WO2002012404A2 - Antisoiling hardcoat - Google Patents

Antisoiling hardcoat Download PDF

Info

Publication number
WO2002012404A2
WO2002012404A2 PCT/US2001/024923 US0124923W WO0212404A2 WO 2002012404 A2 WO2002012404 A2 WO 2002012404A2 US 0124923 W US0124923 W US 0124923W WO 0212404 A2 WO0212404 A2 WO 0212404A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hardcoat
perfluoropolyether
antisoiling
screen
Prior art date
Application number
PCT/US2001/024923
Other languages
French (fr)
Other versions
WO2002012404A3 (en
Inventor
Junkang J. Liu
Bettie C. Fong
Bruce D. Kluge
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/633,835 external-priority patent/US6589650B1/en
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to AU8120201A priority Critical patent/AU8120201A/en
Priority to EP01959673A priority patent/EP1312104A2/en
Priority to JP2002517698A priority patent/JP2004511001A/en
Priority to KR1020037001711A priority patent/KR100790051B1/en
Priority to AU2001281202A priority patent/AU2001281202B2/en
Publication of WO2002012404A2 publication Critical patent/WO2002012404A2/en
Publication of WO2002012404A3 publication Critical patent/WO2002012404A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1607Arrangements to support accessories mechanically attached to the display housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • H01J29/868Screens covering the input or output face of the vessel, e.g. transparent anti-static coatings, X-ray absorbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1634Integrated protective display lid, e.g. for touch-sensitive display in handheld computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • H04N5/65Holding-devices for protective discs or for picture masks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Definitions

  • This invention relates to protective films and coatings.
  • Optical displays, and especially touch panel displays typically have an exposed viewing surface made from a thermoplastic film or slab.
  • Commonly-employed thermoplastic polymers have very good optical fransparency-Ttlimensional stability and impact resistance, but unfortunately have poor abrasion resistance.
  • the optical displays of devices such as personal digital assistants ("PDAs"), cell phones, touch-sensitive screens and removable computer filters are subjected to frequent handling and contact with the user's face or fingers, styli, jewelry and other objects.
  • PDAs personal digital assistants
  • cell phones touch-sensitive screens and removable computer filters
  • touch-sensitive screens and removable computer filters are subjected to frequent handling and contact with the user's face or fingers, styli, jewelry and other objects.
  • facial oils can adversely affect contrast, color saturation or brightness of a cell phone display.
  • the screens of projection televisions and laptop computers are handled less frequently but nonetheless are sometimes touched, scratched or smudged.
  • the viewing face of the display is susceptible to scratches, abrasion and smudges arising during routine use. This can cause the display to lose resolution and clarity, and sometimes to become unreadable or inoperative.
  • protective films or coatings can be employed.
  • Protective films for PDAs, cellular phones and other display devices are available from many commercial sources including A.R.M. (SECURERTM Screen Protector), CompanionLink Software, Inc. (COMPANIONLINKTM PDA Screen Protector), EC Film (PDA Screen Protector), Fellowes Corporation (WrightRIGHTTM PDA Screen Protector), PerfectData Corporation (SILKYBOARDTM PDA Keyboard and Screen Protector), ROTA
  • RT-PDS Screen Protector and RT-MPS Mobile Phone Screen protector typically these products are sold as single precut sheets of plain plastic film, although some include a textured or tinted surface over at least a portion of the film. Some of the above-mentioned protective films are said to help keep a PDA screen smudge-free. Viewing screen protective devices are also shown in, e.g., U.S. Patent ⁇ os.
  • Hardcoats have also been used to protect the face of information displays. These hardcoats typically contain inorganic oxide particles, e.g., silica, of nanometer dimensions dispersed in a binder precursor resin matrix, and sometimes are referred to as "ceramers".
  • inorganic oxide particles e.g., silica
  • a binder precursor resin matrix e.g., polystyrene resin
  • Ceramers e.g
  • a transparent stack of anti-graffiti sheets is shown in PCT Published Application No. WO 00/24576 (Janssen et al.). The entire stack is applied to a glass or plastic window, signage or a display and the topmost sheet is removed once the sheet has become damaged.
  • the sheets in the stack can include an optional release layer.
  • the release layer is said preferably to comprise a material selected from the group consisting of acrylates, methacrylates, urethanes, polyolefins, silicones, fluorochemicals such as fluorocarbons, and mixtures thereof.
  • 3M 906 Abrasion resistant Coating is employed as an abrasion-resistant release layer atop polycarbonate sheets in the stack.
  • Stacks of removable plastic sheets for use on automotive windows are shown in U.S. Patent No. 5,002,326 (Westfield et al.) and in Offenlegungsschrifc DE 3637 188 Al (Altmann et al.).
  • U.S. Patent No. 5,851,674 (Pellerite et al.) describes a self-assembling fluorinated silane film that can be applied atop a multilayer antireflective film to provide a coating having antisoiling properties.
  • Coatings made from 3M 906 Abrasion Resistant coating are susceptible to smudges, staining and marks from pens or pencils. It can be difficult to mix the ingredients in the Kang et al. "798 and Kang et al. "833 compositions without experiencing flocculation. Owing to the high cost of the fluorochemical and its use throughout the hardcoat layer, these compositions are also relatively expensive.
  • the Pellerite et al. films have insufficient adhesion to a film made from a ceramer such as 3M 906 Abrasion Resistant Coating.
  • the present invention provides in one aspect a display element comprising a substantially transparent substrate, a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix, and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
  • the invention also provides an information display protector for display devices having an information display area, comprising a flexible substantially transparent generally planar substrate having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
  • the invention also provides information display protectors for a portable electronic device having a display screen, comprising a stack of flexible substantially transparent sheets, the sheets having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat, the stack being cut so that the sheets will fit the display screen.
  • the stack can conveniently be stored by adhering it to a portion of the display or to a display cover.
  • the invention also provides an antisoiling hardcoated film, comprising a flexible generally planar substrate having on at least one side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
  • the present invention also provides a method for making an antisoiling hardcoat comprising coating and curing on a substrate a ceramer coating comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, and coating and curing atop the ceramer coating an antisoiling layer comprising a free-radically polymerizable fluorochemical.
  • the present invention also provides a method for making a display element comprising applying to a substantially transparent substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer.
  • the invention provides a method for making an information display protector for a device having an information display area, comprising: a) applying to one side of a substantially transparent generally planar substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer; and b) applying to the other side of the substrate an adhesive layer.
  • the invention also provides a method for making information display protectors for portable electronic devices having an information display area, comprising carrying out steps a) and b) above; forming the coated substrate into a stack of sheets; and converting the stack so that the sheets will fit the information display area.
  • the invention also provides a continuous, roll to roll manufacturing method for making a roughened screen protector sheet for information displays, comprising: a) depositing a substantially solvent-free, curable ceramer composition comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix into the nip region between a substantially transparent substrate and a roll having an average surface roughness of at least 0.1 micrometer; b) moving the roll at a sufficient speed and while applying sufficient pressure to the nip to form a bead of the ceramer composition in the nip; c) curing the ceramer composition through the substrate (using, e.g., ultraviolet radiation) while the ceramer composition is against the roll; d) removing the cured ceramer coating from the roll; e) applying to the cured ceramer coating a curable antisoiling layer comprising a perfluoropolyether; and f) curing the antisoiling layer.
  • the antisoiling layer can be very thin, thus reducing the perfluoropolyether content and cost.
  • the articles of the invention have very good scratch and smudge resistance and very good durability.
  • FIG. 1 is a schematic side view of a capacitive touch screen containing a display element of the invention.
  • Fig. 2 is a schematic side view of a resistive touch screen containing a display element of the invention.
  • Fig. 3 is a schematic side view of an information display protector of the invention.
  • Fig. 4 is a plan view of a PDA, the screen being covered with an information display protector of Fig. 3.
  • Fig. 5 is a schematic side view of a stack of screen protectors of the invention.
  • Fig. 6 is a perspective view of a PDA, the screen being covered with an information display protector of Fig. 3, and the inside front cover having a stack of the protectors of Fig. 5 adhered thereto.
  • Fig. 7 is a schematic side view of a removable computer privacy filter containing a display element of the invention.
  • Fig. 8 is a schematic side view of an extended resolution video screen containing a display element of the invention.
  • Fig. 9 shows a rating chart used to evaluate ink repellency.
  • the display elements of the invention and components thereof are sometimes shown or described herein using words of orientation such as “upper”, “atop”, “above” or “front”. These and similar terms are merely employed for convenience to refer to the general direction (with respect to the optical path through an information display device) towards a normal viewer of the display device. Likewise, the display elements of the invention and components thereof are sometimes shown or described herein using words of orientation such as “lower”, “beneath”, “underneath” or “behind”. These and similar terms are merely employed for convenience to refer to the general direction (with respect to such optical path) towards the display. As will be understood by those skilled in the art, the display elements of the invention can be used in a variety of orientations and locations.
  • the information display protectors of the invention can be used on a variety of kinds of information displays having a variety of information display area configurations. Such displays include multi-character and especially multi-character, multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”) and signage.
  • the information display protectors of the invention can also be used on single-character or binary displays such as light emitting diodes ("LEDs”), signal lamps and switches.
  • the information display protectors of the invention can be used on illuminated or non-illuminated displays.
  • the information display protectors of the invention are especially useful on displays whose information display area is in the form of a viewing screen having a viewing surface that is susceptible to damage during normal use.
  • the display elements of the invention can be employed in a variety of portable and non-portable information display devices including PDAs, cell phones (including combination PDA/cell phones), touch-sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD or DND players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays (including indoor and outdoor graphics, bumper stickers, and the like), reflective sheeting, and the like.
  • These devices can have planar viewing faces, or non-planar viewing faces such as the slightly curved face of a typical CRT.
  • the display element is located on or in close physical proximity to a viewing face of the information display device rather than being spaced an appreciable distance therefrom.
  • a capacitive touch panel display generally identified as 10 is shown in schematic form. Viewing surface 11 permits an observer (not shown in Fig. 1) to see images from imaging device 12.
  • Imaging device 12 can be any of a number of device types capable of displaying information, including transmissive, reflective or transflective liquid crystal displays, cathode ray tubes, micromirror arrays, and printed panels or other backgrounds.
  • planar substrate 13 protects imaging device 12 and provides a support for viewing surface 11.
  • Substrate 13 typically is made of glass or a plastic such as polycarbonate or polyethylene terephthalate.
  • the upper surface of substrate 13 is covered with a transparent thin conductive coating 14.
  • Coating 14 typically is made of a metal or alloy such as indium tin oxide or of a conductive polymer.
  • Hardcoat 16 lies atop coating 14, and provides scratch and abrasion resistance to help protect coating 14 and the underlying substrate 13 from damage.
  • Hardcoat 16 has a roughened upper surface 17. The inclusion of such a roughened surface is optional. It provides glare protection for display 10 and makes it easier to write upon display 10 using a stylus.
  • Antisoiling layer 18 is sufficiently thin so that the roughened upper surface 17 of hardcoat 16 is replicated on viewing surface 11.
  • Antisoiling layer 18 provides oil and ink resistance to help prevent hardcoat 16 from being smudged or otherwise soiled by exposure to contaminants such as skin oils, cosmetics, pencil lead, inks and adventitious dirt.
  • Antisoiling layer 18 can also make the hard coat easier to clean if it is soiled. Thus if necessary, a user can accidentally or deliberately write on the display with a pen or pencil, and easily remove the resulting pencil or ink marks.
  • electrodes (not shown in Fig. 1) that typically are positioned at the corners of display 10 apply a voltage and charge the conductive coating 14, which acts as a capacitor. The charge is drained and renewed while a controller (also not shown in Fig. 1) measures the amount of current flowing from each electrode. The charging and draining cycle is repeated at a cycle time determined by the controller. Contact by a conductive stylus or finger with the viewing surface 11 increases the capacitance of the conductive coating 14 so that more current flows when a touch occurs. The touch location is determined by comparing current flows from each electrode.
  • an optional antistatic coating can be applied atop the hardcoat or atop the antisoiling layer in order to discourage dust and other contaminants from adhering to the display.
  • an additional layer of hardcoat 16 can optionally be formed on the lower surface of substrate 13. This can help protect substrate 13 from damage and can help to reduce glare and ghosting in display 10.
  • Fig. 2 shows a resistive touch panel display generally identified as 20 in schematic form. Viewing surface 21 permits an observer (not shown in Fig. 2) to see images from imaging device 12.
  • Substrate 22 of display 10 lies atop imaging device 12 and typically is made of glass or a plastic such as polycarbonate or polyethylene terephthalate.
  • the upper surface of substrate 22 is covered with thin layer of an optional hardcoat 24a, which serves as a primer and adhesion aid for transparent, thin, conductive coating 25a.
  • a similar thin conductive coating 25b is adhered to flexible membrane 23 through optional hardcoat 24b.
  • the upper surface of flexible membrane 23 is coated with hardcoat 26. Hardcoat 26 provides scratch and abrasion resistance to help protect flexible membrane 23 from damage.
  • Hardcoat 26 has an optional roughened upper surface, as in the display of Fig. 1.
  • Antisoiling layer 28 is sufficiently thin so that the roughened upper surface 27 of hardcoat 26 is replicated on viewing surface 21.
  • Antisoiling layer 28 provides oil and ink resistance to help prevent hardcoat 26 from being smudged or otherwise soiled.
  • an optional antistatic layer can also be provided, as in the display of Fig. 1. Spacers 29 lie atop coating 25a, and a finite space normally separates the upper surface of coating 25a and the lower surface of coating 25b.
  • a controller (not shown in Fig. 2) can identify the touch location by comparing current flowing from various electrodes or busbars (also not shown in Fig. 2) printed on the conductive layers 25a and 25b.
  • the touch-sensitive device can operate via guided acoustic wave, surface acoustic wave or near field imaging.
  • the touch-sensitive device can also operate via a non-contact mechanism such as a scanning infrared sensor, e.g., via provision of a suitable array of light beams and photosensors above the upper face of the display.
  • Fig. 3 shows an information display protector of the invention generally identified as 30.
  • the lower face of flexible membrane 33 is coated with an adhesive layer 34 to which has been applied a protective liner 32.
  • the lower surface of adhesive 34 is microtextured. Use of a microtextured adhesive layer is optional. Microtexturing helps air bubbles escape from beneath protector 30 when it is applied to a display screen, thereby helping to provide good optical coupling between protector 30 and the screen.
  • the upper face of membrane 33 is coated with a hardcoat layer 36.
  • Hardcoat 36 provides scratch and abrasion resistance to help protect a display screen from damage.
  • Hardcoat 36 has an optional roughened upper surface 37, thus providing glare protection for a display screen.
  • Antisoiling layer 38 is sufficiently thin so that the roughened upper surface 37 of hardcoat 36 is replicated on viewing surface 31 of protector 30.
  • An antistatic layer can also be provided if desired.
  • Fig. 4 shows a PDA generally designated as 40 to which has been applied the information display protector 30 of Fig. 3.
  • the user simply removes liner 32 from adhesive 34, centers protector 30 over screen 42 and presses protector 30 into place.
  • Protector 30 serves as a screen protector for the PDA screen, and preferably is precut to slightly undersized dimensions so that the edges of protector 30 extend nearly to the perimeter of screen 42, while still permitting protector 30 to be easily removed later if desired.
  • the roughened viewing surface 31 reduces glare and makes it much easier to write upon screen 42, especially when using a stylus.
  • the antisoiling layer 38 (not shown in Fig. 4) provides oil and ink resistance to help prevent hardcoat 36 (also not shown in Fig.
  • FIG. 5 shows a stack 50 of four PDA information display protectors of the type shown in Fig. 3.
  • Stack 50 has a single liner 32 protecting the adhesive layer 34a of the lowermost information display protector.
  • the remaining information display protectors can be adhered to one another by pressing adhesive layers 34b, 34c and 34d against antisoiling layers 38a, 38b and 38c, respectively.
  • a user can remove the uppermost protector from the stack and adhere it to the screen of a PDA as in Fig. 4. If the thus- applied protector later becomes worn or damaged, it can be peeled off the PDA screen and replaced with another protector from stack 50.
  • FIG. 6 shows a PDA generally designated as 60.
  • Protector 30 on substrate 33
  • Liner 32 has been removed from stack 50 so that stack 50 could be adhered to inside surface 64 of PDA front cover 62.
  • the stack could instead be adhered to the rear of PDA 60 or to any available surface of a separate PDA case.
  • the stack 50 contains a relatively low number of protectors (e.g., 10 or less, more preferably 5 or less), it will not unduly obscure underlying printed graphics on the front cover (such as the printed GRAFFITITM alphabet symbol guide that is supplied with some PDAs) and will not hamper closure of a PDA cover or case if applied to an inside surface thereof. Because the stack 50 can be stored with the PDA, spare protectors 30 are close at hand when needed. This is a much more convenient mode of storage than the typical storage mode for current PDA screen protector products sold as single sheets. When protector 30 on screen 42 becomes worn or damaged, a fresh protector can be removed from stack 50. For example, as shown in Fig. 6, the next protector in stack 50 can be removed by peeling adhesive layer 34c away from antisoiling layer 38b.
  • Fig. 7 shows a removable computer privacy filter generally identified as 70.
  • Louvered light control film 72 permits a viewer to see images from an underlying imaging device 12 through viewing surface 71, while preventing an observer located away from the main viewing axis from seeing such images.
  • Substrate layers 74 are adhered to the upper and lower surfaces of light control film 72 by adhesive layers 73.
  • Hardcoats 75 and 77 help to protect the substrate layers 74 and film 72 from damage, and antisoiling layers 76 and 78 provide oil and ink resistance to help prevent hardcoats 75 and 77 from becoming smudged or otherwise soiled.
  • Hardcoat 77 and its antisoiling layer 78 preferably are roughened in order to provide glare reduction.
  • filter 70 may frequently be removed from and replaced on a display, the use of the hardcoat and antisoiling layer on both major surfaces of the filter facilitates handling and cleaning even if the user accidentally grips the front and back of the filter rather than handling it by its edges.
  • An optional antistatic coating (not shown in Fig. 7) can also be employed on or just below one or both maj or surfaces of the filter if desired.
  • Fig. 8 shows an extended resolution video screen generally identified as 80.
  • the rear surface of acrylic screen 82 is covered with a thermoplastic layer of poly vinyl butyral 83 that has been hot-laminated to a monolayer of small glass beads 85 bonded in a contrast-enhancing carbon black-containing urethane bead bond layer 84.
  • Substrate 87 is adhered to the upper surface of screen 82 by adhesive layer 86.
  • Substrate 87 can also be hot-laminated to the upper surface of screen 82.
  • Hardcoat 88 helps to protect substrate 87 and screen 82 from damage, and antisoiling layer 89 provides oil and ink resistance to help prevent hardcoat 88 from becoming smudged or otherwise soiled.
  • Hardcoat 88 and antisoiling layer 89 preferably are roughened in order to provide glare reduction at the viewing surface 81 of screen 80.
  • An optional antistatic coating (not shown in Fig. 8) can also be employed on or just below viewing surface 81 if desired.
  • a wide variety of substrate materials can be used in the invention.
  • the substrate should be substantially transparent, that is, the substrate should have sufficient transparency or translucency at the intended wavelength and under the intended viewing conditions so that the display element does not unduly impede use and viewing of the underlying information display.
  • Suitable substrate materials include glass, transparent or translucent ceramics, and thermosetting or thermoplastic polymers such as polycarbonate, poly(meth)acrylate (e.g., polymethyl metliacrylate or "PMMA”), polyolefins (e.g., polypropylene or "PP”), polyurethane, polyesters (e.g., polyethylene terephthalate or "PET”), polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrenes, styrene-acrylonitrile copolymers, epoxies, and the like.
  • the substrate will be chosen based in part on the desired optical and mechanical properties for the intended use.
  • Such mechanical properties typically will include rigidity, dimensional stability and impact resistance.
  • the substrate thickness typically also will depend on the intended use. For most applications, substrate thicknesses of less than about 1 mm are preferred, more preferably less than about 0.1 mm and most preferably about 0.02 to about
  • the substrate can be flexible or rigid. Flexible substrates in the form of self- supporting polymeric films are preferred. Flexible films made from polyesters such as PET or polyolefins such as PP (polypropylene), PE (polyethylene) and PVC (polyvinyl chloride) are particularly preferred.
  • the substrate can be formed into a film using conventional filmmaking techniques such as extrusion of the substrate resin into a film and optional uniaxial or biaxial orientation of the extruded film.
  • the substrate can be treated to improve adhesion between the substrate and the hardcoat, using, e.g., chemical treatment, corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation. If desired, an optional tie layer can also be applied between the substrate and the hardcoat to increase the interlayer adhesion.
  • the other side of the substrate may also be treated using the above-described treatments to improve adhesion between the substrate and the adhesive.
  • the hardcoat is a tough, abrasion resistant layer that protects the substrate and the underlying information display from damage from causes such as scratches, abrasion and solvents.
  • the hardcoat preferably contains nanometer-sized inorganic oxide particles dispersed in a binder matrix.
  • the hardcoat is formed by coating a curable liquid ceramer composition onto the substrate and curing the composition in situ to form a hardened film. Suitable coating methods include, for example, spin coating, knife coating, die coating, wire coating, flood coating, padding, spraying, roll coating, dipping, brushing, foam application, and the like.
  • a variety of inorganic oxide particles can be used in the hardcoat.
  • the particles preferably are substantially spherical in shape and relatively uniform in size.
  • the particles can have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions.
  • the inorganic oxide particles are and remain substantially non-aggregated (substantially discrete), as aggregation can result in precipitation of the inorganic oxide particles or gelation of the hardcoat.
  • the inorganic oxide particles are colloidal in size, that is, they preferably have an average particle diameter of about 0.001 to about 0.2 micrometers, more preferably less than about 0.05 micrometers, and most preferably less than about 0.03 micrometers.
  • the average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter.
  • Preferred inorganic oxide particles include colloidal silica, colloidal titania, colloidal alumina, colloidal zirconia, colloidal vanadia, colloidal chromia, colloidal iron oxide, colloidal antimony oxide, colloidal tin oxide, and mixtures thereof.
  • the inorganic oxide particles can consist essentially of or consist of a single oxide such as silica, or can comprise a combination of oxides, such as silica and aluminum oxide, or a core of an oxide of one type (or a core of a material other than a metal oxide) on which is deposited an oxide of another type.
  • Silica is a particularly preferred inorganic particle.
  • the inorganic oxide particles are desirably provided in the form of a sol containing a colloidal dispersion of inorganic oxide particles in liquid media.
  • the sol can be prepared using a variety of techniques and in a variety of forms including hydrosols (where water serves as the liquid medium), organosols (where organic liquids so serve), and mixed sols (where the liquid medium contains both water and an organic liquid), e.g., as described in U.S. Patent Nos. 5,648,407 (Goetz et al.) and 5,677,050 (Bilkadi et al.), the disclosure of which is incorporated by reference herein.
  • Aqueous sols of amorphous silica are particularly preferred.
  • Preferred sols generally contain from about 2 to about 50 weight percent, preferably from about 25 to about 45 weight percent, of colloidal inorganic oxide particles based on the total weight of the sol.
  • Preferred sols can be obtained from suppliers such as ONDEO Nalco Co. (for example, NALCOTM 1040, 1042, 1050, 1060, 2327, and 2329 colloidal silicas), Nyacol Nano Technologies, Inc. (for example, NYACOLTM AL20 colloidal alumina and NYACOLTM A1530, A1540N, and A1550 colloidal antimony pentoxides), and W.R. Grace and Co. (for example, LUDOXTM colloidal silicas).
  • the surface of the inorganic particles can be "acrylate functionalized" as described in Bilkadi et al.
  • the sols can also be matched to the pH of the binder, and can contain counterions or water-soluble compounds (e.g., sodium aluminate), all as described in Kang et al. "798.
  • the hardcoat can conveniently be prepared by mixing an aqueous sol of inorganic oxide particles with a free-radically curable binder precursor (e.g., one or more free- radically curable monomers, oligomers or polymers that can participate in a crosslinking reaction upon exposure to a suitable source of curing energy).
  • a free-radically curable binder precursor e.g., one or more free- radically curable monomers, oligomers or polymers that can participate in a crosslinking reaction upon exposure to a suitable source of curing energy.
  • the resulting composition usually is dried before it is applied, in order to remove substantially all of the water. This drying step is sometimes referred to as "stripping".
  • an organic solvent can be added to the resulting ceramer composition before it is applied, in order to impart improved viscosity characteristics and assist in coating the ceramer composition onto the substrate.
  • the ceramer composition can be dried to remove any added solvent, and then can be at least partially hardened by exposing the dried composition to a suitable source of energy in order to bring about at least partial cure of the free-radically curable binder precursor.
  • the hardcoat preferably contains about 10 to about 50, and more preferably about 25 to about 40 parts by weight of inorganic oxide particles per 100 parts by weight of the binder. More preferably the hardcoat is derived from a ceramer composition containing about 15 to about 40% acrylate functionalized colloidal silica, and most preferably about
  • binders can be employed in the hardcoat.
  • the binder is derived from a free-radically polymerizable precursor that can be photocured once the hardcoat composition has been coated upon the substrate.
  • Binder precursors such as the protic group-substituted esters or amides of an acrylic acid described in Bilkadi, or the ethylenically-unsaturated monomers described in Bilkadi et al., are especially preferred.
  • Suitable binder precursors include polyacrylic acid or polymethacrylic acid esters of polyhydric alcohols, such as diacrylic acid or dimethylacrylic acid esters of diols including ethyleneglycol, triethyleneglycol, 2,2-dimethyl-l,3-propanediol, 1,3-cyclopentanediol, 1- ethoxy-2,3-propanediol, 2-methyl-2,4-pentanediol, 1,4-cyclohexanediol, 1,6- hexamethylenediol, 1,2-cyclbhexanediol, 1,6-cyclohexanedimethanol, resorcinol, pyrocatechol, bisphenol A, and bis(2-hydroxyethyl) phthalate; triacrylic acid or trimethacrylic acid esters of triols including glycerin, 1,2,3-propanetrimethanol, 1,2,4- butanetriol, 1,2,5-p
  • the binder can also be derived from one or more monofunctional monomers as described in Kang et al. ⁇ 798.
  • the binder comprises one or more N,N-disubstituted acrylamide and or N-substituted-N- vinyl-amide monomers as described in Bilkadi et al.
  • the hardcoat is derived from a ceramer composition containing about 20 to about 80% ethylenically unsaturated monomers and about 5 to about 40% N,N-disubstituted acrylamide monomer or N- substituted-N- vinyl-amide monomer, based on the total weight of the solids in the ceramer composition.
  • the inorganic particles, binder and any other ingredients in the hardcoat are chosen so that the cured hardcoat has a refractive index close to that of the substrate. This can help reduce the likelihood of Moire patterns or other visible interference fringes.
  • the hardcoat can be formed from an aqueous coating composition that is stripped to remove water prior to coating, and optionally diluted with a solvent to assist in coating the composition.
  • a desired solvent and solvent level will depend on the nature of the individual ingredients in the hardcoat (or tie layer) and on the desired substrate and coating conditions. Kang et al. "798 describes several useful solvents, solvent levels and coating viscosities.
  • the hardcoat can be crosslinked with various agents to increase the internal cohesive strength or durability of the hardcoat.
  • Preferred crosslinking agents have a relatively large number of available functional groups, and include tri and terra- acrylates, such as pentaerythritol triacrylate and pentaerythritol tetraacrylate.
  • the crosslinking agent preferably is less than about 60 parts, and more preferably about 30 to about 50 parts by weight per 100 parts by weight of the binder.
  • the hardcoat can contain other optional adjuvants, such as surface treatment agents, surfactants, antistatic agents (e.g., conductive polymers), leveling agents, initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigments, dyes, plasticizers, suspending agents and the like.
  • surface treatment agents e.g., surfactants, antistatic agents (e.g., conductive polymers), leveling agents, initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigments, dyes, plasticizers, suspending agents and the like.
  • surfactants e.g., conductive polymers
  • leveling agents e.g., initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigment
  • the hardcoat is prepared by combining an aqueous sol of colloidal inorganic oxide particles with the binder precursor, then preferably the sol has a pH such that the particles have a negative surface charge.
  • the sol preferably is alkaline with a pH greater than 7, more preferably greater than 8, and most preferably greater than 9.
  • the sol includes ammonium hydroxide or the like so that NH4 + is available as a counter cation for particles having a negative surface charge.
  • a suitable surface treatment agent can be blended into the sol, e.g., as described in Kang et al. "833, the disclosure of which is incorporated by reference herein.
  • the free-radically curable binder precursor is then added to the ceramer composition.
  • the ceramer composition is stripped to remove substantially all of the water. For example, removing about 98% of the water, thus leaving about 2% water in the ceramer composition, has been found to be suitable.
  • an organic solvent of the type described in Kang et al. "798 preferably is added in an amount such that the ceramer composition includes from about 5% to about 99% by weight solids (preferably about 10 to about 70%). After adding the solvent, any other desired adjuvants can be added.
  • the ceramer composition is coated at a coating weight sufficient to provide a cured hardcoat with a thickness of about 1 to about 100 micrometers, more preferably about 2 to about 50 micrometers, and most preferably about 3 to about 30 micrometers.
  • the solvent, if any, is flashed off with heat, vacuum, and/or the like.
  • the coated ceramer composition is then cured by irradiation with a suitable form of energy, such as heat energy, visible light, ultraviolet light or electron beam radiation. Irradiating with ultraviolet light in ambient conditions is presently preferred due to the relative low cost and speed of this curing technique.
  • the hardcoat surface optionally is roughened or textured to provide a matte surface.
  • the antisoiling layer comprises a perfluoropolyether.
  • Preferred perfluoropolyethers contain randomly distributed perfluoroalkylene oxide -(C n F2 n O)- repeating units such as -CF2O- or-[(CF2) n CF2-. m (CF3) m O]- (in which m is 0 or 1 and n is preferably 1 to 7), and pendent (e.g., terminal) polymerizable (e.g., acrylate or methacrylate) groups.
  • Suitable perfluoropolyethers include those described in U.S. Patent Nos. 3,810,874 (Mitsch et al), 4,321,404 (Williams et al.), 4,472,480 (Olson), 4,567,073
  • each Y comprises a polymerizable group attached to a chain of randomly distributed, — C a F2 a O — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
  • Another preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula:
  • each Z is an acrylate or methacrylate group; m is 0 or 1 ; c and d are 0 to 3 with the proviso that c + d is at least 2; e and fare greater than 5 when M is zero; e can be zero and f is greater than 5 when m is one; and each A is a c + l or d + 1 valent linking group such as.
  • Preferred linking groups A include:
  • Another preferred subclass of preferred antisoiling layers is derived from perfluoropolyethers of the formula:
  • Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula:
  • a further preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula: Y-(CF 2 CFCF 3 O)gCFCF3-Y (VI) wherein each Y and g are as defined above.
  • Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula: CH3 ⁇ OC(CF2CFCF 3 O)gCFCF 3 COOCH3 (VI) which are commercially available as KRYTOXTM diesters from E. I. du Pont de Nemours Co.
  • the antisoiling layer can if desired contain other compatible fluorochemicals such as perfluorinated surfactants, perfluoroalkyl acrylates and perfluoroalkyl methacrylates blended with the perfluoropolyether.
  • Other adjuvants such as soluble or miscible photoinitiators may also be included in the antisoiling layer if desired.
  • the perfluoropolyether preferably is applied using a solvent that assists in coating the perfluoropolyether onto the hardcoat.
  • a solvent that assists in coating the perfluoropolyether onto the hardcoat.
  • Preferred solvents include fluorinated solvents such as hydrofluoroethers and perfluorinated octanes (especially when the perfluoropolyether does not contain polar linking groups in its backbone), and hydrocarbon solvents such as methyl ethyl ketone and ethyl acetate, at recommended dissolution levels at or above 20% solids. After adding the solvent, any other desired adjuvants can be added.
  • the perfluoropolyether can be applied to the hardcoat using a variety of conventional coating methods, including those mentioned above. Gravure, notch-bar, reverse roll coating and curtain coating are preferred. Notch bar and gravure coating are particularly preferred methods as they enable application of a very thin layer, on the order of about 1 to about 5 micrometers wet thickness.
  • the antisoiling layer is coated at a coating weight sufficient to provide a cured antisoiling layer thickness of about 0.005 to about 2 micrometers, more preferably about 0.01 to about 0J micrometers, and most preferably about 0.02 to about 0.08 micrometers.
  • the wet coating is dried, typically using a forced air oven.
  • the dried coating can be further cured (to a partially or completely cured state) using an energy source.
  • Preferred energy sources include ultraviolet light curing devices that provide a UV "C" dosage of about 5 to 60 milliJoules per square centimeter (mJ/cm ⁇ ).
  • curing takes place in an environment containing low amounts of oxygen, e.g., less than about 100 parts per million. Nitrogen gas is a preferred environment.
  • the display element optionally can include an adhesive on the backside of the substrate.
  • the adhesive is transparent or sufficiently translucent so that it will not unduly hamper viewing of an underlying display device.
  • the adhesive can be derived from a natural product (e.g., a rubber-base adhesive) or can be a synthetic material such as a homopolymer, random copolymer, graft copolymer, or block copolymer.
  • the adhesive can be crosslinked or uncrosslinked, and if desired can have pressure-sensitive properties.
  • PSAs pressure sensitive adhesives
  • G' storage modulus
  • Non-pressure sensitive adhesives are preferred, especially those that provide selective adhesion, e.g., adhesives that have low tack or are non-tacky with respect to skin but have high tack with respect to a targeted surface such as the surface of a display. Display elements coated with such non-pressure sensitive selective adhesives can be easily handled and applied to a display surface, and can be cleanly removed if needed.
  • Suitable low tack or non-tacky adhesives include those described in U.S. Patent Nos. 5,389,438 (Miller et al.), 5,851,664 (Bennett et al.), 6,004,670 (Kobe et al.) and 6,099,682 (Krampe et al.).
  • Thermoplastic block copolymer elastomers are especially preferred.
  • thermoplastic block copolymer elastomers include multi-block copolymers having radial, linear A-B diblock, and linear A-B-A triblock structures, as well as blends of such copolymers.
  • Suitable commercially available thermoplastic block copolymer elastomers include the SOLPRENETM family of materials (Philips Petroleum Co.), the FINAPRENETM family of materials (FINA), the TUFPRENETM and ASAPRENETM family of materials (Asahi), the STEREONTM family of materials (Firestone Synthetic Rubber & Latex Co.), the EUROPRENE SOL TTM family of materials (Enichem), the VECTORTM family of materials (Dexco Polymers), and the CARIFLEX TRTM family of materials (Shell Chemical Co.).
  • Suitable adhesive materials include highly crosslinked acrylic adhesives, silicone polyurea elastomers such as are described in U.S. Patent No. 5,670,598 (Leir et al.), the SEPTONTM family of materials (Kuraray Co. Ltd.) and the KRATONTM family of materials (Shell Chemical Co.) such as K-RATON D-1101, D-1102, D-1107, D-l l l l, D-1112, D-1113, D-1114PX,
  • the adhesive (or a liner that protects the adhesive from contamination and bears against the adhesive) can optionally be microtextured to provide air bleeding and easy handling features (as described, for example, in U.S. Patent No. 6,197,397).
  • the adhesive layer of a single sheet or the lowermost layer of a stack of sheets will be covered by a liner.
  • the liner preferably has a release coating on the side facing the adhesive, such as a silicone release coating. If the adhesive has low tack or is non-tacky, then a liner made of plain paper or other low surface energy material without a release coating may suffice.
  • the sheets can be converted (using techniques that will be familiar to those skilled in the art) so that they will fit the information display area of a desired information display device. Suitable conversion techniques include die cutting, slitting and laser cutting.
  • a series of pencils of increasing hardness values ranging from 6B - IB, HB, F, through 1H - 9H were fastened in a handheld rolling test stand under a 1 kg applied load and rolled 3 or 5 times across the coated substrates for each tested pencil hardness.
  • the coatings were rated based on the highest pencil hardness that did not scratch or dent the coating.
  • the assigned rating was based on the highest 2 out of three passes when 3 passes were employed and for the highest 3 out of 5 passes when 5 passes were employed. Higher pencil hardness values thus indicate superior film hardness. Desirably a coating should have better than a 3H rating.
  • a 2 Kg weight wrapped with dry cheesecloth or a 200g weight wrapped with Grade 0000 steel wool was rubbed several times back and forth across the coated substrate. Periodically, the rubbing was halted and an attempt was made to write on the rubbed surface using the above-described SHARPIE marker.
  • the assigned durability rating was based on the maximum number of rub cycles for which the ink beaded up and could be wiped off with a dry soft tissue without leaving an ink residue. For some coatings where very high numbers of rub cycles could be performed, rubbing was stopped after many rubs (e.g., 200) and the durability rating was noted as being greater than the number of rubs at which the test was stopped. Desirably a coating should have better than a 40 rub cycle cheesecloth durability rating and better than a 60 rub cycle steel wool durability rating.
  • Adhesion of the coating layers to the substrate was evaluated by crosshatching the coating with a sharp knife and applying and removing a tape strip to the crosshatched coating, according to ASTM Test Method D3359-97. The amount of coating removed was evaluated using the 5-point scale set out in the Test Method. Peel adhesion was evaluated according to ASTM Test Method D-3330, using an IMASSTM Model SP-2000 peel tester (Imass Inc.) operated at a 2.3 m/min. peel rate (Method A, 180° peel). Optical Properties
  • Reflectance was evaluated using an MPC 3100 spectrophotometer (Shimadzu Scientific Instruments. The film sample was adhered to a glass slide whose backside had been coated with black tape. Total reflection and first surface reflection measurements were made and recorded as the.percent of incident illumination. Average visible photopic light transmittance, haze and clarity were evaluated using a HAZE-GARD PLUSTM tester (Byk Gardner, Inc.). Gloss was evaluated at 20, 60 or 85 degrees using a MICRO-TRI- GLOSSTM meter (Byk Gardner, Inc.). Examples 1 - 24
  • a ceramer composition was prepared by first heating 51.5 Parts of the curable binder precursor PETA (pentaerythritol triacrylate) to approximately 49°C in a reaction vessel. 88 Parts of NALCOTM 2327 colloidal silica sol (a 40% solids, 20 nanometer average particle size silica sol, Nalco Corp.) were added to the PETA. The resulting mixture contained 32.4 parts of colloidal silica particles. 15.6 Parts DMA (N,N- dimethylacrylamide) were next added to the mixture. 0.15 Parts BHT (butylated hydroxytoluene) and 0.02 parts phenothiazine were mixed together and added to the mixture.
  • PETA penentaerythritol triacrylate
  • NALCOTM 2327 colloidal silica sol a 40% solids, 20 nanometer average particle size silica sol, Nalco Corp.
  • DMA N,N- dimethylacrylamide
  • BHT butylated hydroxytoluene
  • the mixture was "stripped" by subjecting it to a gentle vacuum distillation (at 100 ⁇ 20 mm Hg and 52° ⁇ 2°C) until most of the liquid was removed. A few weight- percent of water remained in the dried product.
  • the resulting dried ceramer precursor was diluted to 50% solids with a 14/1 isopropyl alcohol/distilled water mixture, then further diluted to 25% solids using the same alcohol/water mixture. 0.7 Parts IRGACURETM 184 photoinitiator (Ciba Specialty Chemicals) were added to the diluted product to provide a photocurable ceramer composition.
  • the ceramer composition was coated onto 0.04 mm PET film using a Meyer Rod or a gravure roller, at a coating weight sufficient to provide a dried coating thickness of about 3 to about 5 micrometers.
  • the wet coating was dried at 70°C and cured using a UV
  • H lamp operated at an energy density of 10-60 mJ/cm.2 UVC and a nitrogen purge.
  • An antisoiling layer was applied to the cured hardcoat by dissolving a series of perfluoropolyethers in varying amounts of HFE-7100TM C4F9OCH3 hydrofluoroether solvent (3M) and coating the resulting solutions onto the cured hardcoat samples using a Meyer Rod at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers.
  • the wet coating was dried at 70°C and cured using a UN H lamp operated at an energy density of 5 mJ/cm ⁇ TJNC under a nitrogen purge.
  • Control compositions and 24 formulations were prepared and evaluated.
  • Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the perfluoropolyether, photoinitiator (if any) and adjuvants (if any); and the amount of HFE solvent employed.
  • Table 2 are the observed Ink Repellency, Pencil Hardness, and Durability results, and an evaluation of the appearance of the coated Controls and Examples. An entry of " ⁇ D" indicates that a value was not determined.
  • PFPE-A is (C2H5 ⁇ )2CH3SiC3H6NHCO(CF2 ⁇ ) ⁇ 5 (C2F4 ⁇ ) 13 CF2CONHC3H6SiCH3(OC 2 H'5)2.
  • PFPE-B is (C2H5 ⁇ )3SiC3H 6 NHCO(CF2 ⁇ ) 15 (C2F4 ⁇ ) 13 CF2CONHC3H 6 Si(OC2H5)3.
  • PFPE-C is KRYTOXTM 1514 perfluoroether fluid F(CF(CF3)CF 2 O) 2 5CF2CF3 (E.I. DuPont de Nemours & Co.).
  • PFPE-D is C4H9NHCO(CF2 ⁇ ) 15 (C 2 F4 ⁇ ) 13 CF2CONHC4H9. .
  • PFPE-G is (HOCH2)2CH2NHCO(CF2 ⁇ ) 15 (C 2 F4 ⁇ ) ⁇ 3 CF2CONHCH2(CH2 ⁇ H)2.
  • PFPE-H is:.
  • R2074 is RHODORSILTM 2074 diaryliodonium tetrakis(pentafluorophenylborate) from Rodia.
  • DEAP is 2,2-diethoxyacetophenone.
  • D-1173 is DAROCURETM 1173 2-hydroxy-2-methyl-l-phenyl-propan-l-one from Ciba Specialty Chemicals.
  • D-1173 is DAROCURETM 1173 2-hydroxy-2-methyl-l-phenyl-propan-l-one from Ciba Specialty Chemicals.
  • 1-184 is IRGACURETM 184 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals).
  • A-174 is A- 174 gamma-methacryloxypropyl trimethoxysilane (Union Carbide Corp.).
  • HFE is HFE-7100TM C 4 F 9 OCH 3 hydrofluoroether solvent (3M).
  • Example 14 The film of Example 14 was evaluated to determine the average visible photopic light transmittance through the film.
  • the measured transmittance was 93.8%, which is approximately the transmittance (94.5%) of a 0.13mm thick sample of uncoated PET film.
  • display elements were prepared by dissolving varying amounts PFPE-F in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers.
  • Half of the examples included IRGACURE 184 photoinitiator and half employed no photoinitiator.
  • the wet coatings were dried at 70°C and cured using a UN H lamp operated at an energy density of 35 m-T/cm ⁇ UNC under a nitrogen purge.
  • Table 3 is the amount of perfluoropolyether and photoinitiator for each example, and the observed Durability results.
  • display elements were prepared by dissolving a variety of perfluoropolyethers and 0.01% RHODORSIL 2074 photoinitiator in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.08 micrometers.
  • the wet coatings were dried at 70°C and cured using a UN H lamp operated at an energy density of 12 mJ/cm ⁇ UVC under a nitrogen purge.
  • Table 4 Set out below in Table 4 is the identity of the perfluoropolyether and the observed Durability results for each example. Table 4
  • PFPE-I is (C 2 H5 ⁇ )3Si(CH2)3 HCO(CF2CF2 ⁇ ) 8 CF2CONH(CH2)3Si(OC 2 H5)3.
  • PFPE-J is (C 2 H5 ⁇ )3Si(CH2)3 HCO(CF2CF2 ⁇ ) 8 CF2CONH(CH2)3Si(OC 2 H5)3.
  • PFPE-K is (C2H5 ⁇ )2CH3Si(CH2)3NHCO(CF2CF2 ⁇ ) 14 CF 2 CONH(CH 2 )3SiCH3(OC 2 H5) 2 .
  • PFPE-L is (C 2 H 5 0)3Si(CH 2 ) 3 NHCO(CF 2 C(CF3)FO) 12 CF 2 CONH(CH2)3Si(OC 2 H5)3.
  • PFPE-M is
  • each of the ceramer solutions was coated onto 0.13 mm thick PET film.
  • the coated PET substrate was dried at
  • Examples 1 - 24 the antisoiling coats were dried and cured under UV H lamps operated at an energy density of 10-60 mJ/cm.2 UVC.
  • Table 6 the ceramer solution numbers, the number of coats of ceramer solution, the ceramer coat thickness, and the conductivity, ink repellency and tape adhesion values for the coated substrates:
  • a 3 -necked reaction vessel was fitted with a vacuum distillation head and condenser, mechanical stirrer, heating mantle, and thermocouple for controlling the heating.
  • the vessel was charged with 6,718 parts NALCOTM 1042 acidic aqueous sol (pH 3.5 sol from ONDEO Nalco Co., containing 34% of 20 nanometer average diameter silica particles), 1,122 parts hydroxyethyl acrylate, 562 parts 3-(trimethoxysilyl)propyl methacrylate, 2 parts butylated hydroxytoluene, and 0.2 parts phenothiazine.
  • the contents were stirred at room temperature for 1 hour, then heated to 55° C. over about 45 min.
  • the pressure in the vessel was slowly reduced using a vacuum pump to remove volatiles without causing undue foaming. As the foaming subsided, full pump vacuum was applied until nearly all volatiles were removed. This required about 6 to 7 hours of distillation. The vacuum was relieved and then 792 parts SR 444 pentaerythritol triacrylate (Sartomer, Inc.) were added to the vessel. Full pump vacuum was re-applied and the remaining volatiles were removed. When distillation was complete, the contents of the vessel were filtered through fine-mesh cheesecloth to provide a 100%) solids solvent-free ceramer hardcoat.
  • the roughened coatings were formed by depositing the curable ceramer composition into the nip region between the film and the metal roll, applying pressure to the nip, moving the roll at a speed sufficient to form a bead of the ceramer composition in the nip and curing the ceramer composition through the film using
  • UV D lamps (Fusion Systems, Inc.) operated at an energy density of about 400 mJ/cm.2 UVA.
  • the cured ceramer coating and film were pulled away from the roll.
  • the surface of the cured ceramer coating replicated the roughened roll surface.
  • a curable antisoiling layer containing 1% PFPE-F perfluoropolyether in HFE- 7100 solvent was applied to and cured on the cured ceramer coating using UV H lamps operated at an energy density of 15 mJ/cm 2 UVC.
  • the backsides of the coated films were coated with a 35% solution of KRATONTM D-l 107 elastomer in toluene, using a fluid bearing die equipped with a 5 micrometer filter, to provide a non-tacky, void-free adhesive coating having a thickness of 0.03 mm.
  • coated films were evaluated for reflectance, transmission, haze, clarity, gloss, ink repellency and durability.
  • a typical commercially available PDA screen protector (WrightRIGHTTM PDA Screen Protector, Fellowes Corporation) was similarly evaluated. The results are set out below in Table 7.
  • the screen protectors covered nearly the entire screen, leaving a small uncovered area between the curved bottom edge of the screen and the chord extending between the endpoints of the bottom edge.
  • the screen protectors were also hand-trimmed to fit just inside the perimeter of the screen of an IPAQTM color PDA (Compaq Corp.) like the PDA shown in Fig. 4.
  • the screen protector was removed from the liner and pressed into place over the screen of the PDA, using the edge of a credit card to assist in removing air bubbles from under the film.
  • the film provided substantial indoor and outdoor glare reduction without unduly reducing visibility through the PDA screen.
  • the matte finish on the screen protector made it easier to write on the screen using the PDA stylus, because the stylus point had a reduced tendency to skid across the screen.
  • a pen or pencil could also be used to write on the PDA screen protector.
  • a small amount of ink or graphite transferred to the screen protector, but was readily removed using a tissue without leaving any observable damage on the screen protector surface.
  • the screen typically will be permanently damaged.
  • Example 40 Using standard pad-making equipment, five layers of the adhesive-coated sheet of
  • Example 39 were laminated directly atop one another.
  • the lowermost sheet was laminated to a plain paper liner, and the resulting stacks were die-cut to shape to form pads.
  • the pads were sized to fit just inside the perimeter of the screen of a PALMTM Vx PDA (Palm Computing Corp.) as in Example 39.
  • the liner was removed from the pad and the pad was adhered to the inside front cover of the PDA.
  • the uppermost screen protector was removed from a pad and pressed into place over the screen of the PDA, using the edge of a credit card as in Example 39.
  • the screen protector provided the same advantages as in Example 39, and additional screen protectors could be carried with the PDA so that spares would readily be available.
  • Example 27 In a series of runs, the backside of the coated film of Example 27 was coated using a knife coater with two different adhesives and dried at 70°C for 15 minutes. The resulting adhesive-coated samples were applied to glass for varying dwell periods and then evaluated for 180° peel adhesion. Set out below in Table 8 is the run number, adhesive identity, dry adhesive thickness and the measured peel adhesion values.

Abstract

An antisoiling hardcoated film comprising a substantially transparent substrate, a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix, and an antisoiling layer comprising a perfluoropolyether. The antisoiling layer can be very thin, thus reducing the cost of the perfluoropolyether. The film has very good scratch, smudge and glare resistance and very good interlayer adhesion and durability. The film can be in the form of a single flexible substrate or a stack of such substrates. The film or stack can be sized to fit the display screen of an electronic display device such as a personal digital assistant or cell phone.

Description

ANTISOILING HARDCOAT
Field of the Invention
This invention relates to protective films and coatings.
Background of the Invention
Optical displays, and especially touch panel displays, typically have an exposed viewing surface made from a thermoplastic film or slab. Commonly-employed thermoplastic polymers have very good optical fransparency-Ttlimensional stability and impact resistance, but unfortunately have poor abrasion resistance. The optical displays of devices such as personal digital assistants ("PDAs"), cell phones, touch-sensitive screens and removable computer filters are subjected to frequent handling and contact with the user's face or fingers, styli, jewelry and other objects. For example, facial oils can adversely affect contrast, color saturation or brightness of a cell phone display. The screens of projection televisions and laptop computers are handled less frequently but nonetheless are sometimes touched, scratched or smudged. Consequently, the viewing face of the display is susceptible to scratches, abrasion and smudges arising during routine use. This can cause the display to lose resolution and clarity, and sometimes to become unreadable or inoperative. To protect such displays, protective films or coatings can be employed.
Protective films for PDAs, cellular phones and other display devices are available from many commercial sources including A.R.M. (SECURER™ Screen Protector), CompanionLink Software, Inc. (COMPANIONLINK™ PDA Screen Protector), EC Film (PDA Screen Protector), Fellowes Corporation (WrightRIGHT™ PDA Screen Protector), PerfectData Corporation (SILKYBOARD™ PDA Keyboard and Screen Protector), ROTA
Technology Inc. (RT-PDS Screen Protector and RT-MPS Mobile Phone Screen protector), Swann Communications (PDA PLUS™ Screen Protectors), Sanwa Supply Inc. (LCD- PDA Screen Protector) and VSPS (N.S. Protective Shield). Typically these products are sold as single precut sheets of plain plastic film, although some include a textured or tinted surface over at least a portion of the film. Some of the above-mentioned protective films are said to help keep a PDA screen smudge-free. Viewing screen protective devices are also shown in, e.g., U.S. Patent Νos. 4,907,090 (Ananian); 6,059,628 (Yoo et al.); 6,250,765 (Murakami) and Re. 35,318 (Warman). A touch panel device having a roughened outermost surface is shown in Japanese published patent application (Kokai) No. 2000-020240.
Hardcoats have also been used to protect the face of information displays. These hardcoats typically contain inorganic oxide particles, e.g., silica, of nanometer dimensions dispersed in a binder precursor resin matrix, and sometimes are referred to as "ceramers". For example, U.S. Patent No. 5,104,929 (Bilkadi "929) describes UN curable ceramer coatings containing colloidal silica particles dispersed in a protic group-substituted ester or amide of an acrylic acid. A ceramer described in Bilkadi '929and known as 3M 906 Abrasion Resistant Coating has been used as a hardcoat on signage.
U.S. Patent Νos. 6,132,861 (Kang et al. '861), 6,238, 798 Bl (Kang et al. '798) and 6,245,833 Bl (Kang et al. Λ833) and Published PCT Application No. WO 99/57185 (Huang et al.) describe ceramer compositions containing blends of colloidal inorganic oxide particles, a curable binder precursor and certain fluorochemical compounds. These compositions provide stain and abrasion resistant hardcoats in a single layer coating.
A transparent stack of anti-graffiti sheets is shown in PCT Published Application No. WO 00/24576 (Janssen et al.). The entire stack is applied to a glass or plastic window, signage or a display and the topmost sheet is removed once the sheet has become damaged. The sheets in the stack can include an optional release layer. The release layer is said preferably to comprise a material selected from the group consisting of acrylates, methacrylates, urethanes, polyolefins, silicones, fluorochemicals such as fluorocarbons, and mixtures thereof. In Example 7, 3M 906 Abrasion resistant Coating is employed as an abrasion-resistant release layer atop polycarbonate sheets in the stack. Stacks of removable plastic sheets for use on automotive windows are shown in U.S. Patent No. 5,002,326 (Westfield et al.) and in Offenlegungsschrifc DE 3637 188 Al (Altmann et al.).
U.S. Patent No. 5,851,674 (Pellerite et al.) describes a self-assembling fluorinated silane film that can be applied atop a multilayer antireflective film to provide a coating having antisoiling properties.
U.S. Patent No. 6,204,350 (Liu et al.) describes curable coating compositions which comprises alkoxysilane containing fluorinated polymers. Summary of the Invention
Coatings made from 3M 906 Abrasion Resistant coating are susceptible to smudges, staining and marks from pens or pencils. It can be difficult to mix the ingredients in the Kang et al. "798 and Kang et al. "833 compositions without experiencing flocculation. Owing to the high cost of the fluorochemical and its use throughout the hardcoat layer, these compositions are also relatively expensive. The Pellerite et al. films have insufficient adhesion to a film made from a ceramer such as 3M 906 Abrasion Resistant Coating.
The present invention provides in one aspect a display element comprising a substantially transparent substrate, a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix, and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
The invention also provides an information display protector for display devices having an information display area, comprising a flexible substantially transparent generally planar substrate having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
The invention also provides information display protectors for a portable electronic device having a display screen, comprising a stack of flexible substantially transparent sheets, the sheets having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat, the stack being cut so that the sheets will fit the display screen. The stack can conveniently be stored by adhering it to a portion of the display or to a display cover. The invention also provides an antisoiling hardcoated film, comprising a flexible generally planar substrate having on at least one side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
The present invention also provides a method for making an antisoiling hardcoat comprising coating and curing on a substrate a ceramer coating comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, and coating and curing atop the ceramer coating an antisoiling layer comprising a free-radically polymerizable fluorochemical.
The present invention also provides a method for making a display element comprising applying to a substantially transparent substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer.
In addition, the invention provides a method for making an information display protector for a device having an information display area, comprising: a) applying to one side of a substantially transparent generally planar substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer; and b) applying to the other side of the substrate an adhesive layer.
The invention also provides a method for making information display protectors for portable electronic devices having an information display area, comprising carrying out steps a) and b) above; forming the coated substrate into a stack of sheets; and converting the stack so that the sheets will fit the information display area. The invention also provides a continuous, roll to roll manufacturing method for making a roughened screen protector sheet for information displays, comprising: a) depositing a substantially solvent-free, curable ceramer composition comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix into the nip region between a substantially transparent substrate and a roll having an average surface roughness of at least 0.1 micrometer; b) moving the roll at a sufficient speed and while applying sufficient pressure to the nip to form a bead of the ceramer composition in the nip; c) curing the ceramer composition through the substrate (using, e.g., ultraviolet radiation) while the ceramer composition is against the roll; d) removing the cured ceramer coating from the roll; e) applying to the cured ceramer coating a curable antisoiling layer comprising a perfluoropolyether; and f) curing the antisoiling layer.
The antisoiling layer can be very thin, thus reducing the perfluoropolyether content and cost. The articles of the invention have very good scratch and smudge resistance and very good durability.
Brief Description of the Drawing Fig. 1 is a schematic side view of a capacitive touch screen containing a display element of the invention.
Fig. 2 is a schematic side view of a resistive touch screen containing a display element of the invention.
Fig. 3 is a schematic side view of an information display protector of the invention. Fig. 4 is a plan view of a PDA, the screen being covered with an information display protector of Fig. 3.
Fig. 5 is a schematic side view of a stack of screen protectors of the invention. Fig. 6 is a perspective view of a PDA, the screen being covered with an information display protector of Fig. 3, and the inside front cover having a stack of the protectors of Fig. 5 adhered thereto. Fig. 7 is a schematic side view of a removable computer privacy filter containing a display element of the invention.
Fig. 8 is a schematic side view of an extended resolution video screen containing a display element of the invention.
Fig. 9 shows a rating chart used to evaluate ink repellency.
Detailed Description The display elements of the invention and components thereof are sometimes shown or described herein using words of orientation such as "upper", "atop", "above" or "front". These and similar terms are merely employed for convenience to refer to the general direction (with respect to the optical path through an information display device) towards a normal viewer of the display device. Likewise, the display elements of the invention and components thereof are sometimes shown or described herein using words of orientation such as "lower", "beneath", "underneath" or "behind". These and similar terms are merely employed for convenience to refer to the general direction (with respect to such optical path) towards the display. As will be understood by those skilled in the art, the display elements of the invention can be used in a variety of orientations and locations. The information display protectors of the invention can be used on a variety of kinds of information displays having a variety of information display area configurations. Such displays include multi-character and especially multi-character, multi-line displays such as liquid crystal displays ("LCDs"), plasma displays, front and rear projection displays, cathode ray tubes ("CRTs") and signage. The information display protectors of the invention can also be used on single-character or binary displays such as light emitting diodes ("LEDs"), signal lamps and switches. The information display protectors of the invention can be used on illuminated or non-illuminated displays. The information display protectors of the invention are especially useful on displays whose information display area is in the form of a viewing screen having a viewing surface that is susceptible to damage during normal use.
The display elements of the invention can be employed in a variety of portable and non-portable information display devices including PDAs, cell phones (including combination PDA/cell phones), touch-sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD or DND players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays (including indoor and outdoor graphics, bumper stickers, and the like), reflective sheeting, and the like. These devices can have planar viewing faces, or non-planar viewing faces such as the slightly curved face of a typical CRT. Typically the display element is located on or in close physical proximity to a viewing face of the information display device rather than being spaced an appreciable distance therefrom.
Referring now to Fig. 1, a capacitive touch panel display generally identified as 10 is shown in schematic form. Viewing surface 11 permits an observer (not shown in Fig. 1) to see images from imaging device 12. Imaging device 12 can be any of a number of device types capable of displaying information, including transmissive, reflective or transflective liquid crystal displays, cathode ray tubes, micromirror arrays, and printed panels or other backgrounds. Generally planar substrate 13 protects imaging device 12 and provides a support for viewing surface 11. Substrate 13 typically is made of glass or a plastic such as polycarbonate or polyethylene terephthalate. The upper surface of substrate 13 is covered with a transparent thin conductive coating 14. Coating 14 typically is made of a metal or alloy such as indium tin oxide or of a conductive polymer. Hardcoat 16 lies atop coating 14, and provides scratch and abrasion resistance to help protect coating 14 and the underlying substrate 13 from damage. Hardcoat 16 has a roughened upper surface 17. The inclusion of such a roughened surface is optional. It provides glare protection for display 10 and makes it easier to write upon display 10 using a stylus. Antisoiling layer 18 is sufficiently thin so that the roughened upper surface 17 of hardcoat 16 is replicated on viewing surface 11. Antisoiling layer 18 provides oil and ink resistance to help prevent hardcoat 16 from being smudged or otherwise soiled by exposure to contaminants such as skin oils, cosmetics, pencil lead, inks and adventitious dirt. Antisoiling layer 18 can also make the hard coat easier to clean if it is soiled. Thus if necessary, a user can accidentally or deliberately write on the display with a pen or pencil, and easily remove the resulting pencil or ink marks. As will be appreciated by those skilled in the art, electrodes (not shown in Fig. 1) that typically are positioned at the corners of display 10 apply a voltage and charge the conductive coating 14, which acts as a capacitor. The charge is drained and renewed while a controller (also not shown in Fig. 1) measures the amount of current flowing from each electrode. The charging and draining cycle is repeated at a cycle time determined by the controller. Contact by a conductive stylus or finger with the viewing surface 11 increases the capacitance of the conductive coating 14 so that more current flows when a touch occurs. The touch location is determined by comparing current flows from each electrode.
Although not shown in Fig. 1, an optional antistatic coating can be applied atop the hardcoat or atop the antisoiling layer in order to discourage dust and other contaminants from adhering to the display. Also, an additional layer of hardcoat 16 can optionally be formed on the lower surface of substrate 13. This can help protect substrate 13 from damage and can help to reduce glare and ghosting in display 10.
Fig. 2 shows a resistive touch panel display generally identified as 20 in schematic form. Viewing surface 21 permits an observer (not shown in Fig. 2) to see images from imaging device 12. Substrate 22 of display 10 lies atop imaging device 12 and typically is made of glass or a plastic such as polycarbonate or polyethylene terephthalate. The upper surface of substrate 22 is covered with thin layer of an optional hardcoat 24a, which serves as a primer and adhesion aid for transparent, thin, conductive coating 25a. A similar thin conductive coating 25b is adhered to flexible membrane 23 through optional hardcoat 24b. The upper surface of flexible membrane 23 is coated with hardcoat 26. Hardcoat 26 provides scratch and abrasion resistance to help protect flexible membrane 23 from damage. Hardcoat 26 has an optional roughened upper surface, as in the display of Fig. 1. Antisoiling layer 28 is sufficiently thin so that the roughened upper surface 27 of hardcoat 26 is replicated on viewing surface 21. Antisoiling layer 28 provides oil and ink resistance to help prevent hardcoat 26 from being smudged or otherwise soiled. If desired, an optional antistatic layer can also be provided, as in the display of Fig. 1. Spacers 29 lie atop coating 25a, and a finite space normally separates the upper surface of coating 25a and the lower surface of coating 25b. As will be appreciated by those skilled in the art, contact by a finger or stylus with viewing surface 21 will cause membrane 23 to flex and bring coating 25b into contact with coating 25a, enabling a current to flow between these layers. A controller (not shown in Fig. 2) can identify the touch location by comparing current flowing from various electrodes or busbars (also not shown in Fig. 2) printed on the conductive layers 25a and 25b.
Those skilled in the art will appreciate that other types of touch-sensitive devices can be used in the invention. For example, the touch-sensitive device can operate via guided acoustic wave, surface acoustic wave or near field imaging. The touch-sensitive device can also operate via a non-contact mechanism such as a scanning infrared sensor, e.g., via provision of a suitable array of light beams and photosensors above the upper face of the display.
Fig. 3 shows an information display protector of the invention generally identified as 30. The lower face of flexible membrane 33 is coated with an adhesive layer 34 to which has been applied a protective liner 32. The lower surface of adhesive 34 is microtextured. Use of a microtextured adhesive layer is optional. Microtexturing helps air bubbles escape from beneath protector 30 when it is applied to a display screen, thereby helping to provide good optical coupling between protector 30 and the screen. The upper face of membrane 33 is coated with a hardcoat layer 36. Hardcoat 36 provides scratch and abrasion resistance to help protect a display screen from damage. Hardcoat 36 has an optional roughened upper surface 37, thus providing glare protection for a display screen. Antisoiling layer 38 is sufficiently thin so that the roughened upper surface 37 of hardcoat 36 is replicated on viewing surface 31 of protector 30. An antistatic layer can also be provided if desired.
Fig. 4 shows a PDA generally designated as 40 to which has been applied the information display protector 30 of Fig. 3. The user simply removes liner 32 from adhesive 34, centers protector 30 over screen 42 and presses protector 30 into place. Protector 30 serves as a screen protector for the PDA screen, and preferably is precut to slightly undersized dimensions so that the edges of protector 30 extend nearly to the perimeter of screen 42, while still permitting protector 30 to be easily removed later if desired. The roughened viewing surface 31 reduces glare and makes it much easier to write upon screen 42, especially when using a stylus. The antisoiling layer 38 (not shown in Fig. 4) provides oil and ink resistance to help prevent hardcoat 36 (also not shown in Fig. 4) of protector 30 from becoming smudged or otherwise soiled. This is especially helpful if a user accidentally uses a pen or pencil rather than a stylus to write on screen 42. Fig. 5 shows a stack 50 of four PDA information display protectors of the type shown in Fig. 3. Stack 50 has a single liner 32 protecting the adhesive layer 34a of the lowermost information display protector. The remaining information display protectors can be adhered to one another by pressing adhesive layers 34b, 34c and 34d against antisoiling layers 38a, 38b and 38c, respectively. A user can remove the uppermost protector from the stack and adhere it to the screen of a PDA as in Fig. 4. If the thus- applied protector later becomes worn or damaged, it can be peeled off the PDA screen and replaced with another protector from stack 50.
A user can store the stack by adhering it to a display device or to its case or cover. Fig. 6 shows a PDA generally designated as 60. Protector 30 (on substrate 33) has been removed from the top of stack 50 and applied to the screen 42 of PDA 60. Liner 32 has been removed from stack 50 so that stack 50 could be adhered to inside surface 64 of PDA front cover 62. Although not shown in Fig. 6, the stack could instead be adhered to the rear of PDA 60 or to any available surface of a separate PDA case. If the stack 50 contains a relatively low number of protectors (e.g., 10 or less, more preferably 5 or less), it will not unduly obscure underlying printed graphics on the front cover (such as the printed GRAFFITI™ alphabet symbol guide that is supplied with some PDAs) and will not hamper closure of a PDA cover or case if applied to an inside surface thereof. Because the stack 50 can be stored with the PDA, spare protectors 30 are close at hand when needed. This is a much more convenient mode of storage than the typical storage mode for current PDA screen protector products sold as single sheets. When protector 30 on screen 42 becomes worn or damaged, a fresh protector can be removed from stack 50. For example, as shown in Fig. 6, the next protector in stack 50 can be removed by peeling adhesive layer 34c away from antisoiling layer 38b.
Fig. 7 shows a removable computer privacy filter generally identified as 70. Louvered light control film 72 permits a viewer to see images from an underlying imaging device 12 through viewing surface 71, while preventing an observer located away from the main viewing axis from seeing such images. Substrate layers 74 are adhered to the upper and lower surfaces of light control film 72 by adhesive layers 73. Hardcoats 75 and 77 help to protect the substrate layers 74 and film 72 from damage, and antisoiling layers 76 and 78 provide oil and ink resistance to help prevent hardcoats 75 and 77 from becoming smudged or otherwise soiled. Hardcoat 77 and its antisoiling layer 78 preferably are roughened in order to provide glare reduction. Because filter 70 may frequently be removed from and replaced on a display, the use of the hardcoat and antisoiling layer on both major surfaces of the filter facilitates handling and cleaning even if the user accidentally grips the front and back of the filter rather than handling it by its edges. An optional antistatic coating (not shown in Fig. 7) can also be employed on or just below one or both maj or surfaces of the filter if desired.
Fig. 8 shows an extended resolution video screen generally identified as 80. The rear surface of acrylic screen 82 is covered with a thermoplastic layer of poly vinyl butyral 83 that has been hot-laminated to a monolayer of small glass beads 85 bonded in a contrast-enhancing carbon black-containing urethane bead bond layer 84. Substrate 87 is adhered to the upper surface of screen 82 by adhesive layer 86. Substrate 87 can also be hot-laminated to the upper surface of screen 82. Hardcoat 88 helps to protect substrate 87 and screen 82 from damage, and antisoiling layer 89 provides oil and ink resistance to help prevent hardcoat 88 from becoming smudged or otherwise soiled. Hardcoat 88 and antisoiling layer 89 preferably are roughened in order to provide glare reduction at the viewing surface 81 of screen 80. An optional antistatic coating (not shown in Fig. 8) can also be employed on or just below viewing surface 81 if desired. A wide variety of substrate materials can be used in the invention. The substrate should be substantially transparent, that is, the substrate should have sufficient transparency or translucency at the intended wavelength and under the intended viewing conditions so that the display element does not unduly impede use and viewing of the underlying information display. Suitable substrate materials include glass, transparent or translucent ceramics, and thermosetting or thermoplastic polymers such as polycarbonate, poly(meth)acrylate (e.g., polymethyl metliacrylate or "PMMA"), polyolefins (e.g., polypropylene or "PP"), polyurethane, polyesters (e.g., polyethylene terephthalate or "PET"), polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrenes, styrene-acrylonitrile copolymers, epoxies, and the like. Typically the substrate will be chosen based in part on the desired optical and mechanical properties for the intended use. Such mechanical properties typically will include rigidity, dimensional stability and impact resistance. The substrate thickness typically also will depend on the intended use. For most applications, substrate thicknesses of less than about 1 mm are preferred, more preferably less than about 0.1 mm and most preferably about 0.02 to about
0.2 mm. The substrate can be flexible or rigid. Flexible substrates in the form of self- supporting polymeric films are preferred. Flexible films made from polyesters such as PET or polyolefins such as PP (polypropylene), PE (polyethylene) and PVC (polyvinyl chloride) are particularly preferred. The substrate can be formed into a film using conventional filmmaking techniques such as extrusion of the substrate resin into a film and optional uniaxial or biaxial orientation of the extruded film. The substrate can be treated to improve adhesion between the substrate and the hardcoat, using, e.g., chemical treatment, corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation. If desired, an optional tie layer can also be applied between the substrate and the hardcoat to increase the interlayer adhesion. The other side of the substrate may also be treated using the above-described treatments to improve adhesion between the substrate and the adhesive.
The hardcoat is a tough, abrasion resistant layer that protects the substrate and the underlying information display from damage from causes such as scratches, abrasion and solvents. The hardcoat preferably contains nanometer-sized inorganic oxide particles dispersed in a binder matrix. Typically the hardcoat is formed by coating a curable liquid ceramer composition onto the substrate and curing the composition in situ to form a hardened film. Suitable coating methods include, for example, spin coating, knife coating, die coating, wire coating, flood coating, padding, spraying, roll coating, dipping, brushing, foam application, and the like.
A variety of inorganic oxide particles can be used in the hardcoat. The particles preferably are substantially spherical in shape and relatively uniform in size. The particles can have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions. Preferably the inorganic oxide particles are and remain substantially non-aggregated (substantially discrete), as aggregation can result in precipitation of the inorganic oxide particles or gelation of the hardcoat. Preferably the inorganic oxide particles are colloidal in size, that is, they preferably have an average particle diameter of about 0.001 to about 0.2 micrometers, more preferably less than about 0.05 micrometers, and most preferably less than about 0.03 micrometers. These size ranges facilitate dispersion of the inorganic oxide particles into the binder resin and provide ceramers with desirable surface properties and optical clarity. The average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter. Preferred inorganic oxide particles include colloidal silica, colloidal titania, colloidal alumina, colloidal zirconia, colloidal vanadia, colloidal chromia, colloidal iron oxide, colloidal antimony oxide, colloidal tin oxide, and mixtures thereof. The inorganic oxide particles can consist essentially of or consist of a single oxide such as silica, or can comprise a combination of oxides, such as silica and aluminum oxide, or a core of an oxide of one type (or a core of a material other than a metal oxide) on which is deposited an oxide of another type. Silica is a particularly preferred inorganic particle. The inorganic oxide particles are desirably provided in the form of a sol containing a colloidal dispersion of inorganic oxide particles in liquid media. The sol can be prepared using a variety of techniques and in a variety of forms including hydrosols (where water serves as the liquid medium), organosols (where organic liquids so serve), and mixed sols (where the liquid medium contains both water and an organic liquid), e.g., as described in U.S. Patent Nos. 5,648,407 (Goetz et al.) and 5,677,050 (Bilkadi et al.), the disclosure of which is incorporated by reference herein. Aqueous sols of amorphous silica are particularly preferred. Preferred sols generally contain from about 2 to about 50 weight percent, preferably from about 25 to about 45 weight percent, of colloidal inorganic oxide particles based on the total weight of the sol. Preferred sols can be obtained from suppliers such as ONDEO Nalco Co. (for example, NALCO™ 1040, 1042, 1050, 1060, 2327, and 2329 colloidal silicas), Nyacol Nano Technologies, Inc. (for example, NYACOL™ AL20 colloidal alumina and NYACOL™ A1530, A1540N, and A1550 colloidal antimony pentoxides), and W.R. Grace and Co. (for example, LUDOX™ colloidal silicas). The surface of the inorganic particles can be "acrylate functionalized" as described in Bilkadi et al. The sols can also be matched to the pH of the binder, and can contain counterions or water-soluble compounds (e.g., sodium aluminate), all as described in Kang et al. "798. The hardcoat can conveniently be prepared by mixing an aqueous sol of inorganic oxide particles with a free-radically curable binder precursor (e.g., one or more free- radically curable monomers, oligomers or polymers that can participate in a crosslinking reaction upon exposure to a suitable source of curing energy). The resulting composition usually is dried before it is applied, in order to remove substantially all of the water. This drying step is sometimes referred to as "stripping". An organic solvent can be added to the resulting ceramer composition before it is applied, in order to impart improved viscosity characteristics and assist in coating the ceramer composition onto the substrate. After coating, the ceramer composition can be dried to remove any added solvent, and then can be at least partially hardened by exposing the dried composition to a suitable source of energy in order to bring about at least partial cure of the free-radically curable binder precursor.
The hardcoat preferably contains about 10 to about 50, and more preferably about 25 to about 40 parts by weight of inorganic oxide particles per 100 parts by weight of the binder. More preferably the hardcoat is derived from a ceramer composition containing about 15 to about 40% acrylate functionalized colloidal silica, and most preferably about
15 to about 35% acrylate functionalized colloidal silica.
A variety of binders can be employed in the hardcoat. Preferably the binder is derived from a free-radically polymerizable precursor that can be photocured once the hardcoat composition has been coated upon the substrate. Binder precursors such as the protic group-substituted esters or amides of an acrylic acid described in Bilkadi, or the ethylenically-unsaturated monomers described in Bilkadi et al., are especially preferred. Suitable binder precursors include polyacrylic acid or polymethacrylic acid esters of polyhydric alcohols, such as diacrylic acid or dimethylacrylic acid esters of diols including ethyleneglycol, triethyleneglycol, 2,2-dimethyl-l,3-propanediol, 1,3-cyclopentanediol, 1- ethoxy-2,3-propanediol, 2-methyl-2,4-pentanediol, 1,4-cyclohexanediol, 1,6- hexamethylenediol, 1,2-cyclbhexanediol, 1,6-cyclohexanedimethanol, resorcinol, pyrocatechol, bisphenol A, and bis(2-hydroxyethyl) phthalate; triacrylic acid or trimethacrylic acid esters of triols including glycerin, 1,2,3-propanetrimethanol, 1,2,4- butanetriol, 1,2,5-pentanetriol, 1,3,6,-hexanetriol, 1,5,10-decanetriol, pyrogallol, phloroglucinol, and 2-phenyl-2,2-methylolethanol; tetraacrylic acid or tetramethacrylic acid esters of tetraols including 1,2,3,4-butanetetrol, 1,1,2,2,-tetramethylolethane, 1,1,3,3,- tetramethylolpropane, and pentaerythritol tetraacrylate; pentaacrylic acid or pentamethacrylic acid esters of pentols including adonitol; hexaacrylic acid or hexamethacrylic acid esters of hexanols including sorbitol, dipentaerythritol, dihydroxy ethyl hydantoin; and mixtures thereof. The binder can also be derived from one or more monofunctional monomers as described in Kang et al. Λ798. Preferably the binder comprises one or more N,N-disubstituted acrylamide and or N-substituted-N- vinyl-amide monomers as described in Bilkadi et al. More preferably the hardcoat is derived from a ceramer composition containing about 20 to about 80% ethylenically unsaturated monomers and about 5 to about 40% N,N-disubstituted acrylamide monomer or N- substituted-N- vinyl-amide monomer, based on the total weight of the solids in the ceramer composition.
Preferably the inorganic particles, binder and any other ingredients in the hardcoat are chosen so that the cured hardcoat has a refractive index close to that of the substrate. This can help reduce the likelihood of Moire patterns or other visible interference fringes. As mentioned above, the hardcoat can be formed from an aqueous coating composition that is stripped to remove water prior to coating, and optionally diluted with a solvent to assist in coating the composition. Those skilled in the art will appreciate that selection of a desired solvent and solvent level will depend on the nature of the individual ingredients in the hardcoat (or tie layer) and on the desired substrate and coating conditions. Kang et al. "798 describes several useful solvents, solvent levels and coating viscosities.
The hardcoat can be crosslinked with various agents to increase the internal cohesive strength or durability of the hardcoat. Preferred crosslinking agents have a relatively large number of available functional groups, and include tri and terra- acrylates, such as pentaerythritol triacrylate and pentaerythritol tetraacrylate. When used, the crosslinking agent preferably is less than about 60 parts, and more preferably about 30 to about 50 parts by weight per 100 parts by weight of the binder. Those skilled in the art will also appreciate that the hardcoat can contain other optional adjuvants, such as surface treatment agents, surfactants, antistatic agents (e.g., conductive polymers), leveling agents, initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigments, dyes, plasticizers, suspending agents and the like. Kang et al. "798 contains an extensive discussion of such adjuvants and recommended use levels.
If the hardcoat is prepared by combining an aqueous sol of colloidal inorganic oxide particles with the binder precursor, then preferably the sol has a pH such that the particles have a negative surface charge. For example, if the inorganic particles are predominantly silica particles, the sol preferably is alkaline with a pH greater than 7, more preferably greater than 8, and most preferably greater than 9. Preferably the sol includes ammonium hydroxide or the like so that NH4+ is available as a counter cation for particles having a negative surface charge. If surface treatment of the colloidal inorganic oxide particles is desired, a suitable surface treatment agent can be blended into the sol, e.g., as described in Kang et al. "833, the disclosure of which is incorporated by reference herein. The free-radically curable binder precursor is then added to the ceramer composition. The ceramer composition is stripped to remove substantially all of the water. For example, removing about 98% of the water, thus leaving about 2% water in the ceramer composition, has been found to be suitable. As soon as substantially all of the water is removed, an organic solvent of the type described in Kang et al. "798 preferably is added in an amount such that the ceramer composition includes from about 5% to about 99% by weight solids (preferably about 10 to about 70%). After adding the solvent, any other desired adjuvants can be added.
Preferably the ceramer composition is coated at a coating weight sufficient to provide a cured hardcoat with a thickness of about 1 to about 100 micrometers, more preferably about 2 to about 50 micrometers, and most preferably about 3 to about 30 micrometers. After coating, the solvent, if any, is flashed off with heat, vacuum, and/or the like. The coated ceramer composition is then cured by irradiation with a suitable form of energy, such as heat energy, visible light, ultraviolet light or electron beam radiation. Irradiating with ultraviolet light in ambient conditions is presently preferred due to the relative low cost and speed of this curing technique. In addition, the hardcoat surface optionally is roughened or textured to provide a matte surface. This can be accomplished in a variety of ways that will be familiar to those skilled in the art, including embossing the hardcoat with a suitable tool that has been bead-blasted or otherwise roughened, by adding a suitable small particle filler such as silica sand or glass beads to the hardcoat, or by carrying out cure against a suitable roughened master as described in U.S. Patent Nos. 5,175,030 (Lu et al.) and 5,183,597 (Lu). The antisoiling layer comprises a perfluoropolyether. Preferred perfluoropolyethers contain randomly distributed perfluoroalkylene oxide -(CnF2nO)- repeating units such as -CF2O- or-[(CF2)nCF2-.m(CF3)mO]- (in which m is 0 or 1 and n is preferably 1 to 7), and pendent (e.g., terminal) polymerizable (e.g., acrylate or methacrylate) groups. Suitable perfluoropolyethers include those described in U.S. Patent Nos. 3,810,874 (Mitsch et al), 4,321,404 (Williams et al.), 4,472,480 (Olson), 4,567,073
(Larson et al. "073), 4,830,910 (Larson et al. "910) and 5,306,758 (Pellerite), the disclosures of which are incorporated by reference herein. One preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula:
Y-(CaF2aO)bCaF2a-Y (I) wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2aO — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000. Another preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula:
Zc-A-(CF2θ)e(CF2CF2.m(CF3)mO)fCF2-A-Zd (II) wherein each Z is an acrylate or methacrylate group; m is 0 or 1 ; c and d are 0 to 3 with the proviso that c + d is at least 2; e and fare greater than 5 when M is zero; e can be zero and f is greater than 5 when m is one; and each A is a c + l or d + 1 valent linking group such as. Preferred linking groups A include:
-OCH2- -OCH2CH2NHCO- -OCH2CH2CH2NHCO-
— OCH2 CH CH2 NHCO
and the like. Another preferred subclass of preferred antisoiling layers is derived from perfluoropolyethers of the formula:
Y-(CF2O)g(CF2CF2O)hCF2 -Y (HI) wherein each Y is as defined above, and g and h are greater than 5. Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula:
CH3OOC(CF2θ)g(CF2 CF2O)hCF2COOCH3 (IV) which are commercially available as FOMBLIN™ diesters from Ausimont USA.
A further preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula: Y-(CF2CFCF3O)gCFCF3-Y (VI) wherein each Y and g are as defined above. Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula: CH3θOC(CF2CFCF3O)gCFCF3COOCH3 (VI) which are commercially available as KRYTOX™ diesters from E. I. du Pont de Nemours Co.
Especially preferred perfluoropolyethers include: (C2H5O)2CH3SiC3H6NHCO(CF2O)i5(C2F4O)i3CF2CONHC3H6SiCH3(OC2H5)2, (C2H5θ)3SiC3H6NHCO(CF2θ)15(C2F4θ)13CF2CONHC3H6Si(OC2H5)3, F(CF(CF3)CF2θ)25CF2CF3, C4H9NHCO(CF2O)15(C2F4θ)ι3CF2CONHC4H9, CH2=CHCOOC2H4 HCO(CF2θ)15(C2F4θ)13CF2CONHC2H4θOCCH=CH2,
CH2=CHCOOCH2(CF2θ)ι5(C2F4θ)ι3CF2CH2OOCCH=CH2, (HOCH2)2CH2NHCO(CF2θ)i5(C2F4O)ι3CF2CONHCH2(CH2θH)2, (C2H5θ)3Si(CH2)3 HCO(CF2CF2θ)8CF2CONH(CH2)3Si(OC2H5)35 (C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2O)8CF2CONH(CH2)3SiCH3(OC2H5)25 (C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2θ)14CF2CONH(CH2)3SiCH3(OC2H5)25 (C2H5O)3Si(CH2)3NHCO(CF2C(CF3)FO)12CF2CONH(CH2)3Si(OC2H5)35 (C2H5O)2CH3Si(CH2)3NHCO(CF2C(CF3)FO)12CF2CONH(CH2)3SiCH3(OC2H5)2, and.
OOCCH=CH2 OOCCH=CH2
H2C=HCCOO CH2CHCH2NHCO(CF20)15(CF2CF20)13CF2CONHCH2CHCH2-OOCCH=CH2
The antisoiling layer can if desired contain other compatible fluorochemicals such as perfluorinated surfactants, perfluoroalkyl acrylates and perfluoroalkyl methacrylates blended with the perfluoropolyether. Other adjuvants such as soluble or miscible photoinitiators may also be included in the antisoiling layer if desired.
The perfluoropolyether preferably is applied using a solvent that assists in coating the perfluoropolyether onto the hardcoat. Those skilled in the art will appreciate that selection of a desired solvent and solvent level will depend on the nature of the ingredients in the hardcoat and the antisoiling layer and on the desired coating conditions. Preferred solvents include fluorinated solvents such as hydrofluoroethers and perfluorinated octanes (especially when the perfluoropolyether does not contain polar linking groups in its backbone), and hydrocarbon solvents such as methyl ethyl ketone and ethyl acetate, at recommended dissolution levels at or above 20% solids. After adding the solvent, any other desired adjuvants can be added.
The perfluoropolyether can be applied to the hardcoat using a variety of conventional coating methods, including those mentioned above. Gravure, notch-bar, reverse roll coating and curtain coating are preferred. Notch bar and gravure coating are particularly preferred methods as they enable application of a very thin layer, on the order of about 1 to about 5 micrometers wet thickness. Preferably the antisoiling layer is coated at a coating weight sufficient to provide a cured antisoiling layer thickness of about 0.005 to about 2 micrometers, more preferably about 0.01 to about 0J micrometers, and most preferably about 0.02 to about 0.08 micrometers. The wet coating is dried, typically using a forced air oven. The dried coating can be further cured (to a partially or completely cured state) using an energy source. Preferred energy sources include ultraviolet light curing devices that provide a UV "C" dosage of about 5 to 60 milliJoules per square centimeter (mJ/cm^). Preferably curing takes place in an environment containing low amounts of oxygen, e.g., less than about 100 parts per million. Nitrogen gas is a preferred environment.
The display element optionally can include an adhesive on the backside of the substrate. Preferably the adhesive is transparent or sufficiently translucent so that it will not unduly hamper viewing of an underlying display device. The adhesive can be derived from a natural product (e.g., a rubber-base adhesive) or can be a synthetic material such as a homopolymer, random copolymer, graft copolymer, or block copolymer. The adhesive can be crosslinked or uncrosslinked, and if desired can have pressure-sensitive properties. An accepted quantitative description for pressure sensitive adhesives (PSAs) is given by the Dahlquist criterion, which indicates that materials having a storage modulus (G') of less than about 3x10^ Pascals (measured at 10 radians/second at room temperature, about 20° to 22° C) have pressure sensitive adhesive properties while materials having a G' in excess of this value do not. Non-pressure sensitive adhesives are preferred, especially those that provide selective adhesion, e.g., adhesives that have low tack or are non-tacky with respect to skin but have high tack with respect to a targeted surface such as the surface of a display. Display elements coated with such non-pressure sensitive selective adhesives can be easily handled and applied to a display surface, and can be cleanly removed if needed. Suitable low tack or non-tacky adhesives include those described in U.S. Patent Nos. 5,389,438 (Miller et al.), 5,851,664 (Bennett et al.), 6,004,670 (Kobe et al.) and 6,099,682 (Krampe et al.). Thermoplastic block copolymer elastomers (copolymers of segmented A and B blocks or segments, displaying both thermoplastic and elastomeric behavior) are especially preferred. Useful thermoplastic block copolymer elastomers include multi-block copolymers having radial, linear A-B diblock, and linear A-B-A triblock structures, as well as blends of such copolymers. Suitable commercially available thermoplastic block copolymer elastomers include the SOLPRENE™ family of materials (Philips Petroleum Co.), the FINAPRENE™ family of materials (FINA), the TUFPRENE™ and ASAPRENE™ family of materials (Asahi), the STEREON™ family of materials (Firestone Synthetic Rubber & Latex Co.), the EUROPRENE SOL T™ family of materials (Enichem), the VECTOR™ family of materials (Dexco Polymers), and the CARIFLEX TR™ family of materials (Shell Chemical Co.). Other suitable adhesive materials include highly crosslinked acrylic adhesives, silicone polyurea elastomers such as are described in U.S. Patent No. 5,670,598 (Leir et al.), the SEPTON™ family of materials (Kuraray Co. Ltd.) and the KRATON™ family of materials (Shell Chemical Co.) such as K-RATON D-1101, D-1102, D-1107, D-l l l l, D-1112, D-1113, D-1114PX,
D-1116, D-1117, D-1118, D-1119, D-1122X, D-1124, D-1125PX, D-1160, D-1165, D- 1161, D-1184, D-1193, D-1300, D-1320X, D-4141, D-4158, D-4433, RP-6485, RP-6409, RP-6614, RP-6906, RP-6912, G-1650, G-1651, G-1652, G-1654, G-1657, G-1701, G- 1702, G-1726, G-1730, G-1750, G-1765, G-1780, FG-1901, FG-1921, FG-1924, and TKG- 101. Mixtures of adhesive materials can also be used.
The adhesive (or a liner that protects the adhesive from contamination and bears against the adhesive) can optionally be microtextured to provide air bleeding and easy handling features (as described, for example, in U.S. Patent No. 6,197,397). Typically the adhesive layer of a single sheet or the lowermost layer of a stack of sheets will be covered by a liner. If the adhesive is a tacky adhesive, then the liner preferably has a release coating on the side facing the adhesive, such as a silicone release coating. If the adhesive has low tack or is non-tacky, then a liner made of plain paper or other low surface energy material without a release coating may suffice.
The sheets can be converted (using techniques that will be familiar to those skilled in the art) so that they will fit the information display area of a desired information display device. Suitable conversion techniques include die cutting, slitting and laser cutting.
The present invention will now be further described with reference to the following Examples. Unless otherwise indicated, all parts and percentages are by weight. The following evaluation methods were employed:
Ink Repellency Using a black SHARPIE™ fine point permanent marker (Sanford Corp.), a fine line approximately 3 cm long was drawn from an area not coated with the antisoiling layer onto an area coated with the antisoiling layer. A number value of 0 (completely wettable) to 6 (completely unwettable) was assigned based on the appearance of the resulting line, using the rating chart shown in Fig. 9. Higher numerical values thus represent superior antisoiling performance. Pencil Hardness
A series of pencils of increasing hardness values ranging from 6B - IB, HB, F, through 1H - 9H were fastened in a handheld rolling test stand under a 1 kg applied load and rolled 3 or 5 times across the coated substrates for each tested pencil hardness. The coatings were rated based on the highest pencil hardness that did not scratch or dent the coating. The assigned rating was based on the highest 2 out of three passes when 3 passes were employed and for the highest 3 out of 5 passes when 5 passes were employed. Higher pencil hardness values thus indicate superior film hardness. Desirably a coating should have better than a 3H rating.
Durability
A 2 Kg weight wrapped with dry cheesecloth or a 200g weight wrapped with Grade 0000 steel wool was rubbed several times back and forth across the coated substrate. Periodically, the rubbing was halted and an attempt was made to write on the rubbed surface using the above-described SHARPIE marker. The assigned durability rating was based on the maximum number of rub cycles for which the ink beaded up and could be wiped off with a dry soft tissue without leaving an ink residue. For some coatings where very high numbers of rub cycles could be performed, rubbing was stopped after many rubs (e.g., 200) and the durability rating was noted as being greater than the number of rubs at which the test was stopped. Desirably a coating should have better than a 40 rub cycle cheesecloth durability rating and better than a 60 rub cycle steel wool durability rating.
Tape Adhesion
Adhesion of the coating layers to the substrate was evaluated by crosshatching the coating with a sharp knife and applying and removing a tape strip to the crosshatched coating, according to ASTM Test Method D3359-97. The amount of coating removed was evaluated using the 5-point scale set out in the Test Method. Peel adhesion was evaluated according to ASTM Test Method D-3330, using an IMASS™ Model SP-2000 peel tester (Imass Inc.) operated at a 2.3 m/min. peel rate (Method A, 180° peel). Optical Properties
Reflectance was evaluated using an MPC 3100 spectrophotometer (Shimadzu Scientific Instruments. The film sample was adhered to a glass slide whose backside had been coated with black tape. Total reflection and first surface reflection measurements were made and recorded as the.percent of incident illumination. Average visible photopic light transmittance, haze and clarity were evaluated using a HAZE-GARD PLUS™ tester (Byk Gardner, Inc.). Gloss was evaluated at 20, 60 or 85 degrees using a MICRO-TRI- GLOSS™ meter (Byk Gardner, Inc.). Examples 1 - 24
A ceramer composition was prepared by first heating 51.5 Parts of the curable binder precursor PETA (pentaerythritol triacrylate) to approximately 49°C in a reaction vessel. 88 Parts of NALCO™ 2327 colloidal silica sol (a 40% solids, 20 nanometer average particle size silica sol, Nalco Corp.) were added to the PETA. The resulting mixture contained 32.4 parts of colloidal silica particles. 15.6 Parts DMA (N,N- dimethylacrylamide) were next added to the mixture. 0.15 Parts BHT (butylated hydroxytoluene) and 0.02 parts phenothiazine were mixed together and added to the mixture. The mixture was "stripped" by subjecting it to a gentle vacuum distillation (at 100 ± 20 mm Hg and 52° ± 2°C) until most of the liquid was removed. A few weight- percent of water remained in the dried product. The resulting dried ceramer precursor was diluted to 50% solids with a 14/1 isopropyl alcohol/distilled water mixture, then further diluted to 25% solids using the same alcohol/water mixture. 0.7 Parts IRGACURE™ 184 photoinitiator (Ciba Specialty Chemicals) were added to the diluted product to provide a photocurable ceramer composition. The ceramer composition was coated onto 0.04 mm PET film using a Meyer Rod or a gravure roller, at a coating weight sufficient to provide a dried coating thickness of about 3 to about 5 micrometers. The wet coating was dried at 70°C and cured using a UV
H lamp operated at an energy density of 10-60 mJ/cm.2 UVC and a nitrogen purge.
An antisoiling layer was applied to the cured hardcoat by dissolving a series of perfluoropolyethers in varying amounts of HFE-7100™ C4F9OCH3 hydrofluoroether solvent (3M) and coating the resulting solutions onto the cured hardcoat samples using a Meyer Rod at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers. The wet coating was dried at 70°C and cured using a UN H lamp operated at an energy density of 5 mJ/cm^ TJNC under a nitrogen purge.
Three control compositions and 24 formulations were prepared and evaluated. Set out below in Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the perfluoropolyether, photoinitiator (if any) and adjuvants (if any); and the amount of HFE solvent employed. Set out below in Table 2 are the observed Ink Repellency, Pencil Hardness, and Durability results, and an evaluation of the appearance of the coated Controls and Examples. An entry of "ΝD" indicates that a value was not determined.
Figure imgf000025_0001
p
Figure imgf000025_0002
A.
p pαι-ήwι^wwp-ι
Figure imgf000025_0004
'-; 'o-io; ro. rto. 'o- 'o-ι ιo
Figure imgf000025_0003
Έ «β
P--
Figure imgf000025_0005
Control or Ceramer Parts of Perfluoropolyether Parts of Photoinitiator Parts of Adjuvant Example No. coating method (PFPE) in PFPE in PFPE Parts of Solvent
20 Gravure 0.1 PFPE-E 0.004 D-1173 0.05 K1514 40 HFE 21 Gravure 0.1 PFPE-E/ 0.004 D-1173 40 HFE 0.05 PFPE-D
22 Gravure 0.1 PFPE-E/ 0.004 D-1173 40 HFE 0.05 PFPE-A
23 Gravure 0.1 PFPE-E/ 0.004 D-1173 40 HFE 0.05 PFPE-G6
24 Gravure 0.1 PFPE-H7 0.004 D-1173 40 HFE
Notes:
1. PFPE-A is (C2H5θ)2CH3SiC3H6NHCO(CF2θ)ι5(C2F4θ)13CF2CONHC3H6SiCH3(OC2H'5)2.
2. PFPE-B is (C2H5θ)3SiC3H6NHCO(CF2θ)15(C2F4θ)13CF2CONHC3H6Si(OC2H5)3. t
-- 3. PFPE-C is KRYTOX™ 1514 perfluoroether fluid F(CF(CF3)CF2O)25CF2CF3 (E.I. DuPont de Nemours & Co.).
4. PFPE-D is C4H9NHCO(CF2θ)15(C2F4θ)13CF2CONHC4H9. .
5. PFPE-E is CH2=CHCOOC2H4NHCO(CF2θ)15(C2F4θ)13CF2CONHC2H4θOCCH=CH2.
6. PFPE-F is CH2=CHCOOCH2(CF2θ)15(C2F4O)ι3CF2CH2θOCCH=CH2.
7. PFPE-G is (HOCH2)2CH2NHCO(CF2θ)15(C2F4θ)ι3CF2CONHCH2(CH2θH)2.
8. PFPE-H is:.
OOCCH=CH2 OOCCH=CH2
H2C=HCCOO CH2CHCH2NHCO(CF2θ)15(CF2CF20)13CF2CONHCH2CHCH2-OOCCH=CH2
9. R2074 is RHODORSIL™ 2074 diaryliodonium tetrakis(pentafluorophenylborate) from Rodia.
10. DEAP is 2,2-diethoxyacetophenone.
11. D-1173 is DAROCURE™ 1173 2-hydroxy-2-methyl-l-phenyl-propan-l-one from Ciba Specialty Chemicals. 12. 1-184 is IRGACURE™ 184 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals).
13. A-174 is A- 174 gamma-methacryloxypropyl trimethoxysilane (Union Carbide Corp.).
14. HFE is HFE-7100™ C4F9OCH3 hydrofluoroether solvent (3M).
Table 2
Example Ink Durability, Durability,
No. Repellency Hardness Clarity Cheesecloth Steel Wool
Control A None HB Clear None None
Control B None N Clear None None
Control C 4 ND Clear None None
1 5 ND Clear 2 7
2 5 ND Clear 5 12
3 5 ND Clear 6 14
4 4 ND Clear 60 100
5 5 ND Clear 15 40
6 4 ND Clear 10 30
7 4 ND S. Haze 15 60
8 5 >3H Clear 250 1400
9 5 >3H Clear 200 600
10 2 ND Haze ND ND
11 5 ND Clear 300 450
12 5 ND Clear 200 300
13 5 ND Clear 300 450
14 5 >3H Clear 250 500
15 5 ND Clear >100 >500
16 5 ND Clear 250 500
17 4 ND Clear 100 350
18 1 ND Clear ND ND
19 4 ND Clear 250 800
20 4 ND S. Haze >100 >300
21 5 ND Clear >100 >600
22 4 ND S. Haze 100 200
23 4 ND Clear 300 >600
24 4 ND Clear 100 200
Especially good results were obtained using ethylenically unsaturated perfluoropolyethers. Although the antisoiling layers were very thin, they formed coatings having very good and very durable ink repellency.
The film of Example 14 was evaluated to determine the average visible photopic light transmittance through the film. The measured transmittance was 93.8%, which is approximately the transmittance (94.5%) of a 0.13mm thick sample of uncoated PET film.
Examples 25 - 32
Using the method of Examples 1 - 24, display elements were prepared by dissolving varying amounts PFPE-F in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers. Half of the examples included IRGACURE 184 photoinitiator and half employed no photoinitiator. The wet coatings were dried at 70°C and cured using a UN H lamp operated at an energy density of 35 m-T/cm^ UNC under a nitrogen purge. Set out below in Table 3 is the amount of perfluoropolyether and photoinitiator for each example, and the observed Durability results.
Table 3
Example Photoinitiator, Durability, Durability,
No. PFPE-F, % % Cheesecloth Steel Wool
25 0.25 None 200 600
26 0.50 None 250 1400
27 1 None 400 1000
28 2 None 300 2000
29 0.25 4 20 60
30 0.50 4 300 1000
31 1 4 300 1800
32 2 4 400 2500
The results shown in Table 3 demonstrate very good durability.
Examples 33 - 37
Using the method of Examples 1 - 24, display elements were prepared by dissolving a variety of perfluoropolyethers and 0.01% RHODORSIL 2074 photoinitiator in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.08 micrometers. The wet coatings were dried at 70°C and cured using a UN H lamp operated at an energy density of 12 mJ/cm^ UVC under a nitrogen purge. Set out below in Table 4 is the identity of the perfluoropolyether and the observed Durability results for each example. Table 4
Example Durability, Durability, Steel
No. Perfluoropolyether Cheesecloth Wool
33 PFPE-ll 15 50
34 PFPE-J2 6 8
35 PFPE-K3 30 15
36 PFPE-L4 2 12
37 PFPE-M5 8 19
1. PFPE-I is (C2H5θ)3Si(CH2)3 HCO(CF2CF2θ)8CF2CONH(CH2)3Si(OC2H5)3. 2. PFPE-J is
(C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2θ)8CF2CONH(CH2)3SiCH3(OC2H5)2.
3. PFPE-K is (C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2θ)14CF2CONH(CH2)3SiCH3(OC2H5)2.
4. PFPE-L is (C2H50)3Si(CH2)3NHCO(CF2C(CF3)FO)12CF2CONH(CH2)3Si(OC2H5)3. 5. PFPE-M is
(C2H5θ)2CH3Si(CH2)3NHCO(CF2C(CF3)FO)12CF2CONH(CH2)3SiCH3(OC2H5)2.
The results shown in Table 4 demonstrate the use of a variety of perfluoropolyethers, . applied at a very low coating thickness.
Example 38
Using a first vessel placed in an ice bath, one part BAYTRON™ P poly(3,4- ethylene dioxythiophene) poly(styrenesulfonate) conductive polymer solution (Bayer Corp.) was added to the vessel followed by the slow addition of 6.5 parts N,N- dimethylacetamide with mixing. In a second vessel, the stripped, dried ceramer precursor of Examples 1 - 24 was diluted to 65% solids with a 14:1 isopropyl alcohol/distilled water mixture, and 3.1 parts of the resulting diluted composition was combined with 0.05 parts 2,4,6-trimethylbenzoyldiphenylphosphineoxide photoinitiator. The mixture in the second vessel was then slowly added to the chilled mixture in the first vessel with stirring. The resulting ceramer composition contained 17% solids. It was further diluted with a 72/9/19 isopropyl alcohol/ethanol/n-butyl alcohol solvent mixture to three different solids levels as set out below in Table 5: Table 5
Ceramer Ceramer Solvent Mixture % Solic
Solution No.
1 50 parts 50 parts 8.5
2 85 parts 15 parts 14.45
3 80 parts 20 parts 13.6
Using the method of Examples 1 - 24 and a No. 18 Meyer rod, each of the ceramer solutions was coated onto 0.13 mm thick PET film. The coated PET substrate was dried at
93 °C for 3 minutes, then cured by passing the coatings twice under UV D lamps operated at an energy density of 400-600 mJ/cm2 UVA. The dried ceramer coating thickness was 1 to 2 micrometers. Some samples coated with Ceramer Solution Nos. 2 or 3 were given a second coat and again cured, resulting in a dried ceramer coating thickness of 2 to 4 micrometers. The ceramer-coated samples were next coated with a perfluoropolyether antisoiling coating solution prepared from 1 part PFPE-F
(CH2=CHCOOCH2(CF2O)15(C2F4O)i3CF2CH2OOCCH=CH2), 0.04 parts IRGACURE 184 photoinitiator, 93 parts HFE-7100 solvent and 23 parts methyl ethyl ketone solvent. The perfluoropolyether solution was applied at a coating weight sufficient to give a dried antisoiling coat thickness of about 0.05 to 0.1 micrometers. Using the method of
Examples 1 - 24, the antisoiling coats were dried and cured under UV H lamps operated at an energy density of 10-60 mJ/cm.2 UVC. Set out below in Table 6 are the ceramer solution numbers, the number of coats of ceramer solution, the ceramer coat thickness, and the conductivity, ink repellency and tape adhesion values for the coated substrates:
Table 6
Ceramer No. of Ceramer
Solution Ceramer Thickness, Ink Tape
No. Coats micrometers Conductivity Repellency Adhesion
1 1 l to 2 1 x 1012 5 5
2 1 l to 2 1.5 x lO10 5 5
2 2 2 to 4 7 l09 5 4
3 1 l to 2 4 x l010 5 5
3 2 2 to 4 1.5 lO10 5 4 Example 39
A 3 -necked reaction vessel was fitted with a vacuum distillation head and condenser, mechanical stirrer, heating mantle, and thermocouple for controlling the heating. The vessel was charged with 6,718 parts NALCO™ 1042 acidic aqueous sol (pH 3.5 sol from ONDEO Nalco Co., containing 34% of 20 nanometer average diameter silica particles), 1,122 parts hydroxyethyl acrylate, 562 parts 3-(trimethoxysilyl)propyl methacrylate, 2 parts butylated hydroxytoluene, and 0.2 parts phenothiazine. The contents were stirred at room temperature for 1 hour, then heated to 55° C. over about 45 min. The pressure in the vessel was slowly reduced using a vacuum pump to remove volatiles without causing undue foaming. As the foaming subsided, full pump vacuum was applied until nearly all volatiles were removed. This required about 6 to 7 hours of distillation. The vacuum was relieved and then 792 parts SR 444 pentaerythritol triacrylate (Sartomer, Inc.) were added to the vessel. Full pump vacuum was re-applied and the remaining volatiles were removed. When distillation was complete, the contents of the vessel were filtered through fine-mesh cheesecloth to provide a 100%) solids solvent-free ceramer hardcoat.
Three chrome-plated metal rolls were roughened using bead-blasting to mean surface roughness (Ra) values of 0.36, 0.44 and 0.57 micrometers, respectively. In a series of runs using one of the roughened metal rolls and a film of 0.05 mm thick polyethylene terephthalate (PET) or 0.13 mm thick polymethyl methacrylate (PMMA), roughened coatings were applied to the films using the above-described solvent-free ceramer hardcoat composition. The roughened coatings were formed by depositing the curable ceramer composition into the nip region between the film and the metal roll, applying pressure to the nip, moving the roll at a speed sufficient to form a bead of the ceramer composition in the nip and curing the ceramer composition through the film using
UV D lamps (Fusion Systems, Inc.) operated at an energy density of about 400 mJ/cm.2 UVA. The cured ceramer coating and film were pulled away from the roll. The surface of the cured ceramer coating replicated the roughened roll surface. Using the method of Example 27, a curable antisoiling layer containing 1% PFPE-F perfluoropolyether in HFE- 7100 solvent was applied to and cured on the cured ceramer coating using UV H lamps operated at an energy density of 15 mJ/cm2 UVC. The backsides of the coated films were coated with a 35% solution of KRATON™ D-l 107 elastomer in toluene, using a fluid bearing die equipped with a 5 micrometer filter, to provide a non-tacky, void-free adhesive coating having a thickness of 0.03 mm.
The coated films were evaluated for reflectance, transmission, haze, clarity, gloss, ink repellency and durability. For comparison, a typical commercially available PDA screen protector (WrightRIGHT™ PDA Screen Protector, Fellowes Corporation) was similarly evaluated. The results are set out below in Table 7.
Table 7
Figure imgf000033_0001
WrightRIGHT™ PDA Screen Protector, Fellowes Corporation. ND= Not determined.
The adhesive-coated side of the coated PET films was pressed against a plain paper liner, and the films were then die-cut to a rectangular shape to form custom screen protectors sized to fit just inside the perimeter of the screen of a PALM™ Vx PDA (Palm
Computing Corp.) like the PDA shown in Fig. 6. The screen protectors covered nearly the entire screen, leaving a small uncovered area between the curved bottom edge of the screen and the chord extending between the endpoints of the bottom edge. The screen protectors were also hand-trimmed to fit just inside the perimeter of the screen of an IPAQ™ color PDA (Compaq Corp.) like the PDA shown in Fig. 4. The screen protector was removed from the liner and pressed into place over the screen of the PDA, using the edge of a credit card to assist in removing air bubbles from under the film. The film provided substantial indoor and outdoor glare reduction without unduly reducing visibility through the PDA screen. When the screen protector of the invention was not present, light reflections made it difficult to read the screen at some angles. The matte finish on the screen protector made it easier to write on the screen using the PDA stylus, because the stylus point had a reduced tendency to skid across the screen. A pen or pencil could also be used to write on the PDA screen protector. A small amount of ink or graphite transferred to the screen protector, but was readily removed using a tissue without leaving any observable damage on the screen protector surface. In contrast, if a pen or pencil is used to write directly on the unprotected PDA screen, the screen typically will be permanently damaged.
Example 40 Using standard pad-making equipment, five layers of the adhesive-coated sheet of
Example 39 were laminated directly atop one another. The lowermost sheet Was laminated to a plain paper liner, and the resulting stacks were die-cut to shape to form pads. The pads were sized to fit just inside the perimeter of the screen of a PALM™ Vx PDA (Palm Computing Corp.) as in Example 39. The liner was removed from the pad and the pad was adhered to the inside front cover of the PDA. The uppermost screen protector was removed from a pad and pressed into place over the screen of the PDA, using the edge of a credit card as in Example 39. The screen protector provided the same advantages as in Example 39, and additional screen protectors could be carried with the PDA so that spares would readily be available.
Example 41
In a series of runs, the backside of the coated film of Example 27 was coated using a knife coater with two different adhesives and dried at 70°C for 15 minutes. The resulting adhesive-coated samples were applied to glass for varying dwell periods and then evaluated for 180° peel adhesion. Set out below in Table 8 is the run number, adhesive identity, dry adhesive thickness and the measured peel adhesion values.
Table 8
Adhesive 180c Peel Strength, g/mm of width Thickness 12 hours, 72 hours, 170 hours,
Run No. Adhesive , mm Initial 25°C 70°C 70°C
1 RD-9751 0.03 58 80 110 103
2 RD-975 0.05 74 104 132 127
2 RD-975 0.08 86 117 126 129
3 11072 0.05 6 18 19 14
3 1107 0.08 28 41 39 31
1 RD-975 acrylic adhesive (3M).
2 28% solution of KRATON™ 1107 elastomer (Shell Chemical Co.) in toluene.
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. This invention should not be restricted to that set forth herein for illustrative purposes only.

Claims

Claims:
1. A display element comprising a substantially transparent substrate, a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix, and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
2. An element according to claim 1 wherein the hardcoat comprises colloidal inorganic oxide particles dispersed in a free-radically cured binder.
3. An element according to claim 2 wherein the colloidal inorganic oxide particles comprise colloidal silica particles.
4. An element according to claim 1 wherein the binder is derived from one or more copolymerizable free-radically curable monomers, oligomers, polymers or combinations thereof.
5. An element according to claim 1 wherein the binder comprises a conductive polymer.
6. An element according to claim 1 wherein the antisoiling layer is derived from a perfluoropolyether having the formula:
Y-(CaF2aO)b-CaF2a-Y wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2aO — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
7. An element according to claim 1 wherein the perfluoropolyether comprises at least one of: (C2H5θ)2CH3SiC3H6 HCO(CF2θ)15(C2F4θ)13CF2CONHC3H6SiCH3(OC2H5)2,
(C2H5θ)3SiC3H6NHCO(CF2θ)15(C2F4O)13CF2CONHC3H6Si(OC2H5)3, F(CF(CF3)CF2O)25CF2CF3, C4H9NHCO(CF2θ)15(C2F4θ)ι3CF2CONHC4H9,
CH2=CHCOOC2H4NHCO(CF2θ)15(C2F4θ)ι3CF2CONHC2H4θOCCH=CH2, CH2=CHCOOCH2(CF2θ)15(C2F4θ)i3CF2CH2θOCCH=CH2, (HOCH2)2CH2NHCO(CF2θ)15(C2F4θ)13CF2CONHCH2(CH2θH)25 (C2H5O)3 Si(CH2)3NHCO(CF2CF2O)8CF2CONH(CH2)3 Si(OC2H5)35
(C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2O)8CF2CONH(CH2)3SiCH3(OC2H5)25 (C2H50)2CH3Si(CH2)3NHCO(CF2CF20)14CF2CONH(CH2)3SiCH3(OC2H5)2, (C2H5O)3Si(CH2)3NHCO(CF2C(CF3)FO)i2CF2CONH(CH2)3Si(OC2H5)35 (C2H5O)2CH3Si(CH2)3NHCO(CF2C(CF3)FO)12CF2CO H(CH2)3SiCH3(OC2H5)2, or.
OOCCH=CH2 OOCCH=CH
I I
H2C=HCCOO CH2CHCH2NHCO(CF20)15(CF2CF2O)13CF2C0NHCH2CHCH2-OOCCH=CH2
8. An element according to claim 1 wherein the hardcoat layer has a thickness of from about 1 micrometer to about 100 micrometers and the antisoiling layer has a thickness of about 0.005 to about 2 micrometers.
9. An element according to claim 1 further comprising a substantially transparent adhesive layer.
10. An element according to claim 9 wherein the adhesive is non-tacky with respect to skin.
11. An element according to claim 1 wherein the substrate has two major sides with the hardcoat and the antisoiling layer on one such side and an adhesive layer on the other such side.
12. An element according to claim 1 further comprising a personal digital assistant, cell phone, touch-sensitive screen, wrist watch, car navigation system, global positioning system, depth finder, calculator, electronic book, CD player, DVD player, projection television screen, computer monitor, notebook computer display or instrument gauge.
13. A screen protector for an information display, comprising a flexible substantially transparent generally planar substrate having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
14. A screen protector according to claim 13 wherein the antisoiling layer is derived from a perfluoropolyether having the formula:
Y-(CaF2aO)b-CaF2a-Y wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2aO — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
15. A screen protector according to claim 13 having a roughened surface on the hardcoat side of the screen protector.
16. Screen protectors for a portable electronic device having a display screen, comprising a stack of flexible substantially transparent sheets, the sheets having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat, the stack being cut so that the sheets will fit the display screen.
17. Screen protectors according to claim 16 wherein the stack is adhered to a personal digital assistant or to a personal digital assistant cover or case.
18. Screen protectors according to claim 16 wherein the adhesive is non-tacky with respect to skin and the screen protector has a roughened surface on the hardcoat side of the screen protector.
19. An antisoiling hardcoated film, comprising a flexible generally planar substrate having on at least one side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and an antisoiling layer comprising a perfluoropolyether atop the hardcoat.
20. A film according to claim 19 wherein the perfluoropolyether comprises at least one of: (C2H5θ)2CH3SiC3H6NHCO(CF20)15(C2F4θ)ι3CF2CONHC3H6SiCH3(OC2H5)2,
(C2H5θ)3SiC3H6NHCO(CF2θ)ι5(C2F4θ)ι3CF2CONHC3H6Si(OC2H5)3, F(CF(CF3)CF2O)25CF2CF3, C4H9 HCO(CF2θ)15(C2F4θ)ι3CF2CO HC4H9, CH2=CHCOOC2H4NHCO(CF2θ)15(C2F4O)i3CF2CONHC2H4θOCCH=CH2, CH2=CHCOOCH2(CF2θ)15(C2F4θ)ι3CF2CH2θOCCH=CH2, (HOCH2)2CH2NHCO(CF2θ)ι5(C2F4O)ι3CF2CONHCH2(CH2θH)2,
(C2H5O)3Si(CH2)3NHCO(CF2CF2O)8CF2CONH(CH2)3Si(OC2H5)35 (C2H5θ)2CH3Si(CH2)3NHCO(CF2CF2θ)8CF2CONH(CH2)3SiCH3(OC2H5)25 (C2H5θ)2CH3Si(CH2)3NHCO(CF2CF20)14CF2CONH(CH2)3SiCH3(OC2H5)2, (C2H5O)3Si(CH2)3NHCO(CF2C(CF3)FO)i2CF2CONH(CH2)3Si(OC2H5)35 (C2H50)2CH3Si(CH2)3 HCO(CF2C(CF3)FO)12CF2CONH(CH2)3SiCH3(OC2H5)2, or
OOCCH=C-i> OOCCH=CI-t
H2C=HCCOO CH2CHCH2NHCO(CF20)(CF2CF20)CF2CONHCH2CHCH2 OOCCH=CH,
21. A method for making an antisoiling hardcoat comprising coating and curing on a substrate a ceramer coating comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, and coating and curing atop the ceramer coating an antisoiling layer comprising a free-radically polymerizable fluorochemical.
22. A method for making a display element comprising applying to a substantially transparent substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer.
23. A method according to claim 22 wherein the perfluoropolyether has the formula:
Y-(CaF2aO)b-CaF2a-Y wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2aO — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
24. A method according to claim 22 wherein the substrate has first and second major surfaces with the hardcoat being applied to the first major surface, and further comprising applying an adhesive to the second major surface.
25. A method for making a screen protector for an information display, comprising: a) applying to one side of a substantially transparent generally planar substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer; and b) applying to the other side of the substrate an adhesive layer.
26. A method according to claim 25 wherein the perfluoropolyether has the formula:
Y-(CaF2aO)b-CaF2a-Y
wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2aO — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
27. A method for making screen protectors for portable electronic devices having a display screen, comprising: a) applying to one side of a substantially transparent generally planar substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free-radically polymerizable binder matrix, curing the hardcoat layer, applying to the hardcoat layer a curable antisoiling layer comprising a perfluoropolyether, and curing the antisoiling layer; b) applying to the other side of the substrate an adhesive layer; c) forming the coated substrate into a stack of sheets; and ) cutting the stack so that the sheets will fit the display screen.
28. A method according to claim 27 wherein the perfluoropolyether has the formula:
Y-(CaF2aO)b-CaF2a-Y wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — CaF2 O — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
29. A continuous, roll to roll manufacturing method for making a roughened screen protector sheet for information displays, comprising: a) depositing a substantially solvent-free, curable ceramer composition comprising inorganic oxide particles dispersed in a free- radically polymerizable binder matrix into the nip region between a substantially transparent substrate and a roll having an average surface roughness of at least 0.1 micrometer; b) moving the roll at a sufficient speed and while applying sufficient pressure to the nip to form a bead of the ceramer composition in the nip; c) curing the ceramer composition through the substrate (using, e.g., ultraviolet radiation) while the ceramer composition is against the roll; d) removing the cured ceramer coating from the roll; e) applying to the cured ceramer coating a curable antisoiling layer comprising a perfluoropolyether; and f) curing the antisoiling layer.
30. A method according to claim 29, further comprising converting the coated substrate into sheets sized to fit an electronic display device screen.
31. A method according to claim 30, wherein the device comprises a portable device.
32. A method according to claim 30, wherein the device comprises a personal digital assistant.
33. A method according to claim 29, wherein the sheets are formed into a stack.
PCT/US2001/024923 2000-08-07 2001-08-07 Antisoiling hardcoat WO2002012404A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU8120201A AU8120201A (en) 2000-08-07 2001-08-07 Antisoiling hardcoat
EP01959673A EP1312104A2 (en) 2000-08-07 2001-08-07 Antisoiling hardcoat
JP2002517698A JP2004511001A (en) 2000-08-07 2001-08-07 Antifouling hard coat
KR1020037001711A KR100790051B1 (en) 2000-08-07 2001-08-07 Antisoiling Hardcoat
AU2001281202A AU2001281202B2 (en) 2000-08-07 2001-08-07 Antisoiling hardcoat

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/633,835 US6589650B1 (en) 2000-08-07 2000-08-07 Microscope cover slip materials
US09/633,835 2000-08-07
USPCT/US01/00996 2001-01-11
PCT/US2001/000996 WO2002012857A1 (en) 2000-08-07 2001-01-11 Microscope cover slip materials

Publications (2)

Publication Number Publication Date
WO2002012404A2 true WO2002012404A2 (en) 2002-02-14
WO2002012404A3 WO2002012404A3 (en) 2002-04-04

Family

ID=26680399

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2001/024923 WO2002012404A2 (en) 2000-08-07 2001-08-07 Antisoiling hardcoat
PCT/US2001/024726 WO2002013224A2 (en) 2000-08-07 2001-08-07 Information display protectors

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2001/024726 WO2002013224A2 (en) 2000-08-07 2001-08-07 Information display protectors

Country Status (2)

Country Link
AU (4) AU2001281202B2 (en)
WO (2) WO2002012404A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099479A2 (en) * 2001-02-02 2002-12-12 3M Innovative Properties Company Optical filter and filter for touch panel type display
FR2848563A1 (en) * 2002-12-16 2004-06-18 Rhodia Chimie Sa A cationically crosslinkable hard coating for spectacle lenses comprising non- functionalized colloidal silica with durable combined anti-misting, and soiling and anti-scratch properties
WO2004111138A1 (en) * 2003-06-14 2004-12-23 Kyung Won Jung Hard-coating composition
EP1524287A1 (en) * 2003-10-03 2005-04-20 Solvay Solexis S.p.A. Perfluoropolyethers
WO2005113642A1 (en) * 2004-05-07 2005-12-01 3M Innovative Properties Company Perfluoropolyether containing acrylat groups
WO2006058910A1 (en) * 2004-12-02 2006-06-08 Tesa Ag Double-sided adhesive tapes for producing lc displays having light-reflecting and absorbing properties
US7288619B2 (en) 2004-05-07 2007-10-30 3M Innovative Properties Company Fluorinated polyether polyamine and method of making the same
US7388646B2 (en) 2003-10-03 2008-06-17 Solvay Solexis S.P.A. Perfluoropolyethers
WO2009005970A1 (en) * 2007-06-29 2009-01-08 3M Innovative Properties Company Hardcoat layers on release liners
EP2042578A1 (en) * 2007-09-20 2009-04-01 Tesa AG Transparent adhesive tape
EP2444430A4 (en) * 2009-06-16 2015-06-03 Mitsubishi Rayon Co Anti-soiling composition, anti-soiling film, anti-soiling laminated film, transfer film, and resin laminate, and method for manufacturing resin laminate
US9994676B2 (en) 2014-06-23 2018-06-12 3M Innovative Properties Company Silicon-containing polymer and method of making a silicon-containing polymer
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
US20200172689A1 (en) * 2017-09-15 2020-06-04 Lg Chem, Ltd. Hard coating film
WO2020240447A1 (en) 2019-05-31 2020-12-03 3M Innovative Properties Company Composite cooling film and article including the same
WO2020240366A1 (en) 2019-05-31 2020-12-03 3M Innovative Properties Company Composite cooling film and article including the same
US11634613B2 (en) 2019-12-19 2023-04-25 3M Innovative Properties Company Composite cooling film comprising an organic polymeric layer, a UV-absorbing layer, and a reflective metal layer
US11654664B2 (en) 2020-01-16 2023-05-23 3M Innovative Properties Company Composite cooling film comprising a reflective nonporous organic polymeric layer and a UV-protective layer
WO2023203390A1 (en) 2022-04-19 2023-10-26 3M Innovative Properties Company Broadband reflectors including polymeric layers, and composite cooling systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589650B1 (en) * 2000-08-07 2003-07-08 3M Innovative Properties Company Microscope cover slip materials
KR100630321B1 (en) 2003-07-18 2006-09-29 미쓰이 가가쿠 가부시키가이샤 Laminate and uses thereof
JP4590849B2 (en) * 2003-10-03 2010-12-01 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP4779293B2 (en) 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP4784723B2 (en) * 2003-12-24 2011-10-05 Tdk株式会社 Hard coating agent composition and optical information medium using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278060A2 (en) * 1987-02-13 1988-08-17 Toray Industries, Inc. Anti-reflection optical article and process of producing the same
US5104929A (en) * 1988-04-11 1992-04-14 Minnesota Mining And Manufacturing Company Abrasion resistant coatings comprising silicon dioxide dispersions
EP0797111A2 (en) * 1996-03-21 1997-09-24 Sony Corporation Composition for forming an antifouling film, optical component and display device
WO1999037720A1 (en) * 1998-01-27 1999-07-29 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
WO1999057375A1 (en) * 1998-05-04 1999-11-11 3M Innovative Properties Company Retroreflective articles including a cured ceramer composite coating having abrasion and stain resistant characteristics
WO1999064899A1 (en) * 1998-06-10 1999-12-16 Cpfilms Inc. Low reflective films

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259272A (en) * 1991-09-06 1993-03-10 James John Mcdaid Vehicle accessory
US5633049A (en) * 1995-04-20 1997-05-27 Minnesota Mining And Manufacturing Company Method of making protective coating for thermoplastic transparencies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278060A2 (en) * 1987-02-13 1988-08-17 Toray Industries, Inc. Anti-reflection optical article and process of producing the same
US5104929A (en) * 1988-04-11 1992-04-14 Minnesota Mining And Manufacturing Company Abrasion resistant coatings comprising silicon dioxide dispersions
EP0797111A2 (en) * 1996-03-21 1997-09-24 Sony Corporation Composition for forming an antifouling film, optical component and display device
WO1999037720A1 (en) * 1998-01-27 1999-07-29 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
WO1999057375A1 (en) * 1998-05-04 1999-11-11 3M Innovative Properties Company Retroreflective articles including a cured ceramer composite coating having abrasion and stain resistant characteristics
WO1999064899A1 (en) * 1998-06-10 1999-12-16 Cpfilms Inc. Low reflective films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1312104A2 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099479A3 (en) * 2001-02-02 2003-05-15 3M Innovative Properties Co Optical filter and filter for touch panel type display
WO2002099479A2 (en) * 2001-02-02 2002-12-12 3M Innovative Properties Company Optical filter and filter for touch panel type display
FR2848563A1 (en) * 2002-12-16 2004-06-18 Rhodia Chimie Sa A cationically crosslinkable hard coating for spectacle lenses comprising non- functionalized colloidal silica with durable combined anti-misting, and soiling and anti-scratch properties
WO2004063300A1 (en) * 2002-12-16 2004-07-29 Rhodia Chimie Silicone composition for anti-mist and/or anti-fouling hard coating, based on colloidal silica, curable by cationic process
WO2004111138A1 (en) * 2003-06-14 2004-12-23 Kyung Won Jung Hard-coating composition
US7388646B2 (en) 2003-10-03 2008-06-17 Solvay Solexis S.P.A. Perfluoropolyethers
EP1524287A1 (en) * 2003-10-03 2005-04-20 Solvay Solexis S.p.A. Perfluoropolyethers
KR101143584B1 (en) * 2003-10-03 2012-05-24 솔베이 솔렉시스 에스.피.에이. Process for preparing perfluoropolyethers
US7214833B2 (en) 2003-10-03 2007-05-08 Solvay Solexis, S.P.A. Process for preparing perfluoropolyethers
WO2005113642A1 (en) * 2004-05-07 2005-12-01 3M Innovative Properties Company Perfluoropolyether containing acrylat groups
US7342080B2 (en) 2004-05-07 2008-03-11 3M Innovative Properties Company Polymerizable compositions, methods of making the same, and composite articles therefrom
US7288619B2 (en) 2004-05-07 2007-10-30 3M Innovative Properties Company Fluorinated polyether polyamine and method of making the same
WO2006058910A1 (en) * 2004-12-02 2006-06-08 Tesa Ag Double-sided adhesive tapes for producing lc displays having light-reflecting and absorbing properties
WO2009005970A1 (en) * 2007-06-29 2009-01-08 3M Innovative Properties Company Hardcoat layers on release liners
EP2042578A1 (en) * 2007-09-20 2009-04-01 Tesa AG Transparent adhesive tape
EP2444430A4 (en) * 2009-06-16 2015-06-03 Mitsubishi Rayon Co Anti-soiling composition, anti-soiling film, anti-soiling laminated film, transfer film, and resin laminate, and method for manufacturing resin laminate
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
US9994676B2 (en) 2014-06-23 2018-06-12 3M Innovative Properties Company Silicon-containing polymer and method of making a silicon-containing polymer
US20200172689A1 (en) * 2017-09-15 2020-06-04 Lg Chem, Ltd. Hard coating film
WO2020240447A1 (en) 2019-05-31 2020-12-03 3M Innovative Properties Company Composite cooling film and article including the same
WO2020240366A1 (en) 2019-05-31 2020-12-03 3M Innovative Properties Company Composite cooling film and article including the same
US11906252B2 (en) 2019-05-31 2024-02-20 3M Innovative Properties Company Composite cooling film and article including the same
US11634613B2 (en) 2019-12-19 2023-04-25 3M Innovative Properties Company Composite cooling film comprising an organic polymeric layer, a UV-absorbing layer, and a reflective metal layer
US11654664B2 (en) 2020-01-16 2023-05-23 3M Innovative Properties Company Composite cooling film comprising a reflective nonporous organic polymeric layer and a UV-protective layer
WO2023203390A1 (en) 2022-04-19 2023-10-26 3M Innovative Properties Company Broadband reflectors including polymeric layers, and composite cooling systems

Also Published As

Publication number Publication date
WO2002013224A2 (en) 2002-02-14
AU8114101A (en) 2002-02-18
AU2001281202B2 (en) 2006-07-27
AU8120201A (en) 2002-02-18
WO2002013224A3 (en) 2002-08-01
WO2002013224A8 (en) 2003-11-20
AU2001281141B2 (en) 2005-09-01
WO2002012404A3 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
US6841190B2 (en) Antisoiling hardcoat
AU2001281202B2 (en) Antisoiling hardcoat
AU2001281202A1 (en) Antisoiling hardcoat
AU2001281141A1 (en) Information display protectors
US7351470B2 (en) Removable antireflection film
US6800378B2 (en) Antireflection films for use with displays
JP6080154B2 (en) Fingerprint-resistant hard coat paint and parts / articles coated with the same
US7332217B2 (en) Article and comprising fluorochemical surface layer
JP2011201087A (en) Hard coat film for touch panel and touch panel
JP2007207091A (en) Surface material for pen input device
JP4178975B2 (en) Surface material for pen input device and pen input device
JP2006119772A (en) Surface material for pen input device
JP5324163B2 (en) Writing sheet
KR20080030695A (en) Information display protectors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 175/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 018137970

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002517698

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037001711

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001281202

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001959673

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001711

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001959673

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642