WO2002086856A1 - Stabilized tactile output mechanism for computer interface devices - Google Patents

Stabilized tactile output mechanism for computer interface devices Download PDF

Info

Publication number
WO2002086856A1
WO2002086856A1 PCT/US2002/011113 US0211113W WO02086856A1 WO 2002086856 A1 WO2002086856 A1 WO 2002086856A1 US 0211113 W US0211113 W US 0211113W WO 02086856 A1 WO02086856 A1 WO 02086856A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar surface
computer
actuator
manually
user
Prior art date
Application number
PCT/US2002/011113
Other languages
French (fr)
Inventor
Michael Serpa
Original Assignee
Michael Serpa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Serpa filed Critical Michael Serpa
Publication of WO2002086856A1 publication Critical patent/WO2002086856A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present invention relates generally to interface devices by which users interface with computer systems, and more particularly to computer interface devices that both enable users to provide input to a computer system and convey force feedback from the computer system to the user.
  • Computer systems in use today typically have a visual display and audio speakers which provide system output and a variety of interface devices that serve system input functions.
  • Common user/computer interface devices include keyboards, mice, trackballs, touch pads, joysticks, tablets, as well as other devices.
  • interface devices are specifically engineered to control the position and/or location of a cursor or object on the display.
  • Sensor's on the interface device convert a user's manipulation of the device into locative signals that are sent to the computer via either a line cord or "wireless" means.
  • the computer responds to the locative signals by moving the cursor or object.
  • tactile feedback There are many practical applications for this tactile feedback. They range from computer systems intended for use by the vision or hearing impaired to game systems that enhance a user's experience through force feedback. It may very well be, however, that tactile output devices will soon become as commonplace as computer keyboards or visual displays.
  • cursor positioning device/tactile output arrangements require armatures, gimbals, linkages, magnets, gear drives, special manipulation surfaces, etc.
  • the complexity of these devices makes them relatively more expensive to manufacture and possibly less reliable.
  • these arrangements are suitable only in applications where extreme movement of the device (as opposed to discrete, isolated, tactile output) is acceptable.
  • One disclosure describes a computer mouse with a force feedback control wheel.
  • the control wheel performs cursor control functions and also provides various forms of force feedback to a user such as a resistance to the user's manipulation of the wheel, rotation of the wheel in both directions, a tendency for the wheel to stop at various points in its rotation, and a vibration motion of the wheel.
  • the present invention overcomes the above-described limitations of the prior art by disclosing a mechanism for producing a stabilized force feedback.
  • "Stabilized” in this context means a tactile output that remains isolated to a particular location without imparting any collateral motion to the device in which it is installed.
  • the mechanism provided by the present invention is suitable for use in combination with virtually any sort of computer interface device (such as a mouse, a keyboard, a touch pad, or a trackball) and is simple in design, cost-effective to manufacture, and reliable in operation.
  • a non-planar surface that is generally circular in shape and balanced with respect to a rotational axis.
  • An actuator in response to instructions received from a computer, rotates the non-planar surface at a relatively high rate of revolutions per minute (though even at slower speeds the mechanism will convey tactile output) .
  • tactile computer output Similar to that output produced by a vibrating module. But because (like an airplane propeller) the non-planar surface is balanced with respect to its rotational axis, the rotating non-planar surface does not generate any collateral vibration or cause any movement of the particular interface device in which the tactile output mechanism is installed.
  • the present invention allows the use of multiple tactile output mechanisms in a single computer input device.
  • An example of this would be a computer mouse that has two or three tactile output mechanisms located in areas where a user's thumb or fingertips might rest when using the mouse. This type of arrangement cannot be accomplished with vibrating modules since a vibration tactile output signal would tend to vibrate the entire mouse (making it difficult for a user to distinguish which vibrating module is generating the tactile output signal) .
  • Including more than one tactile output mechanism in a single computer input device greatly expands the force feedback signaling possibilities. For instance, each of the various mechanisms could signal a different thing to a user with its tactile output. Or, multiple mechanisms could generate concurrent tactile output signals to indicate something else. In another arrangement the tactile output signal might "scroll" through the separate mechanisms to create a third type of force feedback message.
  • FIG. 1 is a perspective view of a basic embodiment of the invention
  • FIGS. 2a, 2b, and 2c are perspective views displaying alternative embodiments of the non-planar surface from the present invention.
  • FIG. 3a is a perspective view of one embodiment of the present invention installed in a computer mouse
  • FIG. 3b is a perspective view of the present invention installed in a computer mouse and covered by a membrane;
  • FIG. 4 is a perspective view of an alternative embodiment of the present invention that includes mechanical features for reducing friction
  • FIG. 5 is a perspective view of one embodiment of the present invention installed in a trackball unit
  • FIG. 6 is a perspective view of one embodiment of the present invention installed in a laptop computer
  • FIG. 7 is a perspective view of one embodiment of the present invention installed in a conventional computer keyboard
  • FIG. 8 is a perspective view of one embodiment of the present invention in combination with a click switch.
  • FIG. 1 shows a basic embodiment of the mechanism provided by present invention.
  • An uneven or non-planar surface (11) is substantially balanced with respect to a rotational axis "A".
  • the non-planar surface (11) is connected to an actuator (12) which, in response to an instruction from a host computer (not shown) , causes the non-planar surface (11) to rotate about the rotational axis "A" in a direction indicated generally by arrows "B (either a clockwise or counter-clockwise rotation is acceptable) . Because the non-planar surface (11) is balanced, rotation of the non-planar surface by the actuator does not generate any significant vibration. The only resulting movement is the rotation.
  • the non-planar surface (11) is substantially in alignment with and perpendicular to the rotational axis "A." Though it can be constructed in a variety of sizes, for most applications the non-planar surface (11) would ideally have a diameter slightly in excess of the width of a user's thumb or fingertip.
  • the non-planar surface (11) can be made from plastic or any other acceptable material.
  • any rotational movement of the non-planar surface will convey a tactile sensation to the user.
  • the revolutions per minute of the non-planar surface would be at a level high enough to create a uniform "vibration-like" sensation.
  • the actuator (12) by reacting to output signals from a host computer, is "computer controlled.” That is, the force produced by the actuator is modulated by (though not shown here) a microprocessor, a host computer system, or other electronic device.
  • Computer communication signals can be sent to the actuator via a line cord or by wireless transmission/reception. If a line cord is used it could also serve to provide a power supply for the actuator, whereas common dry-cell batteries might be used as a power source if the particular interface device is wireless.
  • Any mechanism capable of rotating the non-planar surface (11) can serve as the actuator (12) .
  • Some examples of acceptable actuators are electric motors, pneumatic or hydraulic actuators, and the like.
  • the non-planar surface (11) itself can take a variety of forms. For example, as shown in FIG. 1, it can consist of a disk covered with small dome-shaped protrusions (13) . Other possible configurations are shown in FIGS. 2a, 2b, and 2c.
  • the non-planar surface (11) consists of a disk that includes raised ridges (14) .
  • FIG. 2b shows a cup- shaped object with a scalloped rim (15) .
  • FIG. 2c displays an arrangement where spokes (16) capped with spheres (17) protrude from a central hub (18) .
  • the most critical single feature shared by all these configurations is a non-planar surface (11) that is balanced with respect to its rotational axis "A.” When rotated about this rotational axis the non-planar surface can convey a tactile sensation to a user.
  • the examples shown here are not intended to indicate all possible configurations for the present invention. Rather, they are intended only as examples of the many possible variations consistent with this disclosure. Many other configurations are possible and are intended to be covered by the present application so long as they operate as described herein.
  • FIG. 3 shows one embodiment of the present invention installed in a mouse (19) .
  • the non-planar surface (11) is situated on the mouse (19) in a location where, for example, a user's thumb could comfortably rest.
  • the actuator though not shown, could be contained within the mouse (19) .
  • the non-planar surface (11) is positioned in an aperture in the housing of the mouse (19) .
  • the mouse (19) could include more than one of the mechanism described herein. Because the tactile output from each mechanism would be isolated to its non-planar surface, a typical user could distinguish among output signals from multiple non-planar surfaces. This represents a significant advantage over the use of vibrating modules .
  • FIG. 3b illustrates how a mouse installation of the present invention would appear if the non- planar surface was covered with a membrane (28) .
  • the membrane (28) would not rotate with the non-planar surface. Rather, the membrane (28) would be fixed in place (attached, in this example, to the housing of the mouse) .
  • An ideal combination for the membrane would include a friction-reducing material, such as TEFLON, on the side abutting the non-planar surface and a durable aesthetically pleasing material on the side contacted by the user. Many materials would be acceptable (used either alone or in combination) as long as they are thin enough and flexible enough to permit a user to detect the tactile output of the non-planar surface.
  • a friction-reducing material such as TEFLON
  • the non-planar surface (11) has mechanical features for reducing friction between a user's finger and the rotating non-planar surface.
  • FIG. 4 The non-planar surface (11) results from a disk (20) with openings (21) located near the rim of the disk (20) .
  • Installed within the openings (21) on axles (22) are wheels (23) and each wheel (23) is free to rotate on its axle (22).
  • the wheels (23) are of a sufficient diameter such that they create a non-planar surface (11) on the disk (20) .
  • the disk (20) would be connected to an actuator (not shown) and, when rotated by the actuator, would convey tactile output.
  • the friction-reducing effect would result from the wheels (23) rotating on their axles (22) as the disk (20) rotates.
  • the wheels thus act as bearings.
  • the wheels (23) themselves can be disc-shaped or spherical. If spherical, the wheels (23) could be retained within a groove or cavities that permit the wheels to act as
  • FIG. 4 could also be covered by a membrane as described above.
  • FIG. 5 exhibits the present invention in combination with a trackball unit (24) .
  • the non-planar surface (11) is located generally in a area where a user's thumb could comfortably rest while the user is operating the trackball unit (24) .
  • the non-planar surface (11) can be covered with a membrane as describe above.
  • FIG. 6 shows one embodiment of the present invention installed in a laptop computer (25)
  • FIG. 7 shows the same embodiment installed in a conventional computer keyboard (26) .
  • the non- planar surface (11) could be covered by a membrane in these installations as well.
  • FIG. 8 Another embodiment of the present invention is shown in FIG. 8.
  • This embodiment combines the non-planar surface (11) /actuator (12) tactile output mechanism with a click switch or push button similar to those that are used in a computer mouse.
  • the non-planar surface (11) /actuator (12) slidably mounted as a unit such that they can move slightly in the direction of arrow "C” and recoil a similar distance in the opposite direction.
  • a spring contact (27) is situated to engage the non-planar surface (11) /actuator (12) when a user urges them in the direction of arrow "C.”
  • a circuit is closed and a resulting signal is sent to an associated microprocessor or host computer (not shown) .
  • the spring action of the spring contact (27) will then return the non-planar surface (11) and actuator (12) to their original position.
  • this disclosure describes a mechanism that can provide stabilized and isolated tactile output. Because the output is stabilized a single computer input device can include multiple tactile output mechanisms to increase the force feedback signaling possibilities. (For example, the various tactile output mechanisms could deliver concurrent or alternating force feedback signals.) And because the tactile output is isolated to a contact point between a user and the mechanism, computer system security is enhanced since only a user handling the input device could detect the tactile output (i.e., the computer input device would not jostle from the tactile output signal as it might if a vibrating module were employed) .

Abstract

A force feedback mechanism designed for use with a mouse, trackball, keyboard, or other interface device manipulated by a user. The mechanism consists of a non-planar surface (11) that is substantially balanced with respect to a rotational axis 'A'. An actuator (12) controlled by a computer or microprocessor is connected to the non-planar surface (11). In response to signals from the computer or microprocessor the actuator (12) causes the non-planar surface (11) to rotate about its rotational axis 'A', thus conveying force feedback to the user's thumb or fingertip.

Description

STABILIZED TACTILE OUTPUT MECHANISM FOR COMPUTER INTERFACE DEVICES
BACKGROUND OF THE INVENTION
The present invention relates generally to interface devices by which users interface with computer systems, and more particularly to computer interface devices that both enable users to provide input to a computer system and convey force feedback from the computer system to the user.
Computer systems in use today typically have a visual display and audio speakers which provide system output and a variety of interface devices that serve system input functions.
Common user/computer interface devices include keyboards, mice, trackballs, touch pads, joysticks, tablets, as well as other devices.
Most of these interface devices are specifically engineered to control the position and/or location of a cursor or object on the display. Sensor's on the interface device convert a user's manipulation of the device into locative signals that are sent to the computer via either a line cord or "wireless" means. The computer responds to the locative signals by moving the cursor or object.
Because most input devices require manual manipulation by a user, they are ideally suited to also serve as devices for transmitting tactile or haptic feedback to the user. This feedback, commonly referred to as "force feedback," consists of a physical sensation that is felt by the user manipulating the device. For example, designs have been offered that combine a computer mouse with a vibrating module which generates an output signal in the form of a tactile vibration. Other arrangements provide joysticks or game controllers that, through a connection to a motor, convey movement of some sort that can be sensed by a user.
There are many practical applications for this tactile feedback. They range from computer systems intended for use by the vision or hearing impaired to game systems that enhance a user's experience through force feedback. It may very well be, however, that tactile output devices will soon become as commonplace as computer keyboards or visual displays.
A variety of tactile output apparatuses, many of which combine a cursor positioning device with a force feedback generator, are offered by the prior art. Probably the simplest arrangement is the mouse/vibrating module combination described above. Though useful, this arrangement suffers from a disadvantage in that the force feedback comes from a vibrating module. The vibration output of the module could cause a user to inadvertently reposition the mouse, thus changing on the display the position or location of the object controlled by the mouse. Furthermore, because the entire device would tend to vibrate when the vibrating module is activated, it would be useless to employ more than one module on the mouse to increase the number of signaling combinations because a user would have difficulty distinguishing which module is generating a particular vibration signal.
Finally, there is a risk that other internal components of the mouse could be damaged over time as a result of the vibration output.
More complex cursor positioning device/tactile output arrangements require armatures, gimbals, linkages, magnets, gear drives, special manipulation surfaces, etc. The complexity of these devices, however, makes them relatively more expensive to manufacture and possibly less reliable. In addition, these arrangements are suitable only in applications where extreme movement of the device (as opposed to discrete, isolated, tactile output) is acceptable.
One disclosure describes a computer mouse with a force feedback control wheel. The control wheel performs cursor control functions and also provides various forms of force feedback to a user such as a resistance to the user's manipulation of the wheel, rotation of the wheel in both directions, a tendency for the wheel to stop at various points in its rotation, and a vibration motion of the wheel.
As are some of the other arrangements that have been offered, this design is complicated to manufacture. One significant problem is that the device requires a motor or actuator that can reverse directions or do the other things mentioned in the disclosure and also be powerful enough to provide such movement while the wheel is engaged by a finger of the user. Urging of the control wheel by the user in a direction opposite that of the motion provided by the motor or actuator might cause excessive wear (or even break the device under some circumstances) . Though the combination of a cursor positioning control wheel with force feedback capability might appeal to some users, a simpler and more reliable design could be preferable for many applications.
BRIEF SUMMARY OF THE INVENTION
The present invention overcomes the above-described limitations of the prior art by disclosing a mechanism for producing a stabilized force feedback. "Stabilized" in this context means a tactile output that remains isolated to a particular location without imparting any collateral motion to the device in which it is installed. The mechanism provided by the present invention is suitable for use in combination with virtually any sort of computer interface device (such as a mouse, a keyboard, a touch pad, or a trackball) and is simple in design, cost-effective to manufacture, and reliable in operation.
These goals are accomplished through the use of a non- planar surface that is generally circular in shape and balanced with respect to a rotational axis. An actuator, in response to instructions received from a computer, rotates the non-planar surface at a relatively high rate of revolutions per minute (though even at slower speeds the mechanism will convey tactile output) . When a user contacts the rotating non-planar surface the user will detect tactile computer output similar to that output produced by a vibrating module. But because (like an airplane propeller) the non-planar surface is balanced with respect to its rotational axis, the rotating non-planar surface does not generate any collateral vibration or cause any movement of the particular interface device in which the tactile output mechanism is installed.
By isolating the tactile output to the non-planar surface the present invention allows the use of multiple tactile output mechanisms in a single computer input device. An example of this would be a computer mouse that has two or three tactile output mechanisms located in areas where a user's thumb or fingertips might rest when using the mouse. This type of arrangement cannot be accomplished with vibrating modules since a vibration tactile output signal would tend to vibrate the entire mouse (making it difficult for a user to distinguish which vibrating module is generating the tactile output signal) .
Including more than one tactile output mechanism in a single computer input device greatly expands the force feedback signaling possibilities. For instance, each of the various mechanisms could signal a different thing to a user with its tactile output. Or, multiple mechanisms could generate concurrent tactile output signals to indicate something else. In another arrangement the tactile output signal might "scroll" through the separate mechanisms to create a third type of force feedback message.
The particular use of the tactile output signal would depend upon software designers. But, because the present invention permits the use of multiple tactile output mechanisms, the force feedback signaling possibilities (and uses) are endless.
These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following specification of the invention and a study of the several figures of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a basic embodiment of the invention;
FIGS. 2a, 2b, and 2c are perspective views displaying alternative embodiments of the non-planar surface from the present invention;
FIG. 3a is a perspective view of one embodiment of the present invention installed in a computer mouse;
FIG. 3b is a perspective view of the present invention installed in a computer mouse and covered by a membrane;
FIG. 4 is a perspective view of an alternative embodiment of the present invention that includes mechanical features for reducing friction;
FIG. 5 is a perspective view of one embodiment of the present invention installed in a trackball unit;
FIG. 6 is a perspective view of one embodiment of the present invention installed in a laptop computer;
FIG. 7 is a perspective view of one embodiment of the present invention installed in a conventional computer keyboard;
FIG. 8 is a perspective view of one embodiment of the present invention in combination with a click switch.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 shows a basic embodiment of the mechanism provided by present invention. An uneven or non-planar surface (11) is substantially balanced with respect to a rotational axis "A". The non-planar surface (11) is connected to an actuator (12) which, in response to an instruction from a host computer (not shown) , causes the non-planar surface (11) to rotate about the rotational axis "A" in a direction indicated generally by arrows "B (either a clockwise or counter-clockwise rotation is acceptable) . Because the non-planar surface (11) is balanced, rotation of the non-planar surface by the actuator does not generate any significant vibration. The only resulting movement is the rotation.
The non-planar surface (11) is substantially in alignment with and perpendicular to the rotational axis "A." Though it can be constructed in a variety of sizes, for most applications the non-planar surface (11) would ideally have a diameter slightly in excess of the width of a user's thumb or fingertip. The non-planar surface (11) can be made from plastic or any other acceptable material.
If a user rests a fingertip on the non-planar surface (or on a membrane covering the non-planar surface as will be explained below) , any rotational movement of the non-planar surface will convey a tactile sensation to the user. Ideally, the revolutions per minute of the non-planar surface would be at a level high enough to create a uniform "vibration-like" sensation.
The actuator (12) , by reacting to output signals from a host computer, is "computer controlled." That is, the force produced by the actuator is modulated by (though not shown here) a microprocessor, a host computer system, or other electronic device. Computer communication signals can be sent to the actuator via a line cord or by wireless transmission/reception. If a line cord is used it could also serve to provide a power supply for the actuator, whereas common dry-cell batteries might be used as a power source if the particular interface device is wireless.
Any mechanism capable of rotating the non-planar surface (11) can serve as the actuator (12) . Some examples of acceptable actuators are electric motors, pneumatic or hydraulic actuators, and the like.
The non-planar surface (11) itself can take a variety of forms. For example, as shown in FIG. 1, it can consist of a disk covered with small dome-shaped protrusions (13) . Other possible configurations are shown in FIGS. 2a, 2b, and 2c. In the FIG. 2a example the non-planar surface (11) consists of a disk that includes raised ridges (14) . FIG. 2b shows a cup- shaped object with a scalloped rim (15) . FIG. 2c displays an arrangement where spokes (16) capped with spheres (17) protrude from a central hub (18) .
The most critical single feature shared by all these configurations is a non-planar surface (11) that is balanced with respect to its rotational axis "A." When rotated about this rotational axis the non-planar surface can convey a tactile sensation to a user. The examples shown here are not intended to indicate all possible configurations for the present invention. Rather, they are intended only as examples of the many possible variations consistent with this disclosure. Many other configurations are possible and are intended to be covered by the present application so long as they operate as described herein.
Each of these illustrated embodiments will convey a tactile output (i.e., force feedback) to a user when the user contacts the non-planar surface while the non-planar surface is rotated by the actuator. FIG. 3 shows one embodiment of the present invention installed in a mouse (19) . The non-planar surface (11) is situated on the mouse (19) in a location where, for example, a user's thumb could comfortably rest. In this installation the actuator, though not shown, could be contained within the mouse (19) . The non-planar surface (11) is positioned in an aperture in the housing of the mouse (19) . When the actuator rotates the non-planar surface (11) and a user's fingertip is in contact with the non-planar surface
(11) , the user would sense the rotation though touch as a result of the uneven nature of the non-planar surface (11) . To the user, this tactile output would be similar to that produced by a vibrating module. But because the non-planar surface (11) is balanced around the rotational axis "A," the rotation of the non-planar surface does not disturb or shake the mouse (19) in the way the vibration of a vibrating module would. The mouse
(19) remains unaffected by the force feedback created by the non-planar surface (11) .
To increase the number of force feedback signaling possibilities the mouse (19) , or other device, could include more than one of the mechanism described herein. Because the tactile output from each mechanism would be isolated to its non-planar surface, a typical user could distinguish among output signals from multiple non-planar surfaces. This represents a significant advantage over the use of vibrating modules .
In many installations it would be preferable to cover the non-planar surface (11) with a membrane of some sort. A membrane would serve two important practical purposes. First, a membrane would protect the non-planar surface (11) from dirt or other contaminants. Second, a membrane would insulate the user's fingertip from friction created by the rotating non- planar surface (11) . FIG. 3b illustrates how a mouse installation of the present invention would appear if the non- planar surface was covered with a membrane (28) . The membrane (28) would not rotate with the non-planar surface. Rather, the membrane (28) would be fixed in place (attached, in this example, to the housing of the mouse) . An ideal combination for the membrane would include a friction-reducing material, such as TEFLON, on the side abutting the non-planar surface and a durable aesthetically pleasing material on the side contacted by the user. Many materials would be acceptable (used either alone or in combination) as long as they are thin enough and flexible enough to permit a user to detect the tactile output of the non-planar surface.
More sophisticated constructions of the non-planar surface (11) have mechanical features for reducing friction between a user's finger and the rotating non-planar surface. One of these constructions is shown in FIG. 4. The non-planar surface (11) results from a disk (20) with openings (21) located near the rim of the disk (20) . Installed within the openings (21) on axles (22) are wheels (23) and each wheel (23) is free to rotate on its axle (22). The wheels (23) are of a sufficient diameter such that they create a non-planar surface (11) on the disk (20) . The disk (20) would be connected to an actuator (not shown) and, when rotated by the actuator, would convey tactile output. The friction-reducing effect would result from the wheels (23) rotating on their axles (22) as the disk (20) rotates. The wheels thus act as bearings.
The wheels (23) themselves can be disc-shaped or spherical. If spherical, the wheels (23) could be retained within a groove or cavities that permit the wheels to act as
floating ball-bearings. In this arrangement the axles (22) would be eliminated.
The embodiment illustrated in FIG. 4 could also be covered by a membrane as described above.
Referring back to FIG. 2c, if the spheres (17) were rotatably mounted to the spokes (16) , this would comprise another embodiment incorporating a mechanical friction-reducing feature. FIG. 5 exhibits the present invention in combination with a trackball unit (24) . The non-planar surface (11) is located generally in a area where a user's thumb could comfortably rest while the user is operating the trackball unit (24) . As with other installations, the non-planar surface (11) can be covered with a membrane as describe above.
FIG. 6 shows one embodiment of the present invention installed in a laptop computer (25) , and FIG. 7 shows the same embodiment installed in a conventional computer keyboard (26) . Though shown uncovered in both FIG. 6 and FIG. 7, the non- planar surface (11) could be covered by a membrane in these installations as well.
Another embodiment of the present invention is shown in FIG. 8. This embodiment combines the non-planar surface (11) /actuator (12) tactile output mechanism with a click switch or push button similar to those that are used in a computer mouse. The non-planar surface (11) /actuator (12) slidably mounted as a unit such that they can move slightly in the direction of arrow "C" and recoil a similar distance in the opposite direction. A spring contact (27) is situated to engage the non-planar surface (11) /actuator (12) when a user urges them in the direction of arrow "C." When the spring contact (27) is thus engaged a circuit is closed and a resulting signal is sent to an associated microprocessor or host computer (not shown) . The spring action of the spring contact (27) will then return the non-planar surface (11) and actuator (12) to their original position.
Combining the present invention's tactile output mechanism with a push button or click switch can be accomplished in many ways other than as shown in FIG. 8. The description contained herein is given as an example only and this disclosure is intended to encompass other methods that accomplish the same result. Furthermore, the embodiment illustrated in FIG. 8, like each of the previous embodiments, is suitable for use with virtually any sort of computer interface device.
RAMIFICATIONS AND SCOPE
The ability to sense system output through touch can greatly increase productivity and opens the door to many possibilities. Adding a force feedback feature to a manually- operated input device will enable users to interact with computers on an entirely new level.
A significant limitation of the prior art is overcome by the present invention in that this disclosure describes a mechanism that can provide stabilized and isolated tactile output. Because the output is stabilized a single computer input device can include multiple tactile output mechanisms to increase the force feedback signaling possibilities. (For example, the various tactile output mechanisms could deliver concurrent or alternating force feedback signals.) And because the tactile output is isolated to a contact point between a user and the mechanism, computer system security is enhanced since only a user handling the input device could detect the tactile output (i.e., the computer input device would not jostle from the tactile output signal as it might if a vibrating module were employed) .
While this invention has been described in terms of several preferred embodiments, it is contemplated that alterations, permutations, and equivalents of the embodiments will become apparent to those skilled in the art. For example, many types of actuators can be employed, linked either directly or indirectly to the non-planar surface. The non-planar surface itself can be constructed in numerous fashions. It is therefore intended that the following appended claims include all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Claims

CLAIMSI claim:
1. A mechanism for providing force feedback from a host computer, comprising:
a non-planar surface that is substantially balanced with respect to a rotational axis, the non-planar surface capable of rotating about the rotational axis.
2. A mechanism as recited in claim 1 wherein a computer-modulated actuator is coupled to the non- planar surface, and
the rotation of the non-planar surface about the rotational axis results from a force applied by the computer-modulated actuator.
3. A manually-operated device for providing input to a computer, the manually-operated device including one or more mechanisms for providing force feedback from the computer to a user;
each of the one or more mechanisms for providing force feedback comprising a non-planar surface, the non- planar surface being capable of rotating about a rotational axis and further being substantially balanced with respect to the rotational axis;
an actuator coupled to each of the non-planar surfaces, the actuator or actuators being computer modulated;
the actuator or actuators further being responsible for causing a rotational movement of each of the non-planar surfaces about their respective rotational axis.
4. A manually-operated device as recited in claim 3 where the manually-operated device is a computer mouse .
5. A manually-operated device as recited in claim 3 where the manually-operated device is a computer keyboard.
6. A manually-operated device as recited in claim 3 where the manually-operated device is a trackball.
7. A manually-operated device as recited in claim 3 where one or more of the non-planar surface (s) is/are covered by a membrane.
8. A manually-operated device as recited in claim 3 where one or more of the non-planar surface (s) includes/include moving mechanical parts intended to reduce friction between a digit of the user and the non-planar surface.
9. A manually-operated device as recited in claim 3 where one or more of the non-planar surface (s) is/are covered by a membrane or membranes and the non-planar surface (s) includes/include moving mechanical parts intended to reduce friction between the non-planar surface (s) and the membrane or membranes.
10. A manually-operated device as recited in claim 3 where one or more of the non-planar surface (s) are slidably or moveably mounted within the manually- operated device to permit the slidably or moveably mounted non-planar surface (s) to act in combination with a push button or click switch.
11. A mechanism for providing tactile output from an electronic device such as a computer, comprising:
an actuator;
a non-planar surface coupled to the actuator such that the actuator can cause the non-planar surface to rotate about a rotational axis, the non-planar surface being substantially balanced with respect to the rotational axis;
the actuator being responsive to a computer such that the actuator causes the non-planar surface to rotate according to instructions received by the actuator from the computer;
the tactile output from the rotational movement of the non-planar surface intended to be detected by a user when the user' s thumb or fingertip or other part of the user' s hand is in contact with the non-planar surface or, if the non-planar surface is covered by a membrane, in contact with the membrane covering the non-planar surface.
12. The mechanism for providing tactile output from a computer as recited in claim 11, the non-planar surface thereof including mechanical features for reducing friction when the tactile output is delivered to a user.
13. The mechanism for providing tactile output from a computer as recited in claim 11, the non-planar surface thereof including mechanical features for reducing friction when the tactile output is delivered to a user;
the non-planar surface being slidably or moveably mounted such that the non-planar surface can act in combination with a push button or click switch.
PCT/US2002/011113 2001-04-23 2002-04-09 Stabilized tactile output mechanism for computer interface devices WO2002086856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/840,344 2001-04-23
US09/840,344 US6587091B2 (en) 2001-04-23 2001-04-23 Stabilized tactile output mechanism for computer interface devices

Publications (1)

Publication Number Publication Date
WO2002086856A1 true WO2002086856A1 (en) 2002-10-31

Family

ID=25282102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/011113 WO2002086856A1 (en) 2001-04-23 2002-04-09 Stabilized tactile output mechanism for computer interface devices

Country Status (2)

Country Link
US (1) US6587091B2 (en)
WO (1) WO2002086856A1 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808479B1 (en) 2003-09-02 2010-10-05 Apple Inc. Ambidextrous mouse
US6693626B1 (en) * 1999-12-07 2004-02-17 Immersion Corporation Haptic feedback using a keyboard device
US6373470B1 (en) 2000-01-12 2002-04-16 Apple Computer, Inc. Cursor control device having an integral top member
US7084854B1 (en) 2000-09-28 2006-08-01 Immersion Corporation Actuator for providing tactile sensations and device for directional tactile sensations
CA2398798A1 (en) * 2001-08-28 2003-02-28 Research In Motion Limited System and method for providing tactility for an lcd touchscreen
US7623114B2 (en) 2001-10-09 2009-11-24 Immersion Corporation Haptic feedback sensations based on audio output from computer devices
US7345671B2 (en) * 2001-10-22 2008-03-18 Apple Inc. Method and apparatus for use of rotational user inputs
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
US7084856B2 (en) * 2001-10-22 2006-08-01 Apple Computer, Inc. Mouse having a rotary dial
US7046230B2 (en) * 2001-10-22 2006-05-16 Apple Computer, Inc. Touch pad handheld device
US7333092B2 (en) 2002-02-25 2008-02-19 Apple Computer, Inc. Touch pad for handheld device
EP1486860A4 (en) * 2002-03-05 2010-06-30 Sony Ericsson Mobile Comm Jp Image processing device, image processing program, and image processing method
NL1020161C2 (en) * 2002-03-13 2003-10-03 Welbergen Beheer B V System for supplying an input signal and computer input device.
US7233318B1 (en) 2002-03-13 2007-06-19 Apple Inc. Multi-button mouse
US11275405B2 (en) 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
US7656393B2 (en) 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
US7358963B2 (en) 2002-09-09 2008-04-15 Apple Inc. Mouse having an optically-based scrolling feature
US7769417B2 (en) * 2002-12-08 2010-08-03 Immersion Corporation Method and apparatus for providing haptic feedback to off-activating area
DE112004000918B4 (en) * 2003-05-30 2018-05-17 Immersion Corp. Device with a haptic effect generator
GB2417311B (en) * 2003-06-03 2007-05-09 Immersion Corp Systems and methods for providing a haptic manipulandum
US20070152977A1 (en) 2005-12-30 2007-07-05 Apple Computer, Inc. Illuminated touchpad
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
JP2005099923A (en) * 2003-09-22 2005-04-14 Alps Electric Co Ltd Mouse with scroll function
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
US7495659B2 (en) 2003-11-25 2009-02-24 Apple Inc. Touch pad for handheld device
US7620915B2 (en) 2004-02-13 2009-11-17 Ludwig Lester F Electronic document editing employing multiple cursors
US20050231481A1 (en) * 2004-04-14 2005-10-20 Mike Wittig System for exerting forces on a user using rolling elements
US20050257150A1 (en) * 2004-05-11 2005-11-17 Universite Des Sciences Et Technologies De Lille Ground-based haptic interface comprising at least two decoupled rotary finger actuators
ATE553429T1 (en) 2004-08-16 2012-04-15 Apple Inc METHOD FOR INCREASING THE SPATIAL RESOLUTION OF TOUCH-SENSITIVE DEVICES
EP1805585B1 (en) 2004-10-08 2017-08-16 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
US7825903B2 (en) 2005-05-12 2010-11-02 Immersion Corporation Method and apparatus for providing haptic effects to a touch panel
US7671837B2 (en) 2005-09-06 2010-03-02 Apple Inc. Scrolling input arrangements using capacitive sensors on a flexible membrane
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
US20070152983A1 (en) 2005-12-30 2007-07-05 Apple Computer, Inc. Touch pad with symbols based on mode
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US20080303795A1 (en) * 2007-06-08 2008-12-11 Lowles Robert J Haptic display for a handheld electronic device
US20080303796A1 (en) * 2007-06-08 2008-12-11 Steven Fyke Shape-changing display for a handheld electronic device
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
WO2009032898A2 (en) 2007-09-04 2009-03-12 Apple Inc. Compact input device
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US9454256B2 (en) 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
US20100020036A1 (en) * 2008-07-23 2010-01-28 Edward Hui Portable electronic device and method of controlling same
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US20110109555A1 (en) * 2009-11-06 2011-05-12 Honda Motor Co., Ltd. Interface system including trackball
US8542105B2 (en) 2009-11-24 2013-09-24 Immersion Corporation Handheld computer interface with haptic feedback
US20130197965A1 (en) * 2010-04-26 2013-08-01 James S. Leitch Risk assessment and mitigation planning, systems and methods
US9582178B2 (en) 2011-11-07 2017-02-28 Immersion Corporation Systems and methods for multi-pressure interaction on touch-sensitive surfaces
US9449032B2 (en) * 2013-04-22 2016-09-20 Sap Se Multi-buffering system supporting read/write access to different data source type
US20180369691A1 (en) * 2017-06-22 2018-12-27 Immersion Corporation Device having a plurality of segments for outputting a rotational haptic effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914705A (en) * 1996-02-09 1999-06-22 Lucent Technologies Inc. Apparatus and method for providing detent-like tactile feedback
US6128006A (en) * 1998-03-26 2000-10-03 Immersion Corporation Force feedback mouse wheel and other control wheels
US6256011B1 (en) * 1997-12-03 2001-07-03 Immersion Corporation Multi-function control device with force feedback

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868549A (en) 1987-05-18 1989-09-19 International Business Machines Corporation Feedback mouse
US5172092A (en) 1990-04-26 1992-12-15 Motorola, Inc. Selective call receiver having audible and tactile alerts
US5146566A (en) 1991-05-29 1992-09-08 Ibm Corporation Input/output system for computer user interface using magnetic levitation
US5311208A (en) 1991-10-03 1994-05-10 Xerox Corporation Mouse that prints
US5589828A (en) 1992-03-05 1996-12-31 Armstrong; Brad A. 6 Degrees of freedom controller with capability of tactile feedback
US5790108A (en) 1992-10-23 1998-08-04 University Of British Columbia Controller
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
JPH09117721A (en) 1994-09-28 1997-05-06 Seiko Instr Inc Vibration module
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US6166723A (en) 1995-11-17 2000-12-26 Immersion Corporation Mouse interface device providing force feedback
US6100874A (en) 1995-11-17 2000-08-08 Immersion Corporation Force feedback mouse interface
JP2971018B2 (en) 1995-11-17 1999-11-02 スター精密株式会社 Electroacoustic transducer
US5692956A (en) 1996-02-09 1997-12-02 Mattel, Inc. Combination computer mouse and game play control
JP3263012B2 (en) * 1996-10-01 2002-03-04 株式会社ソニー・コンピュータエンタテインメント Operation device for game machine
KR200160178Y1 (en) 1997-08-05 1999-11-01 이종배 Alarm and vibrator device
US6088019A (en) 1998-06-23 2000-07-11 Immersion Corporation Low cost force feedback device with actuator for non-primary axis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914705A (en) * 1996-02-09 1999-06-22 Lucent Technologies Inc. Apparatus and method for providing detent-like tactile feedback
US6256011B1 (en) * 1997-12-03 2001-07-03 Immersion Corporation Multi-function control device with force feedback
US6128006A (en) * 1998-03-26 2000-10-03 Immersion Corporation Force feedback mouse wheel and other control wheels

Also Published As

Publication number Publication date
US6587091B2 (en) 2003-07-01
US20020154094A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
US6587091B2 (en) Stabilized tactile output mechanism for computer interface devices
US6191774B1 (en) Mouse interface for providing force feedback
US6256011B1 (en) Multi-function control device with force feedback
US7084854B1 (en) Actuator for providing tactile sensations and device for directional tactile sensations
US7042441B2 (en) Input device including a scroll wheel assembly for manipulating an image in multiple directions
US8743057B2 (en) Haptic feedback using a keyboard device
US8188981B2 (en) Haptic interface for touch screen embodiments
US6259382B1 (en) Isotonic-isometric force feedback interface
US10241577B2 (en) Single actuator haptic effects
IL130107A (en) Mouse interface device for providing force feedback
US6201534B1 (en) Trackball for single digit control of wireless terminal
JP2002108557A (en) Joy stick device
WO2001026089A1 (en) Cursor positioning device with tactile output capability (the 'living mouse')
JP2003256132A (en) Mouse with scroll function
WO2024064929A1 (en) Input device
IL160002A (en) Mouse interface device for providing force feedback

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AU BG BR BZ CA CN CO CR CU ID IL IN JP KP KR MX NO NZ OM PH RO SG UA VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP