
CA2139702A1 (en) System for identifying objects without contact, particularly metallic objects
FR2459537A1 (en) ELECTROSTATIC SHIELD AND ARMORED DRIVER ELEMENT
WO2001008080A2 (en) Method for identifying objects on a moving conveyor
FR2864354A1 (en) Antenna for radio frequency identification system, has central loop creating magnetic field perpendicular to antenna, and coplanar adjacent loops that create magnetic field pattern in plane parallel to antenna plane
EP2257908A2 (en) Device and system for detecting the passage of objects, persons or animals with an rfid tag according to their passing order, and application in luggage detection
EP1071927B1 (en) Device for incremental measurement of position
EP1323128A1 (en) Contact-free electronic label for product with conductive surface
EP2715299B1 (en) Strain sensor
EP1759327B1 (en) Contactless, synchronous phase demodulation method, and associated reader
EP1584062A1 (en) Detector, system for the identification of articles and method for the production of said detector
FR2898999A1 (en) METHOD FOR MANUFACTURING AN RFID ELECTRONIC LABEL
FR2836581A1 (en) Detection of a transponder label signal, especially for use in shops, etc., using a detection panel with antennae whose operating frequencies are continuously modulated to enable detection of a wider frequency range
Beuster et al. UHF RFID Tag Performance Measurements for SLCs Applications Using DIY-Positioners
EP4293569A1 (en) Inlay for an electronic document, method for producing an electronic document comprising such an inlay, and resulting electronic document
FR2983325A1 (en) Method for cutting data carrier card e.g. subscriber identity module, for mobile phone, involves moving cutting surface in direction perpendicular to planar structure, and bringing cutting surface in contact with arcuate structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)