WO2002003481A1 - Three-port component - Google Patents

Three-port component Download PDF

Info

Publication number
WO2002003481A1
WO2002003481A1 PCT/EP2001/007143 EP0107143W WO0203481A1 WO 2002003481 A1 WO2002003481 A1 WO 2002003481A1 EP 0107143 W EP0107143 W EP 0107143W WO 0203481 A1 WO0203481 A1 WO 0203481A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
tunnel
emitter
base
magnetic
Prior art date
Application number
PCT/EP2001/007143
Other languages
German (de)
French (fr)
Inventor
Hermann Kohlstedt
Simon Stein
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2002003481A1 publication Critical patent/WO2002003481A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a three-port component, in particular a spin injection transistor, having an emitter, a collector and a base.
  • ferroelectric and magnetoresistive memory technologies are currently being developed with great effort, the perspective of which is not to use the supply voltage-dependent DRAM (Dynamic Random Access Memory) volatile memory module, referred to as "FRAM” (Ferroelectric Random Access Memory) or “MRAM” (Magnetic Random Access Memory) to replace.
  • DRAM Dynamic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • AMR anisotropic magneto resistance
  • GMR Giant Magneto Resistance
  • a third candidate for MRAMs are magnetic tunnel contacts. They consist of two ferromagnetic layers separated by a thin tunnel insulation layer.
  • tunnel resistance Tunnel Magneto Resistance
  • Magneto-resistance ⁇ R / R were below 1%.
  • the object of the invention is therefore to create a three-port component and in particular a spin transistor with which high resistances and fast switching times can be achieved.
  • the collector and the base are ferromagnetic layers, between which a tunnel insulation layer is arranged, and in that the emitter is formed by a ferromagnetic or non-magnetic layer which is separated from the collector by an intermediate tunnel insulation layer. layer is separated.
  • the invention is therefore based on the object of producing a three-port component based on a magnetic tunnel contact, the two ferromagnetic layers of which form the collector and the base, between which a tunnel insulation layer is arranged, and this tunnel contact around a further tunnel contact which forms the emitter , to expand.
  • Building a three Door component made of magnetic tunnel contacts offers the advantage that they have a high resistance compared to AMR or GMR elements and therefore have better compatibility with existing integrated half switch lines etc.
  • the three-port component can be optimized via the applied currents, their directions, the volume of the base electrode, the size of the tunnel contact areas, the resistances of the tunnel contacts and the directions of the magnetizations. It may also be possible to use a non-magnetic layer as an emitter.
  • Injection from a non-polarized layer should also lead to changes in the density of states in the base and bring about the desired effect of a change in voltage in the tunnel contact between the base and the collector.
  • Examples of the manner in which the tunnel contacts can be formed are disclosed in the unpublished German patent application 199 38 215.8, to which reference is made in full in this context.
  • FIG. 1 shows schematically and in perspective a three-gate device according to the present invention and FIG. 2 shows a schematic diagram of a three-port component according to FIG. 1 operating as a spin injection transistor (SIT).
  • SIT spin injection transistor
  • FIG. 1 shows a three-port magnetic component according to the present invention.
  • This three-port component which forms a spin injection transistor, consists of a plurality of layers arranged one above the other with three ferromagnetic layers 1, 2, 3, between which two tunnel insulation layers 4, 5 are arranged.
  • the lower ferromagnetic layer 3 forms the base
  • the middle ferromagnetic layer 2 the collector and the ferromagnetic layer located above the collector 3 the emitter 1 of the transistor, the collector 2, the emitter 1 and the base 3 through the tunnel insulation layers 4 , 5, which may consist of Al 2 0 3 , for example, are separated from one another.
  • the base 3, the collector 2 and the intermediate tunnel insulation layer 5 form a first tunnel contact and the emitter 1, the collector 2 and the intermediate tunnel insulation layer 4 form a second tunnel contact.
  • metallizations are applied to the emitter 1, the collector 2 and the base 3, via which the three-port component is electrically contacted.
  • the electrical contacting is implemented in the manner shown in FIG. 2 v via an external circuit. by means of which a voltage V can be applied via a battery 8 or the like to the metallizations on the first tunnel contact formed by the base 3, the collector 2 and the intermediate tunnel insulation layer 5.
  • current sources 6, 7 are present between emitter 1 and collector 3 on the one hand and base 3 and collector 2 on the other.
  • the magnetization is directed anti-parallel.
  • the first tunnel contact is thus in a high-resistance state.
  • the current flow of the spin-polarized charge carriers is directed from the base 3 to the collector 2, as indicated by the arrow D. If a current is also injected into the collector 2 through the second tunnel contact on the right in FIG. 2, which is formed by the emitter 1, the collector 2 and the intermediate tunnel insulation layer 4 (arrow E), there is a drastic change the population density at the Fermi edge of the collector 2, for both spin directions.
  • the occupation of states at the Fermi edge by the current from the emitter 1 into the collector leads to a reduction in the TMR effect in the second tunnel contact 1, 2, 4 and thus to a change in the voltage at the first tunnel contact 3, 2, 3 , 5.
  • the emitter-collector current thus controls' the voltage ⁇ ber the second tunnel junction 2, 3 4.
  • the spin injection transistor formed in this way can use the currents applied, their direction, the volume of the collector electrode 2, the size of the tunnel contact areas, the resistances of the two tunnel contacts 1, 2, 5; 2, 3, 4 and the directions of the magnetizations can be optimized. It may also be possible to use a non-magnetic layer as the emitter 1. Injection from a non-polarized layer should also lead to changes in the density of states in the collector 3 and bring about the desired effect of a voltage change in the first tunnel contact 1, 2, 5.

Abstract

The invention relates to a three-port component comprising an emitter (1), a collector (2) and a base (3). Said component is characterised in that the collector (2) and the base (3) are ferromagnetic layers between which a tunnel insulating layer (4) is arranged, and the emitter (1) consists of a ferromagnetic or non-magnetic layer which is separated from the collector (2) by means of a tunnel insulating layer (5).

Description

Beschreibung:Description:
DreitorbauelementDreitorbauelement
Die vorliegende Erfindung betrifft ein Dreitorbauelement, insbesondere einen Spininjektionstransistor, mit einem Emitter, einem Kollektor und einer Basis.The present invention relates to a three-port component, in particular a spin injection transistor, having an emitter, a collector and a base.
Dreitorbauelemente und hier insbesondere Transistoren werden in unterschiedlichen Bereichen eingesetzt. Vor allen Dingen im Computerbereich ist der Bedarf nach schnellen Schaltern aufgrund der erheblichen Verringerungen in der Baugröße und der ständig wachsenden Geschwindigkeiten erheblich. Aus diesem Grund gibt es eine Reihe von Entwicklungsansätzen für schnell arbeitende Transistoren. In dem Artikel "Tunneling Hot Electron Transfer Amplifiers (THETA)" von M. Heiblum, Solid State Electronics, 24, 343 (1981) sind beispielsweise eine Reihe von Metalltransi- sotren mit nichtmagnetischen Schichten beschrieben.Three-port components and here in particular transistors are used in different areas. Above all in the computer area, the need for fast switches is considerable due to the considerable reductions in size and the constantly increasing speeds. For this reason, there are a number of development approaches for fast-working transistors. For example, the article "Tunneling Hot Electron Transfer Amplifiers (THETA)" by M. Heiblum, Solid State Electronics, 24, 343 (1981) describes a number of metal transistors with non-magnetic layers.
Weiterhin werden derzeit mit großem Aufwand ferroelektri- sche und magnetoresistive Speichertechnoiogien entwik- kelt, deren Perspektive darin besteht, den versorgungs- spannungsabhängigen DRAM (Dynamic Random Access Memory) d.urch einen versorgungsspannungsunabhängigen, nicht flüchtigen Speicherbaustein, bezeichnet als "FRAM" (Ferroelectric Random Access Memory) bzw. "MRAM" (Magnetic Random Access Memory), zu ersetzen.Furthermore, ferroelectric and magnetoresistive memory technologies are currently being developed with great effort, the perspective of which is not to use the supply voltage-dependent DRAM (Dynamic Random Access Memory) volatile memory module, referred to as "FRAM" (Ferroelectric Random Access Memory) or "MRAM" (Magnetic Random Access Memory) to replace.
Für MRAMs kommen verschiedene magnetoresistive Effekte in Betracht. AMR- (Anisotrope Magneto Resistance) Speicher beruhen darauf, daß der Widerstand für elektrische Ströme parallel und senkrecht zur Magnetisierungsrichtung eines Leitermaterials verschieden ist. Das GMR-(Giant Magneto Resistance) Speicherkonzept beruht auf dem Riesen-Magneto- Widerstandseffekt, welcher in Schichtstapeln, bestehend aus alternierend angeordneten nanometerdünnen magnetischen Schichten (z.B. aus Kobalt) und nichtmagnetischen Schichten (z.B. aus Kupfer), auftritt. Ein dritter Kandidat für MRAMs sind magnetische Tunnelkontakte. Sie bestehen aus zwei ferromagnetischen Schichten, die von einer dünnen Tunnelisolationsschicht getrennt sind.Various magnetoresistive effects come into consideration for MRAMs. AMR (anisotropic magneto resistance) memories are based on the fact that the resistance for electrical currents differs parallel and perpendicular to the direction of magnetization of a conductor material. The GMR (Giant Magneto Resistance) storage concept is based on the giant magnetoresistance effect, which occurs in layer stacks consisting of alternatingly arranged nanometer-thin magnetic layers (e.g. made of cobalt) and non-magnetic layers (e.g. made of copper). A third candidate for MRAMs are magnetic tunnel contacts. They consist of two ferromagnetic layers separated by a thin tunnel insulation layer.
Die Wirkungsweise von magnetischen Tunnelkontakten beruht auf einer spinabhängigen Änderung des Tunnelwiderstands (TMR: Tunnel Magneto Resistance) für normal leitende Elektronen, dem eine Spinpolarisation der beteiligten magnetischen Schichten zugrunde liegt. Bis vor kurzem hatte dieser Effekt nur Grundlagencharakter, da die beim spinabhängigen Tunnel gemessenen relativen Änderungen desThe mode of operation of magnetic tunnel contacts is based on a spin-dependent change in tunnel resistance (TMR: Tunnel Magneto Resistance) for normally conductive electrons, which is based on a spin polarization of the magnetic layers involved. Until recently, this effect was only of a basic nature, since the relative changes in the measured in the spin-dependent tunnel
Magneto-Widerstandes ΔR/R unter 1 % lagen. Die Situation änderte sich 1995, nachdem T. Miyazaki et al in "Giant magnetic Tunneling effect in Fe/Al203//Fe junction", j. Magn. Magn. Mater. 139, L231 (1995) von magnetischen Tun- nelkontakten mit Werten um ΔR/R > 18 % bei Raumtemperatur berichteten.Magneto-resistance ΔR / R were below 1%. The situation changed in 1995 after T. Miyazaki et al in "Giant magnetic tunneling effect in Fe / Al 2 0 3 / / Fe junction", j. Magn. Magn. Mater. 139, L231 (1995) of magnetic tuners reported contacts with values around ΔR / R> 18% at room temperature.
M. Johnson hat in "The all-metal spin transistor", IEEE Spectrum May 1994, 47 bereits eine mögliche Realisierung eines Spintransistors auf der Basis des GMR-Effektes beschrieben. In diesem Fall sind jedoch die absoluten Widerstände (einige μOhm) sehr klein und für Anwendungen kaum anwendbar.In "The all-metal spin transistor", IEEE Spectrum May 1994, 47, M. Johnson has already described a possible implementation of a spin transistor based on the GMR effect. In this case, however, the absolute resistances (a few μOhm) are very small and can hardly be used for applications.
Aufgabe der Erfindung ist es daher, ein Dreitorbauelement und insbesondere ein Spintransistor zu schaffen, mit dem hohe Widerstände und schnelle Schaltzeiten realisierbar sind.The object of the invention is therefore to create a three-port component and in particular a spin transistor with which high resistances and fast switching times can be achieved.
Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß der Kollektor und die Basis ferromagnetische Schichten sind, zwischen welchen eine Tunnel-lsolationsschicht angeordnet ist, und daß der Emitter von einer ferromagnetischen oder nichtmagnetischen Schicht gebildet wird, die von dem Kollektor durch eine dazwischenliegende Tunnel-Isolations- schicht getrennt ist.This object is achieved according to the invention in that the collector and the base are ferromagnetic layers, between which a tunnel insulation layer is arranged, and in that the emitter is formed by a ferromagnetic or non-magnetic layer which is separated from the collector by an intermediate tunnel insulation layer. layer is separated.
Der Erfindung liegt damit die Aufgabe zugrunde, ein Dreitorbauelement auf der Basis eines magnetischen Tunnelkontakts herzustellen, dessen beiden ferromagnetischen Schichten den Kollektor und die Basis bilden, zwischen welchen eine Tunnel-lsolationsschicht angeordnet ist, und diesen Tunnelkontakt um einen weiteren Tunnelkontakt, der den Emitter bildet, zu erweitern. Der Aufbau eines Drei- torbauelements aus magnetischen Tunnelkontakten bietet den Vorteil, daß sie im Vergleich zu AMR- oder GMR- Elementen hochohmig sind und daher eine bessere Kompatibilität mit bestehenden integrierten Halbschalterleitungen etc. aufweisen. Das Dreitorbauelement kann dabei über die angelegten Ströme, deren Richtungen, das Volumen der Basiselektrode, die Größe der Tunnelkontaktflächen, die Widerstände der Tunnelkontakte und die Richtungen der Magnetisierungen optimiert werden. Eventuell ist es auch möglich, eine nichtmagnetische Schicht als Emitter einzusetzen. Auch die Injektion aus einer nichtpolarisierten Schicht sollte zu Änderungen der Zustandsdichte in der Basis führen und den gewünschten Effekt einer Spannungsänderung im Tunnelkontakt zwischen Basis und Kollektor herbeiführen. Beispiele dafür, auf welche Weise die Tunnelkontakte im einzelnen ausgebildet sein können, sind in der nicht vorveröffentlichten deutschen Patentanmeldung 199 38 215.8 offenbart, auf die in diesem Zusammenhang vollinhaltlich Bezug genommen wird.The invention is therefore based on the object of producing a three-port component based on a magnetic tunnel contact, the two ferromagnetic layers of which form the collector and the base, between which a tunnel insulation layer is arranged, and this tunnel contact around a further tunnel contact which forms the emitter , to expand. Building a three Door component made of magnetic tunnel contacts offers the advantage that they have a high resistance compared to AMR or GMR elements and therefore have better compatibility with existing integrated half switch lines etc. The three-port component can be optimized via the applied currents, their directions, the volume of the base electrode, the size of the tunnel contact areas, the resistances of the tunnel contacts and the directions of the magnetizations. It may also be possible to use a non-magnetic layer as an emitter. Injection from a non-polarized layer should also lead to changes in the density of states in the base and bring about the desired effect of a change in voltage in the tunnel contact between the base and the collector. Examples of the manner in which the tunnel contacts can be formed are disclosed in the unpublished German patent application 199 38 215.8, to which reference is made in full in this context.
Hinsichtlich weiterer vorteilhafter Ausgestaltungen der Erfindung wird auf die Unteransprüche sowie die nachfolgende Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beiliegende Zeichnung verwiesen. In der Zeichnung zeigt:With regard to further advantageous refinements of the invention, reference is made to the subclaims and the following description of an exemplary embodiment with reference to the accompanying drawing. The drawing shows:
Figur 1 schematisch und in perspektivischer Darstellung ein Dreitorbauelement gemäß der vorliegenden Erfindung und Figur 2 in schematischer Darstellung ein Schaltbild eines als Spininjektionstransistor (SIT) arbeitenden Dreitorbauelements gemäß Figur 1.Figure 1 shows schematically and in perspective a three-gate device according to the present invention and FIG. 2 shows a schematic diagram of a three-port component according to FIG. 1 operating as a spin injection transistor (SIT).
In Figur 1 ist ein magnetisches Dreitorbauelement gemäß der vorliegenden Erfindung dargestellt. Dieses Dreitorbauelement, das einen Spininjektionstransistor bildet, besteht aus mehreren übereinanderliegend angeordneten Schichten mit drei ferromagnetischen Schichten 1, 2, 3, zwischen denen zwei Tunnel-Isolationsschichten 4, 5 angeordnet sind. Konkret bildet die untere ferromagnetische Schicht 3 die Basis, die mittlere ferromagnetische Schicht 2 den Kollektor und die über dem Kollektor 3 liegende ferromagnetische Schicht den Emitter 1 des Transistors, wobei der Kollektor 2, der Emitter 1 und die Basis 3 durch die Tunnel-Isolationsschichten 4, 5, die beispielsweise aus Al203 bestehen können, voneinander getrennt sind. Dabei bildet die Basis 3, der Kollektor 2 und die dazwischenliegende Tunnel-lsolationsschicht 5 einen ersten Tunnelkontakt und der Emitter 1, der Kollektor 2 und die dazwischenliegende Tunnel-lsolationsschicht 4 einen zweiten Tunnelkontakt.FIG. 1 shows a three-port magnetic component according to the present invention. This three-port component, which forms a spin injection transistor, consists of a plurality of layers arranged one above the other with three ferromagnetic layers 1, 2, 3, between which two tunnel insulation layers 4, 5 are arranged. Specifically, the lower ferromagnetic layer 3 forms the base, the middle ferromagnetic layer 2 the collector and the ferromagnetic layer located above the collector 3 the emitter 1 of the transistor, the collector 2, the emitter 1 and the base 3 through the tunnel insulation layers 4 , 5, which may consist of Al 2 0 3 , for example, are separated from one another. The base 3, the collector 2 and the intermediate tunnel insulation layer 5 form a first tunnel contact and the emitter 1, the collector 2 and the intermediate tunnel insulation layer 4 form a second tunnel contact.
Nicht dargestellt ist, daß an dem Emitter 1, dem Kollektor 2 und der Basis 3 Metallisierungen aufgebracht sind, über welche das Dreitorbauelement elektrisch kontaktiert wird. Die elektrische Kontaktierung wird in der in Figur 2v dargestellten Weise über eine äußere Beschaltung reali- siert, mittels welcher eine Spannung V über eine Batterie 8 oder dergleichen an die Metallisierungen an dem durch die Basis 3, den Kollektor 2 und die dazwischenliegende Tunnel-lsolationsschicht 5 gebildeten ersten Tunnelkontakt angelegt werden kann. Des weiteren liegen zwischen dem Emitter 1 und dem Kollektor 3 einerseits und der Basis 3 und dem Kollektor 2 andererseits Stromquellen 6, 7 an.It is not shown that metallizations are applied to the emitter 1, the collector 2 and the base 3, via which the three-port component is electrically contacted. The electrical contacting is implemented in the manner shown in FIG. 2 v via an external circuit. by means of which a voltage V can be applied via a battery 8 or the like to the metallizations on the first tunnel contact formed by the base 3, the collector 2 and the intermediate tunnel insulation layer 5. Furthermore, current sources 6, 7 are present between emitter 1 and collector 3 on the one hand and base 3 and collector 2 on the other.
Wie in Figur 2 durch die Pfeile A und B angedeutet ist, ist für den ersten Tunnelkontakt, der von der Basis 3, dem Kollektor 2 und der dazwischenliegenden Tunnel- Isolationsschicht 5 gebildet wird, die Magnetisierung anti-parallel gerichtet. Damit befindet sich der erste Tunnelkontakt im hochohmigen Zustand. Der Stromfluß der spinpolarisierten Ladungsträger ist von der Basis 3 zum Kollektor 2 gerichtet, wie durch den Pfeil D angedeutet ist. Wenn ein Strom durch den in Figur 2 rechten zweiten Tunnelkontakt, der von dem Emitter 1, dem Kollektor 2 und der dazwischenliegenden Tunnel-lsolationsschicht 4 gebildet wird, ebenfalls in den Kollektor 2 injiziert wird (Pfeil E), so kommt es zu einer drastischen Änderung der Besetzungsdichte an der Fermi-Kante des Kollektors 2, und zwar für beide Spinrichtungen. Die Besetzung von Zuständen an der Fermi-Kante durch den Strom vom Emitter 1 in den Kollektor führt zu einer Reduzierung des TMR-Effekts in dem zweiten Tunnelkontakt 1, 2, 4 und somit zu einer Änderung der Spannung am ersten Tunnelkontakt 3, 2, 3, 5. Der Emitter-Kollektor-Strom steuert also' die Spannung μber dem zweiten Tunnelkontakt 2, 3, 4. Der so gebildete Spininjektionstransistor kann über die angelegten Ströme, deren Richtung, das Volumen der Kollektorelektrode 2, die Größe der Tunnelkontaktflächen, die Widerstände der beiden Tunnelkontakte 1, 2, 5; 2, 3, 4 und die Richtungen der Magnetisierungen optimiert werden. Eventuell ist es möglich, auch eine nichtmagnetische Schicht als Emitter 1 einzusetzen. Auch die Injektion aus einer nichtpolarisierten Schicht sollte zu Änderungen der Zustandsdichte in dem Kollektor 3 führen und den gewünschten Effekt einer Spannungsänderung im ersten Tunnelkontakt 1, 2, 5 herbeiführen. As indicated by the arrows A and B in FIG. 2, for the first tunnel contact, which is formed by the base 3, the collector 2 and the tunnel insulation layer 5 in between, the magnetization is directed anti-parallel. The first tunnel contact is thus in a high-resistance state. The current flow of the spin-polarized charge carriers is directed from the base 3 to the collector 2, as indicated by the arrow D. If a current is also injected into the collector 2 through the second tunnel contact on the right in FIG. 2, which is formed by the emitter 1, the collector 2 and the intermediate tunnel insulation layer 4 (arrow E), there is a drastic change the population density at the Fermi edge of the collector 2, for both spin directions. The occupation of states at the Fermi edge by the current from the emitter 1 into the collector leads to a reduction in the TMR effect in the second tunnel contact 1, 2, 4 and thus to a change in the voltage at the first tunnel contact 3, 2, 3 , 5. the emitter-collector current thus controls' the voltage μber the second tunnel junction 2, 3 4. The spin injection transistor formed in this way can use the currents applied, their direction, the volume of the collector electrode 2, the size of the tunnel contact areas, the resistances of the two tunnel contacts 1, 2, 5; 2, 3, 4 and the directions of the magnetizations can be optimized. It may also be possible to use a non-magnetic layer as the emitter 1. Injection from a non-polarized layer should also lead to changes in the density of states in the collector 3 and bring about the desired effect of a voltage change in the first tunnel contact 1, 2, 5.

Claims

Ansprüche:Dreitorbauelement Claims: Dreitorbauelement
1. Dreitorbauelement mit einem Emitter ( 1 ) , einem Kollektor (2) und einer Basis (3), dadurch gekennzeichnet, daß der Kollektor (2) und die Basis (3) ferromagnetische Schichten sind, zwischen welchen eine Tunnel-Isolationsschicht (4) angeordnet ist, und daß der Emitter ( 1 ) von einer ferromagnetischen oder nichtmagnetischen Schicht gebildet wird, die von dem Kollektor (2) durch eine dazwischenliegende Tunnel- Isolationsschicht (5) getrennt ist.1. Three-gate device with an emitter (1), a collector (2) and a base (3), characterized in that the collector (2) and the base (3) are ferromagnetic layers, between which a tunnel insulation layer (4) is arranged, and that the emitter (1) is formed by a ferromagnetic or non-magnetic layer which is separated from the collector (2) by an intermediate tunnel insulation layer (5).
2. Dreitorbauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Tunnelisolationsschichten (4 5) oxidierte Metallschichten sind. 2. Three-gate component according to claim 1, characterized in that the tunnel insulation layers (4 5) are oxidized metal layers.
PCT/EP2001/007143 2000-07-03 2001-06-23 Three-port component WO2002003481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10031401.5 2000-07-03
DE10031401A DE10031401C2 (en) 2000-07-03 2000-07-03 Three-gate device, in particular spin injection transistor

Publications (1)

Publication Number Publication Date
WO2002003481A1 true WO2002003481A1 (en) 2002-01-10

Family

ID=7647045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007143 WO2002003481A1 (en) 2000-07-03 2001-06-23 Three-port component

Country Status (2)

Country Link
DE (1) DE10031401C2 (en)
WO (1) WO2002003481A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757056A (en) * 1996-11-12 1998-05-26 University Of Delaware Multiple magnetic tunnel structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007208A1 (en) * 1994-08-31 1996-03-07 Douwe Johannes Monsma Current conducting structure with at least one potential barrier and method of manufcturing such
DE19701509C2 (en) * 1996-01-19 2003-08-21 Fujitsu Ltd magnetic sensors
FR2791814A1 (en) * 1999-03-31 2000-10-06 Univ Pasteur MICROELECTRONIC DEVICE WITH TUNNEL JUNCTIONS AND MEMORY NETWORK AND SENSOR INCLUDING SUCH DEVICES
DE19938215A1 (en) * 1999-08-12 2001-02-22 Forschungszentrum Juelich Gmbh Process for producing a magnetic tunnel contact and magnetic tunnel contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757056A (en) * 1996-11-12 1998-05-26 University Of Delaware Multiple magnetic tunnel structures

Also Published As

Publication number Publication date
DE10031401A1 (en) 2002-02-07
DE10031401C2 (en) 2002-05-29

Similar Documents

Publication Publication Date Title
DE60037790T2 (en) MAGNETIC MEASURING SYSTEM WITH IRREVERSIBLE CHARACTERISTICS, AND METHOD FOR THE PRODUCTION, REPAIR AND USE OF SUCH A SYSTEM
DE112011103750B4 (en) Non-volatile magnetic tunnel junction transistor
DE69735780T2 (en) Ferromagnetic memory of fip-flop type
DE60022616T2 (en) Magnetic storage
DE10362176B4 (en) Magnetic random access memory (MRAM) with non-parallel main and reference magnetoresistors
EP1163676B1 (en) Storage cell array and method for the production thereof
DE102016006651A1 (en) SWITCHING DEVICE WITH VOLTAGE-CONTROLLED MAGNETIC ANISOTROPY USING AN EXTERNAL FERROMAGNETIC VORMAGNETIZATION FILM
EP1412948B1 (en) Magnetic memory unit and magnetic memory array
DE10291108B4 (en) Magnetoresistive semiconductor component with a semi-magnetic contact, as well as storage element and magnetic sensor
WO2000010172A2 (en) Storage cell array and corresponding production method
DE102007034256A1 (en) Reconfigurable magnetic logic circuitry and methods of making and operating such logic devices
DE10028640A1 (en) Wheatstone bridge and method for producing it contains interconnected bridge elements such as a spin valve system, adjacent half-bridges with a non-parallel bias magnetization direction and non-adjacent bridge elements
DE60304209T2 (en) MAGNETIC TUNNEL BARRIER MEMORY CELL ARCHITECTURE
DE102006008264A1 (en) Magneto resistive random access memory cell for integrated semiconductor circuit, has magnetic passage with region including free layer having free magnetizations aligned to axis, which is inclined under angle relative to conductors
DE112012004304T5 (en) Magnetoresistive random access memory with multi-bit spin momentum transfer with a single stack of magnetic tunnel junctions
WO2000010178A1 (en) Magnetoresistive element and the use thereof as storage element in a storage cell array
DE19942447C2 (en) Memory cell arrangement and method for its operation
EP1203382A1 (en) Method for producing a magnetic tunnel contact and magnetic tunnel contact
DE10031401C2 (en) Three-gate device, in particular spin injection transistor
DE10158795B4 (en) Magnetoresistive memory cell with dynamic reference layer
EP1112575B1 (en) Magnetoresistive element and use of same as storage element in a storage system
DE10036356C2 (en) Magnetic thin film component
US20200136008A1 (en) Milliohm resistor for rql circuits
DE10144384C1 (en) Magnetic logic module used as inverter has magnetic field sensor supplied with read signal for providing output signal which is inverted relative to input signal
WO2000031809A1 (en) Magnetoresistive element and utilisation thereof as a storage element in a storage cell array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP