WO2002011650A2 - Implantable joint prosthesis - Google Patents

Implantable joint prosthesis Download PDF

Info

Publication number
WO2002011650A2
WO2002011650A2 PCT/US2001/024791 US0124791W WO0211650A2 WO 2002011650 A2 WO2002011650 A2 WO 2002011650A2 US 0124791 W US0124791 W US 0124791W WO 0211650 A2 WO0211650 A2 WO 0211650A2
Authority
WO
WIPO (PCT)
Prior art keywords
implant
shells
shell
central body
cential
Prior art date
Application number
PCT/US2001/024791
Other languages
French (fr)
Other versions
WO2002011650A3 (en
Inventor
Vincent Bryan
Alex Kunzler
Robert Conta
Jeff Rouleau
Original Assignee
Sdgi Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/783,910 external-priority patent/US20020035400A1/en
Application filed by Sdgi Holdings, Inc. filed Critical Sdgi Holdings, Inc.
Priority to AU2001281166A priority Critical patent/AU2001281166B2/en
Priority to AU8116601A priority patent/AU8116601A/en
Priority to JP2002516989A priority patent/JP4617408B2/en
Priority to CA2429246A priority patent/CA2429246C/en
Priority to EP01959631A priority patent/EP1363565A2/en
Publication of WO2002011650A2 publication Critical patent/WO2002011650A2/en
Publication of WO2002011650A3 publication Critical patent/WO2002011650A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1664Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1675Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1684Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the shoulder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B2017/1602Mills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30742Bellows or hose-like seals; Sealing membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30744End caps, e.g. for closing an endoprosthetic cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/302Three-dimensional shapes toroidal, e.g. rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30474Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using an intermediate sleeve interposed between both prosthetic parts to be coupled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30495Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/30528Means for limiting said movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30673Lubricating means, e.g. synovial pocket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30682Means for preventing migration of particles released by the joint, e.g. wear debris or cement particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30769Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0065Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00203Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00239Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys

Definitions

  • the invention relates to implantable prostheses that are suitable for replacement of diarthroidal or arthroidal joints by creating an artificial diarthroidal- like joint at the site of the implant.
  • the invention relates to implantable prostheses serving as replacements for at least a portion of the intervertebral disc material, i.e., a spinal disc endoprostheses suitable for implantation in vertebrates, including humans.
  • joints in the human body are diarthroidal, meaning that the joints include a joint capsule that is filled with fluid.
  • the capsule fluid lubricates the joint, and allows the surfaces of the joint to move with a low coefficient of friction.
  • the spine can be considered to be a series of joints, some of which (the anterior joint or disc) lack a fluid filled capsule and are therefore arthroidal (the spine also contains facet joints that are diarthroidal).
  • the interior portion of intervertebral discs are not provided by the body with significant blood supply; their homeostasis is enhanced by the diffusion of fluids into the disc tissue, thus supplying them with nutrients. This, to some extent, allows the tissue to grow and repair damage done by stress as the joint moves. Despite this process, in mature adults, spinal disc tissue degrades continuously over time. Sufficiently advanced degeneration can lead to herniation or rupture of the spinal disc.
  • Herniation of a spinal disc can result in a number of debilitating symptoms, including intractable pain, weakness, and sensory loss. Treatment of these symptoms frequently requires surgical removal of at least a portion of the herniated disc, a procedure known as discectomy. Often discectomy alone cannot stop the progressive degeneration at the level of disc excision. An additional procedure is often performed in conjunction with the discectomy with the objective of fusing together (arthrodesis) the vertebral bodies surrounding the affected disc space.
  • graft bone which may be an allograft from a bone bank, or an autograft, typically taken from the iliac crest of the patient, or other suitable material.
  • the discectomy and arthrodesis procedures can be problematic, however.
  • Discectomy problems have been described above.
  • the grafting or fusion procedure has a variable success rate of about 80% , and even when successful, requires considerable recovery time before fusion is complete. Perhaps of even greater concern, successful fusion eliminates normal spinal biomechanics. Range of motion at the level of the fusion is ideally eliminated, because the affected vertebrae have been effectively joined to form a single bone. Because the patient tries to maintain the same overall range of motion of the entire spine, additional stress is imposed on the intervertebral discs of the adjacent vertebrae . This, in turn, may lead to accelerated degeneration at levels above and below the fusion site, which may require additional treatment, including discectomy and fusion. Grafting procedures carry some risk of tissue rejection and disease transmission if an allograft is used, and risk of harvest site morbidity when the patient's own tissue is harvested.
  • the implant should be precisely placed in a prepared intervertebral space, and should contain elements that are immobilized with respect to each of the vertebral bodies, so that the implant does not migrate or shift, potentially contacting, abrading, or otherwise damaging the spinal cord, ligaments, blood vessels, and other soft tissue.
  • the implant should allow the vertebral bodies to move relative to each other in a way that provides the equivalent motion afforded by a healthy intervertebral disc, and that allows the affected vertebral joint to participate in the coordinated overall movement of the spine in a way that closely approximates the natural movement of a healthy spinal column.
  • the implant should be biocompatible, and avoid the introduction of toxic or harmful components into the patient, such as release of wear debris.
  • the implant should also restore normal disc height and maintain the patient's vertebral lordosis, and should not allow any significant postoperative subsidence.
  • the implant should be at least partially constrained by soft tissue in and around the intervertebral space, in order to allow a simpler, more efficient design. There remains a need for a device which would decrease patient recovery time, and reduce the occurrence of postoperative degeneration at levels above and below the implant, as compared with fusion techniques.
  • such an implant would avoid the need for harvesting of autograft bone tissue, thereby eliminating morbidity at the harvesting site.
  • Such an implant should also provide elasticity and damping sufficient to absorb shocks and stresses imposed on it in a manner similar to that of the natural spinal disc.
  • This invention satisfies the needs and concerns described above. Other concerns can arise that are more unique to any joint replacement or reconstruction, particularly with respect to device stability, range of motion, and postoperative material degradation.
  • the patient's condition and quality of life is improved more by a technique that provides a range of motion that more closely approximates the range of motion of a healthy joint (assuming that this can be done in a safe manner) than by a techmque that provides a decreased range of motion.
  • Important parts of accomplishing this goal include using an implant design that is highly stable when implanted, and making use of the soft tissue associated with the joint (to the extent possible) to stabilize the implant and leave restriction of some of the motion of the joint to the soft tissue.
  • an implant that provides an effectively sealed, fluid filled capsule i.e., an artificial diarthroidal-like joint
  • an implant that provides an effectively sealed, fluid filled capsule i.e., an artificial diarthroidal-like joint
  • the lubrication effects in such a joint allow it to function more effectively and potentially generate less wear debris. Any wear debris that is generated, however, is contained within the implant and will not come into contact with live tissue or body fluids. Similarly, tissue ingrowth into the articulating regions of the implant and degradation of the implant materials by body fluids are also avoided.
  • the invention can be viewed as a surgical implant where the structure of the implant contains cooperating features that allows a joint into which the implant has been inserted to closely approximate the biomechanics and motion of a healthy joint.
  • the invention contains two rigid opposing plates or shells, each having an outer surface adapted to engage the prepared surfaces of the bones of a joint in such a way that frictional forces resist movement of the plates or shells relative to the bone surface.
  • the outer surfaces are sufficiently rough that frictional forces strongly resist any slippage between the outer surface and the bone surfaces in the joint.
  • the outer surfaces may be adapted to allow for bony ingrowth, which acts to further stabilize the plates or shells in place over time.
  • the inner surfaces of the plates or shells are relatively smooth, and adapted to slide easily with low friction across a portion of the outer surface of an elastically deformable, resilient central body disposed between the plates or shells.
  • the inner surfaces have an average roughness of about 1 to about 8 microinches, more particularly less than about 3 microinches.
  • the central body has a shape that cooperates with the shape of the inner surface of the plate or shell so as to provide motion similar to that provided by a healthy joint.
  • the surgical implant of the invention provides exceptional stability, because the roughened outer surfaces of the plates or shells and their geometric shape supply sufficient frictional force to keep the implant from slipping from its proper position on the surfaces of the bones forming the joint.
  • the geometry of the outer surfaces and the prepared surfaces of the bone cooperate to contain the implant between the bone surfaces.
  • the smooth inner surfaces of the rigidopposing plates or shells are shaped to cooperate and articulate with the shape of the smooth surface of the deformable resilient central body to allow relatively unconstrained motion of the plates or shells with respect to the resilient central body until the limit of acceptable motion is reached. Once the limit of allowable motion is reached, the shape of the inner surface of the plate or shell cooperates with the shape of the deformable resilient central body to effectively resist any movement beyond the desired motion.
  • the deformable resilient central body also provides elasticity and dampening properties, similar to those provided by healthy joint tissue. It is also sufficiently creep-resistant or resistant to plastic deformation to avoid postoperative loss of disc space height and to maintain appropriate joint geometry.
  • the surface of the central body is hard, in some embodiments harder than the interior, which provides good wear resistance. It is also very lubricious, which provides good tribological properties in conjunction with the inner surfaces of the rigid plates or shells.
  • the resulting implant is safe because it can be implanted with precision, aid once implanted, it is stable. It is extremely effective because the geometry of the internal surfaces is configured to provide a range of motion that closely approximates that provided by healthy joint tissue, thus allowing coordinated movement of the spine and reducing stress on adjacent joints.
  • the invention relates to an implant that effectively provides an artificial diarthroidal-like joint, suitable for use in replacing any joint, but particularly suitable for use as an intervertebral disc endoprosthesis.
  • the implant contains, in addition to the opposing rigid plates or shells and deformable, resilient central body described above, a flexible sleeve or sheath that extends between edges of the opposing plates or shells.
  • this sheath together with the inner surfaces of the rigid plates or shells, defines a cavity surrounding the central body. Most, if not all, of the interior space of this cavity can be filled with a fluid lubricant, further decreasing the frictional force between inner surfaces of the plates or shell and the surface of the central body, again within the constraints of allowable motion.
  • the flexible sleeve or sheath serves to hold the implant together as a single unit, making it easier to manipulate during the implant procedure. It also retains the lubricant within the implant and provides a contained, sealed environment that keeps tissue from entering the interior of the implant, isolates the central body from possible attack or degradation by body fluids, and prevents any wear debris that might be generated from exiting the implant and migrating into surrounding tissues .
  • the implant therefore provides a sealed capsule presenting only biocompatible surfaces to surrounding tissues, and keeping wear surfaces internal to the implant and permanently lubricated. The result is an implant with extremely good durability, because the articulating surfaces have been isolated away from the natural bone surfaces and placed in a lubricated capsule.
  • the invention provides a vertebral endoprosthesis, having: an upper and a lower rigid, opposed, biocompatible plate or shell, each comprising: an outer, rough surface; an inner, smooth surface; and an edge between the surfaces; wherein the inner smooth surface of at least one of the plates or shells comprises a first motion limiting device; a deformable, resilient central body disposed between the inner, smooth surfaces of the upper and lower plates or shells, comprising: a smooth upper surface adjacent to the inner smooth surface of the upper plate or shell and a smooth lower surface adjacent to the inner smooth surface of the lower plate or shell; a second motion limiting device disposed on at least one of the smooth upper and lower surfaces adapted to contact the first motion limiting device and limit the relative motion of the plate or shell with respect to the central body.
  • the inner surfaces of the plates or shells can desirably be concave, and articulate with smooth upper surfaces of the deformable resilient central body that are convex. This arrangement creates, in effect, an artificial ball-and-socket-like joint in the intervertebral space, which joint is inherently stable under compression.
  • the vertebral endoprosthesis contams: an upper and a lower rigid, opposed biocompatible concavo-convex shell, each comprising: an outer, rough convex surface, comprising a porous coating of a biocompatible material; an inner concave surface, comprising: a smooth contact area; and an axial post extending toward the opposing shell; and an edge between the surfaces, comprising: a circumferential groove adapted to receive a retaining ring; a first ridge circumscribing the contact area of the inner concave surface and extending axially toward the opposing shell; an insertion tab extending axially away from the opposing shell, and comprising an opening adapted to releasably engage a tool for manipulating, inserting, or removing the endoprosthesis; a closable passage between the outer surface and the inner surface of the shell; a deformable, resilient central body disposed between the inner, smooth concave surfaces of the upper and
  • This endoprosthesis provides the advantages described above with respect to the more general aspects of the invention, and more specifically provides an implantable vertebral joint that approximates the disc height and range of motion of a healthy intervertebral disc, with significantly increased durability relative to natural intervertebral disc material, and without the drawbacks of spinal fusion.
  • the concavo-convex geometry of the opposmg shells, and the precise preparation of a mating concave surface in the vertebral body endplates, into which the convex outer surfaces of the shells are inset provide a highly stable implanted joint. Coupled with the roughness provided by the porous coating on the outer surface of the shell, this inset shape holds the implant firmly in place so that it cannot migrate and come into contact with nerves or blood vessels, and so that the desired bony ingrowth can occur.
  • the convex outer surface also provides additional surface area that contacts cancellous bone, increasing both the opportunity for bony ingrowth and the frictional force holding the shells in place.
  • the mating of the concave inner surfaces of the shells with the curved shape of the central body provides a simple ball-and-socket-like system that is inherently highly stable under compression, as it will be when implanted.
  • the embodiment of the invention using concavo-convex shells and a convex surface on the deformable central body therefore provides immediate mechanical stability.
  • the implant does not significantly constrain joint torsion, but instead relies on the remaining soft tissue (e.g., remaining disc annulus, ligaments, etc.) in and around the implanted joint to provide appropriate torsional constraint.
  • the remaining soft tissue e.g., remaining disc annulus, ligaments, etc.
  • the shapes of the plates or shells or of the central body, or of the central retaining posts or central axial opening restrict the torsional movement of the shells relative to the central body (i.e., the rotation of the shellsor of the central body about a central axis.
  • FIG. 1 is a perspective drawing of an intervertebral endoprosthesis in accordance with a specific embodiment of the invention.
  • FIG. 2 is an elevational view of the intervertebral endoprosthesis shown in FIG. 1.
  • FIG. 3 is a top plan view of the intervertebral endoprosthesis shown in FIG. 1 and 2.
  • FIG. 4 is an isometric cross sectional view of the intervertebral endoprosthesis shown in FIG. 1, 2, and 3.
  • FIG. 5 is a plan view of an implant plug and plug installation tool used to insert a plug into an intervertebral endoprosthesis.
  • FIG. 6 is a sectional view of the intervertebral endoprosthesis shown in FIG. 1-4.
  • FIG. 7 is an exploded perspective view of the intervertebral endoprosthesis shown in FIG. 1-4 and 6.
  • FIG. 8 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing lateral bending.
  • FIG. 9 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing translation.
  • FIG. 10 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing lateral bending.
  • FIG. 11 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing translation.
  • the size and shape of the implant are substantially variable, and this variation will depend upon the joint geometry.
  • implants of a particular shape can be produced in a range of sizes, so that a surgeon can select the appropriate size prior to or during surgery, depending upon his assessment of the joint geometry of the patient, typically made by assessing the joint using CT, MRL fluoroscopy, or other imaging techniques.
  • the rigid opposing plates or shells can be made of any rigid, biocompatible material, but are generally made of a biocompatible metal, such as stainless steel, cobalt chrome, ceramics, such as those including A ⁇ O 3 or Zr 2 O 3 , or titanium alloy. ASTM F-136 titanium alloy has been found to be particularly suitable. As indicated above, the outer surface of the rigid opposing plates or shells are rough, in order to restrict motion of the shells relative to the bone surfaces that are in contact with the plates.
  • a porous coating formed from nonspherical sintered beads provides very high friction between the outer surface of the shell and the bone, as well as providing an excellent interaction with the cancellous bone of the joint, increasing the chances of bony ingcowth.
  • a suitable nonspherical sintered bead coating is that made of pure titanium, such as ASTM F-67. The coating can be formed by vacuum sintering.
  • each plate or shell is smooth, and of a shape that complements and articulates with the shape of at least a portion of the central body. This smoothness and correspondence in shape provides unconstrained movement of the plate or shell relative to the central body, provided that this movement occurs within the allowable range of motion.
  • the structural features of the shapes of the inner surface of the plate or shell and the central body that interact to limit the movement to this allowable range will necessarily vary to some extent, based on the joint in which the implant will be used.
  • the edge of the plate or shell can be extended toward the central body, so as to for a wall that, under shear, can contact a ridge or shoulder formed in the surface of the central body. This will allow for unconstrained motion of the plate or shell except in a direction that will bring the extension into contact with the ridge.
  • extension By forming the extension around the entire edge of the shell, and by forming a ridge or shoulder that encloses a portion of the surface of the central body, translational, flexural, extensional, and lateral motion of the plate or shell relative to the central body can be constrained in all directions.
  • a bead or ridge at other locations on the inner surface of the plate or shell will serve a similar purpose, and that the location of this bead or ridge, as well as the ridge or stop on the central body, can be varied between implants for different joints, in order to obtain the desired range of motion for that particular joint.
  • the plates may be identical, which is desirable for ease of manufacture, or may be of different design (shape, size, and/or materials) to achieve different mechanical results.
  • differing plate or shell sizes may be used to more closely tailor the implant to a patient's anatomy, or to shift the center of rotation in the cephalad or caudal direction.
  • the inner surface of the shell and the outer surface of the central body can contain complementary structures that will function as an expulsion stop, so that the central body cannot be expelled from between the opposing plates or shells when the plates or shells are at maximum range of motion in flexion/extension.
  • Examples of such structures include a post and corresponding hole to receive the post. The hole can have a diameter sufficiently large that relative motion between the shells and central body is unconstrained within the allowable range of motion, but that will nevertheless cause the post to arrest the central body before it is expelled from the implant under extreme compression.
  • the diameter of the post may be such that it limits the translational movement of the central body during normal motion of the spine by contacting the surface of the hole in the central body at the limit of the allowable range of motion for the device.
  • the elastically deformable, resilient central body may also vary somewhat in shape, size, composition, and physical properties, depending upon the particular joint for which the implant is intended.
  • the shape of the central body should complement that of the inner surface of the shell to allow for a range of translational, flexural, extensional, and rotational motion, and lateral bending appropriate to the particular joint being replaced.
  • the thickness and physical properties of the central body should provide for the desired degree of elasticity or damping. Accordingly, an elastomeric material is typically used for the central body.
  • the central body should be sufficiently stiff to effectively cooperate with the shell surfaces to limit motion beyond the allowable range.
  • the surface of the central body should be sufficiently hard to provide acceptable wear characteristics.
  • One way to achieve this combination of properties is to prepare a central body having surface regions that are harder than the material of the central body closer to its core.
  • the central body is therefore desirably a biocompatible elastomeric material having a hardened surface.
  • Polyurethane- containing elastomeric copolymers such as polycarbonate-polyurethane elastomeric copolymers and polyether-polyurethane elastomeric copolymers, generally having durometer ranging from about 80 A to about 65D (based upon raw, unmolded resin) have been found to be particularly suitable for vertebral applications. If desired, these materials may be coated or impregnated with substances to increase their hardness or lubricity, or both. Examples of suitable materials are provided in more detail below.
  • the shape of the central body may also be designed to prevent contact between the edges of the rigid opposing shells during extreme motion of the implant.
  • a ridge or lip in the region of the central body between the shells and extending laterally can provide a buffer, preventing contact between the shells. This prevents friction and wear between the shells, thereby avoiding the production of particulates, which could cause increased wear on the internal surfaces of the implant.
  • one or both of the rigid opposing shells can be provided with an opening therein, in the form of a passage between the outer and inner surfaces.
  • the passage can be used to introduce liquid lubricant into the implant.
  • the passage can then be closed off (e.g., by filing it with an appropriately sized plug), thereby providing a sealed, lubricant filled inner cavity.
  • Attachment of the sheath to the rigid, opposing shells can be accomplished in a variety of ways.
  • the rigid opposing shell is made from a bioc ⁇ npatible metallic alloy, e.g., a titanium alloy, while the sheath is typically made from an elastomeric polymeric material, such as segmented polyurethane.
  • Attachment of the sheath to the shell can be accomplished by providing the edge of the rigid shell with a circumferential groove (the term "circumferential" in this context does not imply any particular geometry).
  • the groove is of a shape and depth sufficient to accept a retaining ring, typically made of a biocompatible weldable wire, such as stainless steel or titanium.
  • the sheath can be disposed so that it overlaps the circumferential groove, and the retaining ring formed by wrapping the wire around the groove over the overlapping portion of the sheath, cutting the wire to the appropriate size, and welding the ends of the wire to form a ring.
  • Laser welding has been found to be particularly suitable in this regard.
  • the invention as described above can be used as a prosthetic implant in a wide variety of joints, including hips, knees, shoulders, etc.
  • the description below focuses on an embodiment of the invention wherein the implant is a spinal disc endoprosthesis, but similar principles apply to adapt the implant for use in other joints.
  • the p-rticulars of the internal geometry will likely require modification from the description below to prepare an implant for use in other joints.
  • the present invention includes four main components: two shells 20, 40, a central body 60, and a sheath 70.
  • the complete assembly of the device is shown in FIGS. 4 and 6, wherein the central body 60 is bracketed between shells 20, 40.
  • the flexible sheath 70 extends between the two opposing shells 20, 40, and encapsulates the central body 60.
  • the geometric configuration of the shells 20, 40, the central body 60, and the sheath 70 are complementary. As such the geometric configuration of these components cooperate to (1) join the components into a unitary structure, and (2) define important functional features of the device.
  • shells 20, 40 are cup-like so as to include an outer convex surface 23 and an inner concave surface 21, 41.
  • the outer surfaces 23 can be coated with a nonspherical sintered bead coating 22, 42, or with some other coating that will promote bony ingrowth.
  • the inner surfaces 21, 41 (shown in FIG. 6) are preferably very smooth, and may be machined or polished.
  • the shells, 20, 40 include a number of geometric features that as described in further detail below cooperate with other components of the devices. Specifically, these features include a central retaining post 27, 47, an outer circumferential groove 82, 84, and radial stop or an extension 86, 88.
  • the central retaining post 27, 47 extends axially from inner surfaces 21, 41.
  • each shell 20, 40 includes an edge 73, 74, respectively.
  • the outer circumferential grooves 82, 84 extend into the edges 73, 73 of the shells 20, 40.
  • the radial stops or extensions 86, 88 extend from the edge 73, 74 in a direction generally perpendicular to the general plane of the shells 20, 40.
  • Each shell may also be provided with tabs or flanges 25, 45.
  • the tabs or flanges extend from a portion of the edge 73, 74 in a direction generally pe ⁇ endicular to the general plane of the shells 20, 40, but in a direction generally opposite the radial stops or extensions 86, 88.
  • the tabs or flanges 25, 45 help to prevent longterm migration within the disc space, as well as catastrophic posterior expulsion, and the resulting damage to the spinal cord, other nerves, or vascular structures.
  • Insertion stops 25, 45 may contain openings 26, 46 that can releasably engage an insertion tool (not shown). The insertion tool will generally contain flexible prongs to releasably engage openings 26, 46.
  • the insertion tool will also generally include a disengagement block that can press against the side of the implant once it has been properly positioned in the intervertebral space and force the openings 26, 46 off of the prongs of the tool.
  • the shells can be made from any suitable biocompatible rigid material. In accordance with a preferred embodiment, the shells are made from a titanium alloy, and most preferably the titanium alloy is ASTM F-136. The bead coating 22, 42, however, is preferably made from ASTM 67 pure titanium.
  • central body 60 is a preferably a donut-shaped structure, and includes a convex upper contact surface 94, a convex lower contact surface 96, and a central axial opening 98.
  • central body member 60 preferably includes an upper shoulder 92 and a lower shoulder 90.
  • Each shoulder 90, 92 consists of an indentation in the surface of the central body member which defines a ledge that extends around the circumference of the central body 60.
  • the central body 60 is both deformable and resilient, and is composed of a material that has surface regions that are harder than the interior region. This allows the central body to be sufficiently deformable and resilient that the implant functions effectively to provide resistance to compression and to provide dampening, while still providing adequate surface durability and wear resistance.
  • the material of the central body has surfaces that are very lubricious, in order to decrease friction between the central body and the rigid opposmg shells.
  • the material used to make the central body is typically a slightly elastomeric biocompatible polymeric material, which may be coated or impregnated to increase surface hardness, or lubricity, or both, as described above. Co ⁇ ting may be done by any suitable technique, such as dip coating, and the coating solution may be include one or more polymers, including those described below for the central body.
  • the coating polymer may be the same as or different from the polymer used to form the central body, and may have a different durometer from that used in the central body. Typical coating thickness is greater than about 1 mil, more particularly from about 2 mil to about 5 mil.
  • suitable materials include polyurethanes, such as polycarbonates and polyethers, such as Chronothane P 75A or P 55D (P-eth-PU aromatic, CT Biomaterials); Chronoflex C 55D, C 65D, C 80A, or C 93A (PC-PU aromatic, CT Biomaterials); Elast-Eon II 80A (Si-PU aromatic, Elastomedic); Bionate 55D/S or 80A-80A / S (PC-PU aromatic with S-SME, PTG); CarboSil-10 90A (PC- Si-PU aromatic, PTG); Tecothane TT-1055D or TT-1065D (P-eth-PU aromatic, Thermedics); Tecoflex EG-93A (P-eth-PU aliphatic, Thermedics); and Carbothane PC 3585A or PC 3555D (PC-PU aliphatic, Thermedics).
  • polyurethanes such as polycarbonates and polyethers
  • the last main component of this preferred embodiment of the present invention is the sheath 70.
  • the sheath 70 is a tubular structure, and is made from a flexible material.
  • the material used to make the sheath is typically biocompatible and elastic, such as a segmented polyurethane, having a thickness ranging from about 5 to about 30 mils, more particularly about 10-11 mils.
  • suitable materials include BIOSPAN-S (aromatic polyetherurethaneurea with surface modified end groups, Polymer Technology Group), CHRONOFLEX AR/LT (aromatic polycarbonate polyurethane with low-tack properties, CardioTech International), CHRONOTHANE B (aromatic polyether polyurethane, CardioTech International), CARBOTHANE PC (aliphatic polycarbonate polyurethane, Thermedics).
  • the various geometric features of the main components of this preferred embodiment of the present invention cooperate to join the components into a unitary structure.
  • the ends of the sheath 70 are attached to the shells, and the central body 60 is encapsulated between the shells 20, 40 and the sheath 70. More specifically, referring to FIG. 6, preferably the edges of flexible sheath 70 can overlap the outer circumferential grooves 82, 84 of the shells 20, 40. Retaining rings 71, 72 are then placed over the edges of the sheath 70 and into the circumferential grooves 82, 84, thereby holding the flexible sheath in place and attaching it to the shells.
  • the retaining rings are desirably fixed in place by, e.g., welding the areas of overlap between the ends of the retaining rings. Because of the high temperatures needed to weld titanium and titanium alloys, and because of the proximity of the weld area to both the flexible sheath 70 and the central body 60, laser welding is typically used.
  • the various geometric features of the main components of the preferred embodiment of the present invention cooperate to define important functional features of the device. These features primarily include defining the kinematics of motion provided by the device, prohibiting expulsion of the central body 60, providing post assembly access to the interior of the device, providing an attachment mechanism for inserting the device, and providing a port for the insertion of lubricant into the implant cavity.
  • the kinematics of the motion provided by the prosthesis are defined primarily by the geometric interaction of the central body 60 and the shells 20, 40.
  • the central body is encapsulated within the sheath and the shells, it is not attached to these components. Accordingly, the central body 60 freely moves within enclosed structure and is only constrained by geometric limitations.
  • the concave shape of the inner surfaces 21, 41 of shells 20, 40 complements the convex surfaces 94, 96 of central body 60.
  • the shells 20, 40 glide across the convex surfaces 94, 96, relatively unconstrained translational, flexural, or extensional motion of shells 20, 40 with respect to central body 60 is achieved.
  • extensions 86, 88 on shells 20, 40 are designed to contact shoulders 90, 92 on the central body 60.
  • the inner portion of the extension forms a circumferential ridge that limits the range of motion of the shells 20, 40 relative to the central body 60 by contacting central body shoulders 90, 92 at the end of the allowable range of motion. In an actual vertebral joint, this occurs at a joint flexion/extension of about + 10°, at lateral bending of about 11°, and/or at translation of about 2-3 mm.
  • the shells are concavo-convex, and their inner surfaces mated and articulated with a convex outer surface of the deformable resilient central body.
  • the implant also contains a sheath or sleeve that is secured to the rims of the shells with retaining rings, and which, together with the inner surfaces of the shells, forms an implant cavity.
  • the convex portion of the outer surface and the concave portion of the inner surface of the shells can be described as a quadric surfaces, such that
  • (+a,0,0), (0,+b,0), and (0,0,+c) represent the x, y, and z intercepts of the surfaces, respectively.
  • Typical magnitudes for a, b, and c are about 11 mm, 30 mm, and 10 mm, respectively.
  • the implant is symmetrical about the x-y plane, and is intended to be implanted in the right-left center of the disc space, but may or may not be centered in the anterior-posterior direction. In any event, the implant is not allowed to protrude in the posterior direction past the posterior margin of the vertebral body.
  • geometric features also serve to prevent the expulsion of the central body 60.
  • Shells 20, 40 also contain central retaining posts 27, 47 which extend axially from inner surfaces 21, 41 into a central axial opening 98 in central body 60 and which stop central body 60 from being expelled from the implant during extreme flexion or extension.
  • the diameter of central axial opening 98 is somewhat larger than the diameter of central retaining posts 27, 47.
  • the central axis of the retaining post is typically coincident with the z-axis, but may move slightly to accommodate various clinical scenarios.
  • the shape of the post may be any quadric surface. However, a truncated tapered elliptical cone is a particularly suitable geometry.
  • the geometry of the central axial opening of the central body will correspond to the geometry of the retaining post, and will have a similar geometry.
  • the shells contain extensions or walls formed on the inner surface, for example around the edge of the shell, and that extend toward the deformable resilient central body.
  • This extension or wall limits allowable translation of the deformable resilient central body with respect to the shell when the extension comes into contact with a shoulder formed on the surface of the central body, e.g., under shear loading of the implant.
  • the height of the extension or wall should be less than about 2.5 mm in order to allow the full range of desired flexion/extension and right/left lateral bending motions.
  • the resilient deformable central body contams surfaces that are described by an equation similar to that for the inner surfaces of the shells, and which articulates with those inner surfaces.
  • the central body will have a plane of symmetry if identical opposing shells are used.
  • the central body also features an equatorial rim that acts as a "soft stop" in the event the patientparticipates in extreme activities that result in movements greater than the designed range of flexion/extension or lateral bending. In such a situation, the central body will have translated until the retaining post has contacted the inner surface of the central axial opening, and the extension or wall will have contacted the shoulder of the central body.
  • the edges of the shells will be in close proximity, but will be kept from contacting each other by contact with the equatorial rim of the central body. If desired, the thickness of the rim can be varied to further limit the range of motion.
  • This means consists of a cential axial opening included in the shells 20, 40. Typically, this opening will be provided through central retaining posts 27, 47.
  • sterilization can be done just prior to implantation of the device. Sterilization is preferably accomplished by introducing an ethylene oxide surface sterilant. Caution should be exercised in using irradiation sterilization, as this can result in degradation of the polymeric materials in the sheath or cential body, particularly if these include polyurethanes.
  • the central openings can be sealed using plugs 28, 48.
  • plugs 28, 48 Preferably, only one plug is inserted first.
  • the plug is inserted using insertion tool 100, shown in FIG. 5, and which contains handle 101 and detachable integral plug 28, 48.
  • the tool is designed so that plug 28, 48 detaches from the tool when a predetermined torque has been reached during insertion of the plug. The tool can then be discarded.
  • a lubricant 80 is preferably introduced into the interior of the device prior to inserting the second plug.
  • a syringe is used to introduce the lubricant into the remaining central opening, and the implant is slightly compressed to remove some of the excess air.
  • Another insertion tool 100 is then used to insert a plug into that central opening, and thereby completely seal the interior of the device from its exterior environment.
  • the lubricant 80 is saline.
  • other lubricants may be used, for example, hyaluronic acid, mineral oil, and the like.
  • the two shells 20, 40 are virtually identical in shape and composition, however those of skill in the art will understand that it is possible to use shells of different sizes (including thicknesses), shapes, or materials, e.g., in order to provide a more customized fit to the patient's anatomy, and that this does not depart from the spirit and scope of the invention.
  • the deformable resilient central body is disposed between the opposed shells, as described above and illustrated in the drawing figures. Its upper and lower surfaces articulate with the upper and lower shells, respectively, and have a geometry that is similar to that of the shells.
  • FIG. 8 A illustrates a plan view of an implant having a hollow central retaining post and undergoing lateral bending.
  • the range of lateral bending is limited to about 11°, as indicated in FIG. 8B, which is a sectional view along line A-A of FIG. 8A.
  • Contact of the walls or extensions 86, 88 of the shells with shoulders 90, 92 of the central body limit the range of motion to that desired.
  • the cential retaining posts 27, 47 may also contribute to limiting the range of motion by contact with the central axial opening of the central body.
  • FIG. 9 A illustrates a plan view of an implant of the type shown in FIG. 8 undergoing lateral translation.
  • FIG. 9 A illustrates a plan view of an implant of the type shown in FIG. 8 undergoing lateral translation.
  • FIG. 10 and 11 provide similar plan and sectional views (along line H-H and H, respectively), illustrating a different embodiment of the implant (without a hollow central retaining post) undergoing lateral bending (FIG. 10) and lateral translation (FIG. 11). In each case, the range of motion is limited by contact between walls or extensions 86, 88 of the shells and shoulders 90, 92 of the central body.
  • the implant is desirably used as an endoprosthesis inserted between two adjacent vertebral bodies.
  • the implant may be introduced using a posterior or anterior approach.
  • an anterior approach is preferred.
  • the implanting procedure is carried out after discectomy, as an alternative to spinal fusion.
  • the appropriate size of the implant for a particular patient, determination of the appropriate location of the implant in the intervertebral space, and implantation are all desirably accomplished using precision stereotactic techniques, apparatus, and procedures, such as the techniques and procedures described in copending U.S. Serial No. 09/783,860, Attorney Docket Number 46739/250563, filed on February 13, 2001, the entire contents of which are hereby inco ⁇ orated by reference.
  • non-stereotactic techniques can also be used.
  • discectomy is used to remove degenerated, diseased disc material and to provide access to the intervertebral space.
  • This access is used to remove a portion of the vertebral body using a burr or other appropriate instruments, in order to provide access to the intervertebral space for a transverse milling device of the type described in U.S. Serial No. 08/944,234, the entire contents of which are hereby inco ⁇ orated by reference.
  • the milling device is used to mill the surfaces of the superior and inferior vertebral bodies that partially define the intervertebral space to create an insertion cavity having surfaces that (a) complement the outer surfaces of the implant and (b) contain exposed cancellous bone. This provides for an appropriate fit of the implant with limited motion during the acute phase of implantation, thereby limiting the opportunity for fibrous tissue formation, and increases the likelihood for bony ingrowth, thereby increasing long-term stability.

Abstract

The invention relates to a surgical implant that provides an artificial diarthroidal-like joint, suitable for use in replacing any joint, but particularly suitable for use as an intervertebral disc endoprosthesis. The invention contains two rigid opposing shells (20, 40), each having an outer surface adapted to engage the surfaces of the bones of a joint in such a way that the shells are immobilized by friction between their outer surfaces and the surfaces of the bone. These outer surfaces are sufficiently rough that large frictional forces strongly resist any slippage between the outer surface and the bone surfaces in the joint. They may be convex, and when inserted into a milled concavity, are immediately mechanically stable.

Description

IMPLANTABLE JOINT PROSTHESIS
This application claims benefit under 35 U.S.C. § 119(e) of Provisional U.S. Serial No. 60/223,863, filed 8 August 2000, and entitled INSTRUMENTATION AND METHOD FOR IMPLANTING A PROSTHETIC INTERVERTEBRAL BODY and of Provisional U.S. Serial No. 60/265,218 entitled GRAVITY ASSISTED LOCALIZATION SYSTEM, filed January 31, 2001 under Express Mail Label Number EL674301928US.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The invention relates to implantable prostheses that are suitable for replacement of diarthroidal or arthroidal joints by creating an artificial diarthroidal- like joint at the site of the implant.
In a particular embodiment, the invention relates to implantable prostheses serving as replacements for at least a portion of the intervertebral disc material, i.e., a spinal disc endoprostheses suitable for implantation in vertebrates, including humans. 2. Description of Related Art
Many joints in the human body, such as hips, knees, shoulders, etc., are diarthroidal, meaning that the joints include a joint capsule that is filled with fluid. The capsule fluid lubricates the joint, and allows the surfaces of the joint to move with a low coefficient of friction. The spine, by contrast, can be considered to be a series of joints, some of which (the anterior joint or disc) lack a fluid filled capsule and are therefore arthroidal (the spine also contains facet joints that are diarthroidal). The interior portion of intervertebral discs are not provided by the body with significant blood supply; their homeostasis is enhanced by the diffusion of fluids into the disc tissue, thus supplying them with nutrients. This, to some extent, allows the tissue to grow and repair damage done by stress as the joint moves. Despite this process, in mature adults, spinal disc tissue degrades continuously over time. Sufficiently advanced degeneration can lead to herniation or rupture of the spinal disc.
Herniation of a spinal disc can result in a number of debilitating symptoms, including intractable pain, weakness, and sensory loss. Treatment of these symptoms frequently requires surgical removal of at least a portion of the herniated disc, a procedure known as discectomy. Often discectomy alone cannot stop the progressive degeneration at the level of disc excision. An additional procedure is often performed in conjunction with the discectomy with the objective of fusing together (arthrodesis) the vertebral bodies surrounding the affected disc space. This is accomplished by removing the cartilaginous endplates by scraping the surfaces of the vertebral body and inserting a piece of graft bone, which may be an allograft from a bone bank, or an autograft, typically taken from the iliac crest of the patient, or other suitable material..
The discectomy and arthrodesis procedures can be problematic, however. Discectomy problems have been described above. The grafting or fusion procedure has a variable success rate of about 80% , and even when successful, requires considerable recovery time before fusion is complete. Perhaps of even greater concern, successful fusion eliminates normal spinal biomechanics. Range of motion at the level of the fusion is ideally eliminated, because the affected vertebrae have been effectively joined to form a single bone. Because the patient tries to maintain the same overall range of motion of the entire spine, additional stress is imposed on the intervertebral discs of the adjacent vertebrae . This, in turn, may lead to accelerated degeneration at levels above and below the fusion site, which may require additional treatment, including discectomy and fusion. Grafting procedures carry some risk of tissue rejection and disease transmission if an allograft is used, and risk of harvest site morbidity when the patient's own tissue is harvested.
As a result of these difficulties with intervertebral fusion, attempts have been made to provide a prosthetic solution to degenerative disc disease that maintains the patient's normal spinal biomechanics, allows for shorter recovery times, and avoids the complications inherent in harvesting and/or grafting bone tissue. Some of these efforts have centered around providing an endoprosthetic intervertebral implant, as described in U.S. Patent Nos. 5,865,846, 5,674,296, 5,989,291, 6p01,130, and 6,022,376, the entire contents of each of which is hereby incorporated by reference.
Design and construction of such an implant, however, is not simple. Desirably, the implant should be precisely placed in a prepared intervertebral space, and should contain elements that are immobilized with respect to each of the vertebral bodies, so that the implant does not migrate or shift, potentially contacting, abrading, or otherwise damaging the spinal cord, ligaments, blood vessels, and other soft tissue. At the same time, the implant should allow the vertebral bodies to move relative to each other in a way that provides the equivalent motion afforded by a healthy intervertebral disc, and that allows the affected vertebral joint to participate in the coordinated overall movement of the spine in a way that closely approximates the natural movement of a healthy spinal column. The implant should be biocompatible, and avoid the introduction of toxic or harmful components into the patient, such as release of wear debris. The implant should also restore normal disc height and maintain the patient's vertebral lordosis, and should not allow any significant postoperative subsidence. The implant should be at least partially constrained by soft tissue in and around the intervertebral space, in order to allow a simpler, more efficient design. There remains a need for a device which would decrease patient recovery time, and reduce the occurrence of postoperative degeneration at levels above and below the implant, as compared with fusion techniques. In addition, such an implant would avoid the need for harvesting of autograft bone tissue, thereby eliminating morbidity at the harvesting site. Such an implant should also provide elasticity and damping sufficient to absorb shocks and stresses imposed on it in a manner similar to that of the natural spinal disc.
SUMMARY OF THE INVENTION This invention satisfies the needs and concerns described above. Other concerns can arise that are more unique to any joint replacement or reconstruction, particularly with respect to device stability, range of motion, and postoperative material degradation. In general, in patients undergoing joint replacement, the patient's condition and quality of life is improved more by a technique that provides a range of motion that more closely approximates the range of motion of a healthy joint (assuming that this can be done in a safe manner) than by a techmque that provides a decreased range of motion. Important parts of accomplishing this goal include using an implant design that is highly stable when implanted, and making use of the soft tissue associated with the joint (to the extent possible) to stabilize the implant and leave restriction of some of the motion of the joint to the soft tissue. This allows the implant design to be considerably simpler. Irrespective of the joint being implanted, an implant that provides an effectively sealed, fluid filled capsule (i.e., an artificial diarthroidal-like joint) will likely provide an added margin of safety because the moving surfaces are isolated from the surrounding tissue and body fluids, and the environment in which the moving surfaces operate can be engineered and controlled. The lubrication effects in such a joint allow it to function more effectively and potentially generate less wear debris. Any wear debris that is generated, however, is contained within the implant and will not come into contact with live tissue or body fluids. Similarly, tissue ingrowth into the articulating regions of the implant and degradation of the implant materials by body fluids are also avoided.
In one aspect, the invention can be viewed as a surgical implant where the structure of the implant contains cooperating features that allows a joint into which the implant has been inserted to closely approximate the biomechanics and motion of a healthy joint.
In this aspect, the invention contains two rigid opposing plates or shells, each having an outer surface adapted to engage the prepared surfaces of the bones of a joint in such a way that frictional forces resist movement of the plates or shells relative to the bone surface. The outer surfaces are sufficiently rough that frictional forces strongly resist any slippage between the outer surface and the bone surfaces in the joint. In addition to providing surface friction at the interface with the bone, the outer surfaces may be adapted to allow for bony ingrowth, which acts to further stabilize the plates or shells in place over time. The inner surfaces of the plates or shells are relatively smooth, and adapted to slide easily with low friction across a portion of the outer surface of an elastically deformable, resilient central body disposed between the plates or shells. Desirably, the inner surfaces have an average roughness of about 1 to about 8 microinches, more particularly less than about 3 microinches. The central body has a shape that cooperates with the shape of the inner surface of the plate or shell so as to provide motion similar to that provided by a healthy joint.
The surgical implant of the invention provides exceptional stability, because the roughened outer surfaces of the plates or shells and their geometric shape supply sufficient frictional force to keep the implant from slipping from its proper position on the surfaces of the bones forming the joint. In addition, the geometry of the outer surfaces and the prepared surfaces of the bone cooperate to contain the implant between the bone surfaces. The smooth inner surfaces of the rigidopposing plates or shells are shaped to cooperate and articulate with the shape of the smooth surface of the deformable resilient central body to allow relatively unconstrained motion of the plates or shells with respect to the resilient central body until the limit of acceptable motion is reached. Once the limit of allowable motion is reached, the shape of the inner surface of the plate or shell cooperates with the shape of the deformable resilient central body to effectively resist any movement beyond the desired motion. This allows the motion of a joint containing the implant to closely approximate the motion provided in a healthy joint, alleviating undesirable stresses imposed on the joint or bone structure, or in the case of a vertebral implant, on adjacent joints as well. This, in turn, reduces the likelihood of further joint degeneration in adjacent joints.
The deformable resilient central body also provides elasticity and dampening properties, similar to those provided by healthy joint tissue. It is also sufficiently creep-resistant or resistant to plastic deformation to avoid postoperative loss of disc space height and to maintain appropriate joint geometry. The surface of the central body is hard, in some embodiments harder than the interior, which provides good wear resistance. It is also very lubricious, which provides good tribological properties in conjunction with the inner surfaces of the rigid plates or shells.
The resulting implant is safe because it can be implanted with precision, aid once implanted, it is stable. It is extremely effective because the geometry of the internal surfaces is configured to provide a range of motion that closely approximates that provided by healthy joint tissue, thus allowing coordinated movement of the spine and reducing stress on adjacent joints. In another aspect, the invention relates to an implant that effectively provides an artificial diarthroidal-like joint, suitable for use in replacing any joint, but particularly suitable for use as an intervertebral disc endoprosthesis. In this aspect, the implant contains, in addition to the opposing rigid plates or shells and deformable, resilient central body described above, a flexible sleeve or sheath that extends between edges of the opposing plates or shells.
The inner surface of this sheath, together with the inner surfaces of the rigid plates or shells, defines a cavity surrounding the central body. Most, if not all, of the interior space of this cavity can be filled with a fluid lubricant, further decreasing the frictional force between inner surfaces of the plates or shell and the surface of the central body, again within the constraints of allowable motion.
The flexible sleeve or sheath serves to hold the implant together as a single unit, making it easier to manipulate during the implant procedure. It also retains the lubricant within the implant and provides a contained, sealed environment that keeps tissue from entering the interior of the implant, isolates the central body from possible attack or degradation by body fluids, and prevents any wear debris that might be generated from exiting the implant and migrating into surrounding tissues . The implant therefore provides a sealed capsule presenting only biocompatible surfaces to surrounding tissues, and keeping wear surfaces internal to the implant and permanently lubricated. The result is an implant with extremely good durability, because the articulating surfaces have been isolated away from the natural bone surfaces and placed in a lubricated capsule.
In yet another aspect, the invention provides a vertebral endoprosthesis, having: an upper and a lower rigid, opposed, biocompatible plate or shell, each comprising: an outer, rough surface; an inner, smooth surface; and an edge between the surfaces; wherein the inner smooth surface of at least one of the plates or shells comprises a first motion limiting device; a deformable, resilient central body disposed between the inner, smooth surfaces of the upper and lower plates or shells, comprising: a smooth upper surface adjacent to the inner smooth surface of the upper plate or shell and a smooth lower surface adjacent to the inner smooth surface of the lower plate or shell; a second motion limiting device disposed on at least one of the smooth upper and lower surfaces adapted to contact the first motion limiting device and limit the relative motion of the plate or shell with respect to the central body.
The inner surfaces of the plates or shells can desirably be concave, and articulate with smooth upper surfaces of the deformable resilient central body that are convex. This arrangement creates, in effect, an artificial ball-and-socket-like joint in the intervertebral space, which joint is inherently stable under compression.
In a more specific embodiment of this aspect of the invention, the vertebral endoprosthesis contams: an upper and a lower rigid, opposed biocompatible concavo-convex shell, each comprising: an outer, rough convex surface, comprising a porous coating of a biocompatible material; an inner concave surface, comprising: a smooth contact area; and an axial post extending toward the opposing shell; and an edge between the surfaces, comprising: a circumferential groove adapted to receive a retaining ring; a first ridge circumscribing the contact area of the inner concave surface and extending axially toward the opposing shell; an insertion tab extending axially away from the opposing shell, and comprising an opening adapted to releasably engage a tool for manipulating, inserting, or removing the endoprosthesis; a closable passage between the outer surface and the inner surface of the shell; a deformable, resilient central body disposed between the inner, smooth concave surfaces of the upper and lower shells, comprising: smooth convex upper and lower surfaces complementary and adjacent to the smooth contact area of the inner surfaces of the respective upper and lower shells; a second ridge circumscribing each of the smooth convex upper and lower surfaces and adapted to contact the first ridge of the adjacent shell and limit the relative motion of the shell with respect to the central body; a laterally extending equatorial ridge disposed between the first ridge of the upper concavo-convex shell and the first ridge of the lower concavo-convex shell; an opening in the upper and lower convex contact surfaces adapted to receive the axial post of the inner surface of each shell; an elastic sheath or sleeve disposed between the upper and lower shells and surrounding the central body, comprising an inner surface, an outer surface, an upper edge attached to the upper shell, and a lower edge attached to the lower shell, wherein the inner surface of the sheath and the inner surfaces of the shells define an enclosing cavity; an upper retaining ring of a biocompatible material disposed in the circumferential groove in the upper concavo-convex shell and securing the upper edge of the elastic sheath or sleeve to the shell and a lower retaining ring of a biocompatible material disposed in the circumferential groove of the lower concavo- convex shell and securing the lower edge of the sheath or sleeve to the shell.
This endoprosthesis provides the advantages described above with respect to the more general aspects of the invention, and more specifically provides an implantable vertebral joint that approximates the disc height and range of motion of a healthy intervertebral disc, with significantly increased durability relative to natural intervertebral disc material, and without the drawbacks of spinal fusion.
In addition, the concavo-convex geometry of the opposmg shells, and the precise preparation of a mating concave surface in the vertebral body endplates, into which the convex outer surfaces of the shells are inset, provide a highly stable implanted joint. Coupled with the roughness provided by the porous coating on the outer surface of the shell, this inset shape holds the implant firmly in place so that it cannot migrate and come into contact with nerves or blood vessels, and so that the desired bony ingrowth can occur. The convex outer surface also provides additional surface area that contacts cancellous bone, increasing both the opportunity for bony ingrowth and the frictional force holding the shells in place. The mating of the concave inner surfaces of the shells with the curved shape of the central body provides a simple ball-and-socket-like system that is inherently highly stable under compression, as it will be when implanted. The embodiment of the invention using concavo-convex shells and a convex surface on the deformable central body therefore provides immediate mechanical stability.
Because the range of motion provided by the implant closely approximates that of a healthy disc, post-operative adjacent level disc degeneration is minimized or avoided entirely. In addition, the implant does not significantly constrain joint torsion, but instead relies on the remaining soft tissue (e.g., remaining disc annulus, ligaments, etc.) in and around the implanted joint to provide appropriate torsional constraint. Neither the shapes of the plates or shells or of the central body, or of the central retaining posts or central axial opening restrict the torsional movement of the shells relative to the central body (i.e., the rotation of the shellsor of the central body about a central axis. This is of benefit because it significantly decreases the stress imposed on the interface between the bone surfaces and the outer surfaces of the implant, making movement of these implant surfaces relative to the bone less likely. This, in turn, increases the likelihood of bony ingrowth instead of fibrous tissue formation, and therefore increases long-term stability. BRIEF DESCRIPTION OF DRAWINGS
The invention can be more clearly understood by reference to the following drawings, which illustrate specific embodiments thereof, and which are not intended to limit the scope of the appended claims.
FIG. 1 is a perspective drawing of an intervertebral endoprosthesis in accordance with a specific embodiment of the invention.
FIG. 2 is an elevational view of the intervertebral endoprosthesis shown in FIG. 1.
FIG. 3 is a top plan view of the intervertebral endoprosthesis shown in FIG. 1 and 2.
FIG. 4 is an isometric cross sectional view of the intervertebral endoprosthesis shown in FIG. 1, 2, and 3.
FIG. 5 is a plan view of an implant plug and plug installation tool used to insert a plug into an intervertebral endoprosthesis.
FIG. 6 is a sectional view of the intervertebral endoprosthesis shown in FIG. 1-4.
FIG. 7 is an exploded perspective view of the intervertebral endoprosthesis shown in FIG. 1-4 and 6.
FIG. 8 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing lateral bending.
FIG. 9 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing translation.
FIG. 10 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing lateral bending. FIG. 11 is a plan view (A) and sectional view (B) of one embodiment of an intervertebral endoprosthesis of the invention undergoing translation.
The invention can be more clearly understood by reference to some of its specific embodiments, described in detail below, which description is not intended to limit the scope of the claims in any way.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
In broad aspect, the size and shape of the implant are substantially variable, and this variation will depend upon the joint geometry. Moreover, implants of a particular shape can be produced in a range of sizes, so that a surgeon can select the appropriate size prior to or during surgery, depending upon his assessment of the joint geometry of the patient, typically made by assessing the joint using CT, MRL fluoroscopy, or other imaging techniques.
The rigid opposing plates or shells can be made of any rigid, biocompatible material, but are generally made of a biocompatible metal, such as stainless steel, cobalt chrome, ceramics, such as those including A^O3 or Zr2O3, or titanium alloy. ASTM F-136 titanium alloy has been found to be particularly suitable. As indicated above, the outer surface of the rigid opposing plates or shells are rough, in order to restrict motion of the shells relative to the bone surfaces that are in contact with the plates. This is particularly important in the time period just after implantation (the "acute" phase of healing), since excessive movement of the implant relative to the bone can result in the formation of fibrous tissue between the bone and the implant, rather than the bony ingrowth, which is desirable for long term implant stability (i.e., during the "chronic" phase of healing). It has been discovered that a porous coating formed from nonspherical sintered beads provides very high friction between the outer surface of the shell and the bone, as well as providing an excellent interaction with the cancellous bone of the joint, increasing the chances of bony ingcowth. One example of a suitable nonspherical sintered bead coating is that made of pure titanium, such as ASTM F-67. The coating can be formed by vacuum sintering.
At least a portion of the inner surface of each plate or shell is smooth, and of a shape that complements and articulates with the shape of at least a portion of the central body. This smoothness and correspondence in shape provides unconstrained movement of the plate or shell relative to the central body, provided that this movement occurs within the allowable range of motion.
The structural features of the shapes of the inner surface of the plate or shell and the central body that interact to limit the movement to this allowable range will necessarily vary to some extent, based on the joint in which the implant will be used. As an example, the edge of the plate or shell can be extended toward the central body, so as to for a wall that, under shear, can contact a ridge or shoulder formed in the surface of the central body. This will allow for unconstrained motion of the plate or shell except in a direction that will bring the extension into contact with the ridge. By forming the extension around the entire edge of the shell, and by forming a ridge or shoulder that encloses a portion of the surface of the central body, translational, flexural, extensional, and lateral motion of the plate or shell relative to the central body can be constrained in all directions. Those of skill in the art will recognize that a bead or ridge at other locations on the inner surface of the plate or shell will serve a similar purpose, and that the location of this bead or ridge, as well as the ridge or stop on the central body, can be varied between implants for different joints, in order to obtain the desired range of motion for that particular joint.
The plates may be identical, which is desirable for ease of manufacture, or may be of different design (shape, size, and/or materials) to achieve different mechanical results. For example, differing plate or shell sizes may be used to more closely tailor the implant to a patient's anatomy, or to shift the center of rotation in the cephalad or caudal direction.
In a more particular embodiment, the inner surface of the shell and the outer surface of the central body can contain complementary structures that will function as an expulsion stop, so that the central body cannot be expelled from between the opposing plates or shells when the plates or shells are at maximum range of motion in flexion/extension. Examples of such structures include a post and corresponding hole to receive the post. The hole can have a diameter sufficiently large that relative motion between the shells and central body is unconstrained within the allowable range of motion, but that will nevertheless cause the post to arrest the central body before it is expelled from the implant under extreme compression. Alternatively, the diameter of the post may be such that it limits the translational movement of the central body during normal motion of the spine by contacting the surface of the hole in the central body at the limit of the allowable range of motion for the device. The elastically deformable, resilient central body may also vary somewhat in shape, size, composition, and physical properties, depending upon the particular joint for which the implant is intended. The shape of the central body should complement that of the inner surface of the shell to allow for a range of translational, flexural, extensional, and rotational motion, and lateral bending appropriate to the particular joint being replaced. The thickness and physical properties of the central body should provide for the desired degree of elasticity or damping. Accordingly, an elastomeric material is typically used for the central body. However, the central body should be sufficiently stiff to effectively cooperate with the shell surfaces to limit motion beyond the allowable range. The surface of the central body should be sufficiently hard to provide acceptable wear characteristics. One way to achieve this combination of properties is to prepare a central body having surface regions that are harder than the material of the central body closer to its core. The central body is therefore desirably a biocompatible elastomeric material having a hardened surface. Polyurethane- containing elastomeric copolymers, such as polycarbonate-polyurethane elastomeric copolymers and polyether-polyurethane elastomeric copolymers, generally having durometer ranging from about 80 A to about 65D (based upon raw, unmolded resin) have been found to be particularly suitable for vertebral applications. If desired, these materials may be coated or impregnated with substances to increase their hardness or lubricity, or both. Examples of suitable materials are provided in more detail below.
The shape of the central body may also be designed to prevent contact between the edges of the rigid opposing shells during extreme motion of the implant. For example, a ridge or lip in the region of the central body between the shells and extending laterally can provide a buffer, preventing contact between the shells. This prevents friction and wear between the shells, thereby avoiding the production of particulates, which could cause increased wear on the internal surfaces of the implant.
In a particular embodiment, one or both of the rigid opposing shells can be provided with an opening therein, in the form of a passage between the outer and inner surfaces. When the implant is partially assembled, i.e., the deformable resilient central body has been disposed between the rigid opposing shells, and the sheath has been attached to the edges of the shells, the passage can be used to introduce liquid lubricant into the implant. The passage can then be closed off (e.g., by filing it with an appropriately sized plug), thereby providing a sealed, lubricant filled inner cavity.
Attachment of the sheath to the rigid, opposing shells can be accomplished in a variety of ways. Typically the rigid opposing shell is made from a biocαnpatible metallic alloy, e.g., a titanium alloy, while the sheath is typically made from an elastomeric polymeric material, such as segmented polyurethane. Attachment of the sheath to the shell can be accomplished by providing the edge of the rigid shell with a circumferential groove (the term "circumferential" in this context does not imply any particular geometry). The groove is of a shape and depth sufficient to accept a retaining ring, typically made of a biocompatible weldable wire, such as stainless steel or titanium. The sheath can be disposed so that it overlaps the circumferential groove, and the retaining ring formed by wrapping the wire around the groove over the overlapping portion of the sheath, cutting the wire to the appropriate size, and welding the ends of the wire to form a ring. Laser welding has been found to be particularly suitable in this regard.
The invention as described above can be used as a prosthetic implant in a wide variety of joints, including hips, knees, shoulders, etc. The description below focuses on an embodiment of the invention wherein the implant is a spinal disc endoprosthesis, but similar principles apply to adapt the implant for use in other joints. Those of skill in the art will readily appreciate that the p-rticulars of the internal geometry will likely require modification from the description below to prepare an implant for use in other joints. However, the concept of using a core body having geometric features adapted to interact with inner surfaces of opposing shells to provide relatively unconstrained movement of the respective surfaces until the allowable range of motion has been reached, and the concept of encasing these surfaces in a fluid filled capsule formed by the opposing shells and a flexible sheath, are applicable to use in any joint implant.
Reference is made below to the drawings, which shall now be used to illustrate a specific embodiment of the present invention, namely a spinal disc endoprosthesis. As can be seen best in the exploded view shown in FIG. 7, in accordance with this preferred embodiment, the present invention includes four main components: two shells 20, 40, a central body 60, and a sheath 70. The complete assembly of the device is shown in FIGS. 4 and 6, wherein the central body 60 is bracketed between shells 20, 40. The flexible sheath 70 extends between the two opposing shells 20, 40, and encapsulates the central body 60. As described in further detail below, the geometric configuration of the shells 20, 40, the central body 60, and the sheath 70, are complementary. As such the geometric configuration of these components cooperate to (1) join the components into a unitary structure, and (2) define important functional features of the device.
Preferably, shells 20, 40 are cup-like so as to include an outer convex surface 23 and an inner concave surface 21, 41. The outer surfaces 23 can be coated with a nonspherical sintered bead coating 22, 42, or with some other coating that will promote bony ingrowth. The inner surfaces 21, 41 (shown in FIG. 6) are preferably very smooth, and may be machined or polished.
The shells, 20, 40 include a number of geometric features that as described in further detail below cooperate with other components of the devices. Specifically, these features include a central retaining post 27, 47, an outer circumferential groove 82, 84, and radial stop or an extension 86, 88. The central retaining post 27, 47 extends axially from inner surfaces 21, 41. In addition, each shell 20, 40 includes an edge 73, 74, respectively. The outer circumferential grooves 82, 84 extend into the edges 73, 73 of the shells 20, 40. As seen best in FIG. 6, the radial stops or extensions 86, 88 extend from the edge 73, 74 in a direction generally perpendicular to the general plane of the shells 20, 40. Each shell may also be provided with tabs or flanges 25, 45. The tabs or flanges extend from a portion of the edge 73, 74 in a direction generally peφendicular to the general plane of the shells 20, 40, but in a direction generally opposite the radial stops or extensions 86, 88. The tabs or flanges 25, 45 help to prevent longterm migration within the disc space, as well as catastrophic posterior expulsion, and the resulting damage to the spinal cord, other nerves, or vascular structures. Insertion stops 25, 45 may contain openings 26, 46 that can releasably engage an insertion tool (not shown). The insertion tool will generally contain flexible prongs to releasably engage openings 26, 46. The insertion tool will also generally include a disengagement block that can press against the side of the implant once it has been properly positioned in the intervertebral space and force the openings 26, 46 off of the prongs of the tool. The shells can be made from any suitable biocompatible rigid material. In accordance with a preferred embodiment, the shells are made from a titanium alloy, and most preferably the titanium alloy is ASTM F-136. The bead coating 22, 42, however, is preferably made from ASTM 67 pure titanium.
As shown best in FIG. 7, central body 60 is a preferably a donut-shaped structure, and includes a convex upper contact surface 94, a convex lower contact surface 96, and a central axial opening 98. In addition, central body member 60 preferably includes an upper shoulder 92 and a lower shoulder 90. Each shoulder 90, 92 consists of an indentation in the surface of the central body member which defines a ledge that extends around the circumference of the central body 60.
The central body 60 is both deformable and resilient, and is composed of a material that has surface regions that are harder than the interior region. This allows the central body to be sufficiently deformable and resilient that the implant functions effectively to provide resistance to compression and to provide dampening, while still providing adequate surface durability and wear resistance. In addition, the material of the central body has surfaces that are very lubricious, in order to decrease friction between the central body and the rigid opposmg shells.
The material used to make the central body is typically a slightly elastomeric biocompatible polymeric material, which may be coated or impregnated to increase surface hardness, or lubricity, or both, as described above. Coεting may be done by any suitable technique, such as dip coating, and the coating solution may be include one or more polymers, including those described below for the central body. The coating polymer may be the same as or different from the polymer used to form the central body, and may have a different durometer from that used in the central body. Typical coating thickness is greater than about 1 mil, more particularly from about 2 mil to about 5 mil. Examples of suitable materials include polyurethanes, such as polycarbonates and polyethers, such as Chronothane P 75A or P 55D (P-eth-PU aromatic, CT Biomaterials); Chronoflex C 55D, C 65D, C 80A, or C 93A (PC-PU aromatic, CT Biomaterials); Elast-Eon II 80A (Si-PU aromatic, Elastomedic); Bionate 55D/S or 80A-80A / S (PC-PU aromatic with S-SME, PTG); CarboSil-10 90A (PC- Si-PU aromatic, PTG); Tecothane TT-1055D or TT-1065D (P-eth-PU aromatic, Thermedics); Tecoflex EG-93A (P-eth-PU aliphatic, Thermedics); and Carbothane PC 3585A or PC 3555D (PC-PU aliphatic, Thermedics).
The last main component of this preferred embodiment of the present invention is the sheath 70. As show in FIG. 7, the sheath 70 is a tubular structure, and is made from a flexible material. The material used to make the sheath is typically biocompatible and elastic, such as a segmented polyurethane, having a thickness ranging from about 5 to about 30 mils, more particularly about 10-11 mils. Examples of suitable materials include BIOSPAN-S (aromatic polyetherurethaneurea with surface modified end groups, Polymer Technology Group), CHRONOFLEX AR/LT (aromatic polycarbonate polyurethane with low-tack properties, CardioTech International), CHRONOTHANE B (aromatic polyether polyurethane, CardioTech International), CARBOTHANE PC (aliphatic polycarbonate polyurethane, Thermedics).
As noted above, the various geometric features of the main components of this preferred embodiment of the present invention cooperate to join the components into a unitary structure. In general, the ends of the sheath 70 are attached to the shells, and the central body 60 is encapsulated between the shells 20, 40 and the sheath 70. More specifically, referring to FIG. 6, preferably the edges of flexible sheath 70 can overlap the outer circumferential grooves 82, 84 of the shells 20, 40. Retaining rings 71, 72 are then placed over the edges of the sheath 70 and into the circumferential grooves 82, 84, thereby holding the flexible sheath in place and attaching it to the shells. While any suitable biocompatible material can be used for the retaining rings, titanium or titanium alloys have been found to be particularly suitable. The retaining rings are desirably fixed in place by, e.g., welding the areas of overlap between the ends of the retaining rings. Because of the high temperatures needed to weld titanium and titanium alloys, and because of the proximity of the weld area to both the flexible sheath 70 and the central body 60, laser welding is typically used.
As also noted above, the various geometric features of the main components of the preferred embodiment of the present invention cooperate to define important functional features of the device. These features primarily include defining the kinematics of motion provided by the device, prohibiting expulsion of the central body 60, providing post assembly access to the interior of the device, providing an attachment mechanism for inserting the device, and providing a port for the insertion of lubricant into the implant cavity.
The kinematics of the motion provided by the prosthesis are defined primarily by the geometric interaction of the central body 60 and the shells 20, 40. Although the central body is encapsulated within the sheath and the shells, it is not attached to these components. Accordingly, the central body 60 freely moves within enclosed structure and is only constrained by geometric limitations. As seen best in FIG. 6, the concave shape of the inner surfaces 21, 41 of shells 20, 40 complements the convex surfaces 94, 96 of central body 60. As the shells 20, 40 glide across the convex surfaces 94, 96, relatively unconstrained translational, flexural, or extensional motion of shells 20, 40 with respect to central body 60 is achieved. When the desired limit of the range of motion is reached, extensions 86, 88 on shells 20, 40 are designed to contact shoulders 90, 92 on the central body 60. Specifically, the inner portion of the extension forms a circumferential ridge that limits the range of motion of the shells 20, 40 relative to the central body 60 by contacting central body shoulders 90, 92 at the end of the allowable range of motion. In an actual vertebral joint, this occurs at a joint flexion/extension of about + 10°, at lateral bending of about 11°, and/or at translation of about 2-3 mm.
As explained above, in one embodiment of the invention, the shells are concavo-convex, and their inner surfaces mated and articulated with a convex outer surface of the deformable resilient central body. The implant also contains a sheath or sleeve that is secured to the rims of the shells with retaining rings, and which, together with the inner surfaces of the shells, forms an implant cavity. In a particular aspect of this embodiment, using a coordinate system wherein the geometrical center of the implant is located at the origin, and assigning the x-axis to the anterior (positive) and posterior (negative) aspect of the implant, the y-axis to the right (positive) and left (negative) aspect of the implant, and the z-axis to the cephalad (positive) and caudal (negative) aspects of the implant, the convex portion of the outer surface and the concave portion of the inner surface of the shells can be described as a quadric surfaces, such that
Figure imgf000025_0001
where (+a,0,0), (0,+b,0), and (0,0,+c) represent the x, y, and z intercepts of the surfaces, respectively. Typical magnitudes for a, b, and c are about 11 mm, 30 mm, and 10 mm, respectively.
The implant is symmetrical about the x-y plane, and is intended to be implanted in the right-left center of the disc space, but may or may not be centered in the anterior-posterior direction. In any event, the implant is not allowed to protrude in the posterior direction past the posterior margin of the vertebral body.
As noted above, geometric features also serve to prevent the expulsion of the central body 60. In particular, this is achieved by the geometric interaction of the shells 20, 40 and the central body 60. Shells 20, 40 also contain central retaining posts 27, 47 which extend axially from inner surfaces 21, 41 into a central axial opening 98 in central body 60 and which stop central body 60 from being expelled from the implant during extreme flexion or extension. The diameter of central axial opening 98 is somewhat larger than the diameter of central retaining posts 27, 47. In the coordinate system described above, the central axis of the retaining post is typically coincident with the z-axis, but may move slightly to accommodate various clinical scenarios. The shape of the post may be any quadric surface. However, a truncated tapered elliptical cone is a particularly suitable geometry. Similarly, the geometry of the central axial opening of the central body will correspond to the geometry of the retaining post, and will have a similar geometry.
Also described above, the shells contain extensions or walls formed on the inner surface, for example around the edge of the shell, and that extend toward the deformable resilient central body. This extension or wall limits allowable translation of the deformable resilient central body with respect to the shell when the extension comes into contact with a shoulder formed on the surface of the central body, e.g., under shear loading of the implant. The height of the extension or wall should be less than about 2.5 mm in order to allow the full range of desired flexion/extension and right/left lateral bending motions.
The resilient deformable central body contams surfaces that are described by an equation similar to that for the inner surfaces of the shells, and which articulates with those inner surfaces. The central body will have a plane of symmetry if identical opposing shells are used. As described above, the central body also features an equatorial rim that acts as a "soft stop" in the event the patientparticipates in extreme activities that result in movements greater than the designed range of flexion/extension or lateral bending. In such a situation, the central body will have translated until the retaining post has contacted the inner surface of the central axial opening, and the extension or wall will have contacted the shoulder of the central body. Opposite the wall/shoulder contact, the edges of the shells will be in close proximity, but will be kept from contacting each other by contact with the equatorial rim of the central body. If desired, the thickness of the rim can be varied to further limit the range of motion.
Another important characteristic of this preferred embodiment of the present invention is the provision of a means for accessing the interior of the device after it has been assembled into a unitary structure. This means consists of a cential axial opening included in the shells 20, 40. Typically, this opening will be provided through central retaining posts 27, 47. By providing access to the interior of the device, sterilization can be done just prior to implantation of the device. Sterilization is preferably accomplished by introducing an ethylene oxide surface sterilant. Caution should be exercised in using irradiation sterilization, as this can result in degradation of the polymeric materials in the sheath or cential body, particularly if these include polyurethanes.
After sterilization, the central openings can be sealed using plugs 28, 48. Preferably, only one plug is inserted first. The plug is inserted using insertion tool 100, shown in FIG. 5, and which contains handle 101 and detachable integral plug 28, 48. The tool is designed so that plug 28, 48 detaches from the tool when a predetermined torque has been reached during insertion of the plug. The tool can then be discarded.
After one plug has been inserted to one of the shells, a lubricant 80 is preferably introduced into the interior of the device prior to inserting the second plug. To do this a syringe is used to introduce the lubricant into the remaining central opening, and the implant is slightly compressed to remove some of the excess air. Another insertion tool 100 is then used to insert a plug into that central opening, and thereby completely seal the interior of the device from its exterior environment. In accordance with the preferred embodiment of the present invention the lubricant 80 is saline. However, other lubricants may be used, for example, hyaluronic acid, mineral oil, and the like.
The two shells 20, 40 are virtually identical in shape and composition, however those of skill in the art will understand that it is possible to use shells of different sizes (including thicknesses), shapes, or materials, e.g., in order to provide a more customized fit to the patient's anatomy, and that this does not depart from the spirit and scope of the invention.
The deformable resilient central body is disposed between the opposed shells, as described above and illustrated in the drawing figures. Its upper and lower surfaces articulate with the upper and lower shells, respectively, and have a geometry that is similar to that of the shells.
The kinematics of various embodiments of the implant are illustrated in FIG. 8, 9, 10, and 11. FIG. 8 A illustrates a plan view of an implant having a hollow central retaining post and undergoing lateral bending. The range of lateral bending is limited to about 11°, as indicated in FIG. 8B, which is a sectional view along line A-A of FIG. 8A. Contact of the walls or extensions 86, 88 of the shells with shoulders 90, 92 of the central body limit the range of motion to that desired. The cential retaining posts 27, 47 may also contribute to limiting the range of motion by contact with the central axial opening of the central body. FIG. 9 A illustrates a plan view of an implant of the type shown in FIG. 8 undergoing lateral translation. FIG. 9B shows a sectional view along line G-G. Again, the contact between walls or extensions 86, 88 of the shells and shoulders 90, 92 of the cential body limit the range of motion to that desired, and central retaining posts 27, 47 may also contribute. FIG. 10 and 11 provide similar plan and sectional views (along line H-H and H, respectively), illustrating a different embodiment of the implant (without a hollow central retaining post) undergoing lateral bending (FIG. 10) and lateral translation (FIG. 11). In each case, the range of motion is limited by contact between walls or extensions 86, 88 of the shells and shoulders 90, 92 of the central body. As described above, the implant is desirably used as an endoprosthesis inserted between two adjacent vertebral bodies. The implant may be introduced using a posterior or anterior approach. For cervical implantation, an anterior approach is preferred. The implanting procedure is carried out after discectomy, as an alternative to spinal fusion. The appropriate size of the implant for a particular patient, determination of the appropriate location of the implant in the intervertebral space, and implantation are all desirably accomplished using precision stereotactic techniques, apparatus, and procedures, such as the techniques and procedures described in copending U.S. Serial No. 09/783,860, Attorney Docket Number 46739/250563, filed on February 13, 2001, the entire contents of which are hereby incoφorated by reference. Of course, non-stereotactic techniques can also be used. In either case, discectomy is used to remove degenerated, diseased disc material and to provide access to the intervertebral space. This access is used to remove a portion of the vertebral body using a burr or other appropriate instruments, in order to provide access to the intervertebral space for a transverse milling device of the type described in U.S. Serial No. 08/944,234, the entire contents of which are hereby incoφorated by reference. The milling device is used to mill the surfaces of the superior and inferior vertebral bodies that partially define the intervertebral space to create an insertion cavity having surfaces that (a) complement the outer surfaces of the implant and (b) contain exposed cancellous bone. This provides for an appropriate fit of the implant with limited motion during the acute phase of implantation, thereby limiting the opportunity for fibrous tissue formation, and increases the likelihood for bony ingrowth, thereby increasing long-term stability.
The invention has been described above with respect to certain specific embodiments thereof. Those of skill in the art will understand that variations from these specific embodiments that are within the spirit of the invention will fall within the scope of the appended claims and equivalents thereto.

Claims

WHAT IS CLAIMED IS:
1. A surgical implant suitable for use in a joint between the surfaces of tvo bones, comprising: two rigid opposing shells, each having an outer surface adapted to engage the surfaces of the bones of a joint in such a way that movement of the shell relative to the bone surface is resisted by friction between the outer surface and the surface of the bone; an inner surface that is smoother than the outer surface; and an edge between the outer surface and the inner surface; a deformable, resilient central body disposed between the inner surfaces of the shells comprising an outer surface, at least a portion of which has a shape that complements and articulates with the shape of the inner surface of one or both rigid opposing shells to allow the inner surface of the rigid opposing shell and the outer surface of the central body to move easily with respect to each other within a constrained range of motion, but to resist such movement outside the constrained range of motion.
2. The surgical implant of claim 1, further comprising: a flexible sheath extending between edges of the opposing shells, having an inner surface that, together with the inner surfaces of the rigid shells, defines a cavity containing the central body.
3. The surgical implant of claim 2, further comprising: a liquid lubricant, which occupies at least a portion of the cavity.
4. The surgical implant of claim 1, wherein the inner surface of at least one of the rigid opposing shells comprises a motion limiting device disposed thereon.
5. The surgical implant of claim 4, wherein the motion limiting device comprises a bead or ridge formed on the inner surface.
6. The surgical implant of claim 5, wherein the bead or ridge is located at the edge of the shell, and extends toward the cential body.
7. The surgical implant of claim 4, wherein the surface of the central body comprises a motion limiting device disposed thereon, and which contacts the motion limiting device of the shell when the implant reaches the end of an acceptable range of motion.
8. The surgical implant of claim 7, wherein the motion limiting device on the central body retainer comprises a ridge that circumscribes the area of the inner surface of the shell that contacts the outer surface of the central body.
9. The surgical implant of claim 4, wherein the motion limiting device comprises a post extending toward the deformable resilient central body, and wherein the outer surface of the cential body further comprises at least one opening adapted to receive the post.
10. The surgical implant of claim 1, wherein the edge of at least one of the rigid opposing shells comprises an tab extending axially away from the cential body.
11. The surgical implant of claim 10, wherein the tab is adapted to releasably receive a tool for manipulating, inserting or removing the implant.
12. The surgical implant of claim 11, wherein the edges of both rigid opposing shells comprise a tab.
13. The surgical implant of claim 1 , wherein the outer surface of each rigid opposing shell is cooled with a biocompatible porous coating.
14. The surgical implant of claim 13, wherein the porous coating comprises nonspherical sintered beads of a biocompatible metal or metal alloy.
15. The surgical implant of claim 14, wherein the rigid shell comprises a titanium alloy and wherein the porous coating comprises nonspherical sintered titanium beads.
16. The surgical implant of claim 1, wherein at least one of the rigid opposing shells further comprises a closable passage between its outer surface and its inner surface.
17. The surgical implant of claim 16, wherem the closable passage comprises a hole that is closable by insertion of a correspondingly sized plug.
18. The surgical implant of claim 2, wherein the edge between the outer surface and the inner surface of the rigid opposing shells comprises a circumferential groove adapted to receive a retaining ring.
19. The surgical implant of claim 18, wherein the sheath overlaps the circumferential groove and is held against the edge of the rigid opposing shells by the retaining ring.
20. The surgical implant of claim 9, wherein the implant is a vertebral endoprosthesis.
21. A vertebral endoprosthesis, comprising: an upper and a lower rigid, opposed, biocompatible shell, each comprising: an outer, rough surface; an inner, smooth concave surface; and an edge between the surfaces; wherein the inner smooth surface of at least one of the shells comprises a motion limiting device; a deformable, resilient central body disposed between the inner, smooth concave surfaces of the upper and lower shells, comprising: a smooth convex upper surface adjacent to the inner smooth concave surface of the upper shell and a smooth convex lower surface adjacent to the inner smooth concave surface of the lower shell; motion limiting device disposed on at least one of the smooth convex upper and lower surfaces adapted to contact the motion limiting device and limit the relative motion of the shell with respect to the central body.
22. The vertebral endoprosthesis of claim 21, further comprising: an elastic sheath disposed between the upper and lower shells and external to the cential body, comprising an inner surface, an outer surface, an upper edge attached to the upper shell, and a lower edge attached to the lower shell; wherein the inner surface of the sheath and the inner surfaces of the shells define an enclosed cavity.
23. The vertebral endoprosthesis of claim 22, further comprising a lubricant disposed within the enclosed cavity.
24. The vertebral endoprosthesis of claim 21, wherein the motion limiting device on the shell comprises a first ridge disposed on the inner surface of the shell, and the motion limiting device on the central body comprises a shoulder disposed on the surface of the cential body.
25. The vertebral endoprosthesis of claim 24, wherein the first ridge comprises an axial extension of at least a portion of the edge of the shell toward the central body, and circumscribes the area of the inner surface that can contact the smooth convex surface of the central body.
26. The vertebral endoprosthesis of claim 24, wherein the shoulder circumscribes the convex surface of the central body.
27. The vertebral endoprosthesis of claim 21 , wherein the outer surface of the shell is convex.
28. The vertebral endoprosthesis of claim 21, wherein the outer surface of the shell comprises a porous biocompatible coating.
29. The vertebral endoprosthesis of claim 28, wherein the porous biocompatible coating comprises nonspherical sintered beads of a biocompatible metal.
30. The vertebral endoprosthesis of claim 21, wherein the edge of at least one of the shells comprises a circumferential groove adapted to be overlapped by the sheath and to receive a retaining ring securing the sheath to the shell.
31. The vertebral endoprosthesis of claim 30, further comprising a retaining ring disposed in the circumferential groove, and compressing the edge of the sheath into the groove.
32. The vertebral endoprosthesis of claim 31 , wherein the retaining ring comprises a wire or filament of biocompatible material, formed into a ring.
33. The vertebral endoprosthesis of claim 32, wherein the ends of the ring are laser welded.
34. The vertebral endoprosthesis of claim 21 , wherein the edge of at least one of the shells comprises an tab extending axially away from the cential body.
35. The vertebral endoprosthesis of claim 34, wherein the tab is adapted to releasably engage a tool for manipulating or inserting the endoprosthesis.
36. The vertebral endoprosthesis of claim 35, wherein the tab comprises an opening to releasably receive a retaining prong of the tool.
37. The vertebral endoprosthesis of claim 21, wherein the inner surface of at least one shell comprises a post extending toward the cential body, and wherein the outer surface of the cential body comprises at least one opening adapted to receive the post.
38. The vertebral endoprosthesis of claim 21, wherein at least one of the shells further comprises a closable passage between its outer surface and its inner surface.
39. The vertebral endoprosthesis of claim 38, wherein the closable passage comprises a hole that is closable by insertion of a correspondingly sized plug.
40. The vertebral endoprosthesis of claim 39, wherein the hole and plug are threaded with complementary threads.
41. A vertebral endoprosthesis, comprising: an upper and a lower rigid, opposed biocompatible concavo-convex shell, each comprising: an outer, rough convex surface, comprising a porous coating of a biocompatible material; an inner concave surface, comprising: a smooth contact area; and an axial post extending toward the opposing shell; and an edge between the surfaces, comprising: a circumferential groove adapted to receive a retaining ring; a first ridge circumscribing the contact area of the inner concave surface and extending axially toward the opposing shell; a tab extending axially away from the opposing shell, and comprising an opening adapted to releasably engage a tool for manipulating, inserting, or removing the endoprosthesis; a closable passage between the outer surface and the inner surface of the shell; a deformable, resilient central body disposed between the inner, smooth concave surfaces of the upper and lower shells, comprising: smooth convex upper and lower surfaces complementary and adjacent to the smooth contact area of the inner surfaces of the respective upper and lower shells; a shoulder circumscribing each of the smooth convex upper and lower surfaces and adapted to contact the first ridge of the adjacent shell and limit the relative motion of the shell with respect to the cential body; a laterally extending equatorial ridge disposed between the first ridge of the upper concavo-convex shell and the first ridge of the lower concavo-convex shell; an opening in the upper and lower convex contact surfaces adapted to receive the axial post of the inner surface of each shell; an elastic sheath disposed between the upper and lower shells and external to the central body, comprising an inner surface, an outer surface, an upper edge attached to the upper shell, and a lower edge attached to the lower shell, wherem the inner surface of the sheath and the inner surfaces of the shells define an enclosed cavity; an upper retaining ring of a biocompatible material disposed in the circumferential groove in the upper concavo-convex shell and securing the upper edge of the elastic sheath to the shell and a lower retaining ring of a biocompatible material disposed in the circumferential groove of the lower concavo-convex shell and securing the lower edge of the sheath to the shell.
42. The vertebral endoprosthesis of claim 41, further comprising: a plug of biocompatible material disposed in the closable passages between the outer surface and inner surface of at least one of the concavo-convex shells.
43. The vertebral endoprosthesis of claim 42, further comprising: a lubricant disposed within the implant cavity.
44. The vertebral endoprosthesis of claim 43, wherein a plug is disposed in the closable passage of each concavo-convex shell.
45. A bone joint implant comprising an encapsulated cential body having a central axial opening therein.
46. The implant of claim 45 wherein the central body has at least one convex contact surface.
47. The implant of 46 wherein the central body has an upper and a lower convex contact surface.
48. A bone joint implant comprising a central body positioned between two shells, wherein the central body has a central axial opening therein.
49. The implant of claim 48 wherein the central body has at least one convex contact surface.
50. The implant of 49 wherein the cential body has an upper and a lower convex contact surface.
51. A bone joint implant comprising a central body positioned between two shells, wherein the central body has a shoulder consisting of an indentation extending around at least a portion of its perimeter.
52. The implant of claim 51 wherein the central body has at least one ωnvex contact surface.
53. The implant of claim 52 wherein the central body has an upper and a lower convex contact surface.
54. The implant of claim 51 wherein the cential body has an upper shoulder and a lower shoulder.
55. The implant of claim 54 wherein the cential body has at least one convex contact surface.
56. A bone joint implant comprising a central body positioned between two shells, wherein the central body has an upper and a lower contact surface, wherem an upper shoulder extends around a portion of the perimeter of the upper contact surface and a lower shoulder extends around a portion of the perimeter of the lower contact surface.
57. The implant of claim 56 wherein the cential body has at least one convex contact surface.
58. The implant of claim 57 wherein the central body has an upper and a lower convex contact surface.
59. A bone joint implant comprising an encapsulated cential body having an upper and a lower contact surface, wherein an upper shoulder extends around a portion of the perimeter of the upper contact surface and a lower shoulder extends around a portion of the perimeter of the lower contact surface.
60. The implant of claim 59 wherein the central body has at least one convex contact surface.
61. The implant of claim 60 wherein the cential body has an upper and a lower convex contact surface.
62. A bone joint implant comprising a central body positioned between two shells, wherein each shell has a smooth inner surface that contacts the central body
63. The implant of claim 62 wherein the inner surface is shaped to articulate with at least a portion of the central body.
64. A bone joint implant comprising a cential body positioned between two shells, wherein each shell has a machined or polished inner surface that contacts the central body.
65. The implant of claim 64 wherein the inner surface is shaped to articulate with at least a portion of the central body.
66. A bone joint implant comprising a cential body positioned between two shells, wherein at least one shell has an outer surface that is coated to promote bony ingrowth.
67. The implant of claim 66 wherein the coating is formed by vacuum sintering.
68. The implant of claim 66 wherein the coating is wherein the coating is a porous coating.
69. The implant of claim 66 wherein the coating is wherein the coating is a nonspherical sintered bead coating.
70. The implant of claim 66 wherem the coating is wherein the coating is a titanium coating.
71. The implant of claim 70 wherein the titanium coating meets ASTM F-67.
72. A bone joint implant comprising a cential body positioned between two shells, wherein at least one shell has a rough outer surface .
73. A bone joint implant comprising a central body positioned between two shells, wherein at least on shell has an outer surface that is coated to provide friction between the outer surface and bone .
74. A bone joint implant comprising a cential body and a lubricant encapsulated within a structure having at least one opening for the introduction of the lubricant into the structure.
75. The implant of claim 74 wherein the structure includes two shells and a sleeve extending between the shells, and the opening is included in at least one of the shells.
76. The implant of claim 75 wherein both shells include openings.
77. A bone joint implant comprising a central body positioned between two shells, wherein at least one shell includes an inner surface having a central retaining post extending therefrom and adapted to allow rotation of the shells relative to the central body .
78. The implant of claim 77 wherein the retaining post is substantially centrally located on the inner surface.
79. The implant of claim 77 wherein the inner surface is of a shape that articulates with the shape of at least a portion of the central body.
80. A bone joint implant comprising a cential body positioned between two shells, wherein at least one shell has an edge that includes a radial stop extending generally axially from a portion thereof .
81. The implant of claim 80 wherein at least one shell has an edge having an outer circumferential groove therein .
82. The implant of claim 80 wherein the radial stop extends generally axially a distance of less than about 2.5 mm from the edge.
83. The implant of claim 80 wherein the radial stop is adapted to contact a shoulder formed in the central body when translational, flexural, or extensional forces are applied to the implant.
84. The implant of claim 80 wherein at least one shell has an edge that includes a tab extending generally axially from a portion thereof .
85. The implant of claim 84 wherein the radial stop and the tab are on the same shell and they extend from the shell in opposite directions.
86. A bone joint implant comprising a two shells interconnected by a sleeve to form a cavity therein, and a central body having at least one indentation therein positioned within the cavity, wherein at least one of the shells includes a retaining post that extends into the indentation and at least one of the shells includes an opening to allow introduction of a lubricant into the cavity.
87. The implant of claim 86 wherein both shells include openings.
88. The implant of claim 86 wherein the opening is adapted to being sealed with a plug tool having a handle and a detachable integral plug associated therewith.
89. The implant of claim 88 wherem the plug is adapted to detach from the tool when a predetermined torque has been reached during insertion of the plug into the opening.
90. A method of introducing the lubricant into the implant of 86 comprising slightly compressing the implant to remove excess air, and injecting the lubricant into the opening.
91. A method of introducing the lubricant into the implant of claim 87 comprising: (1) sealing one of the openings, (2) slightly compressing the implant to remove excess air, (3) injecting the lubricant into the unsealed opening, and (4) sealing the second opening.
92. The method of claim 91 wherein the openings in the shells are sealed using a seal plug tool having a segment designed to disengage at a predetermined torque.
93. A bone joint implant comprising an elastomeric central body positioned between two shells wherein the cential body is impregnated with a surface hardening substance.
94. A bone joint implant comprising an encapsulated elastomeric cential body that is impregnated with a surface hardening substance.
95. A bone joint implant comprising an encapsulated cential body that is impregnated with a surface lubricity increasing material.
96. A bone joint implant comprising a central body positioned between two shells, wherein the central body is impregnated with a surface lubricity increasing material.
97. A bone joint implant comprising a cential body consisting of one or more integral materials such that the central body has a surface region that is harder than an interior region.
98. The implant of claim 97 wherein the cential body is positioned between two shells, and the harder surface region interfaces with at least one of the shells.
99. The implant of claim 97 wherein the central body is encapsulated by a structure, and the harder surface region interfaces with at least a portion of that structure.
100. The implant of claim 99 wherein the structure includes two shells and a sleeve extending between the shells, and the harder surface region interfaces with at least a portion of one of the shells.
101. A bone j oint implant comprising a cential body having a coating thereon wherein the coating material has a different hardness from the material used to form the cential body.
102. The implant of claim 101, wherein the coating increases the surface hardness of the central body.
103. A bone j oint implant comprising a central body having a coating thereon, wherein the coating increases the surface lubricity of the central body.
104. A bone joint implant comprising a central body positioned between two shells, wherein the cential body has a polymer coating thereon.
105. The implant of claim 104 wherein the polymer is selected from the group consisting of polyurethanes, polycarbonates and polyethers.
106. The implant of claim 104 wherein the polymer is a slightly elastomeric biocompatible polymeric material.
107. The implant of claim 104 wherein the polymer is selected from the group consisting of Chronothane, Chronoflex, Elast-Eon π, Bionate, CarboSil-10, Tecothane, Tecoflex, and Carbothane.
108. The implant of claim 104 the coating thickness is greater than about 1 mil.
109. The implant of claim 108 wherein the coating thickness is from about 2 mil to about 5 mil.
110. The implant of claim 104 the coating is placed on the central body by dip coating.
111. A bone joint implant comprising a central body having a coating thereon characterized in that the coating material is different from the material used to form the central body
112. A bone joint implant comprising a central body having a coating thereon characterized in that the coating material is the same as the material used to form the central body.
113. The implant of claim 112 wherein the coat material has a different hardness from the material used to form the cential body
114. A system of bone joint implants of varying sizes, wherein each implant comprises: a central body positioned between an upper shell and a lower shell, wherem at least a portion of the outer surface of each shell is convex and at least a porfon of the inner surface of each shell is concave; and the convex portion of the outer surface and the concave portion of the inner surface of the shells can each be described as a quadric surface, such that
2 2 2 a2 b2 c2 wherem (±a,0,0), (0,±b,0), and (0,0,±c) represent the x, y, and z intercepts of the surface, respectively, and may be the same or different for the outer and inner surfaces.
115. The system of bone joint implants of claim 114 wherein a is about 11 mm.
116. The system of bone joint implants of claim 114 wheremb is about 30 mm.
117. The system of bone joint implants of claim 114 wherein c is about 10 mm.
118. The system of bone joint implants of claim 14 wherem a is about 11 mm, b is about 30 mm, and c is about 10 mm.
119. The system of bone joint implants, wherein a, b and c are the same for the outer and inner surfaces.
PCT/US2001/024791 2000-08-08 2001-08-07 Implantable joint prosthesis WO2002011650A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001281166A AU2001281166B2 (en) 2000-08-08 2001-08-07 Implantable joint prosthesis
AU8116601A AU8116601A (en) 2000-08-08 2001-08-07 Implantable joint prosthesis
JP2002516989A JP4617408B2 (en) 2000-08-08 2001-08-07 Implantable artificial joint
CA2429246A CA2429246C (en) 2000-08-08 2001-08-07 Implantable joint prosthesis
EP01959631A EP1363565A2 (en) 2000-08-08 2001-08-07 Implantable joint prosthesis

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US22386300P 2000-08-08 2000-08-08
US60/223,863 2000-08-08
US26521801P 2001-01-31 2001-01-31
US60/265,218 2001-01-31
US09/783,910 US20020035400A1 (en) 2000-08-08 2001-02-13 Implantable joint prosthesis
US09/783,910 2001-02-13

Publications (2)

Publication Number Publication Date
WO2002011650A2 true WO2002011650A2 (en) 2002-02-14
WO2002011650A3 WO2002011650A3 (en) 2003-09-25

Family

ID=27397277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/024791 WO2002011650A2 (en) 2000-08-08 2001-08-07 Implantable joint prosthesis

Country Status (6)

Country Link
US (3) US7641692B2 (en)
EP (1) EP1363565A2 (en)
JP (1) JP4617408B2 (en)
AU (2) AU8116601A (en)
CA (1) CA2429246C (en)
WO (1) WO2002011650A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
WO2004105655A1 (en) * 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
WO2005041793A2 (en) 2003-10-23 2005-05-12 Trans1, Inc. Spinal mobility preservation apparatus and method
WO2005112833A1 (en) * 2004-05-20 2005-12-01 Pearsalls Limited Improvements in and relating to surgical implants
EP1626685A2 (en) * 2003-05-27 2006-02-22 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
WO2006042870A1 (en) * 2004-09-08 2006-04-27 Cesar Sebastian Bueno Universal intervertebral disc prosthesis
WO2006069463A1 (en) * 2004-12-28 2006-07-06 Synthes Gmbh Modular intervertebral implant
WO2006113576A1 (en) * 2005-04-19 2006-10-26 Warsaw Orthopedic, Inc. Implant having a sheath with a motion-limiting attribute
WO2006113771A1 (en) * 2005-04-19 2006-10-26 Warsaw Orthopedic, Inc. Composite structure for biomedical implants
WO2007038337A2 (en) 2005-09-22 2007-04-05 Blackstone Medical, Inc. Artificial intervertebral disc
WO2007073395A1 (en) * 2005-12-22 2007-06-28 Alexis Shelokov Artificial prosthesis
JP2007517622A (en) * 2004-01-09 2007-07-05 ウォーソー・オーソペディック・インコーポレーテッド Spine arthroplasty device and method
US7828846B2 (en) 2002-09-12 2010-11-09 Biedermann Motech Gmbh Space keeper for vertebrae or intervertebral disks
FR2948558A1 (en) * 2009-07-31 2011-02-04 Euros Sa INTERVERTEBRAL DISC PROSTHESIS
US7959678B2 (en) 2004-05-18 2011-06-14 Zimmer Gmbh Intervertebral disk implant
US7963994B2 (en) 2002-09-12 2011-06-21 Biedermann Motech Gmbh Intervertebral disk prosthesis
US8012212B2 (en) 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
EP2387976A1 (en) * 2003-12-10 2011-11-23 Axiomed Spine Corporation Method and apparatus for replacing a damaged spinal disc
US8282681B2 (en) 2007-08-13 2012-10-09 Nuvasive, Inc. Bioresorbable spinal implant and related methods
US8377135B1 (en) 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
US8398712B2 (en) 2005-02-04 2013-03-19 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US8506631B2 (en) 2007-08-09 2013-08-13 Spinalmotion, Inc. Customized intervertebral prosthetic disc with shock absorption
US8636805B2 (en) 2008-07-17 2014-01-28 Spinalmotion, Inc. Artificial intervertebral disc placement system
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
US8974531B2 (en) 2004-08-06 2015-03-10 Simplify Medical, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
US9107762B2 (en) 2003-05-27 2015-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
US9351846B2 (en) 2008-07-18 2016-05-31 Simplify Medical, Inc. Posterior prosthetic intervertebral disc
US9402745B2 (en) 2003-01-31 2016-08-02 Simplify Medical, Inc. Intervertebral prosthesis placement instrument
US9655741B2 (en) 2003-05-27 2017-05-23 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
USD858769S1 (en) 2014-11-20 2019-09-03 Nuvasive, Inc. Intervertebral implant
USRE47796E1 (en) 2006-04-12 2020-01-07 Simplify Medical Pty Ltd Posterior spinal device and method
US11207190B2 (en) 2008-05-05 2021-12-28 Simplify Medical Pty Ltd Polyaryletherketone artificial intervertebral disc
WO2022074309A1 (en) * 2020-10-09 2022-04-14 Backbone Disc prosthesis device for the cervical spine
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2391330C (en) 1999-07-02 2008-11-18 Spine Solutions Inc. Intervertebral implant
US7824445B2 (en) * 1999-07-26 2010-11-02 Ladislau Biro Corpectomy vertebral body replacement implant system
US6740093B2 (en) * 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US20080086133A1 (en) * 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
DE60141653D1 (en) * 2000-07-21 2010-05-06 Spineology Group Llc A STRONG, POROUS NET BAG DEVICE AND ITS USE IN BONE SURGERY
CA2429246C (en) * 2000-08-08 2011-06-07 Vincent Bryan Implantable joint prosthesis
US7169182B2 (en) 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US6673113B2 (en) 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
DE10132588C2 (en) * 2001-07-05 2003-05-22 Fehling Instr Gmbh Disc prosthesis
US6471725B1 (en) * 2001-07-16 2002-10-29 Third Millenium Engineering, Llc Porous intervertebral distraction spacers
US7771477B2 (en) 2001-10-01 2010-08-10 Spinecore, Inc. Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves
US7713302B2 (en) 2001-10-01 2010-05-11 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
SE0104323D0 (en) * 2001-12-20 2001-12-20 Matts Andersson Method and arrangement of implants for preferably human intermediate disc and such implant
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US20080027548A9 (en) 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US8696749B2 (en) * 2002-04-25 2014-04-15 Blackstone Medical, Inc. Artificial intervertebral disc
JP4315816B2 (en) * 2002-04-25 2009-08-19 ブラックストーン メディカル,インコーポレーテッド Artificial disc
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
EP2002805A3 (en) 2002-09-19 2009-01-07 Malan De Villiers Intervertebral prosthesis
GB0223327D0 (en) * 2002-10-08 2002-11-13 Ranier Ltd Artificial spinal disc
US6966929B2 (en) * 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
EP2329778A3 (en) * 2003-01-31 2012-06-20 Spinalmotion, Inc. Spinal midline indicator
AU2004212942A1 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
AU2004220634B2 (en) * 2003-03-06 2009-09-17 Spinecore, Inc. Instrumentation and methods for use in implanting a cervical disc replacement device
US6908484B2 (en) * 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
KR100754570B1 (en) * 2003-04-07 2007-09-05 서비텍, 인크. Prosthetic joint of cervical intervertebral for a cervical spine
US7491204B2 (en) 2003-04-28 2009-02-17 Spine Solutions, Inc. Instruments and method for preparing an intervertebral space for receiving an artificial disc implant
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US20050038516A1 (en) * 2003-08-14 2005-02-17 Mark Spoonamore Intervertebral disk prosthesis and method
FR2860974B1 (en) * 2003-10-17 2006-06-16 Scient X PROSTHESIS LUMBAR DISC
MXPA06004374A (en) * 2003-10-20 2006-07-06 Blackstone Medical Inc Vertebral body replacement apparatus and method.
US7691146B2 (en) 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
DE10361772B4 (en) * 2003-12-31 2006-10-12 Henning Kloss Intervertebral disc implant
US8123757B2 (en) 2003-12-31 2012-02-28 Depuy Spine, Inc. Inserter instrument and implant clip
FR2864763B1 (en) * 2004-01-07 2006-11-24 Scient X PROSTHETIC DISCALE FOR VERTEBRATES
GB2410189A (en) * 2004-01-23 2005-07-27 Corin Ltd Intervertebral disc prosthesis
US20050187631A1 (en) * 2004-01-27 2005-08-25 Sdgi Holdings, Inc. Prosthetic device
US20050171550A1 (en) * 2004-01-30 2005-08-04 Sdgi Holdings, Inc. Anatomic implants designed to minimize instruments and surgical techniques
US8323349B2 (en) * 2004-02-17 2012-12-04 The University Of Notre Dame Du Lac Textured surfaces for orthopedic implants
US7393361B2 (en) * 2004-02-20 2008-07-01 Spinecore, Inc. Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps
US7383164B2 (en) * 2004-03-05 2008-06-03 Depuy Products, Inc. System and method for designing a physiometric implant system
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US20050203533A1 (en) * 2004-03-12 2005-09-15 Sdgi Holdings, Inc. Technique and instrumentation for intervertebral prosthesis implantation
US7806933B2 (en) * 2004-03-15 2010-10-05 Warsaw Orthopedic, Inc. System and method for stabilizing a prosthetic device
US8070816B2 (en) * 2004-03-29 2011-12-06 3Hbfm, Llc Arthroplasty spinal prosthesis and insertion device
US8172904B2 (en) 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
EP1773256B1 (en) 2004-06-30 2019-11-27 Synergy Disc Replacement Inc. Artificial spinal disc
US20060041313A1 (en) * 2004-08-19 2006-02-23 Sdgi Holdings, Inc. Intervertebral disc system
US7763024B2 (en) * 2004-09-23 2010-07-27 Spine Solutions, Inc. Adjustable cutting of cutout in vertebral bone
US7780731B2 (en) * 2004-11-26 2010-08-24 Spine Solutions, Inc. Intervertebral implant
US20060100634A1 (en) * 2004-11-09 2006-05-11 Sdgi Holdings, Inc. Technique and instrumentation for measuring and preparing a vertebral body for device implantation using datum block
US20060111780A1 (en) * 2004-11-22 2006-05-25 Orthopedic Development Corporation Minimally invasive facet joint hemi-arthroplasty
US7578847B2 (en) * 2005-03-03 2009-08-25 Cervical Xpand, Llc Posterior lumbar intervertebral stabilizer
US20060217731A1 (en) * 2005-03-28 2006-09-28 Sdgi Holdings, Inc. X-ray and fluoroscopic visualization slots
US20060229723A1 (en) * 2005-04-08 2006-10-12 Sdgi Holdings, Inc. Intervertebral fusion device and method
US20060235416A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Intervertebral connecting elements
US20060235388A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Pedicular tunneling for decompression and support
US20060241766A1 (en) * 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Method and apparatus for preventing articulation in an artificial joint
US8147547B2 (en) * 2005-04-29 2012-04-03 Warsaw Orthopedic, Inc. Spinal implant
KR20080021005A (en) * 2005-05-02 2008-03-06 키네틱 스파인 테크놀로지스 인크. Artificial intervertebral disc
US8777959B2 (en) 2005-05-27 2014-07-15 Spinecore, Inc. Intervertebral disc and insertion methods therefor
SE528708C8 (en) * 2005-06-01 2007-03-13 Ortoviva Ab Device for disk implants
US8486145B2 (en) * 2005-09-19 2013-07-16 Premia Spine Ltd. Flexure limiter for spinal prosthesis
US7799079B2 (en) 2006-01-18 2010-09-21 Zimmer Spine, Inc. Vertebral fusion device and method
US7867279B2 (en) * 2006-01-23 2011-01-11 Depuy Spine, Inc. Intervertebral disc prosthesis
US8016885B2 (en) * 2006-01-23 2011-09-13 Altus Partners, Llc Cervical motion preservation device
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070179618A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US7766967B2 (en) * 2006-04-06 2010-08-03 Warsaw Orthopedic Inc. Intervertebral disc nucleus replacement implants and methods
US8632601B2 (en) 2006-04-28 2014-01-21 Zimmer, Gmbh Implant
WO2008014258A2 (en) 2006-07-24 2008-01-31 Spine Solutions, Inc. Intervertebral implant with keel
US20080051901A1 (en) 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
US20080051900A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Offset Anchors
KR20090049054A (en) * 2006-07-31 2009-05-15 신세스 게엠바하 Drilling/milling guide and keel cut preparation system
US7493828B2 (en) * 2006-08-02 2009-02-24 Orthopaedic Research Laboratories Simulator for evaluating artifical joint specimens and associated method
US8114162B1 (en) * 2006-08-09 2012-02-14 Nuvasive, Inc. Spinal fusion implant and related methods
US8029569B2 (en) 2006-11-20 2011-10-04 International Spinal Innovations, Llc Implantable spinal disk
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US10842535B2 (en) 2007-02-14 2020-11-24 William R. Krause Flexible spine components having multiple slots
WO2008100590A1 (en) * 2007-02-14 2008-08-21 Flex Technology Inc Flexible spine components
US10335288B2 (en) * 2007-03-10 2019-07-02 Spinesmith Partners, L.P. Surgical implant secured by pegs and associated methods
US9289310B2 (en) 2007-03-10 2016-03-22 Spinesmith Partners, L.P. Artificial disc with post and modular collar
US9358121B2 (en) * 2007-03-10 2016-06-07 Spinesmith Partners, L.P. Artificial disc with unique articulating geometry and associated methods
US20080228275A1 (en) * 2007-03-14 2008-09-18 Heather Cannon Intervertebral implant component with three points of contact
US8579910B2 (en) 2007-05-18 2013-11-12 DePuy Synthes Products, LLC Insertion blade assembly and method of use
WO2008151426A1 (en) * 2007-06-12 2008-12-18 Kinetic Spine Technologies Inc. Artificial intervertebral disc
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
EP2187844A2 (en) * 2007-07-31 2010-05-26 Zimmer, Inc. Joint space interpositional prosthetic device with internal bearing surfaces
WO2009039171A2 (en) * 2007-09-17 2009-03-26 Linares Medical Devices, Llc Artificial joint support between first and second bones
US8052754B2 (en) * 2007-09-28 2011-11-08 Zimmer Gmbh Intervertebral endoprosthesis
FR2924923B1 (en) * 2007-12-12 2010-02-05 Medicrea International PROSTHESIS OF VERTEBRAL DISC, IN PARTICULAR FOR CERVICAL VERTEBRATES
CN101909548B (en) 2008-01-17 2014-07-30 斯恩蒂斯有限公司 An expandable intervertebral implant and associated method of manufacturing the same
CA2847598A1 (en) 2008-01-18 2009-07-23 Spinecore, Inc. Instruments and methods for inserting artificial intervertebral implants
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US20090248161A1 (en) 2008-03-20 2009-10-01 K2M, Inc. Artificial disc replacement device
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US8377128B2 (en) 2008-04-28 2013-02-19 Allergan, Inc. Flush patch for elastomeric implant shell
EP2601908A1 (en) * 2008-04-28 2013-06-12 Allergan, Inc. Flush patch for elastomeric implant shell
EP2317944A1 (en) * 2008-06-19 2011-05-11 Moximed, Inc. Implantable brace for providing joint support
WO2010000766A2 (en) * 2008-07-03 2010-01-07 Ceramtec Ag Intervertebral disc endoprosthesis
CA2731048C (en) 2008-07-23 2016-11-29 Marc I. Malberg Modular nucleus pulposus prosthesis
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
WO2010019781A1 (en) 2008-08-13 2010-02-18 Smed-Ta/Td, Llc Drug delivery implants
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US8475505B2 (en) 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
AU2009282577B2 (en) 2008-08-20 2015-04-16 Allergan, Inc. Self-sealing shell for inflatable prostheses
JP5687622B2 (en) 2008-08-29 2015-03-18 スメド−ティーエイ/ティーディー・エルエルシー Orthopedic implant
WO2010060423A2 (en) 2008-11-30 2010-06-03 Privelop-Spine Ag Intervertebral implant
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8906033B2 (en) 2009-03-30 2014-12-09 DePuy Synthes Products, LLC Cervical motion disc inserter
US9066809B2 (en) * 2009-05-15 2015-06-30 Globus Medical Inc. Method for inserting and positioning an artificial disc
WO2011005788A1 (en) 2009-07-06 2011-01-13 Synthes Usa, Llc Expandable fixation assemblies
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
WO2011097292A1 (en) 2010-02-05 2011-08-11 Allergan, Inc. Inflatable prostheses and methods of making same
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8496713B2 (en) * 2010-12-10 2013-07-30 Globus Medical, Inc. Spine stabilization device and methods
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US8998991B2 (en) * 2011-02-23 2015-04-07 Globus Medical, Inc. Six degree spine stabilization devices and methods
FR2974497A1 (en) * 2011-04-27 2012-11-02 Centre Nat Rech Scient INTERVERTEBRAL DISC PROSTHESIS IN THERMOPLASTIC MATERIAL WITH A GRADIENT OF MECHANICAL PROPERTIES
US20130261746A1 (en) * 2012-03-28 2013-10-03 Linares Medical Devices, Llc Implantable inter-vertebral disk having upper and lower layers of a metal exhibiting bone fusing characteristics and which sandwich therebetween a soft plastic cushioning disc for providing dynamic properties mimicking that of a natural inter-vertebral disc
WO2014018098A1 (en) 2012-07-26 2014-01-30 DePuy Synthes Products, LLC Expandable implant
US9886546B2 (en) 2012-11-20 2018-02-06 General Electric Company Methods and apparatus to label radiology images
US9408711B2 (en) 2013-03-14 2016-08-09 Brian D. Burkinshaw Unitary spinal disc implant
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
WO2014145766A1 (en) * 2013-03-15 2014-09-18 Paradigm Spine, Llc Modular, customizable spine stabilization system
USD753306S1 (en) * 2014-02-10 2016-04-05 Brian D. Burkinshaw Spinal disc implant with conic protrusions
USD764666S1 (en) * 2014-02-10 2016-08-23 Brian D. Burkinshaw Unitary spinal disc implant
US9782270B2 (en) * 2014-08-08 2017-10-10 Warsaw Orthopedic, Inc. Spinal implant system and method
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
JP6995789B2 (en) 2016-06-28 2022-01-17 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage
JP7019616B2 (en) 2016-06-28 2022-02-15 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage with range of motion joints
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10874521B2 (en) 2017-11-07 2020-12-29 Uki Llc Artificial intervertebral implant
US10258482B1 (en) 2017-11-07 2019-04-16 Uki Llc Artificial intervertebral implant
US10426628B2 (en) 2017-12-14 2019-10-01 Simplify Medical Pty Ltd Intervertebral prosthesis
USD857200S1 (en) * 2018-01-19 2019-08-20 Brian D. Burkinshaw Unitary spinal disc implant
CA3112634A1 (en) 2018-09-13 2020-03-19 Allergan, Inc. Tissue expansion device
USD896383S1 (en) 2018-09-13 2020-09-15 Allergan, Inc. Tissue expansion device
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
CN112569022B (en) * 2020-12-11 2023-06-16 四川图灵医谷科技有限公司 Uncinate joint bone grafting net bag, fusion component, manufacturing method and bone grafting packaging tool
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1858284A (en) 1926-03-17 1932-05-17 Schwartz Morris Electric current conducting bond
US2677369A (en) * 1952-03-26 1954-05-04 Fred L Knowles Apparatus for treatment of the spinal column
US3486505A (en) 1967-05-22 1969-12-30 Gordon M Morrison Orthopedic surgical instrument
JPS504719B2 (en) * 1972-03-18 1975-02-22
DE2263842A1 (en) * 1972-12-28 1974-07-04 Hoffmann Daimler Siegfried Dr DISC PROTHESIS
US3864758A (en) * 1973-08-31 1975-02-11 Sam Savo Yakich Hip joint bearing prosthesis
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
CA1031945A (en) * 1974-08-06 1978-05-30 Bernhard Bellmann Milling cutter for preparing socket joints in complete prosthetic hip joint replacements
DE2543723C3 (en) 1975-10-01 1978-04-06 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Milling tool for surgical purposes
DE2714321C3 (en) 1977-03-31 1980-06-12 Axel Dr. 7024 Bernhausen Kirsch Tool for the surgical preparation of the implantation of an implant for the attachment of fixed dentures
US4386602A (en) 1977-05-17 1983-06-07 Sheldon Charles H Intracranial surgical operative apparatus
CH624573A5 (en) * 1978-02-01 1981-08-14 Sulzer Ag Intervertebral prosthesis
US4193139A (en) * 1978-03-08 1980-03-18 Codman & Shurtleff, Inc. Prosthetic finger joint
US4313232A (en) * 1979-01-10 1982-02-02 Habal Mutaz B An elastomeric mesh hinge primarily for replacement of the finger joints
CH640131A5 (en) 1979-10-03 1983-12-30 Sulzer Ag Complete intervertebral prosthesis
SU895433A1 (en) 1980-06-04 1982-01-07 Харьковский Научно-Исследовательский Институт Ортопедии И Травматологии Им. Проф. Н.И.Ситенко Intervertebral disk prothesis
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4314380A (en) * 1980-09-26 1982-02-09 Koken Co., Ltd. Artificial bone
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4388602A (en) * 1981-09-18 1983-06-14 Rca Corporation Electron beam influencing apparatus incorporating vertical beam movement function
US4359318A (en) 1981-12-18 1982-11-16 Neal Gittleman Dental implant
US4645507A (en) * 1982-09-02 1987-02-24 Gmt Gesellschaft Fur Medizinische Technik Mbh Prosthesis
US4461284A (en) 1982-09-30 1984-07-24 Fackler Martin L Surgical retaining device
DE3343863A1 (en) * 1983-12-03 1985-06-13 Jürgen Prof. Dr.med. 3000 Hannover Frölich Joint endoprosthesis
ATE44871T1 (en) 1984-09-04 1989-08-15 Univ Berlin Humboldt DISC PROSTHESIS.
US4617916A (en) 1984-11-08 1986-10-21 Minnesota Scientific, Inc. Retractor apparatus
US5534090A (en) * 1984-12-20 1996-07-09 The United States Of America As Represented By The Secretary Of The Air Force Dosimeter capsule indicating service life of a rocket motor
CH665770A5 (en) 1985-01-25 1988-06-15 Sulzer Ag PLASTIC BONE IMPLANT.
CH665554A5 (en) * 1985-02-07 1988-05-31 Sulzer Ag BONE IMPLANT.
US4757983A (en) * 1985-02-26 1988-07-19 Charles D. Ray, Ltd. Head and chin for face-down operations
US4599086A (en) * 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
US4743256A (en) * 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
CH670198A5 (en) 1986-10-02 1989-05-31 Sulzer Ag
CH671691A5 (en) * 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1283501C (en) * 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
US4714469A (en) 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
DE8703491U1 (en) * 1987-03-09 1987-04-23 Waldemar Link Gmbh & Co, 2000 Hamburg, De
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US4766328A (en) 1987-05-26 1988-08-23 System-General Corporation Programmable pulse generator
DE8708419U1 (en) * 1987-06-15 1987-08-06 Waldemar Link Gmbh & Co, 2000 Hamburg, De
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
CH672589A5 (en) * 1987-07-09 1989-12-15 Sulzer Ag
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US4887595A (en) 1987-07-29 1989-12-19 Acromed Corporation Surgically implantable device for spinal columns
GB8718627D0 (en) * 1987-08-06 1987-09-09 Showell A W Sugicraft Ltd Spinal implants
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4874389A (en) 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
DE3741493A1 (en) 1987-12-08 1989-06-22 Roland Man Druckmasch Supporting element for holding two adjacent vertebrae
US5219363A (en) * 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
DE3809793A1 (en) * 1988-03-23 1989-10-05 Link Waldemar Gmbh Co SURGICAL INSTRUMENT SET
DE8807485U1 (en) * 1988-06-06 1989-08-10 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
CN1128944A (en) * 1988-06-13 1996-08-14 卡林技术公司 Apparatus and method of inserting spinal implants
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
SU1560184A1 (en) 1988-07-29 1990-04-30 Харьковский Научно-Исследовательский Институт Ортопедии И Травматологии Им.Проф.М.И.Ситенко Endoprosthesis of spinal column segments
US5545229A (en) 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
AU624627B2 (en) 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US4990163A (en) * 1989-02-06 1991-02-05 Trustees Of The University Of Pennsylvania Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
US5015255A (en) 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5458638A (en) 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
CH678803A5 (en) * 1989-07-12 1991-11-15 Sulzer Ag
US5261913A (en) 1989-07-26 1993-11-16 J.B.S. Limited Company Device for straightening, securing, compressing and elongating the spinal column
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
DE8912648U1 (en) * 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5080662A (en) * 1989-11-27 1992-01-14 Paul Kamaljit S Spinal stereotaxic device and method
DE9000094U1 (en) * 1990-01-04 1991-01-31 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5059194A (en) 1990-02-12 1991-10-22 Michelson Gary K Cervical distractor
US5236460A (en) 1990-02-12 1993-08-17 Midas Rex Pneumatic Tools, Inc. Vertebral body prosthesis
FR2659226B1 (en) * 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
EP0447355A1 (en) * 1990-03-12 1991-09-18 Gebrüder Sulzer Aktiengesellschaft Implant for the human body
DE59100448D1 (en) 1990-04-20 1993-11-11 Sulzer Ag Implant, in particular intervertebral prosthesis.
US5702448A (en) * 1990-09-17 1997-12-30 Buechel; Frederick F. Prosthesis with biologically inert wear resistant surface
DE4029676C2 (en) 1990-09-19 1997-02-27 Hans Prof Dr Med Sachse Circularly oscillating saw
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5047055A (en) 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
KR920017248A (en) * 1991-02-18 1992-09-26 문정환 Capacitor Manufacturing Method of Semiconductor Memory Device
US5123926A (en) * 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
JP3007903B2 (en) * 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
DE9104025U1 (en) 1991-04-03 1992-07-30 Waldemar Link Gmbh & Co, 2000 Hamburg, De
US5261911A (en) 1991-06-18 1993-11-16 Allen Carl Anterolateral spinal fixation system
US5320644A (en) * 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
DE9111729U1 (en) 1991-09-19 1993-01-28 Waldemar Link Gmbh & Co, 2000 Hamburg, De
US5242240A (en) 1991-10-17 1993-09-07 Minnesota Scientific, Inc. Clamping device for a surgical retractor
US5395034A (en) * 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
DE9114970U1 (en) * 1991-12-02 1992-02-20 Waldemar Link Gmbh & Co, 2000 Hamburg, De
GB9125798D0 (en) * 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
US5425773A (en) 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5258031A (en) 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
US5344423A (en) 1992-02-06 1994-09-06 Zimmer, Inc. Apparatus and method for milling bone
US5358533A (en) * 1992-02-19 1994-10-25 Joint Medical Products Corporation Sintered coatings for implantable prostheses
DE4208115A1 (en) * 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
DE4208116C2 (en) * 1992-03-13 1995-08-03 Link Waldemar Gmbh Co Intervertebral disc prosthesis
ATE141149T1 (en) 1992-04-21 1996-08-15 Sulzer Medizinaltechnik Ag ARTIFICIAL DISC BODY
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5306309A (en) 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5207680A (en) 1992-05-11 1993-05-04 Zimmer, Inc. Front milling guide for use in orthopaedic surgery
US5246458A (en) 1992-10-07 1993-09-21 Graham Donald V Artificial disk
JPH06178787A (en) * 1992-12-14 1994-06-28 Shima Yumiko Centrum spacer with joint, intervertebral cavity measuring device and centrum spacer pattern
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
US5403314A (en) * 1993-02-05 1995-04-04 Acromed Corporation Apparatus for retaining spinal elements in a desired spatial relationship
ATE205069T1 (en) * 1993-02-09 2001-09-15 Acromed Corp DISC
CA2155422C (en) * 1993-02-10 2005-07-12 Stephen D. Kuslich Spinal stabilization surgical method
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
FR2707480B1 (en) 1993-06-28 1995-10-20 Bisserie Michel Intervertebral disc prosthesis.
FR2709949B1 (en) * 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
US5425772A (en) * 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5443514A (en) 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants
CN1156255C (en) * 1993-10-01 2004-07-07 美商-艾克罗米德公司 Spinal implant
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US5458642A (en) 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
CA2142634C (en) * 1994-02-18 2005-09-20 Salvatore Caldarise Self-lubricating implantable articulation member
US5897087A (en) * 1994-03-15 1999-04-27 Thompson Surgical Instruments, Inc. CAM tightened universal joint clamp
FR2718943B1 (en) * 1994-04-21 1996-06-21 Jbs Sa Reinforced bar with three branches for osteosynthesis of the spine.
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
JP3509103B2 (en) * 1994-05-23 2004-03-22 スルザー スパイン−テック インコーポレイテッド Intervertebral fusion implant
US5545166A (en) * 1994-07-14 1996-08-13 Advanced Spine Fixation Systems, Incorporated Spinal segmental reduction derotational fixation system
US6290726B1 (en) 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
US5534005A (en) 1994-10-05 1996-07-09 Smith & Nephew Richards, Inc. Surgical milling system
US5824093A (en) 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
WO1996011642A1 (en) 1994-10-17 1996-04-25 Raymedica, Inc. Prosthetic spinal disc nucleus
FR2726171B1 (en) 1994-10-28 1997-01-24 Jbs Sa REHABITABLE CONNECTING SCREW DEVICE FOR BONE JOINT, IN PARTICULAR FOR STABILIZING AT LEAST TWO VERTEBRES
US5674296A (en) * 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
FR2730158B1 (en) * 1995-02-06 1999-11-26 Jbs Sa DEVICE FOR MAINTAINING A NORMAL SPACING BETWEEN VERTEBRES AND FOR THE REPLACEMENT OF MISSING VERTEBRES
DE59509539D1 (en) * 1995-03-08 2001-09-27 Synthes Ag INTERVOLBLE IMPLANT
US5593445A (en) * 1995-03-24 1997-01-14 Waits; C. Thomas Bi-axial prosthetic joint
FR2733413B1 (en) * 1995-04-27 1997-10-17 Jbs Sa CERVICAL CAGE DEVICE FOR PERFORMING INTERSOMATIC ARTHRODESIS
US5782830A (en) * 1995-10-16 1998-07-21 Sdgi Holdings, Inc. Implant insertion device
US5645597A (en) * 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5766253A (en) * 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5792046A (en) 1996-02-22 1998-08-11 Minnesota Scientific, Inc. Cammed retractor clamp
US5653714A (en) 1996-02-22 1997-08-05 Zimmer, Inc. Dual slide cutting guide
JP3819962B2 (en) * 1996-04-01 2006-09-13 ペンタックス株式会社 Interbody fusion implant guide device
US5899627A (en) 1996-09-12 1999-05-04 Minnesota Scientific, Inc. Clamp for retractor support
US5782832A (en) 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5902233A (en) * 1996-12-13 1999-05-11 Thompson Surgical Instruments, Inc. Angling surgical retractor apparatus and method of retracting anatomy
DE19653580B4 (en) 1996-12-20 2006-03-16 Richard Wolf Gmbh Seal for the shaft of a sterilizable rotary drive for medical tools and instruments
US5749916A (en) 1997-01-21 1998-05-12 Spinal Innovations Fusion implant
US5876333A (en) 1997-05-30 1999-03-02 Bristol-Myers Squibb Company Orthopaedic retractor frame assembly
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US5888197A (en) * 1997-07-01 1999-03-30 Thompson Surgical Instruments, Inc. Cam-operated universal latch joint apparatus
US5964761A (en) 1997-07-15 1999-10-12 Kambin; Parviz Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of vertebrae
US6175758B1 (en) 1997-07-15 2001-01-16 Parviz Kambin Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae
US6146421A (en) 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
US6086595A (en) 1997-08-29 2000-07-11 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6059790A (en) * 1997-08-29 2000-05-09 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
DE69828011T2 (en) 1997-09-26 2005-12-01 Koninklijke Philips Electronics N.V. Device for holding a surgical instrument
US7331963B2 (en) 1997-10-06 2008-02-19 Warsaw Orthopedic, Inc. Drill head for use in placing an intervertebral disc device
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US6139579A (en) 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6162252A (en) 1997-12-12 2000-12-19 Depuy Acromed, Inc. Artificial spinal disc
FR2772594B1 (en) 1997-12-19 2000-05-05 Henry Graf REAR PARTIAL DISCAL PROSTHESIS
US5984866A (en) * 1998-01-23 1999-11-16 Rultract, Inc. Surgical support apparatus with splined coupling, cross bar support and head-to-toe extension for surgical retractor apparatus
US5989291A (en) * 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6241769B1 (en) 1998-05-06 2001-06-05 Cortek, Inc. Implant for spinal fusion
US6132465A (en) * 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
EP1681021A3 (en) 1998-06-09 2009-04-15 Warsaw Orthopedic, Inc. Abrading element for preparing a space between adjacent vertebral bodies
US6083228A (en) 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
US6231609B1 (en) * 1998-07-09 2001-05-15 Hamid M. Mehdizadeh Disc replacement prosthesis
US5928284A (en) 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
AU748746B2 (en) * 1998-07-22 2002-06-13 Spinal Dynamics Corporation Threaded cylindrical multidiscoid single or multiple array disc prosthesis
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
US6096084A (en) * 1998-09-04 2000-08-01 Biopro, Inc. Modular ball and socket joint preferably with a ceramic head ball
US5984865A (en) 1998-09-15 1999-11-16 Thompson Surgical Instruments, Inc. Surgical retractor having locking interchangeable blades
US6228022B1 (en) * 1998-10-28 2001-05-08 Sdgi Holdings, Inc. Methods and instruments for spinal surgery
FR2787018B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
FR2787015B1 (en) * 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH COMPRESSIBLE BODY
FR2787014B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
FR2787016B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISK PROSTHESIS
US6033363A (en) * 1999-01-26 2000-03-07 Thompson Surgical Instruments Insulating sleeve for a table mounted retractor
US6175750B1 (en) * 1999-03-19 2001-01-16 Cytometrics, Inc. System and method for calibrating a reflection imaging spectrophotometer
US6602291B1 (en) * 1999-04-05 2003-08-05 Raymedica, Inc. Prosthetic spinal disc nucleus having a shape change characteristic
US6283998B1 (en) * 1999-05-13 2001-09-04 Board Of Trustees Of The University Of Arkansas Alloplastic vertebral disk replacement
AU5287000A (en) * 1999-05-24 2000-12-12 Jmar Research, Inc. Parallel x-ray nanotomography
CA2376097A1 (en) * 1999-06-04 2000-12-14 Sdgi Holdings, Inc. Artificial disc implant
US6436101B1 (en) 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
JP4326134B2 (en) 1999-10-20 2009-09-02 ウォーソー・オーソペディック・インコーポレーテッド Method and apparatus for performing a surgical procedure
US6616664B2 (en) 1999-10-21 2003-09-09 Ebi L.P. Clamp assembly for an external fixation system
US6395034B1 (en) 1999-11-24 2002-05-28 Loubert Suddaby Intervertebral disc prosthesis
FR2805985B1 (en) * 2000-03-10 2003-02-07 Eurosurgical INTERVERTEBRAL DISK PROSTHESIS
US6482234B1 (en) 2000-04-26 2002-11-19 Pearl Technology Holdings, Llc Prosthetic spinal disc
US6533817B1 (en) * 2000-06-05 2003-03-18 Raymedica, Inc. Packaged, partially hydrated prosthetic disc nucleus
CA2429246C (en) * 2000-08-08 2011-06-07 Vincent Bryan Implantable joint prosthesis
IL159459A0 (en) 2001-07-16 2004-06-01 Spinecore Inc Artificial intervertebral disc having a wave washer force restoring element
US7025787B2 (en) 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
JP4456481B2 (en) 2002-08-15 2010-04-28 ガーバー,デイヴィッド Controlled artificial disc implant
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016217A3 (en) * 2002-08-15 2004-07-22 David Gerber Controlled artificial intervertebral disc implant
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US8821576B2 (en) 2002-09-12 2014-09-02 Biedermann Technologies Gmbh & Co. Kg Intervertebral disk prosthesis
US8613768B2 (en) 2002-09-12 2013-12-24 Biedermann Technologies Gmbh & Co. Kg Space keeper for vertebrae or intervertebral disks
US7963994B2 (en) 2002-09-12 2011-06-21 Biedermann Motech Gmbh Intervertebral disk prosthesis
US7828846B2 (en) 2002-09-12 2010-11-09 Biedermann Motech Gmbh Space keeper for vertebrae or intervertebral disks
US10105131B2 (en) 2003-01-31 2018-10-23 Simplify Medical Pty Ltd Intervertebral prosthesis placement instrument
US9402745B2 (en) 2003-01-31 2016-08-02 Simplify Medical, Inc. Intervertebral prosthesis placement instrument
US8147551B2 (en) 2003-04-07 2012-04-03 Cervitech, Inc. Method for implanting an intervertebral disk prosthesis
US8012212B2 (en) 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
US11376130B2 (en) 2003-05-27 2022-07-05 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US11771565B2 (en) 2003-05-27 2023-10-03 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US10219911B2 (en) 2003-05-27 2019-03-05 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US8974533B2 (en) 2003-05-27 2015-03-10 Simplify Medical, Inc. Prosthetic disc for intervertebral insertion
EP1626685A4 (en) * 2003-05-27 2009-01-21 Spinalmotion Inc Prosthetic disc for intervertebral insertion
US10342671B2 (en) 2003-05-27 2019-07-09 Simplify Medical Pty Ltd Intervertebral prosthetic disc
JP2009219889A (en) * 2003-05-27 2009-10-01 Spinalmotion Inc Prosthetic disc for intervertebral insertion
JP2010017568A (en) * 2003-05-27 2010-01-28 Spinalmotion Inc Artificial intervertebral disk for inserting intervertebral disk
US10357376B2 (en) 2003-05-27 2019-07-23 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
US8771356B2 (en) 2003-05-27 2014-07-08 Spinalmotion, Inc. Intervertebral prosthetic disc
USRE46802E1 (en) 2003-05-27 2018-04-24 Simplify Medical Pty Limited Intervertebral prosthetic disc with metallic core
US9107762B2 (en) 2003-05-27 2015-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
US10342670B2 (en) 2003-05-27 2019-07-09 Simplify Medical Pty Ltd Intervertebral prosthetic disc
EP1626685A2 (en) * 2003-05-27 2006-02-22 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US9439774B2 (en) 2003-05-27 2016-09-13 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US9655741B2 (en) 2003-05-27 2017-05-23 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US9788965B2 (en) 2003-05-27 2017-10-17 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
WO2004105655A1 (en) * 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
WO2005041793A3 (en) * 2003-10-23 2005-11-10 Trans1 Inc Spinal mobility preservation apparatus and method
WO2005041793A2 (en) 2003-10-23 2005-05-12 Trans1, Inc. Spinal mobility preservation apparatus and method
EP2387976A1 (en) * 2003-12-10 2011-11-23 Axiomed Spine Corporation Method and apparatus for replacing a damaged spinal disc
JP2007517622A (en) * 2004-01-09 2007-07-05 ウォーソー・オーソペディック・インコーポレーテッド Spine arthroplasty device and method
US7959678B2 (en) 2004-05-18 2011-06-14 Zimmer Gmbh Intervertebral disk implant
WO2005112833A1 (en) * 2004-05-20 2005-12-01 Pearsalls Limited Improvements in and relating to surgical implants
US10085853B2 (en) 2004-08-06 2018-10-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US9839532B2 (en) 2004-08-06 2017-12-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US11857438B2 (en) 2004-08-06 2024-01-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US8974531B2 (en) 2004-08-06 2015-03-10 Simplify Medical, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
US10888437B2 (en) 2004-08-06 2021-01-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US10130494B2 (en) 2004-08-06 2018-11-20 Simplify Medical Pty Ltd. Methods and apparatus for intervertebral disc prosthesis insertion
US9956091B2 (en) 2004-08-06 2018-05-01 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
WO2006042870A1 (en) * 2004-09-08 2006-04-27 Cesar Sebastian Bueno Universal intervertebral disc prosthesis
US8721724B2 (en) 2004-12-28 2014-05-13 DePuy Synthes Products, LLC Modular intervertebral implant
KR101321672B1 (en) * 2004-12-28 2013-10-22 신세스 게엠바하 Modular intervertebral implant
WO2006069463A1 (en) * 2004-12-28 2006-07-06 Synthes Gmbh Modular intervertebral implant
CN101087572B (en) * 2004-12-28 2010-09-01 斯恩蒂斯有限公司 Modular intervertebral implant
AU2005321739B2 (en) * 2004-12-28 2010-09-23 Synthes Gmbh Modular intervertebral implant
US8398712B2 (en) 2005-02-04 2013-03-19 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
WO2006113771A1 (en) * 2005-04-19 2006-10-26 Warsaw Orthopedic, Inc. Composite structure for biomedical implants
WO2006113576A1 (en) * 2005-04-19 2006-10-26 Warsaw Orthopedic, Inc. Implant having a sheath with a motion-limiting attribute
EP2051668A4 (en) * 2005-09-22 2013-08-07 Blackstone Medical Inc Artificial intervertebral disc
EP2051668A2 (en) * 2005-09-22 2009-04-29 Blackstone Medical, Inc. Artificial intervertebral disc
WO2007038337A2 (en) 2005-09-22 2007-04-05 Blackstone Medical, Inc. Artificial intervertebral disc
WO2007073395A1 (en) * 2005-12-22 2007-06-28 Alexis Shelokov Artificial prosthesis
USRE47796E1 (en) 2006-04-12 2020-01-07 Simplify Medical Pty Ltd Posterior spinal device and method
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy
US9827108B2 (en) 2007-08-09 2017-11-28 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US9687355B2 (en) 2007-08-09 2017-06-27 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US9554917B2 (en) 2007-08-09 2017-01-31 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US11229526B2 (en) 2007-08-09 2022-01-25 Simplify Medical Pty Ltd. Customized intervertebral prosthetic disc with shock absorption
US10548739B2 (en) 2007-08-09 2020-02-04 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US8506631B2 (en) 2007-08-09 2013-08-13 Spinalmotion, Inc. Customized intervertebral prosthetic disc with shock absorption
US8282681B2 (en) 2007-08-13 2012-10-09 Nuvasive, Inc. Bioresorbable spinal implant and related methods
USRE47470E1 (en) 2007-10-22 2019-07-02 Simplify Medical Pty Ltd Vertebral body placement and method for spanning a space formed upon removal of a vertebral body
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
US11364129B2 (en) 2007-10-22 2022-06-21 Simplify Medical Pty Ltd Method and spacer device for spanning a space formed upon removal of an intervertebral disc
US8377135B1 (en) 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
US11207190B2 (en) 2008-05-05 2021-12-28 Simplify Medical Pty Ltd Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
US8636805B2 (en) 2008-07-17 2014-01-28 Spinalmotion, Inc. Artificial intervertebral disc placement system
US9351846B2 (en) 2008-07-18 2016-05-31 Simplify Medical, Inc. Posterior prosthetic intervertebral disc
US11324605B2 (en) 2008-07-18 2022-05-10 Simplify Medical Pty Ltd Posterior prosthetic intervertebral disc
US11413156B2 (en) 2008-07-18 2022-08-16 Simplify Medical Pty Ltd. Posterior prosthetic intervertebral disc
FR2948558A1 (en) * 2009-07-31 2011-02-04 Euros Sa INTERVERTEBRAL DISC PROSTHESIS
USD858769S1 (en) 2014-11-20 2019-09-03 Nuvasive, Inc. Intervertebral implant
FR3114963A1 (en) * 2020-10-09 2022-04-15 Backbone CERVICAL SPINE DISC PROSTHESIS DEVICE
WO2022074309A1 (en) * 2020-10-09 2022-04-14 Backbone Disc prosthesis device for the cervical spine

Also Published As

Publication number Publication date
US20020128715A1 (en) 2002-09-12
JP2004505668A (en) 2004-02-26
AU8116601A (en) 2002-02-18
US8092542B2 (en) 2012-01-10
CA2429246C (en) 2011-06-07
EP1363565A2 (en) 2003-11-26
US20100070042A1 (en) 2010-03-18
US20110295374A1 (en) 2011-12-01
AU2001281166B2 (en) 2006-07-20
CA2429246A1 (en) 2002-02-14
US7641692B2 (en) 2010-01-05
WO2002011650A3 (en) 2003-09-25
JP4617408B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
CA2429246C (en) Implantable joint prosthesis
EP2301447A2 (en) Implantable joint prosthesis
US7025787B2 (en) Implantable joint prosthesis and associated instrumentation
AU2001281166A1 (en) Implantable joint prosthesis
AU2002346524A1 (en) Implantable joint prosthesis and associated instrumentation
US20060041313A1 (en) Intervertebral disc system
US20060235525A1 (en) Composite structure for biomedical implants
EP1109516A1 (en) Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
AU2004281785A1 (en) Semi-constrained and mobile-bearing disc prosthesis
US20060235523A1 (en) Implant having a sheath with a motion-limiting attribute
AU2006252096A1 (en) Implantable joint prosthesis and associated instrumentation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001281166

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2429246

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002516989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001959631

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001959631

Country of ref document: EP