WO2002034345A2 - Wireless game control system - Google Patents

Wireless game control system Download PDF

Info

Publication number
WO2002034345A2
WO2002034345A2 PCT/CA2001/001486 CA0101486W WO0234345A2 WO 2002034345 A2 WO2002034345 A2 WO 2002034345A2 CA 0101486 W CA0101486 W CA 0101486W WO 0234345 A2 WO0234345 A2 WO 0234345A2
Authority
WO
WIPO (PCT)
Prior art keywords
controller
base
wireless signals
recited
controllers
Prior art date
Application number
PCT/CA2001/001486
Other languages
French (fr)
Other versions
WO2002034345A3 (en
Inventor
Jason Gosior
Colin Broughton
Louis Garner
Robert Erickson
John Sobota
Original Assignee
Eleven Engineering Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24797624&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002034345(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eleven Engineering Incorporated filed Critical Eleven Engineering Incorporated
Priority to AU2001295348A priority Critical patent/AU2001295348A1/en
Publication of WO2002034345A2 publication Critical patent/WO2002034345A2/en
Publication of WO2002034345A3 publication Critical patent/WO2002034345A3/en

Links

Classifications

    • A63F13/02
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/23Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
    • A63F13/235Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console using a wireless connection, e.g. infrared or piconet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/843Special adaptations for executing a specific game genre or game mode involving concurrently two or more players on the same game device, e.g. requiring the use of a plurality of controllers or of a specific view of game data for each player
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1025Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals details of the interface with the game device, e.g. USB version detection
    • A63F2300/1031Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals details of the interface with the game device, e.g. USB version detection using a wireless connection, e.g. Bluetooth, infrared connections
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/50Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
    • A63F2300/53Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers details of basic data processing
    • A63F2300/534Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers details of basic data processing for network load management, e.g. bandwidth optimization, latency reduction
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8088Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game involving concurrently several players in a non-networked game, e.g. on the same game console

Definitions

  • the invention relates to the field of handheld video game controllers and wireless data transmission between the controllers and an electronic game device. More particularly, the invention relates to a low power wireless system integrating digital, analog, radio frequency (RF) and firmware devices to transmit control and data packets between different game controller devices and electronic game devices.
  • RF radio frequency
  • Electronic game programs operate on various electronic game devices.
  • Electronic games use software and hardware devices to simulate game situations and experiences through visual, audio and mechanical stimuli. User interaction with these games is provided through a hand operated controller which permits the person to change the game direction or response and also to receive mechanical, audio or visual feedback from the game device.
  • Many electronic games are fast moving and draw the user into fast moving responses which integrate the person into the game.
  • Popular games require fast reflexive responses to the game situation and format and require the transmission of large data sets. Any interruption of such games is disruptive to the person's enjoyment and is highly undesirable.
  • United States Patent No. 5,451,053 to Garrido, (1995) described an electrical method for re-routing electric signals from a video game controller by a wired connection to a video game system. This system attempted to fit a fixed controller type to multiple games for a specific target video game system.
  • United States Patent No. 5,551,701 to Bouton et al. (1996) described a hard wire video game system with a fixed controller configuration wherein the functions of the controllers can be reconfigured to suit an individual user's preference.
  • United States Patent No. 5,396,267 to Bouton et al, (1995) described a wired controller for game system configuration.
  • United States Patent No. 6,071,194 to Sanderson et al., (2000) described a hard wired controller wherein controller functions could be reconfigured to suit an individual user's preference and to match the supported functions to target game applications.
  • Hard wired controllers are capable of reliable and fast signal communication, however such controllers require wires leading from the controller to the hardware. Wires present a tripping safety hazard and further limit the operating mobility of the user relative to the electronic game device.
  • IR controllers are conventionally used in remote control devices for televisions, stereos, and garage door openers.
  • DR. controllers are undesirable in game controlling operations because a moving person or pet can interrupt the communication link with the hardware.
  • the IR controller must be pointed directly at the hardware to maintain the communication link, and transmission is interruptable by movement of an excited operator during game play.
  • fluorescent lighting can interfere with IR transmission and the illuminated nature of IR controller light sources can interfere with other concurrent IR communications.
  • IR light can be modulated, the number of effective communication lines operable within a single room is limited.
  • United States Patent No. 4,531,740 to Green et al (1985) disclosed a remote controller system for a video computer game using RF transmission as a communication mechanism. The Green system was for a fixed, application specific controller and electronic game device configuration and did not provide for other uses.
  • United States Patent Number 5,806,849 to Rutkowski (1998) described a long range signal transmission system which depended on multiple channel transmission frequencies and used a single receiver to poll individual channels.
  • International Patent Number WO 99/59289 to Yamamoto et al. (1999) described a controller and game system where bidirectional signals are transmitted via a wired interface and where several wired controller types are supported.
  • Bluetooth Specification version l.OB an open standard promoted by the international Bluetooth Consortia, defines a short distance voice and data wireless data transfer system providing master/slave relationships, polling, frequency hopping and signaling.
  • the invention provides a modular architecture for a short range, radio frequency wireless system for operating an electronic game device.
  • the system comprises a base transceiver engaged with the game device, a controller for transmitting RF wireless signals to the base transceiver, wherein said controller has selected operating characteristics transmittable by the RF wireless signals, a microprocessor engaged with the base transceiver for receiving said RF wireless signals, wherein the microprocessor is capable of identifying the selected operating characteristics of the controller and of modifying the operation of the microprocessor in response to such selected operating characteristics.
  • the selected operating characteristics may be comprised of one or more of any operating characteristic or attribute ofthe controller transmittable by the RF wireless signals.
  • the selected operating characteristics may include one or more of the following: transmission channel center frequencies; transmission rate; modulation and encoding type; controller time slot timing and size allocation; polling interval or polling cycle; packet size, formats or types; frequency hopping sequence or cycling; and power level.
  • Figure 1 illustrates overall system components for an RF game control system.
  • Figure 2 illustrates the master-slave relationship of base transceivers to controllers.
  • Figure 3 illustrates a typical video game physical implementation.
  • Figure 4 illustrates a single RF port configuration and a multiple RF port configuration of the base transceiver.
  • Figure 5a illustrates a single one port base transceiver and single controller configuration.
  • Figure 5b illustrates a multiple one port base transceivers and multiple controller configuration.
  • Figure 6a illustrates a single multi-port base transceiver and RF multi-point communication link to multiple controllers.
  • Figure 6b illustrates multiple multi-port base transceivers and RF multi-point communication links to multiple controllers.
  • Figure 7 illustrates a multi-vendor multi-port base transceiver and multi- vendor controller configuration.
  • Figure 8 illustrates a single multi-port base transceiver with multiple controller types configuration.
  • Figure 9 illustrates a multi-vendor multi-port base transceiver with multi- vendor multiple controller types configuration.
  • Figure 10 illustrates a representative radio frequency system design.
  • Figure 11 illustrates the selection of radio frequency channels in radio frequency spectrum bands having sufficient spectral quality to support signal transmission.
  • Figure 12 illustrates a packet volley sequence between multiple base transceivers and multiple controllers.
  • Figure 13 illustrates a poll packet format for gaming applications.
  • Figure 14 illustrates a response packet format for gaming applications.
  • the invention provides a unique solution overcoming limitations of wireless
  • the invention provides a common framework to allow interoperation of multiple types of wireless controllers with multiple electronic game device types.
  • Each game controller can be designed once and reused across multiple electronic game devices, and the gaming user can use their "favorite" controller for multiple game devices.
  • the system architecture generally comprises hand operated game controller 10, base transceiver 12, and electronic game device 14.
  • Figure 1 illustrates an architecture for a game controller 10, such architecture is applicable to other utilizations including computers, communications systems, and other devices.
  • the system is arranged in a master-slave configuration, as shown in Figure 2, with base transceiver 12 acting as the master and controllers 10 acting as the slave.
  • a typical commercial video game system implementation is illustrated in Figure 3, wherein controller 10 is linked through RF transmission with base transceiver 12 and electronic game device 14.
  • Controller 10 includes bond key 16, program key 17, and link status light 18 as further described below.
  • Controller 10 comprises a portable, hand operable remote component linked to electronic game device 14 through a radio frequency (RF) wireless connection.
  • RF radio frequency
  • Controller 10 includes two subsystems defined as controller input/output subsystem 20 and controller RF module 22.
  • Controller input/output subsystem 20 comprises an interface between game device 14 and the user or an appended electronic device such as a game peripheral, plug-in expansion module, or data port to an electronic data device.
  • Controller input / output subsystem 20 can comprise electronic devices to support one or more of: (i) digital and analog game control input keys and joysticks; (ii) audio input and output devices (speakers, microphones); (iii) video input and output devices; (iv) touch, position, movement and other environmental sensors; (v) mechanical feedback devices such as vibrating motors; (vi) entertainment device control keys having various functions such as stop, play, pause, fast forward, reverse, TV, and VCR control functions; (vii) computer keyboards and touch pads with embedded processors; (viii) data interfaces; (ix) controller expansion modules; and (x) any number of similar interfaces for channeling environmental stimulus or input into the system and for providing feedback to the user or appended electronic device.
  • Controller RF module 22 manages the transmission of data between controller 10 and base transceiver 12. As a visual indicator of RF link status, controller RF module 22 contains a link-status light emitting diode ("LED") 18 used to show status information for a controller-to-base transceiver RF transmission channel.
  • LED link-status light emitting diode
  • Base transceiver 12 comprises a communication translation device.
  • Base transceiver 12 comprises two subsystems defined as base transceiver RF module 24 and base transceiver host device interface 26.
  • Base transceiver RF module 24 receives or transmits data to and from controller RF module 22 in a one port configuration 27 using a virtual RF connection identified as RF port 28.
  • Base transceiver 12 also has a bonding light 30 which is used to show status information for individual controller-to-transceiver connections.
  • Base transceiver RF module 24 may have a single RF port 28 per module in a one port configuration 27 or multiple RF ports 28 per module in a multi-port configuration 29 as shown in Figure 4. For single RF ports 28 a single channel frequency is used.
  • Base transceiver host interface 26 translates controller 10 commands into commands understood by connected electronic game device 14 and vice versa.
  • the entire base transceiver 12 can comprise a physically separate device, can be plugged into electronic game device 14 through a wire connection, or can be totally integrated into electronic game device 14.
  • Electronic game device 14 comprises an electronic game device core system including the computer upon which a game program is hosted.
  • Image display is provided by a television, computer monitor or similar display device.
  • Electronic game device 14 is also responsible for coordinating the activities of integrated audio and video entertainment devices or communication devices 15 or for controlling the interfaces connected to external devices or networks.
  • the audio and video subsystem consists of integrated consumer electronics such as DVDs, cameras and other devices.
  • the communication subsystem can manage interfaces to external devices such as ethernet, USB or similar multiple purpose interfaces.
  • initial implementations of the system architecture are targeted to electronic gaming systems such as electronic game device 14, it may also be extended by substituting electronic game device 14 with a compatible computer or cornmunications device and by using a more generic data transmission component ofthe architecture protocol.
  • Wired coimections can be replaced by wireless RF links and high level protocols required for computer or communications data transmission can be encapsulated in low level wireless data transport provided by the system architecture.
  • vendor refers to a product designed and produced by an entity conventionally incompatible with products produced by other entities for market differentiation or other purposes.
  • the following "gaming" configurations are representative combinations of one or more controllers 10 and base transceivers 12.
  • the system supports both single-player and multi-player scenarios, represented in Figures 5a and 5b, with single port base transceivers 27 each linked between game device 14 and each controller 10. 2) Multiple Port Transceiver Operation - Single Vendor
  • the system supports both single-player and multi-player scenarios, represented in Figure 6a with a multi-port base transceiver 29 and in Figure 6b with multiple multi-port base transceivers 29.
  • Figure 7 illustrates operation of a multi-port base transceiver 29 in communication with game controllers 10 provided by different vendors.
  • Figure 8 illustrates a mixed type environment supporting different types of controllers 10.
  • each controller 10 depends on what mappings of its input/output functions are possible for the target electronic game device 14 and resident electronic game software. The degree of compatibility will be determined by the overlap of functionality between the non-standard controller and a standard controller for a given electronic game device 14.
  • the RF system design is used in either controller RF module 22 or base transceiver RF module 24 to both transmit and receive signals and to detect signal strength. All operations of the RF section are under the control of a central microprocessor 32. Although a frequency shift keying (FSK) modulation technique is described, other modulation and encoding techniques could also be used. Microprocessor 32 controls modulator 34 and oscillator 36 to generate a transmit frequency shift key signal. The signal is amplified with amplifier 38 and is controlled by RF switch 40 which controls the half duplex signal transmission. During transmission RF switch 40 allows the transmit signal to pass out of the system through bandpass filter 42 and antenna 44. Bandpass filter 42 is used at the output prior to antenna 44 for harmonic suppression and image frequency removal.
  • FSK frequency shift keying
  • RF switch 40 When a signal is received, RF switch 40 allows the signal to pass into receive section 46. Using super heterodyne techniques, the signal is reduced to an intermediate frequency (IF) where filter 48 removes adjacent channel frequencies. Next the signal is amplified with amplifier 50 and passed through demodulator 52. The digital signal is then extracted using a post detection filter and data sheer circuit 54 and is sent to microprocessor 32.
  • IF intermediate frequency
  • RSSI received signal strength indicator
  • microprocessor 32 uses a received signal strength indicator (RSSI) 56 to determine the received signal strength (for power control) and to act as a RF carrier detect to sense when a new RF transmission has been originated. The receive power is compared against the standard and this information is passed up to the next protocol layer where packet fields are used to carry power level information to dynamically adjust power levels of transmitting devices. Transmission frequencies are organized by channels. Each RF system uses a group of channels called “palettes" for transmission purposes. Channels in channel palettes are automatically replaced if one of the channels in a palette becomes bad. The circuitry of RSSI 56 can help determine if a channel is going out of tolerable transmission specifications.
  • Data is transferred over the RF Ports 28 between base transceiver 12 and controller 10 pairs using a synchronized polling process.
  • the polling process is also synchronized across multiple transceivers 12 (see Figures 5b and 6b for multiple transceiver examples). This is achieved by base transceivers 12 and controllers 10 listening to transactions of adjacent base transceivers 12, by a designated primary base transceiver 12 broadcasting a synchronization signal periodically, or by use of similar detection and coordination method.
  • each ofthe controller RF modules 22 and base transceiver modules 24 use internal clock oscillators to maintain polling synchronization.
  • the invention provides unique RF control over game operation by using the radio frequency system physical components such as controller RF module 22 and base transceiver RF module 24 together with bit transmission and connection methods ("bonding") and the electronics associated with providing the controller functions and the base fransceiver functions.
  • Controller I/O subsystem 20 supports base functions and may be expanded to include other types of mechanical, audio, video and data functions in addition to the following:
  • controller input functions e.g. keys function remapping
  • the RF signal specification preferably operates in a range between 905 and
  • the center frequencies of channels are selected dynamically and updated continuously for optimal low noise and acceptable signal transmission performance across the allowable transmission spectrum. Center frequencies are not necessarily evenly spaced given they are optimized for best transmission performance, but maintain a minimum spacing to avoid channel spectral overlap as illustrated in Figure 11.
  • Each base transceiver 12 selects a starting "channel palette" of up to four or more channel frequencies. Such selection is coordinated with the channel frequencies of other base transceivers 12 and controllers 10 which are in range.
  • the base fransceiver 12 and associated controller 10 both scan the available frequency band and listen for radio frequency energy levels using their RSSI 56 feature.
  • the palette center frequencies are selected from areas of low radio interference (high signal quality) as measured from both base transceiver 12 and controller 10.
  • base transceiver 12 can select and cycle through palette frequencies in a coordinated fashion with its associated controllers ("frequency hopping").
  • base transceiver 12 may use any of the channel frequencies in its palette in a static fashion and only change to other channels if the static channel becomes unusable.
  • the system automatically finds replacement channel frequencies if one of the chaimels in its pallette becomes bad.
  • CRC error checking from a higher level layer in the system
  • RSSI 56 signal measurements and other methods are used to determine channel quality.
  • Multiple controllers 10 are operable by a given electronic game device in an immediate area without interfering with each other.
  • Each channel carries data in both directions using a duplex transmission method.
  • the RF carrier can be modulated using FSK (Frequency Shift Keying) and encoded using bit randomization or other technique for DC offset minimization and other desirable characteristics.
  • FSK Frequency Shift Keying
  • the system has a base data rate of 57.6kbps with extensions to beyond 1500kbps. More sophisticated and frequency efficient modulation and encoding techniques can also be used for higher bit efficiency and when other design specific transmission quality, signal power, bit-error or bit-rate attributes are required (e.g. QAM, QPSK, spread spectrum etc.).
  • the maximum output power of the controller is preferably negative 2 dBm or positive 650 microwatts, but this may vary depending on the modulation and encoding techniques and operating frequency ranges selected.
  • the system operates at low transmission power to fit within FCC Part 15 (USA) and RSS 210 (Canada) regulations for Low Power Unlicensed Devices.
  • the system has a basic transmission range of 10 meters with extensions to 25 meters or beyond with commensurately higher bit error rates and/or power level.
  • the controller 10 and base transceiver 12 antennas such as antemia 44 are typically entirely enclosed because of the frequency range chosen. Such antennas are realized on the relevant printed circuit boards (PCB) as a microstrip antenna or by a short mechanical antenna structure.
  • PCB printed circuit boards
  • the RF protocol should:
  • base transceivers 12 poll their associated controllers
  • base transceivers 12 listen for their associated controller responses on their individual chaimels. Poll and response packets to each controller 10 for a given base transceiver 12 are time division multiplexed. Since each volley from each base fransceiver 12 is on a different channel frequency, the polling process for all connected groups of controllers 10 can occur in parallel. Both poll packets and response packets can be transmitted in pairs (optional) to increase the reliability of the radio link.
  • the packet preamble conditions the system electronics to prepare for data fransmission.
  • the invention uniquely provides for dynamic bonding of each controller 10 with an associated base transceiver 12.
  • “Bonding” is a process by which controllers 10 are wirelessly linked to a given base transceiver 12 and the system learns the capabilities of a new controller 10.
  • the bonding process is divided into three steps. First, controller 10 finds an available RF port 28 on base transceiver 12 and a controller address is sent to base transceiver 12 to save this association. Second, base transceiver 12 provides the available channel palette information to controller 10 and potentially adjusts its palette by changing one or more palette frequencies if transmission to new controller 10 is impaired on one or more of the channel palette frequencies. Finally, in a “feature negotiation” step, the capabilities of controller 10 are shared with base transceiver 12 which adapts controller 10 data signals to most closely match the characteristics of the electronic game device 14. Feature negotiation is performed in the adaptation layer.
  • Controllers 10 and base transceivers 12 are "dynamically bonded" when controller 10 powers up and whenever the bonding key 16 located on controller 10 is operated by a user.
  • Base transceiver 12 keeps a record of its last mated controller or controllers 10 and will bond to that controller 10 first if more than one controller 10 is available during such search.
  • bonding light or lights 30 such as forward facing colored LEDs are built into base transceivers 12.
  • base transceiver 12 bonds to a controller 10
  • base transceiver 12 emits a one second burst of light at 10 Hz.
  • the link-status light 18 on controller 10 mimics bonding light 30 on the matching base transceiver 12 port, also with a one second burst at 10 Hz.
  • link-status light 18 provides a visual indication of link quality by represent channel signal quality and signal presence by making an on-duration or brightness proportional to the percentage of good data transfers between controller 10 and base transceiver 12.
  • Each bonding light 30 has two basic purposes— to indicate that bonding has successfully happened and to indicate to which RF port 28 controller 10 has bonded.
  • bonding key 16 rejects the currently bonded RF port 28, causing another RF port 28 to bond with controller 10. Holding down the bonding key 16 causes controller 10 to toggle through all available RF ports 28, with each RF port 28 bursting the corresponding bonding light 30 when a successful bond has occurred. The user releases bonding key 16 when the controller 10 has bonded with the desired RF port 28.
  • An adaptation layer acts as an intermediary between the application and RF layers.
  • the adaptation layer handles the feature negotiation step of dynamic bonding and data packetization such as translation, compression, or data verification.
  • feature negotiation This step of dynamic bonding is referred to herein as "feature negotiation".
  • This capability of the invention permits each controller 10 to be manufactured by the same manufacturer ofthe electronic game device 14 or to be manufactured by another manufacturer. Similarly a new controller 10 from another electronic game device can be - used with electronic game device 14 and the functions of the new controller 10 can be mapped to support the games resident on the new elecfronic game device.
  • each controller 10 may be of a new type.
  • Feature negotiation can be achieved using one or a combination of techniques such as:
  • a "body mapping” convention can be used where the fingers on the hands and selected body areas (e.g. head, chest, shoulder, elbow, knee, ankle, eye, mouth etc.) are mapped to functions on the selected controller 10 and these functions are mapped to the functions required for a given electronic game device 14. In this way basic game controller functions are the same or similar, regardless of which electronic game device 14 the person desires to use. This greatly reduces the learning curve when using controllers 10 on multiple electronic game devices 14. Information about the "body mapping" is transferred to base transceiver 12 so it can perform a standard input device mapping for the target electronic game device 14; and 3) Using a controller programming key or an application-based graphical user interface, the controller button inputs can be remapped by the user to suit the target electronic game application.
  • body mapping e.g. head, chest, shoulder, elbow, knee, ankle, eye, mouth etc.
  • base transceiver 12 sends a poll packet and controllers 10 will respond with response packets as shown in Figure 12.
  • the adaptation layer defines the format of these packets. Packet formats and types may be extended or modified to support different electronic game devices 14, different controllers 10, data transmission modes or other applications.
  • the poll packet is sent by base fransceiver 12 to initiate the polling volley. Since the poll packet is sent once per packet volley it contains information relating to each of the associated controllers. Within each polling cycle each controller 10 will send a response packet as shown in Figure 14.
  • the poll packet has several components:
  • the TPPH is the overall header for the polling packet. It contains packet type, polling control (e.g. flow confrol, redundant packet flag) and base fransceiver address, other channel address information. It may contain other application dependent fields for other data and protocol control purposes.
  • the CPH is a sub-header in the polling packet.
  • Each controller 10 being addressed by base transceiver 12 preferably has a separate CPH and CPD component containing data type, data address, and data control (e.g. quality of service, size) information and RF link control (e.g. transmit and receive power level fields to adjust power levels dynamically) information.
  • data control e.g. quality of service, size
  • RF link control e.g. transmit and receive power level fields to adjust power levels dynamically
  • CPD#n - Controller #n Polling Data payload Each controller 10 associated with a base transceiver 12 is sent information relating to the particular application. Gaming and generic data payload characteristics are described below. CRC - Cyclic Redundancy Checking
  • the data packet is protected with a CRC- 16 (or better) frame check (xl6+xl2+x5+l).
  • the response packets from each individual controller 10 have several components:
  • the CRH is a header for the controller 10 response to a base transceiver 12 poll packet.
  • Each controller 10 must send a response to the poll request made by base transceiver 12 containing data type, data address, and data control (e.g. quality of service, size) information and RF link control (e.g. transmit and receive power level fields to adjust power levels dynamically) information.
  • data type e.g. data address
  • data control e.g. quality of service, size
  • RF link control e.g. transmit and receive power level fields to adjust power levels dynamically
  • Each controller 10 sends data to its associated base fransceiver 12 using this field. Gaming and generic data payload characteristics are described below.
  • Game data payloads can be divided into feedback signals coming from electronic game device 14 to controller 10, such as controller motor signals carried by the CPD field of the poll packet. Input signals coming from controller 10 to electronic game device 14 are carried in the CRD field ofthe response to poll packet.
  • the analog information relating to motor confrol, joystick position, button pressure or other analog input device can be represented directly up to the resolution of the analog to digital converter or can be compressed using vector quantization where the amount of data exceeds the data capacity of the RF channel.
  • the high-speed motor control could be represented by 8 bits uncompressed data or dynamically compressed to 2 bits, while the low-speed motor confrol might be 10 bits uncompressed or compressed to 6 bits as required.
  • Digital button information is represented by a binary button vector. For twelve digital buttons on controller 10 this vector is typically twelve bits long. Additional bits may be allocated per digital input device depending on its attributes.
  • analog button data is transmitted in the same order as the corresponding binary button-vector bits.
  • the type of data representation varies by analog input type e.g. a simple analog button is represented by a simple bit sequence, whereas an analog joystick is represented by x and y coordinate information. When fewer than 5 analog buttons are active, the unused fields are ignored.
  • Generic data transfer can be used for transferring game-related data, for updating controller firmware, or for general computer and communications applications.
  • Higher level protocols e.g. TCP/IP
  • TCP/IP Transmission Control Protocol/IP
  • the data payload is of variable length to accommodate applications with variable length data unit requirements and additional control and protocol parameters.
  • Data packets can be interspersed with game packets or transmitted when game packets are not being sent (e.g. between games) or can exist separately (e.g. data only applications).
  • additional control and protocol parameters may be embedded to further extend capabilities of data transmission such as sequence numbers, additional embedded protocols and mediation layers.
  • the size of the parameter portion of the payload depends on which features are supported for the given data packet type. The number of bytes in a packet depends on the payload size settings found in the controller header (CPH or CRH) and is bounded by the fransmission rate possible by the system. The faster the transmission rate, the more bytes per polling cycle can be accommodated.
  • An application layer controls high level functions relating to external world interfaces and system-wide functions. The application layer manages the controller input/ output subsystem in the controller and mediation of signals between the base transceiver and the electronic game device.
  • Controller I/O subsystem 20 polls various controller input devices such as analog and digital keys, joysticks, other external interfaces, for user or external input and transmits the results to base transceiver 12 for use by electronic game device 14.
  • the subsystem also receives information from electronic game device 14 to provide feedback to the user or external devices such as motor control, control and data signals to external devices.
  • controller I/O subsystem 20 User programming features of functions such as remapped key functions and macros to repeat key sequences automatically are also supported by this controller I/O subsystem 20. Any of the triggers, control keys or other input interface supported by the controller I/O subsystem 20 electronics may be put into or removed from an "auto repeat" mode using the "program" key 17 as shown in Figure 3. When auto repeat is enabled on a key, the pressed key will automatically repeat at 10 Hz when operated by the user.
  • Any compatible input devices may be remapped to one another or swapped using a hold and release sequence of "program" and trigger and/or controller keys.
  • analog keys sensing and converting pressure into a multi-level digital signal may be remapped to joysticks and conversely.
  • the sensitivity of analog keys may also be adjusted and the vibration mode of controller motors selected by controller 10.
  • All user programming features are set to defaults values at power-on, but the last five or more programmed configurations (“save sets”) are stored in non-volatile memory and may be recalled by the user. The first of these "save sets" is stored automatically, additional “save sets” may be stored manually up to the memory capacity ofthe controller.
  • Entertainment system functions built into the electronic game device are controlled by remapping the existing controller keys or in the case of a stand-alone special purpose entertainment wireless RF remote controller by using a subset of the defined button fields in the game protocol payload definition. If wireless RF remote controller 10 has more buttons than supported by the basic game controller, a data-oriented packet method may be used or additional gaming-related fields may be defined.
  • Base transceiver 12 mediates and converts signals between controller 10 and electronic game device 14 to ensure compatibility.
  • Base transceiver 12 also can control the sub-functions of bonding new controllers 10 to base transceivers 12 and the associated mapping of new controller types to new or existing electronic game devices 14.
  • Electronic gaming devices can include integrated entertainment and communication features such as DVD, internet connectivity, telephony, and video conferencing.
  • Controller 10 can incorporate various entertainment control, communication control and data capabilities suitable for providing ethernet interface, portals for internet appliances, personal digital assistance, and audio, tactile and visual interfaces such as microphones, speakers, video displays, video cameras, data ports, and VR-virtual reality devices.
  • the wireless controller architecture provided by the invention coordinates and supports differing controllers 10 as an interface with differing electronic game devices 14.
  • the invention allows interoperation of any game controller 10 with any electronic game device 14 by means of a common layered protocol which mediates data com ections and the content/presentation format ofthe data structure.
  • the data format from a given controller 10 may need to be modified to be correctly interpreted by a given electronic game device.
  • the reconfiguration is automatic in nature via a feature negotiation process and is adaptable to many more configurations permutations on many different types of controllers and on many different types of elecfronic game devices without using a mechanical switching cartridge for each game permutation.
  • the invention adapts a signal on both the controller 10 and base transceiver 12 end of the game controller connection and provides for more generic controller input/output configurations.
  • the invention can support multiple controllers and contains innovations unique to the wireless gaming environment such as channel palettes, synchronization, and bonding.
  • the invention provides a feature negotiation process which allows the system to adapt to new controller types and multi-controller configurations, for multiple hosts and multiple base transceivers and multiple electronic game device types. It also provides synchronization between base transceivers, simultaneous polling volleys, and mediation for different elecfronic game device types.
  • the invention also supports controller input/output functions and programming capabilities and interfacing between the controller and an electronic game device with the following characteristics:
  • the controller and base transceiver can share a common address transmitted as one of the signals.
  • the system can support multipoint RF wireless communications between a base fransceiver and subtended controllers where such base transceivers and controllers can be of multiple types and can dynamically bond with and negotiate to determine supported capabilities.
  • the system can include a layered architecture that ensures compatibility between linked controller and electronic game devices through a protocol independent of both the controller and the electronic game device, and the layered framework can ensure compatibility between a linked controller and elecfronic game device through a protocol independent of both the controller and the electronic game device.
  • the system can comprise first and second controllers each transmitting RF wireless signals respectively to first and second base transceivers, and each microprocessor in each first and second base transceivers can dynamically synchronize first and second base fransceiver inter-transceiver and controUer-to-fransceiver transmission events.
  • the controller and base fransceiver and electronic game device are supportable with game-related data and firmware updates.

Abstract

A radio frequency wireless system for managing electronic gaming system components. The system comprises a base transceiver engaged with the game device, a controller for transmitting RF wireless signals to the base transceiver, and a microprocessor engaged with the base transceiver for controlling the receipt and transmission of said RF wireless signals. The microprocessor is capable of identifying the selected operating characteristics of the controller and of modifying operation in response to selected operating characteristics.

Description

WIRELESS GAME CONTROL SYSTEM
BACKGROUND OF THE INVENTION
The invention relates to the field of handheld video game controllers and wireless data transmission between the controllers and an electronic game device. More particularly, the invention relates to a low power wireless system integrating digital, analog, radio frequency (RF) and firmware devices to transmit control and data packets between different game controller devices and electronic game devices.
Electronic game programs operate on various electronic game devices. Electronic games use software and hardware devices to simulate game situations and experiences through visual, audio and mechanical stimuli. User interaction with these games is provided through a hand operated controller which permits the person to change the game direction or response and also to receive mechanical, audio or visual feedback from the game device. Many electronic games are fast moving and draw the user into fast moving responses which integrate the person into the game. Popular games require fast reflexive responses to the game situation and format and require the transmission of large data sets. Any interruption of such games is disruptive to the person's enjoyment and is highly undesirable.
Different competing vendors distribute multiple controller types incompatible with other game systems. Manufacturing companies plan system incompatibility to preclude operation of competing games on the system architecture. Conventional game controllers are typically hard wired to a hardware controller.
United States Patent No. 5,451,053 to Garrido, (1995) described an electrical method for re-routing electric signals from a video game controller by a wired connection to a video game system. This system attempted to fit a fixed controller type to multiple games for a specific target video game system. United States Patent No. 5,551,701 to Bouton et al. (1996) described a hard wire video game system with a fixed controller configuration wherein the functions of the controllers can be reconfigured to suit an individual user's preference. United States Patent No. 5,396,267 to Bouton et al, (1995) described a wired controller for game system configuration. United States Patent No. 6,071,194 to Sanderson et al., (2000) described a hard wired controller wherein controller functions could be reconfigured to suit an individual user's preference and to match the supported functions to target game applications.
Hard wired controllers are capable of reliable and fast signal communication, however such controllers require wires leading from the controller to the hardware. Wires present a tripping safety hazard and further limit the operating mobility of the user relative to the electronic game device.
To eliminate the disadvantages of hard wires, certain game controller systems transmit data signals with infrared frequency ("IR") transmission. IR controllers are conventionally used in remote control devices for televisions, stereos, and garage door openers. DR. controllers are undesirable in game controlling operations because a moving person or pet can interrupt the communication link with the hardware. The IR controller must be pointed directly at the hardware to maintain the communication link, and transmission is interruptable by movement of an excited operator during game play. Additionally, fluorescent lighting can interfere with IR transmission and the illuminated nature of IR controller light sources can interfere with other concurrent IR communications. Although IR light can be modulated, the number of effective communication lines operable within a single room is limited.
Various handheld game controllers have been developed. For example, United States Patent Nos. 6,078,789 to Bodenmann et al. (2000) and 5,881,366 to Bodenmann et al. (1999) disclosed an RF wireless gaming system. The data transmission architecture in such systems was inherently limited and prevented additional signals to be transmitted after the system capacity was reached. Another wireless controller was disclosed in United States Patent No. 5,605,505 to Han et al. (1997), which described a two controller infrared wireless system. The Han controller described a fixed controller to electronic game device pairing and was subject to the IR limitations described above.
In addition to IR transmission, other systems have attempted to use radio frequency ("RF") transmission in game environments. United States Patent No. 4,531,740 to Green et al (1985) disclosed a remote controller system for a video computer game using RF transmission as a communication mechanism. The Green system was for a fixed, application specific controller and electronic game device configuration and did not provide for other uses. United States Patent Number 5,806,849 to Rutkowski (1998) described a long range signal transmission system which depended on multiple channel transmission frequencies and used a single receiver to poll individual channels.
United States Patent No. 5,618,045 to Kagan et al, (1997) described an all-to- all controller gaming network using an arbitrary wireless network (IR, RF or acoustic) and special purpose gaming controllers and did not support multiple types of controllers or electronic game devices. United States Patent No. 6,001,014 to Ogata et al. (1999) described a controller and game system where bidirectional signals are transmitted via a wired interface. International Patent Number WO 99/59289 to Yamamoto et al. (1999) described a controller and game system where bidirectional signals are transmitted via a wired interface and where several wired controller types are supported.
Different data protocols have been developed to facilitate data transmission wirelessly. For example, Bluetooth Specification version l.OB, an open standard promoted by the international Bluetooth Consortia, defines a short distance voice and data wireless data transfer system providing master/slave relationships, polling, frequency hopping and signaling.
SUMMARY OF THE INVENTION
The invention provides a modular architecture for a short range, radio frequency wireless system for operating an electronic game device. The system comprises a base transceiver engaged with the game device, a controller for transmitting RF wireless signals to the base transceiver, wherein said controller has selected operating characteristics transmittable by the RF wireless signals, a microprocessor engaged with the base transceiver for receiving said RF wireless signals, wherein the microprocessor is capable of identifying the selected operating characteristics of the controller and of modifying the operation of the microprocessor in response to such selected operating characteristics.
The selected operating characteristics may be comprised of one or more of any operating characteristic or attribute ofthe controller transmittable by the RF wireless signals. For instance, as described further below, the selected operating characteristics may include one or more of the following: transmission channel center frequencies; transmission rate; modulation and encoding type; controller time slot timing and size allocation; polling interval or polling cycle; packet size, formats or types; frequency hopping sequence or cycling; and power level.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates overall system components for an RF game control system.
Figure 2 illustrates the master-slave relationship of base transceivers to controllers.
Figure 3 illustrates a typical video game physical implementation.
Figure 4 illustrates a single RF port configuration and a multiple RF port configuration of the base transceiver.
Figure 5a illustrates a single one port base transceiver and single controller configuration.
Figure 5b illustrates a multiple one port base transceivers and multiple controller configuration.
Figure 6a illustrates a single multi-port base transceiver and RF multi-point communication link to multiple controllers.
Figure 6b illustrates multiple multi-port base transceivers and RF multi-point communication links to multiple controllers.
Figure 7 illustrates a multi-vendor multi-port base transceiver and multi- vendor controller configuration.
Figure 8 illustrates a single multi-port base transceiver with multiple controller types configuration. Figure 9 illustrates a multi-vendor multi-port base transceiver with multi- vendor multiple controller types configuration.
Figure 10 illustrates a representative radio frequency system design.
Figure 11 illustrates the selection of radio frequency channels in radio frequency spectrum bands having sufficient spectral quality to support signal transmission.
Figure 12 illustrates a packet volley sequence between multiple base transceivers and multiple controllers.
Figure 13 illustrates a poll packet format for gaming applications.
Figure 14 illustrates a response packet format for gaming applications.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention provides a unique solution overcoming limitations of wireless
IR game controllers. The invention provides a common framework to allow interoperation of multiple types of wireless controllers with multiple electronic game device types. Each game controller can be designed once and reused across multiple electronic game devices, and the gaming user can use their "favorite" controller for multiple game devices.
Referring to Figure 1, the system architecture generally comprises hand operated game controller 10, base transceiver 12, and electronic game device 14. Although Figure 1 illustrates an architecture for a game controller 10, such architecture is applicable to other utilizations including computers, communications systems, and other devices. For wireless radio frequency transmissions, the system is arranged in a master-slave configuration, as shown in Figure 2, with base transceiver 12 acting as the master and controllers 10 acting as the slave. A typical commercial video game system implementation is illustrated in Figure 3, wherein controller 10 is linked through RF transmission with base transceiver 12 and electronic game device 14. Controller 10 includes bond key 16, program key 17, and link status light 18 as further described below. Controller 10 comprises a portable, hand operable remote component linked to electronic game device 14 through a radio frequency (RF) wireless connection. Controller 10 includes two subsystems defined as controller input/output subsystem 20 and controller RF module 22. Controller input/output subsystem 20 comprises an interface between game device 14 and the user or an appended electronic device such as a game peripheral, plug-in expansion module, or data port to an electronic data device. Controller input / output subsystem 20 can comprise electronic devices to support one or more of: (i) digital and analog game control input keys and joysticks; (ii) audio input and output devices (speakers, microphones); (iii) video input and output devices; (iv) touch, position, movement and other environmental sensors; (v) mechanical feedback devices such as vibrating motors; (vi) entertainment device control keys having various functions such as stop, play, pause, fast forward, reverse, TV, and VCR control functions; (vii) computer keyboards and touch pads with embedded processors; (viii) data interfaces; (ix) controller expansion modules; and (x) any number of similar interfaces for channeling environmental stimulus or input into the system and for providing feedback to the user or appended electronic device.
Controller RF module 22 manages the transmission of data between controller 10 and base transceiver 12. As a visual indicator of RF link status, controller RF module 22 contains a link-status light emitting diode ("LED") 18 used to show status information for a controller-to-base transceiver RF transmission channel.
Base transceiver 12 comprises a communication translation device. Base transceiver 12 comprises two subsystems defined as base transceiver RF module 24 and base transceiver host device interface 26. Base transceiver RF module 24 receives or transmits data to and from controller RF module 22 in a one port configuration 27 using a virtual RF connection identified as RF port 28. Base transceiver 12 also has a bonding light 30 which is used to show status information for individual controller-to-transceiver connections. Base transceiver RF module 24 may have a single RF port 28 per module in a one port configuration 27 or multiple RF ports 28 per module in a multi-port configuration 29 as shown in Figure 4. For single RF ports 28 a single channel frequency is used. For multiple RF ports 28 multiple linked controller signals are time multiplexed on a common channel frequency or in another embodiment on additional channel frequencies to increase overall capacity. Base transceiver host interface 26 translates controller 10 commands into commands understood by connected electronic game device 14 and vice versa. The entire base transceiver 12 can comprise a physically separate device, can be plugged into electronic game device 14 through a wire connection, or can be totally integrated into electronic game device 14.
Electronic game device 14 comprises an electronic game device core system including the computer upon which a game program is hosted. Image display is provided by a television, computer monitor or similar display device. Electronic game device 14 is also responsible for coordinating the activities of integrated audio and video entertainment devices or communication devices 15 or for controlling the interfaces connected to external devices or networks. The audio and video subsystem consists of integrated consumer electronics such as DVDs, cameras and other devices. The communication subsystem can manage interfaces to external devices such as ethernet, USB or similar multiple purpose interfaces.
Although initial implementations of the system architecture are targeted to electronic gaming systems such as electronic game device 14, it may also be extended by substituting electronic game device 14 with a compatible computer or cornmunications device and by using a more generic data transmission component ofthe architecture protocol. Wired coimections can be replaced by wireless RF links and high level protocols required for computer or communications data transmission can be encapsulated in low level wireless data transport provided by the system architecture.
Many possible product configurations can be supported by the system architecture. The term "vendor" as used herein refers to a product designed and produced by an entity conventionally incompatible with products produced by other entities for market differentiation or other purposes. The following "gaming" configurations are representative combinations of one or more controllers 10 and base transceivers 12.
1) Single Port Transceiver - Single Vendor
The system supports both single-player and multi-player scenarios, represented in Figures 5a and 5b, with single port base transceivers 27 each linked between game device 14 and each controller 10. 2) Multiple Port Transceiver Operation - Single Vendor
The system supports both single-player and multi-player scenarios, represented in Figure 6a with a multi-port base transceiver 29 and in Figure 6b with multiple multi-port base transceivers 29.
3) Multiple Vendors
Figure 7 illustrates operation of a multi-port base transceiver 29 in communication with game controllers 10 provided by different vendors.
4) Multiple Type
Figure 8 illustrates a mixed type environment supporting different types of controllers 10.
5) Cross Platform
Architecture compliant controller devices created for one game system may be used with multi-port base transceivers 29 connected to a different game electronic device 14 as shown in Figure 9.
The utility of each controller 10 depends on what mappings of its input/output functions are possible for the target electronic game device 14 and resident electronic game software. The degree of compatibility will be determined by the overlap of functionality between the non-standard controller and a standard controller for a given electronic game device 14.
As shown in Figure 10, the RF system design is used in either controller RF module 22 or base transceiver RF module 24 to both transmit and receive signals and to detect signal strength. All operations of the RF section are under the control of a central microprocessor 32. Although a frequency shift keying (FSK) modulation technique is described, other modulation and encoding techniques could also be used. Microprocessor 32 controls modulator 34 and oscillator 36 to generate a transmit frequency shift key signal. The signal is amplified with amplifier 38 and is controlled by RF switch 40 which controls the half duplex signal transmission. During transmission RF switch 40 allows the transmit signal to pass out of the system through bandpass filter 42 and antenna 44. Bandpass filter 42 is used at the output prior to antenna 44 for harmonic suppression and image frequency removal.
When a signal is received, RF switch 40 allows the signal to pass into receive section 46. Using super heterodyne techniques, the signal is reduced to an intermediate frequency (IF) where filter 48 removes adjacent channel frequencies. Next the signal is amplified with amplifier 50 and passed through demodulator 52. The digital signal is then extracted using a post detection filter and data sheer circuit 54 and is sent to microprocessor 32.
Also shown in the diagram is a received signal strength indicator (RSSI) 56 used by microprocessor 32 both to determine the received signal strength (for power control) and to act as a RF carrier detect to sense when a new RF transmission has been originated. The receive power is compared against the standard and this information is passed up to the next protocol layer where packet fields are used to carry power level information to dynamically adjust power levels of transmitting devices. Transmission frequencies are organized by channels. Each RF system uses a group of channels called "palettes" for transmission purposes. Channels in channel palettes are automatically replaced if one of the channels in a palette becomes bad. The circuitry of RSSI 56 can help determine if a channel is going out of tolerable transmission specifications.
Data is transferred over the RF Ports 28 between base transceiver 12 and controller 10 pairs using a synchronized polling process. To avoid transmission signals from adjacent base fransceivers 12 saturating a non-transmitting transceiver 12, the polling process is also synchronized across multiple transceivers 12 (see Figures 5b and 6b for multiple transceiver examples). This is achieved by base transceivers 12 and controllers 10 listening to transactions of adjacent base transceivers 12, by a designated primary base transceiver 12 broadcasting a synchronization signal periodically, or by use of similar detection and coordination method. Between synchronization events, each ofthe controller RF modules 22 and base transceiver modules 24 use internal clock oscillators to maintain polling synchronization.
The invention provides unique RF control over game operation by using the radio frequency system physical components such as controller RF module 22 and base transceiver RF module 24 together with bit transmission and connection methods ("bonding") and the electronics associated with providing the controller functions and the base fransceiver functions.
Controller I/O subsystem 20 supports base functions and may be expanded to include other types of mechanical, audio, video and data functions in addition to the following:
- analog and digital keys and joysticks - backhaul - support for multiple vibration, force, audio, and feedback devices
- Joysticks - support for multiple analog joysticks each with tactile switch
- Analog Support - four joystick axes and twelve pressure-sensitive keys and spares
- Programmable features such as auto repeat and remapping of controller input functions (e.g. keys function remapping)
- entertainment remote controls - e.g. DVD/CD, TV controls
The RF signal specification preferably operates in a range between 905 and
928 MHz, and the frequency spectrum is broken into up to forty concurrent channels or more. Although this is the initial frequency range supported, all techniques and features described are equally applicable in other frequency ranges of sufficient spectral width or in ranges where the number of channels is changed to fit the available spectrum.
The center frequencies of channels are selected dynamically and updated continuously for optimal low noise and acceptable signal transmission performance across the allowable transmission spectrum. Center frequencies are not necessarily evenly spaced given they are optimized for best transmission performance, but maintain a minimum spacing to avoid channel spectral overlap as illustrated in Figure 11. Each base transceiver 12 selects a starting "channel palette" of up to four or more channel frequencies. Such selection is coordinated with the channel frequencies of other base transceivers 12 and controllers 10 which are in range. During initial palette set up, the base fransceiver 12 and associated controller 10 both scan the available frequency band and listen for radio frequency energy levels using their RSSI 56 feature. The palette center frequencies are selected from areas of low radio interference (high signal quality) as measured from both base transceiver 12 and controller 10.
As a given base transceiver 12 transmits, it can select and cycle through palette frequencies in a coordinated fashion with its associated controllers ("frequency hopping"). Alternatively, base transceiver 12 may use any of the channel frequencies in its palette in a static fashion and only change to other channels if the static channel becomes unusable. The system automatically finds replacement channel frequencies if one of the chaimels in its pallette becomes bad. CRC error checking (from a higher level layer in the system), RSSI 56 signal measurements and other methods (such as calculated distortion metrics) are used to determine channel quality.
Multiple controllers 10 are operable by a given electronic game device in an immediate area without interfering with each other. Each channel carries data in both directions using a duplex transmission method.
The RF carrier can be modulated using FSK (Frequency Shift Keying) and encoded using bit randomization or other technique for DC offset minimization and other desirable characteristics. The system has a base data rate of 57.6kbps with extensions to beyond 1500kbps. More sophisticated and frequency efficient modulation and encoding techniques can also be used for higher bit efficiency and when other design specific transmission quality, signal power, bit-error or bit-rate attributes are required (e.g. QAM, QPSK, spread spectrum etc.).
The maximum output power of the controller is preferably negative 2 dBm or positive 650 microwatts, but this may vary depending on the modulation and encoding techniques and operating frequency ranges selected. The system operates at low transmission power to fit within FCC Part 15 (USA) and RSS 210 (Canada) regulations for Low Power Unlicensed Devices. The system has a basic transmission range of 10 meters with extensions to 25 meters or beyond with commensurately higher bit error rates and/or power level. The controller 10 and base transceiver 12 antennas such as antemia 44 are typically entirely enclosed because of the frequency range chosen. Such antennas are realized on the relevant printed circuit boards (PCB) as a microstrip antenna or by a short mechanical antenna structure.
The properties of the RF circuitry utilized by controller 10 and base receiver 12 impact the design of an appropriate bit-level transmission protocol. The RF protocol should:
• reliably transport status information from controllers 10 and base transceivers 12;
• minimize signalling latency;
• allocate and manage a set of RF channels using both frequency division and time division multiplexing;
• detect packet errors and initiate appropriate recovery actions; and
• scan for and circumvent noisy segments (including intermittent noise) of the frequency band.
As shown in Figure 12, base transceivers 12 poll their associated controllers
10 nearly simultaneously. Following the packet volley, base transceivers 12 listen for their associated controller responses on their individual chaimels. Poll and response packets to each controller 10 for a given base transceiver 12 are time division multiplexed. Since each volley from each base fransceiver 12 is on a different channel frequency, the polling process for all connected groups of controllers 10 can occur in parallel. Both poll packets and response packets can be transmitted in pairs (optional) to increase the reliability of the radio link. The packet preamble conditions the system electronics to prepare for data fransmission.
The invention uniquely provides for dynamic bonding of each controller 10 with an associated base transceiver 12. "Bonding" is a process by which controllers 10 are wirelessly linked to a given base transceiver 12 and the system learns the capabilities of a new controller 10. The bonding process is divided into three steps. First, controller 10 finds an available RF port 28 on base transceiver 12 and a controller address is sent to base transceiver 12 to save this association. Second, base transceiver 12 provides the available channel palette information to controller 10 and potentially adjusts its palette by changing one or more palette frequencies if transmission to new controller 10 is impaired on one or more of the channel palette frequencies. Finally, in a "feature negotiation" step, the capabilities of controller 10 are shared with base transceiver 12 which adapts controller 10 data signals to most closely match the characteristics of the electronic game device 14. Feature negotiation is performed in the adaptation layer.
Controllers 10 and base transceivers 12 are "dynamically bonded" when controller 10 powers up and whenever the bonding key 16 located on controller 10 is operated by a user. Base transceiver 12 keeps a record of its last mated controller or controllers 10 and will bond to that controller 10 first if more than one controller 10 is available during such search.
As a visual bonding indicator, bonding light or lights 30 such as forward facing colored LEDs are built into base transceivers 12. When a base transceiver 12 bonds to a controller 10, base transceiver 12 emits a one second burst of light at 10 Hz. During such initial bonding "burst", the link-status light 18 on controller 10 mimics bonding light 30 on the matching base transceiver 12 port, also with a one second burst at 10 Hz. At all other times link-status light 18 provides a visual indication of link quality by represent channel signal quality and signal presence by making an on-duration or brightness proportional to the percentage of good data transfers between controller 10 and base transceiver 12. Each bonding light 30 has two basic purposes— to indicate that bonding has successfully happened and to indicate to which RF port 28 controller 10 has bonded.
Operation of bonding key 16 rejects the currently bonded RF port 28, causing another RF port 28 to bond with controller 10. Holding down the bonding key 16 causes controller 10 to toggle through all available RF ports 28, with each RF port 28 bursting the corresponding bonding light 30 when a successful bond has occurred. The user releases bonding key 16 when the controller 10 has bonded with the desired RF port 28.
An adaptation layer acts as an intermediary between the application and RF layers. The adaptation layer handles the feature negotiation step of dynamic bonding and data packetization such as translation, compression, or data verification. When a new controller 10 is bonded to the system it must inform the system about its capabilities so base transceiver 12 can translate and match signals passing between elecfronic game device 14 and the new controller 10. This step of dynamic bonding is referred to herein as "feature negotiation". This capability of the invention permits each controller 10 to be manufactured by the same manufacturer ofthe electronic game device 14 or to be manufactured by another manufacturer. Similarly a new controller 10 from another electronic game device can be - used with electronic game device 14 and the functions of the new controller 10 can be mapped to support the games resident on the new elecfronic game device. In yet another case, each controller 10 may be of a new type.
Feature negotiation can be achieved using one or a combination of techniques such as:
1) Standard codes and profiles representing classes of controller 10 and host types where key and input functions are clearly defined and can be passed from controller 10 to base transceiver 12 to establish a standard default configuration;
2) A "body mapping" convention can be used where the fingers on the hands and selected body areas (e.g. head, chest, shoulder, elbow, knee, ankle, eye, mouth etc.) are mapped to functions on the selected controller 10 and these functions are mapped to the functions required for a given electronic game device 14. In this way basic game controller functions are the same or similar, regardless of which electronic game device 14 the person desires to use. This greatly reduces the learning curve when using controllers 10 on multiple electronic game devices 14. Information about the "body mapping" is transferred to base transceiver 12 so it can perform a standard input device mapping for the target electronic game device 14; and 3) Using a controller programming key or an application-based graphical user interface, the controller button inputs can be remapped by the user to suit the target electronic game application.
If during the function mapping process whenever a given RF channel is nearing its data carrying capacity and the addition of features from a newly introduced controller 10 threatens to exceed that capacity, additional feature negotiation occurs between those controllers 10 connected to a given base transceiver 12. The base transceiver 12 needs to either downgrade feature support for the added controller 10 or reduce feature support across multiple controllers 10. This process is coordinated by base fransceiver 12 working in conjunction with its associated controllers 10.
Within each polling cycle base transceiver 12 sends a poll packet and controllers 10 will respond with response packets as shown in Figure 12. The adaptation layer defines the format of these packets. Packet formats and types may be extended or modified to support different electronic game devices 14, different controllers 10, data transmission modes or other applications.
The poll packet, as shown in Figure 13, is sent by base fransceiver 12 to initiate the polling volley. Since the poll packet is sent once per packet volley it contains information relating to each of the associated controllers. Within each polling cycle each controller 10 will send a response packet as shown in Figure 14. The poll packet has several components:
TPPH - Transceiver Polling Packet Header
The TPPH is the overall header for the polling packet. It contains packet type, polling control (e.g. flow confrol, redundant packet flag) and base fransceiver address, other channel address information. It may contain other application dependent fields for other data and protocol control purposes.
CPH#n - Controller #n Polling Header
The CPH is a sub-header in the polling packet. Each controller 10 being addressed by base transceiver 12 preferably has a separate CPH and CPD component containing data type, data address, and data control (e.g. quality of service, size) information and RF link control (e.g. transmit and receive power level fields to adjust power levels dynamically) information.
CPD#n - Controller #n Polling Data payload Each controller 10 associated with a base transceiver 12 is sent information relating to the particular application. Gaming and generic data payload characteristics are described below. CRC - Cyclic Redundancy Checking
The data packet is protected with a CRC- 16 (or better) frame check (xl6+xl2+x5+l).
The response packets from each individual controller 10 have several components:
CRH#n - Controller #n Response to Poll Header
The CRH is a header for the controller 10 response to a base transceiver 12 poll packet. Each controller 10 must send a response to the poll request made by base transceiver 12 containing data type, data address, and data control (e.g. quality of service, size) information and RF link control (e.g. transmit and receive power level fields to adjust power levels dynamically) information.
CRD#n - Controller #n Response to Poll Data payload
Each controller 10 sends data to its associated base fransceiver 12 using this field. Gaming and generic data payload characteristics are described below.
CRC - Cyclic Redundancy Checking The data packet is protected with a CRC- 16 (or better) frame check
(xl6+xl2+x5+l).
Game data payloads can be divided into feedback signals coming from electronic game device 14 to controller 10, such as controller motor signals carried by the CPD field of the poll packet. Input signals coming from controller 10 to electronic game device 14 are carried in the CRD field ofthe response to poll packet.
If sufficient RF wireless fransmission capacity exists, the analog information relating to motor confrol, joystick position, button pressure or other analog input device can be represented directly up to the resolution of the analog to digital converter or can be compressed using vector quantization where the amount of data exceeds the data capacity of the RF channel. For example, the high-speed motor control could be represented by 8 bits uncompressed data or dynamically compressed to 2 bits, while the low-speed motor confrol might be 10 bits uncompressed or compressed to 6 bits as required. Digital button information is represented by a binary button vector. For twelve digital buttons on controller 10 this vector is typically twelve bits long. Additional bits may be allocated per digital input device depending on its attributes.
As the number of active analog buttons rises, button resolution gradually decreases from 6 bits/button down to as low as 3 bits/button. For the base implementation, analog bandwidth is fixed at 56 bits per response packet, but this might be increased or decreased as driven by the data requirements of the target set of controllers to be supported by the architecture. Analog button data is transmitted in the same order as the corresponding binary button-vector bits. The type of data representation varies by analog input type e.g. a simple analog button is represented by a simple bit sequence, whereas an analog joystick is represented by x and y coordinate information. When fewer than 5 analog buttons are active, the unused fields are ignored.
Generic data transfer can be used for transferring game-related data, for updating controller firmware, or for general computer and communications applications. Higher level protocols (e.g. TCP/IP) utilized for gaming, computer, communications and other applications are encapsulated in the data payload. The data payload is of variable length to accommodate applications with variable length data unit requirements and additional control and protocol parameters. Data packets can be interspersed with game packets or transmitted when game packets are not being sent (e.g. between games) or can exist separately (e.g. data only applications).
Within the data payload, additional control and protocol parameters (one byte or more) may be embedded to further extend capabilities of data transmission such as sequence numbers, additional embedded protocols and mediation layers. The size of the parameter portion of the payload depends on which features are supported for the given data packet type. The number of bytes in a packet depends on the payload size settings found in the controller header (CPH or CRH) and is bounded by the fransmission rate possible by the system. The faster the transmission rate, the more bytes per polling cycle can be accommodated. An application layer controls high level functions relating to external world interfaces and system-wide functions. The application layer manages the controller input/ output subsystem in the controller and mediation of signals between the base transceiver and the electronic game device.
Controller I/O subsystem 20 polls various controller input devices such as analog and digital keys, joysticks, other external interfaces, for user or external input and transmits the results to base transceiver 12 for use by electronic game device 14. The subsystem also receives information from electronic game device 14 to provide feedback to the user or external devices such as motor control, control and data signals to external devices.
User programming features of functions such as remapped key functions and macros to repeat key sequences automatically are also supported by this controller I/O subsystem 20. Any of the triggers, control keys or other input interface supported by the controller I/O subsystem 20 electronics may be put into or removed from an "auto repeat" mode using the "program" key 17 as shown in Figure 3. When auto repeat is enabled on a key, the pressed key will automatically repeat at 10 Hz when operated by the user.
Any compatible input devices may be remapped to one another or swapped using a hold and release sequence of "program" and trigger and/or controller keys. For example analog keys sensing and converting pressure into a multi-level digital signal may be remapped to joysticks and conversely. The sensitivity of analog keys may also be adjusted and the vibration mode of controller motors selected by controller 10.
All user programming features are set to defaults values at power-on, but the last five or more programmed configurations ("save sets") are stored in non-volatile memory and may be recalled by the user. The first of these "save sets" is stored automatically, additional "save sets" may be stored manually up to the memory capacity ofthe controller.
Entertainment system functions built into the electronic game device are controlled by remapping the existing controller keys or in the case of a stand-alone special purpose entertainment wireless RF remote controller by using a subset of the defined button fields in the game protocol payload definition. If wireless RF remote controller 10 has more buttons than supported by the basic game controller, a data-oriented packet method may be used or additional gaming-related fields may be defined.
Base transceiver 12 mediates and converts signals between controller 10 and electronic game device 14 to ensure compatibility. Base transceiver 12 also can control the sub-functions of bonding new controllers 10 to base transceivers 12 and the associated mapping of new controller types to new or existing electronic game devices 14.
Electronic gaming devices can include integrated entertainment and communication features such as DVD, internet connectivity, telephony, and video conferencing. Controller 10 can incorporate various entertainment control, communication control and data capabilities suitable for providing ethernet interface, portals for internet appliances, personal digital assistance, and audio, tactile and visual interfaces such as microphones, speakers, video displays, video cameras, data ports, and VR-virtual reality devices.
Because wireless gaming controllers provide increasingly diverse and sophisticated functionality, the wireless controller architecture provided by the invention coordinates and supports differing controllers 10 as an interface with differing electronic game devices 14. The invention allows interoperation of any game controller 10 with any electronic game device 14 by means of a common layered protocol which mediates data com ections and the content/presentation format ofthe data structure. The data format from a given controller 10 may need to be modified to be correctly interpreted by a given electronic game device. The reconfiguration is automatic in nature via a feature negotiation process and is adaptable to many more configurations permutations on many different types of controllers and on many different types of elecfronic game devices without using a mechanical switching cartridge for each game permutation. The invention adapts a signal on both the controller 10 and base transceiver 12 end of the game controller connection and provides for more generic controller input/output configurations. The invention can support multiple controllers and contains innovations unique to the wireless gaming environment such as channel palettes, synchronization, and bonding. The invention provides a feature negotiation process which allows the system to adapt to new controller types and multi-controller configurations, for multiple hosts and multiple base transceivers and multiple electronic game device types. It also provides synchronization between base transceivers, simultaneous polling volleys, and mediation for different elecfronic game device types.
The invention also supports controller input/output functions and programming capabilities and interfacing between the controller and an electronic game device with the following characteristics:
1) low packet fransmission latency with stringent real time performance;
2) noise characterization and circumvention; 3) error detection protocols;
4) low overhead, low cost, and low power consumption;
5) clear channel seeking, frequency hopping;
6) multiple function controller support;
7) multiple vendor / cross-platform controller and electronic game device support; 8) multiple point base transceiver to multiple controllers support;
9) support for dynamically bonding controllers to base fransceivers with a built in feature negotiation step to allow the base transceiver to learn controller attributes; and
10) multiple layer (RF (physical), adaptation, and application) system, allowing new features to be easily introduced on a per layer basis without interfering with features of other layers.
In different embodiments of the invention, the controller and base transceiver can share a common address transmitted as one of the signals. The system can support multipoint RF wireless communications between a base fransceiver and subtended controllers where such base transceivers and controllers can be of multiple types and can dynamically bond with and negotiate to determine supported capabilities. The system can include a layered architecture that ensures compatibility between linked controller and electronic game devices through a protocol independent of both the controller and the electronic game device, and the layered framework can ensure compatibility between a linked controller and elecfronic game device through a protocol independent of both the controller and the electronic game device. The system can comprise first and second controllers each transmitting RF wireless signals respectively to first and second base transceivers, and each microprocessor in each first and second base transceivers can dynamically synchronize first and second base fransceiver inter-transceiver and controUer-to-fransceiver transmission events. The controller and base fransceiver and electronic game device are supportable with game-related data and firmware updates.
Although the invention has been described in terms of certain preferred embodiments, it will be apparent to those of ordinary skill in the art that modifications and improvements can be made to the inventive concepts herein without departing from the scope of the invention. The embodiments shown herein are merely illustrative of the inventive concepts and should not be interpreted as limiting the scope ofthe invention.

Claims

WHAT IS CLAIMED IS:
1. A radio frequency wireless system for operating an electronic game device, comprising: a base fransceiver engaged with the game device and having radio frequency transmission capabilities; a controller for transmitting RF wireless signals to said base fransceiver, wherein said controller has selected operating characteristics transmittable by said RF wireless signals; a microprocessor engaged with said base transceiver for controlling the receipt and transmission of said RF wireless signals, wherein said microprocessor is capable of identifying the selected operating characteristics of said controller and of modifying operation in response to such selected operating characteristics.
2. A system as recited in Claim 1, further comprising first and second controllers each transmitting RF wireless signals to said base transceiver, and wherein said microprocessor is capable of identifying selected operating characteristics associated with each of said first and second controllers.
3. A system as recited in Claim 2, wherein said microprocessor utilizing the RF transmission capabilities of said base transceiver is capable of transmitting different wireless signals to each of said first and second controllers in response to RF wireless signals transmitted by each controller.
4. A system as recited in Claim 2, wherein said microprocessor utilizing the RF receiving capabilities of said base receiver is capable of identifying RF wireless signals fransmitted by a third controller, and of initiating transmission of RF wireless signals to said third controller.
5. A system as recited in Claim 4, wherein said microprocessor utilizing the RF receiving capabilities of said base transceiver is capable of identifying RF wireless signals fransmitted by a third controller, of initiating transmission of RF wireless signals to said third controller and of requesting modification of the transmission of selected operating characteristics associated with each of said first, second and third controllers in situations of limited fransmission capacity.
6. A system as recited in Claim 2, wherein said microprocessor is capable of monitoring data fransmission capacity of said base fransceiver and of modifying operation of the RF wireless signals fransmitted to and from said first and second controllers.
7. A system as recited in Claim 1, further comprising a light for identifying receipt of RF wireless signals from said controller.
8. A system as recited in Claim 1, wherein said base transceiver is capable of transmitting RF wireless signals from the electronic game device to said controller.
9. A system as recited in Claim 1, wherein said controller is engaged with said base transceiver for detecting RF wireless signals transmitted by said base fransceiver and transmitting RF wireless signals to said base transceiver.
10. A system as recited in Claim 1, wherein said controller receives input signals from controller input devices, controller data interface and from feedback signals from the electronic game device and sends output signals to the controller data interface and to the electronic game device through the base transceiver.
11. A system as recited in Claim 1, wherein said base fransceiver and controllers are capable of transmitting said RF wireless signals in a plurality of discrete time intervals over dynamically selected and reconfigurable channel frequencies.
12. A system as recited in Claim 1, wherein the base transceiver and controllers are capable of receiving said RF wireless signals in a plurality of discrete time intervals over dynamically selected and reconfigurable channel frequencies.
13. A system as recited in Claim 1, wherein said controller and said base transceiver share a common address fransmitted as one of said signals.
14. A system as recited in Claim 1, wherein the system supports multipoint RF wireless communications between a base transceiver and subtended controllers where such base transceivers and controllers can be of multiple types and can dynamically bond with and negotiate to determine supported capabilities.
15. A system as recited in Claim 1, wherein a layered architecture is used that ensures compatibility between linked controller and electronic game devices through a protocol independent of both the controller and the electronic game device.
16. A system as recited in Claim 1, further comprising first and second controllers each transmitting RF wireless signals respectfully to first and second base transceivers, and wherein said microprocessor in each first and second base fransceivers dynamically coordinates mutually exclusive channel frequency selection.
17. A system as recited in Claim 1, further comprising first and second controllers each transmitting RF wireless signals respectively to first and second base fransceivers, and wherein said microprocessor in each first and second base transceivers dynamically synchronizes first and second base transceiver inter-transceiver and confroUer-to-transceiver transmission events.
18. A system as recited in Claim 1, wherein said controller and base fransceiver and electronic game device are supportable with game-related data and firmware updates.
PCT/CA2001/001486 2000-10-25 2001-10-23 Wireless game control system WO2002034345A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001295348A AU2001295348A1 (en) 2000-10-25 2001-10-23 Wireless game control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/696,570 US6684062B1 (en) 2000-10-25 2000-10-25 Wireless game control system
US09/696,570 2000-10-25

Publications (2)

Publication Number Publication Date
WO2002034345A2 true WO2002034345A2 (en) 2002-05-02
WO2002034345A3 WO2002034345A3 (en) 2002-09-19

Family

ID=24797624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2001/001486 WO2002034345A2 (en) 2000-10-25 2001-10-23 Wireless game control system

Country Status (3)

Country Link
US (1) US6684062B1 (en)
AU (1) AU2001295348A1 (en)
WO (1) WO2002034345A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098735A1 (en) * 2003-05-09 2004-11-18 Addvalue Technologies Ltd Electronic game playing apparatus
WO2005008966A1 (en) 2003-07-23 2005-01-27 Sony Computer Entertainment Inc. Communication device, game system, connection establishment method, communication method, adapter device, and communication system
EP1584359A3 (en) * 2004-03-31 2005-10-19 Microsoft Corporation Game controller power management
FR2869436A1 (en) * 2004-04-27 2005-10-28 Xkapad Sa COMPUTER SYSTEM COMPRISING A PLURALITY OF CONTROL ACCESSORIES, IN PARTICULAR FOR VIDEO GAMES
EP2262227A1 (en) * 2009-06-01 2010-12-15 Lg Electronics Inc. Image display device and operation method thereof
KR101202114B1 (en) * 2002-08-29 2012-11-15 마이크로소프트 코포레이션 Game controller power management
US8409003B2 (en) 2005-08-24 2013-04-02 Nintendo Co., Ltd. Game controller and game system
US8608564B2 (en) 2009-04-21 2013-12-17 Nyko Technologies, Inc. Connector for video game controller, and video game controller including the same
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
WO2015118082A3 (en) * 2014-02-05 2015-10-01 Ironburg Inventions Controller for a games console, tool and a method therefor
US9467119B2 (en) 2009-05-29 2016-10-11 Lg Electronics Inc. Multi-mode pointing device and method for operating a multi-mode pointing device
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US10220308B2 (en) 2015-11-27 2019-03-05 Ironburg Inventions Ltd. Games controller and trigger therefor
US10350490B2 (en) 2016-06-14 2019-07-16 Ironburg Inventions Limited Games controller
US10427036B2 (en) 2015-09-24 2019-10-01 Ironburg Inventions Limited Games controller
US10441881B2 (en) 2015-01-09 2019-10-15 Ironburg Inventions Limited Controller for a games console
US10576386B2 (en) 2015-09-23 2020-03-03 Ironburg Inventions Limited Games controller
USD881283S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller
USD881125S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller motor set
USD881282S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller
USD889550S1 (en) 2018-09-05 2020-07-07 Ironburg Inventions Limited Game controller
USD889549S1 (en) 2018-09-05 2020-07-07 Ironburg Inventions Limited Game controller
US10843069B2 (en) 2016-08-11 2020-11-24 Ironburg Inventions Limited Input apparatus for a computer
US10940386B2 (en) 2015-10-09 2021-03-09 Ironburg Inventions Limited Games controller
US11013986B2 (en) 2017-03-15 2021-05-25 Ironburg Inventions Limited Input apparatus for a games console
US11103775B2 (en) 2017-06-12 2021-08-31 Ironburg Inventions Limited Input apparatus for a games console
US11185766B2 (en) 2013-11-29 2021-11-30 Ironburg Inventions Limited Games controller
USD983269S1 (en) 2020-06-19 2023-04-11 Ironburg Inventions Limited Input apparatus for a games console

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847058B2 (en) 1999-10-04 2006-11-15 任天堂株式会社 GAME SYSTEM AND GAME INFORMATION STORAGE MEDIUM USED FOR THE SAME
US20060229930A9 (en) * 1999-11-15 2006-10-12 Gottfurcht Elliot A Method to generate advertising revenue based on time and location
US7020845B1 (en) * 1999-11-15 2006-03-28 Gottfurcht Elliot A Navigating internet content on a television using a simplified interface and a remote control
US6600497B1 (en) * 1999-11-15 2003-07-29 Elliot A. Gottfurcht Apparatus and method to navigate interactive television using unique inputs with a remote control
US20040150677A1 (en) * 2000-03-03 2004-08-05 Gottfurcht Elliot A. Method for navigating web content with a simplified interface using audible commands
US6611881B1 (en) 2000-03-15 2003-08-26 Personal Data Network Corporation Method and system of providing credit card user with barcode purchase data and recommendation automatically on their personal computer
US6874029B2 (en) * 2000-11-22 2005-03-29 Leap Wireless International, Inc. Method and system for mediating interactive services over a wireless communications network
WO2002043404A2 (en) * 2000-11-22 2002-05-30 Leap Wireless International, Inc. Method and system for providing interactive services over a wireless communications network
US7574493B2 (en) 2000-11-22 2009-08-11 Cricket Communications, Inc. Method and system for improving the efficiency of state information transfer over a wireless communications network
US7027418B2 (en) * 2001-01-25 2006-04-11 Bandspeed, Inc. Approach for selecting communications channels based on performance
US20020159434A1 (en) * 2001-02-12 2002-10-31 Eleven Engineering Inc. Multipoint short range radio frequency system
US20020110246A1 (en) * 2001-02-14 2002-08-15 Jason Gosior Wireless audio system
US20020128041A1 (en) * 2001-03-09 2002-09-12 Parry Travis J. Methods and systems for controlling multiple computing devices
NO318739B1 (en) * 2001-03-29 2005-05-02 Brabrand Teknologi Utvikling A Remote control device and remote control system for toys or model driving toys
US20020150076A1 (en) * 2001-04-17 2002-10-17 Cheng-Shing Lai Method for playing real time game between cellular phones
EP1393151A2 (en) * 2001-05-14 2004-03-03 Koninklijke Philips Electronics N.V. Device for interacting with real-time streams of content
US7007236B2 (en) * 2001-09-14 2006-02-28 Accenture Global Services Gmbh Lab window collaboration
US20040150676A1 (en) * 2002-03-25 2004-08-05 Gottfurcht Elliot A. Apparatus and method for simple wide-area network navigation
US6773349B2 (en) * 2002-07-31 2004-08-10 Intec, Inc. Video game controller with integrated video display
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US7003598B2 (en) * 2002-09-18 2006-02-21 Bright Entertainment Limited Remote control for providing interactive DVD navigation based on user response
US20060164932A1 (en) * 2002-09-18 2006-07-27 Bright Entertainment Limited Media control unit for providing interactive experience with audiovisual content of dvd
US20050005043A1 (en) * 2002-11-01 2005-01-06 Pushplay Interactive, Llc Controller and removable user interface (RUI) for media event and additional media content
US20040140998A1 (en) * 2002-11-01 2004-07-22 Gravina Craig S. Controller and removable user interface (rui) for controlling media event
US20040140997A1 (en) * 2002-11-01 2004-07-22 Gravina Craig S. Controller and removable user interface (rui) for media presentation
US7024501B1 (en) * 2002-11-18 2006-04-04 Cypress Semiconductor Corp. Method and apparatus for attaching USB peripherals to host ports
US20040125075A1 (en) * 2002-12-31 2004-07-01 Diercks Richard A. DVD remote control with interchangeable, title-specific interactive panels
US20050075169A1 (en) * 2003-04-16 2005-04-07 Zeroplus Technology Co., Ltd. [wireless controller of a video game player]
US7416487B2 (en) * 2003-04-16 2008-08-26 Sony Computer Entertainment Inc. Communication device, game machine, and communication method
KR101157308B1 (en) * 2003-04-30 2012-06-15 디즈니엔터프라이지즈,인크. Cell phone multimedia controller
JP3907609B2 (en) * 2003-04-30 2007-04-18 株式会社ソニー・コンピュータエンタテインメント GAME EXECUTION METHOD, GAME MACHINE, COMMUNICATION METHOD, AND COMMUNICATION DEVICE
JP2005142860A (en) * 2003-11-06 2005-06-02 Sony Computer Entertainment Inc Communication device and method for communication control, and machine and system for game
US20050157668A1 (en) * 2003-12-24 2005-07-21 Michael Sivan Wireless remote control and data transfer system
US7753788B2 (en) 2004-01-30 2010-07-13 Microsoft Corporation Game controller that converts between wireless operation and wired operation
JP4376661B2 (en) * 2004-03-02 2009-12-02 任天堂株式会社 Game system and game program
CA2471975C (en) * 2004-03-18 2006-01-24 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US7205908B2 (en) * 2004-03-18 2007-04-17 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US7170426B2 (en) * 2004-03-18 2007-01-30 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US20050221896A1 (en) * 2004-03-31 2005-10-06 Microsoft Corporation Wireless game controller with fast connect to a host
US20050221895A1 (en) * 2004-04-02 2005-10-06 Microsoft Corporation Binding of wireless game controller to host
JP4087814B2 (en) * 2004-05-13 2008-05-21 リンナイ株式会社 Wireless communication system
US20060157152A1 (en) * 2004-08-13 2006-07-20 Wolski Peter F Beverage dispenser with game controller
US20060046706A1 (en) * 2004-08-26 2006-03-02 Jiansong Lin Monitoring and remote control of wireless communication device accessories and functionality
US7458894B2 (en) * 2004-09-15 2008-12-02 Microsoft Corporation Online gaming spectator system
US7653123B1 (en) 2004-09-24 2010-01-26 Cypress Semiconductor Corporation Dynamic data rate using multiplicative PN-codes
US9289678B2 (en) * 2005-01-12 2016-03-22 Microsoft Technology Licensing, Llc System for associating a wireless device to a console device
US8369795B2 (en) 2005-01-12 2013-02-05 Microsoft Corporation Game console notification system
US20060162178A1 (en) * 2005-01-27 2006-07-27 Freidin Philip M System for wireless local display of measurement data from electronic measuring tools and gauges
US20060172802A1 (en) * 2005-01-31 2006-08-03 Saied Hussaini Multi-function wireless adapter system for game console
US7430400B2 (en) * 2005-03-28 2008-09-30 Microsoft Corporation WiFi collaboration method to reduce RF interference with wireless adapter
US7787411B2 (en) * 2005-05-10 2010-08-31 Microsoft Corporation Gaming console wireless protocol for peripheral devices
JP4849829B2 (en) 2005-05-15 2012-01-11 株式会社ソニー・コンピュータエンタテインメント Center device
US7927216B2 (en) * 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8308563B2 (en) * 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
EP2668984B1 (en) 2005-09-15 2015-01-07 Sony Computer Entertainment Inc. Information and telecommunications system, information processing unit, and operation terminal
US20070066395A1 (en) * 2005-09-20 2007-03-22 Harris John M System and method for improving player experience in wireless gaming
US9389702B2 (en) * 2005-10-06 2016-07-12 Hewlett-Packard Development Company, L.P. Input association
US8142287B2 (en) * 2005-10-11 2012-03-27 Zeemote Technology Inc. Universal controller for toys and games
US20070111796A1 (en) * 2005-11-16 2007-05-17 Microsoft Corporation Association of peripherals communicatively attached to a console device
JP2007151006A (en) * 2005-11-30 2007-06-14 Fujitsu Ltd Communication system and communication terminal equipment
US8162757B2 (en) * 2007-03-07 2012-04-24 Electronic Arts Inc. Multiplayer platform for mobile applications
US8116726B2 (en) 2007-08-30 2012-02-14 Motorola Mobility, Inc. Parent and child mobile communication devices with feature control and call-back
US8384565B2 (en) * 2008-07-11 2013-02-26 Nintendo Co., Ltd. Expanding operating device and operating system
US8588805B2 (en) * 2008-12-13 2013-11-19 Broadcom Corporation Receiver utilizing multiple radiation patterns to determine angular position
KR101075964B1 (en) * 2009-02-02 2011-10-21 아주대학교산학협력단 Apparatus and method for relaying multiple links in a communication system
US8564398B2 (en) * 2009-07-29 2013-10-22 Echostar Technologies L.L.C. Signal strength detection for identifying interference with communications controller and controlled devices
EP2542982A4 (en) * 2010-03-05 2016-10-26 Infrared5 Inc System and method for two way communication and controlling content in a web browser
US9669303B2 (en) * 2010-04-16 2017-06-06 Douglas Howard Dobyns Computer game interface
US8610764B2 (en) * 2010-07-09 2013-12-17 Sony Corporation Shutter glasses repeater
US20130045803A1 (en) * 2011-08-21 2013-02-21 Digital Harmony Games, Inc. Cross-platform gaming between multiple devices of multiple types
CN103294179A (en) * 2012-03-01 2013-09-11 英华达(上海)科技有限公司 Method for converting mobile communication device into game handle
US9492741B2 (en) 2013-05-22 2016-11-15 Microsoft Technology Licensing, Llc Wireless gaming protocol
US8979658B1 (en) * 2013-10-10 2015-03-17 Voyetra Turtle Beach, Inc. Dynamic adjustment of game controller sensitivity based on audio analysis
US10328344B2 (en) * 2013-10-11 2019-06-25 Valve Corporation Game controller systems and methods
US9813468B2 (en) 2015-09-08 2017-11-07 Microsoft Technology Licensing, Llc Wireless control of streaming computing device
JP6888732B2 (en) * 2018-06-14 2021-06-16 住友電気工業株式会社 Wireless sensor system, wireless terminal device, communication control method and communication control program
US10893127B1 (en) * 2019-07-26 2021-01-12 Arkade, Inc. System and method for communicating interactive data between heterogeneous devices
US10773157B1 (en) 2019-07-26 2020-09-15 Arkade, Inc. Interactive computing devices and accessories
US10946272B2 (en) 2019-07-26 2021-03-16 Arkade, Inc. PC blaster game console
US11748291B2 (en) 2021-06-08 2023-09-05 Dell Products, Lp System and method for fabricating and executing a wireless gaming keyboard and mouse adapter system
US11662855B1 (en) * 2022-11-15 2023-05-30 Backbone Labs, Inc. System and method for adjusting input polling rate in gaming input devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924216A (en) * 1988-02-12 1990-05-08 Acemore International Ltd. Joystick controller apparatus
US5605505A (en) * 1994-02-25 1997-02-25 Lg Electronics Co., Ltd. Two-player game playing apparatus using wireless remote controllers
US5738583A (en) * 1996-02-02 1998-04-14 Motorola, Inc. Interactive wireless gaming system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334221A (en) * 1979-10-22 1982-06-08 Ideal Toy Corporation Multi-vehicle multi-controller radio remote control system
US4578674A (en) * 1983-04-20 1986-03-25 International Business Machines Corporation Method and apparatus for wireless cursor position control
US4531740A (en) 1983-06-22 1985-07-30 Cynex Manufacturing Corporation Remote control system for a video computer game
DE3900588A1 (en) * 1989-01-11 1990-07-19 Toepholm & Westermann REMOTE CONTROLLED, PROGRAMMABLE HOUR DEVICE SYSTEM
US6006100A (en) * 1990-05-25 1999-12-21 Norand Corporation Multi-level, hierarchical radio-frequency communication system
US5551701A (en) 1992-08-19 1996-09-03 Thrustmaster, Inc. Reconfigurable video game controller with graphical reconfiguration display
US5245320A (en) 1992-07-09 1993-09-14 Thrustmaster, Inc. Multiport game card with configurable address
JP3222001B2 (en) * 1993-12-14 2001-10-22 ユニデン株式会社 Channel switching control method and cordless telephone using the same
US5806849A (en) 1994-02-17 1998-09-15 Electronic Arts, Inc. Electronic game system with wireless controller
JPH07289736A (en) 1994-04-25 1995-11-07 Namco Ltd Game system and entry method to game system
US5451053A (en) 1994-09-09 1995-09-19 Garrido; Fernando P. Reconfigurable video game controller
US5618045A (en) 1995-02-08 1997-04-08 Kagan; Michael Interactive multiple player game system and method of playing a game between at least two players
JP2772272B2 (en) 1995-11-30 1998-07-02 日本電気移動通信株式会社 Game console control system
US5881366A (en) 1996-05-01 1999-03-09 Logitech, Inc. Wireless peripheral interface
US6035212A (en) * 1996-08-02 2000-03-07 Lsi Logic Corporation Multi-frequency wireless communication device
JPH114966A (en) 1996-10-01 1999-01-12 Sony Computer Entateimento:Kk Operation device for game machine and game device
JP3956161B2 (en) 1996-12-05 2007-08-08 株式会社セガ COMMUNICATION CONTROL SYSTEM, COMMUNICATION CONTROL DEVICE, GAME DEVICE, AND RECORDING MEDIUM
US6071194A (en) 1997-06-19 2000-06-06 Act Labs Ltd Reconfigurable video game controller
TW428408B (en) 1998-05-12 2001-04-01 Sony Computer Entertainment Inc Game apparatus, operation apparatus for game machines, and 2-way communication method for game systems and game apparatus
US6238289B1 (en) * 2000-01-10 2001-05-29 Eleven Engineering Inc. Radio frequency game controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924216A (en) * 1988-02-12 1990-05-08 Acemore International Ltd. Joystick controller apparatus
US5605505A (en) * 1994-02-25 1997-02-25 Lg Electronics Co., Ltd. Two-player game playing apparatus using wireless remote controllers
US5738583A (en) * 1996-02-02 1998-04-14 Motorola, Inc. Interactive wireless gaming system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10, 31 October 1997 (1997-10-31) & JP 09 149984 A (NIPPON DENKI IDO TSUSHIN KK), 10 June 1997 (1997-06-10) *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US10300374B2 (en) 1999-02-26 2019-05-28 Mq Gaming, Llc Multi-platform gaming systems and methods
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US10307671B2 (en) 2000-02-22 2019-06-04 Mq Gaming, Llc Interactive entertainment system
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US10188953B2 (en) 2000-02-22 2019-01-29 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US10307683B2 (en) 2000-10-20 2019-06-04 Mq Gaming, Llc Toy incorporating RFID tag
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US10758818B2 (en) 2001-02-22 2020-09-01 Mq Gaming, Llc Wireless entertainment device, system, and method
US10179283B2 (en) 2001-02-22 2019-01-15 Mq Gaming, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US10507387B2 (en) 2002-04-05 2019-12-17 Mq Gaming, Llc System and method for playing an interactive game
US10478719B2 (en) 2002-04-05 2019-11-19 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
KR101202114B1 (en) * 2002-08-29 2012-11-15 마이크로소프트 코포레이션 Game controller power management
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10583357B2 (en) 2003-03-25 2020-03-10 Mq Gaming, Llc Interactive gaming toy
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US10369463B2 (en) 2003-03-25 2019-08-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
WO2004098735A1 (en) * 2003-05-09 2004-11-18 Addvalue Technologies Ltd Electronic game playing apparatus
EP1662707A4 (en) * 2003-07-23 2012-06-06 Sony Computer Entertainment Inc Communication device, game system, connection establishment method, communication method, adapter device, and communication system
WO2005008966A1 (en) 2003-07-23 2005-01-27 Sony Computer Entertainment Inc. Communication device, game system, connection establishment method, communication method, adapter device, and communication system
EP3623024A1 (en) * 2003-07-23 2020-03-18 Sony Interactive Entertainment Inc. Communication device, game system, connection establishment method, communication method, adapter device, and communication system
EP1662707A1 (en) * 2003-07-23 2006-05-31 Sony Computer Entertainment Inc. Communication device, game system, connection establishment method, communication method, adapter device, and communication system
EP1584359A3 (en) * 2004-03-31 2005-10-19 Microsoft Corporation Game controller power management
WO2005105245A1 (en) * 2004-04-27 2005-11-10 Xkpad Computer system comprising a plurality of control accessories, particularly for video games
FR2869436A1 (en) * 2004-04-27 2005-10-28 Xkapad Sa COMPUTER SYSTEM COMPRISING A PLURALITY OF CONTROL ACCESSORIES, IN PARTICULAR FOR VIDEO GAMES
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
US8409003B2 (en) 2005-08-24 2013-04-02 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8608564B2 (en) 2009-04-21 2013-12-17 Nyko Technologies, Inc. Connector for video game controller, and video game controller including the same
US9467119B2 (en) 2009-05-29 2016-10-11 Lg Electronics Inc. Multi-mode pointing device and method for operating a multi-mode pointing device
US8704958B2 (en) 2009-06-01 2014-04-22 Lg Electronics Inc. Image display device and operation method thereof
EP2262227A1 (en) * 2009-06-01 2010-12-15 Lg Electronics Inc. Image display device and operation method thereof
US11185766B2 (en) 2013-11-29 2021-11-30 Ironburg Inventions Limited Games controller
CN106457038B (en) * 2014-02-05 2019-12-31 铁堡发明有限公司 Controller for game host and tool and method thereof
CN106457038A (en) * 2014-02-05 2017-02-22 铁堡发明有限公司 Controller for a games console, tool and a method therefor
US10596453B2 (en) 2014-02-05 2020-03-24 Ironburg Inventions Limited Controller for a games console, tool and a method therefor
WO2015118082A3 (en) * 2014-02-05 2015-10-01 Ironburg Inventions Controller for a games console, tool and a method therefor
US10441881B2 (en) 2015-01-09 2019-10-15 Ironburg Inventions Limited Controller for a games console
US11110345B2 (en) 2015-01-09 2021-09-07 Ironburg Inventions Limited Controller for a games console
US10576386B2 (en) 2015-09-23 2020-03-03 Ironburg Inventions Limited Games controller
US10427036B2 (en) 2015-09-24 2019-10-01 Ironburg Inventions Limited Games controller
US10940386B2 (en) 2015-10-09 2021-03-09 Ironburg Inventions Limited Games controller
US10220308B2 (en) 2015-11-27 2019-03-05 Ironburg Inventions Ltd. Games controller and trigger therefor
US10350490B2 (en) 2016-06-14 2019-07-16 Ironburg Inventions Limited Games controller
US10843069B2 (en) 2016-08-11 2020-11-24 Ironburg Inventions Limited Input apparatus for a computer
US11013986B2 (en) 2017-03-15 2021-05-25 Ironburg Inventions Limited Input apparatus for a games console
US11103775B2 (en) 2017-06-12 2021-08-31 Ironburg Inventions Limited Input apparatus for a games console
USD889549S1 (en) 2018-09-05 2020-07-07 Ironburg Inventions Limited Game controller
USD889550S1 (en) 2018-09-05 2020-07-07 Ironburg Inventions Limited Game controller
USD881282S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller
USD881125S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller motor set
USD881283S1 (en) 2018-09-05 2020-04-14 Ironburg Inventions Limited Game controller
USD983269S1 (en) 2020-06-19 2023-04-11 Ironburg Inventions Limited Input apparatus for a games console

Also Published As

Publication number Publication date
WO2002034345A3 (en) 2002-09-19
AU2001295348A1 (en) 2002-05-06
US6684062B1 (en) 2004-01-27

Similar Documents

Publication Publication Date Title
US6684062B1 (en) Wireless game control system
US6238289B1 (en) Radio frequency game controller
CN101142851B (en) Remote control system of hearing aid
US6346047B1 (en) Radio frequency remote game controller
JP4337814B2 (en) Visible light communication apparatus, visible light communication system, visible light communication method, and visible light communication program
US7119710B2 (en) Digital interconnect of entertainment equipment
EP1827258B1 (en) Secure transmission of wireless control to central unit
US7149475B2 (en) Wireless communication control apparatus and method, storage medium and program
JP4618882B2 (en) Information processing system
EP1849507B1 (en) Game apparatus, communication apparatus, wireless game controller, and game system
AU771204B2 (en) Digital interconnection of electronics entertainment equipment
US20110144778A1 (en) Smart Audio Plug-in for Enabling Smart Portable Device to be Universal Remote Control
CN104200632A (en) Method and system for achieving remote control function through wearable equipment with combination of intelligent mobile terminal
WO2005089163A3 (en) Switchless kvm network with wireless technology
WO2003062999A3 (en) Apparatus and method for controlling devices
WO2003007594A1 (en) Av data transmitter, av data receiver, and av data displaying/reproducing apparatus
CN112423241A (en) Intelligent device, control method and control system of intelligent device
TW201318676A (en) System and method for controlling output of music and input of multiple operations for wireless amusement device
WO2016192183A1 (en) Communication method for wi-fi internet of things equipment and wi-fi internet of things system
US20080115709A1 (en) Communication device for a sewing machine
WO2001066209A1 (en) Radio frequency remote game controller
WO2009096172A1 (en) Visible light communication system
CN100403349C (en) Flow-medium player method and apparatus for wireless remote-controlling system
CN202454065U (en) Wireless remote controller device with function of wireless earphones
CN117595895B (en) Multichannel radio frequency remote control system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANTO TO RULE 69(1), EPO FORM 1205A, DATED 04/08/2003.

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP