WO2002101919A1 - Distortion compensating device - Google Patents

Distortion compensating device Download PDF

Info

Publication number
WO2002101919A1
WO2002101919A1 PCT/JP2001/004931 JP0104931W WO02101919A1 WO 2002101919 A1 WO2002101919 A1 WO 2002101919A1 JP 0104931 W JP0104931 W JP 0104931W WO 02101919 A1 WO02101919 A1 WO 02101919A1
Authority
WO
WIPO (PCT)
Prior art keywords
distortion compensation
compensation coefficient
signal
distortion
error signal
Prior art date
Application number
PCT/JP2001/004931
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Nagatani
Tokuro Kubo
Hiroyoshi Ishikawa
Yasuyuki Oishi
Takayoshi Ode
Hajime Hamada
Nobukazu Fudaba
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2001/004931 priority Critical patent/WO2002101919A1/en
Publication of WO2002101919A1 publication Critical patent/WO2002101919A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • H03F1/3229Modifications of amplifiers to reduce non-linear distortion using feed-forward using a loop for error extraction and another loop for error subtraction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Definitions

  • the present invention relates to a distortion compensating device, and more particularly to a distortion compensating device capable of reducing the number of shift registers for timing adjustment and reducing the circuit scale.
  • FIG. 15 is a block diagram showing an example of a transmission device in a conventional radio, in which a transmission signal generator 1 transmits a serial digital data string, and a serial-to-parallel converter (S / P converter).
  • the digital data stream is alternately distributed one bit at a time and converted into a two-system system (J) of an in-phase component signal (I signal: In-phase component) and a quadrature component signal (Q signal: Quadrature component).
  • I signal in-phase component
  • Q signal Quadrature component
  • the quadrature modulator 4 receives the input I signal and Q signal (transmission baseband signal).
  • the frequency converter 5 performs a quadrature transformation by multiplying the reference carrier by a signal obtained by shifting the phase by 90 ° and adding the multiplication results, and outputs the result.
  • the frequency converter 5 mixes the quadrature modulation signal and the local oscillation signal.
  • Frequency conversion Power amplifier 6 emits a carrier wave outputted from the frequency converter 5 into the air from the antenna (antenna) 7 amplifies the power.
  • the transmission power of the transmitting device is large, and the input / output characteristics (distortion function f (p)) of the transmission power amplifier 6 are indicated by the dotted line in (a) of FIG. Becomes non-linear as shown by.
  • This nonlinear characteristic causes nonlinear distortion, and the transmission frequency f.
  • the peripheral frequency spectrum raises the side lobe, leaks to the adjacent channel, and causes adjacent interference. That is, as shown in (b), the power that the transmitted wave leaks to the adjacent frequency channel increases due to the nonlinear distortion. The leakage power becomes noise with respect to other channels, This degrades the communication quality of the channel.
  • the leakage power is small in the linear region of the power amplifier (see (a) in Figure 16) and large in the nonlinear region. For this reason, in order to obtain a high-output transmission power amplifier, it is necessary to widen the linear region, and it is necessary to prepare an amplifier having a capacity exceeding the actually required capacity, which is disadvantageous in cost and equipment size. There is a problem. Therefore, a radio device (linearizer) with a distortion compensation function that compensates for distortion in transmission power and realizes the use of an amplifier in a region where power load efficiency is high.
  • FIG. 17 is a block diagram of a transmission apparatus having a digital nonlinear distortion compensation function using a DSP (Digital Signal Processor).
  • the digital data group (transmission signal) transmitted from the transmission signal generator 1 is converted into two series of I signal and Q signal in the S / P converter 2 and input to the distortion compensator 8 composed of DSP. Is done.
  • Distortion compensation coefficient storage unit 8a predistortion unit 8b that performs distortion compensation processing (predistortion) on the transmission signal using distortion compensation coefficient h (pi) corresponding to the transmission signal level, transmission signal X ( t) is compared with the demodulated signal (feed pack signal) y (t) demodulated by the quadrature detector described later, and the distortion compensation coefficient h (pi) is calculated and updated so that the difference becomes zero.
  • a compensation coefficient calculation unit 8c is provided.
  • the distortion compensator 8 performs a pre-distortion process on the transmission signal using a distortion compensation coefficient h (pi) corresponding to the power level of the transmission signal X (t), and inputs the signal to the DA converter 3.
  • the D A converter 3 converts the input I signal and Q signal to an analog baseband signal and inputs the signal to the quadrature modulator 4.
  • the quadrature modulator 4 multiplies the input I signal and Q signal by a reference carrier and a signal obtained by shifting the phase by 90 °, and adds the multiplication results to perform quadrature modulation and output the result.
  • the frequency converter 5 mixes the quadrature modulated signal and the local oscillation signal to convert the frequency, and the transmission power amplifier 6 amplifies the power of the carrier signal output from the frequency converter 5 and puts it into the air from the antenna 7. Radiate.
  • a part of the transmission signal is input to the frequency converter 10 via the directional coupler 9, where the frequency is converted and input to the quadrature detector 11.
  • the quadrature detector 11 performs quadrature detection by multiplying the transmitted signal by the reference carrier and a signal obtained by shifting the phase by 90 °, and reproduces the I and Q signals of the baseband on the transmitting side to convert the A / D converter 1 2 To enter.
  • the AD converter 12 converts the input I and Q signals into digital signals and inputs them to the distortion compensator 8.
  • the distortion compensator 8 compares the transmission signal before distortion compensation with the feedpack signal demodulated by the quadrature detector 11 by adaptive signal processing using an LMS (Least Mean Square) algorithm, and the difference is zero.
  • LMS Least Mean Square
  • FIG. 19 is an explanatory diagram of a distortion compensator (adaptive predistorter) using adaptive LMS.
  • 1 5 a transmission signal X (t) to the distortion compensation coefficient h n - a (p) a multiplier for multiplying the (corresponding to Puridisu Tosho emission portion 8 b of FIG. 18)
  • 1 5 b is distortion function f (p)
  • the calculation unit (amplitude-to-power conversion unit), 15 e is a distortion compensation coefficient storage unit that stores a distortion compensation coefficient corresponding to each power of the transmission signal X (t) (the distortion compensation coefficient storage unit 8 a in FIG. 18). And outputs a distortion compensation coefficient h n- "p" corresponding to the power p of the transmission signal x (t), and a distortion compensation coefficient h n (p) determined by the LMS algorithm. h n — ⁇ p) is updated.
  • 15 f is a conjugate signal output unit
  • 15 g is a subtractor that outputs the difference e (t) between the transmission signal X (t) and the feedback demodulation signal y
  • 15 h is e (t) and u * (t) Multiplier
  • 15 i is a multiplier that multiplies h n — i ( P ) and y * (t)
  • 15 j is a multiplier that multiplies the step size parameter
  • 15 m, 15 n, 15 ⁇ is a delay unit (shift register), and the transmission signal x ( The delay time from the input of t) to the input of the feedback demodulated signal y (t) to the subtractor 15 g is added to the transmission signal.
  • u (t) is a signal subjected to distortion, and the following operation is performed by the above configuration.
  • the distortion compensation coefficient h (p) is updated so that the difference e (t) between the transmission signal X (t) and the feedback demodulation signal y (t) is minimized, and Eventually, it converges to the optimal distortion compensation coefficient value, and the distortion of the transmission power amplifier is compensated. .
  • the carrier obtained by orthogonally modulating the transmission signal is feedback-detected, and the amplitude of the transmission signal and the feedback signal are digitally converted and compared, and based on the comparison result,
  • the principle is that the distortion compensation coefficient is updated in real time. According to this nonlinear distortion compensation method, distortion can be reduced, and as a result, it is possible to suppress the leakage power even when operating in a non-linear region with a high output, and to improve the power load efficiency.
  • a modulated signal output from a DA converter (including a quadrature modulator) is AD-converted and subtracted by a subtractor. It passes through an analog filter, up-convert mixer, transmission power amplifier, down-convert mixer, analog filter, etc. before being fed back to g. For this reason, the feedpack signal has a delay inherent in each analog element between the DA converter and the AD converter. Since the distortion compensator updates the distortion compensation coefficient using the error signal that is the result of the comparison operation between the feed pack signal and the reference signal, it is necessary to use a delay section (shift register) for timing adjustment at each location. There is. In particular, a shift register 15n (Fig.
  • Another object of the present invention is to solve the problem caused by reducing the number of shift registers, stabilize the convergence of the distortion compensation coefficient, and generate the same effect of distortion compensation as before.
  • the present invention provides a distortion compensation process for a transmission signal using a distortion compensation coefficient, inputs the signal to a distortion device, and calculates a difference between the transmission signal before distortion compensation and a feedback pack signal fed back from an output side of the distortion device.
  • a distortion compensation device that adaptively calculates a distortion compensation coefficient based on the error signal, and stores the calculated distortion compensation coefficient in association with the transmission signal power.
  • a distortion compensation coefficient storage unit that stores coefficients
  • a distortion compensation unit that performs a distortion compensation process on a transmission signal by using a distortion compensation coefficient corresponding to the power of the transmission signal
  • a signal delay section for delaying the transmission signal until a signal to be fed-packed from the output side of the distortion device arrives; (4) a difference between the delayed transmission signal output from the signal delay section and the feedback signal; Calculate the error signal An operation unit; (5) an error signal storage unit that stores the error signal in accordance with the power of the transmission signal output from the signal delay unit; (6) the distortion compensation coefficient storage unit and the error signal storage unit according to the transmission signal power
  • a distortion compensation coefficient calculating unit that adaptively calculates the distortion compensation coefficient using the distortion compensation coefficient and the error signal stored in the memory and updates the old distortion compensation coefficient.
  • the error signal storage unit that stores the error signal that is the difference between the reference signal (delayed transmission signal) and the feed pack signal is provided.
  • the distortion compensation coefficient is adaptively calculated using the distortion compensation coefficient and the error signal corresponding to the transmission signal power stored in the distortion compensation coefficient storage section and the error signal storage section, respectively. Since the coefficients are updated, the number of shift registers required for the distortion compensator can be reduced, and the circuit scale can be reduced. That is, the shift register used for feedback of the distortion compensation coefficient lin conventionally required, and the address generation timing adjustment for writing the updated distortion compensation coefficient into the distortion compensation coefficient storage unit. The shift register becomes unnecessary.
  • the distortion compensation coefficient calculation unit of the distortion compensation apparatus of the present invention includes a distortion compensation coefficient convergence unit that can converge the distortion compensation coefficient even when transmission signals having the same power value continuously arrive.
  • the distortion compensation coefficient convergence means stores, for example, the correspondence between the power value of the transmission signal and the step size parameter () used in the adaptive operation, and outputs a step size parameter corresponding to the transmission signal power value.
  • the distortion compensating apparatus of the present invention includes a training signal generating section for generating a training signal, an initial training signal input to the distortion compensating section, and a transmission when the average value of the error signal becomes equal to or less than a set value.
  • Signal switching means for inputting a signal to the distortion compensation unit. In this way, the convergence of the distortion compensation coefficient can be performed stably, and the power consumption of the device can be suppressed.
  • FIG. 1 is a configuration diagram of a distortion compensation device according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a distortion compensation device according to a second embodiment of the present invention.
  • FIG. 3 is a diagram for explaining that the distortion compensation coefficient does not converge.
  • FIG. 4 is an explanatory view of the principle of the second embodiment.
  • FIG. 5 is an explanatory diagram of the probability of occurrence of transmission signal power.
  • FIG. 6 is a configuration diagram of a distortion compensation device according to a third embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a distortion compensation coefficient convergence unit using a force counter.
  • FIG. 8 is a configuration diagram of a distortion compensating apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a distortion compensation device according to a fifth embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining the processing timing of the fifth embodiment.
  • FIG. 11 is a configuration diagram of a distortion compensation apparatus according to a sixth embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of the duty of the pulse signal.
  • FIG. 13 is a configuration diagram of a distortion compensation apparatus according to a seventh embodiment of the present invention.
  • FIG. 14 is a configuration diagram of a distortion compensating apparatus according to an eighth embodiment of the present invention.
  • FIG. 15 is a configuration diagram of a conventional transmission device.
  • FIG. 16 is an explanatory diagram of a problem due to the nonlinearity of the transmission power amplifier.
  • FIG. 17 is a configuration diagram of a transmission device having a conventional digital nonlinear distortion compensation function.
  • ⁇ FIG. 18 is a functional configuration diagram of a distortion compensation unit.
  • FIG. 19 is an explanatory diagram of distortion compensation processing by adaptive LMS.
  • FIG. 20 is an overall configuration diagram of a transmission device that expresses a transmission signal X (t) in a complex manner.
  • Figure 1 is a block diagram of a distortion compensating apparatus of the first embodiment of the present invention
  • 101 the distortion compensation coefficient storage unit that stores a distortion compensation coefficient h n (p) in accordance with the power P of the transmission signal X (t) (Dual-port RAM: DRAM)
  • 102 is a distortion compensation unit (multiplication unit) that multiplies the transmission signal x (t) by a distortion compensation coefficient h n (p) corresponding to the transmission signal power
  • 103 Is the time from the arrival of the transmission signal X (t) to the arrival of the feedback signal y (t) from the output 'side of the distortion device, the signal delay part of the shift register configuration that delays the transmission signal
  • 104 is an error signal operation unit that calculates an error signal e (t) which is a difference between the transmission signal (reference signal) output from the signal delay unit 103 and the feed pack signal y (t)
  • 105 is an error signal e (t).
  • Report RAM DPRAM
  • 106 is a distortion compensation coefficient operation unit, which performs distortion compensation according to the power P of the transmission signal X (t) stored in the distortion compensation coefficient storage unit 101 and the error signal storage unit 105, respectively.
  • the distortion / compensation coefficient storage unit 101 computes the distortion compensation coefficient h n + 1 (p) adaptively using the coefficient h n (p), the error signal e n , the quadrant signal y n , and the step size parameter. Update the old distortion compensation coefficient h n (p) of.
  • 108 is a DA converter having a DA converter, a quadrature modulator, a frequency upconverter, etc.
  • 109 is a transmission power amplifier which is a distortion device
  • 110 is a part for extracting and outputting a part of a transmission signal.
  • a combiner, 111 is a feedback system that feeds back a transmission signal to a distortion compensator
  • 112 is an AD converter, which has a frequency downconverter, a quadrature demodulator, an AD converter, etc.
  • 113 is a transmission signal
  • An address generation unit that generates the power P as an address of the distortion compensation coefficient storage unit 101, and 114 sets the power of the delayed transmission signal output from the signal delay unit 103 as the address of the error signal storage unit 105.
  • the generated address generator 115 is a flip-flop delay circuit that delays the address signal by the time required for the distortion compensation coefficient calculation of the distortion compensation coefficient calculator 106, for example, for one clock period.
  • 106 a rotation calculation unit for outputting the e ⁇ ⁇ u ⁇ *, 106b is a multiplier for multiplying the stearyl Step Size parameter ⁇ to the rotation calculating unit output signal, 106c is h n (p ) and an adder for adding the ⁇ e n ⁇ u n *.
  • the address generation unit 113 calculates the power value P of the transmission signal, and inputs the power value P as an address to the distortion compensation coefficient storage unit 101 and the error signal storage unit 105. .
  • the distortion compensation coefficient storage unit 101 inputs the distortion compensation coefficient h n (p) from the address P designated by the address generation unit 113 to the distortion compensation unit 102.
  • Distortion compensating unit 102 outputs the transmission signal x (t) is multiplied by a distortion compensation coefficient h n (p).
  • the DA converter 108 performs DA conversion, modulation, and frequency up-comparison processing on the distortion-compensated transmission signal, and inputs the signal to the transmission power amplifier 108.
  • the transmission power amplifier 108 amplifies the transmission signal and radiates it from an antenna (not shown).
  • the directional coupler 110 extracts a part of the transmission signal and inputs it to the A / D converter 112.
  • the A / D converter performs frequency down-comparison, demodulation, and A / D conversion processing to provide a feedback signal y (t). Is input to the error signal calculation unit 104.
  • the error signal storage unit 105 outputs the error signal euzeand the quadrant signal y from the address P specified by the address generation unit 113.
  • the old distortion compensation coefficient h n (p) stored in the address P of the distortion compensation storage unit 101 is updated with h n (p).
  • the signal delay unit 103 delays the transmission signal (t) by a set time and inputs the transmission signal (t) to the address generation unit 114 and the erroneous signal calculation unit 104.
  • the error signal calculation unit 104 calculates an error signal e (t) which is a difference between the transmission signal delayed by the signal delay unit 103 and the feedback signal.
  • the address generation unit 114 calculates the power value P of the transmission signal delayed by the signal delay unit 103, and inputs the power value P as an address to the error signal storage unit 105.
  • the error signal storage unit 105 stores the quadrant signal of the error signal e (t) and the feedback signal y (t) input from the error signal calculation unit 104 at the address specified by the address generation unit 114. .
  • the distortion compensation coefficient storage unit 101 stores the transmission signal x (t).
  • the distortion compensation process is performed using the distortion compensation coefficient h n (p) read from the error signal e n , the error signal e n already stored in the error signal storage unit 105, the quadrant signal y n, and the distortion compensation coefficient h n (p) is used to calculate a new distortion compensation coefficient h n + i (p), and the old distortion compensation coefficient h n (p) in the distortion compensation coefficient storage unit 101 is calculated using the distortion compensation coefficient hn + 1 (p). To update.
  • the shift register used to feed back the distortion compensation coefficient h n (p), which was conventionally required, to the distortion compensation coefficient operation unit 106, and the updated distortion
  • the shift register (the delay unit 15m in Fig. 19) for adjusting the address generation timing can be deleted.
  • FIG. 2 is a configuration diagram of a distortion compensating apparatus according to a second embodiment of the present invention, and the same parts as those in the first embodiment in FIG.
  • the difference from the first embodiment is that (1) the correspondence between the power value P of the transmission signal X) and the step size parameter ⁇ to data ⁇ used in the adaptive operation is stored in the memory 106e of the step size parameter control unit 106d.
  • Step size The parameter control unit 106d obtains and outputs the step size parameter corresponding to the power value P of the transmission signal from the memory 106e, and the distortion compensation coefficient calculation unit 106 uses this step size parameter UL.
  • adaptively Ibitsuto ⁇ number h n + t (p) the (1) is a point to update by Ri calculated by the formula.
  • the distortion compensation coefficient of the distortion compensation coefficient storage unit 101 is updated using the error signal stored in the error signal storage unit 105.
  • Td there is a delay of Td from when the distortion compensation coefficient in the distortion compensation coefficient storage unit 101 is updated to when the old error signal is updated with a new error signal that is a distortion compensation result. Therefore, if a transmission signal having the same power is continuously input a plurality of times during this delay time Td, the distortion compensation coefficient is updated a plurality of times using the old error signal.
  • the error signal is large, the distortion compensation coefficient is far from the expected value and does not converge.
  • FIG. 3 is a diagram illustrating that the distortion compensation coefficient does not converge.
  • the occurrence probability of the transmission signal power is determined in advance (see Fig. 5), and as shown in Fig. 2, a small ⁇ is assigned to the power value that has a high appearance frequency and is likely to be continuously input. it relies coefficient update base-vector e n with. rather small values of u n *, contrary to low frequency, the large ⁇ is the power value is less likely to continuously input, i.e., the normal value Assign a close value. This makes it possible to stably converge the distortion compensation coefficient.
  • FIG. 6 is a configuration diagram of a distortion compensating apparatus according to a third embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The difference from the first embodiment is that a distortion compensation coefficient convergence section 120 having a counter configuration is provided.
  • the distortion compensating apparatus of the first embodiment when a transmission signal having the same power is continuously input multiple times during the delay time Td, the distortion compensation is performed using the old error signal. Since the coefficient is updated a plurality of times, the distortion compensation coefficient does not converge if the error signal is large.
  • FIG. 7 is a configuration diagram of the distortion compensation coefficient collecting unit 120, 121 is an address generating unit 113, an address decoder for decoding an output address, and 122a to 122ii are counters provided for each address. Is a counter overflow detection unit that detects overflow of each counter unit and outputs a write enable signal WE.
  • Each of the counter units 122a to 122n has a counter start determination unit 131 and a counter 132.
  • the counter start determination unit 131 generates a count start signal Restart when the address generation unit 113 generates its own address (the address access signal is at a high level) in a state where an overflow has already occurred from its own counter. Then, the counter 132 starts counting clock pulses in response to the count start signal Restart. When a predetermined number of clock pulses are counted, an overflow occurs, an overflow pulse is generated, and the counting is stopped thereafter.
  • the counter overflow detection section 123 checks whether the counter section corresponding to the address has overflown, and if an overflow has occurred, generates a write enable signal WE and generates a write enable signal WE. If not, the write enable signal WE is not generated. If write rice one enable signal WE is generated, the distortion compensation coefficient Symbol ⁇ 101 distortion compensation coefficient input from the distortion compensation coefficient calculation unit 1 06 h n + 1 (p) in the old distortion compensation coefficient h n a (p) Update. However, if the write Ineburu signal WE is generated, distortion compensation coefficient h n + 1 the distortion compensation coefficient storage unit 101 inputs the distortion compensation coefficient calculation unit 106 the old distortion compensation coefficient h n in (p) (p) updating do not do.
  • the address can be written after the set time has elapsed, and thereafter, the address can be written.
  • a write enable signal WE is generated, and the distortion compensation coefficient can be written to the distortion compensation coefficient storage unit 110.
  • the write enable signal WE does not occur and the distortion compensation coefficient cannot be written to the distortion compensation coefficient storage unit 110.
  • the distortion compensation coefficient is updated only once, so that the distortion compensation coefficient can be kept far from the expected value and can be converged to a constant value.
  • FIG. 8 is a configuration diagram of a distortion compensating apparatus according to a fourth embodiment of the present invention, and the same parts as those in the first embodiment in FIG.
  • the difference from the first embodiment is that a distortion compensation coefficient convergence section 150 having a memory configuration is provided.
  • the distortion compensating apparatus of the first embodiment if a transmission signal having the same power is input multiple times continuously during the delay time Td, the distortion compensation coefficient is updated multiple times using the old error signal. Therefore, if the error signal is large, the distortion compensation coefficient does not converge. That is, before the time T d required from the update of the distortion compensation coefficient to the storage of a new error signal in the error signal storage unit 105 elapses, the same address in the distortion compensation coefficient storage unit 101 is stored. When the work of updating the distortion compensation coefficient is performed a plurality of times, the distortion compensation coefficient does not converge well.
  • a distortion compensation coefficient convergence unit 150 having a memory configuration is provided, and a coefficient update time is recorded for each address of the distortion compensation coefficient storage unit 101 to monitor the coefficient update timing. That is, a reference timer is prepared, and when a distortion compensation coefficient at a predetermined address in the distortion compensation coefficient storage unit 101 is updated, an update time is stored in a memory in association with the address. Then, the latest update time stored in the memory is compared with the current time indicated by the reference timer, and only when the difference (elapsed time) exceeds a threshold value, for example, the delay time Td, the distortion compensation coefficient of the address is updated. Make it possible.
  • the distortion compensation coefficient convergence unit 150 includes a timer 151 that indicates a reference time, an update time storage unit 152 that records the update time of the distortion compensation coefficient stored at each address of the distortion compensation coefficient storage unit 101, A time difference calculation unit 153 that calculates a time difference ⁇ ⁇ between the update time and the current time, compares the time difference ⁇ ⁇ with the threshold ⁇ thr, and outputs a write enable signal WE when A t ⁇ Tt hr, and outputs a signal A t ⁇ T thr A comparison unit 154 which does not output the write enable signal WE and a delay circuit 155 which delays the address generated from the address generation unit 113 by one clock time are provided.
  • the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101, and distortion compensation is performed as in the first embodiment. Also, the distortion compensation coefficient calculation unit 106 calculates the distortion compensation coefficient h n +1 (p) according to the equation (1) and inputs it to the distortion compensation coefficient storage unit 101.
  • the distortion compensation coefficient storage unit 101 updates the A t the distortion compensation coefficient input from the correction coefficient arithmetic operator 106 if Tthr h n + 1 (p) in the old strain complement ⁇ number h n (p). However, delta if ⁇ rather Tthr, the distortion compensation coefficient storage unit 101 updates the old distortion compensation coefficient in distortion compensation coefficient h n + 1 input from the distortion compensation coefficient calculator 1 0 6 (p) h n (p) do not do.
  • the address can be written after a set time has elapsed, and thereafter, when the address is generated by the address generation unit 113, the write enable signal WE is output. Is generated, and the distortion compensation coefficient h n + ⁇ p) can be written to the distortion compensation coefficient storage unit 110.
  • the address generation unit 113 generates the address.
  • the write enable signal WE is not generated, and the distortion compensation coefficient hn + 1 (p) cannot be written to the distortion compensation coefficient storage unit 110.
  • the distortion compensation coefficient is updated only once, so that the distortion compensation coefficient is updated only once. Can be kept far from the expected value and can be converged to a constant value.
  • FIG. 9 is a configuration diagram of a distortion compensating apparatus according to a fifth embodiment of the present invention, and the same parts as those in the first embodiment of FIG. The difference from the first embodiment is that a distortion compensation coefficient convergence section 160 is provided.
  • the distortion compensating apparatus of the first embodiment when a transmission signal having the same power is continuously input multiple times during the delay time Td, the distortion compensation coefficient is updated multiple times using the old error signal. Therefore, if the error signal is large, the distortion compensation coefficient does not converge. That is, before the time Td required from the time when the distortion compensation coefficient is updated to the time when a new error signal is stored in the error signal storage unit 105 elapses, the distortion of the same address in the distortion compensation coefficient storage unit 101 is obtained. If the update of the compensation coefficient is performed several times, the distortion compensation coefficient does not converge well.
  • a compensation coefficient convergence unit 160 having a pulse generation unit 161 that generates a pulse signal PL having a duty of 50% and a predetermined period (for example, 2 ⁇ Td) is provided.
  • duty (ON period / pulse period) ⁇ 100 (%).
  • the pulse signal PL is at the high level
  • the error signal is stored only in the error signal storage unit (error signal table) 105.
  • the distortion compensation coefficient is stored in a distortion compensation coefficient storage unit (distortion compensation coefficient table) 101, and the error signal is read from a predetermined address of the error signal storage unit 105. In such a case, 0 is written to the address.
  • the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101, and the same as in the first embodiment. Is subjected to distortion compensation. Also, the distortion compensation coefficient calculation unit 106 calculates the distortion erosion coefficient hn + 1 (p) according to equation (1) and inputs the calculated value to the distortion compensation coefficient storage unit 101. Since the pull signal WE is not input, the distortion compensation coefficient hn + 1 (p) is not stored in the distortion compensation coefficient storage unit 101.
  • a part of the output of the power amplifier 109 is fed back and converted into a digital signal by the AD converter 112, and the error signal calculator 104 calculates the error signal e (t).
  • the selectors 162 and 163 select the quadrant data of the error signal e (t) and the feed pack signal y (t) and input them to the error signal storage unit 105. Since the selector 164 selects the address output from the address generator 114 and inputs it to the error signal storage 105, the error signal e (t) and quadrant data are sequentially stored in the address of the error signal storage 105. Is done.
  • the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101 and the distortion compensation is performed. It is. Further, the address generating unit 113 mosquitoes ⁇ address is generated, the error signal e n from the Adore scan of the error signal storage unit 105, it is read out quadrant data y n is input to the distortion compensation coefficient calculation unit 106.
  • the distortion compensation coefficient calculator 106 calculates the distortion compensation coefficient hn + 1 (p) according to the equation (1), and inputs the calculated value to the distortion compensation coefficient storage 101.
  • the write enable signal WE is input to the distortion compensation coefficient storage unit 101, so that the distortion compensation coefficient hn + 1 (p) is written to the address, and the old distortion compensation The coefficient h n (p) is updated.
  • the selectors 162 and 163 select zero and input them to the error signal storage unit 105, and the selector 164 receives the input from the address generation unit 113 via the delay circuit 165.
  • the error signal e n and the quadrant data y n are once read out from the address of the error signal storage unit 105 since the address to be selected is input to the error signal storage unit 105. Is written to zero.
  • This zero writing prevents the distortion compensation coefficient at the same address from being updated more than once when the pulse signal PL is at a single level.
  • a flag is set for the accessed address, and the next access is It is also possible to configure so that the value of the address is not used when the lag is raised.
  • the distortion compensation coefficient is updated only once, even if the transmission signal having the same power is continuously input multiple times. Coefficients can be prevented from deviating from expected values, and can be converged to a constant value.
  • FIG. 11 is a configuration diagram of a distortion compensating apparatus according to a sixth embodiment of the present invention, and the same parts as those in the fifth embodiment in FIG.
  • the difference from the fifth embodiment is that (1) the pulse signal generator 161 can change the duty of the pulse signal PL, and (2) the error signal power decreases when the distortion compensation coefficient converges.
  • the point is to increase the duty by increasing the ON period as the error signal power decreases by monitoring the average value of the power.
  • the operation is performed at a duty of 50% in the process of pulling in the distortion compensation coefficient.
  • the power calculator 166 calculates the error signal power of the error signal e (t) output from the error calculator 104, the comparator 167 outputs the difference between the error power and the threshold power, and the averaging unit 168 calculates the average value of the difference power.
  • the pulse signal generator 16 1 monitors the average power value and increases the on-period as shown in Figs. 12 (a), (b) and (c) as the error signal power decreases. To increase the duty. After the distortion compensation coefficient converges to a constant value and the error signal power decreases, the updating of the distortion compensation coefficient is stopped to maintain the distortion compensation coefficient at the constant value and compensate for the distortion. it can. When the error signal power increases, the updating of the distortion compensation coefficient is restarted.
  • FIG. 13 is a configuration diagram of a distortion compensating apparatus according to a seventh embodiment of the present invention.
  • the same parts as those in the first embodiment of FIG. The differences from the first embodiment are as follows: (1) At the initial stage, the training signal sequence is input to the distortion compensator until the distortion compensation coefficient converges. (2) When the distortion compensation coefficient converges, the training signal The point is that the transmission signal is input to the distortion compensation device instead of the sequence.
  • 201 is a training signal generator that generates a training signal sequence
  • 202 is the initial training signal sequence that is input to the distortion compensator 102, and when the average value of the error signal falls below the set value, the transmission signal x (t) is A switch input to the distortion compensator 102, a power calculator 203 for calculating the error signal power, and an average calculator 204 for calculating the average of the error signal power.
  • the switch unit 202 trains the signal input to the distortion compensator. Switch from signal sequence to transmission signal x (t).
  • the convergence of the distortion compensation coefficient can be performed stably, and the power consumption of the distortion compensation device can be reduced.
  • FIG. 14 is a configuration diagram of the distortion compensating apparatus according to the eighth embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The following two points are different from the first embodiment.
  • the first difference is that when a transmission signal X (t) is input and an address corresponding to the power of the transmission signal is generated from the address generation section 113, the distortion compensation coefficient section storage section 101 stores an error.
  • the distortion compensation coefficient h n (p), the error signal e n , and the quadrant signal y n are input to the distortion compensation coefficient storage unit 301 from the address of the signal storage unit 105, and the distortion compensation coefficient storage unit 301
  • the distortion compensation coefficient h n + i (p) is calculated according to the equation (1) and input to the distortion compensation unit 102.
  • the distortion compensation unit 102 calculates the distortion compensation coefficient 3 ⁇ 4 h n +! The point is that distortion is compensated based on (p).
  • the second difference is that calculates the difference between the previous error signal stored in the error signal present error signal calculated by the arithmetic unit 10 4 and the error signal memory 105 in the comparison unit 302, the average value Is calculated by the average value calculation unit 303. If the average value of the difference is small, the distortion compensation coefficient and the error signal are regarded as converging, and the distortion compensation coefficient storage unit 101 and the error signal storage unit 105 are updated. First, when the average value of the differences becomes large, the storage contents of the storage units 101 and 105 are updated.
  • the provision of the distortion compensation coefficient calculator 301 as compared with the first embodiment allows the error signal to be reflected on the distortion compensation coefficient earlier, and the distortion compensation coefficient is used as the distortion compensation coefficient.
  • the distortion can be compensated by inputting to the unit 102. After the distortion compensation coefficient converges to a constant value and the error signal power decreases, the distortion compensation coefficient can be maintained at the constant value and the distortion can be compensated by stopping the updating of the distortion compensation coefficient. . When the error signal power increases, the updating of the distortion compensation coefficient is restarted.
  • the distortion compensation coefficient calculation unit 301 since the distortion compensation coefficient calculation unit 301 is provided, it is possible to input a distortion compensation coefficient reflecting an error signal to the distortion compensation unit earlier than in the first embodiment to perform distortion compensation. it can. Also, according to the eighth embodiment, after the distortion compensation coefficient converges to a constant value and the error signal power decreases, the updating of the distortion compensation coefficient is stopped by stopping the distortion compensation coefficient. Distortion can be compensated while maintaining a constant value. When the error signal power increases, the update of the distortion compensation coefficient is restarted.
  • the number of shift registers required for the distortion compensator can be reduced, and the circuit scale can be reduced.
  • the effect of reduction when the delay of the analog element is large is great.
  • the distortion compensation coefficient can be made to converge, and the disadvantage caused by reducing the number of shift registers can be eliminated to eliminate the distortion compensation coefficient. Can be stably converged, and the same effect of distortion compensation as in the past can be obtained.

Abstract

A distortion compensating device for compensating for the distortion of a transmission signal by means of a distortion compensation coefficient and inputting the signal into a distortion device comprises a distortion compensation coefficient storage section where a distortion compensation coefficient is stored in accordance with the transmission signal, an error signal storage section where an error signal which is the error between the transmission signal and a feedback signal and related to the transmission signal is stored, and a distortion compensation coefficient calculating section which adaptively calculates a new value of the distortion compensation coefficient in accordance with the transmission signal by using the distortion compensation coefficient and error signal stored in the distortion compensation coefficient storage section and distortion compensation coefficient storage section respectably and updates the value of the distortion compensation coefficient stored in the distortion compensation coefficient storage section.

Description

明 細 書  Specification
歪補償装置  Distortion compensator
技術分野 Technical field
本発明は歪補償装置に係わり、特にタイ ミ ング合わせ用のシフ ト レジスタの数 を削減して回路規模を縮小できる歪補償装置に関する。  The present invention relates to a distortion compensating device, and more particularly to a distortion compensating device capable of reducing the number of shift registers for timing adjustment and reducing the circuit scale.
背景技術 . Background art.
近年周波数資源が逼迫し、 無線通信に於いてディジタル化による高能率伝送が 多く用いられる よ う になってきた。無線通信に多値位相変調方式を適用する場合、 送信側特に電力増幅器の増幅特性を直線化して非線型歪を抑え、 隣接チヤネル漏 洩電力を低減する技術が重要であり、 また線型性に劣る増幅器を使用し電力効率 の向上を図る場合はそれによる歪発生を補償する技術が必須である。  In recent years, frequency resources have become tight, and high-efficiency transmission by digitization has been widely used in wireless communication. When applying multi-level phase modulation to wireless communication, it is important to reduce the adjacent channel leakage power by reducing the nonlinear distortion by linearizing the amplification characteristics of the transmission side, especially the power amplifier, and it is inferior in linearity. When using an amplifier to improve power efficiency, it is essential to have a technology that compensates for the occurrence of distortion.
図 15 は従来の無線機における送信装置の一例を示すプロック図であり、 送信 信号発生装置 1 はシリアルのディジタルデータ列を送出し、 シリアル ノ,、 °ラ レル 変換器 ( S / P変換器) 2はディジタルデータ列を 1 ビッ トづっ交互に振り分け て同相成分信号 ( I 信号 : In-phase component)と 直交成分信号(Q信号 : Quadrature component)の 2系歹 (Jに変換する。 D A変換器 3は I 信号、 Q信号 のそれぞれをアナ口グのベースバン ド信号に変換して直交変調器 4に入力する。 直交変調器 4は入力され.た I信号、 Q信号 (送信ベースパン ド信号) にそれぞれ 基準搬送波と これを 9 0 °移相した信号を乗算し、 乗算結果を加算することによ り直交変換を行って出力する。 周波数変換器 5は直交変調信号と局部発振信号を ミキシングして周波数変換し、 送信電力増幅器 6は周波数変換器 5から出力され た搬送波を電力増幅して空中線 (アンテナ) 7 より空中に放射する。  FIG. 15 is a block diagram showing an example of a transmission device in a conventional radio, in which a transmission signal generator 1 transmits a serial digital data string, and a serial-to-parallel converter (S / P converter). In step 2, the digital data stream is alternately distributed one bit at a time and converted into a two-system system (J) of an in-phase component signal (I signal: In-phase component) and a quadrature component signal (Q signal: Quadrature component). 3 converts the I signal and the Q signal into analog baseband signals and inputs the signals to the quadrature modulator 4. The quadrature modulator 4 receives the input I signal and Q signal (transmission baseband signal). The frequency converter 5 performs a quadrature transformation by multiplying the reference carrier by a signal obtained by shifting the phase by 90 ° and adding the multiplication results, and outputs the result.The frequency converter 5 mixes the quadrature modulation signal and the local oscillation signal. Frequency conversion Power amplifier 6 emits a carrier wave outputted from the frequency converter 5 into the air from the antenna (antenna) 7 amplifies the power.
W- CDMA及び PDC(Personal Digital Cellular)等の移動通信において、 送信 装置の送信電力は大きく 、 送信電力増幅器 6 の入出力特性 (歪関数 f (p)) は図 1 6 の ( a ) の点線で示すよ うに非直線性になる。 この非直線特性により非線形 歪が発生し、 送信周波数 f 。周辺の周波数スペク トラムは図 1 6の ( b ) の実線 に示すよう にサイ ドローブが持ち上がり、 隣接チャネルに漏洩し、 隣接妨害を生 じる。 すなわち、 非線形歪により ( b ) に示すように送信波が隣接周波数チヤネ ルに漏洩する電力が大きくなる。 漏洩電力は、 他チャネルに対して雑音となり、 そのチャネルの通信品質を劣化させてしまう。 よって、 厳しく規定されている。 と こ ろで、 漏洩電力は、 電力増幅器の線型領域(図 1 6の ( a ) 参照)で小さく、 非線形領域で大きく なる。 このため、 高出力の送信電力増幅器とするためには、 線形領域を広くする必要があり、 実際に必要となる能力以上の増幅器を用意しな ければならず、 コス ト及び装置サイズにおいて不利となる問題がある。 そこで、 送信電力の歪を補償し、 電力負荷効率の良い領域での増幅器の使用を実現するも のが歪補償機能つきの無線装置(リニァライザ)である。 In mobile communications such as W-CDMA and PDC (Personal Digital Cellular), the transmission power of the transmitting device is large, and the input / output characteristics (distortion function f (p)) of the transmission power amplifier 6 are indicated by the dotted line in (a) of FIG. Becomes non-linear as shown by. This nonlinear characteristic causes nonlinear distortion, and the transmission frequency f. As shown by the solid line in Fig. 16 (b), the peripheral frequency spectrum raises the side lobe, leaks to the adjacent channel, and causes adjacent interference. That is, as shown in (b), the power that the transmitted wave leaks to the adjacent frequency channel increases due to the nonlinear distortion. The leakage power becomes noise with respect to other channels, This degrades the communication quality of the channel. Therefore, it is strictly regulated. Here, the leakage power is small in the linear region of the power amplifier (see (a) in Figure 16) and large in the nonlinear region. For this reason, in order to obtain a high-output transmission power amplifier, it is necessary to widen the linear region, and it is necessary to prepare an amplifier having a capacity exceeding the actually required capacity, which is disadvantageous in cost and equipment size. There is a problem. Therefore, a radio device (linearizer) with a distortion compensation function that compensates for distortion in transmission power and realizes the use of an amplifier in a region where power load efficiency is high.
図 17は D S P (Digital Signal Processor)を用いたディジタル非線形歪補償機 能を備えた送信装置のプロック図である。 送信信号発生装置 1から送出されるデ イジタルデータ群 (送信信号) は、 S / P変換器 2において I信号、 Q信号の 2 系列に変換されて D S Pで構成される歪補償部 8に入力される。 歪補償部 8は機 能的に図 1 8に示すよ うに、 送信信号 X (t)のパワーレベル 0~ 1023 に応じた歪補 償係数 h(pi)(i=0~ 1023)を記憶する歪補償係数記憶部 8 a、 送信信号レベルに応 じた歪補償係数 h(pi)を用いて該送信信号に歪補償処理 (プリデイス トーショ ン) を施すプリディス トーショ ン部 8 b、 送信信号 X (t)と後述する直交検波器で復 調された復調信号 (フィー ドパック信号) y (t)を比較し、 その差が零となるよ う に歪補償係数 h(pi)を演算、 更新する歪補償係数演算部 8 cを備えている。 歪補償部 8は送信信号 X ( t)のパワーレベルに応じた歪補償係数 h (p i)を用いて 該送信信号にプリディス トーショ ン処理を施し、 D A変換器 3に入力する。 D A 変換器 3は入力された I 信号と Q信号をアナ口グのベースバン ド信号に変換して 直交変調器 4に入力する。 直交変調器 4は入力された I信号、 Q信号にそれぞれ 基準搬送波とこれを 9 0 °移相した信号を乗算し、 乗算結果を加算することによ り直交変調を行って出力する。 周波数変換器 5は直交変調信号と局部発振信号を ミキ,シングして周波数変換し、 送信電力増幅器 6は周波数変換器 5から出力され た搬送波信号を電力増幅して空中線 (アンテナ) 7 より空中に放射する。  FIG. 17 is a block diagram of a transmission apparatus having a digital nonlinear distortion compensation function using a DSP (Digital Signal Processor). The digital data group (transmission signal) transmitted from the transmission signal generator 1 is converted into two series of I signal and Q signal in the S / P converter 2 and input to the distortion compensator 8 composed of DSP. Is done. The distortion compensator 8 stores the distortion compensation coefficient h (pi) (i = 0 to 1023) corresponding to the power level 0 to 1023 of the transmission signal X (t), as shown in FIG. 18. Distortion compensation coefficient storage unit 8a, predistortion unit 8b that performs distortion compensation processing (predistortion) on the transmission signal using distortion compensation coefficient h (pi) corresponding to the transmission signal level, transmission signal X ( t) is compared with the demodulated signal (feed pack signal) y (t) demodulated by the quadrature detector described later, and the distortion compensation coefficient h (pi) is calculated and updated so that the difference becomes zero. A compensation coefficient calculation unit 8c is provided. The distortion compensator 8 performs a pre-distortion process on the transmission signal using a distortion compensation coefficient h (pi) corresponding to the power level of the transmission signal X (t), and inputs the signal to the DA converter 3. The D A converter 3 converts the input I signal and Q signal to an analog baseband signal and inputs the signal to the quadrature modulator 4. The quadrature modulator 4 multiplies the input I signal and Q signal by a reference carrier and a signal obtained by shifting the phase by 90 °, and adds the multiplication results to perform quadrature modulation and output the result. The frequency converter 5 mixes the quadrature modulated signal and the local oscillation signal to convert the frequency, and the transmission power amplifier 6 amplifies the power of the carrier signal output from the frequency converter 5 and puts it into the air from the antenna 7. Radiate.
送信信号の一部は方向性結合器 9 を介して周波数変換器 1 0に入力され、 こ こで周波数変換されて直交検波器 1 1 に入力される。 直交検波器 1 1は送信信号 にそれぞれ基準搬送波と これを 9 0 °移相した信号を乗算して直交検波を行い、 送信側におけるベースバン ドの I 、Q信号を再現して A D変換器 1 2に入力する。 AD変換器 1 2は入力された I , Q信号をディジタルに変換して歪補償部 8に入 力する。 歪補償部 8は LMS (Least Mean Square)アルゴリ ズムを用いた適応信 号処理によ り歪補償前の送信信号と直交検波器 1 1で復調されたフィー ドパック 信号を比較し、 その差が零となるよ う に歪補償係数 h(pi)を演算、 更新する。 つ いで、 次の送信すべき送信信号に更新した歪補償係数を用いてプリディス トーシ ヨ ン処理を施して出力する。 以後、 上記動作を繰り返すことによ り、 送信電力增 幅器 6 の非線形歪を抑えて隣接チャネル漏洩電力を低減する。 A part of the transmission signal is input to the frequency converter 10 via the directional coupler 9, where the frequency is converted and input to the quadrature detector 11. The quadrature detector 11 performs quadrature detection by multiplying the transmitted signal by the reference carrier and a signal obtained by shifting the phase by 90 °, and reproduces the I and Q signals of the baseband on the transmitting side to convert the A / D converter 1 2 To enter. The AD converter 12 converts the input I and Q signals into digital signals and inputs them to the distortion compensator 8. The distortion compensator 8 compares the transmission signal before distortion compensation with the feedpack signal demodulated by the quadrature detector 11 by adaptive signal processing using an LMS (Least Mean Square) algorithm, and the difference is zero. Calculate and update the distortion compensation coefficient h (pi) so that Next, pre-distortion processing is performed on the next transmission signal to be transmitted using the updated distortion compensation coefficient, and the signal is output. Thereafter, by repeating the above operation, the nonlinear distortion of the transmission power amplifier 6 is suppressed, and the adjacent channel leakage power is reduced.
図 19は適応 LMS による歪補償装置(ァダブティブプリディス トータ)の説明 図である。 1 5 aは送信信号 X (t)に歪補償係数 h n — (p)を乗算する乗算器 (図 18 のプリディス トーショ ン部 8 b に対応)、 1 5 bは歪関数 f (p)を有する送信 電力増幅器、 1 5 c は送信電力増幅器からの出力信号 y (t)を帰還する帰還系、 1 5 dは送信信号 X (t)のパワー p (= X (t)2) を演算する演算部 (振幅一電力変 換部)、 1 5 e は送信信号 X (t)の各パワーに応じた歪補償係数を記憶する歪補償 係数記憶部 (図 18の歪補償係数記憶部 8 aに対応) であり、 送信信号 x(t)のパ ヮー p に応じた歪補償係数 h n - "p)を出力すると共に、 LMS アルゴリズムによ り求まる歪補償係数 h n(p)で歪補償係数 h n— ^p)を更新する。 FIG. 19 is an explanatory diagram of a distortion compensator (adaptive predistorter) using adaptive LMS. 1 5 a transmission signal X (t) to the distortion compensation coefficient h n - a (p) a multiplier for multiplying the (corresponding to Puridisu Tosho emission portion 8 b of FIG. 18), 1 5 b is distortion function f (p) 15 c is a feedback system that feeds back the output signal y (t) from the transmission power amplifier, and 15 d calculates the power p (= X (t) 2 ) of the transmission signal X (t). The calculation unit (amplitude-to-power conversion unit), 15 e is a distortion compensation coefficient storage unit that stores a distortion compensation coefficient corresponding to each power of the transmission signal X (t) (the distortion compensation coefficient storage unit 8 a in FIG. 18). And outputs a distortion compensation coefficient h n- "p" corresponding to the power p of the transmission signal x (t), and a distortion compensation coefficient h n (p) determined by the LMS algorithm. h n — ^ p) is updated.
1 5 f は共役褸素信号出力部、 1 5 gは送信信号 X (t)と帰還復調信号 y ( の 差 e (t)を出力する減算器、 1 5 hは e (t)と u *(t)の乗算を行う乗算器、 1 5 i は h n — i (P)と y * (t)の乗算を行う乗算器、 1 5 j はステップサイズパラメータ を乗算する乗算器、 1 5 kは h n - 丄(p)と e (t)u *(t)を加算する加算器、 1 5 m, 1 5 n , 1 5 ρは遅延部(シフ ト レジスタ)であり、 送信信号 x (t)が入力し てから帰還復調信号 y (t)が減算器 1 5 gに入力するまでの遅延時間を送信信号 に付加する。 1 5 f , 1 5 1!〜 1 5 j は回転演算部 1 6を構成する。 u (t)は歪 を受けた信号である。 上記構成により 、 以下に示す演算が行われる。 15 f is a conjugate signal output unit, 15 g is a subtractor that outputs the difference e (t) between the transmission signal X (t) and the feedback demodulation signal y (15 h is e (t) and u * (t) Multiplier, 15 i is a multiplier that multiplies h n — i ( P ) and y * (t), 15 j is a multiplier that multiplies the step size parameter, 15 k Is an adder that adds h n-丄 (p) and e (t) u * (t), 15 m, 15 n, 15 ρ is a delay unit (shift register), and the transmission signal x ( The delay time from the input of t) to the input of the feedback demodulated signal y (t) to the subtractor 15 g is added to the transmission signal. This constitutes 16. u (t) is a signal subjected to distortion, and the following operation is performed by the above configuration.
h n (p)= h n _! (p) + μ e (t) u * (t) h n (p) = h n _! (p) + μ e (t) u * (t)
e (t)= x (t)一 y (t)  e (t) = x (t) -y (t)
y (t)= h n _ ! (p) x (t) f (p) y (t) = h n _! (p) x (t) f (p)
u (t)= x (t) f (p)= h y (t)  u (t) = x (t) f (p) = h y (t)
P = I x (t) I 2 ただし、 x , y , f , h , u , e は複素数、 *は共役複素数である。 上記演 算処理を行う こ とによ り、 送信信号 X (t)と帰還復調信号 y (t)の差 e (t)が最小と なるよ う に歪補償係数 h(p)が更新され、 最終的に最適の歪補償係数値に収束し、 送信電力増幅器の歪が補償される。 . P = I x (t) I 2 Here, x, y, f, h, u, and e are complex numbers, and * is a complex conjugate number. By performing the above arithmetic processing, the distortion compensation coefficient h (p) is updated so that the difference e (t) between the transmission signal X (t) and the feedback demodulation signal y (t) is minimized, and Eventually, it converges to the optimal distortion compensation coefficient value, and the distortion of the transmission power amplifier is compensated. .
図 2 0は X (t) = I (t) + j Q (t)と して表現した送信装置の全体の構成図であり、 図 17、図 1 9 と同一部分には同一符号を付している。  FIG. 20 is an overall configuration diagram of the transmitting apparatus expressed as X (t) = I (t) + jQ (t), and the same reference numerals are assigned to the same parts as in FIGS. 17 and 19. ing.
以上のよ う に、 ディ ジタル非線形歪補償方式は、 送信信号を直交変調して得 られる搬送波を帰還検波し、 送信信号と帰還信号の振幅をディジタル変換して比 較し、 比較結果に基づいて歪補償係数をリアルタイムに更新するという原理であ る。 この非線形歪補償方式によれば、 歪を減少でき、 その結果、 高出力で非線形 領域での動作でも漏洩電力を低く抑え、 かつ、 電力負荷効率を改善することが可 能となる。  As described above, in the digital nonlinear distortion compensation method, the carrier obtained by orthogonally modulating the transmission signal is feedback-detected, and the amplitude of the transmission signal and the feedback signal are digitally converted and compared, and based on the comparison result, The principle is that the distortion compensation coefficient is updated in real time. According to this nonlinear distortion compensation method, distortion can be reduced, and as a result, it is possible to suppress the leakage power even when operating in a non-linear region with a high output, and to improve the power load efficiency.
ァダプティブプリディス トータのよ うにフィー ドバック信号を使用して歪補償 を行う歪補償装置では、 DA 変換器(直交変調器を含む)から出力される変調信号 が AD 変換されて減算器 1 5 gにフィー ドバック されるまでにアナログフィルタ、 アップコンバー トミ キサー、 送信電力増幅器、 ダウンコンバートミキサー、 アナ ログフィルタ等を通る。 このためフィー ドパック信号は DA変換器— AD 変換器 間の各アナログ素子固有の遅延が付加される。 歪補償装置ではフィー ドパック信 号と参照信号の比較演算結果である誤差信号を用いて歪補償係数の更新を行うた め、 タイ ミ ング調整用の遅延部(シフ ト レジスタ)を各所に用いる必要がある。 特 に、 歪補償係数 をフィー ドバックする際に用いるシフ トレジスタ 15n(図 1 9 )、 更新された歪補償係数を歪補償係数記憶部 1 5 e に書き込む時のァ ドレス を発生するタイ ミング調整用のシフ ト レジスタ 1 5 m、 フィ一ドバック信号と比 較する参照信号発生用のシフ トレジスタ 1 5 pは、 アナログ素子の変更によ り遅 延が增加した場合やディジタル信号処理速度を上げた場合に長くする必要があり、 装置の回路規模が増大する。 このうち、シフ ト レジスタ 15η は 48 ビッ トデータ を並列シフ トするものであるため、フィー ドバック信号の遅延時間が長く なるほ ど大き く なる。  In a distortion compensator such as an adaptive predistorter that performs distortion compensation using a feedback signal, a modulated signal output from a DA converter (including a quadrature modulator) is AD-converted and subtracted by a subtractor. It passes through an analog filter, up-convert mixer, transmission power amplifier, down-convert mixer, analog filter, etc. before being fed back to g. For this reason, the feedpack signal has a delay inherent in each analog element between the DA converter and the AD converter. Since the distortion compensator updates the distortion compensation coefficient using the error signal that is the result of the comparison operation between the feed pack signal and the reference signal, it is necessary to use a delay section (shift register) for timing adjustment at each location. There is. In particular, a shift register 15n (Fig. 19) used to feed back the distortion compensation coefficient, and a timing adjustment to generate an address when the updated distortion compensation coefficient is written to the distortion compensation coefficient storage unit 15e 15 m shift register for reference signal generation to be compared with the feedback signal.15 p is used when delay is added due to change of analog element or when digital signal processing speed is increased. And the circuit scale of the device increases. Of these, shift register 15η shifts 48-bit data in parallel, so the longer the delay time of the feedback signal becomes, the larger it becomes.
以上から、本発明の目的は、歪補償装置に必要となるシフ トレジスタの数を削減 して回路規模を縮小することである。 From the above, it is an object of the present invention to reduce the number of shift registers required for a distortion compensator. And reduce the circuit scale.
本発明の別の目的は、シフ ト レジスタを削減したことによる不具合を解消して 歪補償係数の収束を安定に行え、かつ、 従来と同等の歪補償の効果を発生するこ とである。  Another object of the present invention is to solve the problem caused by reducing the number of shift registers, stabilize the convergence of the distortion compensation coefficient, and generate the same effect of distortion compensation as before.
発明の開示 Disclosure of the invention
本発明は、歪補償係数を用いて送信信号に歪補償処理を施して歪デバイスに入 力し、 歪補償前の送信信号と歪デバイスの出力側からフィー ドバックされるフィ 一ドパック信号との差である誤差信号に基づいて適応的に歪補償係数を演算し、 演算された歪補償係数を送信信号電力に対応させて記憶する歪補償装置であり、 ( 1 ) 送信信号電力に応じて歪補償係数を記憶する歪補償係数記憶部、 ( 2 ) 送 信信号に該送信信号の電力に応じた歪補償係数を用いて歪補償処理を施す歪補償 部、 ( 3 ) 送信信号が到着してから歪デバイスの出力側より フィー ドパック され る信号が到着するまでの時間、前記送信信号を遅延する信号遅延部、 (4 ) 信号遅 延部から出力する遅延された送信信号とフィー ドバック信号との差である誤差信 号を演算する演算部、 ( 5 ) 誤差信号を信号遅延部から出力する送信信号の電力 に対応させて記憶する誤差信号記憶部、 ( 6 ) 送信信号電力に応じた前記歪補償 係数記憶部と誤差信号記憶部にそれぞれ記憶されている歪補償係数と誤差信号を 用いて適応的に歪補償係数を演算して古い歪補償係数を更新する歪補償係数演算 部を備えている。 以上のよ う に、歪補償係数を記憶する歪補償係数記憶部の他に 参照信号(遅延された送信信号)とフィー ドパック信号との差である誤差信号を記 憶する誤差信号記憶部とを備え、歪補償係数記憶部と誤差信号記憶部とにそれぞ れ記憶されている送信信号電力に応じた歪補償係数と誤差信号とを用いて適応的 に歪補償係数を演算して古い歪補償係数を更新するよ うにしたから、 歪補償装置 に必要となるシフ トレジスタの数を削減して回路規模を縮小することができる。 すなわち、従来必要とされた歪補償係数 li n をフィー ドバックする際に用いるシ フ ト レジスタ及び更新された歪補償係数を歪補償係数記憶部に書き込む時のァ ド レス発生タイ ミ ング調整用のシフ トレジスタが不用になる。  The present invention provides a distortion compensation process for a transmission signal using a distortion compensation coefficient, inputs the signal to a distortion device, and calculates a difference between the transmission signal before distortion compensation and a feedback pack signal fed back from an output side of the distortion device. Is a distortion compensation device that adaptively calculates a distortion compensation coefficient based on the error signal, and stores the calculated distortion compensation coefficient in association with the transmission signal power. (1) Distortion compensation according to the transmission signal power A distortion compensation coefficient storage unit that stores coefficients; (2) a distortion compensation unit that performs a distortion compensation process on a transmission signal by using a distortion compensation coefficient corresponding to the power of the transmission signal; A signal delay section for delaying the transmission signal until a signal to be fed-packed from the output side of the distortion device arrives; (4) a difference between the delayed transmission signal output from the signal delay section and the feedback signal; Calculate the error signal An operation unit; (5) an error signal storage unit that stores the error signal in accordance with the power of the transmission signal output from the signal delay unit; (6) the distortion compensation coefficient storage unit and the error signal storage unit according to the transmission signal power And a distortion compensation coefficient calculating unit that adaptively calculates the distortion compensation coefficient using the distortion compensation coefficient and the error signal stored in the memory and updates the old distortion compensation coefficient. As described above, in addition to the distortion compensation coefficient storage unit that stores the distortion compensation coefficient, the error signal storage unit that stores the error signal that is the difference between the reference signal (delayed transmission signal) and the feed pack signal is provided. The distortion compensation coefficient is adaptively calculated using the distortion compensation coefficient and the error signal corresponding to the transmission signal power stored in the distortion compensation coefficient storage section and the error signal storage section, respectively. Since the coefficients are updated, the number of shift registers required for the distortion compensator can be reduced, and the circuit scale can be reduced. That is, the shift register used for feedback of the distortion compensation coefficient lin conventionally required, and the address generation timing adjustment for writing the updated distortion compensation coefficient into the distortion compensation coefficient storage unit. The shift register becomes unnecessary.
本発明の歪補償装置の歪補償係数演算部は、同じ電力値の送信信号が連続して 到来しても歪補償係数を収束させることができる歪補償係数収束手段を備えてい る。 この歪補償係数収束手段は、 例えば、送信信号の電力値と適応演算で使用す るステ ップサイズパラメータ ( ) の対応を記憶し、送信信号電力値に応じたス テツプサイズパラメータを出力する手段、ステップサイズパラメータを用いて適 応的に歪補償係数を演算して歪補償係数記憶部の古い歪補償係数を更新する手段 を備えている。このよ う にすれば、 たとえ、誤差信号が大きくてもステップサイズ パラメータ を小さ くできるため同一電力の送信信号が連続して到着しても歪補 償係数は期待値からかけ離れるこ とがなく なり、一定値に収束させるこ とができ 'る。すなわち、シフ ト レジスタを削減したことによる不具合を解消して歪補償係数 の収束を安定に行え、従来と同等の効果を奏することができる。 The distortion compensation coefficient calculation unit of the distortion compensation apparatus of the present invention includes a distortion compensation coefficient convergence unit that can converge the distortion compensation coefficient even when transmission signals having the same power value continuously arrive. You. The distortion compensation coefficient convergence means stores, for example, the correspondence between the power value of the transmission signal and the step size parameter () used in the adaptive operation, and outputs a step size parameter corresponding to the transmission signal power value. Means for appropriately calculating a distortion compensation coefficient using the step size parameter and updating the old distortion compensation coefficient in the distortion compensation coefficient storage unit. In this way, even if the error signal is large, the step size parameter can be made small, so that even if transmission signals of the same power arrive continuously, the distortion compensation coefficient does not depart from the expected value. And converge to a constant value. That is, it is possible to solve the problem caused by reducing the number of shift registers, stably converge the distortion compensation coefficient, and achieve the same effect as the conventional one.
また、,本発明の歪補償装置は、 ト レーニング信号を発生する ト レーニング信号 発生部、 初期時 ト レーニング信号を歪補償部に入力し、誤差信号の平均値が設定 値以下になったとき送信信号を歪補償部に入力する信号切り替え手段、を備えて いる。このよ う にすれば、 歪補償係数の収束を安定に行い、 装置の消費電力を抑 えるこ とができる。  Also, the distortion compensating apparatus of the present invention includes a training signal generating section for generating a training signal, an initial training signal input to the distortion compensating section, and a transmission when the average value of the error signal becomes equal to or less than a set value. Signal switching means for inputting a signal to the distortion compensation unit. In this way, the convergence of the distortion compensation coefficient can be performed stably, and the power consumption of the device can be suppressed.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の第 1実施例の歪補償装置の構成図である。  FIG. 1 is a configuration diagram of a distortion compensation device according to a first embodiment of the present invention.
図 2は本発明の第 2実施例の歪補償装置の構成図である。  FIG. 2 is a configuration diagram of a distortion compensation device according to a second embodiment of the present invention.
図 3は歪補償係数が収束しないことを説明する図である。  FIG. 3 is a diagram for explaining that the distortion compensation coefficient does not converge.
図 4 ·は第 2実施例の原理説明図である。  FIG. 4 is an explanatory view of the principle of the second embodiment.
図 5は送信信号電力の発生確率説明図である。  FIG. 5 is an explanatory diagram of the probability of occurrence of transmission signal power.
図 6 は本発明の第 3実施例の歪補償装置の構成図である。  FIG. 6 is a configuration diagram of a distortion compensation device according to a third embodiment of the present invention.
図 7は力ゥンタを用いた歪捕償係数収束部の構成図である。 ' 図 8 は本発明の第 4実施例の歪補償装置の構成図である。  FIG. 7 is a configuration diagram of a distortion compensation coefficient convergence unit using a force counter. FIG. 8 is a configuration diagram of a distortion compensating apparatus according to a fourth embodiment of the present invention.
図 9は本発明の第 5実施例の歪補償装置の構成図である。  FIG. 9 is a configuration diagram of a distortion compensation device according to a fifth embodiment of the present invention.
図 1 0は第 5実施例の処理タイ ミング説明するフローチャー トである。  FIG. 10 is a flowchart for explaining the processing timing of the fifth embodiment.
図 1 1 は本発明の第 6実施例の歪補償装置の構成図である。  FIG. 11 is a configuration diagram of a distortion compensation apparatus according to a sixth embodiment of the present invention.
図 1 2はパルス信号のデュティ説明図である,。  FIG. 12 is an explanatory diagram of the duty of the pulse signal.
図 1 3は本発明の第 7実施^の歪補償装置の構成図  FIG. 13 is a configuration diagram of a distortion compensation apparatus according to a seventh embodiment of the present invention.
図 1 4は本発明の第 8実施例の歪補償装置の構成図である。 図 1 5は従来の送信装置の構成図である。 FIG. 14 is a configuration diagram of a distortion compensating apparatus according to an eighth embodiment of the present invention. FIG. 15 is a configuration diagram of a conventional transmission device.
図 1 6は送信電力増幅器の非直線性による問題点の説明図である。  FIG. 16 is an explanatory diagram of a problem due to the nonlinearity of the transmission power amplifier.
図 1 7は従来のディジタル非線形歪補償機能を備えた送信装置の構成図である < 図 1 8は歪補償部の機能構成図である。  FIG. 17 is a configuration diagram of a transmission device having a conventional digital nonlinear distortion compensation function. <FIG. 18 is a functional configuration diagram of a distortion compensation unit.
図 1 9は適応 LMSによる歪補償処理説明図である。  FIG. 19 is an explanatory diagram of distortion compensation processing by adaptive LMS.
図 2 0は送信信号 X ( t )を複素表現した送信装置の全体の構成図ある。  FIG. 20 is an overall configuration diagram of a transmission device that expresses a transmission signal X (t) in a complex manner.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
( A ) 第 1実施例  (A) First embodiment
図 1 は本発明の第 1 実施例の歪補償装置の構成図であり、101 は送信信号 X (t) の電力 Pに応じて歪補償係数 h n(p)を記憶する歪補償係数記憶部 (デュアルポー ト R A M : D R A M ) 、102 は送信信号 x (t)に該送信信号電力に応じた歪補償係 数 h n (p)を乗算して歪補償する歪補償部(乗算部)、 103 は送信信号 X (t)が到着して から歪デバイスの出力'側よ り フィー ドバック信号 y (t)が到着するまでの時間、前 記送信信号を遅延するシフ ト レジスタ構成の信号遅延部、 104 は信号遅延部 103 から出力する送信信号(参照信号)とフィー ドパック信号 y (t)との差である誤差信 号 e (t)を演算する誤差信号演算部、 105 は誤差信号 e (t)とフィー ドバック信号 y (t)の象限信号を信号遅延部から出力する送信信号の電力に対応させて記憶する 誤差信号記憶部 (デュアルポー ト R A M : DPRAM) 、 106は歪補償係数演算部で あり 、' 歪補償係数記憶部 101 と誤差信号記憶部 105 にそれぞれ記憶されている 送信信号 X (t)の電力 Pに応じた歪補償係数 h n(p), 誤差信号 e n、象限信号 y n、 ス テツプサイズパラメータ を用いて適応的に歪補償係数 h n + 1 (p)を演算して歪, 捕償係数記憶部 101 の古い歪補償係数 h n(p)を更新する。 Figure 1 is a block diagram of a distortion compensating apparatus of the first embodiment of the present invention, 101 the distortion compensation coefficient storage unit that stores a distortion compensation coefficient h n (p) in accordance with the power P of the transmission signal X (t) (Dual-port RAM: DRAM), 102 is a distortion compensation unit (multiplication unit) that multiplies the transmission signal x (t) by a distortion compensation coefficient h n (p) corresponding to the transmission signal power, and 103 Is the time from the arrival of the transmission signal X (t) to the arrival of the feedback signal y (t) from the output 'side of the distortion device, the signal delay part of the shift register configuration that delays the transmission signal, 104 is an error signal operation unit that calculates an error signal e (t) which is a difference between the transmission signal (reference signal) output from the signal delay unit 103 and the feed pack signal y (t), and 105 is an error signal e (t). ) And the quadrant signal of the feedback signal y (t) are stored in correspondence with the power of the transmission signal output from the signal delay unit. Report RAM: DPRAM), 106 is a distortion compensation coefficient operation unit, which performs distortion compensation according to the power P of the transmission signal X (t) stored in the distortion compensation coefficient storage unit 101 and the error signal storage unit 105, respectively. The distortion / compensation coefficient storage unit 101 computes the distortion compensation coefficient h n + 1 (p) adaptively using the coefficient h n (p), the error signal e n , the quadrant signal y n , and the step size parameter. Update the old distortion compensation coefficient h n (p) of.
108 は DA変換部であり、 DA 変換器、直交変調器、周波数アップコンバータ等 を有するもの、 109 は歪デバイスである送信電力増幅器、 110 は送信信号の一部 を取り 出.して出力する方向結合器、 111 は送信信号を歪補償装置にフィー ドバッ クするフィー ドバック系、 112 は AD 変換部であり、周波数ダウンコンバータ、 直 交復調器、 AD 変換器などを有するもの、 113 は送信信号の電力 Pを歪補償係数 記憶部 101 のア ドレス と して発生するァ ドレス発生部、 114は信号遅延部 103か ら出力する遅延された送信信号の電力を誤差信号記憶部 105 のア ドレスと して 発生するァ ド レス発生部、 115 は歪補償係数演算部 106 の歪補償係数演算に要す る時間分、例えば 1 クロック期間ア ドレス信号を遅延するフリ ップフロップ構成 の遅延回路である。 108 is a DA converter having a DA converter, a quadrature modulator, a frequency upconverter, etc., 109 is a transmission power amplifier which is a distortion device, and 110 is a part for extracting and outputting a part of a transmission signal. A combiner, 111 is a feedback system that feeds back a transmission signal to a distortion compensator, 112 is an AD converter, which has a frequency downconverter, a quadrature demodulator, an AD converter, etc., 113 is a transmission signal An address generation unit that generates the power P as an address of the distortion compensation coefficient storage unit 101, and 114 sets the power of the delayed transmission signal output from the signal delay unit 103 as the address of the error signal storage unit 105. hand The generated address generator 115 is a flip-flop delay circuit that delays the address signal by the time required for the distortion compensation coefficient calculation of the distortion compensation coefficient calculator 106, for example, for one clock period.
歪補償係数演算部 106において、 106 aは e η · u η*を出力する回転演算部、 106b はステ ップサイズパラメータ μ を回転演算部出力信号に乗算する乗算器、 106c は h n (p)と μ e n · u n *を加算する加算器である。 In the distortion compensation coefficient calculation unit 106, 106 a rotation calculation unit for outputting the e η · u η *, 106b is a multiplier for multiplying the stearyl Step Size parameter μ to the rotation calculating unit output signal, 106c is h n (p ) and an adder for adding the μ e n · u n *.
送信信号 (t)が入力すると、ア ドレス発生部 113 は送信信号の電力値 Pを演算 し、該電力値 Pをァ ドレスと して歪補償係数記憶部 101 と誤差信号記憶部 105 に 入力する。 歪補償係数記憶部 101 はア ドレス発生部 113 が指示するア ドレス P から歪補償係数 h n (p)を歪補償部 102に入力する。歪補償部 102は送信信号 x (t) に歪補償係数 h n (p)を乗算して出力する。 DA 変換部 108 は歪補償された送信号 に DA 変換、変調、周波数アップコンパ一ト処理を施して送信電力増幅器に 108 に入力する。送信電力増幅器は 108 は送信信号を増幅して図示しないアンテナよ り放射する。方向結合器 110は送信信号の一部を取り 出して AD変換部 112 に入 力し、 AD 変換部は周波数ダウンコンパ一ト、復調、 AD 変換処理を施してフィ ー ド バック信号 y (t)を誤差信号演算部 104に入力する。 When the transmission signal (t) is input, the address generation unit 113 calculates the power value P of the transmission signal, and inputs the power value P as an address to the distortion compensation coefficient storage unit 101 and the error signal storage unit 105. . The distortion compensation coefficient storage unit 101 inputs the distortion compensation coefficient h n (p) from the address P designated by the address generation unit 113 to the distortion compensation unit 102. Distortion compensating unit 102 outputs the transmission signal x (t) is multiplied by a distortion compensation coefficient h n (p). The DA converter 108 performs DA conversion, modulation, and frequency up-comparison processing on the distortion-compensated transmission signal, and inputs the signal to the transmission power amplifier 108. The transmission power amplifier 108 amplifies the transmission signal and radiates it from an antenna (not shown). The directional coupler 110 extracts a part of the transmission signal and inputs it to the A / D converter 112. The A / D converter performs frequency down-comparison, demodulation, and A / D conversion processing to provide a feedback signal y (t). Is input to the error signal calculation unit 104.
以上と並行して、誤差信号記憶部 105 はァ ド レス発生部 113が指示するァ ドレ ス Pから誤差信号 e „と象限信号 y。を出力する。 歪補償係数演算部 106は次式 h „ + (p) = h „ (ρ) + μ e n . u n ( 1) In parallel with the above, the error signal storage unit 105 outputs the error signal e „and the quadrant signal y from the address P specified by the address generation unit 113. The distortion compensation coefficient calculator 106 calculates the following equation h„ + (p) = h „(ρ) + μ e n . u n (1)
により歪補償係数 h (P)を演算して歪補償記憶部 101 のァ ドレス Pに記憶さ れている古い歪補償係数 h n (p)を h n (p)で更新する。 , The old distortion compensation coefficient h n (p) stored in the address P of the distortion compensation storage unit 101 is updated with h n (p).
また、信号遅延部 103 は送信信号 (t)を設定時間遅延してァ ドレス発生部 114 と誤算信号演算部 104に入力する。誤差信号演算部 104は信号遅延部 103で遅延 された送信信号とフィー ドバック信号との差である誤差信号 e (t)を演算する。ァ ドレス発生部 114 は信号遅延部 103 で遅延された送信信号の電力値 Pを演算し、 該電力値 Pをア ドレスと して誤差信号記憶部 105 に入力する。 誤差信号記憶部 105 はァ ドレス発生部 114 によ り指示されたァ ドレスに誤差信号演算部 104 か ら入力する誤差信号 e (t)とフィ ー ドバック信号 y (t)の象限信号を記憶する。  Further, the signal delay unit 103 delays the transmission signal (t) by a set time and inputs the transmission signal (t) to the address generation unit 114 and the erroneous signal calculation unit 104. The error signal calculation unit 104 calculates an error signal e (t) which is a difference between the transmission signal delayed by the signal delay unit 103 and the feedback signal. The address generation unit 114 calculates the power value P of the transmission signal delayed by the signal delay unit 103, and inputs the power value P as an address to the error signal storage unit 105. The error signal storage unit 105 stores the quadrant signal of the error signal e (t) and the feedback signal y (t) input from the error signal calculation unit 104 at the address specified by the address generation unit 114. .
以上要約すれば、第 1 実施例によれば、送信信号 x (t)に歪補償係数記憶部 101 からから読み出された歪補償係数 h n (p)を用いて歪補償処理すると共に、既に誤 差信号記憶部 105 に記憶されている誤差信号 e n、象限信号 y nと歪補償係数 h n (p)を用いて新たな歪補償係数 h n + i (p)を演算し、該歪補償係数 h n + 1 (p)で歪補 償係数記憶部 101 の古い歪補償係数 h n (p)を更新する。 又、遅延時間を Td と すると、送信信号 X (t)が入力してから遅延時間 Td 後に今回の歪補償結果に基づ く誤差信号 e (t)、象限信号を誤差信号記憶部 105 に記憶する。この結果、従来必要 と されていた歪補償係数 h n (p)を歪補償係数演算部 106 へフィー ドバックする 際に用いるシフ ト レジスタ(図 1 9 の遅延部 1 5 n )、 更新された歪補償係数 h n + 丄(p)を歪補償係数記憶部 101 に書き込む時のア ドレス発生タイ ミング調整用の シフ ト レジスタ(図 1 9 の遅延部 1 5 m)をそれぞれ削除できる。 In summary, according to the first embodiment, the distortion compensation coefficient storage unit 101 stores the transmission signal x (t). The distortion compensation process is performed using the distortion compensation coefficient h n (p) read from the error signal e n , the error signal e n already stored in the error signal storage unit 105, the quadrant signal y n, and the distortion compensation coefficient h n (p) is used to calculate a new distortion compensation coefficient h n + i (p), and the old distortion compensation coefficient h n (p) in the distortion compensation coefficient storage unit 101 is calculated using the distortion compensation coefficient hn + 1 (p). To update. If the delay time is Td, the error signal e (t) based on the distortion compensation result this time and the quadrant signal are stored in the error signal storage unit 105 after the delay time Td from the input of the transmission signal X (t). I do. As a result, the shift register (delay unit 15n in Fig. 19) used to feed back the distortion compensation coefficient h n (p), which was conventionally required, to the distortion compensation coefficient operation unit 106, and the updated distortion When writing the compensation coefficient h n +丄 (p) into the distortion compensation coefficient storage unit 101, the shift register (the delay unit 15m in Fig. 19) for adjusting the address generation timing can be deleted.
第 1 実施例では、従来に比べて誤差信号記憶部 105 を新たに設ける必要はある が、 2つのシフ ト レジスタを除去した方がハー ドウエアの削減量が大き く なり、 回路規模を縮小できる。  In the first embodiment, it is necessary to newly provide the error signal storage unit 105 as compared with the related art. However, removing the two shift registers increases the amount of hardware reduction and can reduce the circuit scale.
( B ) 第 2実施例  (B) Second embodiment
図 2は本発明の第 2実施例の歪補償装置の構成図であり、図 1 の第 1 実施例と 同一部分には同一符号を付している。第 1 実施例と異なる点は、(1)送信信号 X ) の電力値 P と適応演算で使用するステップサイズパラメ ^ ~タ μ の対応をステップ サイズパラメータ制御部 106d のメモリ 106e に記憶する点、(2)ステップサイズ パラメータ制御部 106d は送信信号の電力値 Pに応じたステップサイズパラメ一 タをメモ リ 106e から求めて出力し、歪補償係数演算部 106 はこのステップサイ ズパラメータ UL を用いて適応的に歪捕償係数 h n + t (p)を(1)式によ り演算して更 新する点である。 FIG. 2 is a configuration diagram of a distortion compensating apparatus according to a second embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The difference from the first embodiment is that (1) the correspondence between the power value P of the transmission signal X) and the step size parameter ^ to data μ used in the adaptive operation is stored in the memory 106e of the step size parameter control unit 106d. (2) Step size The parameter control unit 106d obtains and outputs the step size parameter corresponding to the power value P of the transmission signal from the memory 106e, and the distortion compensation coefficient calculation unit 106 uses this step size parameter UL. adaptively Ibitsuto償係number h n + t (p) the (1) is a point to update by Ri calculated by the formula.
第 1 実施例の歪補償装置では、誤差信号記憶部 105 に記憶されている誤差信号 を用いて歪補償係数記憶部 101 の歪補償係数を更新する。 しかし、 歪補償係数 記憶部 101 の歪補償係数が更新されてから歪補償結果である新たな誤差信号で 古い誤差信号が更新されるまでに時間 Td の遅れがある。 このため、 この遅延時 間 Td の間に同一電力を有する送信信号が複数回連続して入力すると、該古い誤 差信号を用いて歪補償係数が複数回更新されることになる。この時、誤差信号が大 きいと歪補償係数が期待値からかけ離れて収束しなくなる。 図 3 はかかる歪捕償係数が収束しないことを説明する図である。時間 Td の間 に電力の等しい送信信号が連続して歪補償装置に入力する と、 図 3 に示すよ う に同じァ ドレスの歪補償係数 h n (p)を同一の古い誤差信号 e nを用いて連続して 更新することになる。 この結果、大きな誤差信号 e nが誤差信号記憶部 105 に書 き込まれている とその値を用いて更新が行われるために歪補償係数は h „ (p)→ h n + 1 ( )→···→ h„ + 1 (Ρ)' となって収束しない。 すなわち、誤差信号が大きいとIn the distortion compensating apparatus of the first embodiment, the distortion compensation coefficient of the distortion compensation coefficient storage unit 101 is updated using the error signal stored in the error signal storage unit 105. However, there is a delay of Td from when the distortion compensation coefficient in the distortion compensation coefficient storage unit 101 is updated to when the old error signal is updated with a new error signal that is a distortion compensation result. Therefore, if a transmission signal having the same power is continuously input a plurality of times during this delay time Td, the distortion compensation coefficient is updated a plurality of times using the old error signal. At this time, if the error signal is large, the distortion compensation coefficient is far from the expected value and does not converge. FIG. 3 is a diagram illustrating that the distortion compensation coefficient does not converge. And time equal transmission signal power is continuously input to the distortion compensating apparatus during Td, using the same old error signal e n to the distortion compensation coefficient hn (p) of the same § dress Remind as in FIG. 3 Will be updated continuously. As a result, if a large error signal e n is written to the error signal storage unit 105, the value is updated using that value, so that the distortion compensation coefficient becomes h „(p) → hn + 1 () → ·· → h „+ 1 (Ρ) 'and does not converge. That is, if the error signal is large,
(1)式の右辺第 2 項の係数更新べク トル μ e n . u η *が大きく なり、この係数更新 ベタ トルで連続して複数回歪補償係数を更新する と歪補償係数 h η +ェ(ρ) ' は点 線で示す期待値 h π + i (ρ)からかけ離れた値になってしま う。 ところで、 時間 T d の間に電力値.の等しい送信信号が連続して歪補償装置に入力する場合であっても、 ステップサイズパラメータ μが小さければ、図 4 に示すよう に歪補償係数 h n + 1 (ρ) ' は期待する更新値 h η + i (ρ)からかけ離れることはなく収束させることがで きる。 (1) the second term on the right side of the coefficient update base-vector μ e n. U η * becomes large, updating a plurality of times the distortion compensation coefficients successively with this coefficient updating solid Torr distortion compensation coefficient h eta + (Ρ) 'is far from the expected value h π + i (ρ) shown by the dotted line. By the way, even when transmission signals having the same power value are continuously input to the distortion compensator during the time T d, if the step size parameter μ is small, as shown in FIG. 4, the distortion compensation coefficient h n + 1 (ρ) 'can be converged without being far from the expected update value h η + i (ρ).
そこで第 2 実施例では、予め送信信号電力の発生確率を求め(図 5 参照)、 図 2 に示すよう に出現頻度が高く、連続して入力する可能性の高い電力値には小さな μ を割り 当てて係数更新べク トル e n . u n *の値を小さ く し、逆に出現頻度が 低く、連続して入力する可能性が低い電力値には大きな μ を、すなわち、 通常の 値に近い値を割り 当てる。 これにより歪捕償係数を安定に収束させることが可能 となる。 Therefore, in the second embodiment, the occurrence probability of the transmission signal power is determined in advance (see Fig. 5), and as shown in Fig. 2, a small μ is assigned to the power value that has a high appearance frequency and is likely to be continuously input. it relies coefficient update base-vector e n with. rather small values of u n *, contrary to low frequency, the large μ is the power value is less likely to continuously input, i.e., the normal value Assign a close value. This makes it possible to stably converge the distortion compensation coefficient.
( C ) 第 3実施例 ' 図 6は本発明の第 3実施例の歪補償装置の構成図であり、図 1 の第 1実施例と同一部 分には同一符号を付している。第 1 実施例と異なる点は、カウンタ構成の歪補償係数収束 部 120を設けた点である。第 2 実施例で説明したように、第 1 実施例の歪補償装置では、 遅延時間 Td の間に同一電力を有する送信信号が複数回連続して入力すると、古い誤 差信号を用いて歪補償係数が複数回更新されることになるため、該誤差信号が大きいと 歪補償係数が収束しなくなる。すなわち、歪補償係数が更新されてから新たな誤差信号が 誤差信号記憶部 105 に記憶されるまでに要する時間 T d が経過する前に、歪補償係数 記憶部 1 0 1における同じアドレスの歪補償係数の更新作業を複数回行うと歪補償係数が 上手く収束しなくなる。 そこで第 3 実施例ではカウンタ構成の歪補償係数収束部 120を設け、歪補償係数記 憶部 101のアドレス毎に係数更新タイミングの監視を行う構成とした。図 7 は歪補償係数 収朿部 120の構成図であり、 121はアドレス発生部 113力 ^出力するアドレスをデコードす るアドレスデコーダ、 122a〜122iiはアドレス毎に設けられたカウンタ咅 |5、123 は各カウンタ部 のオーバフローを検出して書き込みィネーブル信号 WEを出力するカウンタオーバフロー検 出部である。各カウンタ部 122a〜122nは、カウンタスタート判定部 131、カウンタ 132 を 有している。 (C) Third Embodiment ′ FIG. 6 is a configuration diagram of a distortion compensating apparatus according to a third embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The difference from the first embodiment is that a distortion compensation coefficient convergence section 120 having a counter configuration is provided. As described in the second embodiment, in the distortion compensating apparatus of the first embodiment, when a transmission signal having the same power is continuously input multiple times during the delay time Td, the distortion compensation is performed using the old error signal. Since the coefficient is updated a plurality of times, the distortion compensation coefficient does not converge if the error signal is large. That is, before the time T d required from the update of the distortion compensation coefficient to the storage of a new error signal in the error signal storage unit 105 elapses, the distortion compensation of the same address in the distortion compensation coefficient storage unit 101 is performed. If the coefficient update operation is performed multiple times, the distortion compensation coefficient will not converge well. Therefore, in the third embodiment, a distortion compensation coefficient convergence unit 120 having a counter configuration is provided, and the coefficient update timing is monitored for each address of the distortion compensation coefficient storage unit 101. FIG. 7 is a configuration diagram of the distortion compensation coefficient collecting unit 120, 121 is an address generating unit 113, an address decoder for decoding an output address, and 122a to 122ii are counters provided for each address. Is a counter overflow detection unit that detects overflow of each counter unit and outputs a write enable signal WE. Each of the counter units 122a to 122n has a counter start determination unit 131 and a counter 132.
カウンタスタート判定部 131 は、既に自分のカウンタからオーバフロー Overflowが発生 している状態において、アドレス発生部 1 1 3から自分のアドレスが発生すると (アドレスァク セス信号がハイレベル)、カウント開始信号 Restartを発生し、カウンタ 132 はカウント開始 信号 Re start によりクロックパルスのカウントを開始し、所定数のクロックパルスを計数したと きオーバフローとなり、オーバフローパルスを発生し、以後カウントを停止する。  The counter start determination unit 131 generates a count start signal Restart when the address generation unit 113 generates its own address (the address access signal is at a high level) in a state where an overflow has already occurred from its own counter. Then, the counter 132 starts counting clock pulses in response to the count start signal Restart. When a predetermined number of clock pulses are counted, an overflow occurs, an overflow pulse is generated, and the counting is stopped thereafter.
カウンタオーバフロー検出部 123は、アドレス発生部 113からアドレスが発生すると、該ァ ドレスに応じたカウンタ部がオーバフローになっているかチェックし、オーバフローになってい れぱ書き込みィネーブル信号 WEを発生し、オーバフローになっていなければ書き込みイネ 一プル信号 WEを発生しない。書き込みイネ一ブル信号 WEが発生すれば、歪補償係数記 憶部 101 は歪補償係数演算部 1 06から入力する歪補償係数 hn+ 1 (p)で古い歪補償係 数 hn (p)を更新する。しかし、書き込みィネーブル信号 WEが発生しなければ、歪補償係数 記憶部 101 は歪補償係数演算部 106から入力する歪補償係数 hn + 1(p)で古い歪補償 係数 hn(p)を更新しない。 When an address is generated from the address generation section 113, the counter overflow detection section 123 checks whether the counter section corresponding to the address has overflown, and if an overflow has occurred, generates a write enable signal WE and generates a write enable signal WE. If not, the write enable signal WE is not generated. If write rice one enable signal WE is generated, the distortion compensation coefficient Symbol憶部101 distortion compensation coefficient input from the distortion compensation coefficient calculation unit 1 06 h n + 1 (p) in the old distortion compensation coefficient h n a (p) Update. However, if the write Ineburu signal WE is generated, distortion compensation coefficient h n + 1 the distortion compensation coefficient storage unit 101 inputs the distortion compensation coefficient calculation unit 106 the old distortion compensation coefficient h n in (p) (p) updating do not do.
以上より、歪補償係数記憶部 101 の所定アドレスに歪補償係数を書き込んだ後、設定 数のクロックパルスを計数すれば、換言すれば、設定時間経過すれば該ァドレスに書き込み 可能となり、以後、アドレス発生部 113 より該アドレスが発生すれば書き込みイネ一プル信 号 WEが発生して歪補償係数を歪補償係数記憶部 110 に書き込むことができる。しかし、 歪補償係数記憶部 101 の所定アドレスに歪補償係数を書き込んだ後、設定時間が未だ 経過してなければ該アドレスへの書き込みは不可能となり、アドレス発生部 113より該ァドレ スが発生しても書き込みイネ一プル信号 WEが発生せず歪補償係数を歪補償係数記憶部 110に書き込むことができない。  As described above, after the distortion compensation coefficient is written at a predetermined address of the distortion compensation coefficient storage unit 101, if the set number of clock pulses are counted, in other words, the address can be written after the set time has elapsed, and thereafter, the address can be written. When the address is generated by the generation unit 113, a write enable signal WE is generated, and the distortion compensation coefficient can be written to the distortion compensation coefficient storage unit 110. However, after writing the distortion compensation coefficient to a predetermined address of the distortion compensation coefficient storage unit 101, if the set time has not yet elapsed, writing to the address becomes impossible, and the address is generated by the address generation unit 113. However, the write enable signal WE does not occur and the distortion compensation coefficient cannot be written to the distortion compensation coefficient storage unit 110.
以上、第 3 実施例によれば、遅延時間 Td の間に同一電力を有する送信信号が複数 回連続して入力しても 1回限り歪補償係数の更新を行うだけであるため、歪補償係数が期 待値よりかけ離れないようにでき、一定値に収束させることができる。 As described above, according to the third embodiment, there are a plurality of transmission signals having the same power during the delay time Td. Even if the input is performed consecutively, the distortion compensation coefficient is updated only once, so that the distortion compensation coefficient can be kept far from the expected value and can be converged to a constant value.
( D ) 第 4実施例  (D) Fourth embodiment
図 8は本発明の第 4実施例の歪補償装置の構成図であり、図 1 の第 1 実施例と同 一部分には同一符号を付している。第 1 実施例と異なる点は、メモリ構成の歪補償係数収 束部 1 50を設けた点である。第 1 実施例の歪補償装置では、遅延時間 T dの間に同一電 力を有する送信信号が複数回連続して入 Λすると、古い誤差信号を用いて歪補償係数が 複数回更新されることになるため、誤差信号が大きいと歪補償係数が収束しなくなる。すな わち、歪補償係数が更新されてから新たな誤差信号が誤差信号記憶部 105 に記憶され るまでに要する時間 T d が経過する前に、歪補償係数記憶部 1 01における同じアドレスの 歪補償係数の更新作業を複数回行うと歪補償係数が上手く収束しなくなる。  FIG. 8 is a configuration diagram of a distortion compensating apparatus according to a fourth embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The difference from the first embodiment is that a distortion compensation coefficient convergence section 150 having a memory configuration is provided. In the distortion compensating apparatus of the first embodiment, if a transmission signal having the same power is input multiple times continuously during the delay time Td, the distortion compensation coefficient is updated multiple times using the old error signal. Therefore, if the error signal is large, the distortion compensation coefficient does not converge. That is, before the time T d required from the update of the distortion compensation coefficient to the storage of a new error signal in the error signal storage unit 105 elapses, the same address in the distortion compensation coefficient storage unit 101 is stored. When the work of updating the distortion compensation coefficient is performed a plurality of times, the distortion compensation coefficient does not converge well.
そこで第 4実施例ではメモリ構成の歪補償係数収束部 150を設け、歪補償係数記憶部 1 0 1のアドレス毎に係数更新時刻を記録して係数更新タイミングの監視を行う構成とした。 すなわち、基準タイマーを用意し、歪補償係数記憶部 101における所定アドレスの歪補償 係数を更新した時、該アドレスに対応させて更新時刻をメモリに蓄えておく。そして、該メモリ に蓄えられた最新の更新時刻と基準タイマーが示す現時刻を比較し、その差(経過時間) が閾値、例えば、遅延時間 Tdを超えたときのみ該アドレスの歪補償係数を更新可能とする。 歪補償係数収束部 1 50は、基準時刻を示すタイマー 151、歪補償係数記憶部 101 の 各アドレスに記憶されている歪捕償係数の更新時刻を記録する更新時刻記憶部 1 52、最 新の更新時刻と現時刻の時間差 Δ ΐを演算する時間差演算部 153、時間差 Δ ΐと閾値 Τ thrを比較し、 A t ^ Tt hrのとき書き込みイネ一プル信号 WEを出力し、 A t < Tthrのとき書 き込みイネ一ブル信号 WEを出力しない比較部 154、アドレス発生部 113 から発生するァ ドレスを 1クロック時間遅延する遅延回路 1 55を備えている。  Therefore, in the fourth embodiment, a distortion compensation coefficient convergence unit 150 having a memory configuration is provided, and a coefficient update time is recorded for each address of the distortion compensation coefficient storage unit 101 to monitor the coefficient update timing. That is, a reference timer is prepared, and when a distortion compensation coefficient at a predetermined address in the distortion compensation coefficient storage unit 101 is updated, an update time is stored in a memory in association with the address. Then, the latest update time stored in the memory is compared with the current time indicated by the reference timer, and only when the difference (elapsed time) exceeds a threshold value, for example, the delay time Td, the distortion compensation coefficient of the address is updated. Make it possible. The distortion compensation coefficient convergence unit 150 includes a timer 151 that indicates a reference time, an update time storage unit 152 that records the update time of the distortion compensation coefficient stored at each address of the distortion compensation coefficient storage unit 101, A time difference calculation unit 153 that calculates a time difference Δ の between the update time and the current time, compares the time difference Δ ΐ with the threshold Τ thr, and outputs a write enable signal WE when A t ^ Tt hr, and outputs a signal A t <T thr A comparison unit 154 which does not output the write enable signal WE and a delay circuit 155 which delays the address generated from the address generation unit 113 by one clock time are provided.
アドレス発生部 113からアドレスが発生すると、歪補償係数記憶部 101 の該アドレスより 歪補償係数 hn (p)が読み出され、第 1 実施例と同様に歪補償が行われる。又、歪補償係 数演算部 106 は(1)式により歪補償係数 hn + 1 (p)を算出して歪補償係数記憶部 1 0 1に入 力する。 When an address is generated from the address generation unit 113, the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101, and distortion compensation is performed as in the first embodiment. Also, the distortion compensation coefficient calculation unit 106 calculates the distortion compensation coefficient h n +1 (p) according to the equation (1) and inputs it to the distortion compensation coefficient storage unit 101.
また、アドレス発生部 113からアドレスが発生すると、更新時刻記憶部 1 52の該アドレスよ り最新の更新時刻が読み出され、時間差演算部 153 は該更新時刻と現時刻の時間差 Δ tを演算し、比較部 1 54は A t≥Tthrのとき書き込みイネ一プル信号 WEを出力し、 A t < Tt hrのとき書き込みィネーブル信号 WEを出力しない。したがって歪補償係数記憶部 101は、 A t Tthrであれば補償係数演算部 106 より入力する歪補償係数 hn + 1 (p)で古い歪補 償係数 hn(p)を更新する。しかし、 Δ ΐく Tthrであれば、歪補償係数記憶部 101 は歪補償 係数演算部 1 0 6から入力する歪補償係数 hn + 1 (p)で古い歪補償係数 hn (p)を更新しな い。 When an address is generated from the address generation unit 113, the latest update time is read from the address in the update time storage unit 152, and the time difference calculation unit 153 calculates the time difference Δ between the update time and the current time. Computing t, the comparator 154 outputs the write enable signal WE when At≥Tthr, and does not output the write enable signal WE when At <Tthr. Thus the distortion compensation coefficient storage unit 101 updates the A t the distortion compensation coefficient input from the correction coefficient arithmetic operator 106 if Tthr h n + 1 (p) in the old strain complement償係number h n (p). However, delta if ΐ rather Tthr, the distortion compensation coefficient storage unit 101 updates the old distortion compensation coefficient in distortion compensation coefficient h n + 1 input from the distortion compensation coefficient calculator 1 0 6 (p) h n (p) do not do.
以上より、歪補償係数記憶部 101 の所定アドレスに歪補償係数を書き込んだ後、設定 時間経過すれば該ァドレスに書き込み可能となり、以後、アドレス発生部 113より該アドレス が発生すれば書き込みィネーブル信号 WEが発生して歪補償係数 hn + ^p)を歪補償係数 記憶部 110 に書き込むことができる。しかし、歪補償係数記憶部 101 の所定アドレスに歪 補償係数を書き込んだ後、設定時間が未だ経過してなければ該アドレスへの書き込みは不 可能となり、アドレス発生部 113より該アドレスが発生しても書き込みィネーブル信号 WEが 発生せず歪補償係数 hn + 1 (p)を歪補償係数記憶部 110に書き込むことができない。 As described above, after the distortion compensation coefficient is written at a predetermined address of the distortion compensation coefficient storage unit 101, the address can be written after a set time has elapsed, and thereafter, when the address is generated by the address generation unit 113, the write enable signal WE is output. Is generated, and the distortion compensation coefficient h n + ^ p) can be written to the distortion compensation coefficient storage unit 110. However, after writing the distortion compensation coefficient at a predetermined address in the distortion compensation coefficient storage unit 101, writing to the address becomes impossible if the set time has not yet elapsed, and the address generation unit 113 generates the address. Also, the write enable signal WE is not generated, and the distortion compensation coefficient hn + 1 (p) cannot be written to the distortion compensation coefficient storage unit 110.
以上、第 4実施例によれば、遅延時間 Td の間に同一電力を有する送信信号が複数回 連続して入力しても 1回限り歪補償係数の更新を行うだけであるため、歪補償係数が期待 値よりかけ離れないようにでき、一定値に収束させることができる。  As described above, according to the fourth embodiment, even if a transmission signal having the same power is input a plurality of times continuously during the delay time Td, the distortion compensation coefficient is updated only once, so that the distortion compensation coefficient is updated only once. Can be kept far from the expected value and can be converged to a constant value.
( E ) 第 5実施例  (E) Fifth embodiment
図 9 は本発明の第 5実施例の歪補償装置の構成図であり、図 1 の第 1実施例と同一 部分には同一符号を付している。第 1 実施例と異なる点は、歪補償係数収束部 1 60を設 けた点である。第 1実施例の歪補償装置では、遅延時間 Td の間に同一電力を有する送 信信号が複数回連続して入力すると、古い誤差信号を用いて歪補償係数が複数回更新 されることになるため、誤差信号が大きいと歪補償係数が収束しなくなる。すなわち、歪補償 係数が更新されてから新たな誤差信号が誤差信号記憶部 105 に記憶されるまでに要す る時間 Td が経過する前に、歪補償係数記憶部 1 0 1における同じアドレスの歪補償係数 の更新作業を複数回行うと歪補償係数が上手く収束しなくなる。  FIG. 9 is a configuration diagram of a distortion compensating apparatus according to a fifth embodiment of the present invention, and the same parts as those in the first embodiment of FIG. The difference from the first embodiment is that a distortion compensation coefficient convergence section 160 is provided. In the distortion compensating apparatus of the first embodiment, when a transmission signal having the same power is continuously input multiple times during the delay time Td, the distortion compensation coefficient is updated multiple times using the old error signal. Therefore, if the error signal is large, the distortion compensation coefficient does not converge. That is, before the time Td required from the time when the distortion compensation coefficient is updated to the time when a new error signal is stored in the error signal storage unit 105 elapses, the distortion of the same address in the distortion compensation coefficient storage unit 101 is obtained. If the update of the compensation coefficient is performed several times, the distortion compensation coefficient does not converge well.
そこで第 5実施例ではデューティ 50 %で、所定周期(例えば 2 X Td)のパルス信号 PLを 発生するパルス発生部 161 を有する補償係数収束部 160を設ける。ただし、デューティ = (オン期間/パルス周期)X 100(%)である。そして、図 10 のフローチャートに示すように、パ ルス信号 PL がハイレベルのとき誤差信号記憶部(誤差信号テーブル) 105 にのみ誤差信 号を記憶し、パルス信号 PLがローレベルのとき歪補償係数記憶部(歪補償係数テープ ル) 101 に歪補償係数を記憶し、誤差信号記憶部 105 の所定アドレスから該誤差信号が 読み出されたとき該アドレスに 0を書き込む構成とした。 Therefore, in the fifth embodiment, a compensation coefficient convergence unit 160 having a pulse generation unit 161 that generates a pulse signal PL having a duty of 50% and a predetermined period (for example, 2 × Td) is provided. However, duty = (ON period / pulse period) × 100 (%). As shown in the flowchart of FIG. 10, when the pulse signal PL is at the high level, the error signal is stored only in the error signal storage unit (error signal table) 105. When the pulse signal PL is at a low level, the distortion compensation coefficient is stored in a distortion compensation coefficient storage unit (distortion compensation coefficient table) 101, and the error signal is read from a predetermined address of the error signal storage unit 105. In such a case, 0 is written to the address.
パルス信号 PL がハイレベルのとき、アドレス発生部 113カ^アドレスが発生すると、歪補 償係数記憶部 101 の該アドレスより歪補償係数 hn(p)が読み出され、第 1 実施例と同様 に歪補償が行われる。又、歪補償係数演算部 106 は(1〉式により歪補食係数 hn + 1(p)を算 出して歪補償係数記憶部 101に入力するが歪補償係数記憶部 101には書き込みイネ一 プル信号 WEが入力されていないため、該歪補償係数 hn + 1 (p)は歪補償係数記憶部 101 に記憶されない。 When the pulse signal PL is at a high level and an address generator 113 generates an address, the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101, and the same as in the first embodiment. Is subjected to distortion compensation. Also, the distortion compensation coefficient calculation unit 106 calculates the distortion erosion coefficient hn + 1 (p) according to equation (1) and inputs the calculated value to the distortion compensation coefficient storage unit 101. Since the pull signal WE is not input, the distortion compensation coefficient hn + 1 (p) is not stored in the distortion compensation coefficient storage unit 101.
電力増幅器 109の出力の一部はフィードバックされて AD 変換部 112 でディジタル信 号に変換され、誤差信号演算部 104で誤差信号 e(t)が算出される。パルス信号 PL がハ ィレベルのとき、セレクタ 162, 163 はそれぞれ誤差信号 e(t)、フィードパック信号 y (t)の象 限データを選択して誤差信号記憶部 105に入力しており、又、セレクタ 1 64はアドレス発生 部 114から出力するアドレスを選択して誤差信号記憶部 105に入力しているから、誤差信 号 e(t)、象限データが誤差信号記憶部 105の該アドレスに順次記憶される。 . 一方、パルス信号 PLがローレベルのとき、アドレス発生部 113カ らアドレスが発生すると、 歪補償係数記憶部 101 の該アドレスより歪補償係数 hn(p)が読み出され、歪補償が行わ れる。又、アドレス発生部 113 カ^アドレスが発生すると、誤差信号記憶部 105 の該ァドレ スより誤差信号 en、象限データ ynが読み出されて歪補償係数演算部 106 に入力する。歪 補償係数演算部 106 は(1)式により歪補償係数 hn + 1(p)を算出して歪補償係数記憶部 1 01に入力する。パルス信号 PL がローレベルのとき、歪補償係数記憶部 101には書き込み ィネーブル信号 WEが入力されているから、該歪補償係数 hn + 1 (p)が前記アドレスに書き込 まれ、古い歪補償係数 hn(p)が更新される。又、パルス信号 PL がローレベルのとき、セレクタ 162, 163 はそれぞれ零を選択して誤差信号記憶部 105に入力しており、又、セレクタ 164 はアドレス発生部 113から遅延回路 165を介して入力するアドレスを選択して誤差信号記 憶部 105に入力しているから、一度誤差信号記憶部 105 のアドレスより誤差信号 en、象 限データ ynが読み出されると、 1クロック時間経過後に該アドレスにゼロが書き込まれる。この ゼロ書き込みにより、パルス信号 PLが口一レベルの時、同じアドレスの歪補償係数を複数回 更新しないようにできる。 尚、アクセスしたアドレスにはフラグを立て、次回アクセスされた時フ ラグが立っているときに該アドレスの値を使用しないように構成することもできる。 以上より、パルス信号 PLがローレベルの歪補償係数更新状態時に同一電力を有する送 信信号が複数回連続して入力しても 1回限り歪補償係数の更新を行うだけであるため、歪 補償係数が期待値よりかけ離れないようにでき、一定値に収束させることができる。 A part of the output of the power amplifier 109 is fed back and converted into a digital signal by the AD converter 112, and the error signal calculator 104 calculates the error signal e (t). When the pulse signal PL is at the high level, the selectors 162 and 163 select the quadrant data of the error signal e (t) and the feed pack signal y (t) and input them to the error signal storage unit 105. Since the selector 164 selects the address output from the address generator 114 and inputs it to the error signal storage 105, the error signal e (t) and quadrant data are sequentially stored in the address of the error signal storage 105. Is done. On the other hand, when the address is generated from the address generation unit 113 when the pulse signal PL is at the low level, the distortion compensation coefficient h n (p) is read from the address in the distortion compensation coefficient storage unit 101 and the distortion compensation is performed. It is. Further, the address generating unit 113 mosquitoes ^ address is generated, the error signal e n from the Adore scan of the error signal storage unit 105, it is read out quadrant data y n is input to the distortion compensation coefficient calculation unit 106. The distortion compensation coefficient calculator 106 calculates the distortion compensation coefficient hn + 1 (p) according to the equation (1), and inputs the calculated value to the distortion compensation coefficient storage 101. When the pulse signal PL is at the low level, the write enable signal WE is input to the distortion compensation coefficient storage unit 101, so that the distortion compensation coefficient hn + 1 (p) is written to the address, and the old distortion compensation The coefficient h n (p) is updated. When the pulse signal PL is at a low level, the selectors 162 and 163 select zero and input them to the error signal storage unit 105, and the selector 164 receives the input from the address generation unit 113 via the delay circuit 165. The error signal e n and the quadrant data y n are once read out from the address of the error signal storage unit 105 since the address to be selected is input to the error signal storage unit 105. Is written to zero. This zero writing prevents the distortion compensation coefficient at the same address from being updated more than once when the pulse signal PL is at a single level. A flag is set for the accessed address, and the next access is It is also possible to configure so that the value of the address is not used when the lag is raised. As described above, when the pulse signal PL is in the low-level distortion compensation coefficient update state, the distortion compensation coefficient is updated only once, even if the transmission signal having the same power is continuously input multiple times. Coefficients can be prevented from deviating from expected values, and can be converged to a constant value.
( F) 第 6実施例  (F) Sixth embodiment
図 11 は本発明の第 6実施例の歪補償装置の構成図であり、図 9の第 5実施例と同一 部分には同一符号を付している。第 5実施例と異なる点は、(1)パルス信号発生部 1 61がパ ルス信号 PLのデューティを変更できる点、(2)歪補償係数が収束すると誤差信号電力が小 さくなるので、誤差信号電力の平均値を監視して誤差信号電力が小さくなるにつれてオン 期間を長くしてデューティを大きくする点である。なお、歪補償係数の引き込み過程におい てデューティ 50 %で動作させる。  FIG. 11 is a configuration diagram of a distortion compensating apparatus according to a sixth embodiment of the present invention, and the same parts as those in the fifth embodiment in FIG. The difference from the fifth embodiment is that (1) the pulse signal generator 161 can change the duty of the pulse signal PL, and (2) the error signal power decreases when the distortion compensation coefficient converges. The point is to increase the duty by increasing the ON period as the error signal power decreases by monitoring the average value of the power. The operation is performed at a duty of 50% in the process of pulling in the distortion compensation coefficient.
電力算出部 166 は誤差演算部 104から出力する誤差信号 e(t)の誤差信号電力を算 出し、比較部 167は誤差電力と閾値電力の差を出力し、平均部 168 は差電力の平均値 を演算し、パルス信号発生部 1 6 1は平均電力値を監視して誤差信号電力が小さくなるに つれて図 12の(a), (b) , ( c)に示すようにオン期間を長くしてデューティを大きくする。 このように歪補償係数が一定値に収束して誤差信号電力が小さくなつた後は、歪補償 係数の更新を停止することにより、歪補償係数を該一定値に維持して歪補償することがで きる。なお、誤差信号電力が大きくなれば、歪補償係数の更新を再開する。  The power calculator 166 calculates the error signal power of the error signal e (t) output from the error calculator 104, the comparator 167 outputs the difference between the error power and the threshold power, and the averaging unit 168 calculates the average value of the difference power. The pulse signal generator 16 1 monitors the average power value and increases the on-period as shown in Figs. 12 (a), (b) and (c) as the error signal power decreases. To increase the duty. After the distortion compensation coefficient converges to a constant value and the error signal power decreases, the updating of the distortion compensation coefficient is stopped to maintain the distortion compensation coefficient at the constant value and compensate for the distortion. it can. When the error signal power increases, the updating of the distortion compensation coefficient is restarted.
( G ) 第 7実施例  (G) Seventh embodiment
図 13は本発明の第 7実施例の歪補償装置の構成図であり.、図 1の第 1実施例と 同一部分には同一符号を付している。 第 1実施例と異なる点は、 (1) 初期時、 歪 補償係数が収束するまでの間、 トレーニング信号系列を歪補償装置に入力する点、 (2) 歪補償係数が収束したとき ト レーニング信号系列に替わって送信信号を歪補 償装置に入力する点である。  FIG. 13 is a configuration diagram of a distortion compensating apparatus according to a seventh embodiment of the present invention. The same parts as those in the first embodiment of FIG. The differences from the first embodiment are as follows: (1) At the initial stage, the training signal sequence is input to the distortion compensator until the distortion compensation coefficient converges. (2) When the distortion compensation coefficient converges, the training signal The point is that the transmission signal is input to the distortion compensation device instead of the sequence.
201 はトレーニング信号系列を発生するトレーニング信号発生部、 202 は初期時トレー ニング信号系列を歪補償部 102に入力し、誤差信号の平均値が設定値以下になったとき 送信信号 x (t)を歪補償部 102 に入力するスィッチ部、 203 は誤差信号電力を算出する 電力計算部、 204 は誤差信号電力の平均値を計算する平均値算出部である。トレーニン グ信号系列は同じ電力の信号が連続して発生しないよう考慮する必要がある。トレーニン グ信号系列により歪補償係数が収束すると比較演算結果の誤差信号電力は小さくなるか ら、誤差信号電力の平均値が設定値より小さくなつたときスィッチ部 202は歪補償装置に 入力する信号をトレーニング信号系列から送信信号 x (t)に切り替える。 201 is a training signal generator that generates a training signal sequence, 202 is the initial training signal sequence that is input to the distortion compensator 102, and when the average value of the error signal falls below the set value, the transmission signal x (t) is A switch input to the distortion compensator 102, a power calculator 203 for calculating the error signal power, and an average calculator 204 for calculating the average of the error signal power. In the training signal sequence, it is necessary to consider that signals of the same power do not occur continuously. training Since the error signal power of the comparison result becomes smaller when the distortion compensation coefficient converges due to the switching signal sequence, when the average value of the error signal power becomes smaller than the set value, the switch unit 202 trains the signal input to the distortion compensator. Switch from signal sequence to transmission signal x (t).
第 7実施例によれば、歪補償係数の収束を安定に行え、かつ、歪補償装置の消費電力 を軽減することができる。  According to the seventh embodiment, the convergence of the distortion compensation coefficient can be performed stably, and the power consumption of the distortion compensation device can be reduced.
( G ) 第 8実施例  (G) Eighth embodiment
図 1 4は本発明の第 8実施例の歪補償装置の構成図であり、図 1 の第 1 実施例 と同一部分には同一符号を付している。 第 1実施例と異なる点は以下の 2点であ る。、第 1 の相違点は、送信信号 X ( t )が入力し、 ァ ドレス発生部 1 1 3かち送信信 号の電力に応じたァ ドレスが発生したとき、歪補償係数部記憶部 101、誤差信号記 憶部 105 の該ア ドレスよ り歪補償係数 h n (p)、誤差信号 e n , 象限信号 y nがそれ ぞれ歪補償係数記憶部 301 に入力し、 歪補償係数記憶部 301 は(1)式によ り歪補 償係数 h n + i (p)を演算して歪補償部 102 に入力し、歪補償部 102 は該歪補償係 ¾ h n +! (p)に基づいて歪補償する点である。第 2の相違点は、誤差信号演算部 104 で演算された今回の誤差信号と誤差信号記憶部 105に記憶されている前回の誤差 信号との差を比較部 302で計算し、その平均値を平均値計算部 303で計算し、差の 平均値が小さければ歪補償係数及び誤差信号は収束しているものと して歪補償係 数記憶部 10 1、 誤差信号記憶部 105 の更新を行わず、 差の平均値が大きく なつた 時に各記憶部 101, 105の記憶内容を更新する点である。 FIG. 14 is a configuration diagram of the distortion compensating apparatus according to the eighth embodiment of the present invention, and the same parts as those in the first embodiment in FIG. The following two points are different from the first embodiment. The first difference is that when a transmission signal X (t) is input and an address corresponding to the power of the transmission signal is generated from the address generation section 113, the distortion compensation coefficient section storage section 101 stores an error. The distortion compensation coefficient h n (p), the error signal e n , and the quadrant signal y n are input to the distortion compensation coefficient storage unit 301 from the address of the signal storage unit 105, and the distortion compensation coefficient storage unit 301 The distortion compensation coefficient h n + i (p) is calculated according to the equation (1) and input to the distortion compensation unit 102. The distortion compensation unit 102 calculates the distortion compensation coefficient ¾ h n +! The point is that distortion is compensated based on (p). The second difference is that calculates the difference between the previous error signal stored in the error signal present error signal calculated by the arithmetic unit 10 4 and the error signal memory 105 in the comparison unit 302, the average value Is calculated by the average value calculation unit 303.If the average value of the difference is small, the distortion compensation coefficient and the error signal are regarded as converging, and the distortion compensation coefficient storage unit 101 and the error signal storage unit 105 are updated. First, when the average value of the differences becomes large, the storage contents of the storage units 101 and 105 are updated.
第 8実施例によれば、第 1実施例に比べて歪補償係数演算部 301 を設けたこと により早目に誤差信号を歪補償係数に反映することができ、該歪補償係数を歪補 償部 102 に入力して歪補償することができる。 又、歪補償係数が一定値に収束し て誤差信号電力が小さく なった後は、歪補償係数の更新を停止することにより、歪 補償係数を該一定値に維持して歪補償することができる。 なお、 誤差信号電力が 大きく なれば、歪補償係数の更新を再開する。  According to the eighth embodiment, the provision of the distortion compensation coefficient calculator 301 as compared with the first embodiment allows the error signal to be reflected on the distortion compensation coefficient earlier, and the distortion compensation coefficient is used as the distortion compensation coefficient. The distortion can be compensated by inputting to the unit 102. After the distortion compensation coefficient converges to a constant value and the error signal power decreases, the distortion compensation coefficient can be maintained at the constant value and the distortion can be compensated by stopping the updating of the distortion compensation coefficient. . When the error signal power increases, the updating of the distortion compensation coefficient is restarted.
以上第 8実施例によれば歪補償係数演算部 301 を設けたから、第 1実施例に比 ベて早目に誤差信号を反映した歪補償係数を歪補償部に入力して歪補償すること ができる。 又、第 8 実施例によれば、 歪補償係数が一定値に収束して誤差信号電 力が小さく なった後は、歪補償係数の更新を.停止することによ り、歪補償係数を該 一定値に維持して歪補償することができる。 なお、 誤差信号電力が大きく なれば、 歪補償係数の更新を再開する。 As described above, according to the eighth embodiment, since the distortion compensation coefficient calculation unit 301 is provided, it is possible to input a distortion compensation coefficient reflecting an error signal to the distortion compensation unit earlier than in the first embodiment to perform distortion compensation. it can. Also, according to the eighth embodiment, after the distortion compensation coefficient converges to a constant value and the error signal power decreases, the updating of the distortion compensation coefficient is stopped by stopping the distortion compensation coefficient. Distortion can be compensated while maintaining a constant value. When the error signal power increases, the update of the distortion compensation coefficient is restarted.
以上本発明によれば、歪補償装置に必要となるシフ ト レジスタの数を削減して 回路規模を縮小することができる。 特に、アナログ素子の遅延が大きく なった場 合における削減効果が大きい。  As described above, according to the present invention, the number of shift registers required for the distortion compensator can be reduced, and the circuit scale can be reduced. In particular, the effect of reduction when the delay of the analog element is large is great.
又、本発明によれば、連続して同一電力値を有する送信信号が入力しても歪補償 係数を収束させるこ とが出来、シフ ト レジスタを削減したことによる不具合を解 消して歪補償係数の収束を安定に行え、かつ、 従来と同等の歪補償の効果を発生 することができる。  Also, according to the present invention, even when transmission signals having the same power value are input continuously, the distortion compensation coefficient can be made to converge, and the disadvantage caused by reducing the number of shift registers can be eliminated to eliminate the distortion compensation coefficient. Can be stably converged, and the same effect of distortion compensation as in the past can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 歪補償係数を用いて送信信号に歪補償処理を施して歪デバイスに入力し、 歪補償前の送信信号と歪デパイスの出力側からフィー ドパックされるフィー ドバ ック信号との差である誤差信号に基づいて適応的に歪補償係数を演算し、 演算さ れた歪補償係数を送信信号に対応させて記憶する歪補償装置において、  1. The difference between the transmitted signal before distortion compensation and the feedback signal fed-packed from the output side of the distortion device after distortion compensation processing is applied to the transmission signal using the distortion compensation coefficient and input to the distortion device. A distortion compensation device that adaptively computes a distortion compensation coefficient based on an error signal and stores the computed distortion compensation coefficient in association with a transmission signal.
送信信号に応じて歪補償係数を記憶する歪補償係数記憶部、  A distortion compensation coefficient storage unit that stores a distortion compensation coefficient according to a transmission signal,
送信信号に該送信信号に応じた歪補償係数を用いて歪補償処理を施す歪補償 部、  A distortion compensation unit that performs a distortion compensation process on a transmission signal using a distortion compensation coefficient corresponding to the transmission signal;
歪補償前の送信信号と歪デバイスの出力側からフィー ドパックされるフィー ド パック信号との差である誤差信号を該送信信号に対応させて記憶する誤差信号記 憶部、  An error signal storage unit for storing an error signal, which is a difference between a transmission signal before distortion compensation and a feed pack signal fed from an output side of the distortion device, in association with the transmission signal;
送信信号に応じた歪補償係数と該送信信号に応じて誤差信号記憶部に記憶され ている誤差信号を用いて適応的に歪補償係数を演算して前記歪補償係数記憶部の 歪補償係数を更新する歪補償係数演算部、  The distortion compensation coefficient is adaptively calculated using the distortion compensation coefficient corresponding to the transmission signal and the error signal stored in the error signal storage unit according to the transmission signal, and the distortion compensation coefficient of the distortion compensation coefficient storage unit is calculated. A distortion compensation coefficient calculation unit to be updated,
を備えたことを特徴とする歪補償装置。  A distortion compensating device comprising:
2 . 前記誤差信号を演算する演算部、  2. An arithmetic unit for calculating the error signal,
送信信号が入力してからフィ一ドバック信号が該誤差信号演算部に到着するま での時間、前記送信信号を遅延して誤差信号演算部に入力する信号遅延部、 を備えたことを特徴とする請求項 1記載の歪補償装置。  A signal delay unit for delaying the transmission signal and inputting it to the error signal calculation unit during a period from when the transmission signal is input to when the feedback signal reaches the error signal calculation unit. The distortion compensator according to claim 1, wherein
3 . 前記歪補償係数記憶部及び誤差信号記憶部は送信信号の電力値に応じて歪 補償係数及び誤差信号を記憶し、前記歪補償係数演算部は、同じ電力の送信信号が 連続して到来しても歪補償係数を一定値に収束させるための歪補償係数収束手段 を備えた、  3. The distortion compensation coefficient storage unit and the error signal storage unit store the distortion compensation coefficient and the error signal according to the power value of the transmission signal, and the distortion compensation coefficient calculation unit receives the transmission signal of the same power continuously. However, it has distortion compensation coefficient convergence means for converging the distortion compensation coefficient to a constant value.
- ことを特徴とする請求項 1 または請求項 2記載の歪補償装置。  -The distortion compensator according to claim 1 or 2, wherein:
4 .前記歪補償係数収束手段は、 送信信号の電力値と適応演算で使用するステ ップサイズパラメータ ( μ ) の対応を記憶し、送信信号の電力値に応じたステツ プサイズパラメータを出力し、 前記歪補償係数演算部はこのステップサイズパラ メータを用いて適応的に歪補償係数を演算して前記歪補償係数記憶部の歪補償係 数を更新する、 ことを特徴とする請求項 3記載の歪補償装置。 4. The distortion compensation coefficient convergence means stores the correspondence between the power value of the transmission signal and the step size parameter (μ) used in the adaptive operation, and outputs the step size parameter according to the power value of the transmission signal. The distortion compensation coefficient calculating unit adaptively calculates a distortion compensation coefficient using the step size parameter and updates a distortion compensation coefficient of the distortion compensation coefficient storage unit; 4. The distortion compensator according to claim 3, wherein:
5 . 前記歪補償係数収束手段は、送信信号の電力値に応じて計数手段を備え、所 定電力値の歪補償係数が更新されたとき、該電力値に応じた計数手段により クロ ックパルの計数を開始し、該カ ウンタの計数値が設定値に到達するまで該電力値 に応じた歪補償係数の更新を禁止する、  5. The distortion compensation coefficient convergence means includes a counting means according to the power value of the transmission signal, and when the distortion compensation coefficient of the predetermined power value is updated, the clock pallet is counted by the counting means according to the power value. And updating of the distortion compensation coefficient according to the power value is prohibited until the count value of the counter reaches the set value.
ことを特徴とする請求項 3記載の歪補償装置。  4. The distortion compensator according to claim 3, wherein:
6 . 前記歪補償係数収東手段は、基準時刻を示すタイマー、送信信号の電力値に 応じて歪補償係数の更新時刻を記録する更新時刻記憶手段を備え、所定電力値に 応じた前記更新時刻と前記基準時刻との差が設定時間以下のとき、該電力値に応 じた歪補償係数の更新を禁止する、  6. The distortion compensation coefficient collecting means includes a timer indicating a reference time, and update time storage means for recording an update time of the distortion compensation coefficient according to a power value of a transmission signal, and the update time according to a predetermined power value. When the difference between the reference time and the reference time is equal to or less than a set time, updating of the distortion compensation coefficient corresponding to the power value is prohibited.
ことを特徴とする請求項 3記載の歪補償装置。  4. The distortion compensator according to claim 3, wherein:
7 . 前記歪補償係数収束手段は、周期的にハイ レベル、ローレペルとなるパルス 信号を発生するパルス信号発生部、 パルス信号が一方のレベルのとき歪補償係数 記憶部をライ トイネープル状態にすると共に、 所定電力値に応じた歪補償係数を 更新する とき、該電力値に応じた誤差信号記憶部の誤差信号を零にし、パルス信号 が他方のレベルであるとき誤差信号記憶部に誤差信号を記憶する手段、  7. The distortion compensation coefficient convergence means includes a pulse signal generation unit that periodically generates a high-level and low-level pulse signal, and sets the distortion compensation coefficient storage unit to a light-to-naple state when the pulse signal is at one level. When the distortion compensation coefficient corresponding to the predetermined power value is updated, the error signal in the error signal storage unit corresponding to the power value is set to zero, and when the pulse signal is at the other level, the error signal is stored in the error signal storage unit. Means,
を備えたことを特徴とする請求項 3記載の歪補償装置。  4. The distortion compensating device according to claim 3, comprising:
8 . 前記パルス信号発生部は、誤差信号の平均値に基づいて前記パルス信号の 一方のレベルの期間を可変にする、  8. The pulse signal generating section varies a period of one level of the pulse signal based on an average value of the error signal,
ことを特徴とする請求項 7記載の歪補償装置。  8. The distortion compensator according to claim 7, wherein:
9. トレーニング信号を発生するトレーニング信号発生部、  9. A training signal generator that generates a training signal,
初期時トレーニング信号を前記歪補償部に入力し、前記誤差信号の平均値が設定値 以下になったとき送信信号を歪補償部に入力する信号切り替え手段、  Signal switching means for inputting a training signal at the initial stage to the distortion compensating unit, and for inputting a transmission signal to the distortion compensating unit when an average value of the error signal is equal to or less than a set value,
を備えたことを特徴とする請求項 1または請求項 2記載の歪補償装置。  3. The distortion compensating device according to claim 1, comprising:
1 0.歪補償係数を用いて送信信号に歪補償処理を施して歪デバイスに入力し、歪補 償前の送信信号と歪デパイスの出力側からフィードバックされるフィードバック信号との差で ある誤差信号に基づいて適応的に歪補償係数を演算し、演算された歪補償係数を送信 信号に対応させて記憶する歪補償装置において、  10.An error signal, which is the difference between the transmission signal before distortion compensation and the feedback signal fed back from the output side of the distortion device, after performing distortion compensation processing on the transmission signal using the distortion compensation coefficient and inputting it to the distortion device. A distortion compensation coefficient that is adaptively calculated based on the following, and the calculated distortion compensation coefficient is stored in association with the transmission signal.
送信信号に応じて歪補償係数を記憶する歪補償係数記憶部、 送信信号に歪補償係数を用いて歪補償処理を施す歪補償部、 A distortion compensation coefficient storage unit that stores a distortion compensation coefficient according to a transmission signal, A distortion compensation unit that performs distortion compensation processing on the transmission signal using the distortion compensation coefficient,
歪補償前の送信信号と歪デパイスの出力側からフィ一ドパックされるフィー ド バック信号との差である誤差信号を演算する誤差信号演算部、  An error signal calculation unit that calculates an error signal that is a difference between a transmission signal before distortion compensation and a feedback signal fed-packed from an output side of the distortion device;
送信信号に歪補償処理を施してからフィー ドパック信号が該誤差信号演算部に 到着するまでの時間、前記送信信号を遅延して誤差信号演算部に入力する信号遅 延部、  A signal delay unit for delaying the transmission signal and inputting the resulting signal to the error signal calculation unit for a period of time from when the distortion compensation processing is performed on the transmission signal to when the feed pack signal arrives at the error signal calculation unit;
該誤差信号を信号遅延部から出力する送信信号に対応させて記憶する誤差信号 記憶部、  An error signal storage unit that stores the error signal in association with the transmission signal output from the signal delay unit;
送信信号に応じて前記歪補償係数記憶部と前記誤差信号記憶部にそれぞれ記憶 されている歪補償係数と誤差信号を用いて適応的に歪補償係数を演算して前記歪 補償部に入力する第 1 の歪補償係数演算部、  A distortion compensation coefficient is adaptively calculated using the distortion compensation coefficient and the error signal stored in the distortion compensation coefficient storage section and the error signal storage section, respectively, in accordance with a transmission signal, and input to the distortion compensation section. 1 distortion compensation coefficient calculator,
前記信号遅延部よ り 出力する送信信号に応じて前記歪補償係数記憶部及び誤差 信号記憶部にそれぞれ記憶されている歪補償係数及び誤差信号を用いて適応的に 歪補償係数を演算し、 誤差信号演算部から出力する誤差信号と誤差信号記憶部に 記憶されている誤差信号のの差が設定値以上のとき、該演算された歪補償係数で 前記補償係数記憶部の歪補償係数を更新する第 2の歪補償係数演算部、  The distortion compensation coefficient is adaptively calculated using the distortion compensation coefficient and the error signal stored in the distortion compensation coefficient storage unit and the error signal storage unit according to the transmission signal output from the signal delay unit, and the error is calculated. When the difference between the error signal output from the signal operation unit and the error signal stored in the error signal storage unit is equal to or greater than a set value, the distortion compensation coefficient in the compensation coefficient storage unit is updated with the calculated distortion compensation coefficient. A second distortion compensation coefficient calculator,
を備えたことを特徴とする歪補償装置。  A distortion compensating device comprising:
PCT/JP2001/004931 2001-06-12 2001-06-12 Distortion compensating device WO2002101919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004931 WO2002101919A1 (en) 2001-06-12 2001-06-12 Distortion compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004931 WO2002101919A1 (en) 2001-06-12 2001-06-12 Distortion compensating device

Publications (1)

Publication Number Publication Date
WO2002101919A1 true WO2002101919A1 (en) 2002-12-19

Family

ID=11737416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004931 WO2002101919A1 (en) 2001-06-12 2001-06-12 Distortion compensating device

Country Status (1)

Country Link
WO (1) WO2002101919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548930A1 (en) * 2003-12-23 2005-06-29 Alcatel Electronic circuit and method for predistorting a signal to be amplified
US7106133B2 (en) 2002-05-31 2006-09-12 Fujitsu Limited Distortion compensator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658975A1 (en) * 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Baseband predistortion system for the adaptive linearization of power amplifiers
US5870668A (en) * 1995-08-18 1999-02-09 Fujitsu Limited Amplifier having distortion compensation and base station for radio communication using the same
US5903611A (en) * 1996-03-22 1999-05-11 Matra Communication Method of correcting nonlinearities of an amplifier, and radio transmitter employing a method of this type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658975A1 (en) * 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Baseband predistortion system for the adaptive linearization of power amplifiers
US5870668A (en) * 1995-08-18 1999-02-09 Fujitsu Limited Amplifier having distortion compensation and base station for radio communication using the same
US5903611A (en) * 1996-03-22 1999-05-11 Matra Communication Method of correcting nonlinearities of an amplifier, and radio transmitter employing a method of this type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106133B2 (en) 2002-05-31 2006-09-12 Fujitsu Limited Distortion compensator
EP1548930A1 (en) * 2003-12-23 2005-06-29 Alcatel Electronic circuit and method for predistorting a signal to be amplified

Similar Documents

Publication Publication Date Title
US7486744B2 (en) Distortion compensation apparatus
CA2557334C (en) Digital predistortion system and method for high efficiency transmitters
US7366252B2 (en) Wideband enhanced digital injection predistortion system and method
US8301090B2 (en) Distributed mobile communication network
JP4786644B2 (en) Distortion compensation device
JP3857652B2 (en) Distortion compensation device
JP4086133B2 (en) Wireless device distortion compensation method and distortion compensation device
JP4417174B2 (en) Predistorter
US7542518B2 (en) Predistortion apparatus and method for compensating for a nonlinear distortion characteristic of a power amplifier using a look-up table
JP2012129661A (en) Distortion compensation device, distortion compensation method and radio apparatus
JP5482561B2 (en) Distortion compensation amplification apparatus and distortion compensation method
WO2002101919A1 (en) Distortion compensating device
JP3867583B2 (en) Nonlinear distortion compensation apparatus, method and program thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP