WO2001016967A1 - Changeable resistance - Google Patents

Changeable resistance Download PDF

Info

Publication number
WO2001016967A1
WO2001016967A1 PCT/DE2000/002072 DE0002072W WO0116967A1 WO 2001016967 A1 WO2001016967 A1 WO 2001016967A1 DE 0002072 W DE0002072 W DE 0002072W WO 0116967 A1 WO0116967 A1 WO 0116967A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
beam path
variable resistor
radiation receiver
receiver
Prior art date
Application number
PCT/DE2000/002072
Other languages
German (de)
French (fr)
Inventor
Johann Wolf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999141108 external-priority patent/DE19941108A1/en
Priority claimed from DE1999141111 external-priority patent/DE19941111A1/en
Priority claimed from DE19944025A external-priority patent/DE19944025A1/en
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2001016967A1 publication Critical patent/WO2001016967A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/168Indicators for switching condition, e.g. "on" or "off" making use of an electromagnetic wave communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/048Means for indicating condition of the switching device containing non-mechanical switch position sensor, e.g. HALL sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/165Indicators for switching condition, e.g. "on" or "off" comprising numbered dials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the invention relates to a variable resistor with two connection poles, on which a voltage can be tapped.
  • a variable resistance is usually understood to mean a so-called wire rotation or film rotation resistance, which is also referred to as a potentiometer.
  • a path change caused by a grinder or slide is transferred to a change in resistance, which can be tapped in the form of a corresponding voltage change at a tap of the resistor.
  • Such a variable resistor which is often used in the field of electrical engineering as a controller - e.g. used as a volume or tone controller, thus enables the most general form of electrical detection of a physical variable in the form of a change in path or angle.
  • a mechanically changeable resistor does not permit a force-free, contactless, and in particular a potential-separated change in resistance.
  • a non-contact and also potential-isolated resistance control is possible in principle by means of a hot or cold conductor for temperature detection or by means of a photo resistor. Its resistance value depends on the light intensity with which the photo resistor is illuminated.
  • an optocoupler also works, in which an electrical signal on the primary side is converted into an optical signal by means of a light transmitter in the form of a light-emitting diode. The optical signal is received by a light receiver in the form of a photo transistor, with which this can be converted indirectly into an electrical signal.
  • the optocoupler is usually used for the potential separation of two circuits by decoupling them and thus galvanically separating them from each other.
  • the primary-side light transmitter and the secondary-side light receiver must be supplied by means of separate power sources, so that the optocoupler and the photoresistor always represent a four-pole connection with the light source required for lighting.
  • the invention is based on the object of specifying a two-pole variable resistor in which a change in or influencing of the resistance that is as forceless and contactless as possible and in particular potential-separated is possible.
  • the resistance determined by the quotient of the voltage that can be tapped between the two connection poles and a current flowing through the series connection is dependent on the degree of influencing of the beam path caused by an external means.
  • the invention is based on the consideration that on the one hand the beam path between a radiation transmitter and a radiation receiver, in the simplest case the light path between a light transmitter and a light receiver of an optocoupler-like arrangement, can be influenced.
  • a series connection of the polar side and the secondary side of such a radiation coupler can be used to implement a two-pole connection.
  • the influencing of the beam path is then reflected independently of the supply voltage of this two-terminal pole in the event of a change in the series or series Circuit flowing current again.
  • the effective resistance of this two-pole system then results from the quotient of the voltage which can be tapped at the two connection poles and the current flowing through the series circuit.
  • the current flowing through the series connection depends on the degree of influence on the beam path.
  • the secondary-side radiation receiver is expediently shunted with a current path.
  • an ohmic resistor is connected in parallel to the radiation receiver.
  • the minimum current thus flowing as a result of the series connection via the radiation transmitter is then essentially dependent on the maximum isolation of the beam path, ie. H. from the maximum coverage of the radiation receiver.
  • the radiation receiver becomes increasingly conductive.
  • the current flowing through the radiation source or the radiation transmitter increases accordingly, so that the radiation intensity or intensity is also increased.
  • the effective resistance value is then determined from the voltage drop that can be tapped at the connection poles and the current flowing through the series connection.
  • Various external means can be used to influence the beam path between the radiation source and the radiation receiver, the type of which depends, inter alia, on the type of the radiation transmitter and the radiation receiver.
  • the radiation between the transmitter and the receiver can be wholly or partially deflected, reflected or also filtered.
  • the beam path can be carried out by partial covering, different levels of reflection or by polarization filtering. Therefore a cover element is expediently introduced into the beam path as an external means.
  • the cover element can be designed as a reflector, filter or as an opaque plate or flag. Depending on the position or location of the cover element within the beam path, this is influenced to a greater or lesser extent, and thus its degree of influence is determined.
  • the respective position of the cover element within the beam path lies between a first position which releases the beam path and a second position which interrupts the beam path.
  • variable resistor which is designed as a two-pole radiation coupler, is therefore particularly suitable for determining the position of an object, for determining the angle, for determining a temperature-dependent expansion or for level detection and regulation or control.
  • the variable resistance is also suitable for determining the reflectance or transmittance of an object or body, for determining the intensity of polarized light and much more.
  • the radiation or light transmitter and the radiation or light receiver can be arranged opposite one another in the manner of a fork light barrier or next to or one above the other in the manner of a reflection light barrier.
  • the external means or the cover element is as Designed reflector, which preferably has at least two reflection areas with different degrees of reflection.
  • variable resistor with a light-emitting diode as a radiation transmitter and a photo semiconductor or transistor as a radiation receiver
  • the latter is implemented in a Darlington circuit.
  • a Darlington circuit is described, for example, in “semi-conductor circuit technology ⁇ , U. Tietze, Ch. Schenk, 6th edition, 1983, pages 64 to 66 and pages 496 to 498.
  • This circuit additionally ensures a minimum - Current via the light transmitter and thus a minimum luminosity also achieved additional amplification. This results in a comparatively fast switching of the phototransistor even with small changes in the light intensity.
  • FIG. 1 shows a block diagram of a two-pole variable resistor with a series connection of one
  • FIG. 2 shows in a voltage / path diagram the resistance curve of the variable resistor which is dependent on the degree of influencing of a beam path
  • FIG. 3 shows the variable resistor with a series circuit comprising a light-emitting diode and a shunted photo transistor in a block diagram according to FIG 4 shows the phototransistor in a Darlington circuit
  • FIG. 5 shows the variable resistor with a transmitter-receiver arrangement based on the reflection principle. Corresponding parts are provided with the same reference symbols in all figures.
  • variable resistor 1 designed as a two-pole system in the form of a radiation coupler with a series circuit comprising a radiation transmitter or a radiation source 2 and a radiation receiver 3.
  • the radiation transmitter 2 is connected on the input side to a first connection pole Si and on the output side to the radiation receiver, which in turn is connected is connected on the output side to the second connection pole S 2 via an electrical network 4.
  • a supply voltage U v ( ⁇ ) is applied to these connection poles S 1, S 2 via an ohmic resistor R 1.
  • a current I m flowing through the series connection of the radiation transmitter 2 and the radiation transmitter 3 thus causes a tapped voltage U m at the connection poles S 1, S 2 , which is referred to below as the measurement voltage.
  • the current I m flowing via the radiation transmitter 2 and via the radiation receiver 3 which is electrically connected in series therewith and also via the electrical network 4 likewise located in this series connection is referred to below as the measurement current.
  • the current arrow indicates the technical current direction of the measuring current I m .
  • the measurement current I ra flows via the radiation transmitter 2 to the connection pole S 2 .
  • the radiation thus emitted by the radiation transmitter 2, the beam path of which is illustrated by the arrows 5, causes a flow of the measuring current I m through the radiation receiver 3 and in parallel therewith via the electrical network 4, which is designed as a complex electronic circuit, in particular also as an amplifier circuit can.
  • the magnitude of the measuring current I m is directly dependent on the degree of the influence of the beam path 5 symbolized by the arrow 6.
  • the change in the value of the resistor 1 is thus also directly dependent on the degree of influence on the beam path 5 with the external means indicated by the arrow 6.
  • the 2 shows in a voltage / path diagram the resistance curve R of the variable resistor 1 which results as a function of the degree of influence of the beam path 5.
  • the degree of influence x of the beam path 5 is plotted on the abscissa of this diagram, which represents a large number of physical variables, e.g. , B. represents a path or an angle.
  • the measuring voltage U m is plotted on the ordinate.
  • the window indicated by the arrow 7 shows the usable area of the variable resistor 1.
  • variable resistor 1 shows the variable resistor 1 with a movable cover element 9 in the form of a flag or a plate on the free end of an actuating element or an actuating axis 8.
  • the cover element 9 extends transversely to the actuation axis 8 and projects into the beam path 5 between a light-emitting diode as the radiation transmitter 2 and a phototransistor connected downstream in series as the radiation receiver 3.
  • the optical path 5 corresponds to the optical path between the light emitting diode 2 and this oppositely arrange the manner of a forked light barrier ⁇ th phototransistor 3.
  • the series circuit of the light emitting diode 2 and the phototransistor 3 is realized, for example on a circuit board or a printed circuit board 10 degrees.
  • the cover element 9 detects a changing state in the form of a rotary movement via the actuating element 8, which is reflected in a corresponding change in position of the cover element 9 within the beam path 5.
  • the change in state to be detected is thus produced by means of a cover 9. called mechanical influence on the beam path 5 transmitted.
  • This influencing of the transmission in turn results in a corresponding change in the measuring current I m and thus in a corresponding change in the measuring voltage U m , which drops across the series connection of the light-emitting diode 2 and the photoresistor 10.
  • the light-emitting diode 2 serving as a radiation source or light transmitter is led on the anode side to the voltage connection or connection pole Si, to which the positive pole U v (+) of the supply voltage is to be connected via the series resistor R1.
  • the light-emitting diode 2 is guided, on the one hand, to the collector of the phototransistor 3 serving as a radiation or light receiver and, on the other hand, to a resistor R2 connected in parallel to this on the collector-emitter side.
  • This parallel resistor R2 serving as a shunt forms an embodiment of the electrical network 4 according to FIG. 1.
  • the resistor R2 connected to the emitter of the phototransistor 3 is connected to the second voltage connection or connection pole S 2 to which the negative pole U v (-) of the front - the supply voltage must be connected.
  • the phototransistor 3 is implemented in a Darling tone circuit.
  • the resistor R2 connected in parallel with the phototransistor 3 according to the embodiment according to FIG. 3 is substituted by the additional transistor 11.
  • the measurement voltage I m is again between the connection poles S 1 in this embodiment according to FIG. S 2 tapped.
  • the beam path 5 between the light-emitting diode 2 and the photo transistor 3 is entirely or partially covered and therefore more or less interrupted.
  • the cover element 9 can be pivoted or displaced between a first position that completely releases the beam path and a second position that completely covers the beam path 5. The corresponding position of the cover element 9 within the beam path 5 determines its degree of influence.
  • the state of the variable to be recorded changes, this change in state is recorded by the actuating element 8 and transmitted to the variable resistor 1 via the cover element 9 which is moved with it.
  • a rotary movement of the actuating element 8 results in a pivoting movement of the covering element 9.
  • the covering element 9, which is designed as a movable flag or plate is influenced by the external influence due to the change in state of the size to be detected Beam path 5 between the light emitting diode 2 and the phototransistor 6 more or less pivoted in or pivoted out of this more or less.
  • the measurement voltage U m thus represents the change in the resistance 1, which in turn represents the state to be detected or its change as a function of the position of the cover element 9 within the beam path 5 and thus as a function of the degree of influence.
  • element 9 deflects light emitted from the light source, again embodied as a light emitting diode 2, depending on the position with respect to the light receiver 3, again embodied as a phototransistor, along the indicated beam path 5 in the direction of the phototransistor 3 by or more or less past it.
  • the circuit comprising the light-emitting diode 2 and the phototransistor 3, again in the form of a series circuit, is likewise implemented on a circuit board or a printed circuit board 10.
  • the state detected by the actuating element 8 and via this by the covering or reflecting element 9 or a corresponding change in state is in turn mechanically transmitted to the variable resistor 1.
  • the beam path 5 emanating from the light-emitting diode 2 is more or less reflected in the direction of the phototransistor 3.
  • the covering or reflection element 9 expediently has at least two reflection regions 9a and 9b with different degrees of reflection.
  • a shift or pivoting of the covering or reflection element 9 leads to a change in the measuring current I m via the series circuit formed by the light-emitting diode 2 and the phototransistor 3 with a corresponding change in the measuring voltage U m and S 2 which can be tapped at the connection poles S 1, S 2 a corresponding change in resistance.
  • variable resistor 1 The effective resistance of the variable resistor 1 is thus influenced without force or contact.
  • Influencing takes place in a potential-separated manner.
  • the variable resistor designed as a two-pole connection 1 for the LED 2 and therefore no additional auxiliary voltage is required for the light or radiation transmitter.

Abstract

The invention relates to a resistance (1) that is designed as a bipole and consists of a series connection made of a radiation emitter (2) and a radiation receiver (3). The resistance (R) which is determined by the quotient of a voltage (Um) that can be picked off at the connection poles (S1,2) pertaining to the series connection and a current (Im) that flows over said voltage depends upon the degree of external influence on the beam path (5) between the radiation emitter (2) and the radiation receiver (3).

Description

Beschreibungdescription
Veränderbarer WiderstandChangeable resistance
Die Erfindung bezieht sich auf einen veränderbaren Widerstand mit zwei Anschlusspolen, an denen eine Spannung abgreifbar ist.The invention relates to a variable resistor with two connection poles, on which a voltage can be tapped.
Unter einem veränderbaren Widerstand wird üblicherweise ein sogenannter Drahtdreh- oder Schichtdrehwiderstand, der auch als Potentiometer bezeichnet wird, verstanden. Dabei wird eine mittels eines Schleifers oder Schiebers hervorgerufene Wegänderung in eine Widerstandsänderung übertragen, die in Form einer entsprechenden Spannungsänderung an einer Anzapf- stelle des Widerstandes abgegriffen werden kann. Ein derartiger veränderbarer Widerstand, der häufig im Bereich der Elektrotechnik als Regler - z.B. als Lautstärke- oder Klangregler - eingesetzt wird, ermöglicht somit in allgemeinster Form die elektrische Erfassung einer physikalischen Größe in Form ei- ner Weg- oder Winkeländerung. Eine kraft- und berührungslose sowie insbesondere eine potentialgetrennte Widerstandsänderung ist mit einem derartigen mechanisch veränderbaren Widerstand jedoch nicht möglich.A variable resistance is usually understood to mean a so-called wire rotation or film rotation resistance, which is also referred to as a potentiometer. In this case, a path change caused by a grinder or slide is transferred to a change in resistance, which can be tapped in the form of a corresponding voltage change at a tap of the resistor. Such a variable resistor, which is often used in the field of electrical engineering as a controller - e.g. used as a volume or tone controller, thus enables the most general form of electrical detection of a physical variable in the form of a change in path or angle. However, such a mechanically changeable resistor does not permit a force-free, contactless, and in particular a potential-separated change in resistance.
Eine berührungslose und auch potentialgetrennte Widerstandsbeeinflussung ist prinzipiell möglich mittels eines Heiß- o- der Kaltleiters zur Temperaturerfassung oder mittels eines Fotowiderstandes. Dessen Widerstandswert ist von der Lichtintensität abhängig, mit der der Fotowiderstand beleuchtet wird. Nach diesem Prinzip der Umsetzung eines optischen Signals in ein elektrisches Signal arbeitet auch ein Optokoppler, bei dem primärseitig ein elektrisches Signal mittels eines Lichtsenders in Form einer Leuchtdiode in ein optisches Signal umgewandelt wird. Das optische Signal wird von einem Lichtempfänger in Form eines Fototransistors empfangen, mit dem dieses indirekt in ein elektrisches Signal umwandelt werden kann. Der Optokoppler dient üblicherweise zur Potentlaitrennung zweier Stromkreise, indem diese entkoppelt und somit galvanisch voneinander getrennt werden. Dazu müssen der primar- seitige Lichtsender und der sekundarseitige Lichtempfanger mittels separater Stromquellen versorgt werden, so dass der Optokoppler ebenso wie der Fotowiderstand m Verbindung mit der zur Beleuchtung erforderlichen Lichtquelle stets einen Vierpol darstellt.A non-contact and also potential-isolated resistance control is possible in principle by means of a hot or cold conductor for temperature detection or by means of a photo resistor. Its resistance value depends on the light intensity with which the photo resistor is illuminated. According to this principle of converting an optical signal into an electrical signal, an optocoupler also works, in which an electrical signal on the primary side is converted into an optical signal by means of a light transmitter in the form of a light-emitting diode. The optical signal is received by a light receiver in the form of a photo transistor, with which this can be converted indirectly into an electrical signal. The optocoupler is usually used for the potential separation of two circuits by decoupling them and thus galvanically separating them from each other. For this purpose, the primary-side light transmitter and the secondary-side light receiver must be supplied by means of separate power sources, so that the optocoupler and the photoresistor always represent a four-pole connection with the light source required for lighting.
Der Erfindung liegt die Aufgabe zugrunde, einen zweipoligen veränderbaren Widerstand anzugeben, bei dem eine möglichst kraft- und beruhrungslose sowie insbesondere potentialge- trennte Widerstandsanderung oder -beemflussung möglich ist.The invention is based on the object of specifying a two-pole variable resistor in which a change in or influencing of the resistance that is as forceless and contactless as possible and in particular potential-separated is possible.
Diese Aufgabe wird erfindungsgemaß gelost durch die Merkmale des Anspruchs 1. Dazu sind ein Strahlungssender und ein Strahlungsempfänger elektrisch m Reihe geschaltet, so dass praktisch ein Zweipol gebildet ist. Die Widerstandsanderung dieses passiven Zweipols erfolgt durch Beeinflussung desThis object is achieved according to the invention by the features of claim 1. For this purpose, a radiation transmitter and a radiation receiver are electrically connected in series, so that practically a two-pole connection is formed. The change in resistance of this passive bipolar takes place by influencing the
Strahlenganges zwischen dem Lichtsender und dem Lichtempfan- ger . Dabei ist der durch den Quotienten aus der zwischen den beiden Anschlusspolen abgreifbaren Spannung und einem über die Reihenschaltung fließenden Strom bestimmte Widerstand ab- hangig vom Grad der mit einem externen Mittel hervorgerufenen Beeinflussung des Strahlenganges.Beam path between the light transmitter and the light receiver. The resistance determined by the quotient of the voltage that can be tapped between the two connection poles and a current flowing through the series connection is dependent on the degree of influencing of the beam path caused by an external means.
Die Erfindung geht dabei von der Überlegung aus, dass einerseits der Strahlengang zwischen einem Strahlungssender und einem Strahlungsempfänger, im einfachsten Fall der Lichtweg zwischen einem Lichtsender und einem Lichtempfanger einer op- tokopplerahnlichen Anordnung, beeinflussbar ist. Andererseits kann durch eine Serienschaltung der Pπmarseite und der Se- kundarseite eines derartigen Strahlungskopplers ein Zweipol realisiert werden. Die Beeinflussung des Strahlenganges spiegelt sich dann unabhängig von der Versorgungsspannung dieses Zweipols m einer Änderung des über die Serien- oder Reihen- Schaltung fließenden Strom wieder. Der wirksame Widerstand dieses Zweipols ergibt sich dann aus dem Quotienten der an den beiden Anschlusspolen abgreifbaren Spannung und dem über die Serienschaltung fließenden Strom.The invention is based on the consideration that on the one hand the beam path between a radiation transmitter and a radiation receiver, in the simplest case the light path between a light transmitter and a light receiver of an optocoupler-like arrangement, can be influenced. On the other hand, a series connection of the polar side and the secondary side of such a radiation coupler can be used to implement a two-pole connection. The influencing of the beam path is then reflected independently of the supply voltage of this two-terminal pole in the event of a change in the series or series Circuit flowing current again. The effective resistance of this two-pole system then results from the quotient of the voltage which can be tapped at the two connection poles and the current flowing through the series circuit.
Dabei ist der über die Serienschaltung fließende Strom abhängig vom Grad der Beeinflussung des Strahlenganges. Um eine Mindeststrahlungs- oder Mindestleuchtstärke der primärseiti- gen Strahlungsquelle zu ermöglichen, ist der sekundärseitige Strahlungsempfänger zweckmäßigerweise mit einem Strompfad ge- shunted. Im einfachste Fall ist hierzu dem Strahlungsempfänger ein ohmscher Widerstand parallelgeschaltet. Der somit infolge der Reihenschaltung über den Strahlungssender fließende Mindeststrom ist dann im Wesentlichen abhängig von der maxi- malen Abschottung des Strahlenganges, d. h. von der maximalen Abdeckung des Strahlungsempfängers. Durch sukzessive Freigabe des Strahlenganges wird der Strahlungsempfänger zunehmend leitend. Dadurch nimmt der durch die Strahlungsquelle oder den Strahlungssender fließende Strom entsprechend zu, so dass die Strahlungsstärke oder -intensität ebenfalls erhöht wird. Der wirksame Widerstandswert ist dann bestimmt aus dem an den Anschlusspolen abgreifbaren Spannungsfall bei über die Reihenschaltung fließendem Strom.The current flowing through the series connection depends on the degree of influence on the beam path. In order to enable a minimum radiation level or minimum luminance of the primary-side radiation source, the secondary-side radiation receiver is expediently shunted with a current path. In the simplest case, an ohmic resistor is connected in parallel to the radiation receiver. The minimum current thus flowing as a result of the series connection via the radiation transmitter is then essentially dependent on the maximum isolation of the beam path, ie. H. from the maximum coverage of the radiation receiver. By successively releasing the beam path, the radiation receiver becomes increasingly conductive. As a result, the current flowing through the radiation source or the radiation transmitter increases accordingly, so that the radiation intensity or intensity is also increased. The effective resistance value is then determined from the voltage drop that can be tapped at the connection poles and the current flowing through the series connection.
Zur Beeinflussung des Strahlenganges zwischen der Strahlungsquelle und dem Strahlungsempfänger sind unterschiedliche externe Mittel einsetzbar, deren Art unter anderem von der Art des Strahlungssenders und des Strahlungsempfängers abhängt. So kann beispielsweise die Strahlung zwischen dem Sender und dem Empfänger ganz oder teilweise abgelenkt, reflektiert oder auch gefiltert werden. Bei einer bevorzugten Verwendung eines Lichtsenders, beispielsweise in Form einer Leuchtdiode, als Strahlungssender oder -quelle und eines Lichtempfängers, beispielsweise in Form eines Fotohalbleiters, kann der Strah- lengang durch eine partielle Abdeckung, verschieden starke Reflexion oder durch Polarisationsfilterung erfolgen. Daher wird zweckmäßigerweise als externes Mittel in den Strahlengang ein Abdeckelement eingebracht.Various external means can be used to influence the beam path between the radiation source and the radiation receiver, the type of which depends, inter alia, on the type of the radiation transmitter and the radiation receiver. For example, the radiation between the transmitter and the receiver can be wholly or partially deflected, reflected or also filtered. In a preferred use of a light transmitter, for example in the form of a light-emitting diode, as a radiation transmitter or source and a light receiver, for example in the form of a photo semiconductor, the beam path can be carried out by partial covering, different levels of reflection or by polarization filtering. Therefore a cover element is expediently introduced into the beam path as an external means.
Das Abdeckelement kann als Reflektor, Filter oder als licht- undurchlässiges Plättchen oder Fähnchen ausgeführt sein. Je nach Position oder Lage des Abdeckelements innerhalb des Strahlenganges wird dieser mehr oder weniger beeinflusst und somit dessen Beeinflussungsgrad bestimmt. Die jeweilige Position des Abdeckelements innerhalb des Strahlenganges liegt zwischen einer den Strahlengang freigebenden ersten Stellung und einer den Strahlengang unterbrechenden zweiten Stellung. Durch sukzessive Positions- oder Lageänderung des Abdeckelements innerhalb des Strahlengangs zwischen diesen beiden Stellungen ändert sich der über die Reihenschaltung aus dem Strahlungssender und dem Strahlungsempfänger fließende Strom. Damit ändert sich auch der Widerstand der Reihenschaltung zwischen zwei ausgeprägten Endzuständen des veränderbaren Widerstandes .The cover element can be designed as a reflector, filter or as an opaque plate or flag. Depending on the position or location of the cover element within the beam path, this is influenced to a greater or lesser extent, and thus its degree of influence is determined. The respective position of the cover element within the beam path lies between a first position which releases the beam path and a second position which interrupts the beam path. By successively changing the position or position of the cover element within the beam path between these two positions, the current flowing through the series circuit from the radiation transmitter and the radiation receiver changes. This also changes the resistance of the series connection between two distinct final states of the variable resistor.
Auf diese Weise kann eine Vielzahl physikalischer Größen, d. h. deren zeitliche oder räumliche Änderung in eine entsprechende Widerstandsänderung übertragen werden. Der als zweipoliger Strahlungskoppler ausgeführte veränderbare Widerstand eignet sich somit besonders zur Lage- oder Positionsbe- Stimmung eines Objektes, zur Winkelbestimmung, zur Bestimmung einer temperaturabhängigen Ausdehnung oder zur Füllstandserfassung und -regelung bzw. -Steuerung. Der veränderbare Widerstand eignet sich zudem zur Bestimmung des Reflexions- o- der Transmissionsgrades eines Objektes oder Körpers, zur Be- Stimmung der Intensität polarisierten Lichtes und vieles andere mehr.In this way, a variety of physical quantities, i.e. H. their changes in time or space are translated into a corresponding change in resistance. The variable resistor, which is designed as a two-pole radiation coupler, is therefore particularly suitable for determining the position of an object, for determining the angle, for determining a temperature-dependent expansion or for level detection and regulation or control. The variable resistance is also suitable for determining the reflectance or transmittance of an object or body, for determining the intensity of polarized light and much more.
Der Strahlungs- oder Lichtsender und der Strahlungs- bzw. Lichtempfänger können nach Art einer Gabellichtschranke ge- genüberliegend oder nach Art einer Reflexionslichtschranke neben- oder übereinander angeordnet sein. Bei letztgenannter Anordnung ist das externe Mittel oder das Abdeckelement als Reflektor ausgeführt, wobei dieser vorzugsweise mindestens zwei Reflexionsbereiche mit unterschiedlichem Reflexionsgrad aufweist. Dadurch kann einerseits die Reflexionsintensität und andererseits der Grad der Ablenkung des Strahlenganges am Strahlungsempfänger vorbei besonders fein beeinflusst werden.The radiation or light transmitter and the radiation or light receiver can be arranged opposite one another in the manner of a fork light barrier or next to or one above the other in the manner of a reflection light barrier. In the latter arrangement, the external means or the cover element is as Designed reflector, which preferably has at least two reflection areas with different degrees of reflection. As a result, on the one hand the reflection intensity and on the other hand the degree of deflection of the beam path past the radiation receiver can be influenced particularly finely.
Bei einer besonders bevorzugten Ausführung des veränderbaren Widerstandes mit einer Leuchtdiode als Strahlungssender und einem Fotohalbleiter oder -transistor als Strahlungsempfänger ist dieser in Darlington-Schaltung ausgeführt. Eine derartige Darlington-Schaltung ist beispielsweise beschrieben in „Halb- Ieiter-Schaltungstechnikι , U. Tietze, Ch. Schenk, 6. Auflage, 1983, Seiten 64 bis 66 und Seiten 496 bis 498. Durch diese Schaltung wird zusätzlich zur Gewährleistung eines Mindest- Stroms über den Lichtsender und damit einer Mindestleucht- stärke auch eine zusätzliche Verstärkung erzielt. Dadurch wird auch bei kleinen Änderungen der Lichtstärke ein vergleichsweise schnelles Durchschalten des Fototransistors bewirkt.In a particularly preferred embodiment of the variable resistor with a light-emitting diode as a radiation transmitter and a photo semiconductor or transistor as a radiation receiver, the latter is implemented in a Darlington circuit. Such a Darlington circuit is described, for example, in “semi-conductor circuit technology ι , U. Tietze, Ch. Schenk, 6th edition, 1983, pages 64 to 66 and pages 496 to 498. This circuit additionally ensures a minimum - Current via the light transmitter and thus a minimum luminosity also achieved additional amplification. This results in a comparatively fast switching of the phototransistor even with small changes in the light intensity.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:Exemplary embodiments of the invention are explained in more detail below with reference to a drawing. In it show:
FIG 1 in einem Blockschaltbild einen zweipoligen veränder- baren Widerstand mit einer Reihenschaltung aus einem1 shows a block diagram of a two-pole variable resistor with a series connection of one
Strahlungssender und einem Strahlungsempfänger, FIG 2 in einem Spannungs/Weg-Diagramm den vom Grad der Beeinflussung eines Strahlenganges abhängigen Widerstandsverlauf des veränderbaren Widerstandes, FIG 3 in einem Blockschaltbild gemäß FIG 1 den veränderbaren Widerstand mit einer Reihenschaltung aus einer Leuchtdiode und einem geshunteten Fototransistor, FIG 4 in einem Blockschaltbild gemäß FIG 3 den Fototransistor in Darlington-Schaltung, und FIG 5 den veränderbaren Widerstand mit einer Sender-Empf nger-Anordnung nach dem Reflexionsprinzip. Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.Radiation transmitter and a radiation receiver, FIG. 2 shows in a voltage / path diagram the resistance curve of the variable resistor which is dependent on the degree of influencing of a beam path, FIG. 3 shows the variable resistor with a series circuit comprising a light-emitting diode and a shunted photo transistor in a block diagram according to FIG 4 shows the phototransistor in a Darlington circuit, and FIG. 5 shows the variable resistor with a transmitter-receiver arrangement based on the reflection principle. Corresponding parts are provided with the same reference symbols in all figures.
FIG 1 zeigt einen als Zweipol ausgeführten veränderbaren Wi- derstand 1 in Form eines Strahlungskopplers mit einer Reihenschaltung aus einem Strahlungssender oder einer Strahlungsquelle 2 und einem Strahlungsempfänger 3. Der Strahlungssender 2 ist eingangsseitig mit einem ersten Anschlusspol Si und ausgangsseitig mit dem Strahlungsempfänger verbunden, der seinerseits ausgangsseitig über ein elektrisches Netzwerk 4 mit dem zweiten Anschlusspol S2 verbunden ist. An diese Anschlusspole Sι,S2 wird eine Versorgungsspannung Uv(±) über einen oh schen Widerstand Rl angelegt. Ein über die Reihenschaltung aus dem Strahlungssender 2 und dem Strahlungssen- der 3 fließender Strom Im ruft somit an den Anschlusspolen Sι,S2 eine abgreifbare Spannung Um hervor, die nachfolgend als Messspannung bezeichnet wird. Analog wird der über den Strahlungssender 2 und über den mit diesem elektrisch in Reihe liegenden Strahlungsempfänger 3 sowie über das ebenfalls in dieser Reihenschaltung liegende elektrische Netzwerk 4 fließende Strom Im nachfolgend als Messstrom bezeichnet. Der Strompfeil deutet dabei die technische Stromrichtung des Messstroms Im an.1 shows a variable resistor 1 designed as a two-pole system in the form of a radiation coupler with a series circuit comprising a radiation transmitter or a radiation source 2 and a radiation receiver 3. The radiation transmitter 2 is connected on the input side to a first connection pole Si and on the output side to the radiation receiver, which in turn is connected is connected on the output side to the second connection pole S 2 via an electrical network 4. A supply voltage U v (±) is applied to these connection poles S 1, S 2 via an ohmic resistor R 1. A current I m flowing through the series connection of the radiation transmitter 2 and the radiation transmitter 3 thus causes a tapped voltage U m at the connection poles S 1, S 2 , which is referred to below as the measurement voltage. Analogously, the current I m flowing via the radiation transmitter 2 and via the radiation receiver 3 which is electrically connected in series therewith and also via the electrical network 4 likewise located in this series connection is referred to below as the measurement current. The current arrow indicates the technical current direction of the measuring current I m .
Bei an den Anschlusspolen S1,S2 anliegender Versorgungsspannung UV(±) fließt der Messstrom Ira über den Strahlungssender 2 zum Anschlusspol S2. Die demzufolge vom Strahlungssender 2 emittierte Strahlung, deren Strahlengang durch die Pfeile 5 veranschaulicht ist, bewirkt einen Fluss des Messstroms Im durch den Strahlungsempfänger 3 und parallel hierzu über das elektrische Netzwerk 4, das als komplexe elektronische Schaltung, insbesondere auch als Verstärkerschaltung, ausgeführt sein kann. Dabei ist der Betrag des Messstromes Im direkt abhängig vom Grad der durch den Pfeil 6 symbolisierten Beein- flussung des Strahlenganges 5. Der Quotient aus der an den beiden Anschlusspolen Sι,S2 abgreifbaren Messspannung Um und dem über die Reihenschaltung aus dem Strahlungssender 2 und dem Strahlungsempfänger 3 fließenden Messstrom Im bestimmt somit den Widerstand gemäß der Beziehung R = Um/Im. Die Änderung des Wertes des Widerstandes 1 ist somit ebenfalls direkt abhängig vom Beeinflussungsgrad des Strahlenganges 5 mit dem durch den Pfeil 6 angedeuteten externen Mittel.When the supply voltage U V ( ± ) is present at the connection poles S1, S2, the measurement current I ra flows via the radiation transmitter 2 to the connection pole S 2 . The radiation thus emitted by the radiation transmitter 2, the beam path of which is illustrated by the arrows 5, causes a flow of the measuring current I m through the radiation receiver 3 and in parallel therewith via the electrical network 4, which is designed as a complex electronic circuit, in particular also as an amplifier circuit can. The magnitude of the measuring current I m is directly dependent on the degree of the influence of the beam path 5 symbolized by the arrow 6. The quotient of the measuring voltage U m which can be tapped at the two connection poles S 1, S 2 and that via the series connection of the radiation transmitter 2 and The measuring current I m flowing to the radiation receiver 3 thus determines the resistance according to the relationship R = U m / I m . The change in the value of the resistor 1 is thus also directly dependent on the degree of influence on the beam path 5 with the external means indicated by the arrow 6.
FIG 2 veranschaulicht in einem Spannungs/Weg-Diagramm den sich in Abhängigkeit vom Beeinflussungsgrad des Strahlenganges 5 ergebenden Widerstandsverlauf R des veränderbaren Widerstandes 1. Dabei ist auf der Abszisse dieses Diagramms der Beeinflussungsgrad x des Strahlenganges 5 aufgetragen, der eine Vielzahl von physikalischen Größen, z. B. einen Weg oder einen Winkel, repräsentiert. An der Ordinate ist die Messspannung Um abgetragen. Dabei zeigt das durch den Pfeil 7 angedeutete Fenster den nutzbaren Bereich des veränderbaren Widerstandes 1.2 shows in a voltage / path diagram the resistance curve R of the variable resistor 1 which results as a function of the degree of influence of the beam path 5. The degree of influence x of the beam path 5 is plotted on the abscissa of this diagram, which represents a large number of physical variables, e.g. , B. represents a path or an angle. The measuring voltage U m is plotted on the ordinate. The window indicated by the arrow 7 shows the usable area of the variable resistor 1.
FIG 3 zeigt den veränderbaren Widerstand 1 mit an einem Betätigungselement oder einer Betätigungsachse 8 freiendseitig einem beweglichen Abdeckelement 9 in Form einer Fahne oder eines Plättchens. Das Abdeckelement 9 erstreckt sich quer zur Betätigungsachse 8 und ragt in den Strahlengang 5 zwischen einer Leuchtdiode als Strahlungssender 2 und einem diesem e- lektrisch in Reihe nachgeschalteten Fototransistor als Strah- lungsempfänger 3 hinein. Der Strahlengang 5 entspricht dabei dem optischen Weg zwischen der Leuchtdiode 2 und dem diesem nach Art einer Gabellichtschranke gegenüberliegend angeordne¬ ten Fototransistor 3. Die Reihenschaltung aus der Leuchtdiode 2 und dem Fototransistor 3 ist beispielsweise auf einer Platine oder einer Leiterplatte 10 realisiert.3 shows the variable resistor 1 with a movable cover element 9 in the form of a flag or a plate on the free end of an actuating element or an actuating axis 8. The cover element 9 extends transversely to the actuation axis 8 and projects into the beam path 5 between a light-emitting diode as the radiation transmitter 2 and a phototransistor connected downstream in series as the radiation receiver 3. The optical path 5 corresponds to the optical path between the light emitting diode 2 and this oppositely arrange the manner of a forked light barrier ¬ th phototransistor 3. The series circuit of the light emitting diode 2 and the phototransistor 3 is realized, for example on a circuit board or a printed circuit board 10 degrees.
Das Abdeckelement 9 erfasst im Ausführungsbeispiel über das Betätigungselement 8 einen sich verändernden Zustand in Form einer Drehbewegung, die sich in einer entsprechenden Posi- tionsänderung des Abdeckelements 9 innerhalb des Strahlenganges 5 widerspiegelt. Die zu erfassende Zustandsänderung wird somit durch eine mittels des Abdeckele ents 9 hervorge- rufene mechanische Beeinflussung des Strahlengangs 5 übertragen. Diese Übertragungsbeeinflussung resultiert wiederum in einer entsprechenden Änderung des Messstroms Im und damit in einer entsprechenden Änderung der Messspannung Um, die ü- ber der Reihenschaltung aus der Leuchtdiode 2 und dem Fotowiderstand 10 abfällt.In the exemplary embodiment, the cover element 9 detects a changing state in the form of a rotary movement via the actuating element 8, which is reflected in a corresponding change in position of the cover element 9 within the beam path 5. The change in state to be detected is thus produced by means of a cover 9. called mechanical influence on the beam path 5 transmitted. This influencing of the transmission in turn results in a corresponding change in the measuring current I m and thus in a corresponding change in the measuring voltage U m , which drops across the series connection of the light-emitting diode 2 and the photoresistor 10.
Dazu ist die als Strahlungsquelle oder Lichtsender dienende Leuchtdiode 2 anodenseitig an den Spannungsanschluss oder An- schlusspol Si geführt, an den der Pluspol Uv(+) der Versorgungsspannung über den Vorwiderstand Rl anzuschließen ist. Katodenseitig ist die Leuchtdiode 2 einerseits an den Collek- tor des als Strahlungs- oder Lichtempfänger dienenden Fototransistors 3 und andererseits an einen diesem collektor- emitterseitig parallelgeschalteten Widerstand R2 geführt.For this purpose, the light-emitting diode 2 serving as a radiation source or light transmitter is led on the anode side to the voltage connection or connection pole Si, to which the positive pole U v (+) of the supply voltage is to be connected via the series resistor R1. On the cathode side, the light-emitting diode 2 is guided, on the one hand, to the collector of the phototransistor 3 serving as a radiation or light receiver and, on the other hand, to a resistor R2 connected in parallel to this on the collector-emitter side.
Dieser als Shunt dienende Parallelwiderstand R2 bildet dabei eine Ausführungsform des elektrischen Netzwerks 4 gemäß FIG 1. Der mit dem Emitter des Fototransistors 3 verbundene Widerstand R2 ist mit dem zweiten Spannungsanschluss oder Anschlusspol S2 verbunden, an den der Minuspol Uv(-) der Vor- sorgungsspannung anzuschließen ist.This parallel resistor R2 serving as a shunt forms an embodiment of the electrical network 4 according to FIG. 1. The resistor R2 connected to the emitter of the phototransistor 3 is connected to the second voltage connection or connection pole S 2 to which the negative pole U v (-) of the front - the supply voltage must be connected.
Bei der ähnlich aufgebauten Schaltung des veränderbaren Widerstandes 1 gemäß FIG 4 ist der Fototransistor 3 in Darling- ton-Schaltung ausgeführt. Dabei ist der dem Fototransistor 3 parallelgeschaltete Widerstand R2 gemäß der Ausführungsform nach FIG 3 substituiert durch den zusätzlichen Transistor 11. Ebenso wie bei der Ausführung gemäß FIG 3 wird auch bei dieser Ausführung gemäß FIG 4 die Messspannung Im wiederum zwi- sehen den Anschlusspolen Sι,S2 abgegriffen.In the similarly constructed circuit of the variable resistor 1 according to FIG. 4, the phototransistor 3 is implemented in a Darling tone circuit. The resistor R2 connected in parallel with the phototransistor 3 according to the embodiment according to FIG. 3 is substituted by the additional transistor 11. As in the embodiment according to FIG. 3, the measurement voltage I m is again between the connection poles S 1 in this embodiment according to FIG. S 2 tapped.
Je nach Position des Abdeckelements 9 bezüglich der Anordnung der Leuchtdiode 2 und des Fototransistors 3, die analog zu der Ausführungsform gemäß FIG 3 nach Art einer Gabellicht- schranke einander gegenüberliegend positioniert sind, ist der Strahlengang 5 zwischen der Leuchtdiode 2 und dem Fototransistor 3 ganz oder teilweise abgedeckt und somit mehr oder weniger unterbrochen. Dabei ist das Abdeckelement 9 zwischen einer den Strahlengang vollständig freigebenden ersten Stellung und einer den Strahlengang 5 vollständig abdeckenden zweiten Stellung verschwenkbar oder verschiebbar. Die ent- sprechende Position des Abdeckelements 9 innerhalb des Strahlenganges 5 bestimmt dabei dessen Beeinflussungsgrad.Depending on the position of the cover element 9 with respect to the arrangement of the light-emitting diode 2 and the photo transistor 3, which, analogously to the embodiment according to FIG. 3, are positioned opposite one another in the manner of a fork light barrier, the beam path 5 between the light-emitting diode 2 and the photo transistor 3 is entirely or partially covered and therefore more or less interrupted. In this case, the cover element 9 can be pivoted or displaced between a first position that completely releases the beam path and a second position that completely covers the beam path 5. The corresponding position of the cover element 9 within the beam path 5 determines its degree of influence.
Ändert sich der Zustand der zu erfassenden Größe so wird diese Zustandsänderung vom Betätigungselement 8 erfasst und über das mit diesem mitbewegte Abdeckelement 9 auf den veränderbaren Widerstand 1 übertragen. Dabei resultiert eine infolge der Kopplung des Betätigungselements 8 mit dem Abdeckelement 9 erfolgende Drehbewegung des Betätigungselements 8 in einer Schwenkbewegung des Abdeckelements 9. Infolge dessen wird das als bewegliche Fahne oder Plättchen ausgebildete Abdeckelement 9 durch die externe Beeinflussung aufgrund der Zustandsänderung der zu erfassenden Größe in den Strahlengang 5 zwischen der Leuchtdiode 2 und dem Fototransistor 6 mehr oder weniger hineingeschwenkt oder aus diesem mehr oder weniger herausgeschwenkt. Dies wiederum führt zu einer Änderung der Messspannung Um infolge einer entsprechenden Änderung des über diese Reihenschaltung aus der Leuchtdiode 2 und dem Fototransistor 6 fließenden Messstrom Im. Die Messspannung Um repräsentiert somit die Änderung des Widerstandes 1, die ihrerseits in Abhängigkeit von der Position des Abdeckelements 9 innerhalb des Strahlenganges 5 und damit in Abhängigkeit vom Beeinflussungsgrad den zu erfassenden Zustand bzw. dessen Änderung repräsentiert.If the state of the variable to be recorded changes, this change in state is recorded by the actuating element 8 and transmitted to the variable resistor 1 via the cover element 9 which is moved with it. As a result of the coupling of the actuating element 8 with the covering element 9, a rotary movement of the actuating element 8 results in a pivoting movement of the covering element 9. As a result, the covering element 9, which is designed as a movable flag or plate, is influenced by the external influence due to the change in state of the size to be detected Beam path 5 between the light emitting diode 2 and the phototransistor 6 more or less pivoted in or pivoted out of this more or less. This in turn leads to a change in the measurement voltage U m as a result of a corresponding change in the measurement current I m flowing via this series connection from the light-emitting diode 2 and the phototransistor 6. The measurement voltage U m thus represents the change in the resistance 1, which in turn represents the state to be detected or its change as a function of the position of the cover element 9 within the beam path 5 and thus as a function of the degree of influence.
Bei dieser gabelschrankenähnlichen Ausführung des veränderbaren Widerstandes 1 ist der Fototransistor 3 bei verdecktem oder abgedecktem Strahlengang 5 gesperrt, während dieser bei freigebenden Strahlengang 5 vollständig durchgesteuert ist. Dies sind die beiden ausgeprägten Endzustände des veränderba- ren Widerstandes 1. Zwischen diesen beiden Endzuständen ändert sich der Fotostrom durch den Fototransistor 3 und damit > co r N> P> P1 In this fork-barrier-like design of the variable resistor 1, the phototransistor 3 is blocked when the beam path 5 is covered or covered, while the beam path 5 is completely controlled when the beam path 5 is released. These are the two distinct final states of the changeable resistor 1. Between these two final states, the photo current changes through the photo transistor 3 and thus > co r N>P> P 1
Cπ o cπ O Cπ o Cπ tu PJ 3 b o. Hi φ αCπ o cπ O Cπ o Cπ tu PJ 3 b o. Hi φ α
Φ • : H φ Φ g rsi er P- Φ 3 er CΛ σ PJ: uq uq rt CΛ σ d: CL 3 rt öd uq CL φ d φ S, φ 3 φ P- P- Φ rt φ 3 ι-i -1 PJ O rt P- er φ PJ φ ι-i Φ Φ Φ rt 3 P- tf Hi CΛ l-i CΛ P- ι-i ι-< 3 rt s: PJ l-i 0- φ Φ H ι-i φ Φ ι-i er CΛ PJ P- P H pj; uq π- 3J l-i PJ d Ω CΛ Φ u φ P- 3 Φ 3 P- PJ l-i Φ CΛ 3 PJ: rt- φ α • d CΛ tr1 3 l-r Ω P- d Φ ι-i α er H N Ω co t K ^ P- CΛ CΛ a & £Φ •: H φ Φ g rsi er P- Φ 3 er CΛ σ PJ: uq uq rt CΛ σ d: CL 3 rt öd uq CL φ d φ S, φ 3 φ P- P- Φ rt φ 3 ι-i - 1 PJ O rt P- er φ PJ φ ι-i Φ Φ Φ rt 3 P- tf Hi CΛ li CΛ P- ι-i ι- <3 rt s: PJ li 0- φ Φ H ι-i φ Φ ι-i he CΛ PJ P- PH pj; uq π- 3 J li PJ d Ω CΛ Φ u φ P- 3 Φ 3 P- PJ li Φ CΛ 3 PJ: rt- φ α • d CΛ tr 1 3 lr Ω P- d Φ ι-i α er HN Ω co t K ^ P- CΛ CΛ a & £
P- Hi 00 Φ 3 CΛ P- uq 3J Ω l-i φ < P- ; φ Φ er Φ 3J P- φ too rt P- φ Φ uq d: 1- Φ Ω d Φ 3J Ω P- φ 3 rt CΛ P- PJ 3 CΛ P- φ CΛ rt t ι-i CΛ l-i ^ CΛ d 3" Hi d CΛ 3 tr CΛ 3 3J Ω l-i l-i N rt P 3 ω O 0 o rt Pl CΛP- Hi 00 Φ 3 CΛ P- uq 3 J Ω li φ <P-; φ Φ er Φ 3 J P- φ too rt P- φ Φ uq d: 1- Φ Ω d Φ 3 J Ω P- φ 3 rt CΛ P- PJ 3 CΛ P- φ CΛ rt t ι-i CΛ li ^ CΛ d 3 "Hi d CΛ 3 tr CΛ 3 3 J Ω li li N rt P 3 ω O 0 o rt Pl CΛ
3 ri H er o. rt Φ O uq 3^ uq CΛ φ V α Φ er d Hi uq CΛ rt Ω O CD CΛ uq rt Φ d Ω Φ Φ CΛ CΛ Ό O PJ T tr1 3J l-i3 ri H er o. Rt Φ O uq 3 ^ uq CΛ φ V α Φ er d Hi uq CΛ rt Ω O CD CΛ uq rt Φ d Ω Φ Φ CΛ CΛ Ό O PJ T tr 1 3 J li
P- CΛ α Φ Φ CΛ h-1 Ω P- Φ 3 P- 3 * P- 3 rt O Φ CΛ CΛ , Φ PJ 3 ι-i r-1 Φ r-1 3 J φ PJ ** c rt ω φ CΛ ) i-i φ Φ Hi CΛ ι-i < l-1 3 Ω Φ P- 3 φ Φ 21 o ι-( uq uq 3 d 3 3 CO Hl O h-1 3 : CL T Ό O Φ Φ <! ^ P- Ω Φ P- > P- Φ S" φ 3 Ω ωP- CΛ α Φ Φ CΛ h- 1 Ω P- Φ 3 P- 3 * P- 3 rt O Φ CΛ CΛ, Φ P J 3 ι-i r- 1 Φ r- 1 3 J φ PJ * * c rt ω φ CΛ) ii φ Φ Hi CΛ ι-i <l- 1 3 Ω Φ P- 3 φ Φ 21 o ι- (uq uq 3 d 3 3 CO Hl O h- 1 3: CL T Ό O Φ Φ < ! ^ P- Ω Φ P-> P- Φ S "φ 3 Ω ω
& z d: l-i 3 φ α P Φ P- tr 3 l-i 3 S φ J CΛ t < 3 CL 3 3 f O d 3' P- φ CL t φ& z d: l-i 3 φ α P Φ P- tr 3 l-i 3 S φ J CΛ t <3 CL 3 3 f O d 3 'P- φ CL t φ
3 CΛ H φ •< ω pj: φ Φ CΛ φ u CΛ φ CΛ 3 α α 3 rt ω 3 d P- l-i CΛ PH3 CΛ H φ • <ω pj: φ Φ CΛ φ u CΛ φ CΛ 3 α α 3 rt ω 3 d P- l-i CΛ PH
Φ φ Φ d Φ ' CΛ P C CΛ pj: rt Z Φ l-i φ Hi l-i α Ω 3 φ φ uq rt 3 l-i φ d d 3Φ φ Φ d Φ 'CΛ P C CΛ pj: rt Z Φ l-i φ Hi l-i α Ω 3 φ φ uq rt 3 l-i φ d d 3
3 Ω P- 3 3 P- o uq α α CΛ 3 Φ ^Q Φ l-i yQ CΛ £: CΛ PJ - Φ CΛ ι-i P- O Ω uq 3 rt t r - t CΛ rt Φ P- Φ φ t rt 3 Φ 33 Ω P- 3 3 P- o uq α α CΛ 3 Φ ^ Q Φ li yQ CΛ £: CΛ PJ - Φ CΛ ι-i P- O Ω uq 3 rt tr - t CΛ rt Φ P- Φ φ t rt 3 Φ 3
Φ P- CΛ 21 α o ι-i σ " φ uq rt d P> Φ H CΛ Ό Φ Φ l-i CΛ CΛ Φ rt l-i PJ 3 3 Ξ ^ t"1 3 Φ 3 P- s; uq Hi P- ι-( 1-' l-i σ PJ l-i 3 P- Φ P- N d 3 P- O P- Φ co P- CL CL uq Φ o l\) φ O 3 Ω P- J P) 3 er 3 α Ω rt 3 α α 21 α rt Ω P- P- Φ φ l-i ι-iΦ P- CΛ 21 α o ι-i σ "φ uq rt d P> Φ H CΛ Ό Φ Φ li CΛ CΛ Φ rt li PJ 3 3 Ξ ^ t " 1 3 Φ 3 P- s; uq Hi P- ι- (1- 'li σ PJ li 3 P- Φ P- N d 3 P- O P- Φ co P- CL CL uq Φ ol \) φ O 3 Ω P- JP ) 3 er 3 α Ω rt 3 α α 21 α rt Ω P- P- Φ φ li ι-i
3 z ι-f ? - CΛ Λ H 5^ 3 J IM iQ uq d 3' Φ uq Φ P- P- Φ O 3J CΛ t uq <! Φ p rt PJ3 z ι-f? - CΛ Λ H 5 ^ 3 J IM iQ uq d 3 'Φ uq Φ P- P- Φ O 3 J CΛ t uq <! P p rt PJ
Φ Φ P- 3 Φ Ω rt Φ d l-i d Φ φ l-i CΛ CΛ Λ φ H CΛ rt rt φ Φ 2! p : . d l-i 3 Φ 3' ι-i P 3 Φ CΛ 3 ι-i Ω £ ι-a Hl Φ CΛ rt s: CL CΛ tr1 H- &> CΛΦ Φ P- 3 Φ Ω rt Φ d li d Φ φ li CΛ CΛ Λ φ H CΛ rt rt φ Φ 2! p:. d li 3 Φ 3 'ι-i P 3 Φ CΛ 3 ι-i Ω £ ι-a Hl Φ CΛ rt s: CL CΛ tr 1 H- &> CΛ
CΛ ri- α 1 P- φ PJ Φ iQ 3 rt P- 3J Φ ι-i o cυ (D ι-i rt H <! d TJ CL Φ rt Φ Φ Φ 3 P" -3 p- CΛ ) Φ 3 CΛ P- J l-i • CΛ PJ O uq φ l-i φ φ d Φ ^ Z l-i «3 t-s 3 o r-> H- H) ιq S 3 3 υq Ω CΛ 3 3 Φ rt 3 3 l-i Ω ι-i Ω Ω l-i P-CΛ ri- α 1 P- φ PJ Φ iQ 3 rt P- 3 J Φ ι-io cυ (D ι-i rt H <! D TJ CL Φ rt Φ Φ Φ 3 P "-3 p- CΛ ) Φ 3 CΛ P- J li • CΛ PJ O uq φ li φ φ d Φ ^ Z li «3 ts 3 o r-> H- H) ιq S 3 3 υq Ω CΛ 3 3 Φ rt 3 3 li Ω ι-i Ω Ω li P-
Φ • d pj: CL fτ CD Φ P- tr P- α TJ φ tr Φ CΛ 3 PJ CΛ cπ uq ι-i " CΛ (D φΦ • d pj: CL fτ CD Φ P- tr P- α TJ φ tr Φ CΛ 3 PJ CΛ cπ uq ι-i "CΛ (D φ
Ω 3 E Φ O l-i P Φ φ • Hi PJ P- uq N 3 rt rt rt rt CLΩ 3 E Φ O l-i P Φ φ • Hi PJ P- uq N 3 rt rt rt rt CL
K σ l-i CΛ O: uq f-i 3 Φ pj: S 1 uq CΛ φ α α Hi Φ L Φ CL J CO Φ P"K σ li CΛ O: uq fi 3 Φ pj: S 1 uq CΛ φ α α Hi Φ L Φ CL J CO Φ P "
Φ PJ CL ^ P- o PJ CΛ N l-i > 3 φ rt rt 3 φ d l-i P- Φ P- P P- 3 j OΦ PJ CL ^ P- o PJ CΛ N l-i> 3 φ rt rt 3 φ d l-i P- Φ P- P P- 3 j O
3 Cfi PJ H CΛ rt Φ 13 rt 3 Φ ω d ιq CΛ Φ O O J: l-i ^ CΛ H Φ Ω 3 Λ O CL er d α Λ CD Ω P- uq PJ 3 rt Hi φ CΛ 3 S> l-i ÖJ rt N Ω P- 3" rt CΛ Φ 9 φ o tr 0 J Φ a PJ ι-i CΛ φ Φ ^ 3* uq 21 -» rt Φ O3 Cfi PJ H CΛ rt Φ 13 rt 3 Φ ω d ιq CΛ Φ OOJ: li ^ CΛ H Φ Ω 3 Λ O CL er d α Λ CD Ω P- uq PJ 3 rt Hi φ CΛ 3 S> li ÖJ rt N Ω P- 3 "rt CΛ Φ 9 φ o tr 0 J Φ a PJ ι-i CΛ φ Φ ^ 3 * uq 21 -» rt Φ O
P- t Cπ £ 3 er CΛ P- φ P- 3 D, CΛ T P1 ^ 0 uq φ Z. P- z ι-i α P- CL g Ω P- Φ PJ Φ )P- t Cπ £ 3 er CΛ P- φ P- 3 D, CΛ TP 1 ^ 0 uq φ Z. P- z ι-i α P- CL g Ω P- Φ P J Φ)
CΛ CΛ P- φ PJ Φ CD P1 o r Φ uq φ C CL PJ φ i-i ΦCΛ CΛ P- φ PJ Φ CD P 1 or Φ uq φ C CL PJ φ ii Φ
1-r Φ rt P CL P): Cπ CΛ CΛ rt φ φ P- 3 CΛ φ CD 0, φ O CΛ Φ P- φ PJ 3J • l-i f l-i α l-i Φ 3 CΛ Λ ω rt 3 CΛ P- Φ P- rt Ω er CΛ l-i rt1-r Φ rt P CL P ) : Cπ CΛ CΛ rt φ φ P- 3 CΛ φ CD 0, φ O CΛ Φ P- φ PJ 3 J • li f li α li Φ 3 CΛ Λ ω rt 3 CΛ P- Φ P- rt Ω er CΛ li rt
Φ P- pj: ω CΛ uq d l-1 O- φ P- d ^ J 3 Ji. ι-i 3 t Φ Φ CΛ α φ ü CΛ 21Φ P- pj: ω CΛ uq d l- 1 O- φ P- d ^ J 3 Ji. ι-i 3 t Φ Φ CΛ α φ ü CΛ 21
Ω 3 PJ uq rt P- 3 P) P- P1 υ 3 o 3 • J PJ 3 rt PJ 3 P- 3J CL P- w rt Φ 3Ω 3 PJ uq rt P- 3 P ) P- P 1 υ 3 o 3 • J PJ 3 rt PJ 3 P- 3 J CL P- w rt Φ 3
S uq α 3 φ Sl φ uq rt et σ PJ M 3 P1 PJ 3 uq φ d Φ P-S uq α 3 φ Sl φ uq rt et σ PJ M 3 P 1 PJ 3 uq φ d Φ P-
1 t"1 CΛ . O 3 φ 3 O <! PJ 3 3 ö CΛ rt d P- 3 3 PJ 3 φ pj: CL CL CL 3 d P- P) P- α rt Φ ι-i cn α P- P- Φ 3 φ CL 3 S rt ι-(1 t "1 CΛ. O 3 φ 3 O <! PJ 3 3 ö CΛ rt d P- 3 3 PJ 3 φ pj: CL CL CL 3 d P- P ) P- α rt Φ ι-i cn α P- P- Φ 3 φ CL 3 S rt ι- (
0 3 J PJ d Φ α J 3 3 ι-( CΛ O 3 ι-i l-i rt N φ CΛ rt CL. P- CΛ0 3 J PJ d Φ α J 3 3 ι- (CΛ O 3 ι-i l-i rt N φ CΛ rt CL. P- CΛ
CL uq φ TCL uq φ T
P- yQ Φ CΛ 3 Ω P- p P- P- Φ φ PJ CΛ P- Φ d cn rt ι-i !Λ Φ CΛ V PJ rtP- yQ Φ CΛ 3 Ω P- p P- P- Φ φ PJ CΛ P- Φ d cn rt ι-i! Λ Φ CΛ V PJ rt
Φ CΛ Hi uq ; φ P- Φ ^ P- CΛ 3 rt 3 ω Φ O P- CL P- ) i O CΛ fxj l-i l-i H ω Φ CΛ rt l-i O φ K d CΛ pj: uq 1 rt l-i CΛ φ uq CL CΛ J 3Φ CΛ Hi uq; φ P- Φ ^ P- CΛ 3 rt 3 ω Φ O P- CL P-) i O CΛ fxj li li H ω Φ CΛ rt li O φ K d CΛ p j : uq 1 rt li CΛ φ uq CL CΛ J 3
P- Φ Φ er Φ l-i ι-( PJ 3 Hi P- l-i rt Φ p : S CΛ rt l-i "* er S Φ φ LP- Φ Φ er Φ li ι- (PJ 3 Hi P- li rt Φ p: S CΛ rt li "* er S Φ φ L
Ω rt φ Φ < tö P rt 3 rt ^Q CΛ ? O 3 Φ • Φ Φ ι-i PJ P-Ω rt φ Φ <tö P rt 3 rt ^ Q CΛ? O 3 Φ • Φ Φ ι-i PJ P-
Φ tr P- fu; CΛ 3 P- O φ υq 3 ≤ l-i rt d 3 CΛ O ^ ≤ CΛ CΛ 3 3 φ 0 i rt O rt rt Φ CΛ 3 φ φ CL- Z, P- d αΦ tr P- fu; CΛ 3 P- O φ υq 3 ≤ l-i rt d 3 CΛ O ^ ≤ CΛ CΛ 3 3 φ 0 i rt O rt rt Φ CΛ 3 φ φ CL- Z, P- d α
H O 3 1 φ Φ CΛ M o φ rt CΛ tr1 3 φ - Φ d 3 P- P- 3 rt H- υ Φ Φ a 3 ι-i u o CΛ CΛ P- P rt 3 P- CΛ P- d 3 HHO 3 1 φ Φ CΛ M o φ rt CΛ tr 1 3 φ - Φ d 3 P- P- 3 rt H- υ Φ Φ a 3 ι-iuo CΛ CΛ P- P rt 3 P- CΛ P- d 3 H
Φ 3 CΛ yQ g rt P Φ ι-i l-i Φ Φ CΛ Ω CL TJ P O 3 9 rt Ω 3 N uq Φ d p CΛ P- Φ Hi σ l-i d 3" 21 Φ PJ o.. P- rt 3 H 3J uq co 3 PJ P- CΛ 3 < P- ι-i CL S dΦ 3 CΛ yQ g rt P Φ ι-i li Φ Φ CΛ Ω CL TJ PO 3 9 rt Ω 3 N uq Φ dp CΛ P- Φ Hi σ li d 3 "21 Φ PJ o .. P- rt 3 H 3 J uq co 3 PJ P- CΛ 3 <P- ι-i CL S d
P- - ' 3 rt P l-i l-1 Φ PJ Φ CΛ rt O rt P- g d o P> Φ uq • θ d 3 3 3 3P- - '3 rt P li l- 1 Φ PJ Φ CΛ rt O rt P- gdo P> Φ uq • θ d 3 3 3 3
Φ . φ s rt Φ α α 3 Φ φ PJ Φ P Z 3 HlΦ. φ s rt Φ α α 3 Φ φ PJ Φ P Z 3 Hl
3 IV> 3 Λ N CΛ PJ CΛ CΛ rt Φ <! d l-i CΛ 3 ι-i z Φ CL ^3 IV> 3 Λ N CΛ PJ CΛ CΛ rt Φ <! d l-i CΛ 3 ι-i z Φ CL ^
CΛ φ φ d d CΛ α CΛ 3 o Λ d l-i φ 3 1 Φ CΛ P- uq p- φ O VCΛ φ φ d d CΛ α CΛ 3 o Λ d l-i φ 3 1 Φ CΛ P- uq p- φ O V
1 P CΛ d Φ CΛ £ 0 3 1 l-i uq 3 P- 31 P CΛ d Φ CΛ £ 0 3 1 l-i uq 3 P- 3
CΛ CΛ rtCΛ CΛ rt
Φ rt φ 1 P 3 3 1 Φ P- 1 uq 1 CΛ CΛ a Cπ rt rt OΦ rt φ 1 P 3 3 1 Φ P- 1 uq 1 CΛ CΛ a Cπ rt rt O
CΛ 1 uq 1 CΛ φ 1 1 • 1 1 CΛ 1 uq 1 CΛ φ 1 1 • 1 1
element 9 lenkt von der wiederum als Leuchtdiode 2 ausgeführten Lichtquelle ausgesendetes Licht - je nach Stellung bezüglich des wiederum als Fototransistor ausgeführten Lichtempfängers 3 - entlang des angedeuteten Strahlenganges 5 in Richtung auf den Fototransistor 3 um bzw. mehr oder weniger an diesem vorbei ab. Die wiederum als Reihenschaltung ausgeführte Schaltung aus Leuchtdiode 2 und Fototransistor 3 ist ebenfalls auf einer Platine oder einer Leiterplatte 10 realisiert. Der vom Betätigungselement 8 und über dieses vom Ab- deck- oder Reflexionselement 9 erfasste Zustand oder eine entsprechende Zustandsänderung wird wiederum mechanisch an den veränderbaren Widerstand 1 übertragen.element 9 deflects light emitted from the light source, again embodied as a light emitting diode 2, depending on the position with respect to the light receiver 3, again embodied as a phototransistor, along the indicated beam path 5 in the direction of the phototransistor 3 by or more or less past it. The circuit comprising the light-emitting diode 2 and the phototransistor 3, again in the form of a series circuit, is likewise implemented on a circuit board or a printed circuit board 10. The state detected by the actuating element 8 and via this by the covering or reflecting element 9 or a corresponding change in state is in turn mechanically transmitted to the variable resistor 1.
Je nach Ausgangsposition des Abdeck- oder Reflexionselemen- tes 9 bezüglich des Lichtsenders 2 und bezüglich des Lichtempfängers 3, die nach Art einer Reflexionsschranke nebeneinander positioniert sind, wird der von der Leuchtdiode 2 ausgehende Strahlengang 5 in Richtung auf den Fototransistor 3 mehr oder weniger reflektiert. Dazu weist das Abdeck- oder Reflexionselement 9 zweckmäßigerweise zumindest zwei Reflexionsbereiche 9a und 9b mit unterschiedlichem Reflexionsgrad auf.Depending on the starting position of the covering or reflection element 9 with respect to the light transmitter 2 and with respect to the light receiver 3, which are positioned next to one another in the manner of a reflection barrier, the beam path 5 emanating from the light-emitting diode 2 is more or less reflected in the direction of the phototransistor 3. For this purpose, the covering or reflection element 9 expediently has at least two reflection regions 9a and 9b with different degrees of reflection.
Eine Verschiebung oder Verschwenkung des Abdeck- oder Refle- xionselementes 9 führt wiederum zu einer Änderung des Messstroms Im über die durch die Leuchtdiode 2 und den Fototransistor 3 gebildete Reihenschaltung mit einer entsprechenden Änderung der an den Anschlusspolen Sι,S2 abgreifbaren Messspannung Um und damit zu einer entsprechenden Widerstands- änderung.A shift or pivoting of the covering or reflection element 9 in turn leads to a change in the measuring current I m via the series circuit formed by the light-emitting diode 2 and the phototransistor 3 with a corresponding change in the measuring voltage U m and S 2 which can be tapped at the connection poles S 1, S 2 a corresponding change in resistance.
Der wirksame Widerstand des veränderbaren Widerstandes 1 wird somit kraft- und berührungslos beeinflusst. Die durch das Abdeck- oder Reflexionselement 9 oder durch ein anders externes Mittel 6, beispielsweise durch einen Filter, hervorgerufeneThe effective resistance of the variable resistor 1 is thus influenced without force or contact. The one caused by the cover or reflection element 9 or by another external means 6, for example by a filter
Beeinflussung erfolgt dabei potientialgetrennt . Dabei ist bei dem als Zweipol ausgeführten veränderbaren Widerstand 1 für die Leuchtdiode 2 und damit für den Licht- oder Strahlungssender keine zusätzliche Hilfsspannung erforderlich. Influencing takes place in a potential-separated manner. In this case, in the case of the variable resistor designed as a two-pole connection, 1 for the LED 2 and therefore no additional auxiliary voltage is required for the light or radiation transmitter.

Claims

Patentansprüche claims
1. Veränderbarer Widerstand mit zwei Anschlusspolen (Sι,S2) , an denen eine Spannung (Um) abgreifbar ist, mit einer zwi- sehen den Anschlusspolen (Sι,S2) liegenden Reihenschaltung aus einem Strahlungssender (2) und einem Strahlungsempfänger (3), wobei der durch den Quotienten aus der abgreifbaren Spannung (Um) und einem über die Reihenschaltung fließenden Strom (Im) bestimmte Widerstand (R) abhängig ist vom Grad der Beein- flussung des Strahlengangs (5) mit einem externen Mittel (6,9) .1. Variable resistor with two connection poles (Sι, S 2 ), at which a voltage (U m ) can be tapped, with a series connection between the connection poles (Sι, S 2 ) consisting of a radiation transmitter (2) and a radiation receiver ( 3), the resistance (R) determined by the quotient of the tapped voltage (U m ) and a current (I m ) flowing through the series circuit being dependent on the degree to which the beam path (5) is influenced by an external means ( 6.9).
2. Veränderbarer Widerstand nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass als externes Mittel ein in den Strahlengang (5) einbringbares Abdeckelement (9) vorgesehen ist, durch dessen Position zwischen dem Strahlungssender (2) und dem Strahlungsempfänger (3) der Grad der Beeinflussung bestimmt ist.2. Changeable resistor according to claim 1, characterized in that as an external means in the beam path (5) insertable cover element (9) is provided, the position of which is determined by the position between the radiation transmitter (2) and the radiation receiver (3) ,
3. Veränderbarer Widerstand nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass bei Anlegen einer Versorgungsspannung (Uv) diese über einen ohmschen Widerstand (Rl) an die Anschlusspole (SιS2) geführt ist.3. Variable resistor according to claim 1 or 2, characterized in that when a supply voltage (U v ) is applied, this is led via an ohmic resistor (Rl) to the connection poles (SιS 2 ).
4. Veränderbarer Widerstand nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass der Strahlungssender (2) und der Strahlungsempf nger (3) einander gegenüberliegend angeordnet sind, wobei das externe Mittel (9) zwischen einer den Strahlengang (5) freigebenden ersten Stel- lung und einer den Strahlengang (5) unterbrechenden zweiten Stellung verschwenkbar oder verschiebbar ist.4. Variable resistor according to one of Claims 1 to 3, characterized in that the radiation transmitter (2) and the radiation receiver (3) are arranged opposite one another, the external means (9) between a first position which releases the beam path (5). tion and a second position interrupting the beam path (5) is pivotable or displaceable.
5. Veränderbarer Widerstand nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass der Strah- lungsempfänger (3) vom externen Mittel (9) reflektierte5. Changeable resistance according to one of claims 1 to 3, that the radiation receiver (3) reflects from the external means (9), so that the radiation receiver (3) reflects
Strahlung empfängt, wobei das Mittel (9) zwischen einer den Strahlengang (5) in Richtung auf den Strahlungsempfänger (3) umlenkenden ersten Stellung und einer den Strahlengang (5) am Strahlungsempfänger (3) vorbei ablenkenden zweiten Stellung verschiebbar ist.Receives radiation, the means (9) between the beam path (5) in the direction of the radiation receiver (3) deflecting first position and a second position deflecting the beam path (5) past the radiation receiver (3).
6. Veränderbarer Widerstand nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass das externe Mittel (9) mindestens zwei Reflexionsbereiche (9a, 9b) mit unterschiedlichem Reflexionsgrad aufweist.6. Variable resistor according to claim 5, so that the external means (9) has at least two reflection areas (9a, 9b) with different reflectance.
7. Veränderbarer Widerstand nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass der Strahlungssender eine Leuchtdiode (2) ist, und dass der Strahlungsempfänger (3) ein dieser nachgeschalteter Fotohalbleiter ist.7. Variable resistor according to one of claims 1 to 6, so that the radiation transmitter is a light-emitting diode (2) and that the radiation receiver (3) is a photo semiconductor connected downstream of this.
8. Veränderbarer Widerstand nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass Mittel zur Erzeugung eines parallel zum Strahlungsempfänger (3) fließenden Mindeststroms8. Variable resistor according to claim 7, which also means that means for generating a minimum current flowing parallel to the radiation receiver (3)
(Im) vorgesehen sind.(I m ) are provided.
9. Veränderbarer Widerstand nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass dem Strahlungsempfänger (3) ein ohmscher Widerstand (R2) parallelgeschaltet ist.9. Variable resistor according to one of claims 1 to 6, d a d u r c h g e k e n n z e i c h n e t that the radiation receiver (3), an ohmic resistor (R2) is connected in parallel.
10. Veränderbarer Widerstand nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, dass der Strahlungsempfänger (3) in Darlington-Schaltung ausgeführt ist. 10. Variable resistor according to one of claims 1 to 9, d a d u r c h g e k e n n z e i c h n e t that the radiation receiver (3) is designed in Darlington circuit.
PCT/DE2000/002072 1999-08-30 2000-06-26 Changeable resistance WO2001016967A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19941108.5 1999-08-30
DE19941111.5 1999-08-30
DE1999141108 DE19941108A1 (en) 1999-08-30 1999-08-30 Electrical safety switch with auxiliary contact coupled to opto-electrical detector to activate indicator
DE1999141111 DE19941111A1 (en) 1999-08-30 1999-08-30 Electrical safety switch, has auxiliary contact coupled to opto electronic status detector
DE19944025A DE19944025A1 (en) 1999-09-14 1999-09-14 Bipole-type variable resistance
DE19944025.5 1999-09-14

Publications (1)

Publication Number Publication Date
WO2001016967A1 true WO2001016967A1 (en) 2001-03-08

Family

ID=27219277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002072 WO2001016967A1 (en) 1999-08-30 2000-06-26 Changeable resistance

Country Status (1)

Country Link
WO (1) WO2001016967A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137428A (en) * 1977-10-27 1979-01-30 Bell Telephone Laboratories, Incorporated Optically actuated bidirectional semiconductor switch
WO1986000446A1 (en) * 1984-06-18 1986-01-16 Amp Incorporated Touch input device
US5383082A (en) * 1991-05-15 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Overcurrent protector for power element
US5841428A (en) * 1993-11-05 1998-11-24 Intertactile Technologies Corporation Rotary circuit control devices with changeable graphics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137428A (en) * 1977-10-27 1979-01-30 Bell Telephone Laboratories, Incorporated Optically actuated bidirectional semiconductor switch
WO1986000446A1 (en) * 1984-06-18 1986-01-16 Amp Incorporated Touch input device
US5383082A (en) * 1991-05-15 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Overcurrent protector for power element
US5841428A (en) * 1993-11-05 1998-11-24 Intertactile Technologies Corporation Rotary circuit control devices with changeable graphics

Similar Documents

Publication Publication Date Title
DE19614354C2 (en) Control circuit for a MOS gate-controlled power semiconductor circuit
DE4206072C2 (en) Circuit for detecting the blowout of a fuse
DE3019235C2 (en) Circuit for resetting bistable circuits
EP0025913A2 (en) Safety circuit for the surveillance of magnetic valves in vehicles
DE2527520B1 (en) Optoelectronic switching element
EP2159935B1 (en) Optoelectronic device with a built-in safety device
EP0166125A1 (en) Electronic switching device, preferably operating without making contact
WO2001016967A1 (en) Changeable resistance
WO1994013078A1 (en) Circuit arrangement for controlling a plurality of users, especially lamp ballasts
EP0674102A2 (en) Alternating current ignition with optimized electronic circuit
EP0755581A1 (en) Overvoltage protection
EP0468424A2 (en) Electronic switching apparatus with presence indicator
DE3412734C2 (en) Circuit arrangement for evaluating the impedance value, which is normally between a minimum value and a maximum value, of an indicator impedance connected on the input side
EP0212384B1 (en) Electronic switching apparatus, preferably operated without touching it
DE2812157C3 (en) Circuit arrangement for protecting electronic transmitting and receiving devices against overcurrent
DE19944025A1 (en) Bipole-type variable resistance
EP1323204B1 (en) Method for operating a fuel cell and a fuel cell arrangement
EP0193989A2 (en) Overvoltage protection circuit for a broadband line system
DE4330114A1 (en) Control circuitry for several discharge lamps - has central control unit with bus connector to ballasts with Zener diode overvoltage protection for transmit/receive branches
DE4233488C1 (en) Switch device monitoring circuit for proximity-controlled switch - uses fault and/or condition indicator detecting voltage across switch or measuring resistance to indicate fault or switch condition
DE3744751A1 (en) Output stage of an amplifier
DE2613929B2 (en) Circuit arrangement with a relay which has a normally open contact
DE3513883C2 (en)
DE2748292A1 (en) Signal transmission from input to output circuit - uses complete electric isolation of both circuits and their couplings by opto-electronic coupler
DE1948517C (en) Electrical measuring circuit for measuring physical quantities with a two-pole structure using transistors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase