WO2002047111A2 - A high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp - Google Patents

A high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp Download PDF

Info

Publication number
WO2002047111A2
WO2002047111A2 PCT/US2001/047190 US0147190W WO0247111A2 WO 2002047111 A2 WO2002047111 A2 WO 2002047111A2 US 0147190 W US0147190 W US 0147190W WO 0247111 A2 WO0247111 A2 WO 0247111A2
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
male connector
lead
exterior
contour
Prior art date
Application number
PCT/US2001/047190
Other languages
French (fr)
Other versions
WO2002047111A3 (en
Inventor
Thomas A. Duggan
H. Vo Nam
Richard R. Kemp
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to EP01987328A priority Critical patent/EP1405326A2/en
Publication of WO2002047111A2 publication Critical patent/WO2002047111A2/en
Publication of WO2002047111A3 publication Critical patent/WO2002047111A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/50Means forming part of the tube or lamps for the purpose of providing electrical connection to it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/50Means forming part of the tube or lamps for the purpose of providing electrical connection to it
    • H01J5/54Means forming part of the tube or lamps for the purpose of providing electrical connection to it supported by a separate part, e.g. base
    • H01J5/58Means for fastening the separate part to the vessel, e.g. by cement

Definitions

  • the present invention is directed generally to a method and apparatus for providing high intensity light and, more particularly, to a high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp.
  • a high intensity discharge (HID) system is a lighting system which throws an intense light therefrom.
  • High intensity discharge systems are generally used in commercial and military aircraft applications.
  • a conventional high intensity discharge lamp is illustrated in Fig. 1 .
  • the high intensity discharge lighting system generally includes a lamp 10.
  • the lamp 10 is preferably hermetically sealed, and may include two electrodes 1 2 within the hermetically sealed cavity 14.
  • An HID lighting system preferably uses a high voltage to strike an arc between the electrode 1 2, thus providing a bright light from the lamp.
  • the electrodes 1 2, or other light source, is preferably connected to and supported within the lamp 10 by a support tree 1 8.
  • the current used to provide the light to the HID lamp light source 1 2 flows from a power source exterior to the lamp 1 2, and generally enters the lamp 10 via two small interconnects 20, preferably of copper, at the back of the lamp 1 0.
  • the two interconnects 20 at the back of the lamp 1 0 have generally constituted an exposed un-ihsulated surface at the back of the lamp 10 to which the power source leads 22 are connected, such as by screwing the power source to mated threads on the exposed interconnect 20.
  • HID lamps currently in use do not always provide a secure connection between the power supply source leads 22 and the interconnects 20, and, additionally, do not always provide insulation adequate to enclose the connection between the power source leads 22 and the interconnects 20.
  • the interconnects and power supply are not securely connected, such as by aircraft maintenance personnel, or when the connection between the interconnects and the leads is not adequately insulated, arcing can occur due to the high voltage in use in HID aircraft application. This arcing problem can be exacerbated by the high altitudes at which HID lamps are required to perform.
  • Arcing problems on an aircraft may lead to devastating consequences. Arcing can start fires, and, because HID lamps are often in use in areas of an aircraft where fuel or fuel vapors are present, such as on the wings, fires caused by arcing can lead to explosions or serious malfunctions on the aircraft. Such explosions and malfunctions can lead to the destruction of an aircraft and, consequently, a loss of life. Additionally, arcing can negatively effect the performance of nearby equipment on the aircraft, and cause power outages to vital systems, as well as overloads to vital systems.
  • the present manner of interconnecting the power source to the HID interconnects is cumbersome and difficult for aircraft personnel.
  • the difficulty encountered in this interconnection can lead to the connection not being made properly or completely. This lack of a proper or complete connection can lead to arcing problems.
  • the difficulty in properly connecting the power source and the interconnects can lead to difficulty in the replacement or substitution of HID lamps, or the avoidance of such replacements by aircraft personnel, when such replacements would be otherwise necessary.
  • the present invention is directed to a high intensity discharge lamp.
  • the high intensity discharge lamp of the present invention includes an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp, a male connector that is fastened at its base to one of the leads of the lamp, an insulate housing having an inner contour shaped to fittedly encompass therein the male connector and at least a portion of the lead of the arc lamp, and a cement contact that fastens, without air gaps, the housing to the lamp exterior.
  • the lamp may additionally include a boot that hermetically locks over the insulate housing, a female connector mated to the male connector within the boot, and a feed line electrically connected to the female connector on one end and to a power source at the other end.
  • the present invention includes an electrical interface for use with an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp.
  • the electrical interface includes a male connector that is fastened at its base to one of the leads of the lamp, an insulate housing having an inner contour shaped to fittedly encompass therein the male connector and at least a portion of the lead of the arc lamp, and a cement contact that fastens, without air gaps, the housing to the lamp exterior.
  • the present invention also includes a method of interconnecting a high intensity discharge lamp.
  • the method includes providing an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp, fastening a male connector, at a base of the male connector, to one of the leads of the lamp, sliding an insulate housing fittedly over the male connector and at least a portion of the lead of the lamp, and hermetically fastening the insulate housing to the lamp exterior.
  • the method of the present invention may additionally include detachably hermetically locking a boot over the insulate housing, wherein the boot includes therein a female connector mated to the male connector, mating the female connector to the male connector, electrically connecting a feed line to the female connector, which feed line passes electrical current, and permanently hermetically sealing the feed line to the boot.
  • the present invention solves problems experienced with the prior art because it prevents arcing difficulties on aircraft, particularly at above
  • FIG. 1 is a schematic diagram illustrating a high intensity discharge lamp
  • FIG. 2 is a schematic diagram illustrating a high intensity discharge lamp having an electrical interface connected thereto;
  • FIG. 3 is a schematic diagram illustrating a male connector
  • FIG. 4 is a schematic diagram illustrating an insulate housing
  • FIG. 5 is a schematic diagram illustrating a female connector for use in the electrical interface
  • FIG. 6 is a schematic diagram illustrating a boot for use in the electrical interface
  • FIG. 7 is a flow diagram illustrating a method of interconnecting a high intensity discharge lamp.
  • Fig. 2 is a schematic diagram illustrating a high intensity discharge lamp 200 developed in accordance with the present invention and having an electrical interface 202 connected thereto.
  • the electrical interface 202 includes a male connector 204, an insulate housing 206, and at least one cement contact 208.
  • one electrical interface 202 is connected to each of the two electrical leads 226 extending through the back of the lamp 200, which leads are, for example, electrical current carrying, such as copper, components that are heated and pressed into the glass of the lamp 200, thereby creating a hermetic seal.
  • the electrical interface 202 preferably includes a female connector 21 0 within a boot 21 2, which female connector 21 0 electrically contacts the male connector 204.
  • the HID lamp 200 preferably is an electrical arc lamp, but may be any high voltage lamp or device.
  • the HID lamp 200 includes a lamp exterior 220, and hermetically sealed within the lamp exterior 220 are two electrodes.
  • a portion 224 of the lamp exterior 220 is preferably transparent or frosted, to allow light generated at the electrodes to pass to the outside environment from the lamp exterior 220.
  • the two electrodes each have a lead 226 connected thereto.
  • the leads 226 pass through the lamp exterior 220, and are hermetically sealed as the leads 226 pass therethrough.
  • the leads 226 extend outward into the outside environment from the point at which the leads 226 pass through the lamp exterior 220.
  • Fig. 3 is a schematic diagram illustrating the male connector 204 of Fig. 2.
  • the male connector 204 is of the type known in the art, such as a metallic extension, stud, or pin, and may be of any metallic or alloyed substance capable of withstanding high current passing therethrough.
  • the male connector 204 has a base 302 at the point of contact with the lamp exterior 220, and extends to an end 304 at the point of the male connector 204 opposite the lamp exterior 220.
  • the male connector 204 is fastened to at least one of the leads 226 of the lamp 200, and extends outwardly from the exterior 220 of the lamp 200.
  • the male connector preferably includes a placement opening 310, into which the leads 226 may be placed.
  • one male connector 204 is connected to each lead 226 of the lamp 200.
  • the fastening of the male connector 204 to the lead 226 must form an electrical bond that allows current to pass to/from the male connector 204 from/to the lead 226.
  • the at least one lead 226 may include first screw threads thereon, and the first screw threads are then preferably mated to second screw threads on the base of said male connector 204.
  • the male connector 204 is then fastened to the lead 226 by an interlocking of the first screw threads and the second screw threads.
  • the male connector 204 is fastened to the lead 226 by a weld, such as a spot weld.
  • the male connector 204 may be fastened to the lead 226 by a solder capable of operating under the operating conditions of an HID 200. In each preferred embodiment, the fastening of the male connector 204 to the lead 226 provides a hermetic seal therebetween.
  • Fig. 4 is a schematic diagram illustrating the insulate housing 206 of Fig. 2.
  • the insulate housing 206 is an insulator to prevent arcing at the connection point of the male connector 204 to a female connector 210, and at the connection point of the male connector 204 to the lead 226.
  • the male connector 204 is preferably sealed hermetically within the insulate housing 206, by sealing methods apparent to those skilled in the art.
  • the insulate housing 206 extends outwardly from the lamp exterior 220 a second distance, and the second distance is greater than the first distance by which the male connector 204 extends outwardly from the lamp exterior 220.
  • the insulate housing 206 has an inner contour 402 along its inner surface where the inner contour 402 is shaped to fittedly encompass therein the male connector 204 and at least a portion of the lead 226 of the arc lamp 200.
  • the inner contour 402 is preferably shaped to provide a snug fit for a female connector 21 0 to be placed with the insulate housing 206 to mate with the male connector 204.
  • the insulate housing 206 has an outer contour 404, and at least the portion 406 of the outer contour 404 that is immediately proximate to the lamp exterior 220 is shaped to contour to the lamp exterior 220 immediately surrounding the lead 226 to which the male connector 204 is fastened.
  • the outer contour 404 is preferably shaped to include an air-tight integral locking groove 41 0 for locking with the interior surface of a boot 21 2, as discussed hereinbelow, and this integral locking groove 41 0 may be at an end of the housing 206 opposite the lamp exterior 220.
  • the insulate housing 206 is formed of ceramic, and may be formed of additional materials capable of withstanding high current flow, and the heat that corresponds thereto, such as glass or plastics.
  • the at least one cement contact 208 fastens, without any air gaps, the outer contour 404 of the insulate housing 206 immediately proximate to the lamp exterior 220 to the lamp exterior 220.
  • the at least one cement contact 208 is a type of cement capable of operating under the conditions of the present application, and is capable of bonding the insulate housing 206 to the glass of the lamp exterior 220.
  • the contact 208 may be, for example, a rubber cement that seals upon placement.
  • the cement contact 208 may be placed after the male connector
  • the cement contact 208 may be integrally placed on the outer contour 404 of the insulate housing 206, and may seal as it is contacted with the lamp exterior 220, such as when the male connector 204 is seated, such as by screwing to the lead 226.
  • the cement contact 208 may then be unsealed when the male connector 204 is unscrewed, for example, for ease of part replacements.
  • the cement contact 208 may be permanent upon placement.
  • the cement contact 208 is rated to prevent arcing of at least 20 kV passing through the lead 226 from/to the male connector 204 base. Additionally, the cement contact 208 is rated to prevent arcing at high altitudes, such as at least 25,000 feet. In a more preferred embodiment, the cement contact 208 is rated to prevent arcing of at least 25 kV at an altitude of at least 40,000 feet, and, in a most preferred embodiment, the cement contact 208 is rated to prevent arcing of at least 30 kV at an altitude of at least 50,000 feet.
  • Fig. 5 is a schematic diagram illustrating a female connector 21 0 for use in the electrical interface 202 of Fig. 2.
  • Fig. 6 is a schematic diagram illustrating a boot 21 2 for use in the electrical interface 202 of Fig. 2 with the female connector 210 of Fig. 5.
  • the boot 21 2 is preferably formed of silicon rubber, although other materials known to those skilled in the art may be used, subject to the condition that those other materials are preferably elastic, and must be capable of properly insulating in high voltage applications.
  • the boot 21 2 has an inner boot contour 602 and an outer boot contour 604.
  • the inner boot contour 602 detachably locks over the outer contour 404 of the insulate housing 206, which outer contour 404 of the insulate housing 206 may include an integral locking groove 41 0, as discussed hereinabove.
  • the boot 21 2 has two ends 61 0, 61 2, and each end 61 0, 61 2 includes an opening 620, 622 passing therethrough.
  • the opening 620 of one of the boot ends 610 preferably integrally includes an elastic lip 630 along the inner boot contour 602, which elastic lip 630 creates a hermetic lock by sealing over the integral locking groove 410 on the outer contour 404 of the insulate housing 206 opposite the lamp exterior 220.
  • the elastic lip 630 is preferably formed of silicon rubber.
  • the female connector 210 is mounted within the boot 21 2 and between the two openings of the boot 21 2.
  • the female connector 21 0 is mated to the male connector 204.
  • a feed line 501 is electrically connected to the female connector 210 through an insulating covering 502, and serves to pass electrical current therethrough.
  • the feed line 501 is crimped and/or soldered at the other open end of the metal structure 504, and the feed line 501 is electrically connected, through the metal structure 504, to the female connector 210.
  • the metal structure 504 is preferably mounted within the insulation covering 502, centered within the insulation covering 502, and having a center axis passing between the two open ends of the metal structure 504 approximately parallel to the tangential axis along the exterior of the insulation covering 502.
  • the feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 21 0 form a wire assembly.
  • the feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 210 are permanently hermetically sealed 640 to the boot 21 2, by, for example, injection molding of the silicon boot 21 2 around the feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 210, and this wire assembly extends from one end 612 of the boot 21 2 and passes through the inner boot contour 602.
  • the female connector 210 extends to the end 610 of the boot 21 2 opposite the end 61 2 from which the feed line 502 extends, and passes through the inner boot contour.
  • the permanent hermetic seal 640 of the boot 21 2 to the feed line 502 may be formed, for example, through the injection molding, or by a vulcanization.
  • both the feed line 502 and the boot 21 2 are formed of silicon rubber, and the hermetic seal 640 between the feed line 502 and the boot 21 2 is a silicon rubber to silicon rubber bond that requires no adhesive.
  • the electrical interface 202 of the present invention allows the HID lamp 200 to be activated at high altitudes, such as at 55,000 feet, without arcing. Further, the electrical interface 202 of the present invention, due to the provision of after-lamp-production installation of the male connector 204 and housing 206, and due to the ease of detachment of the boot 21 2, and security of attachment provided by the boot 21 2, provides improved substitution and replacement of HID lamps.
  • Fig. 7 is a flow diagram illustrating a method 700 of interconnecting a high intensity discharge lamp 200.
  • the method includes the step 702 of providing an electrically powered lamp 200 having a lamp exterior 220 and at least one lead 226 extending outside of the lamp 200, the step 704 of fastening a male connector 204, at a base of the male connector 204, to one of the at least one leads 226 of the lamp 200, the step 706 of sliding an insulate housing 206 fittedly over the male connector 204 and at least a portion of the lead 226 of the lamp 200, and the step 708 of hermetically fastening the insulate housing 206 to the lamp exterior 220.
  • the method 700 may additionally include the step 714 of detachably hermetically locking a boot 21 2 over the insulate housing 206, wherein the boot 21 2 includes therein a female connector 21 0 mated to the male connector 204, the step 71 6 of mating the female connector
  • the electrical connector set forth herein is applicable to different types of high voltage connection applications, and not just to

Abstract

A high intensity discharge lamp (HID) (200) is disclosed. The high intensity discharge lamp (200) includes an electrically powered lamp (200) having a lamp exterior (220) and at least one lead (226) extending outside of the lamp (200), a male connector (204) that is fastened at its base (302) to one of the leads (226) of the lamp (200), an insulate housing (206) having an inner contour (402) shaped to fittedly encompass therein the male connector (204) and at least a portion of the lead (226) of the lamp (200), and a cement contact (208) that fastens, without air gaps, the housing (206) to the lamp exterior (220). The electrical interface (202) includes a male connector (204) that is fastened at its base (302) to one of the leads (226) of the lamp (200), an insulate housing (20) having an inner contour (402) shaped to fittedly encompass therein the male connector (204) and at least a portion of the lead (226) of the lamp (200), and a cement contact (208) that fastens, without air gaps, the housing (206) to the lamp exterior (220). A boot (212) hermetically locks over the insulate housing (206). A female connector (210) is mated to the male connector (204) within the boot (212). A feed line (501) with an insulating cover (502) is electrically connected to the female connector (210) on one end and to a power source at the other end.

Description

A HIGH INTENSITY DISCHARGE LAMP AND A METHOD OF INTERCONNECTING A HIGH INTENSITY DISCHARGE LAMP
BACKGROUND OF THE INVENTION Field of the Invention The present invention is directed generally to a method and apparatus for providing high intensity light and, more particularly, to a high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp.
Description of the Background A high intensity discharge (HID) system is a lighting system which throws an intense light therefrom. High intensity discharge systems are generally used in commercial and military aircraft applications. A conventional high intensity discharge lamp is illustrated in Fig. 1 .
The high intensity discharge lighting system generally includes a lamp 10. The lamp 10 is preferably hermetically sealed, and may include two electrodes 1 2 within the hermetically sealed cavity 14. An HID lighting system preferably uses a high voltage to strike an arc between the electrode 1 2, thus providing a bright light from the lamp. The electrodes 1 2, or other light source, is preferably connected to and supported within the lamp 10 by a support tree 1 8.
The current used to provide the light to the HID lamp light source 1 2 flows from a power source exterior to the lamp 1 2, and generally enters the lamp 10 via two small interconnects 20, preferably of copper, at the back of the lamp 1 0. The two interconnects 20 at the back of the lamp 1 0 have generally constituted an exposed un-ihsulated surface at the back of the lamp 10 to which the power source leads 22 are connected, such as by screwing the power source to mated threads on the exposed interconnect 20.
Unfortunately, HID lamps currently in use do not always provide a secure connection between the power supply source leads 22 and the interconnects 20, and, additionally, do not always provide insulation adequate to enclose the connection between the power source leads 22 and the interconnects 20. When the interconnects and power supply are not securely connected, such as by aircraft maintenance personnel, or when the connection between the interconnects and the leads is not adequately insulated, arcing can occur due to the high voltage in use in HID aircraft application. This arcing problem can be exacerbated by the high altitudes at which HID lamps are required to perform.
Arcing problems on an aircraft may lead to devastating consequences. Arcing can start fires, and, because HID lamps are often in use in areas of an aircraft where fuel or fuel vapors are present, such as on the wings, fires caused by arcing can lead to explosions or serious malfunctions on the aircraft. Such explosions and malfunctions can lead to the destruction of an aircraft and, consequently, a loss of life. Additionally, arcing can negatively effect the performance of nearby equipment on the aircraft, and cause power outages to vital systems, as well as overloads to vital systems.
Furthermore, the present manner of interconnecting the power source to the HID interconnects, such as by screwing or welding, is cumbersome and difficult for aircraft personnel. The difficulty encountered in this interconnection can lead to the connection not being made properly or completely. This lack of a proper or complete connection can lead to arcing problems. Additionally, the difficulty in properly connecting the power source and the interconnects can lead to difficulty in the replacement or substitution of HID lamps, or the avoidance of such replacements by aircraft personnel, when such replacements would be otherwise necessary.
Thus, there currently exists a need for an HID lamp, an HID lamp interconnect, and a method of making an HID lamp, that will prevent arcing difficulties on aircraft, as well as simplify the replacement of, and substitution of, HID lamps. BRIEF SUMMARY OF THE INVENTION The present invention is directed to a high intensity discharge lamp. The high intensity discharge lamp of the present invention includes an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp, a male connector that is fastened at its base to one of the leads of the lamp, an insulate housing having an inner contour shaped to fittedly encompass therein the male connector and at least a portion of the lead of the arc lamp, and a cement contact that fastens, without air gaps, the housing to the lamp exterior. The lamp may additionally include a boot that hermetically locks over the insulate housing, a female connector mated to the male connector within the boot, and a feed line electrically connected to the female connector on one end and to a power source at the other end.
Furthermore, the present invention includes an electrical interface for use with an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp. The electrical interface includes a male connector that is fastened at its base to one of the leads of the lamp, an insulate housing having an inner contour shaped to fittedly encompass therein the male connector and at least a portion of the lead of the arc lamp, and a cement contact that fastens, without air gaps, the housing to the lamp exterior.
The present invention also includes a method of interconnecting a high intensity discharge lamp. The method includes providing an electrically powered lamp having a lamp exterior and at least one lead extending outside of the lamp, fastening a male connector, at a base of the male connector, to one of the leads of the lamp, sliding an insulate housing fittedly over the male connector and at least a portion of the lead of the lamp, and hermetically fastening the insulate housing to the lamp exterior. The method of the present invention may additionally include detachably hermetically locking a boot over the insulate housing, wherein the boot includes therein a female connector mated to the male connector, mating the female connector to the male connector, electrically connecting a feed line to the female connector, which feed line passes electrical current, and permanently hermetically sealing the feed line to the boot. The present invention solves problems experienced with the prior art because it prevents arcing difficulties on aircraft, particularly at above
25 kV operating voltage for a high intensity discharge lamp, and above
25,000 feet altitude for aircraft, as well as simplifying the replacement of, and substitution of, HID lamps. Those and other advantages and benefits of the present invention will become apparent from the detailed description of the invention hereinbelow.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING For the present invention to be clearly understood and readily practiced, the present invention will be described in conjunction with the following figures, wherein:
FIG. 1 is a schematic diagram illustrating a high intensity discharge lamp;
FIG. 2 is a schematic diagram illustrating a high intensity discharge lamp having an electrical interface connected thereto;
FIG. 3 is a schematic diagram illustrating a male connector; FIG. 4 is a schematic diagram illustrating an insulate housing; FIG. 5 is a schematic diagram illustrating a female connector for use in the electrical interface; FIG. 6 is a schematic diagram illustrating a boot for use in the electrical interface; and
FIG. 7 is a flow diagram illustrating a method of interconnecting a high intensity discharge lamp.
DETAILED DESCRIPTION OF THE INVENTION
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements found in a typical high voltage system and method. Those of ordinary skill in the art will recognize that other elements are desirable and/or required in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. Additionally, those of ordinary skill in the art will recognize that, although the present invention is described hereinbelow with respect to a lighting system, the present invention may be implemented using any high voltage device having exposed electrical leads.
Fig. 2 is a schematic diagram illustrating a high intensity discharge lamp 200 developed in accordance with the present invention and having an electrical interface 202 connected thereto. The electrical interface 202, as shown in detail A, includes a male connector 204, an insulate housing 206, and at least one cement contact 208. In a preferred embodiment of the present invention, one electrical interface 202 is connected to each of the two electrical leads 226 extending through the back of the lamp 200, which leads are, for example, electrical current carrying, such as copper, components that are heated and pressed into the glass of the lamp 200, thereby creating a hermetic seal. Additionally, the electrical interface 202 preferably includes a female connector 21 0 within a boot 21 2, which female connector 21 0 electrically contacts the male connector 204.
The HID lamp 200 preferably is an electrical arc lamp, but may be any high voltage lamp or device. The HID lamp 200 includes a lamp exterior 220, and hermetically sealed within the lamp exterior 220 are two electrodes. A portion 224 of the lamp exterior 220 is preferably transparent or frosted, to allow light generated at the electrodes to pass to the outside environment from the lamp exterior 220. The two electrodes each have a lead 226 connected thereto. The leads 226 pass through the lamp exterior 220, and are hermetically sealed as the leads 226 pass therethrough. The leads 226 extend outward into the outside environment from the point at which the leads 226 pass through the lamp exterior 220.
Fig. 3 is a schematic diagram illustrating the male connector 204 of Fig. 2. The male connector 204 is of the type known in the art, such as a metallic extension, stud, or pin, and may be of any metallic or alloyed substance capable of withstanding high current passing therethrough.
The male connector 204 has a base 302 at the point of contact with the lamp exterior 220, and extends to an end 304 at the point of the male connector 204 opposite the lamp exterior 220. The male connector 204 is fastened to at least one of the leads 226 of the lamp 200, and extends outwardly from the exterior 220 of the lamp 200. Thus, the male connector preferably includes a placement opening 310, into which the leads 226 may be placed. In a preferred embodiment, one male connector 204 is connected to each lead 226 of the lamp 200.
The fastening of the male connector 204 to the lead 226 must form an electrical bond that allows current to pass to/from the male connector 204 from/to the lead 226. For example, the at least one lead 226 may include first screw threads thereon, and the first screw threads are then preferably mated to second screw threads on the base of said male connector 204. The male connector 204 is then fastened to the lead 226 by an interlocking of the first screw threads and the second screw threads. In a second preferred embodiment, the male connector 204 is fastened to the lead 226 by a weld, such as a spot weld. In an additional preferred embodiment, the male connector 204 may be fastened to the lead 226 by a solder capable of operating under the operating conditions of an HID 200. In each preferred embodiment, the fastening of the male connector 204 to the lead 226 provides a hermetic seal therebetween.
Fig. 4 is a schematic diagram illustrating the insulate housing 206 of Fig. 2. The insulate housing 206 is an insulator to prevent arcing at the connection point of the male connector 204 to a female connector 210, and at the connection point of the male connector 204 to the lead 226. Thus, the male connector 204 is preferably sealed hermetically within the insulate housing 206, by sealing methods apparent to those skilled in the art.
In a preferred embodiment, the insulate housing 206 extends outwardly from the lamp exterior 220 a second distance, and the second distance is greater than the first distance by which the male connector 204 extends outwardly from the lamp exterior 220. The insulate housing 206 has an inner contour 402 along its inner surface where the inner contour 402 is shaped to fittedly encompass therein the male connector 204 and at least a portion of the lead 226 of the arc lamp 200.
Further, the inner contour 402 is preferably shaped to provide a snug fit for a female connector 21 0 to be placed with the insulate housing 206 to mate with the male connector 204. The insulate housing 206 has an outer contour 404, and at least the portion 406 of the outer contour 404 that is immediately proximate to the lamp exterior 220 is shaped to contour to the lamp exterior 220 immediately surrounding the lead 226 to which the male connector 204 is fastened.
In addition, the outer contour 404 is preferably shaped to include an air-tight integral locking groove 41 0 for locking with the interior surface of a boot 21 2, as discussed hereinbelow, and this integral locking groove 41 0 may be at an end of the housing 206 opposite the lamp exterior 220. In a preferred embodiment, the insulate housing 206 is formed of ceramic, and may be formed of additional materials capable of withstanding high current flow, and the heat that corresponds thereto, such as glass or plastics.
Returning now to Fig. 2, the at least one cement contact 208 fastens, without any air gaps, the outer contour 404 of the insulate housing 206 immediately proximate to the lamp exterior 220 to the lamp exterior 220. The at least one cement contact 208 is a type of cement capable of operating under the conditions of the present application, and is capable of bonding the insulate housing 206 to the glass of the lamp exterior 220. The contact 208 may be, for example, a rubber cement that seals upon placement.
The cement contact 208 may be placed after the male connector
204 is fastened, or, in an embodiment wherein the male connector 204 and insulate housing 206 are pre-fabricated, the cement contact 208 may be integrally placed on the outer contour 404 of the insulate housing 206, and may seal as it is contacted with the lamp exterior 220, such as when the male connector 204 is seated, such as by screwing to the lead 226. The cement contact 208 may then be unsealed when the male connector 204 is unscrewed, for example, for ease of part replacements. In a second preferred embodiment, the cement contact 208 may be permanent upon placement.
In a preferred embodiment, the cement contact 208 is rated to prevent arcing of at least 20 kV passing through the lead 226 from/to the male connector 204 base. Additionally, the cement contact 208 is rated to prevent arcing at high altitudes, such as at least 25,000 feet. In a more preferred embodiment, the cement contact 208 is rated to prevent arcing of at least 25 kV at an altitude of at least 40,000 feet, and, in a most preferred embodiment, the cement contact 208 is rated to prevent arcing of at least 30 kV at an altitude of at least 50,000 feet.
Fig. 5 is a schematic diagram illustrating a female connector 21 0 for use in the electrical interface 202 of Fig. 2. Fig. 6 is a schematic diagram illustrating a boot 21 2 for use in the electrical interface 202 of Fig. 2 with the female connector 210 of Fig. 5. Referring to Figs. 5 and 6, the boot 21 2 is preferably formed of silicon rubber, although other materials known to those skilled in the art may be used, subject to the condition that those other materials are preferably elastic, and must be capable of properly insulating in high voltage applications. The boot 21 2 has an inner boot contour 602 and an outer boot contour 604. The inner boot contour 602 detachably locks over the outer contour 404 of the insulate housing 206, which outer contour 404 of the insulate housing 206 may include an integral locking groove 41 0, as discussed hereinabove.
The boot 21 2 has two ends 61 0, 61 2, and each end 61 0, 61 2 includes an opening 620, 622 passing therethrough. The opening 620 of one of the boot ends 610 preferably integrally includes an elastic lip 630 along the inner boot contour 602, which elastic lip 630 creates a hermetic lock by sealing over the integral locking groove 410 on the outer contour 404 of the insulate housing 206 opposite the lamp exterior 220. The elastic lip 630 is preferably formed of silicon rubber. The female connector 210 is mounted within the boot 21 2 and between the two openings of the boot 21 2. The female connector 21 0 is mated to the male connector 204. A feed line 501 is electrically connected to the female connector 210 through an insulating covering 502, and serves to pass electrical current therethrough. A metal structure 504, preferably having two open ends, is provided within the insulating covering 502, and the female connector 210 is crimped and/or soldered into the metal structure 504 on one open end of the metal structure. The feed line 501 is crimped and/or soldered at the other open end of the metal structure 504, and the feed line 501 is electrically connected, through the metal structure 504, to the female connector 210. The metal structure 504 is preferably mounted within the insulation covering 502, centered within the insulation covering 502, and having a center axis passing between the two open ends of the metal structure 504 approximately parallel to the tangential axis along the exterior of the insulation covering 502. Thus, the feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 21 0 form a wire assembly.
The feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 210 are permanently hermetically sealed 640 to the boot 21 2, by, for example, injection molding of the silicon boot 21 2 around the feed line 501 , insulation covering 502 containing the metal structure 504, and the female connector 210, and this wire assembly extends from one end 612 of the boot 21 2 and passes through the inner boot contour 602. The female connector 210 extends to the end 610 of the boot 21 2 opposite the end 61 2 from which the feed line 502 extends, and passes through the inner boot contour. The permanent hermetic seal 640 of the boot 21 2 to the feed line 502 may be formed, for example, through the injection molding, or by a vulcanization. In the preferred embodiment, both the feed line 502 and the boot 21 2 are formed of silicon rubber, and the hermetic seal 640 between the feed line 502 and the boot 21 2 is a silicon rubber to silicon rubber bond that requires no adhesive.
The electrical interface 202 of the present invention allows the HID lamp 200 to be activated at high altitudes, such as at 55,000 feet, without arcing. Further, the electrical interface 202 of the present invention, due to the provision of after-lamp-production installation of the male connector 204 and housing 206, and due to the ease of detachment of the boot 21 2, and security of attachment provided by the boot 21 2, provides improved substitution and replacement of HID lamps. Fig. 7 is a flow diagram illustrating a method 700 of interconnecting a high intensity discharge lamp 200. The method includes the step 702 of providing an electrically powered lamp 200 having a lamp exterior 220 and at least one lead 226 extending outside of the lamp 200, the step 704 of fastening a male connector 204, at a base of the male connector 204, to one of the at least one leads 226 of the lamp 200, the step 706 of sliding an insulate housing 206 fittedly over the male connector 204 and at least a portion of the lead 226 of the lamp 200, and the step 708 of hermetically fastening the insulate housing 206 to the lamp exterior 220.
The method 700 may additionally include the step 714 of detachably hermetically locking a boot 21 2 over the insulate housing 206, wherein the boot 21 2 includes therein a female connector 21 0 mated to the male connector 204, the step 71 6 of mating the female connector
21 0 to the male connector 204 by the detachable hermetically locking
71 4, the step 71 8 of electrically connecting a feed line to the female connector, which feed line passes electrical current, and/or the step 722 of permanently hermetically sealing the feed line to the boot 21 2.
Those of ordinary skill in the art will recognize that many modifications and variations of the present invention may be implemented.
For example, the electrical connector set forth herein is applicable to different types of high voltage connection applications, and not just to
HID lamps. The foregoing description and the following claims are intended to cover all such modifications and variations.

Claims

WHAT IS CLAIMED IS:
1 . An electrical interface for use with an electrically powered lamp (200) having a lamp exterior (220) and at least one lead (226) extending outside of the lamp (200), comprising: a male connector (204), wherein said male connector (204) is fastened at a base (302) of said male connector (204) to one of the at least one leads (226) of the lamp (200), and wherein said male connector (204) extends outwardly from the exterior (220) of the lamp (200); an insulate housing (206) having an inner contour (402) and an outer contour (404), wherein the inner contour (402) of said insulate housing (206) is shaped to fittedly encompass therein said male connector (204) and at least a portion of the lead (226) of the lamp (200), and wherein at least a portion of the outer contour (404) is shaped to contour to the lamp exterior (220) immediately surrounding the lead (226); and at least one cement contact (208) that fastens, without air gaps, the outer contour (404) to the lamp exterior (220).
2. The electrical interface of claim 1 , wherein the at least one lead (226) includes a plurality of first screw threads, which first screw threads are mated to a plurality of second screw threads at the base of said male connector (204), and wherein said male connector (204) is fastened to the lead (226) by an interlocking of the first screw threads and the second screw threads.
3. The electrical interface of claim 1 , wherein said male connector (204) is fastened to the lead (226) by an electrical bond.
4. The electrical interface of claim 1 , wherein the base (302) of said male connector (204) is sealed from air gaps within said insulate housing (206).
5. The electrical interface of claim 1 , wherein said insulate housing (206) includes an integral lock (41 0) at an end of the outer contour (404) opposite the lamp exterior (220).
6. The electrical interface of claim 1 , wherein said cement contact
(208) is rated to prevent arcing when electrical potential is applied to the electrical interface of at least 20 kV.
7. The electrical interface of claim 1 , wherein said cement contact (208) is rated to prevent arcing when electrical potential is applied to the electrical interface at at least 25,000 feet.
8. The electrical interface of claim 7, wherein said cement contact (208) is rated to prevent arcing when electrical potential is applied to the electrical interface of at least 25 KV.
9. The electrical interface of claim 8, wherein said cement contact
(208) is rated to prevent arcing when electrical potential is applied to the electrical interface at at least 40,000 feet.
10. The electrical interface of claim 9, wherein said cement contact (208) is rated to prevent arcing when electrical potential is applied to the electrical interface of 30 kV at 55,000 feet.
1 1 . The electrical interface of claim 1 , further comprising a boot (21 2) having an inner boot contour (602) and an outer boot contour (604), wherein the inner boot contour (602) detachably hermetically locks over the outer contour (404) of said insulate housing (206).
1 2. An electrical interface for use with an electrically powered lamp (200) having a lamp exterior (220) and at least one lead (226) extending outside of the lamp, comprising: a male connector (204), wherein said male connector (204) is fastened at a base (302) of said male connector (204) to one of the at least one leads (226) of the lamp, and wherein said male connector (204) extends outwardly from the exterior (220) of the lamp (200); means (206) for insulating said male connector (204), said insulating means (206) is shaped to fittedly encompass therein said male connector (204) and at least a portion of the lead (226) of the lamp, and wherein said insulating means (206) is contoured to the lamp exterior immediately surrounding the lead (226); and means (208) for fastening, without air gaps, said insulating means
(206) to the lamp exterior.
1 3. A high intensity discharge lamp, comprising: an electrically powered lamp (200) having a lamp exterior (220) and at least one lead (226) extending outside of the lamp (200); a male connector (204), wherein said male connector (204) is fastened at a base (302) of said male connector (204) to one of the at least one leads (226) of the lamp (200), and wherein said male connector (204) extends outwardly from the exterior (220) of the lamp (200); an insulate housing (206) having an inner contour (402) and an outer contour (404), wherein the inner contour (402) of said insulate housing (206) is shaped to fittedly encompass therein said male connector (204) and at least a portion of the lead (226) of the lamp (200), and wherein at least a portion of the outer contour (404) is shaped to contour to the lamp exterior (220) immediately surrounding the lead (226); and at least one cement contact (208) that fastens, without air gaps, the outer contour (404) to the lamp exterior (220).
14. The high intensity discharge lamp of claim 1 3, wherein the at least one lead (226) includes a plurality of first screw threads, which first screw threads are mated to a plurality of second screw threads at the base (302) of said male connector (204), and wherein said male connector (204) is fastened to the lead (226) by an interlocking of the first screw threads and the second screw threads.
1 5. The high intensity discharge lamp of claim 1 3, wherein said cement contact (208) is rated to prevent arcing of at least 20 kV at at least 25,000 feet.
1 6. The high intensity discharge lamp of claim 1 3, further comprising a boot (21 2) having an inner boot contour (602) and an outer boot contour (604), wherein the inner boot contour (602) detachably hermetically locks over the outer contour (404) of said insulate housing
(206).
1 7. The high intensity discharge lamp of claim 30, further comprising: a female connector (210) mated to said male connector (204); and a feed line (501 ) electrically connected to said female connector (210), which feed line (501 ) passes electrical current.
1 8. A method of interconnecting a high intensity discharge lamp, comprising: providing (702) an electrically powered lamp (200) having a lamp exterior (220) and at least one lead (226) extending outside of the lamp (200); fastening (704) a male connector (204), at a base (304) of the male connector (204), to one of the at least one leads (226) of the lamp (200); sliding (706) an insulate housing (206) fittedly over the male connector (204) and at least a portion of the lead (226) of the lamp (200); and hermetically fastening (708) the insulate housing (206) to the lamp exterior (220).
1 9. The method of claim 1 8, further comprising: detachably hermetically locking (714) a boot (21 2) over the insulate housing (206), wherein the boot (21 2) includes therein a female connector (21 0) mated to the male connector (204); mating (71 6) the female connector (21 0) to the male connector
(204) by said detachable hermetically locking; and electrically connecting (71 8) a feed line (501 ) to the female connector (21 0), which feed line (501 ) passes electrical current.
20. An electrical interface for use in high voltage applications, comprising: an electrical device (200) having a device exterior (220) and at least one lead (226) extending outside of the electrical device (200); a male connector (204), wherein said male connector (204) is . fastened at a base (302) of said male connector (204) to one of the at least one of the leads (226), and wherein said male connector (204) extends outwardly from the exterior (220) of said device (200); an insulate housing (206) having an inner contour (402) and an outer contour (404), wherein the inner contour (402) of said insulate housing (206) is shaped to fittedly encompass therein said male connector (204) and at least a portion of the lead (226), and wherein at least a portion of the outer contour (404) is shaped to contour to the device exterior (220) immediately surrounding the lead (226); and at least one cement contact (208) that fastens, without air gaps, the outer contour (404) to the device exterior (220).
PCT/US2001/047190 2000-12-06 2001-12-04 A high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp WO2002047111A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01987328A EP1405326A2 (en) 2000-12-06 2001-12-04 A high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/731,134 2000-12-06
US09/731,134 US6641422B2 (en) 2000-12-06 2000-12-06 High intensity discharge lamp and a method of interconnecting a high intensity discharge lamp

Publications (2)

Publication Number Publication Date
WO2002047111A2 true WO2002047111A2 (en) 2002-06-13
WO2002047111A3 WO2002047111A3 (en) 2004-01-08

Family

ID=24938206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/047190 WO2002047111A2 (en) 2000-12-06 2001-12-04 A high intensity discharge lamp and a method of interconnecting a high intensity discharge lamp

Country Status (3)

Country Link
US (1) US6641422B2 (en)
EP (1) EP1405326A2 (en)
WO (1) WO2002047111A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347186A (en) * 2004-06-07 2005-12-15 Jamco Corp Hybrid relay
WO2009130914A1 (en) * 2008-04-25 2009-10-29 パナソニック株式会社 Illuminating device
US9488357B1 (en) * 2013-04-19 2016-11-08 Chm Industries, Inc. Lighting apparatus with improved thermal insulation
CN107200141A (en) * 2016-03-17 2017-09-26 哈尔滨飞机工业集团有限责任公司 A kind of external plug protective cover of helicopter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627536A (en) * 1949-05-28 1953-02-03 Bendix Aviat Corp Electronic tube base and the like
DE964792C (en) * 1956-03-08 1957-05-29 Juergen Dulz Device for connecting the supply cable to the end of light tubes with a base that can be cemented to the end of the tube
DE1903585U (en) * 1964-06-18 1964-11-05 Hollandsche Draad En Kabelfab WATERPROOF, MADE OF RUBBER OD. DGL. LAMP SOCKET IN ELASTIC MATERIAL FOR AN ELECTRIC LAMP WITH A SCREW SOCKET.
US3434097A (en) * 1967-10-03 1969-03-18 Amp Inc Vacuum tube termination
DE2104253A1 (en) * 1971-01-29 1972-08-10 Koerting & Mathiesen Gmbh Socket for fluorescent lamps, especially in a moisture-proof design
US4084112A (en) * 1977-05-20 1978-04-11 Gte Sylvania Incorporated Incandescent lamp having two-part insulative base
EP0443964A1 (en) * 1990-02-23 1991-08-28 Welch Allyn, Inc. Low watt metal halide lamp
US5428261A (en) * 1992-07-17 1995-06-27 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Single-ended, plastic-based high-pressure discharge lamp
WO2001039237A1 (en) * 1999-11-20 2001-05-31 Ist Metz Gmbh Connector system for a rod-shaped two-ended discharge lamp

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003058A (en) 1958-09-17 1961-10-03 Eastman Kodak Co Combined lamp and reflector with socket
US3678432A (en) * 1971-04-26 1972-07-18 Gen Electric Vented fuse module for underground power cable system
US3785020A (en) * 1971-11-11 1974-01-15 Gen Electric Method of basing electrical devices
DE3236462A1 (en) 1982-10-01 1984-04-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München HIGH PRESSURE DISCHARGE LAMP WITH BASE AND RELATED LAMP
US4724353A (en) 1984-02-16 1988-02-09 Gte Products Corporation Electric lamp with insulating base
US4631651A (en) 1985-06-10 1986-12-23 Gte Products Corporation Replaceable automobile headlight lamp unit and automobile headlight utilizing same
US4764854A (en) * 1985-11-01 1988-08-16 Koito Seisakusho Co., Ltd. Mounting device for replaceable lamp assembly on reflector enclosure
US4728849A (en) 1986-07-07 1988-03-01 Gte Products Corporation Capsule light source for electric lamp
US4807099A (en) 1987-03-11 1989-02-21 Ecp Energy Conservation Products Lighting fixtures
DE3806978A1 (en) 1988-03-03 1989-09-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh KITTLESS BASED ELECTRIC LAMP
US5079474A (en) 1989-09-11 1992-01-07 U.S. Philips Corporation Electric incandescent lamp
US5016150A (en) 1989-10-19 1991-05-14 Musco Corporation Means and method for increasing output, efficiency, and flexibility of use of an arc lamp
DE69106996D1 (en) * 1990-09-28 1995-03-09 Philips Electronics Nv Socketed high-pressure discharge lamp and lamp holder for this lamp.
US5128589A (en) 1990-10-15 1992-07-07 General Electric Company Heat removing means to remove heat from electric discharge lamp
US5206799A (en) 1990-11-22 1993-04-27 U.S. Philips Corporation Lamp/reflector unit
US5227690A (en) * 1990-12-03 1993-07-13 U.S. Philips Corporation Capped electric lamp
US5177396A (en) 1990-12-19 1993-01-05 Gte Products Corporation Mirror with dichroic coating lamp housing
US5235498A (en) 1991-02-21 1993-08-10 U.S. Philips Corporation Lamp/reflector assembly and electric lamp for use therein
DE4109678C1 (en) 1991-03-23 1992-05-27 Broekelmann, Jaeger & Busse Gmbh & Co, 5760 Arnsberg, De
US5254901A (en) 1991-12-26 1993-10-19 Gte Products Corporation Neck extender for a reflector lamp
NL9500350A (en) 1994-02-25 1995-10-02 Ushio Electric Inc Metal halide lamp with a one-piece arrangement of a front cover and a reflector.
US5651608A (en) 1994-04-29 1997-07-29 Thomas & Betts Corporation Assembly method for sealed light fixture
JP2816814B2 (en) 1994-09-27 1998-10-27 ヒロセ電機株式会社 Lamp socket
US5518425A (en) 1994-11-29 1996-05-21 Tsai; George Decorative bulb socket
JPH09180680A (en) 1995-12-28 1997-07-11 Matsushita Electron Corp Discharge lamp and its manufacture
JPH11144511A (en) 1997-11-06 1999-05-28 Ushio Inc Sealed beam type lamp device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627536A (en) * 1949-05-28 1953-02-03 Bendix Aviat Corp Electronic tube base and the like
DE964792C (en) * 1956-03-08 1957-05-29 Juergen Dulz Device for connecting the supply cable to the end of light tubes with a base that can be cemented to the end of the tube
DE1903585U (en) * 1964-06-18 1964-11-05 Hollandsche Draad En Kabelfab WATERPROOF, MADE OF RUBBER OD. DGL. LAMP SOCKET IN ELASTIC MATERIAL FOR AN ELECTRIC LAMP WITH A SCREW SOCKET.
US3434097A (en) * 1967-10-03 1969-03-18 Amp Inc Vacuum tube termination
DE2104253A1 (en) * 1971-01-29 1972-08-10 Koerting & Mathiesen Gmbh Socket for fluorescent lamps, especially in a moisture-proof design
US4084112A (en) * 1977-05-20 1978-04-11 Gte Sylvania Incorporated Incandescent lamp having two-part insulative base
EP0443964A1 (en) * 1990-02-23 1991-08-28 Welch Allyn, Inc. Low watt metal halide lamp
US5428261A (en) * 1992-07-17 1995-06-27 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Single-ended, plastic-based high-pressure discharge lamp
WO2001039237A1 (en) * 1999-11-20 2001-05-31 Ist Metz Gmbh Connector system for a rod-shaped two-ended discharge lamp

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11, 28 November 1997 (1997-11-28) & JP 09 180680 A (MATSUSHITA ELECTRON CORP), 11 July 1997 (1997-07-11) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10, 31 August 1999 (1999-08-31) & JP 11 144511 A (USHIO INC), 28 May 1999 (1999-05-28) *

Also Published As

Publication number Publication date
US6641422B2 (en) 2003-11-04
EP1405326A2 (en) 2004-04-07
US20020067116A1 (en) 2002-06-06
WO2002047111A3 (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US4533851A (en) High-pressure electric discharge lamp with interfitting socket and support
US6462476B1 (en) Lighting system with a high-pressure discharge lamp
US4714986A (en) Vehicular reflector-light source combination unit
US5709450A (en) High intensity discharge automotive lamp socket
KR900006585B1 (en) Electric lamp
KR20010020239A (en) Lighting circuit, lighting system method and apparatus, socket assembly, lamp insulator assembly and components thereof
US6582269B2 (en) Lamp apparatus and lamp apparatus manufacturing method
US10098200B2 (en) Photocontrol device with a surge protection function
US6641422B2 (en) High intensity discharge lamp and a method of interconnecting a high intensity discharge lamp
WO2003056667A1 (en) Connector block having at least one protrusion for a thermal assembly
JP2755432B2 (en) light bulb
US6305989B1 (en) Connector block for a terminal assembly
US20090225560A1 (en) Aircraft External Illumination Lamp
US7101229B2 (en) Adapter for mogul base open fixture lamps
US6231357B1 (en) Waterproof high voltage connector
US5698935A (en) Lampholder system with mogul base
KR20010102482A (en) Unit consisting of a reflector and a high pressure discharge lamp
US4438344A (en) Switched rectifier disc for Edison sockets
CN111769398A (en) Vacuum-penetrating type high-pressure quick-inserting device
EP0723111B1 (en) Lighting device for household appliances
JPH09510577A (en) Power voltage lamp and lamp holder for the lamp
CN216902787U (en) Excimer lamp device
US6552491B1 (en) Fluorescent lamp with integral circuitry
CN112377309B (en) Repairable aeroengine ignition electric nozzle device
RU190682U1 (en) High Voltage Vacuum Input

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001987328

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001987328

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001987328

Country of ref document: EP