WO2001069771A1 - Corps rotatif et moteur electrique quantique - Google Patents

Corps rotatif et moteur electrique quantique Download PDF

Info

Publication number
WO2001069771A1
WO2001069771A1 PCT/JP2001/001975 JP0101975W WO0169771A1 WO 2001069771 A1 WO2001069771 A1 WO 2001069771A1 JP 0101975 W JP0101975 W JP 0101975W WO 0169771 A1 WO0169771 A1 WO 0169771A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
electrons
rotor
rotating
alloy
Prior art date
Application number
PCT/JP2001/001975
Other languages
English (en)
French (fr)
Inventor
Isao Nakatani
Original Assignee
Japan Science And Technology Corporation
National Institute For Metals Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, National Institute For Metals Science filed Critical Japan Science And Technology Corporation
Priority to KR1020017014470A priority Critical patent/KR20020029862A/ko
Publication of WO2001069771A1 publication Critical patent/WO2001069771A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors

Definitions

  • the invention of this application relates to a rotating body and a quantum motor. More particularly, the invention of this application relates to a rotating body useful in various physics and equipment, and an electric motor using the rotating body as a rotor, and particularly to an electric motor as a rotation driving device for minute equipment. is there. Background art
  • Electromagnetic motors are relatively efficient, easy to handle and have good controllability. It can be used anywhere as long as it has a power supply.It can be made from large output to small, and there are various types with various characteristics. It is widely used from to factories.
  • the operating principle of such an electromagnetic motor is based on classical electromagnetic force.
  • a force acts in a direction perpendicular to each of the magnetic field direction and the current direction according to Fleming's left-hand rule. If the direction of the current is sequentially switched according to the rotation so as to maintain the same relative orientation relationship between the magnetic field and the current so that this force becomes a rotational force in a certain direction around the central axis, the same direction It is that rotation to continues.
  • Electromagnetic motors can be broadly divided into DC motors using a DC power supply and AC motors using an AC power supply.There are various types of AC motors, such as AC commutator motors, synchronous motors, and induction motors. Characteristics and uses.
  • the linear motor is a prime mover that performs linear motion instead of rotary motion, and is a type of AC motor.
  • the electromagnetic motor has various types and wide applications.
  • the generated power and efficiency become extremely small with the size, and it becomes impossible to obtain a practically usable driving force.
  • This is a type of size effect unique to electromagnetics.
  • a compensator for this was the Electrostatic Mode.
  • the electrostatic motor charges the stator and the rotor, and converts the electrostatic force (Coulomb force) that acts between them into rotary motion.
  • the electrostatic force When the size of the motor is large, the electrostatic force is weak compared to the previous electromagnetic force, so it cannot generate a large rotational force.However, when the size becomes small, a large rotational force is generated for the size compared to the electromagnetic motor. Can occur. Therefore, electrostatic motors are considered to be promising alternatives to electromagnetic motors as prime movers for micromachines.
  • an electrostatic motor must apply a high voltage to a small space, is not easily insulated, and requires an electronic circuit to alternately change the polarity of charging in accordance with rotation for driving. It has disadvantages such as having a complicated structure. Disclosure of the invention
  • the invention of this application was made in order to solve these problems of the conventional micromotor, and has a simple structure, a rotating body capable of constructing a new micromotor with low loss, and a rotating body.
  • the task is to provide the motor used.
  • the invention of this application solves the above-mentioned problems.
  • the number of electrons injected from one of the rotating surfaces of the rotating body and the number of electrons extracted from the other of the rotating body are the same, and A rotating body characterized by different degrees of polarization.
  • the invention of this application relates to the above-mentioned rotator, in which the injected electrons and the extracted electrons are non-spin-polarized electrons and spin-polarized electrons, respectively, or
  • a rotating body in which one of the rotating surfaces is a non-magnetic metal or alloy and the other is a magnetized ferromagnetic metal or alloy, and both are electrically connected.
  • a rotating body whose magnetized ferromagnetic alloy contains manganese as one of its components.
  • Fifth a rotating body. Provide a rotating body having a body diameter of not less than 0.01 m and not more than 4 mm.
  • the invention of this application is also directed to, in a sixth aspect, any one of the above-mentioned axisymmetric rotating bodies, the rotating body having a center of gravity as a fulcrum, and seventhly, a cantilevered bearing in the fulcrum.
  • the inner cylinder is a non-magnetic metal or alloy
  • the outer cylinder is a magnetized ferromagnetic metal or alloy
  • the ninth is a rotating body in which the inner cylinder and the outer cylinder are electrically connected.
  • the ninth is a rotating body in which current is injected from a cantilevered bearing and current is drawn from the outer peripheral surface of the rotating body. Provide body.
  • the present invention of the present application provides, in a tenth aspect, a quantum motor using any one of the above rotating bodies as a rotor, and in a first aspect, a rotating body is disposed in a gas discharge region, and in a discharge plasma, To provide a quantum motor in which electrons are emitted.
  • the invention of this application provides a micro-rotating body based on a new principle and a basic configuration of a motor using the same. That is, the microrotator according to the invention of this application and the electric motor using the same are means for converting the quantum mechanical spin angular momentum of electrons carried by current into the classical mechanical rotational angular momentum of the rotor. By inputting static energy, it is possible to obtain the rotational motion and torque of the rotor by quantum mechanical action. Since this effect is a quantum mechanical effect, it exhibits the characteristic advantages of lower loss and higher efficiency compared to conventional electromagnetic motors / electrostatic motors, especially when the size of the motor is reduced. .
  • the quantum motor according to the invention of this application is used as power for a micromachine. BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 is a schematic diagram showing the principle of a quantum motor.
  • FIG. 2 is a cross-sectional view of a Maxwell spin-type spin-filled rotator.
  • FIG. 3 is a schematic diagram showing an embodiment of the quantum motor.
  • Electron has charge e and spin angular momentum
  • a disk made of a nonmagnetic material such as copper or gold (2) and a magnetic disk made of a magnetized ferromagnetic metal or alloy (3) are electrically and mechanically joined at the joint surface (4) .
  • the non-magnetic disk (2) is also electrically and mechanically joined to the non-magnetic material rotation axis (1), and the magnetic disk (3) is made of the same type of magnetic material magnetized in the same direction.
  • the shaft (6) is supported at the fulcrum (5), and both are electrically connected while sliding. The direction of their magnetization is as shown by the arrow (7).
  • the magnetic disk (3) and the shaft (6) of the magnetized ferromagnetic metal or alloy are made of a ferromagnetic metal such as iron, nickel, or cobalt or a ferromagnetic alloy containing them as components.
  • the magnetized state may be maintained by continuously adding magnetic material.
  • pre-magnetized conductive materials such as Alnico alloy, ESD magnet alloy, Mn-A1 alloy, Sm-Co alloy, and Nd_Fe-B alloy Permanent magnet alloy may be used.
  • a DC current is passed from the magnetic material axis (6) to the nonmagnetic material rotation axis (1).
  • the free electrons (8) as charge carriers flow from the non-magnetic rotating shaft (1) side along the path (9) shown in the figure, and the non-magnetic disk (2), the joining surface (4) Then, it passes through the magnetic disk (3) and exits toward the axis (6) of the magnetic substance.
  • the electrons (8) flowing from the nonmagnetic rotating shaft (1) have different spin directions as schematically indicated by arrows.
  • Such electrons are called unpolarized electrons.
  • the unpolarized electron (8) passes through the junction (4) between the nonmagnetic disk (2) and the magnetic disk (3), its spin direction is opposite to the magnetization direction of the magnetic material (7). And exits from the magnetic body axis (6) with the spin directions aligned.
  • Such electrons are called polarized electrons.
  • not all electrons are polarized only a certain percentage of electrons are polarized.
  • the proportion of polarized electrons is called the spin polarization P, and is defined by
  • N is the total number of electrons
  • n- is the number of electrons having a spin opposite to the magnetization
  • n- is the number of electrons having the same spin as the magnetization.
  • P has a fixed value for each magnetic material, for example, about 0.4 for iron, about 0.3 for nickel, or about 1.0 for manganese alloys. In other words, iron has a 7: 3 ratio and manganese alloy has all the electrons.
  • FIG. 2 is a cross-sectional view of a rotor exemplified as a configuration for rationally realizing such a principle.
  • the rotor is made by hollowing out the inside of a magnetic rotor (3 A) made of, for example, a ⁇ -A1 alloy magnet magnetized in the direction of the arrow (7).
  • the inner cylinder of copper nonmagnetic material (2A) is cut in a conical shape so that the top is located at the center of gravity G of the entire rotor, and is supported by a sharp needle such as a tungsten needle (1A).
  • a sharp needle such as a tungsten needle (1A).
  • the fulcrum (1 2) of the rotor is formed, it is also a contact point for current.
  • a rotating body whose fulcrum and center of gravity coincide with each other has been known for a long time as Max-Pell's top, but in the invention of this application, the rotor has a structure of Max-Pell's top, so that a cantilevered bearing provides stable It allows rotation.
  • electrons are introduced from the current introduction terminal (14) connected to the tungsten needle (1A), the tungsten needle (1A), the fulcrum (12), the non-magnetic body cylinder (2A), and the magnetic material rotating. After passing through the rotor (3A), it is derived from the surface of the magnetic rotor (3A) to the plasma atmosphere described below as shown by the arrow (15).
  • FIG. 3 is a schematic diagram showing one embodiment of a quantum motor incorporating a Maxwell top rotor.
  • Maxwell's top rotor (16) and the tungsten needle (1A) supporting it are installed in a vacuum vessel (17) and passed through an insulated vacuum flange to supply current (14). ) Are electrically connected.
  • the vacuum vessel (17) is evacuated from the vacuum exhaust pipe (2 2) while adjusting the exhaust speed with the vacuum valve (2 1), and at the same time, the flow rate adjusting valve (2 3) from the gas inlet pipe (2 4). While adjusting the flow rate by, for example, introducing argon gas,
  • V0 is preferably 100 to 100 V.
  • the ground shield (20) is a metal cylinder that surrounds the tungsten needle (1A) and is kept at the same potential as the vacuum vessel, so that plasma generation is limited only to the periphery of the rotor (16). Play a role in determining
  • Fig. 2 shows a configuration of Maxwell's top-type spin-filled rotator.
  • a non-magnetic cylindrical body made of electrolytic copper (2 A) has a conical end with a 90 ° apex angle of 0.38 mm in diameter and a 0.98 mm deep hole along its central axis.
  • the fulcrum (1 2) as the vertex of the cone at the end of the hole was the center of gravity G of the entire rotor (3A).
  • the fabrication was performed by the electric discharge machining method and the precision grinding method. After assembling the spin-filled rotor, it was sandwiched between opposing electrode pieces of an electromagnet, and a magnetic field of 2 M AZm was applied to magnetize it in the direction indicated by the magnetization vector arrow (7).
  • a 200-nm-diameter tan stainless needle (1 A) with a sharp-polished tip by electropolishing and gold plating was used.
  • the entire quantum motor has the structure shown in Fig. 3. That is, a spin-filled trochanter (16) is placed in a small vacuum vessel (50) having a glass bell jar with an inner diameter of 50 mm. 7), argon gas was introduced into the vacuum vessel in the same manner as described above, and the pressure was adjusted to about 10 Pa while evacuating with a vacuum pump. The entire vacuum vessel was grounded, and a voltage of 122 V was applied to the electric current introduction terminal (14). As a result, a pale reddish purple argon gas plasma (19) was generated in the vacuum vessel, a current of 2 mA flowed, and the rotor started rotating.
  • the argon gas plasma is particularly affected by the lines of magnetic force generated by the magnetized spin filter rotor, and has a high density at the center of the rotor, generating a light red-purple ring at the center of the rotor.
  • the rotation of the rotator can be easily seen through the movement of the ring of light. The rotation continued for several seconds with acceleration, reaching about 20 rpm.
  • a configuration of a micromotor having a simple structure and low loss is also possible.
  • a rotating body having a quantum mechanical action and an electric motor using the same are provided.

Description

明 細 書 回転体と量子電動機 技術分野
この出願の発明は、 回転体と量子電動機に関するものである。 されに詳し くは、 この出願の発明は、 各種の物理、 機材器機において有用な回転体、 そ してこの回転体を回転子とする電動機、 特に微小機材の回転駆動装置として の電動機に関するものである。 背景技術
従来、 電気モーターと呼ばれているものは、 電流を流して電磁力により回 転駆動力を得るもので、 電気エネルギーを機械的にエネルギーに変換する電 磁動力装置である。 そのためこれを電磁モーターと呼ぶのが適切である。 電 磁モーターは比較的効率が高く、 取り扱いやすい上に制御性もよい。 電源さ えあればどこでも手軽に使用することができ、 大出力のものから、 小型のも のまで作ることができる上、 種種の特性をもつ色々な形式のものがあり、 用 途が広く、 家庭から工場まで広範囲にわたって使用されている。
このような電磁モーターの動作原理は、 古典的な電磁力に基づくものであ る。 すなわち、 磁界の中で、 磁界と直角方向に電流を流すと、 フレミングの 左手の法則により、 磁界の向きと電流の向きのそれぞれに直角向きに力が働 く。 この力を中心軸の周りの一定方向の回転力となるように、 磁界と電流の 相対的な向き関係を同一に保つように電流の向きを順次回転に応じて切り替 えるようにすると、 同一方向への回転が続くというものである。
電磁モーターには、 直流の電源を用いる直流電動機、 交流の電源を用いる 交流電動機に大きく分けられるが、 交流電動機には交流整流子電動機、 同期 電動機、 誘導電動機など色々の種類ものがあり、 それぞれ異なった特性と用 途を有している。 またリニアモー夕一は、 回転運動ではなく、 直線運動をす る原動機であり、 交流電動機の一種である。
このように種々の形式と広い用途をもつ電磁モーターであるが、 マイクロ マシンの動力のためにマイクロ電磁モーターを作ろうとすると、発生する力、 及び効率はサイズと共に極端に小さくなり、 実用に耐える駆動力が得られな くなつてくる。 これは一種の電磁気学特有のサイズ効果である。
それを補うものとして登場したのが静電モー夕一である。 静電モー夕一は 固定子と回転子を帯電させ、 その間に働く静電気力 (クーロン力) を回転運 動に変えるものである。 モーターのサイズが大きいときには、 静電力は先の 電磁力に比べると微弱なので、 大きな回転力を発生し得ないが、 サイズが小 さくなつたときサイズの割に電磁モーターに比べて大きな回転力を発生する ことができるようになる。 そのため、 静電モー夕一はマイクロマシンの原動 機として、 電磁モ一夕一に代わって有望であると考えられている。
しかしながら、 静電モーターは小さな空間に高い電圧をかけなくてはなら ず、 絶縁が容易でなく、 また、 駆動のために、 帯電の極性を回転に合わせて 交番的に変えていく電子回路を必要とするなど、 複雑な構造を有しているな ど欠点を有している。 発明の開示
この出願の発明は、 これら従来の微小電動機の問題を解決するために創案 されたものであり、 簡単な構造を有し、 損失の少ない新しい微小電動機の構 成も可能とする回転体とこれを用いた電動機を提供することを課題としてい る。
この出願の発明は、 上記の課題を解決するものとして第 1 には、 回転体に おいて回転面の一方から注入される電子と、 回転体の他方から引き出される 電子がそれぞれ同数で、 かつスピン偏極の度合いが異なることを特徴とする 回転体を提供する。
そして、 この出願の発明は上記回転体について、 第 2には、 注入される'電 子と引き出される電子が、 各々、 スピン偏極していない電子とスピン偏極し た電子であるか、 もしくはその逆である回転体を、 第 3には、 回転面の一方 が非磁性金属または合金であり、 他方が磁化された強磁性金属または合金で あって、 両者が電気的に接合されている回転体を、 第 4には、 磁化された強 磁性合金がその成分の一つとしてマンガンを含む回転体を、 第 5には、 回転 体の直径が 0 . 0 1 m以上、 4 mm以下である回転体を提供する。
また、 この出願の発明は、 第 6には、 軸対称の前記いずれかの回転体であ つて、 その重心が支点とされている回転体を、 第 7には、 支点において片持 ち式軸受けで支持される回転体を提供し、 第 8には、 軸対称の回転体におい て、 内筒が非磁性金属または合金であり、 その外筒が磁化された強磁性金属 または合金であるかまたはその逆であり、 内筒と外筒の電気的に接合されて いる回転体を、 第 9には片持ち式軸受けから電流が注入され、 回転体の外周 表面から電流が引き出されるようにした回転体を提供する。
さらに、 この出願の発明は第 1 0には、 以上いずれかの回転体を回転子と する量子電動機を提供し、 第 1 1には、 回転体がガス放電域に配置され、 放 電プラズマ内に電子が放出されるようにした量子電動機を提供する。
以上のとおりのこの出願の発明は新しい原理による微小回転体とこれを用 いた電動機の基本構成を提供するものである。 すなわちこの出願の発明によ る微小回転体とこれを用いた電動機は、 電流により運ばれる電子の量子力学 的スピン角運動量を回転子の古典力学的回転角運動量に変換する手段であつ て、 電気的エネルギーを入れることにより、 量子力学的作用により回転子の 回転運動とトルクを得ることができるようにしたものである。 この作用は量 子力学的作用であるため、 特に電動機のサイズを小さくしたとき、 従来の電 磁電動機ゃ静電電動機に対して、 損失が小さく、 効率が高いという特徴的優 位性を発揮する。 この出願の発明による量子電動機は微小機械の動力として 利用されることになる。 図面の簡単な説明
図 1は、 量子電動機の原理を示す概略図である。
図 2は、 マックスウェルのこま型スピンフィル夕回転子の断面図である。 図 3は、 量子電動機の有実施形態を示す概略図である。
なお、 図中の符号は、 次のものを示している。
1 回転軸
2 非磁性体円盤
3 磁性体円盤 5 支点
6 磁性体軸
7 磁化ベク トル矢印
8 電子
9 電子流れの経路
1 0 スピン偏極電子
1 1 回転方向
1 A タングステン針
2 A 非磁性体円筒
3 A 磁性体回転子
1 2 回転子の支点
1 3 スピン無偏極電子電流
1 4 電流導入端子
1 5 スピン偏極電子電流
1 6 マックスウェルのこま型スピンフィルタ回転子
1 7 ガラス製真空容器
1 8 減圧した不活性ガス雰囲気
1 9 放電プラズマ
2 0 アースシールド
2 1 コンダクタンス調節バルブ
2 2 真空排気口
2 3 不活性ガス流量調節バルブ
2 4 不活性ガス導入口
2 5 接地端子 発明を実施するための最良の課題
以下に、 詳しく この出願の発明の原理とこの原理に基づく回転体とこれを 用いた量子電動機について説明する。
電子は電荷 eとスピン角運動量
斗 S をもつ素粒子である。 電子の量子力学的物理量のスピン角運動量が磁気の根 元であり、 同時にスピン角運動量は古典力学の剛体の角運動量 Lと等価であ ることが 1 9 1 5年 A. E ins t e i nと W. J. e Haasにより理論的並びに実験的に示 された。 それより以前に、 Neu t onによる古典力学では角運動量保存則が知ら れており、 天体を含むすべての力学系で角運動量は保存されることが知られ ている。 すなわち、 角運動量保存則は量子力学的な電子のスピン角運動量を 含めて保存されるということが、 先の E i ns t e i nと de Haas が主張するところ であり次式において全角運動量 M
M= L + ή S ( l )
が一定に保たれる訳である。
これまで、 アインシユタイン、 ド ·ハース効果と呼ばれるこの効果は電子 の磁気回転比を測定する物理的手段として甩いられていたが、 これを原動機 の回転機動力に応用する試みはなされていなかった。 その理由は通常の巨視 的な大きさをもつ機械系に応用したのでは、 発生できるトルクがありまにも 小さく、 実用性が期待できなかったからである。
しかしながら、 この出願の発明者は、 微細加工技術を研究する中で、 電子 のスピン角運動量を用いた電動機はそのサイズが微小機械のように極端に小 さくなつたとき、 サイズの割に大きな回転角運動量を発生することができ、 実用可能な範囲は難易になることを究明した。 いうなればこれは機械系にお けるサイズ効果である。 さらに最近、 磁性体物理学において非磁性体と磁性 体、 あるいは半導体と磁性体の接合面で電子スピンのフィルタ効果が発見さ れるに及んで、 この出願の発明によって電子のスピン角運動量を力学系に応 用することが可能となった。 この出願の発明は以上の経緯から構成されたも のである。
まず、 この出願の発明の量子電動機の原理を図 1の模式図に基づいて説明 する。 銅や金などの非磁性体でできた円盤 ( 2) と磁化された強磁性の金属 あるいは合金の磁性体円盤 (3) が接合面 (4) で電気的並びに機械的に接 合されている。 また非磁性体円盤 (2 ) には同じく非磁性体の回転軸 ( 1 ) で電気的並びに機械的に接合され、 また磁性体円盤 ( 3) は同じ向きに磁化 された同種の磁性体でできた軸 (6) により支点 ( 5) で支えられ、 両者は 摺動しながら電気的に接合されている。 それらの磁化の向きは矢印 (7 ) で 示すとおりとする。 磁化された強磁性金属あるいは合金の磁性体円盤 ( 3) 並びに軸 (6) は鉄、 ニッケル、 コバルト等の強磁性の金属あるいはそれら を成分に含む強磁性合金製とし、 これらは、 外部から磁界を加え続けて磁化 状態を保持するようにしてもよいが、 アルニコ合金、 E S D磁石合金、 Mn — A 1合金、 Sm— C o合金、 N d _ F e— B合金などの予め着磁した導電 性永久磁石合金としてもよい。 このような系において磁性体の軸 (6) 側か ら非磁性体回転軸 ( 1 ) の向きに直流電流を流す。 すると、 電荷担体として の自由電子 (8) は図中に示した経路 ( 9) に沿って非磁性体回転軸 ( 1 ) 側から流入し、 非磁性体円盤 (2)、 接合面 (4)、 磁性体円盤 (3) をそれ ぞれ経由し、 磁性体の軸 (6) 側に出ていくことになる。 このとき、 非磁性 体回転軸 ( 1 ) から流入する電子 (8) はそのスピンの向きは矢印で模式的 に示すとおりばらばらである。このような電子は無偏極電子と呼ばれている。 無偏極電子 (8) は非磁性体円盤 (2 ) と磁性体円盤 (3) の接合面 (4) を通過するとき、 そのスピンの向きが磁性体の磁化の向き ( 7) と反対向き に変換され、 スピンの向きが整列した状態で磁性体軸 (6) から系外に出て いく。 このような電子は偏極電子と呼ばれている。 このときすべての電子が 偏極されるわけではなく、 一定割合の電子だけが偏極する。 偏極電子の割合 はスピン偏極度 Pと呼ばれ、 次式で定義される
P = (n+ ― n " ) / N (2)
n + > n ' (3) ここで Nは全電子数、 n-は磁化と反対向きのスピンをもつ電子数、 n-は 磁化と同一向きのスピンをもつ電子数である。 Pはそれぞれの磁性体毎に決まった値をもち、 例えば鉄では約 0. 4、 二 ッケルでは約 0. 3、 またはマンガン合金では約 1. 0である。 すなわち鉄 では 7 : 3の割合で揃っており、 またマンガン合金では全電子がそろってい る。
その結果、 電子スピン系でスピン角運動量の不均衡分が発生し、 自由に回 転するように支えられた回転系において、 式 ( 1 ) により、 全角運動量 Mを 一定にするため。 力学的な角運動 Lが不均衡分をうち消すよう有限な値をと り、 回転系は矢印 ( 1 1 ) で示した向きに回転駆動力を得ることになる。 図 2は、 このような原理を合理的に実現するために構成として例示された 回転子の断面図である。 回転子は矢印 ( 7) の向きに着磁した例えば Μη— A 1合金磁石からなる磁性体回転子 (3 A) の内部をく りぬいて、 例えば銅 製の非磁性体内筒 ( 2 A) をはめ込み、 両者の界面が非磁性体と磁性体の接 合を形成しているようにする。 また銅製の非磁性体の内筒 ( 2 A) は頂点が 回転子全体の重心点 Gになるように内部が円錐形にく りぬかれ、 先鋭な例え ばタングステン針 ( 1 A) で支えられ、 回転子の支点 ( 1 2) を形成すると 同時に電流の接点となっている。 支点と重心点が一致した回転体はマックス ゥエルの独楽として古くから公知であるが、 この出願の発明では回転子をマ ックスゥエルの独楽の構造とすることにより、 片持ち式軸受けで安定した高 速回転を可能としだものである。 一方、 電子はタングステン針 ( 1 A) に接 続した電流導入端子( 1 4) から導入され、 タングステン針( 1 A)、 支点 ( 1 2 )、 非磁性体内筒 (2 A)、 磁性体回転子 (3 A) を経由し、 磁性体回転子 ( 3 A) の表面から次に述べるプラズマ雰囲気に矢印 ( 1 5) で示すとおり 導出される。
図 3はマックスウェルの独楽型回転子を組み込んだ量子電動機の一実施形 態を示した略図である。 マックスウェルの独楽型回転子 ( 1 6)、 並びにそれ を支えたタングステン針 ( 1 A) は、 真空容器 ( 1 7) の中に設置され、 絶 縁した真空フランジを経て電流導入端子( 1 4)に電気的に接続されている。 真空容器 ( 1 7 ) は真空バルブ ( 2 1 ) により排気速さを調節しながら真空 排気管 (2 2) から真空に排気し、 同時にガス導入管 (2 4) から流量調節 バルブ (2 3) により流量を調節しながら例えばアルゴンガスを導入し、 真
フ 空容器 ( 1 7 ) 内のアルゴンガスの圧力を 0. 1〜 1 0 O P aの範囲に調節 する。 真空容器 ( 1 7 ) 全体は接地端子 ( 2 5) により接地され零電位に保 たれている。 この構成において、 電流導入端子 ( 1 4) に負の電圧一 V0 を 印加すると、 回転子 ( 1 6) を取り囲んでアルゴンガスプラズマ ( 1 9 ) が 発生する。 なお V0 〖ま 1 0 0〜 1 0 0 0 Vが適当である。 なおアースシール ド (2 0 ) はタングステン針 ( 1 A) を取り囲み、 真空容器と等電位に保た れた金属製の円筒であり、 プラズマの発生を回転子 ( 1 6 ) の周辺だけに限 定する役目を担っている。
そこで以下に実施例を示し、さらに詳しくこの発明について例示説明する。 もちろん、 この出願の発明は以上の例示説明に限定されることはない。 そ の具体的形態についてさらに様々に可能とされる。 実 施 例
マックスウェルの独楽型スピンフィル夕回転子を図 2に例示した構成とし た
すなわち、 直径 1. Omm、 長さ 1. 5 mmの M n— A 1磁石合金 (密度は 5. 5 gZ c c ) の磁性体回転子 ( 3 A) に、 直径 0. 5 mm、 深さ 1 · 2 5mmの孔を設け、 その孔に外径 0. 5 mm、 長さ 1. 2 5mmの高純度の 電解銅製の非磁性体内筒 (2 A) をぴったりとはめ込んで固定した。 なお電 解銅製の非磁性体内筒 ( 2 A) その中心軸に沿って頂角が 9 0 ° の円錐形の 終端をもつ直径 0. 3 8 mmの深さ 0. 9 8 mmの孔がく りぬかれており、 孔の終端の円錐形の頂点としての支点 ( 1 2 ) が回転子 ( 3 A) 全体の重心 Gになるように寸法を決めた。 なお作製は放電加工法と精密研削法により行 つた。 スピンフィル夕回転子を組み立てた後、 それを電磁石の対向した電極 片の間に挾み込み、 2 M AZmの磁界をかけて、 磁化ベクトルの矢印 ( 7) で示した向きに着磁した。 スピン無偏極電子エミッ夕回転軸受けには電解研 磨法により先端を鋭利に研磨し、 金メッキを施した直径 2 0 0 nmのタンヴ ステン針 ( 1 A) を用いた。
量子電動機全体は図 3に示した構造とした。 すなわち、 スピンフィル夕回 転子( 1 6 )を内径 5 0 mmのガラス製ベルジャーをもつ小型の真空容器( 1 7 ) 内に設置し、 前記のとおりの方法で、 真空容器内にアルゴンガスを導入 し、 真空ポンプで排気しながら圧力を約 1 0 P aに調節した。 また真空容器 全体を接地し、 電気流導入端子 ( 1 4 ) に一 2 2 0 Vの電圧をかけた。 以上 により、 真空容器内に淡赤紫色のアルゴンガスプラズマ ( 1 9 ) が発生し、 2 m Aの電流が流れ、 回転子は回転を始めた。 アルゴンガスプラズマは特に 磁化したスピンフィルタ回転子から生じる磁力線の影響を受け回転子の中央 部分で密度が高く、 回転子の中央に淡赤紫色の光の輪が発生する。 回転子の 回転はその光の輪の運動を通して、 容易に目視することができる。 回転は加 速しながら数秒間継続し、 約 2 0 r p mに達した。 産業上の利用可能性
以上詳しく説明したとおり、この出願の発明によって、簡単な構造を有し、 損失の少ない微小電動機の構成も可能とされる。 量子力学的作用を奏する回 転体とそれを用いた電動機が提供される。

Claims

請求の範囲
1 . 回転体において回転面の一方から注入される電子と、 回転面の他方か ら引き出される電子がそれぞれ同数で、 かつスピン偏極の度合いが異なるこ とを特徴とする回転体。
2 . 注入される電子と引き出される電子が、 各々、 スピン偏極していない 電子とスピン偏極した電子であるか、 もしくはその逆であることを特徴とす る回転体。
3 . 回転体において回転面の一方が非磁性体金属または合金であり、 回転 面の他方の側が磁化された強磁性金属または合金であり、 両者が電機的に接 合されていることを特徵とする請求項 1または 2の回転体。
4 . 磁化された強磁性合金が成分の一つとしてマンガンを含むことを特徴 とする請求項 3の回転体。
5 . 回転体の直径が 0 . 0 以上、 4 m m以下であることを特徵とす る請求項 1ないし 4のいずれかの回転体。
6 . 軸対称の回転体であって、 その重心が支点とされていることを特徴と する請求項 1ないし 5のいずれかの回転体。
7 . 支点において片持ち式軸受けで支持されることを特徴とする請求項 6 の回転体。
8 . 請求項 5または 6の軸対称の回転体において、 内筒が非磁性金属また は合金で、 それを包む外筒が磁化された強磁性金属または合金であるか、 あ るいはその逆であって、 内筒と外筒の両者が電気的に接合されていることを 特徵とする回転体。
9 . 請求項 7の軸対称の回転体において、 片持ち式軸受けから電流が注入 され、 回転体の外周表面から電流が引き出されるようにしたことを特徴とす る回転体。
1 0 . 請求項 1ないし 9のいずれかの回転体を回転子とすることを特徴と する量子電動機。
請求項 9の回転体を回転子とする量子電動機であって、 回転体をガス放領域 内に設け、 放電プラズマ内に電子が放出されるようにしたことを特徴とする
11
PCT/JP2001/001975 2000-03-15 2001-03-13 Corps rotatif et moteur electrique quantique WO2001069771A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020017014470A KR20020029862A (ko) 2000-03-15 2001-03-13 회전체와 양자 전동기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000073091A JP2001268957A (ja) 2000-03-15 2000-03-15 回転体と量子電動機
JP2000-73091 2000-03-15

Publications (1)

Publication Number Publication Date
WO2001069771A1 true WO2001069771A1 (fr) 2001-09-20

Family

ID=18591395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001975 WO2001069771A1 (fr) 2000-03-15 2001-03-13 Corps rotatif et moteur electrique quantique

Country Status (5)

Country Link
US (1) US20020158546A1 (ja)
JP (1) JP2001268957A (ja)
KR (1) KR20020029862A (ja)
TW (1) TW526633B (ja)
WO (1) WO2001069771A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133837B1 (en) 2000-06-29 2006-11-07 Barnes Jr Melvin L Method and apparatus for providing communication transmissions
US20100066216A1 (en) * 2007-01-11 2010-03-18 Toyota Jidosha Kabushiki Kaisha Quantum motor
FI20080438A0 (fi) 2008-07-15 2008-07-15 Abb Oy Menetelmä ja laitteisto laakerivirtojen mittaamiseksi sähkökoneessa
CN103892871B (zh) * 2014-04-17 2015-11-25 深圳大学 一种机械旋转式血管内超声探头
CN112636627B (zh) * 2020-12-07 2022-09-16 杭州电子科技大学 一种基于驻极体薄膜的静电电动机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314697A (ja) * 1999-04-28 2000-11-14 Fujitsu Ltd スピン偏極走査型トンネル顕微鏡

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314697A (ja) * 1999-04-28 2000-11-14 Fujitsu Ltd スピン偏極走査型トンネル顕微鏡

Also Published As

Publication number Publication date
KR20020029862A (ko) 2002-04-20
TW526633B (en) 2003-04-01
US20020158546A1 (en) 2002-10-31
JP2001268957A (ja) 2001-09-28

Similar Documents

Publication Publication Date Title
CA2095203A1 (en) Motor-generator using permanent magnet
US6392370B1 (en) Device and method of a back EMF permanent electromagnetic motor generator
US4064442A (en) Electric motor having permanent magnets and resonant circuit
US20050249324A1 (en) Rotating plasma current drive
US9627780B2 (en) System incorporating current path between conductive members
Xu et al. Realization of a diamagnetically levitating rotor driven by electrostatic field
Liu et al. Optimum pole number combination of a buried permanent magnet bearingless motor and test results at an output of 60 kW with a speed of 37000 r/min
KR20090018914A (ko) 단일 자속 경로를 이용한 전기 발생 장치
WO2001069771A1 (fr) Corps rotatif et moteur electrique quantique
US20090134719A1 (en) Electric motor containing ferromagnetic particles
Arai et al. Micromagnetic actuators
RU2546970C1 (ru) Униполярный генератор постоянного тока
US20090167258A1 (en) Magnetic torsion accelerator
US20120319517A1 (en) Efficient and powerful electric motor integrated with a generator
Wang et al. Enhanced performance of a rotary energy harvester with bipolar charged electrets
WO2022031155A1 (en) A motor / generator
JP2000324786A (ja) 複数分割磁性導体一体型単極誘導発電機
EP0086776A1 (en) Energy generation system having higher energy output than input
JP2004344544A (ja) 自発回転ゴマ及び自発回転ゴマの回転方法
CA2998594A1 (en) The zero point pulse electrical generator
Vajda et al. Analysing the characteristics of specific torque in HTS quasi-diamagnetic motor by variation of rotor blade geometry
Sreejith et al. Design of Miniature Motor for a Hybrid Gyroscope
US3256467A (en) Methods and arrangements to influence and control charges
Maleki et al. Homopolar micromotor with liquid metal rotor
CN1996740A (zh) 磁约束永磁体自旋基础技术

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WWE Wipo information: entry into national phase

Ref document number: 1020017014470

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09979030

Country of ref document: US