WO2001009944A1 - Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions - Google Patents

Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions Download PDF

Info

Publication number
WO2001009944A1
WO2001009944A1 PCT/FR2000/002065 FR0002065W WO0109944A1 WO 2001009944 A1 WO2001009944 A1 WO 2001009944A1 FR 0002065 W FR0002065 W FR 0002065W WO 0109944 A1 WO0109944 A1 WO 0109944A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductive
front face
rear face
cavities
Prior art date
Application number
PCT/FR2000/002065
Other languages
English (en)
Inventor
Philippe Robert
Original Assignee
Thales Avionics S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics S.A. filed Critical Thales Avionics S.A.
Priority to EP00953255A priority Critical patent/EP1210733A1/fr
Priority to US10/030,157 priority patent/US6756304B1/en
Publication of WO2001009944A1 publication Critical patent/WO2001009944A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1338Chemical vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/045Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by making a conductive layer having a relief pattern, followed by abrading of the raised portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4076Through-connections; Vertical interconnect access [VIA] connections by thin-film techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4608Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated comprising an electrically conductive base or core

Definitions

  • the invention relates to a method of manufacturing through conductive connections between the front face and the rear face of a substrate as well as a substrate equipped with such conductive connections.
  • the invention applies in particular to substrates intended to receive a micro-electronic structure, such as a sensor, a magnetic head, a micro-actuator, or intended to receive a microelectronic circuit.
  • a micro-electronic structure such as a sensor, a magnetic head, a micro-actuator, or intended to receive a microelectronic circuit.
  • the substrate can be electrically conductive (for example in silicon, in polysilicon) or insulating (for example in ceramic).
  • Through conductive connections provide discrete electrical contacts between the front face and the rear face of a semiconductor, insulating or conductive substrate.
  • the technique commonly used to make these conductive connections consists in drilling the substrate right through (for example by laser shooting), in electrically isolating the hole (in the case of a semiconductor or conductive substrate) and in filling the hole with a conductive material.
  • the filling of the holes must be total to allow an easy electrical contact resumption, to continue the technological steps concerning the front and rear faces after the manufacture of the conductive connections and to allow an electrical contact resumption after a possible thinning of the substrate at the end of the process.
  • the filling is generally done with a conductive paste injected under pressure (method used to make the microelectronic packages). Although effective, this technique is quite "violent” and generates defects on the surfaces of the substrate (splinters, roughness, cracks, stresses ). This technique can even lead to a loss of insulation in the case of semiconductor substrates.
  • the paste is composed of metallic particles mixed with a solution based on polymers and solvents. This solution, which serves as a binder, must be eliminated after filling. This elimination produces a non-negligible withdrawal of the conductive material which can be the source of holes responsible for loss of conduction.
  • the paste can also be a source of pollution, the polymers being difficult to remove.
  • Other techniques have been considered, in particular those described in the document “Electrical Interconnections Through Semiconductor Wafers” by TRAnthony published in the journal Journal Application of Physic 52 (8) of August 1981. These are:
  • the subject of the invention is a method of manufacturing through conductive connections between the front face and the rear face of a substrate.
  • the process consists of:
  • cavities having a determined depth and section to delimit studs of determined section intended to ensure electrical conduction between the two faces and,
  • the subject of the invention is also a substrate equipped with conductive through connections between its front face and its rear face.
  • the conductive connections consist of studs delimited by the digging cavities in the rear face of the substrate. These cavities are filled with a dielectric material.
  • the method consists in making the conductive through connections by delimiting in the substrate (semiconductor, insulator or conductor) studs which will serve as conductive passages between the rear face and the front face of the substrate.
  • the delimitation is carried out by digging cavities.
  • the cavities are filled with a dielectric material to ensure the mechanical strength and the electrical insulation of the pads.
  • an insulator as a material for filling hollow cavities, has the advantage of offering a coefficient of thermal expansion close to that of the substrates commonly used in microelectronics.
  • the invention also has the advantage that it allows:
  • the substrate can be insulating (for example ceramic) or weakly conductive (for example a lightly doped semiconductor). In these cases a metallic deposit is made or can be made on the pads before filling the cavities in order to ensure the electrical conductivity of the pads.
  • the thinning of the substrate intended to cut the short-circuits after filling can be replaced by an etching of the silicon and oxide layers on the side of the front face to make the studs through.
  • a substrate, equipped with through conductive connections obtained by a method according to the invention, can intervene to delimit an enclosure.
  • the substrate can make it possible to seal the enclosure so that the atmosphere in the enclosure is perfectly known with, in particular, a pressure which can be used as a reference pressure.
  • the tightness of the enclosure is in no way affected by the through conductive connections formed by the studs.
  • the through conductive connections obtained by a method according to the invention leave the front face of the substrate perfectly flat and, on the other hand, the dielectric material fills the cavity in a completely hermetic manner.
  • the possibility of being able to perform a sealing plays a vital role, in particular for the manufacture of micro-sensors.
  • FIG. 1 a substrate at the end of a first step of the method
  • FIG. 2 a magnifying glass on a stud
  • FIG. 3 a substrate at the end of a second step of the method
  • FIG. 4 a substrate at the end of a third step of the method
  • FIG. 5 a substrate at the end of a fourth step of the method
  • FIG. 6 a substrate at the end of a fifth step of the method
  • FIG. 7 a substrate at the end of a sixth step in the method
  • FIG. 8 a substrate at the end of a seventh step of the method
  • FIG. 1 represents a substrate 1 having a front face 2 and a rear face 3.
  • the substrate 1 is commonly made of silicon, but it can be of another nature, ceramic for example.
  • the method according to the invention applies equally to a weakly conductive substrate (a semiconductor such as optionally doped silicon), to an insulating substrate (ceramic) or else to a conductive substrate.
  • the first step of the method consists in delimiting studs 4 in the substrate 1. These studs 4 are intended to provide an electrical connection through the substrate 1.
  • the studs 4 are advantageously formed in the substrate 1 itself.
  • the delimitation of a stud 4 is carried out by digging a cavity 5 in the rear face 3 of the substrate 1.
  • the cavity 5 has a circular section in the shape of a crown. This crown has a width l d and a diameter 2 x (l p + l d ) with a solid part of diameter 2 xl p which constitutes the stud.
  • the cavity 5 has a depth Pd less than the thickness e of the substrate 1.
  • the section of the cavity 5 may not be circular, but square, rectangular, etc. It is the same for the section of the pad 4 ; the section of the stud may be of a shape different from that of the cavity.
  • the digging of a cavity 5 is obtained by known techniques.
  • One of the known techniques consists, using a mask, for example of resin or oxide, of carrying out an anisotropic dry etching.
  • Another known technique consists, using a mask, in performing a chemical etching.
  • the depth P of the cavity 5 is of the order of 300 ⁇ m.
  • the digging is generally carried out by mechanical machining of the substrate.
  • Figure 2 is a magnifying glass on a pad.
  • the stud 4 of diameter 2 xl p , is delimited by the cavity 5 in the form of a cylindrical crown of width l d .
  • FIG. 3 illustrates the second step of the process.
  • This second step is optional, it is necessary when the substrate 1 is not sufficiently conductive, for example for a ceramic substrate.
  • This step consists in depositing a thin conductive layer 6 which has the function of increasing the conductivity of the pad. Depending on the technique used for the deposition, the layer 6 is deposited only on the rear face or else simultaneously on the two faces.
  • the technique used must allow deposition over the entire height P d of the stud.
  • the surface of the rear face, and possibly of the front face, is completely covered with a thin conductive layer; the surface of the rear face comprising the surface of the pads 4 to the bottom of the cavities 5.
  • a chemical vapor deposition technique for example of tungsten (W), makes it possible to obtain a deposit of a conductive layer 6 in accordance to the description above.
  • a such a technique is known by the acronyms CVD, abbreviation of the English terms Chemical Vapor Deposition.
  • Figure 4 illustrates the third step of the process.
  • the cavities 5 are filled with a determined material 7.
  • the material 7 must be insulating or not very conductive to isolate the pad from the rest of the substrate 1 when the latter is conductive.
  • the deposition technique typically consists of a deposition by fusion.
  • the method makes it possible to use materials having a low coefficient of thermal expansion.
  • the material can advantageously have a coefficient of thermal expansion very close to that of silicon, in the case of a silicon substrate, while having a melting temperature lower than that of silicon.
  • the low coefficient of thermal expansion makes it possible to avoid the difficult problems linked to the difference in coefficient of thermal expansion between the filling material and the substrate; problems faced by some known connection techniques.
  • the material retained can be glass, deposited by fusion.
  • the material 7 provides, in addition to an insulation function, necessary when the substrate is conductive, a function of holding the stud 4.
  • the material 7 secures the stud 4 over its height with the substrate 1.
  • the material 7 can, in addition, participate in the delimitation of a sealed enclosure.
  • the deposited material can cover the entire rear face as illustrated in FIG. 4.
  • FIG. 5 illustrates the fourth step of the process. This step allows you to discover the substrate by removing unwanted surface layers.
  • the dielectric 7 projects beyond the cavities 5, it must be removed by thinning the rear face 3 of the substrate 1. Thinning can consist of running-in, polishing, etching or a combination of these different techniques.
  • Lapping consists of an abrasion which has the disadvantage of leaving a surface having a scratched surface condition.
  • the abrasion is followed by polishing to obtain a smooth surface condition.
  • a polishing technique is commonly known by the acronyms CMP, an abbreviation of the English terms Chemical Mechanical Planarization. This technique has a double effect, mechanical and chemical, which makes it possible to obtain a smooth surface. Polishing is particularly important when there has not been the second step. That is to say when there has been no deposition of a conductive layer.
  • Etching can consist of dry or wet etching. Dry etching uses a plasma, wet etching uses a chemical bath.
  • the thinning can allow the conductive layer (deposited during the second step) to be removed from the rear face 3 and from the front face 2 if the conductive layer is present on the latter.
  • the removal of the conductive layer can be carried out independently or in addition by a specific known technique. For example, by dry etching or wet etching. Dry etching can be of the RIE type, an abbreviation of the Anglo-Saxon terms Reactive Ion Etching.
  • the substrate comprises a set of studs 4.
  • This set can comprise a single stud 4.
  • the maximum density of studs that can be delimited in a substrate of given size depends, in particular, on the performance of the technique of engraving used in the first step.
  • the cavities 5, filled with a dielectric material 7, provide the mechanical strength and the electrical insulation of the studs 4.
  • the material 7 can, moreover, participate in the delimitation of a sealed enclosure.
  • the use of a dielectric, as a material for filling hollow cavities has the advantage of offering a coefficient of thermal expansion close to that of the substrates commonly used in microelectronics.
  • the method makes it possible to solve the problems associated with the difference in coefficient of thermal expansion between the substrate and the filling material.
  • the process also eliminates the problems of shrinkage and pollution.
  • the fifth step, FIG. 6, makes it possible to eliminate the short circuit between the stud 4 and the front face 2 of the substrate 1.
  • the elimination is carried out by thinning the front face according to a known technique.
  • a first technique can consist in lapping by abrasion the front face 2 of the substrate 1
  • a second technique can consist in a dry etching or a wet etching
  • a third technique can consist in a combination of lapping, etching and polishing.
  • the pads 4, possibly metallized 6, are conductive elements which make it possible to establish electrical through connections between the two faces 2, 3 of the substrate 1.
  • the front face 2 of the substrate 1 is generally intended for the implantation of an electronic function or of a microstructure, a microsensor for example.
  • the pads 4 allow, for example, to supply the microsensor through the rear face 3 while ensuring an electrical connection between the rear face 3 and contact points within the circuit of the microsensor.
  • the pads 4 provide contact points which do not affect the flatness of the surface of the front face 2 of the substrate 1.
  • a substrate 1, equipped with pads 4 obtained according to a method according to the invention, can be used to delimit a speaker.
  • the substrate can make it possible to seal the enclosure so that the atmosphere in the enclosure is perfectly known with, in particular, a pressure which can be used as a reference pressure.
  • the tightness of the enclosure is in no way affected by the through conductive connections formed by the studs. Indeed, at the end of the fifth step, the front face 2 of the substrate 1 is perfectly flat.
  • the sixth step, FIG. 7, consists in depositing a thin insulating layer 8 on the two faces 2, 3 of the substrate 1 and in opening contact zones 9 opposite the pads 4.
  • the deposition of a thin insulating layer 8 is carried out by a known technique, for example of the plasma type such as the technique known by the acronym PECVD, abbreviation of the English terms Plasma Enhance Chemical Vapor Deposition.
  • the contact areas 9 can be opened by masking and etching the insulating layer 8.
  • the masking can be carried out by photolithography.
  • the seventh step, FIG. 8, consists of materializing the points of contact 10 facing the pads 4. Materialization is carried out by known techniques which consist in depositing a thin conductive layer 11 on the two faces 2, 3 of the substrate 1 and, to cut the points 10, for example by masking and etching the conductive layer 1 1.
  • the masking can be carried out by photolithography.
  • FIGS 9 to 14 illustrate an implementation of the method with a substrate consisting of a stack of layers.
  • This substrate 1 can be of the SOI type, an abbreviation of the Anglo-Saxon terms Silicium On Insulator.
  • the first layer 12 of the stack is composed of silicon.
  • the free face of the first layer corresponds to the rear face 3 of the substrate.
  • the second layer 13 of the stack is an insulating layer. It consists of a silicon oxide.
  • the third layer 14 of the stack is composed of silicon. Its free face corresponds to the front face 2 of the substrate.
  • a SOI substrate for example, thickness: 1 st layer: 500 microns
  • the third layer 14 is generally reserved for the manufacture of electronic functions or for the production of microstructures, for example a microsensor, a microactuator, etc., ...
  • Figure 9 illustrates the first step of the process. Following this implementation, the cavities 5 are hollowed out until the insulating layer 13 is discovered.
  • the second step does not exist.
  • Figure 10 illustrates the third step of the process.
  • the type of substrate does not modify the implementation of the third step; this step takes place as described with reference to FIG. 4.
  • Figure 11 illustrates the fourth step of the process.
  • the type of substrate does not modify the implementation of the fourth step; this step takes place according to the description given with regard to FIG. 5.
  • FIG. 12 illustrates the sixth step of the process. Since the studs 4 are not visible on the front face 2, the deposition of the insulating thin layer 8 is carried out only on the rear face 3. The deposition takes place as described with reference to FIG. 7 with for limitation a deposit on the rear face 3.
  • FIG. 13 illustrates the seventh step of the process. The implementation is different from that described with reference to FIG. 8 insofar as the contact points 10 are present only on the rear face 3.
  • Figure 14 additional steps are necessary. They consist of: - Etching the third layer 14 and the second layer 13 from the front face 2 using a mask. The etching is carried out up to the pad 4, according to a technique identical to that described with regard to FIG. 1, to discover the pad and only part of the dielectric. to materialize the contact points 10 on the front face 2 using a technique close to that described with regard to FIG. 13. For the contact points 10 on the front face, the etching section of the insulating layer 8 is less than the etching section of the third and second layers of the substrate.

Abstract

L'invention concerne les procédés de fabrication de connexions conductrices traversantes dans un substrat et les substrats équipés de telles connexions. Le procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1) consiste: à creuser dans le substrat (1), du côté de la face arrière (3), des cavités (5) ayant une profondeur et une section déterminées pour délimiter des plots (4) de section déterminée destinés à assurer la conduction électrique entre les deux faces (2, 3) et à combler les cavités (5) avec un matériau diélectrique (7). Le substrat est équipé de connexions conductrices traversantes entre sa face avant (2) et sa face arrière (3). Les connexions conductrices sont assurées par des plots (4) délimités par des cavités (5) comblées avec un matériau diélectrique (7). Application, en particulier, à des substrats utilisés pour la fabrication de micro-capteurs.

Description

Procédé de fabrication de connexions traversantes dans un substrat et substrat équipé de telles connexions
L'invention concerne un procédé de fabrication de connexions conductrices traversantes entre la face avant et la face arrière d'un substrat ainsi qu'un substrat équipé de telles connexions conductrices.
L'invention s'applique notamment à des substrats destinés à accueillir une structure micro-électronique, telle qu'un capteur, une tête magnétique, un micro-actionneur, ou destinés à accueillir un circuit microélectronique.
Le substrat peut être électriquement conducteur (par exemple en silicium, en polysilicium) ou isolant (par exemple en céramique).
Les connexions conductrices traversantes permettent d'assurer des contacts électriques discrets entre la face avant et la face arrière d'un substrat semiconducteur, isolant ou conducteur.
L'utilisation de connexions conductrices traversantes permet :
- de densifier le nombre de contacts électriques,
- d'assurer des contacts électriques sur un empilement de substrats,
- d'alimenter les composants par la face arrière du substrat lorsque le câblage ne peut pas être fait en face avant.
La technique couramment utilisée pour fabriquer ces connexions conductrices consiste à percer le substrat de part en part (par exemple par tir laser), à isoler électriquement le trou (dans le cas d'un substrat semiconducteur ou conducteur) et à remplir le trou par un matériau conducteur.
Dans la plupart des applications, le remplissage des trous doit être total pour permettre une reprise de contact électrique aisée, pour continuer les étapes technologiques concernant les faces avant et arrière après la fabrication des connexions conductrices et pour permettre une reprise de contact électrique après un éventuel amincissement du substrat en fin de procédé.
Le remplissage se fait généralement par une pâte conductrice injectée sous pression (méthode utilisée pour réaliser les boîtiers microélectroniques). Bien qu'efficace, cette technique est assez « violente » et génère des défauts sur les faces du substrat (éclats, rugosité, fissures, contraintes...). Cette technique peut même entraîner une perte d'isolation dans le cas de substrats semiconducteurs. Par ailleurs, la pâte est composée de particules métalliques mélangées à une solution à base de polymères et de solvants. Cette solution, qui sert de liant, doit être éliminée après remplissage. Cette élimination produit un retrait non négligeable du matériau conducteur qui peut être à l'origine de trous, responsables de perte de conduction. La pâte peut également être à l'origine de pollution, les polymères s'éliminant difficilement. D'autres techniques ont été envisagées, en particulier celles décrites dans le document « Electrical Interconnections Through Semiconductor Wafers » de T.R.Anthony publié dans la revue Journal Application of Physic 52(8) d'août 1981. Il s'agit :
• de l'utilisation de procédés d'électrolyse qui conduisent généralement à un remplissage superficiel du trou dû à des problèmes de mouillage et à des effets de bord ou,
• du remplissage par un métal en fusion. Cette technique pose des problèmes de dilatation thermique. Les métaux à bas point de fusion (inférieur à la température de ramollissement du substrat) présentent un fort coefficient de dilatation thermique, souvent bien supérieur au substrat. Il en résulte des difficultés d'ordre mécanique (contraintes) ou technologique (risque de fissuration des couches déposées).
Un des buts de l'invention est de pallier les inconvénients précités. A cet effet, l'invention a pour objet un procédé de fabrication de connexions conductrices traversantes entre la face avant et la face arrière d'un substrat. Le procédé consiste :
- à creuser dans le substrat, du côté de la face arrière, des cavités ayant une profondeur et une section déterminées pour délimiter des plots de section déterminée destinés à assurer la conduction électrique entre les deux faces et,
- à combler les cavités avec un matériau diélectrique. L'invention a également pour objet un substrat équipé de connexions conductrices traversantes entre sa face avant et sa face arrière. Les connexions conductrices sont constituées par des plots délimités par le creusement de cavités, dans la face arrière du substrat. Ces cavités sont comblées par un matériau diélectrique.
Le procédé consiste à réaliser les connexions conductrices traversantes en délimitant dans le substrat (semi-conducteur, isolant ou conducteur) des plots qui vont servir de passages conducteurs entre la face arrière et la face avant du substrat. La délimitation est effectuée en creusant des cavités. Les cavités sont comblées par un matériau diélectrique pour assurer la tenue mécanique et l'isolation électrique des plots.
L'usage d'un isolant, comme matériau de remplissage des cavités creusées, présente l'avantage d'offrir un coefficient de dilatation thermique proche de celui des substrats couramment utilisés en micro-électronique.
En outre, après remplissage, un amincissement du substrat sur les deux faces permet d'enlever les courts-circuits dus au substrat et les surplus du matériau de remplissage. L'invention a en outre pour avantage qu'elle permet :
- une reprise de contact électrique simple, même après amincissement du substrat, et
- une très bonne isolation électrique des passages conducteurs. Le substrat peut être isolant (par exemple en céramique) ou faiblement conducteur (par exemple un semi-conducteur faiblement dopé). Dans ces cas un dépôt métallique est fait ou peut être fait sur les plots avant remplissage des cavités afin d'assurer la conductivité électrique des plots.
Dans le cas de l'utilisation d'un substrat silicium de type silicium sur isolant plus connu par le sigle SOI, abréviation des termes anglo-saxons Silicon on Insulator, l'amincissement du substrat destiné à couper les courts- circuits après remplissage peut être remplacée par une gravure des couches de silicium et d'oxyde du côté de la face avant pour rendre les plots débouchants.
Un substrat, équipé de connexions conductrices traversantes obtenues par un procédé selon l'invention, peut intervenir pour délimiter une enceinte. Le substrat peut permettre d'effectuer un scellement de l'enceinte de manière à ce que l'atmosphère dans l'enceinte soit parfaitement connue avec, en particulier, une pression pouvant être utilisée comme pression de référence. L'étanchéité de l'enceinte n'est en rien affectée par les connexions conductrices traversantes constituées par les plots. En effet, d'une part, les connexions conductrices traversantes obtenues par un procédé selon l'invention laissent la face avant du substrat parfaitement plane et, d'autre part, le matériau diélectrique comble la cavité de manière totalement hermétique. La possibilité de pouvoir effectuer un scellement joue un rôle primordial, en particulier pour la fabrication de micro-capteurs.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit. La description est faite en regard des figures annexées qui représentent :
- la figure 1 , un substrat à l'issue d'une première étape du procédé,
- la figure 2, une loupe sur un plot,
- la figure 3, un substrat à l'issue d'une deuxième étape du procédé,
- la figure 4, un substrat à l'issue d'une troisième étape du procédé,
- la figure 5, un substrat à l'issue d'une quatrième étape du procédé,
- la figure 6, un substrat à l'issue d'une cinquième étape du procédé, - la figure 7, un substrat à l'issue d'une sixième étape du procédé,
- la figure 8, un substrat à l'issue d'une septième étape du procédé,
- les figures 9 à 14, les étapes du procédé mis en œuvre avec un substrat constitué d'un empilement de couches. La figure 1 représente un substrat 1 ayant une face avant 2 et une face arrière 3. Le substrat 1 est couramment en silicium, mais il peut être d'une autre nature, en céramique par exemple. Le procédé selon l'invention s'applique aussi bien à un substrat faiblement conducteur (un semiconducteur comme le silicium éventuellement dopé), qu'à un substrat isolant (céramique) ou bien à un substrat conducteur.
La première étape du procédé consiste à délimiter des plots 4 dans le substrat 1. Ces plots 4 sont destinés à assurer une connexion électrique à travers le substrat 1. Les plots 4 sont avantageusement formés dans le substrat 1 lui-même. La délimitation d'un plot 4 est effectuée en creusant une cavité 5 dans la face arrière 3 du substrat 1. Suivant l'exemple de la figure 1 , la cavité 5 a une section circulaire en forme de couronne. Cette couronne a une largeur ld et un diamètre 2 x (lp + ld) avec une partie pleine de diamètre 2 x lp qui constitue le plot. La cavité 5 a une profondeur Pd inférieure à l'épaisseur e du substrat 1. La section de la cavité 5 peut ne pas être circulaire, mais carré, rectangulaire, etc.... Il en est de même pour la section du plot 4 ; la section du plot pouvant être de forme différente de celle de la cavité.
Le creusement d'une cavité 5 est obtenu par des techniques connues. Une des techniques connues consiste, à l'aide d'un masque par exemple en résine ou en oxyde, à effectuer une gravure sèche anisotrope. Une autre technique connue consiste, à l'aide d'un masque, à effectuer une gravure chimique. Pour un substrat en silicium d'épaisseur e = 525 μm, la profondeur P de la cavité 5 est de l'ordre de 300 μm. Pour un substrat en céramique le creusement est généralement effectué par un usinage mécanique du substrat.
La figure 2 est une loupe sur un plot. Le plot 4, de diamètre 2 x lp, est délimité par la cavité 5 en forme de couronne cylindrique de largeur ld. Par exemple, le plot 4 a un diamètre 2 x lp = 50 μm et la cavité 5 une largeur ld = 50 μm.
La figure 3 illustre la deuxième étape du procédé. Cette deuxième étape est optionnelle, elle est nécessaire lorsque le substrat 1 n'est pas suffisamment conducteur, par exemple pour un substrat en céramique. Cette étape consiste à effectuer le dépôt d'une couche mince conductrice 6 qui a pour fonction d'augmenter la conductivité du plot. En fonction de la technique utilisée pour effectuer le dépôt, la couche 6 est déposée uniquement sur la face arrière ou bien simultanément sur les deux faces.
La technique utilisée doit permettre un dépôt sur toute la hauteur Pd du plot. Au terme de cette étape, la surface de la face arrière, et éventuellement de la face avant, est totalement recouverte d'une couche mince conductrice ; la surface de la face arrière comprenant la surface des plots 4 jusqu'au fond des cavités 5. Une technique de dépôt chimique en phase vapeur, par exemple de tungstène (W), permet d'obtenir un dépôt d'une couche conductrice 6 conformément à la description ci-dessus. Une telle technique est connue sous les sigles CVD, abréviation des termes anglo-saxons Chemical Vapor Déposition.
La figure 4 illustre la troisième étape du procédé. Les cavités 5 sont comblées par un matériau 7 déterminé. Le matériau 7 doit être isolant ou peu conducteur pour isoler le plot du reste du substrat 1 lorsque ce dernier est conducteur. La technique de dépôt consiste typiquement en un dépôt par fusion. Le procédé permet d'utiliser des matériaux ayant un faible coefficient de dilatation thermique. Le matériau peut avantageusement avoir un coefficient de dilatation thermique très proche de celui du silicium, dans le cas d'un substrat en silicium, tout en ayant une température de fusion inférieure à celle du silicium. Le faible coefficient de dilatation thermique permet d'éviter les problèmes ardus liés à la différence de coefficient de dilatation thermique entre le matériau de remplissage et le substrat ; problèmes auxquels sont confrontées certaines techniques de connexion connues.
Le matériau retenu peut être du verre, déposé par fusion. Le matériau 7 assure, en plus d'une fonction d'isolation, nécessaire lorsque le substrat est conducteur, une fonction de maintien du plot 4. Le matériau 7 solidarise le plot 4 sur sa hauteur avec le substrat 1. Le matériau 7 peut, en outre, participer à la délimitation d'une enceinte étanche. En fonction des techniques de dépôt utilisées, le matériau déposé peut recouvrir la totalité de la face arrière comme l'illustre la figure 4. La figure 5 illustre la quatrième étape du procédé. Cette étape permet de découvrir le substrat en retirant les couches indésirables de surface. Lorsque le diélectrique 7 déborde des cavités 5, il faut le retirer en amincissant la face arrière 3 du substrat 1. L'amincissement peut consister en un rodage, un polissage, une gravure ou une combinaison de ces différentes techniques. Le rodage consiste en une abrasion qui a pour inconvénient de laisser une surface ayant un état de surface rayé. Pour remédier à cet inconvénient, l'abrasion est suivie d'un polissage pour obtenir un état de surface lisse. Une technique de polissage est communément connue sous les sigles CMP, abréviation des termes anglo-saxons Chemical Mechanical Planarisation. Cette technique a un double effet, mécanique et chimique, qui permet d'obtenir une surface lisse. Le polissage est particulièrement important lorsqu'il n'y a pas eu la deuxième étape. C'est-à-dire lorsqu'il n'y a pas eu de dépôt d'une couche conductrice. La gravure peut consister en une gravure sèche ou humide. Une gravure sèche met en œuvre un plasma, une gravure humide met en œuvre un bain chimique. L'amincissement, ci-dessus décrit, peut permettre de retirer la couche conductrice (déposée lors de la deuxième étape), de la face arrière 3 et de la face avant 2 si la couche conductrice est présente sur cette dernière. Le retrait de la couche conductrice peut être effectué de manière indépendante ou complémentaire par une technique spécifique connue. Par exemple, par une gravure sèche ou une gravure humide. La gravure sèche peut être du type RIE, abréviation des termes anglo-saxons Reactive Ion Etching.
Au terme de la quatrième étape, le substrat comprend un ensemble de plots 4. Cet ensemble peut comprendre un seul plot 4. La densité maximale de plots pouvant être délimités dans un substrat de taille donnée dépend, en particulier, des performances de la technique de gravure utilisée lors de la première étape. Les cavités 5, comblées par un matériau diélectrique 7, assurent la tenue mécanique et l'isolation électrique des plots 4. Le matériau 7 peut, en outre, participer à la délimitation d'une enceinte étanche. L'usage d'un diélectrique, comme matériau de remplissage des cavités creusées, présente l'avantage d'offrir un coefficient de dilatation thermique proche de celui des substrats couramment utilisés en microélectronique. Le procédé permet de résoudre les problèmes liés à la différence de coefficient de dilatation thermique entre le substrat et le matériau de remplissage. Le procédé s'affranchit, en outre, des problèmes de retrait et de pollution.
La cinquième étape, figure 6, permet d'éliminer le court-circuit entre le plot 4 et la face avant 2 du substrat 1. L'élimination est effectuée par un amincissement de la face avant suivant une technique connue. Une première technique peut consister à roder par abrasion la face avant 2 du substrat 1 , une deuxième technique peut consister en une gravure sèche ou une gravure humide, une troisième technique peut consister en une combinaison de rodage, gravure et polissage. Les plots 4, éventuellement métallisés 6, sont des éléments conducteurs qui permettent d'établir des connexions électriques traversantes entre les deux faces 2, 3 du substrat 1. La face avant 2 du substrat 1 est généralement destinée à l'implantation d'une fonction électronique ou d'une microstructure, un microcapteur par exemple. Les plots 4 permettent, par exemple, d'alimenter le microcapteur par la face arrière 3 en assurant une connexion électrique entre la face arrière 3 et des points de contact au sein du circuit du microcapteur. Les plots 4 permettent de disposer de points de contact qui n'affectent pas la planéité de la surface de la face avant 2 du substrat 1. Un substrat 1 , équipé de plots 4 obtenus selon un procédé selon l'invention, peut intervenir pour délimiter une enceinte. Le substrat peut permettre d'effectuer un scellement de l'enceinte de manière à ce que l'atmosphère dans l'enceinte soit parfaitement connue avec, en particulier, une pression pouvant être utilisée comme pression de référence. L'étanchéité de l'enceinte n'est en rien affectée par les connexions conductrices traversantes constituées par les plots. En effet, à l'issue de la cinquième étape, la face avant 2 du substrat 1 est parfaitement plane.
La sixième étape, figure 7, consiste à déposer une couche mince isolante 8 sur les deux faces 2, 3 du substrat 1 et à ouvrir des zones de contact 9 en regard des plots 4. Le dépôt d'une couche mince isolante 8 est effectué par une technique connue, par exemple du type plasma comme la technique connue sous le sigle PECVD, abréviation des termes anglo- saxons Plasma Enhance Chemical Vapor Déposition.
L'ouverture des zones de contact 9 peut être effectuée par masquage et gravure de la couche isolante 8. Le masquage peut être effectué par photolithographie. La septième étape, figure 8, consiste à matérialiser les points 10 de contact en regard des plots 4. La matérialisation est effectuée par des techniques connues qui consistent à déposer une couche mince conductrice 11 sur les deux faces 2, 3 du substrat 1 et, à découper les points 10, par exemple par masquage et gravure de la couche conductrice 1 1. Le masquage peut être effectué par photolithographie.
Les figures 9 à 14 illustrent une mise en œuvre du procédé avec un substrat constitué d'un empilement de couches. Ce substrat 1 peut être de type SOI, abréviation des termes anglo-saxons Silicium On Insulator. La première couche 12 de l'empilement est composée de silicium. La face libre de la première couche correspond à la face arrière 3 du substrat. La deuxième couche 13 de l'empilement est une couche isolante. Elle est constituée d'un oxyde de silicium. La troisième couche 14 de l'empilement est composée de silicium. Sa face libre correspond à la face avant 2 du substrat. Un substrat SOI a, par exemple, pour épaisseur : 1 ère couche : 500 μm
2ème couche : 0,4 μm 3eme couche : de 0,2 μm à plusieurs μm. La troisième couche 14 est généralement réservée à la fabrication de fonctions électroniques ou à la réalisation de microstructures, par exemple un microcapteur, un microactionneur, etc., ...
La figure 9 illustre la première étape du procédé. Suivant cette mise en œuvre les cavités 5 sont creusées jusqu'à découvrir la couche isolante 13.
Lors de la mise en œuvre du procédé avec un substrat de type SOI, la deuxième étape n'existe pas.
La figure 10 illustre la troisième étape du procédé. Le type de substrat ne modifie pas la mise en œuvre de la troisième étape ; cette étape se déroule selon la description faite en regard de la figure 4.
La figure 11 illustre la quatrième étape du procédé. Le type de substrat ne modifie pas la mise en œuvre de la quatrième étape ; cette étape se déroule selon la description faite en regard de la figure 5.
Lors de la mise en œuvre du procédé avec un substrat constitué d'un empilement de couches, en particulier du type SOI, la cinquième étape n'existe pas. La figure 12 illustre la sixième étape du procédé. Etant donné que les plots 4 ne sont pas apparents sur la face avant 2, le dépôt de la couche mince isolante 8 est effectué seulement sur la face arrière 3. Le dépôt se déroule suivant la description faite en regard de la figure 7 avec pour limitation un dépôt sur la face arrière 3. La figure 13 illustre la septième étape du procédé. La mise en œuvre est différente de celle décrite en regard de la figure 8 dans la mesure où les points 10 de contacts sont présents uniquement sur la face arrière 3.
Pour obtenir un plot traversant, des étapes complémentaires sont nécessaires. Elles sont illustrées par la figure 14. Elles consistent : - à graver la troisième couche 14 et la deuxième couche 13 à partir de la face avant 2 en utilisant un masque. La gravure est effectuée jusqu'au plot 4, suivant une technique identique à celle décrite en regard de la figure 1 , pour découvrir le plot et seulement une partie du diélectrique. - à matérialiser les points 10 de contact sur la face avant 2 suivant une technique proche de celle décrite en regard de la figure 13. Pour les points 10 de contact de la face avant, la section de gravure de la couche isolante 8 est inférieure à la section de gravure des troisième et deuxième couches du substrat.

Claims

REVENDICATIONS
1 . - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ), caractérisé en ce qu'il consiste :
- à creuser dans le substrat (1 ), du côté de la face arrière (3), des cavités (5) ayant une profondeur (Pd) et une section déterminées pour délimiter des plots (4) de section déterminée destinés à assurer la conduction électrique entre les deux faces (2, 3) et,
- à combler les cavités (5) avec un matériau diélectrique (7).
2. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon la revendication 1 , caractérisé en ce que le comblement des cavités (5) consiste :
- à déposer le matériau diélectrique (7) dans les cavités (5),
- à retirer, de la surface du substrat (1 ), les débordements du dépôt du matériau diélectrique (7) en amincissant la face arrière (3) du substrat (1 ) jusqu'à découvrir les plots (4).
3. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon la revendication 1 , caractérisé en ce qu'il consiste, après délimitation des plots (4) et avant le comblement des cavités (5),
- à métalliser les plots (4) en effectuant le dépôt d'une couche conductrice (6) sur les plots.
4. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon la revendication 3, caractérisé en ce que le comblement des cavités (5) consiste :
- à déposer le matériau diélectrique (7) dans les cavités (5),
- à retirer, de la surface du substrat (1 ), les débordements du dépôt du matériau diélectrique (7) en amincissant la face arrière (3) du substrat (1 ) jusqu'à découvrir les plots (4), - à retirer la couche conductrice (6), de la surface du substrat (1 ), par un amincissement des faces (2, 3) métallisées du substrat (1 ).
5. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste :
- à amincir le substrat (1) jusqu'à découvrir le matériau diélectrique contenu dans les cavités (5) pour rendre les plots (4) débouchants sur la face avant (2) du substrat (1 ).
6. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'il consiste :
- à creuser la face avant (2) du substrat (1 ) en regard de chaque plot jusqu'à atteindre le matériau diélectrique (7) contenu dans les cavités (5) pour rendre les plots (4) débouchants sur la face avant (2) du substrat (1 ).
7. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il consiste :
- à matérialiser les points de contacts (10) en regard de chaque face débouchante de chaque plot (4) en déposant sur ces faces un matériau conducteur (11 ) isolé du substrat.
8. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon la revendication 7, caractérisé en ce que la matérialisation des points de contacts (10) consiste :
- à déposer une couche isolante (8) du côté (2, 3) des faces débouchantes des plots (4), - à ouvrir une zone de contact (9) en regard de chaque face débouchante des plots (4) par masquage et gravure de la couche isolante
(8),
- à déposer une couche conductrice (1 1 ) du côté (2, 3) des faces débouchantes des plots (4),
- à découper les points de contact (10) par masquage et gravure de la couche conductrice (1 1 ).
9. - Procédé de fabrication de connexions conductrices traversantes entre la face avant (2) et la face arrière (3) d'un substrat (1 ) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le matériau diélectrique (7) de comblement est du verre.
10. - Substrat (1 ) de silicium équipé de connexions conductrices traversantes entre sa face avant (2) et sa face arrière (3), caractérisé en ce que les connexions conductrices sont obtenues par un procédé selon l'une quelconque des revendications 1 à 5.
11. - Substrat (1 ) de silicium sur isolant dont la couche isolante (13) est disposée entre deux couches (12, 14) de silicium, le substrat (1 ) étant équipé de connexions conductrices traversantes entre sa face avant (2) et sa face arrière (3), caractérisé en ce que les connexions conductrices sont obtenues par un procédé selon la revendication 6 et en ce que le fond des cavités (5) est constitué par la couche isolante (13).
12. - Substrat (1 ) isolant équipé de connexions conductrices traversantes entre sa face avant (2) et sa face arrière (3), caractérisé en ce que les connexions conductrices sont obtenues par un procédé selon l'une quelconque des revendications 3 à 5.
PCT/FR2000/002065 1999-07-30 2000-07-18 Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions WO2001009944A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00953255A EP1210733A1 (fr) 1999-07-30 2000-07-18 Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions
US10/030,157 US6756304B1 (en) 1999-07-30 2000-07-18 Method for producing via-connections in a substrate and substrate equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/09938 1999-07-30
FR9909938A FR2797140B1 (fr) 1999-07-30 1999-07-30 Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions

Publications (1)

Publication Number Publication Date
WO2001009944A1 true WO2001009944A1 (fr) 2001-02-08

Family

ID=9548724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002065 WO2001009944A1 (fr) 1999-07-30 2000-07-18 Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions

Country Status (4)

Country Link
US (1) US6756304B1 (fr)
EP (1) EP1210733A1 (fr)
FR (1) FR2797140B1 (fr)
WO (1) WO2001009944A1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20010050A1 (it) * 2001-01-23 2002-07-23 St Microelectronics Srl Dispositivo integrato a semiconduttori includente interconnessioni adalta tensione attraversanti regioni a bassa tensione.
DE10205026C1 (de) * 2002-02-07 2003-05-28 Bosch Gmbh Robert Halbleitersubstrat mit einem elektrisch isolierten Bereich, insbesondere zur Vertikalintegration
AU2003272195A1 (en) * 2002-04-30 2004-01-06 Hrl Laboratories, Llc Quartz-based nanoresonators and method of fabricating same
FR2846792A1 (fr) * 2002-10-30 2004-05-07 Commissariat Energie Atomique Composant microelectrique radiofrequence et procede de realisation
SE526366C3 (sv) * 2003-03-21 2005-10-26 Silex Microsystems Ab Elektriska anslutningar i substrat
US8766745B1 (en) 2007-07-25 2014-07-01 Hrl Laboratories, Llc Quartz-based disk resonator gyro with ultra-thin conductive outer electrodes and method of making same
US7994877B1 (en) 2008-11-10 2011-08-09 Hrl Laboratories, Llc MEMS-based quartz hybrid filters and a method of making the same
DE102005011588A1 (de) 2005-03-14 2006-09-21 CiS Institut für Mikrosensorik gGmbH Vorrichtung, insbesondere zur Messung der Feuchte, mit korrosionsgeschützen Anschlüssen
US20070042563A1 (en) * 2005-08-19 2007-02-22 Honeywell International Inc. Single crystal based through the wafer connections technical field
US7185695B1 (en) * 2005-09-01 2007-03-06 United Technologies Corporation Investment casting pattern manufacture
JP5431918B2 (ja) * 2006-03-27 2014-03-05 コーニンクレッカ フィリップス エヌ ヴェ 半導体担体用の低抵抗貫通基板相互接続
US7555824B2 (en) 2006-08-09 2009-07-07 Hrl Laboratories, Llc Method for large scale integration of quartz-based devices
US8184974B2 (en) 2006-09-11 2012-05-22 Lumexis Corporation Fiber-to-the-seat (FTTS) fiber distribution system
EP2067167B1 (fr) * 2006-09-22 2016-04-13 Ipdia Procédé de réalisation d'un composant électronique
US7884930B2 (en) * 2007-06-14 2011-02-08 Hrl Laboratories, Llc Integrated quartz biological sensor and method
US20100020311A1 (en) * 2007-06-14 2010-01-28 Hrl Laboratories, Llc Integrated quartz biological sensor and method
DE102007034306B3 (de) 2007-07-24 2009-04-02 Austriamicrosystems Ag Halbleitersubstrat mit Durchkontaktierung und Verfahren zur Herstellung eines Halbleitersubstrates mit Durchkontaktierung
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
US8151640B1 (en) 2008-02-05 2012-04-10 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US7802356B1 (en) 2008-02-21 2010-09-28 Hrl Laboratories, Llc Method of fabricating an ultra thin quartz resonator component
RU2550537C2 (ru) 2009-08-06 2015-05-10 Люмексис Корпорейшн Последовательно-сетевая полетная развлекательная система с передачей сигнала по оптоволокну к сиденьям
US8424045B2 (en) 2009-08-14 2013-04-16 Lumexis Corporation Video display unit docking assembly for fiber-to-the-screen inflight entertainment system
US8416698B2 (en) 2009-08-20 2013-04-09 Lumexis Corporation Serial networking fiber optic inflight entertainment system network configuration
US8176607B1 (en) 2009-10-08 2012-05-15 Hrl Laboratories, Llc Method of fabricating quartz resonators
US8912711B1 (en) 2010-06-22 2014-12-16 Hrl Laboratories, Llc Thermal stress resistant resonator, and a method for fabricating same
US20140093643A1 (en) * 2012-09-28 2014-04-03 Tyco Electronics Services Gmbh Method and system of depositing a viscous material into a surface cavity
US9250074B1 (en) 2013-04-12 2016-02-02 Hrl Laboratories, Llc Resonator assembly comprising a silicon resonator and a quartz resonator
DE102013208816A1 (de) * 2013-05-14 2014-11-20 Robert Bosch Gmbh Verfahren zum Erzeugen eines Durchkontakts in einem CMOS-Substrat
US9599470B1 (en) 2013-09-11 2017-03-21 Hrl Laboratories, Llc Dielectric high Q MEMS shell gyroscope structure
US9977097B1 (en) 2014-02-21 2018-05-22 Hrl Laboratories, Llc Micro-scale piezoelectric resonating magnetometer
US9991863B1 (en) 2014-04-08 2018-06-05 Hrl Laboratories, Llc Rounded and curved integrated tethers for quartz resonators
US10308505B1 (en) 2014-08-11 2019-06-04 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite
US10031191B1 (en) 2015-01-16 2018-07-24 Hrl Laboratories, Llc Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors
US10110198B1 (en) 2015-12-17 2018-10-23 Hrl Laboratories, Llc Integrated quartz MEMS tuning fork resonator/oscillator
US10175307B1 (en) 2016-01-15 2019-01-08 Hrl Laboratories, Llc FM demodulation system for quartz MEMS magnetometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978639A (en) * 1989-01-10 1990-12-18 Avantek, Inc. Method for the simultaneous formation of via-holes and wraparound plating on semiconductor chips
EP0926726A1 (fr) * 1997-12-16 1999-06-30 STMicroelectronics S.r.l. Procédé de fabrication et dispositif électronique avec des contacts à travers le substrat pour la liaison à un tableau

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566186A (en) * 1984-06-29 1986-01-28 Tektronix, Inc. Multilayer interconnect circuitry using photoimageable dielectric
JPS63193545A (ja) * 1987-02-06 1988-08-10 Toshiba Corp 半導体集積回路の製造方法
EP0316799B1 (fr) * 1987-11-13 1994-07-27 Nissan Motor Co., Ltd. Dispositif semi-conducteur
US5056216A (en) * 1990-01-26 1991-10-15 Sri International Method of forming a plurality of solder connections
US5343071A (en) * 1993-04-28 1994-08-30 Raytheon Company Semiconductor structures having dual surface via holes
US5674785A (en) * 1995-11-27 1997-10-07 Micron Technology, Inc. Method of producing a single piece package for semiconductor die
US6013948A (en) * 1995-11-27 2000-01-11 Micron Technology, Inc. Stackable chip scale semiconductor package with mating contacts on opposed surfaces
CN1187800C (zh) 1997-04-03 2005-02-02 株式会社山武 电路板以及检测器及其制造方法
FR2770339B1 (fr) * 1997-10-27 2003-06-13 Commissariat Energie Atomique Structure munie de contacts electriques formes a travers le substrat de cette structure et procede d'obtention d'une telle structure
EP0971403A1 (fr) * 1998-07-07 2000-01-12 Interuniversitair Microelektronica Centrum Vzw Procédé de fabrication de piliers métalliques contenant du cuivre
US6475889B1 (en) * 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978639A (en) * 1989-01-10 1990-12-18 Avantek, Inc. Method for the simultaneous formation of via-holes and wraparound plating on semiconductor chips
EP0926726A1 (fr) * 1997-12-16 1999-06-30 STMicroelectronics S.r.l. Procédé de fabrication et dispositif électronique avec des contacts à travers le substrat pour la liaison à un tableau

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GULDAN A ET AL: "METHOD FOR PRODUCING VIA-CONNECTIONS IN SEMICONDUCTOR WAFERS USING A COMBINATION OF PLASMA AND CHEMICAL ETCHING", IEEE TRANSACTIONS ON ELECTRON DEVICES,US,IEEE INC. NEW YORK, vol. ED-30, no. 10, 1 October 1983 (1983-10-01), pages 1402 - 1403, XP002048887, ISSN: 0018-9383 *
See also references of EP1210733A1 *

Also Published As

Publication number Publication date
FR2797140B1 (fr) 2001-11-02
US6756304B1 (en) 2004-06-29
EP1210733A1 (fr) 2002-06-05
FR2797140A1 (fr) 2001-02-02

Similar Documents

Publication Publication Date Title
WO2001009944A1 (fr) Procede de fabrication de connexions traversantes dans un substrat et substrat equipe de telles connexions
FR2992467A1 (fr) Procede de realisation d'un composant a contact electrique traversant et composant obtenu
EP1923912B1 (fr) Procédé de fabrication d'une structure microtechnologique mixte
EP1576658B1 (fr) Procede de realisation de substrats mixtes et structure ainsi obtenue
FR2715503A1 (fr) Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation.
EP2840589B1 (fr) Procédé améliore de séparation entre une zone activé d'un substrat et sa face arrière ou une portion de sa face arrière
EP1321430A1 (fr) Circuit intégré comportant un composant auxiliaire, par example un composant passif ou un microsystème électromécanique, disposé au-dessus d'une puce électronique, et procédé de fabrication correspondant
WO2005019094A1 (fr) Structure empilée, et procédé pour la fabriquer
FR2969664A1 (fr) Procede de clivage d'un substrat
EP1027583A1 (fr) Structure munie de contacts electriques formes a travers le substrat de cette structure et procede d'obtention d'une telle structure
WO2006070167A1 (fr) Procede de report d'un circuit sur un plan de masse
EP3577683A1 (fr) Structure pour application radiofréquence
FR2990297A1 (fr) Empilement de structures semi-conductrices et procede de fabrication correspondant
FR2901635A1 (fr) Dispositif de connexion tridimensionnel dans un substrat
EP4000090B1 (fr) Procédé de collage hydrophile de substrats
FR2858461A1 (fr) Realisation d'une structure comprenant une couche protegeant contre des traitements chimiques
EP0933812B1 (fr) Electroplacage d'éléments conducteurs dans un circuit intégré
EP2843693A1 (fr) Procédé de réalisation d'un plot conducteur sur un élément conducteur
EP3776642B1 (fr) Procédé de fabrication d'un substrat donneur pour la réalisation d'une structure intégrée en trois dimensions et procédé de fabrication d'une telle structure intégrée
EP1054446B1 (fr) Procédé de mise en boítier d'une puce semiconductrice
FR2843485A1 (fr) Procede de fabrication d'un module de circuits integres et module correspondant
EP2054338B1 (fr) Protection de cavites debouchant sur une face d'un element microstructure.
FR3120736A1 (fr) Procede de fabrication d’une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire
FR3120737A1 (fr) Procede de fabrication d’une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire
FR3099848A1 (fr) Procédé de fabrication de vias traversant un substrat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10030157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000953255

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000953255

Country of ref document: EP