WO2003066521A1 - Method and apparatus for producing fine carbon material - Google Patents

Method and apparatus for producing fine carbon material Download PDF

Info

Publication number
WO2003066521A1
WO2003066521A1 PCT/JP2002/001016 JP0201016W WO03066521A1 WO 2003066521 A1 WO2003066521 A1 WO 2003066521A1 JP 0201016 W JP0201016 W JP 0201016W WO 03066521 A1 WO03066521 A1 WO 03066521A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
carrier particles
carbon material
carrier
fine carbon
Prior art date
Application number
PCT/JP2002/001016
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Nishimura
Hiromichi Maeno
Makoto Kato
Original Assignee
Carbon Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbon Nanotech Research Institute Inc. filed Critical Carbon Nanotech Research Institute Inc.
Priority to PCT/JP2002/001016 priority Critical patent/WO2003066521A1/en
Priority to AU2002233631A priority patent/AU2002233631A1/en
Publication of WO2003066521A1 publication Critical patent/WO2003066521A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder

Definitions

  • the present invention relates to various secondary batteries, such as Li-ion batteries, and fuel cells, which have excellent electron-emitting ability, hydrogen-absorbing ability, conductivity, and thermal conductivity.
  • FED superconducting device, semiconductor, manufacturing method of fine carbon material used for conductive composite material and the like, and in particular, catalyst carrier using organic material such as hydrocarbon or carbon as raw material and carrying transition metal Technology for continuously producing fine carbon materials by chemical pyrolysis (CCVD), which synthesizes carbon fibers by reaction in a non-oxidizing atmosphere using
  • Carbon nanotubes are a type of vapor-grown carbon fiber (VGCF) that has been studied for a long time, and have various names depending on the thickness of the fiber. Although the range and name of the fiber diameter are not uniquely defined, generally, a fiber diameter of 1 Atm or more is vapor-phase carbon fiber (VGCF), and a fiber diameter of 2 Onm or less is carbon fiber. Nanotubes (CNT) and those with a fiber diameter larger than 20 nm, which is between them, and smaller than 1 im are called carbon nanofibers (CNF).
  • CNF carbon nanofibers
  • fine carbon materials having various shapes, such as a rifon shape and a coil shape, instead of the tube shape as described above, are known.
  • the crystal structure of these fine carbon materials takes a variety of forms, including carbon-based basin planes (SWNTs), each of which has a cylindrical shape with a single layer rounded, and multiple layers of base plane Are laminated and have a concentric laminated structure (or an annual ring-shaped structure).
  • SWNTs carbon-based basin planes
  • nanohorns having a horn-like crystal structure in which the crystal plane is intermediate between the two, that is, the crystal plane spreads at a certain angle with respect to its central axis.
  • the fine carbon material having a shape other than the tube shape examples include a rifon-like fine carbon material having a structure in which basal planes are stacked so as to be orthogonal to a fiber direction, and a coil-like fine carbon material having an amorphous structure which does not exhibit crystallinity.
  • Power such as carbon materials.
  • these fine carbon materials are produced by a CVD method that carbonizes a carbon source such as hide-hole carbon in the gas phase and at the same time crystallizes it in a fibrous form.
  • Which type of material is to be produced can be selected by selecting the reaction system, for example, by appropriately setting the production conditions such as the type of carbon raw material, the type and combination of catalyst, the reaction atmosphere, and the reaction temperature. it can.
  • VGCF vapor grown carbon fiber
  • the method for producing single-walled carbon nanotubes and multi-walled carbon nanotubes with a fiber diameter of 50 nm0 or less, especially 20 nm0 or less, is produced by evaporating carbon at extremely high temperatures using the arc method and laser method. And a CCVD method using a fixed layer carrying a catalyst.
  • the arc method and the laser method are not production methods suitable for mass production, and cannot be said to be production methods that can withstand industrialization.
  • the CCVD method using a fixed layer supporting a catalyst is basically the same method as the fixed layer method studied in the early stage of the development of VGCF, and it is necessary to manufacture fine carbon nanotubes.
  • they differ in that fine pores such as zeolite are used for the catalyst carrier.
  • the use of zeolite has succeeded in producing fine catalyst particles, and has made it possible to produce extremely fine carbon nanotubes.
  • the arc method and the laser method are not suitable as industrial production methods, because they not only complicate the structure of the apparatus, but also have poor productivity and difficulty in continuity.
  • these methods are not only low in yield because non-fibrous carbon materials such as amorphous carbon are easily produced, but also produce the carbon nanotubes and the non-fibrous carbon materials. Separation is also difficult. Therefore, it is considered difficult to produce high-purity carbon nanotubes suitable for industrial products using the arc method.
  • the conventional CVD method which does not use a catalyst carrier, uses a material with a fine fiber diameter that is considered to be the most suitable production method for mass production of carbon nanotubes.
  • the quality of production is high, and the dispersion of the fiber diameter is large, which tends to be uneven. Further, there is a problem that the yield power decreases as the fiber diameter becomes smaller. Therefore, it is considered that it is difficult to stably produce a large amount of thin carbon nanotubes having a fiber diameter of 20 nm or less only by the conventional CVD method.
  • DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above problems, and provides a production method capable of stably mass-producing carbon nanotubes having a small fiber diameter and a sharp distribution. It is one of the purposes.
  • Another object of the present invention is to provide a manufacturing apparatus capable of stably mass-producing carbon nanotubes having the above characteristics.
  • the arc method, the laser method, and the CVD method have a difficult task to mass-produce carbon nanotubes with a small fiber diameter. Accordingly, the present inventors force s fiber diameter 5 0 nm or less, particularly thin fine force extremely fiber diameter of less than the fiber diameter 2 0 nm - was conducted various studies about the industrial process capable of mass production of carbon nanotubes However, it was concluded that a new CCVD method using a catalyst-supported carrier was preferable. That is, as a means for controlling the particle size of the transition metal catalyst supported on the carrier, a method using a carrier having fine pores is used.
  • the reaction apparatus and the manufacturing process differ greatly depending on what kind and shape of the carrier for supporting the catalyst and in what method are used.
  • the configuration of the separation means for separating the carbon nanotubes from the carrier and the configuration of the means for purifying the carbon nanotubes are greatly different.
  • the present inventor has developed a method using a molded body or a method using a pellet-shaped carrier as a method for producing carbon nanotubes using the above-mentioned CCVD method.
  • the following problems to be solved also exist in these methods using a molded article or a pellet-shaped carrier.
  • a catalyst in which the catalyst is supported on a fine powder carrier is used as much as possible.
  • the residence time of the catalyst in the reactor is made short and fixed to prevent the CVD reaction from proceeding further on the surface of the fine carbon material formed on the catalyst surface.
  • the catalyst-carrying carrier is supplied stably (the supply amount and the supply speed are kept constant), and the carrier is uniformly dispersed in the reactor.
  • suppressing the reaction on the surface of the generated fine carbon material is particularly important in producing a carbon material having a fine fiber diameter without increasing the fiber thickness.
  • the present invention solves the problems of the arc method, the laser method, and the ordinary CCVD method as described above, and can continuously produce a fine carbon material having excellent characteristics. It is intended to provide a production method and a production apparatus of the invention.
  • a carrier particle carrying a contact butterfly containing at least one or more transition metals is introduced into a reaction gas containing a hydrocarbon, and the carrier particles are contained in the reaction gas.
  • the method is characterized in that a fine carbon material is generated on the surface of the carrier particles while flowing the particles in one direction as a whole.
  • Such a production method is a production method in which a catalyst is supported on powder or fine particulate carrier particles, and the carrier particles are allowed to flow in a reaction gas to grow a fine carbon material on the surface of the carrier particles.
  • the shape of the carrier supporting the catalyst to be powder or fine particles
  • the surface area of the carrier can be increased and the CVD reaction can be efficiently performed on the surface.
  • the carrier particles are caused to flow in the reaction gas, the residence time of the carrier particles in the reaction gas can be easily shortened and made constant. For example, in the case of producing a fibrous fine carbon material, the distribution of the fiber diameter of the carbon fibers can be made more uniform.
  • the method for producing a fine carbon material comprises: introducing a carrier particle carrying a contact butterfly containing at least one or more transition metals into a reaction gas containing hide-portion carbon; Forming a fine carbon material containing fine carbon fibers having a diameter of 50 nm 0 or less and an aspect ratio of 10 or more on the surface of the carrier particles while flowing the carrier particles in one direction.
  • the method for producing a fine carbon material according to the present invention comprises: introducing a carrier particle carrying a contact butterfly containing at least one or more transition metals into a reaction gas containing hide-portion carbon; While the carrier particles are allowed to flow in one direction as a whole, the single-walled carbon nanotubes and the single-walled carbon nanotubes Z or the single-walled carbon nanotubes having a carbon planar force cylindrical shape composed of carbon atoms are laminated on the surface of the carrier particles.
  • the method is characterized in that a fine carbon material including the multilayered carton nanotube is produced.
  • a reaction gas for producing a fine carbon material therein by a thermochemical decomposition method is provided with a reaction gas containing a hydrocarbon and one or more transition metals. And introducing the reaction gas and the carrier particles in a direction facing each other (alternating current) to fluidize the catalyst and generate a fine carbon material on the surface of the carrier particles.
  • the CVD reaction can proceed while keeping the concentration of the reaction gas in contact with the carrier particles and the flow rate of the reaction gas with respect to the carrier particles almost constant, so that the CVD reaction is formed on the carrier particles. Variations in the shape and dimensions of the fine carbon material can be reduced, and a fine carbon material with desired characteristics can be stably manufactured. You.
  • the reaction furnace is arranged in a vertical position, the carrier particles are introduced into the reaction furnace from an upper end of the reaction furnace, and the reaction gas is reacted with the reaction gas.
  • the method is characterized in that it is introduced into the reaction furnace from the lower end of the furnace and the two are contact-reacted with each other by an alternating current to produce a fine carbon material on the surface of the carrier particles in the reaction furnace.
  • a reaction furnace arranged in a vertical position is used, a reaction gas is introduced from a lower end of the reaction furnace, and carrier particles are introduced from an upper end of the reaction furnace.
  • This is a method for forming a fine carbon material.
  • the carrier particles introduced from the upper end of the reactor naturally fall toward the lower part of the reactor, pass through the reaction gas flowing from the lower part of the reactor toward the upper part of the reactor, and are supplied to the CVD reaction. Is done.
  • the carrier particles are continuously introduced into the reaction furnace, and the surface of the carrier particles is introduced into the reaction furnace in which the reaction gas is continuously introduced.
  • the method is characterized in that a fine carbon material is generated, and the carrier particles generated by the fine carbon material are continuously taken out of the reaction furnace.
  • the fine carbon material can be manufactured by continuously operating the reaction furnace, the fine carbon material can be efficiently manufactured.
  • the control of the reaction time (retention time of the carrier particles in the reactor) is easy, and the carrier particle force after the reaction is lower. Therefore, the supply and recovery of carrier particles are extremely easy, and a stable and efficient production of fine carbon material is possible.
  • the method for producing a fine carbon material according to the present invention at least a part of the post-reaction gas after being subjected to the reaction in the reactor is recycled by a recycling process provided outside the reactor. It is characterized in that it is put into the reactor again by a step and reused.
  • the method for producing a fine carbon material according to the present invention is characterized in that the temperature of the reaction gas containing the hide-portion carbon is 500 ° C. or more and 130 ° C. or less. By setting the reaction gas temperature within the above range, a fine carbon material having uniform quality can be efficiently produced.
  • reaction gas temperature is lower than 500 ° C., the reaction rate is low, and the production rate of the fine carbon material is low, which is not practical.
  • the temperature exceeds 130 ° C. the carbonization rate and the fiberization rate do not match, so that no fiber is produced.
  • a more preferable range of the reaction gas temperature is not less than 600 ° C. and not more than 125 ° C.
  • the method for producing a fine carbon material according to the present invention is characterized in that the carrier particles supporting the catalyst have an average particle size of 50 O jum or less.
  • the method for producing a fine carbon material according to the present invention is characterized in that the carrier particles supporting the catalyst have an average particle size of 10 ⁇ or less.
  • the method for producing a fine carbon material according to the present invention is characterized in that the linear velocity of the reaction gas containing the hydrocarbon is in a range of 0.0 lm / sec or more and lmZ sec.
  • the apparatus for manufacturing a fine carbon material according to the present invention is connected to a reactor which is disposed in a vertical position to generate the fine carbon material by a thermochemical decomposition method therein, and an upper end of the reactor.
  • a carrier particle supply unit for introducing a carrier particle carrying a catalyst into the reaction furnace; and a reaction connected to a lower end of the reaction furnace for supplying a reaction gas containing hydrocarbon into the reaction furnace.
  • the apparatus for producing a fine carbon material according to the present invention is characterized in that it is provided with a recycling means for re-introducing the post-reaction gas recovered in the reaction gas recovery section into the reaction furnace.
  • the amount of the raw material and the carrier gas used for the manufacturing can be reduced, and the unreacted portion of the reaction gas can be recycled again as the raw material, so that the manufacturing cost can be reduced.
  • FIG. I is a configuration diagram showing an example of the apparatus for producing a fine carbon material according to the present invention.
  • FIG. 1 is a configuration diagram showing an example of a configuration of a fine carbon material manufacturing apparatus according to the present invention.
  • the manufacturing apparatus shown in this figure comprises a tubular reactor 10 arranged in a vertical position, a heating device 11 arranged around the outer periphery of the reactor 10, and a reactor 10 at the upper end of the reactor 10.
  • the carrier supply device (carrier particle supply unit) 14 connected to the provided carrier introduction port 10a and the reaction gas connected to the reaction gas introduction port 10c provided on the side of the lower end of the reactor 10
  • Supply device (reaction gas supply unit) 17 carrier recovery device (carrier particle recovery unit) 21 connected to carrier outlet 10 d provided at lower end of reactor 10, and reactor 10
  • a post-reaction gas recovery device (post-reaction gas recovery unit) 27 is connected to the reaction gas outlet 10b provided at the upper end.
  • the reactor 10 has a cylindrical shape made of a heat-resistant material such as various types of ceramics and quartz, and is heated by a heating device 11 surrounding the outer periphery thereof, so that a thermochemical decomposition reaction proceeds therein.
  • FIG. 1 shows a cylindrical reactor 10, and the shape of the force reactor 10 is not limited to a cylindrical shape.
  • the carrier supply device 14 includes a carrier supply source 1 for supplying carrier particles carrying a catalyst, a storage tank 13 for temporarily storing the carrier connected to the carrier supply source 12, and a storage tank 13. And a feeder 15 for supplying a certain amount of carrier particles from the storage tank 13 to the reactor 10 .
  • the feeder 15 is connected to the carrier inlet 10 a at the upper end of the reactor 10. It is connected.
  • the feeder 15 can be used without any problem as long as it can transfer the powder at a constant speed, and various feeder powers such as an electromagnetic feeder, a screw feeder, and a table feeder can be applied.
  • the carrier supply device 14 shown in FIG. 1 is an example of a device configuration capable of supplying a certain amount of carrier particles.
  • a carrier is provided between the feeder 15 and the reaction furnace 10a.
  • a configuration in which a heating means for preheating particles is provided may be employed. If performed, the catalyst supported on the carrier particles can be activated before being charged into the reaction furnace 10, and the reaction efficiency of the CVD reaction can be increased.
  • the heating means for preheating heats the carrier particles until the carrier particles reach the reaction region (region where the carrier particle force s is generated when the fine carbon material is generated on the surface of the carrier particles) in the reactor 10.
  • the reaction gas supply device 17 includes a source gas supply source 16 for supplying a source gas such as hydrocarbon and carbon monoxide, and a source gas supply source for adjusting the flow rate of the source gas.
  • a mass flow controller (MFC) 16a connected to a supply source 16 and a carrier gas supply source 18 for supplying a carrier gas such as hydrogen gas or argon gas for diluting the source gas to a predetermined concentration.
  • an MFC 18a connected to a carrier gas supply source 18a for adjusting the flow rate of the carrier gas, and a gas pipe connected to the MFC 16a and 18a. It is connected to a reaction gas inlet 10 c provided at the lower end side surface of the reactor 10 through 19.
  • the reaction gas supply device 17 of the present embodiment prepares a reaction gas by previously mixing the raw material gas and the carrier gas at a predetermined mixing ratio, and supplies the reaction gas to the reaction furnace 10. It has become. Further, it is also possible to adopt a configuration in which the raw material gas and the carrier gas are directly introduced into the reactor 10 respectively.
  • a vaporizer for vaporizing the raw material to generate a raw material gas may be provided, for example, when the raw material is liquid at normal temperature.
  • the carrier recovery device 21 is provided with a carrier recovery tank 20.
  • the carrier recovery tank 20 has an inlet side 20 a force and a carrier outlet port 1 provided at the lower end of the reactor 10. 0 d is connected to a bag filter 25 described later, and the outlet side 2 O b is connected to a carbon material separation system 22 for separating the carrier and the fine carbon material grown on the surface thereof.
  • the post-reaction gas recovery device 27 is a device that collects and discharges post-reaction gas from the reaction furnace 10 after being subjected to the CVD reaction in the reaction furnace 10.
  • the bag filter 25 for separating the fine carbon material and the carrier, etc., which flowed in with the gas after the reaction from the gas after the reaction, and the gas recovery device 27 after the reaction And a blower 26 for adjusting the gas pressure.
  • the cooling device 24 reduces the load on the bag filter 25 and the blower 26 by cooling the high-temperature reaction gas.
  • the cooling device it is preferable to use a cooling device capable of cooling the gas after the reaction by the heat resistance temperature of the bag filter 25 or the blower 26 to 130 ° C. or less.
  • liquefaction force s is generated by cooling, so that the temperature of the post-reaction gas is preferably equal to or higher than the temperature of the reaction gas supplied from the reaction gas supply device 17.
  • the pug filter 25 is connected to the cooling device 24 through a post-reaction gas inlet 25a, and converts the post-reaction gas introduced into the inside from the inlet 25a into a gas component (raw material). It has the function of separating solid components (such as carriers, fine carbon materials, and by-products of the CVD reaction) from components contained in gas and carrier gas.
  • the separated gas component is exhausted from a gas component outlet 25 b provided at the upper part of the bag filter 25, and the solid component is discharged from the solid component outlet 2 provided at the lower portion of the bag filter 25. 5c is to be discharged.
  • the blower 26 is connected to the gas component outlet 25 b of the pug filter 25, and the pressure on the outlet side is higher than the pressure on the inlet side. That is, the post-reaction gas force s ′ flows from the reactor 10 power to the blower 26 through the cooling device 24 and the bag filter 25. This prevents the gas after the reaction from flowing back to the reaction furnace 10.
  • the outlet side of the blower 26 is branched in two directions in the piping path, one of which is connected to the exhaust gas treatment system 28, and the other is connected to the reaction gas supply device 17 and the reactor It merges with the pipe 19 connecting the 10 and 10.
  • the post-reaction gas Recovering device 27 Forces The structure also functions as a means for recycling post-reaction gas.
  • the carrier particles and the fine carbon material discharged from the solid component outlet 25 c of the bag filter 25 are sent to the carrier recovery tank 20, and passed through the carrier outlet 10 d of the reactor 10. It is sent to the carbon material separation system 22 together with the recovered carrier particles and fine carbon material.
  • the atmosphere in the reaction zone (the inside of the reaction furnace 10 and a portion connected thereto) is not only a reducing atmosphere such as hydrogen, but also a hydride as a raw material.
  • nitrogen gas or inert gas is supplied as necessary to maintain the pressure inside the system higher than that of the outside air. Prevent air contamination.
  • the carrier supply device 14 and the carrier recovery device 21 directly connected to the reactor 10 are also provided with an inert gas supply source (not shown) and a cooling means (not shown). Since the catalyst supported on the carrier particles recovered in the carrier recovery device 21 is in a fine and highly active state, the atmosphere is replaced with an inert gas, and cooling is performed. The reactivity of the surface of the material is reduced, and the carrier particles are taken out after the material does not burn.
  • the apparatus for producing a fine carbon material according to the present invention having the above-described configuration heats the carrier particles supporting the catalyst supplied from the carrier supply device 14 and the reaction gas supplied from the reaction gas supply device 17.
  • the materials are mixed in a reaction furnace 10 heated to a predetermined temperature by the device 11, and a fine carbon material is generated by a CVD reaction on the surface of the carrier particles.
  • the carrier particles containing the fine carbon material generated by the CVD reaction in the reaction furnace 10 are collected in the carrier recovery unit 21, and the post-reaction gas after the reaction is subjected to the post-reaction gas recovery unit 27. Is to be collected.
  • the post-reaction gas collected in the post-reaction gas recovery device 27 is separated into a solid component and a gas component by a bag filter 25, and the solid component is recovered in the carrier recovery device 21 and the carbon material is recovered. It is sent to the separation system 22.
  • a part of the gas component separated by the bag filter 25 is mixed with the reaction gas supplied from the reaction gas supply device 17, re-input to the reaction furnace 10, and recycled.
  • Gas components of the non-recycled post-reaction gas are appropriately treated in an exhaust gas treatment system 28 and then discharged as exhaust gas. By recycling such post-reaction gas, it is possible to reduce the amount of reaction gas (particularly carrier gas) used, and to reduce the scale of the carrier gas system and the production cost.
  • the carrier particles that continuously support the catalyst and the fine carbon material are placed in a reactor for producing the fine carbon material by the CVD reaction.
  • the reaction gas containing the raw material is continuously supplied, and the carrier particles and the post-reaction gas used in the CVD reaction and the generated fine carbon material can be continuously recovered from the reaction furnace 10.
  • the reactor is disposed at a vertical position of 10 s, and the carrier particles move from the upper part to the lower part of the reactor 10, and the reaction gas moves from the lower part to the upper part of the reactor 10.
  • the fine carbon material is Any type of production system can be used, including the type and combination of catalysts, catalyst concentration on carrier particles, selection of raw materials, gas flow rate, reaction gas concentration, reaction temperature, furnace gas composition, etc. The production can be appropriately changed depending on the type of the fine carbon material to be produced (fiber diameter ⁇ length, etc.).
  • an inert gas or a reducing gas is used as a carrier gas
  • the inert gas helium, argon, neon, xenon, krypton, radon, nitrogen and the like can be used.
  • a reducing gas is used as a carrier gas, hydrogen and methane can be used.
  • a reaction system is prepared.
  • the reactor 10 and a portion connected to the reactor 10 are replaced with a non-oxidizing atmosphere by flowing argon gas, for example.
  • the heating device 11 on the outer periphery of the reaction furnace 10 is operated, and the inside of the reaction furnace 10 is heated to a predetermined temperature within a range of 500 to 130 ° C., and the temperature is increased.
  • a carrier gas is introduced into the system from the reaction gas supply device 17.
  • a reducing gas such as hydrogen gas or methane gas
  • flow an inert carrier gas for a certain period of time and then check the oxygen concentration in the reactor 1.
  • the reducing gas can be supplied.
  • the supply of the catalyst carrier can be started.
  • the catalyst supported on the surface of the carrier particles include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, and platinum. Transition metal Con, and these compounds can be used. These may be used alone or in combination of two or more.
  • the form of the compound of the catalyst may be a simple metal, an organic compound, an inorganic compound, or a combination thereof.
  • the organic compound include Hua-Sen, Nickel-Sen, Cobalt-Sen and other metal complexes, or iron acetate, cobalt acetate, and nickel acetate.
  • the inorganic compound may be in any form such as an oxide, a hydroxide, a nitrate, a sulfate, a chloride, and a carbonyl compound of the transition metal.
  • the carrier particles for supporting the catalyst there can be used general carrier particles such as alumina, silica gel, zeolite, magnesia, activated carbon, etc. As far as possible, the pore force is small, and Pore shape is good.
  • the shape of the carrier particles applied to the present invention is a powder.
  • the carrier particles supplied from the carrier supply source 12 for use in the present reaction are preliminarily loaded with a catalyst and subjected to a predetermined pretreatment. For example, an ethanol solution of the catalyst is prepared, and the carrier particles are immersed in this solution, and then a predetermined amount of the catalyst is adsorbed on the surface while rotating.
  • the carrier particles can be obtained by heating to about 140 ° C. to evaporate ethanol. It is preferable that the carrier particles carrying the catalyst be heated to about 700 ° C. to be activated before being charged into the reaction furnace 10.
  • the average particle diameter of the carrier particles is preferably 500 ⁇ m or less, more preferably 100 im or less.
  • the carrier particles are supplied to the reaction furnace 10.
  • the carrier particles are put into the storage tank 13 from the carrier supply source 12 of the carrier supply device 14, and a predetermined amount is stored in advance.
  • the carrier particles may be activated by heating.
  • the atmosphere in the portion connected to the reactor 10 is inert gas ⁇ And keep it in an inert atmosphere.
  • the carrier particles are introduced from the storage tank 13 to the reaction furnace 10 at a constant supply speed by the feeder 15. In the manufacturing apparatus of the present invention, the supply speed of the carrier particles can be easily and accurately controlled by the transport speed of the feeder 15.
  • the supply of the reaction gas from the reaction gas supply device 17 is started. That is, the source gas is supplied from the source gas supply source 16 while controlling the flow rate by the MFC 16a, and the carrier gas is supplied from the carrier gas supply source 18 while controlling the flow rate by the MFC 18a to supply the gas.
  • the reaction gas is mixed in the reactor 9 to generate a reaction gas, and the reaction gas is introduced from the reaction gas inlet 1 Oc on the side of the lower end of the reactor 10 through the gas pipe 19.
  • the raw material gas general hydrocarbon or carbon monoxide can be used, and even if it is liquid at normal temperature, it can be used after being vaporized by vaporizing means.
  • a heating means can be provided in the gas pipe 19 to preheat the reaction gas introduced into the reaction furnace 10. In this case, it is preferable to heat the solution to 200 ° C. or more and introduce it into the reaction furnace 10.
  • the carrier particles introduced from the upper part of the reaction furnace 10 are introduced into the reaction furnace 10 in a state where the reaction gas flows at a predetermined flow rate from the lower part to the upper part of the reaction furnace 10. While falling toward the bottom of 0, a fine carbon material is grown on the surface of the carrier particles by a chemical pyrolysis reaction.
  • the carrier particles formed on the surface of the fine carbon material by the CVD reaction while falling in the reactor 10 reach the bottom of the reactor 10. (At that time, some of them were separated from the carrier.) Then, the carrier was recovered from the carrier outlet 10 d at the bottom of the reactor 10 into the carrier recovery tank 20 of the carrier recovery unit 21. You. Carrier recovery tank The carrier particles taken out into the carrier particles and the fine carbon material separated from the carrier particles are temporarily stored in the carrier recovery tank 20 and, after being cooled, unreacted hydrocarbons adhered to the surface by an inert gas. After the reaction and reaction by-products are replaced, they are taken out of the carrier recovery tank 20.
  • the carrier particles taken out of the carrier recovery tank 20 are sent to a carbon material separation system 28 for separating and collecting the fine carbon material on the surface, where the fine carbon material on the surface is separated and collected.
  • a carbon material separation system 28 for separating and collecting the fine carbon material on the surface, where the fine carbon material on the surface is separated and collected.
  • the production apparatus can continuously and stably produce a fine carbon material.
  • the carbon nanotubes were formed on the surface of the powdery carrier particles using the carbon nanotube manufacturing apparatus shown in FIG. '' As the reactor 10, a cylindrical tube made of SiC having an inner diameter of 22 O mm 0 and a length of 210 O mm L was used.
  • the heating device 11 had a length of 120 O O mm L.
  • a tube having a heating portion with an inner diameter of 26 O mm0 was arranged so as to surround the outer periphery of the reactor 10.
  • Y-type zeolite with an average particle size of 2 m was used as the carrier particles, and cobalt and vanadium were used as the transition metals of the catalyst to be adsorbed on the surface of the carrier particles.
  • a 2.5% ethanol solution of cobalt acetate and vanadium acetate is prepared, the carrier is immersed in the solution, and a predetermined amount is adsorbed while rotating the carrier. Was. Then, the support was heated to 140 ° C. to dry, and heated to 700 ° C. to activate the catalyst.
  • reaction furnace 10 was heated to 7110 ° C. by the heating device 11, and this temperature was maintained.
  • Acetylene was used as the source gas to be introduced into the reactor 10, and its flow rate was Was set to 3 LZmin.
  • Argon was used as the carrier gas, and the flow rate was 22 LZ min.
  • the powdery carrier particles supporting the catalyst were continuously charged into a production apparatus in which the reaction system was maintained under the above production conditions, and carbon nanotubes were grown on the carrier particles.
  • the fiber diameter of the carbon nanotubes produced in this example was extremely thin, 2 to 5 nm, and the fiber diameter had little variation.
  • the total production amount of carbon nanotubes and carrier particles in this production was 1 38 g per hour.
  • the amount of carbon nanotubes produced per hour was 70 g / h.
  • the yield of this generated amount with respect to the carbon amount of the input raw material gas was 36%, which was higher than the yield of carbon nanotubes by the conventional batch method.
  • the fiber diameter is 20 nm. It was confirmed that the above-mentioned multi-carbon nanotubes and carbon nanofibers can be manufactured.
  • a technology capable of continuously producing fine carbon materials such as fine carbon nanotubes has been developed.
  • This method is not only capable of continuous power, but also has excellent operational stability, and is suitable for mass production of fine carbon materials.
  • it is a technology that can control the residence time of the catalyst in the furnace and enables a short reaction time, and is suitable for producing carbon nanotubes with uniform thickness and excellent linearity.
  • it is a method suitable for producing fine fibrous carbon materials with a fiber diameter of 50 nm or less, especially 20 nm or less.In the examples, the fiber diameter is extremely thin, 2 to 5 nm, and by-products It has been confirmed that good carbon nanotubes can be obtained with less power.
  • fine carrier particles are used as carrier particles for supporting the catalyst, so that not only the existing carrier can be used as it is, but also the Since it can be used, the surface of the support can be used reliably, and the reaction proceeds with high efficiency.
  • the catalyst utilization efficiency is high, and the reaction rate and carbon yield are good.
  • the method for producing a fine carbon material according to the present invention is capable of being continuous, and has a high yield, so that carbon nanotubes of high quality and with little variation can be obtained at low cost, It is a suitable manufacturing method.
  • the manufacturing apparatus for a fine carbon material according to the present invention is a useful manufacturing apparatus to which the manufacturing method according to the present invention is applied, and is capable of inexpensively obtaining carbon nanotubes of high quality and less variation thereof.
  • This is a manufacturing device suitable for industrialization.

Abstract

An apparatus for producing carbon nanotube which comprises a reacting furnace (10) which is vertically installed for forming a fine carbon material by the chemical vapor deposition method, a carrier supplying device (14) which is connected to the reacting furnace at its upper end portion for introducing carrier particles having a catalyst carried thereon into the reacting furnace, a reacting gas supplying device (17) for supplying a reacting gas containing a hydrocarbon into the reacting furnace, a carrier recovery device (21) which is connected to the reacting furnace at its lower end portion for discharging the carrier particles after the reaction out of the reacting furnace, and a reacted gas recovery device (27) which is connected to the reacting furnace at its upper end portion for discharging the gas having been reacted in the reacting furnace out of the furnace; and a method for producing a carbon nanotube using the apparatus. The apparatus can be used for producing a carbon nanotube having a fine fiber diameter and a sharp distribution of the diameter on a large scale with stability.

Description

微細炭素材料の製造方法及び製造装置 技術分野 本発明は、 優れた電子放出能、 水素吸蔵能、 導電性、 熱伝導率を具備し、 L i イオン電池を始めとする各種二次電池、 燃料電池、 FED、 超電導デバイス、 半 導体、 導電性複合材などに用いられる微細炭素材料の製造方法及びその製造装置 に関し、 特に、 ハイドロカ一ボンや炭素等の有機物を原料とし、 遷移金属を担持 した触媒担体を用いて、 非酸化性雰囲気中での反応により炭素繊維を合成する化 学熱分解法 (CCVD法) により連続的に微細炭素材料を製造する技術に関する  TECHNICAL FIELD The present invention relates to various secondary batteries, such as Li-ion batteries, and fuel cells, which have excellent electron-emitting ability, hydrogen-absorbing ability, conductivity, and thermal conductivity. , FED, superconducting device, semiconductor, manufacturing method of fine carbon material used for conductive composite material and the like, and in particular, catalyst carrier using organic material such as hydrocarbon or carbon as raw material and carrying transition metal Technology for continuously producing fine carbon materials by chemical pyrolysis (CCVD), which synthesizes carbon fibers by reaction in a non-oxidizing atmosphere using
背景技術 Background art
微細炭素材料の中で最も注目されているのは、 カーボンナノチューブである。 カーボンナノチューブは、 古くから研究されてきた気相法炭素繊維 (VGCF) の一種で、 繊維の太さによって種々の呼称がある。 繊維径の範囲と呼称とは一義 的に決められている訳ではないが、 一般的に繊維径が 1 Atm以上のものを気相法 炭素繊維 (VGCF) 、 繊維径 2 Onm以下のものをカーボンナノチューブ (C NT) 、 そして、 両者の中間にある 20 nmより繊維径カ大きく、 1 imより細 いものをカーボンナノファイバ (CNF) と呼んでいる。  Among the fine carbon materials, the most noticeable are carbon nanotubes. Carbon nanotubes are a type of vapor-grown carbon fiber (VGCF) that has been studied for a long time, and have various names depending on the thickness of the fiber. Although the range and name of the fiber diameter are not uniquely defined, generally, a fiber diameter of 1 Atm or more is vapor-phase carbon fiber (VGCF), and a fiber diameter of 2 Onm or less is carbon fiber. Nanotubes (CNT) and those with a fiber diameter larger than 20 nm, which is between them, and smaller than 1 im are called carbon nanofibers (CNF).
更に、 上記のようなチューブ状ではなく、 リポン状やコイル状のものなど、 種 々の形状の微細炭素材料が知られている。 これらの微細炭素材料の結晶構造は多様の形態をとり、 カーボンで構成される ベ一サルプレーン 1層が円筒状に丸まつた形状のシンダル力一ボンナノチューブ (SWNT) や、 幾層ものべーサルプレーンが積層し、 同心円状の積層構造 (又 は、 年輪状の構造) を有するものを多層カーボンナノチューブ (MWNT) 、 さ らには、 前記両者の中間的な結晶構造、 すなわち結晶面がその中心軸に対して一 定の角度を成して広がりを有するホーン状の結晶構造を有するナノホーンなどが ある。 Further, fine carbon materials having various shapes, such as a rifon shape and a coil shape, instead of the tube shape as described above, are known. The crystal structure of these fine carbon materials takes a variety of forms, including carbon-based basin planes (SWNTs), each of which has a cylindrical shape with a single layer rounded, and multiple layers of base plane Are laminated and have a concentric laminated structure (or an annual ring-shaped structure). Among them are nanohorns having a horn-like crystal structure in which the crystal plane is intermediate between the two, that is, the crystal plane spreads at a certain angle with respect to its central axis.
また、 チューブ状以外の形状の微細炭素材料としては、 ベーサルプレーンが繊 維方向に対して直交するように積層された構造のリポン状微細炭素材料や、 結晶 性を示さないアモルファス構造のコイル状微細炭素材料など力 s挙げられる。 これらの微細炭素材料は、 その形状によらず、 ハイド口カーボンなどの炭素源 を気相で炭化させると同時に繊維状に結晶化させる CVD法により生成する。 い ずれの構造の材料を生成するかは、 その反応系の選定、 例えば炭素原料の種類、 触媒の種類及び組み合わせ、 反応雰囲気、 反応温度などの生成条件を適切に設定 することにより選択することができる。 本分野の研究の端緒は 1970年代の気相法炭素繊維の研究である。 初期の V GCFの開発は、 繊維径も太く、 触媒を基板上に置いたり、 また担体に担持して 反応させる固定層法 (CCVD法) が中心であった。 ところ力 比較的繊維径の 太い VGCFの作製を目的とした初期の固定層法では、 繊維の成長速度が遅く、 また反応収率力 s低いこともあって、 工業的に実用化し難いものであった。  Examples of the fine carbon material having a shape other than the tube shape include a rifon-like fine carbon material having a structure in which basal planes are stacked so as to be orthogonal to a fiber direction, and a coil-like fine carbon material having an amorphous structure which does not exhibit crystallinity. Power such as carbon materials. Regardless of their shape, these fine carbon materials are produced by a CVD method that carbonizes a carbon source such as hide-hole carbon in the gas phase and at the same time crystallizes it in a fibrous form. Which type of material is to be produced can be selected by selecting the reaction system, for example, by appropriately setting the production conditions such as the type of carbon raw material, the type and combination of catalyst, the reaction atmosphere, and the reaction temperature. it can. The starting point of the research in this field was the study of vapor grown carbon fiber in the 1970s. The early development of VGCF centered on the fixed-bed method (CCVD method) in which the fiber diameter was large and the catalyst was placed on a substrate or supported on a carrier to react. However, in the early fixed-bed method for producing VGCF with relatively large fiber diameter, the growth rate of the fiber was low and the reaction yield power was low. Was.
しかし、 1980年代に入り、 触媒を流動させて反応させる CVD法が開発さ れ、 収率力著しく向上した。 そして、 昭和電工、 日機装やハイペリオン社などの 企業により再び活発に研究され、 1990年代中頃になって繊維径が 50 nm程 度のもの力—部で工業化された。 しかしながら、 この方法でも繊維怪力更に細い カーボンナノチューブを製造する場合には収率が低下し、 またその製造の難易度 も高いものであった。 繊維径 20 nm以下の微細な繊維径のカーボンナノチューブの製造方法は、 現 状では化学熱分解法 (CVD) 、 触媒担持担体を用いる化学熱分解法 (CCVD 法) 、 アーク法、 レーザー法等が報告されている。  However, in the 1980s, a CVD method was developed in which the catalyst was made to flow and react, and the yield power was significantly improved. It was actively researched again by companies such as Showa Denko, Nikkiso and Hyperion, and was commercialized in the mid 1990's with a fiber diameter of about 50 nm. However, even when this method is used to produce carbon nanotubes having a smaller fiber strength, the yield is reduced and the production is more difficult. At present, methods for producing carbon nanotubes with a fine fiber diameter of 20 nm or less include chemical pyrolysis (CVD), chemical pyrolysis using a catalyst-supporting carrier (CCVD), arc method, and laser method. It has been reported.
特に、 カーボンナノチューブは、 1991年にアーク法で比較的容易に生成す ること力報告され (Nature, 354, 56-58 (1991) ) て以来、 今度はより細い炭素繊 維を開発しょうとする動きが活発になった。 In particular, carbon nanotubes were relatively easily formed by the arc method in 1991. Since the report was published (Nature, 354, 56-58 (1991)), there has been an increasing movement to develop finer carbon fibers.
5 0 n m 0以下、 特に 2 0 n m 0以下の繊維径の単層カーボンナノチューブ、 及び多層カーボンナノチューブを製造する方法は、 アーク法ゃレ一ザ一法の極め て高温で炭素を蒸発させて製造する方法と、 触媒を担持させた固定層を用いる C C V D法とに大別される。 しかしながら、 このうちアーク法やレーザー法は大量 生産向きの製造方法ではなく、 工業化に耐える製造方法とは言えない。  The method for producing single-walled carbon nanotubes and multi-walled carbon nanotubes with a fiber diameter of 50 nm0 or less, especially 20 nm0 or less, is produced by evaporating carbon at extremely high temperatures using the arc method and laser method. And a CCVD method using a fixed layer carrying a catalyst. However, the arc method and the laser method are not production methods suitable for mass production, and cannot be said to be production methods that can withstand industrialization.
一方、 触媒を担持させた固定層を用いる C C V D法は、 V G C Fの開発初期に 検討されてきた固定層法と基本的には同じ方法であるせ、 微細なカーボンナノチ ュ一ブを製造するために、 触媒担体にゼォライトなどの微細なポァを利用する点 で異なっている。 すなわち、 ゼォライトを用いることによって微細な触媒粒子を 製造することに成功し、 極めて細いカーボンナノチューブを製造すること力可能 になった。  On the other hand, the CCVD method using a fixed layer supporting a catalyst is basically the same method as the fixed layer method studied in the early stage of the development of VGCF, and it is necessary to manufacture fine carbon nanotubes. However, they differ in that fine pores such as zeolite are used for the catalyst carrier. In other words, the use of zeolite has succeeded in producing fine catalyst particles, and has made it possible to produce extremely fine carbon nanotubes.
しかしながら、 現段階では所定量毎に製造装置の稼働 Z停止を繰り返すバッチ 法による試験的な製造力行われている程度であって、 工業的に大量生産された報 告は未だ成されていない。  However, at this stage, only a trial production capacity by the batch method, in which the operation of the production equipment is stopped every predetermined amount, is performed, and no industrial mass production report has yet been made.
(アーク法やレーザー法の問題点) (Problems of arc method and laser method)
アーク法やレーザー法は、 装置の構造カ 复雑になるだけでなく、 生産性が悪く 、 連続化も困難である等、 大規模化が難しく、 工業的な生産方法としては適さな い。 しかも、 これらの方法は、 アモルファスのカーボン等の非繊維状の炭素材料 が生成し易いために、 収率が低いのみならず、 さらに生成されたカーボンナノチ ユーブと前記非繊維状の炭素材料との分離も困難である。 従って、 アーク法ゃレ 一ザ一法を用いて工業製品に適した高純度のカーボンナノチューブを生産するこ とは難しレ と考えられる。  The arc method and the laser method are not suitable as industrial production methods, because they not only complicate the structure of the apparatus, but also have poor productivity and difficulty in continuity. In addition, these methods are not only low in yield because non-fibrous carbon materials such as amorphous carbon are easily produced, but also produce the carbon nanotubes and the non-fibrous carbon materials. Separation is also difficult. Therefore, it is considered difficult to produce high-purity carbon nanotubes suitable for industrial products using the arc method.
(C V D法の問題点) (Problems of the CVD method)
触媒担体を用 ゝない従来の C V D法は、 力一ボンナノチューブを大量生産する 方法としては最も好適な製造方法であると考えられる力 微細な繊維径のものを 製造するのカ項隹しく、 しかも繊維径の大きさのばらつき力大きく、 不揃いになる 傾向がある。 さらに、 繊維径を細くするほど収率力低下するという問題もある。 従って、 繊維径が 2 0 n m以下の細いカーボンナノチューブを安定的に、 かつ大 量に製造するには従来の C V D法のみでは困難であると考えられる。 発明の開示 本発明は、 上記の課題を解決するためになされたものであって、 繊維径が細く 、 かつその分布がシヤープなカーボンナノチューブを安定して量産することがで きる製造方法を提供することを目的の一つとしている。 The conventional CVD method, which does not use a catalyst carrier, uses a material with a fine fiber diameter that is considered to be the most suitable production method for mass production of carbon nanotubes. The quality of production is high, and the dispersion of the fiber diameter is large, which tends to be uneven. Further, there is a problem that the yield power decreases as the fiber diameter becomes smaller. Therefore, it is considered that it is difficult to stably produce a large amount of thin carbon nanotubes having a fiber diameter of 20 nm or less only by the conventional CVD method. DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above problems, and provides a production method capable of stably mass-producing carbon nanotubes having a small fiber diameter and a sharp distribution. It is one of the purposes.
また本発明は、 上記特性を有するカーボンナノチューブを安定して量産するこ とができる製造装置を提供することを目的の一つとしている。  Another object of the present invention is to provide a manufacturing apparatus capable of stably mass-producing carbon nanotubes having the above characteristics.
( C C V D法) (C C V D method)
上述のように、 アーク法やレーザ一法、 C V D法には、 繊維径の細いカーボン ナノチューブを大量生産するには困難な課題力存在している。 そこで、 本発明者 力 s繊維径 5 0 n m以下、 特に繊維径 2 0 n m以下の極めて繊維径の細い微細な力 —ボンナノチューブを大量生産し得る工業的な方法について種々の検討を行った ところ、 触媒を担持した担体を用いる新しい C C V D法力好ましいとの結論に達 した。 すなわち、 担体上に担持された遷移金属触媒の粒子径をコントロールする 手段として、 微細なポアを有する担体を利用する方法である。 As mentioned above, the arc method, the laser method, and the CVD method have a difficult task to mass-produce carbon nanotubes with a small fiber diameter. Accordingly, the present inventors force s fiber diameter 5 0 nm or less, particularly thin fine force extremely fiber diameter of less than the fiber diameter 2 0 nm - was conducted various studies about the industrial process capable of mass production of carbon nanotubes However, it was concluded that a new CCVD method using a catalyst-supported carrier was preferable. That is, as a means for controlling the particle size of the transition metal catalyst supported on the carrier, a method using a carrier having fine pores is used.
従って、 触媒を担持するための担体としてどのような種類や形状のものを、 ど のような方法で使用するかにより反応装置も、 製造プロセスも大きく異なること となる。 例えば、 担体の形状として成型体、 ペレツト状、 粉体のいずれを選択す るカゝによつて反応領域への担体の導入手段も、 反応炉内における担体の移動手段 も、 生成物の回収手段も、 また、 担体からの力一ボンナノチューブを分離するた めの分離手段も、 さらにはカーボンナノチューブの精製手段の構成も大きく異な ることとなる。 本発明者は、 上記 C C V D法を利用したカーボンナノチューブの製造方法とし て、 成型体を使う方法や、 ペレッ ト状の担体を用いる方法を開発してきた。 しか しながら、 成型体やペレット状の担体を用いるこれらの方法においても、 以下の ような解決すべき課題があることが明らかになつてきた。 Therefore, the reaction apparatus and the manufacturing process differ greatly depending on what kind and shape of the carrier for supporting the catalyst and in what method are used. For example, means for introducing the carrier into the reaction zone, means for moving the carrier in the reaction furnace, means for recovering the product, and the like, depending on the type of carrier selected from a molded body, a pellet, and a powder. In addition, the configuration of the separation means for separating the carbon nanotubes from the carrier and the configuration of the means for purifying the carbon nanotubes are greatly different. The present inventor has developed a method using a molded body or a method using a pellet-shaped carrier as a method for producing carbon nanotubes using the above-mentioned CCVD method. However, it has become clear that the following problems to be solved also exist in these methods using a molded article or a pellet-shaped carrier.
第 1に、 工業的な使用に耐える強度と特性を備えた担体の成型体を作製するに は、 高度な技術が必要である。 すなわち、 優れた特性を有する成型体を製造する には複雑な工程が必要で、 当然ながら担体のコスト力増加する。 そして、 担体の コスト増を抑えるために成型体のリサイクルを行う場合にも、 多孔質の担体を崩 壊させずに特性を維持したまま再生するのはかなり難しい。 . 第 2に、 成型体、 ペレット状のいずれの担体を用いる場合にも、 その移動や再 生の過程で一部力 s粉ィ匕し、 徐々にその特性が劣化するとともに、 生成物に担体の 微細な粉末が混入する。  First, advanced technology is required to produce a molded carrier with strength and properties that can withstand industrial use. In other words, a complicated process is required to produce a molded body having excellent properties, which naturally increases the cost of the carrier. Also, when recycling the molded body to suppress the cost increase of the carrier, it is quite difficult to regenerate the porous carrier while maintaining the characteristics without destroying it. Second, regardless of whether a molded or pellet-shaped carrier is used, a part of the carrier undergoes a force during the movement or regeneration, and its characteristics gradually deteriorate, and the carrier is added to the product. Of fine powder is mixed.
第 3に、 担体表面に生成されたカーボンナノチューブを確実に剥離し、 回収す るのは難しく、 分離するための工程;^複雑化する。  Third, it is difficult to reliably remove and recover the carbon nanotubes generated on the surface of the support, and the process for separation is complicated.
第 4に、 担体内部に入った触媒は有効に活用されないため、 触媒の利用効率が 悪い。  Fourth, the efficiency of catalyst utilization is poor because the catalyst that has entered the inside of the carrier is not used effectively.
特に、 成型体やペレット状の担体を用いる方法では、 製造装置が複雑になるこ とと、 担体内部の触媒が有効に利用されないことが大きな問題となる可能性があ つた そこで、 本発明者は、 上記 C C V D法の課題を解決し得る製造方法として、 ゼ オライトの微粉末を担体として用いる製造方法の開発に着手した。 そして、 この 製造方法の開発に携わるうち、 粉体の触媒担体を用いて繊維径の細い微細炭素材 料を生成するには、 以下の点が重要であるとの知見を得た。  In particular, in the method using a molded or pellet-shaped carrier, the production equipment became complicated and the catalyst inside the carrier could not be effectively used. As a manufacturing method that can solve the above-mentioned problems of the CCVD method, development of a manufacturing method using fine zeolite powder as a carrier has been started. While working on the development of this production method, they learned that the following points are important for producing fine carbon materials with a small fiber diameter using a powdery catalyst carrier.
第 1に、 触媒の表面を有効に利用するために、 可能な限り微粉の担体に触媒を 担持させたものを用いる。  First, in order to effectively utilize the surface of the catalyst, a catalyst in which the catalyst is supported on a fine powder carrier is used as much as possible.
第 2に、 触媒表面に生成した微細炭素材料の表面でさらに C V D反応が進行す るのを防ぐために、 反応炉内での触媒の滞留時間を短時間にし、 かつ一定時間と する。 第 3に、 触媒を担持した担体を安定的に供給し (供給量、 供給速度を一定に保 持する) 、 力つ反応炉内で担体を均一に分散させる。 Second, the residence time of the catalyst in the reactor is made short and fixed to prevent the CVD reaction from proceeding further on the surface of the fine carbon material formed on the catalyst surface. Third, the catalyst-carrying carrier is supplied stably (the supply amount and the supply speed are kept constant), and the carrier is uniformly dispersed in the reactor.
第 4に、 触媒の温度を可能な限り素早く C V D反応温度まで昇温する。  Fourth, raise the temperature of the catalyst to the CVD reaction temperature as quickly as possible.
第 5に、 反応炉内での C V D反応を安定化する。  Fifth, stabilize the CVD reaction in the reactor.
これらのうちでも、 生成された微細炭素材料の表面における反応を抑制するこ とが、 繊維を太らせず、 微細な繊維径を有する炭素材料を製造する上では特に重 要である。 そのためには、 触媒と反応ガスとの反応時間 (すなわち反応炉内での 滞留時間) を、 出来るだけ短時間にする方力好ましい。  Among these, suppressing the reaction on the surface of the generated fine carbon material is particularly important in producing a carbon material having a fine fiber diameter without increasing the fiber thickness. For this purpose, it is preferable to make the reaction time between the catalyst and the reaction gas (that is, the residence time in the reaction furnace) as short as possible.
そして、 上記の知見に基づき鋭意検討を重ねた結果、 効率よく安定に微細炭素 材料を製造するには、 微粉の担体粒子に触媒を担持させ、 この担体粒子を反応炉 内で流動させ、 微細な担体粒子の表面で微細炭素材料を生成させるの力 sよいとの 結論に達し、 本発明を完成するに至った。 本発明は、 以上のようなアーク法やレーザー法、 また通常の C C V D方法の問 題点を解決し、 優れた特性を有する微細炭素材料を連続的に製造し得る、 工業化 に適した微細炭素材料の製造方法及び製造装置を提供するものである。 本発明に係る微細炭素材料の製造方法は、 ハイドロカーボンを含む反応ガス中 に、 少なくとも 1種以上の遷移金属を含む触蝶を担持した担体粒子を導入し、 前 記反応ガス中で前記担体粒子を全体として一方向に流動させながら前記担体粒子 表面に微細炭素材料を生成することを特徴としている。  As a result of intensive studies based on the above findings, in order to efficiently and stably produce a fine carbon material, a catalyst is supported on fine powder carrier particles, and the carrier particles are allowed to flow in a reaction furnace, The inventors have concluded that the power for generating a fine carbon material on the surface of the carrier particles is good, and have completed the present invention. The present invention solves the problems of the arc method, the laser method, and the ordinary CCVD method as described above, and can continuously produce a fine carbon material having excellent characteristics. It is intended to provide a production method and a production apparatus of the invention. In the method for producing a fine carbon material according to the present invention, a carrier particle carrying a contact butterfly containing at least one or more transition metals is introduced into a reaction gas containing a hydrocarbon, and the carrier particles are contained in the reaction gas. The method is characterized in that a fine carbon material is generated on the surface of the carrier particles while flowing the particles in one direction as a whole.
係る製造方法は、 粉体又は微細粒子状の担体粒子に触媒を担持させ、 この担体 粒子を反応ガス中で流動させて担体粒子表面に微細炭素材料を成長させる製造方 法である。 すなわち、 触媒を担持する担体の形状を粉体又は微細粒子としたこと で、 担体の表面積を増加させ、 効率よく表面で C V D反応させることが出来る。 また、 担体粒子を反応ガス中で流動させるので、 反応ガス中での担体粒子の滞留 時間を短く、 且つ一定にするのが容易であり、 担体粒子表面における反応ガスの 流れにもムラ力生じにく く、 例えば繊維状の微細炭素材料を製造する場合には、 炭素繊維の繊維径の分布をより均一にすることができる。 尚、 本発明において 「 全体的に一方向に流動」 とは、 反応ガス中での個々の担体粒子の挙動ではなく、 反応ガス中で流動される担体粒子群の巨視的な挙動を示している。 次に、 本発明に係る微細炭素材料の製造方法は、 ハイド口カーボンを含む反応 ガス中に、 少なく とも 1種以上の遷移金属を含む触蝶を担持した担体粒子を導入 し、 前記反応ガス中で前記担体粒子を一方向に流動させながら、 前記担体粒子表 面に直径 5 0 n m 0以下で、 ァスぺクト比が 1 0以上の微細炭素繊維を含む微細 炭素材料を生成することを特徴とする。 Such a production method is a production method in which a catalyst is supported on powder or fine particulate carrier particles, and the carrier particles are allowed to flow in a reaction gas to grow a fine carbon material on the surface of the carrier particles. In other words, by setting the shape of the carrier supporting the catalyst to be powder or fine particles, the surface area of the carrier can be increased and the CVD reaction can be efficiently performed on the surface. Further, since the carrier particles are caused to flow in the reaction gas, the residence time of the carrier particles in the reaction gas can be easily shortened and made constant. For example, in the case of producing a fibrous fine carbon material, the distribution of the fiber diameter of the carbon fibers can be made more uniform. In the present invention, " The term "total flow in one direction" means not the behavior of individual carrier particles in the reaction gas but the macroscopic behavior of the carrier particles flowing in the reaction gas. Next, the method for producing a fine carbon material according to the present invention comprises: introducing a carrier particle carrying a contact butterfly containing at least one or more transition metals into a reaction gas containing hide-portion carbon; Forming a fine carbon material containing fine carbon fibers having a diameter of 50 nm 0 or less and an aspect ratio of 10 or more on the surface of the carrier particles while flowing the carrier particles in one direction. And
係る構成によれば、 繊維径が微小で繊維長の大きい優れた特性を有する繊維状 の微細炭素材料を容易かつ安定に製造する方法を提供することができる。 次に、 本発明に係る微細炭素材料の製造方法は、 ハイド口カーボンを含む反応 ガス中に、 少なくとも 1種以上の遷移金属を含む触蝶を担持した担体粒子を導入 し、 前記反応ガス中で前記担体粒子を全体として一方向に流動させながら、 前記 担体粒子表面に炭素原子からなる炭素平面力円筒状を成す単層力一ボンナノチュ 一ブ及ぴ Z又は前記単層力一ボンナノチューブが積層された多層カーポンナノチ ュ一ブを含む微細炭素材料を生成することを特徴とする。  According to this configuration, it is possible to provide a method for easily and stably producing a fibrous fine carbon material having excellent characteristics with a small fiber diameter and a large fiber length. Next, the method for producing a fine carbon material according to the present invention comprises: introducing a carrier particle carrying a contact butterfly containing at least one or more transition metals into a reaction gas containing hide-portion carbon; While the carrier particles are allowed to flow in one direction as a whole, the single-walled carbon nanotubes and the single-walled carbon nanotubes Z or the single-walled carbon nanotubes having a carbon planar force cylindrical shape composed of carbon atoms are laminated on the surface of the carrier particles. The method is characterized in that a fine carbon material including the multilayered carton nanotube is produced.
係る構成によれば、 単層及び Z又は多層カーボンナノチューブを容易かつ安定 に製造する方法を提供することができる。 次に、 本発明に係る微細炭素材料の製造方法は、 内部で熱化学分解法により微 細炭素材料を生成させるための反応炉に、 ハイドロカーボンを含む反応ガスと、 1種類以上の遷移金属を含む触媒を担持した担体粒子とを導入し、 前記反応ガス と、 前記担体粒子とを互いに向き合う方向 (交流) に流し、 触媒を流動化させ、 前記担体粒子表面に微細炭素材料を生成することを特徴とする。  According to such a configuration, it is possible to provide a method for easily and stably producing single-walled and Z- or multi-walled carbon nanotubes. Next, in the method for producing a fine carbon material according to the present invention, a reaction gas for producing a fine carbon material therein by a thermochemical decomposition method is provided with a reaction gas containing a hydrocarbon and one or more transition metals. And introducing the reaction gas and the carrier particles in a direction facing each other (alternating current) to fluidize the catalyst and generate a fine carbon material on the surface of the carrier particles. Features.
係る構成によれば、 担体粒子と接触する反応ガスの濃度や、 担体粒子に対する 反応ガスの流速をほぼ一定に保持した状態で C V D反応を進行させることができ るので、 担体粒子上に形成される微細炭素材料の形状や寸法のばらつきを小さく することができ、 所望の特性を備えた微細炭素材料を安定に製造することができ る。 次に、 本発明に係る微細炭素材料の製造方法は、 前記反応炉を縦位置に配置し 、 前記担体粒子を前記反応炉の上端部から反応炉内へ導入し、 前記反応ガスを前 記反応炉の下端部から反応炉内へ導入して前記両者を交流で接触反応させ、 前記 反応炉内で前記担体粒子の表面に微細炭素材料を生成することを特徴とする。 係る製造方法は、 縦位置に配置された反応炉を用い、 この反応炉の下端部から 反応ガス、 上端部から担体粒子をそれぞれ導入し、 反応炉中で両者を混合するこ とで担体粒子表面に微細炭素材料を形成する方法である。 本製造方法において、 反応炉上端部から導入された担体粒子は自然に反応炉下部に向かって落下し、 反 応炉下部から反応炉上部に向かって流れる反応ガス中を通過し、 C V D反応に供 される。 従って、 担体粒子カ坂応ガス中に滞留する時間を、 ほぼ一定に保持する ことができるのみならず、 ガス量を変化させることで担体粒子の落下速度を調節 することができる。 また、 担体粒子上に形成される微細炭素材料の特性をコント ロールするとともに、 そのばらつきを抑えることができる。 次に、 本発明に係る微細炭素材料の製造方法は、 前記反応炉へ連続的に前記担 体粒子を導入し、 前記反応ガスが連続的に導入された反応炉内で前記担体粒子表 面に微細炭素材料を生成し、 前記反応炉から前記微細炭素材料が生成した担体粒 子を連続的に取り出すことを特徴とする。 According to such a configuration, the CVD reaction can proceed while keeping the concentration of the reaction gas in contact with the carrier particles and the flow rate of the reaction gas with respect to the carrier particles almost constant, so that the CVD reaction is formed on the carrier particles. Variations in the shape and dimensions of the fine carbon material can be reduced, and a fine carbon material with desired characteristics can be stably manufactured. You. Next, in the method for producing a fine carbon material according to the present invention, the reaction furnace is arranged in a vertical position, the carrier particles are introduced into the reaction furnace from an upper end of the reaction furnace, and the reaction gas is reacted with the reaction gas. The method is characterized in that it is introduced into the reaction furnace from the lower end of the furnace and the two are contact-reacted with each other by an alternating current to produce a fine carbon material on the surface of the carrier particles in the reaction furnace. In this production method, a reaction furnace arranged in a vertical position is used, a reaction gas is introduced from a lower end of the reaction furnace, and carrier particles are introduced from an upper end of the reaction furnace. This is a method for forming a fine carbon material. In this manufacturing method, the carrier particles introduced from the upper end of the reactor naturally fall toward the lower part of the reactor, pass through the reaction gas flowing from the lower part of the reactor toward the upper part of the reactor, and are supplied to the CVD reaction. Is done. Therefore, not only can the time for which the carrier particles stay in the gas be kept substantially constant, but also the falling speed of the carrier particles can be adjusted by changing the gas amount. In addition, the characteristics of the fine carbon material formed on the carrier particles can be controlled, and the variation can be suppressed. Next, in the method for producing a fine carbon material according to the present invention, the carrier particles are continuously introduced into the reaction furnace, and the surface of the carrier particles is introduced into the reaction furnace in which the reaction gas is continuously introduced. The method is characterized in that a fine carbon material is generated, and the carrier particles generated by the fine carbon material are continuously taken out of the reaction furnace.
係る製造方法によれば、 反応炉を連続的に稼働させて微細炭素材料を製造する ことができるので、 効率的に微細炭素材料の製造を行うことができる。 特に、 反 応炉が縦位置に配置されて構成されている場合には、 反応時間 (担体粒子の反応 炉内滞留時間) の制御が容易であり、 また、 反応後の担体粒子力反応炉下部に堆 積されるため、 担体粒子の供給及び回収力 s極めて容易になり、 さらに安定且つ効 率的な微細炭素材料の製造が可能となる。 次に、 本発明に係る微細炭素材料の製造方法は、 前記反応炉内で反応に供され た後の反応後ガスの少なくとも一部を、 前記反応炉外に設けられたリサイクル手 段により再度前記反応炉へ投入して再利用することを特徴とする。 According to such a manufacturing method, since the fine carbon material can be manufactured by continuously operating the reaction furnace, the fine carbon material can be efficiently manufactured. In particular, when the reactor is arranged vertically, the control of the reaction time (retention time of the carrier particles in the reactor) is easy, and the carrier particle force after the reaction is lower. Therefore, the supply and recovery of carrier particles are extremely easy, and a stable and efficient production of fine carbon material is possible. Next, in the method for producing a fine carbon material according to the present invention, at least a part of the post-reaction gas after being subjected to the reaction in the reactor is recycled by a recycling process provided outside the reactor. It is characterized in that it is put into the reactor again by a step and reused.
係る製造方法によれば、 反応後ガスをリサイクルして再度用いるので、 反応ガ スの使用量を低減することができるだけでなく、 未反応のガスも反応炉へリサイ クルされ、 再び原料となるので、 製造コストの低減を図ることができる。 特に、 キャリアガスとして用いられる水素ガスやアルゴンガスは、 比較的価格が高いに も関わらず、 微細炭素材料の製造においては大量に使用される傾向があるため、 このキヤリァガスのリサイクルは、 コストの低減に極めて有効である。 次に、 本発明に係る微細炭素材料の製造方法は、 前記ハイド口カーボンを含む 反応ガスの温度を、 5 0 0°C以上、 1 3 0 0°C以下とすることを特徴とする。 反応ガス温度を上記範囲とすることで、 品質が均一な微細炭素材料を効率よく 製造することができる。 反応ガス温度が 5 0 0°C未満では、 反応速度が遅いため に微細炭素材料の生成率が低く、 実用的ではない。 一方、 1 3 0 0°Cを越えると 炭化速度と繊維化速度が合わないために、 繊維が生成しなくなる。 また、 前記反 応ガス温度のより好ましい範囲は、 6 0 0 °C以上 1 2 5 0°C以下である。 次に、 本発明に係る微細炭素材料の製造方法は、 前記触媒を担持する担体粒子 として、 平均粒径 5 0 O jum以下のものを用いることを特徴とする。  According to such a manufacturing method, since the gas after the reaction is recycled and reused, not only can the amount of the reaction gas used be reduced, but also the unreacted gas is recycled to the reaction furnace and becomes the raw material again. Thus, the manufacturing cost can be reduced. In particular, hydrogen gas and argon gas used as carrier gas tend to be used in large quantities in the production of fine carbon materials, even though they are relatively expensive, so recycling this carrier gas reduces costs. It is extremely effective. Next, the method for producing a fine carbon material according to the present invention is characterized in that the temperature of the reaction gas containing the hide-portion carbon is 500 ° C. or more and 130 ° C. or less. By setting the reaction gas temperature within the above range, a fine carbon material having uniform quality can be efficiently produced. If the reaction gas temperature is lower than 500 ° C., the reaction rate is low, and the production rate of the fine carbon material is low, which is not practical. On the other hand, when the temperature exceeds 130 ° C., the carbonization rate and the fiberization rate do not match, so that no fiber is produced. Further, a more preferable range of the reaction gas temperature is not less than 600 ° C. and not more than 125 ° C. Next, the method for producing a fine carbon material according to the present invention is characterized in that the carrier particles supporting the catalyst have an average particle size of 50 O jum or less.
担体粒子の平均粒径を上記範囲とすることで、 繊維径 5 0〃 m ø以下の微細炭 素繊維を多く含む微細炭素材料を製造することができる。 次に、 本発明に係る微細炭素材料の製造方法は、 前記触媒を担持する担体粒子 として、 平均粒径 1 0 Ο μπι以下のものを用いることを特徴とする。  By setting the average particle size of the carrier particles in the above range, a fine carbon material containing a large amount of fine carbon fibers having a fiber diameter of 50 mm or less can be produced. Next, the method for producing a fine carbon material according to the present invention is characterized in that the carrier particles supporting the catalyst have an average particle size of 10 μμπι or less.
担体粒子の平均粒径を上記範囲とすることで、 前記と同様に、 繊維径 5 0 Ώΐ φ以下の微細炭素繊維を多く含む微細炭素材料を製造することができる。 次に、 本発明に係る微細炭素材料の製造方法は、 前記ハイドロカーボンを含む 反応ガスの線速度を、 0. 0 l m/ s e c以上 l mZ s e cの範囲とすることを 特徴とする。 反応ガスの線速度を上記範囲とすることで、 担体粒子の滞留時間を容易に調節 できるので、 所定範囲の滞留時間で反応させることができる。 次に、 本発明に係る微細炭素材料の製造装置は、 内部で熱化学分解法により微 細炭素材料を生成するために縦位置に配置される反応炉と、 前記反応炉の上端部 に接続され、 前記反応炉内に触媒を担持した担体粒子を導入するための担体粒子 供給部と、 前記反応炉の下端部に接続され、 前記反応炉内にハイドロカーボンを 含む反応ガスを供給するための反応ガス供給部と、 前記反応炉の下端部に接続さ れ、 反応後の前記担体粒子を前記反応炉外へ導出するための担体粒子回収部と、 前記反応炉の上端部に接続され、 前記反応炉内で反応に供された後の反応後ガス を前記反応炉外へ導出するための反応ガス回収部と、 を備えたことを特徴とする 係る構成を備えた製造装置によれば、 優れた特性を有する微細炭素材料を安定 かつ連続的に効率よく製造することができる。 次に、 本発明に係る微細炭素材料の製造装置は、 前記反応ガス回収部に回収さ れた反応後ガスを、 前記反応炉へ再度導入するためのリサィクル手段を備えたこ とを特徴とする。 By setting the average particle size of the carrier particles in the above range, a fine carbon material containing a large amount of fine carbon fibers having a fiber diameter of 50 mm or less can be produced in the same manner as described above. Next, the method for producing a fine carbon material according to the present invention is characterized in that the linear velocity of the reaction gas containing the hydrocarbon is in a range of 0.0 lm / sec or more and lmZ sec. By setting the linear velocity of the reaction gas within the above range, the residence time of the carrier particles can be easily adjusted, so that the reaction can be performed within a predetermined range of the residence time. Next, the apparatus for manufacturing a fine carbon material according to the present invention is connected to a reactor which is disposed in a vertical position to generate the fine carbon material by a thermochemical decomposition method therein, and an upper end of the reactor. A carrier particle supply unit for introducing a carrier particle carrying a catalyst into the reaction furnace; and a reaction connected to a lower end of the reaction furnace for supplying a reaction gas containing hydrocarbon into the reaction furnace. A gas supply unit, a carrier particle recovery unit connected to a lower end of the reaction furnace, and a carrier particle recovery unit for leading the carrier particles after the reaction out of the reaction furnace; and a reaction unit connected to an upper end of the reaction furnace. A reaction gas recovery unit for drawing out a post-reaction gas after being subjected to a reaction in the furnace to the outside of the reaction furnace; and a manufacturing apparatus having the above configuration. Stable and continuous fine carbon material with characteristics It can be produced efficiently. Next, the apparatus for producing a fine carbon material according to the present invention is characterized in that it is provided with a recycling means for re-introducing the post-reaction gas recovered in the reaction gas recovery section into the reaction furnace.
係る構成の製造装置によれば、 製造に用いる原料やキヤリァガス量を低減する ことができ、 また反応ガスの未反応部分も再び原料としてリサィクルすることが できるので、 製造コストの低減を図ることができる。 図面の簡単な説明  According to the manufacturing apparatus having such a configuration, the amount of the raw material and the carrier gas used for the manufacturing can be reduced, and the unreacted portion of the reaction gas can be recycled again as the raw material, so that the manufacturing cost can be reduced. . BRIEF DESCRIPTION OF THE FIGURES
図 Iは、 本発明に係る微細炭素材料の製造装置の一例を示す構成図である。  FIG. I is a configuration diagram showing an example of the apparatus for producing a fine carbon material according to the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して説明する力 本発明は以下の実施 の形態に限定されるものではない。 [微細炭素材料の製造装置] Hereinafter, the present invention is not limited to the following embodiments, with reference to the drawings. [Fine carbon material manufacturing equipment]
図 1は、 本発明に係る微細炭素材料の製造装置の構成の一例を示す構成図であ る。  FIG. 1 is a configuration diagram showing an example of a configuration of a fine carbon material manufacturing apparatus according to the present invention.
この図に示す製造装置は、 縦位置に配置された筒状の反応炉 1 0と、 この反応 炉 1 0の外周を取り囲んで配設された加熱装置 1 1と、 反応炉 1 0上端部に設け られた担体導入口 1 0 aに接続された担体供給装置 (担体粒子供給部) 1 4と、 反応炉 1 0下端部側面に設けられた反応ガス導入口 1 0 cに接続された反応ガス 供給装置 (反応ガス供給部) 1 7と、 反応炉 1 0下端部に設けられた担体導出口 1 0 dに接続された担体回収装置 (担体粒子回収部) 2 1と、 反応炉 1 0の上端 部に設けられた反応ガス導出口 1 0 bに接続された反応後ガス回収装置 (反応後 ガス回収部) 2 7とを備えて構成されている。 反応炉 1 0は、 各種セラミツクスゃ石英などの耐熱材料からなる円筒状であり 、 その外周を取り囲む加熱装置 1 1により加熱され、 内部で熱化学分解反応を進 行させるようになつている。 また、 図 1には円筒状の反応炉 1 0を示した力 反 応炉 1 0の形状は円筒状に限定されない。 担体供給装置 1 4は、 触媒を担持した担体粒子を供給する担体供給源 1 と、 この担体供給源 1 2に接続された担体を一時貯溜するための貯溜タンク 1 3と、 この貯溜タンク 1 3に接続されて貯溜タンク 1 3から一定量の担体粒子を反応炉 1 0に供給するためのフィーダ 1 5とを備えており、 フィーダ 1 5が反応炉 1 0 上端の担体導入口 1 0 aに接続されている。 上記構成の担体供給装置 1 4によれ ば、 反応炉 1 0に一定量の担体粒子を連続的に供給することができる。 上記フィ —ダ 1 5は、 粉体を一定速度で搬送できるものであれば問題なく用いることがで き、 電磁フィーダ、 スクリューフィーダ、 テーブルフィーダなど種々のフィーダ 力適用可能である。  The manufacturing apparatus shown in this figure comprises a tubular reactor 10 arranged in a vertical position, a heating device 11 arranged around the outer periphery of the reactor 10, and a reactor 10 at the upper end of the reactor 10. The carrier supply device (carrier particle supply unit) 14 connected to the provided carrier introduction port 10a and the reaction gas connected to the reaction gas introduction port 10c provided on the side of the lower end of the reactor 10 Supply device (reaction gas supply unit) 17, carrier recovery device (carrier particle recovery unit) 21 connected to carrier outlet 10 d provided at lower end of reactor 10, and reactor 10 A post-reaction gas recovery device (post-reaction gas recovery unit) 27 is connected to the reaction gas outlet 10b provided at the upper end. The reactor 10 has a cylindrical shape made of a heat-resistant material such as various types of ceramics and quartz, and is heated by a heating device 11 surrounding the outer periphery thereof, so that a thermochemical decomposition reaction proceeds therein. Further, FIG. 1 shows a cylindrical reactor 10, and the shape of the force reactor 10 is not limited to a cylindrical shape. The carrier supply device 14 includes a carrier supply source 1 for supplying carrier particles carrying a catalyst, a storage tank 13 for temporarily storing the carrier connected to the carrier supply source 12, and a storage tank 13. And a feeder 15 for supplying a certain amount of carrier particles from the storage tank 13 to the reactor 10 .The feeder 15 is connected to the carrier inlet 10 a at the upper end of the reactor 10. It is connected. According to the carrier supply device 14 having the above configuration, a certain amount of carrier particles can be continuously supplied to the reaction furnace 10. The feeder 15 can be used without any problem as long as it can transfer the powder at a constant speed, and various feeder powers such as an electromagnetic feeder, a screw feeder, and a table feeder can be applied.
尚、 図 1に示す担体供給装置 1 4は、 一定量の担体粒子を供給可能な装置構成 の一例を示したものであり、 例えば上記フィーダ 1 5と反応炉 1 0 aとの間に担 体粒子を予熱するための加熱手段を設けた構成とすることもでき、 このような構 成とすれば、 反応炉 1 0へ投入する前に担体粒子に担持されている触媒を活性化 することができ、 C V D反応の反応効率を高めることができる。 また、 この予熱 のための加熱手段は、 反応炉 1 0内の反応領域 (担体粒子表面に微細炭素材料が 生成する際に担体粒子力 s位置する領域) に到達するまでに担体粒子を加熱するこ とができる構成であれば問題なく適用することができ、 例えば反応炉 1 0の上端 部に設けられていても良く、 貯溜タンク 1 3やフィーダ 1 5を加熱手段により直 接加熱してもよい。 反応ガス供給装置 1 7は、 図 1に示すように、 ハイドロカーボンや一酸化炭素 などの原料ガスを供給するための原料ガス供給源 1 6と、 この原料ガスの流量を 調整するために原料ガス供給源 1 6に接続された M F C (Mass Flow Control ler ) 1 6 aと、 前記原料ガスを所定の濃度に希釈する水素ガスやアルゴンガスなど のキャリアガスを供給するためのキャリアガス供給源 1 8と、 このキャリアガス の流量を調整するためにキャリアガス供給源 1 8 aに接続された M F C 1 8 aと を備えて構成されており、 M F C 1 6 a、 1 8 aに接続されたガス配管 1 9を介 して反応炉 1 0の下端部側面に設けられた反応ガス導入口 1 0 cに接続されてい る。 このように、 本実施形態の反応ガス供給装置 1 7は、 原料ガスとキャリアガ スとを予め所定の混合比で混合して反応ガスを調製し、 この反応ガスを反応炉 1 0に供給するようになっている。 また、 原料ガスとキャリアガスとをそれぞれ直 接反応炉 1 0へ導入する構成とすることもできる。 The carrier supply device 14 shown in FIG. 1 is an example of a device configuration capable of supplying a certain amount of carrier particles. For example, a carrier is provided between the feeder 15 and the reaction furnace 10a. A configuration in which a heating means for preheating particles is provided may be employed. If performed, the catalyst supported on the carrier particles can be activated before being charged into the reaction furnace 10, and the reaction efficiency of the CVD reaction can be increased. The heating means for preheating heats the carrier particles until the carrier particles reach the reaction region (region where the carrier particle force s is generated when the fine carbon material is generated on the surface of the carrier particles) in the reactor 10. Any configuration is possible as long as it can be applied without any problem.For example, it may be provided at the upper end of the reaction furnace 10, or even if the storage tank 13 or the feeder 15 is directly heated by heating means. Good. As shown in FIG. 1, the reaction gas supply device 17 includes a source gas supply source 16 for supplying a source gas such as hydrocarbon and carbon monoxide, and a source gas supply source for adjusting the flow rate of the source gas. A mass flow controller (MFC) 16a connected to a supply source 16 and a carrier gas supply source 18 for supplying a carrier gas such as hydrogen gas or argon gas for diluting the source gas to a predetermined concentration. And an MFC 18a connected to a carrier gas supply source 18a for adjusting the flow rate of the carrier gas, and a gas pipe connected to the MFC 16a and 18a. It is connected to a reaction gas inlet 10 c provided at the lower end side surface of the reactor 10 through 19. As described above, the reaction gas supply device 17 of the present embodiment prepares a reaction gas by previously mixing the raw material gas and the carrier gas at a predetermined mixing ratio, and supplies the reaction gas to the reaction furnace 10. It has become. Further, it is also possible to adopt a configuration in which the raw material gas and the carrier gas are directly introduced into the reactor 10 respectively.
また、 上記基本構成に加えて、 例えば原料が常温で液体の場合に、 原料を気化 させて原料ガスを生成するための気化装置を設けてもよい。 担体回収装置 2 1は、 担体回収タンク 2 0を備えて構成されており、 この担体 回収タンク 2 0は、 その入口側 2 0 a力 反応炉 1 0の下端部に設けられた担体 導出口 1 0 dと、 後述するバグフィルタ 2 5に接続されており、 出口側 2 O bは 、 担体とその表面に成長した微細炭素材料とを分離するための炭素材料分離系 2 2に接続されている。 反応後ガス回収装置 2 7は、 反応炉 1 0で C V D反応に供された後の反応後ガ スを反応炉 1 0から回収、 排出する装置であり、 反応炉 1 0から導出された反応 後ガスを冷却するための冷却装置 2 4と、 反応後ガスに同伴されて流入した微細 炭素材料や担体などを反応後ガスから分離するためのバグフィルタ 2 5と、 反応 後ガス回収装置 2 7内のガス圧を調整するためのブロア 2 6とを備えて構成され ている。 Further, in addition to the above basic configuration, a vaporizer for vaporizing the raw material to generate a raw material gas may be provided, for example, when the raw material is liquid at normal temperature. The carrier recovery device 21 is provided with a carrier recovery tank 20. The carrier recovery tank 20 has an inlet side 20 a force and a carrier outlet port 1 provided at the lower end of the reactor 10. 0 d is connected to a bag filter 25 described later, and the outlet side 2 O b is connected to a carbon material separation system 22 for separating the carrier and the fine carbon material grown on the surface thereof. . The post-reaction gas recovery device 27 is a device that collects and discharges post-reaction gas from the reaction furnace 10 after being subjected to the CVD reaction in the reaction furnace 10. Inside the cooling device 24 for cooling the gas, the bag filter 25 for separating the fine carbon material and the carrier, etc., which flowed in with the gas after the reaction from the gas after the reaction, and the gas recovery device 27 after the reaction And a blower 26 for adjusting the gas pressure.
冷却装置 2 4は、 高温の反応後ガスを冷却することによりバグフィルタ 2 5や ブロア 2 6への負荷を軽減するものである。 この冷却装置としては、 バグフィル タ 2 5やブロア 2 6の耐熱温度にもよる力 反応後ガスを 1 3 0 °C以下に冷却で きるものを用いるのがよい。 ただし、 原料ガスの種類によっては冷却により液化 力 s生じるため、 反応後ガスの温度は反応ガス供給装置 1 7から供給される反応ガ スと同程度の温度以上とすること力 s好ましい。  The cooling device 24 reduces the load on the bag filter 25 and the blower 26 by cooling the high-temperature reaction gas. As the cooling device, it is preferable to use a cooling device capable of cooling the gas after the reaction by the heat resistance temperature of the bag filter 25 or the blower 26 to 130 ° C. or less. However, depending on the type of the raw material gas, liquefaction force s is generated by cooling, so that the temperature of the post-reaction gas is preferably equal to or higher than the temperature of the reaction gas supplied from the reaction gas supply device 17.
パグフィルタ 2 5は、 反応後ガス導入口 2 5 aを介して上記冷却装置 2 4に接 続されており、 この導入口 2 5 aから内部に導入された反応後ガスを、 気体成分 (原料ガスやキャリアガスに含まれる成分等) と、 固体成分 (担体や微細炭素材 料、 C V D反応の副生成物等) とを分離する機能を有する。 そして、 分離された 気体成分は、 バグフィルタ 2 5の上部に設けられたガス成分導出口 2 5 bから排 出され、 固体成分は、 バグフィルタ 2 5の下部に設けられた固体成分導出口 2 5 cから排出されるようになっている。  The pug filter 25 is connected to the cooling device 24 through a post-reaction gas inlet 25a, and converts the post-reaction gas introduced into the inside from the inlet 25a into a gas component (raw material). It has the function of separating solid components (such as carriers, fine carbon materials, and by-products of the CVD reaction) from components contained in gas and carrier gas. The separated gas component is exhausted from a gas component outlet 25 b provided at the upper part of the bag filter 25, and the solid component is discharged from the solid component outlet 2 provided at the lower portion of the bag filter 25. 5c is to be discharged.
ブロア 2 6は、 パグフィルタ 2 5のガス成分導出口 2 5 bに接続されており、 その出口側の圧力を入口側の圧力よりも高くするようになつている。 すなわち、 反応炉 1 0力 ら冷却装置 2 4、 バグフィルタ 2 5を通過してブロア 2 6に至る方 向に反応後ガス力 s '流れるようにしている。 これにより、 反応後ガスが反応炉 1 0 へ逆流しないようになっている。 また、 ブロア 2 6の出口側は、 その配管経路中 で 2方向に分岐されており、 その一方は、 排ガス処理系 2 8に接続され、 他方は 先の反応ガス供給装置 1 7と、 反応炉 1 0とを接続する配管 1 9に合流している 。 この構成により、 本実施形態の製造装置では、 反応炉 1 0から回収された反応 後ガスの一部は排ガスとして処理され、 残部は反応ガスと混合されてリサイクル されるようになつている。 換言すれば、 本実施形態の製造装置では、 反応後ガス 回収装置 2 7力 反応後ガスのリサイクル手段としても機能する構成となってい る。 The blower 26 is connected to the gas component outlet 25 b of the pug filter 25, and the pressure on the outlet side is higher than the pressure on the inlet side. That is, the post-reaction gas force s ′ flows from the reactor 10 power to the blower 26 through the cooling device 24 and the bag filter 25. This prevents the gas after the reaction from flowing back to the reaction furnace 10. The outlet side of the blower 26 is branched in two directions in the piping path, one of which is connected to the exhaust gas treatment system 28, and the other is connected to the reaction gas supply device 17 and the reactor It merges with the pipe 19 connecting the 10 and 10. With this configuration, in the manufacturing apparatus of the present embodiment, part of the post-reaction gas collected from the reaction furnace 10 is treated as exhaust gas, and the remainder is mixed with the reaction gas and recycled. In other words, in the manufacturing apparatus of the present embodiment, the post-reaction gas Recovering device 27 Forces The structure also functions as a means for recycling post-reaction gas.
また、 バグフィルタ 2 5の固体成分導出口 2 5 cから排出された担体粒子ゃ微 細炭素材料は、 担体回収タンク 2 0に送られ、 反応炉 1 0の担体導出口 1 0 dを 介して回収された担体粒子や微細炭素材料とともに炭素材料分離系 2 2へ送られ るようになっている。 上記本実施形態の微細炭素材料の製造装置においては、 反応域 (反応炉 1 0内 部及びこれと連通された部分) の雰囲気が、 水素等の還元雰囲気であるだけでな く、 原料としてハイド口カーボンカ佣いられるので、 担体粒子の投入や回収の際 に反応系の雰囲気と外気と力接触すると、 爆発や火災の原因となる可能性があり 、 また、 担体粒子表面に生成した微細炭素材料には、 ハイドロカ一ボンの重合物 が付着している可能性力高く、 高温の状態で外気に曝されるとこの重合物ととも に微細炭素材料力燃焼するおそれがある。 従って本発明に係る製造装置では以下 のような安全対策が施される。  Further, the carrier particles and the fine carbon material discharged from the solid component outlet 25 c of the bag filter 25 are sent to the carrier recovery tank 20, and passed through the carrier outlet 10 d of the reactor 10. It is sent to the carbon material separation system 22 together with the recovered carrier particles and fine carbon material. In the apparatus for manufacturing a fine carbon material according to the present embodiment, the atmosphere in the reaction zone (the inside of the reaction furnace 10 and a portion connected thereto) is not only a reducing atmosphere such as hydrogen, but also a hydride as a raw material. Because of the presence of carbon, the contact between the atmosphere of the reaction system and the outside air when the carrier particles are charged or recovered may cause an explosion or fire, and the fine carbon material generated on the surface of the carrier particles There is a high possibility that a polymer of hydrocarbon is attached to the surface, and when exposed to outside air at a high temperature, there is a risk that the fine carbon material will burn together with this polymer. Therefore, the following safety measures are taken in the manufacturing apparatus according to the present invention.
第 1に、 外気と反応系の雰囲気との接触を防ぐために、 必要に応じて窒素ガス や不活性ガスを供給して系内の圧力を外気よりも高くした状態を維持し、 外部か らの空気の混入を防止する。  First, in order to prevent the outside air from coming into contact with the atmosphere of the reaction system, nitrogen gas or inert gas is supplied as necessary to maintain the pressure inside the system higher than that of the outside air. Prevent air contamination.
第 2に、 反応炉 1 0と直接接続される担体供給装置 1 4や担体回収装置 2 1に も不活性ガス供給源 (図示せず) や冷却手段 (図示せず) を設けており、 特に、 担体回収装置 2 1に回収された担体粒子に担持されている触媒は、 微細で活性が 高い状態となっているため、 不活性ガスによる雰囲気置換を行うとともに冷却を 行い、 担体粒子や微細炭素材料の表面の反応性を低下させ、 燃焼しない状態とし てから担体粒子の取り出しを行うようになっている。 以上の構成の本発明に係る微細炭素材料の製造装置は、 担体供給装置 1 4から 供給される触媒を担持した担体粒子と、 反応ガス供給装置 1 7から供給される反 応ガスとを、 加熱装置 1 1により所定の温度に加熱された反応炉 1 0中で混合し 、 担体粒子表面に C V D反応により微細炭素材料を生成させるものである。 この 反応炉 1 0内で C V D反応に供され、 生成された微細炭素材料を含む担体粒子は 担体回収装置 2 1へ回収され、 反応に供された後の反応後ガスは反応後ガス回収 装置 2 7に回収されるようになっている。 Second, the carrier supply device 14 and the carrier recovery device 21 directly connected to the reactor 10 are also provided with an inert gas supply source (not shown) and a cooling means (not shown). Since the catalyst supported on the carrier particles recovered in the carrier recovery device 21 is in a fine and highly active state, the atmosphere is replaced with an inert gas, and cooling is performed. The reactivity of the surface of the material is reduced, and the carrier particles are taken out after the material does not burn. The apparatus for producing a fine carbon material according to the present invention having the above-described configuration heats the carrier particles supporting the catalyst supplied from the carrier supply device 14 and the reaction gas supplied from the reaction gas supply device 17. The materials are mixed in a reaction furnace 10 heated to a predetermined temperature by the device 11, and a fine carbon material is generated by a CVD reaction on the surface of the carrier particles. this The carrier particles containing the fine carbon material generated by the CVD reaction in the reaction furnace 10 are collected in the carrier recovery unit 21, and the post-reaction gas after the reaction is subjected to the post-reaction gas recovery unit 27. Is to be collected.
そして、 反応後ガス回収装置 2 7に回収された反応後ガスは、 バグフィルタ 2 5により固体成分と気体成分とに分離され、 このうち固体成分は担体回収装置 2 1へ回収されるとともに炭素材料分離系 2 2へ送られるようになつている。 また 、 バグフィルタ 2 5で分離された気体成分の一部は、 反応ガス供給装置 1 7から 供給される反応ガスと混合されて再度反応炉 1 0へ投入され、 リサイクルされる ようになっている。 リサイクルされない反応後ガスの気体成分は排ガス処理系 2 8で適宜処理された後、 排ガスとして排出されるようになっている。 このような 反応後ガスのリサイクルを行うことで、 反応ガス (特にキャリアガス) の使用量 を低減することができ、 キヤリァガス系の設備規模の縮小と製造コストの低減を 図ることができる。 また、 同時に排ガスとして排出されるガス量も低減されるの で、 排ガス処理コストも低減する。 このように、 本実施形態の微細炭素材料の製造装置によれば、 C V D反応によ り微細炭素材料を生成するための反応炉に、 連続的に触媒を担持した担体粒子と 、 微細炭素材料の原料を含む反応ガスとを連続的に供給し、 かつ C V D反応に供 された担体粒子及び反応後ガス、 並びに生成された微細炭素材料を連続的に反応 炉 1 0から回収することができるようになっているので、 長時間に渡る連続稼働 が可能である。 また、 反応炉 1 0力 s縦位置に配置され、 担体粒子が反応炉 1 0の 上部から下部に向かって移動し、 反応ガスは反応炉 1 0の下部から上部に向かつ て移動するようになっているので、 担体粒子と反応ガスと力接触する時間 (反応 時間) を短く した場合にも制御しやすく、 また担体粒子毎の反応時間のばらつき も小さくすることができる。 これにより、 繊維径 2 0 n m以下の極めて微細な力 —ボンナノチューブを製造する場合にも、 安定して均一な品質のカーボンナノチ ュ一ブを容易に製造することができる。 尚、 上記本発明に係る製造装置においては、 C V D反応による微細炭素材料の 生成系であれば、 いずれものものも用いることができ、 触媒の種類やその組み合 わせ、 担体粒子上の触媒濃度、 原料の選定、 ガス流量、 反応ガス濃度、 反応温度 、 炉内ガス組成など、 製造する微細炭素材料の種類 (繊維径ゃ長さなど) により 適宜変更して製造を行うことができる。 Then, the post-reaction gas collected in the post-reaction gas recovery device 27 is separated into a solid component and a gas component by a bag filter 25, and the solid component is recovered in the carrier recovery device 21 and the carbon material is recovered. It is sent to the separation system 22. In addition, a part of the gas component separated by the bag filter 25 is mixed with the reaction gas supplied from the reaction gas supply device 17, re-input to the reaction furnace 10, and recycled. . Gas components of the non-recycled post-reaction gas are appropriately treated in an exhaust gas treatment system 28 and then discharged as exhaust gas. By recycling such post-reaction gas, it is possible to reduce the amount of reaction gas (particularly carrier gas) used, and to reduce the scale of the carrier gas system and the production cost. At the same time, the amount of gas discharged as exhaust gas is also reduced, thus reducing the cost of exhaust gas treatment. As described above, according to the apparatus for manufacturing a fine carbon material of the present embodiment, the carrier particles that continuously support the catalyst and the fine carbon material are placed in a reactor for producing the fine carbon material by the CVD reaction. The reaction gas containing the raw material is continuously supplied, and the carrier particles and the post-reaction gas used in the CVD reaction and the generated fine carbon material can be continuously recovered from the reaction furnace 10. As a result, continuous operation for a long time is possible. In addition, the reactor is disposed at a vertical position of 10 s, and the carrier particles move from the upper part to the lower part of the reactor 10, and the reaction gas moves from the lower part to the upper part of the reactor 10. Therefore, even when the time (reaction time) for force contact between the carrier particles and the reaction gas is shortened, the control can be easily performed, and the variation in the reaction time for each carrier particle can be reduced. This makes it possible to easily and stably produce carbon nanotubes of stable and uniform quality even when producing extremely fine force-bon nanotubes with a fiber diameter of 20 nm or less. In the manufacturing apparatus according to the present invention, the fine carbon material is Any type of production system can be used, including the type and combination of catalysts, catalyst concentration on carrier particles, selection of raw materials, gas flow rate, reaction gas concentration, reaction temperature, furnace gas composition, etc. The production can be appropriately changed depending on the type of the fine carbon material to be produced (fiber diameter ゃ length, etc.).
[カーボンナノチューブの製造方法] [Method for producing carbon nanotubes]
次に、 本発明に係る製造装置を用いたカーボンナノチューブの製造方法につい て以下に説明する。 尚、 本実施形態では、 図 1に示す構成の製造装置を用い、 キ ャリァガスとして不活性ガス又は還元性ガスを用いた場合について説明する。 こ の不活性ガスとしては、 ヘリウム、 アルゴン、 ネオン、 キセノン、 クリプトン、 ラドン、 窒素等を用いることができ、 キャリアガスとして還元性ガスを用いる場 合には、 水素ゃメタンなど力使用できる。  Next, a method for producing carbon nanotubes using the production apparatus according to the present invention will be described below. In the present embodiment, a case where an inert gas or a reducing gas is used as a carrier gas will be described using a manufacturing apparatus having the configuration shown in FIG. As the inert gas, helium, argon, neon, xenon, krypton, radon, nitrogen and the like can be used. When a reducing gas is used as a carrier gas, hydrogen and methane can be used.
(反応系の準備) (Preparation of reaction system)
図 1に示す構成の本実施形態の製造装置により、 カーボンナノチューブを製造 するには、 まず、 反応系の準備を行う。 予め反応炉 1 0及びこれと連通された部 分を例えばアルゴンガスを流して非酸ィ匕性雰囲気に置換する。 次に、 反応炉 1 0 外周の加熱装置 1 1を動作させ、 反応炉 1 0の内部を 5 0 0 °C〜 1 3 0 0 °Cの範 囲内で所定の温度まで昇温し、 その温度を維持する。 そして、 反応ガス供給装置 1 7からキャリアガスを系内に導入する。 水素ガスやメタンガスなどの還元性ガ スを用いる時には、 一定時間不活性なキャリアガスを流した後、 反応炉 1内の酸 素濃度を確認する。 この酸素濃度力爆発限界以下、 好ましくは 1 %以下になった ことを確認したならば、 還元性ガスを供給することができる。 以上の作業により 反応系の準備を完了したならば、 触媒担体の供給を開始することができる。 本発明の製造方法において、 担体粒子の表面に担持される触媒としては、 鉄、 コノ ルト、 ニッケル、 イッ トリウム、 チタン、 バナジウム、 マンガン、 クロム、 銅、 ニオブ、 モリブデン、 パラジウム、 タングステン、 白金等の遷移金属ゃシリ コン、 およびこれらの化合物を用いることができる。 これらは単独で用いても良 いし、 2種以上を組み合わせて用いても良い。 In order to produce carbon nanotubes by the production apparatus of the present embodiment having the configuration shown in FIG. 1, first, a reaction system is prepared. For example, the reactor 10 and a portion connected to the reactor 10 are replaced with a non-oxidizing atmosphere by flowing argon gas, for example. Next, the heating device 11 on the outer periphery of the reaction furnace 10 is operated, and the inside of the reaction furnace 10 is heated to a predetermined temperature within a range of 500 to 130 ° C., and the temperature is increased. To maintain. Then, a carrier gas is introduced into the system from the reaction gas supply device 17. When using a reducing gas such as hydrogen gas or methane gas, flow an inert carrier gas for a certain period of time, and then check the oxygen concentration in the reactor 1. If it is confirmed that the oxygen concentration is below the explosion limit, preferably 1% or less, the reducing gas can be supplied. When the preparation of the reaction system is completed by the above operations, the supply of the catalyst carrier can be started. In the production method of the present invention, examples of the catalyst supported on the surface of the carrier particles include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, and platinum. Transition metal Con, and these compounds can be used. These may be used alone or in combination of two or more.
触媒の化合物の形態としては、 単体の金属、 有機化合物、 無機化合物、 あるい はこれらを組み合わせたものとすることができる。 例えば、 有機化合物としては 、 フエ口セン、 ニッケルセン、 コバルトセンや他の金属錯体、 あるいは酢酸鉄、 酢コバルト、 酢酸ニッケル等を挙げることができる。 また、 無機化合物としては 、 上記遷移金属の酸化物、 水酸化物、 硝酸塩、 硫酸塩、 塩化物、 カルボニル化合 物などのいずれの形態のものであっても良い。  The form of the compound of the catalyst may be a simple metal, an organic compound, an inorganic compound, or a combination thereof. For example, examples of the organic compound include Hua-Sen, Nickel-Sen, Cobalt-Sen and other metal complexes, or iron acetate, cobalt acetate, and nickel acetate. In addition, the inorganic compound may be in any form such as an oxide, a hydroxide, a nitrate, a sulfate, a chloride, and a carbonyl compound of the transition metal.
また、 前記触媒を担持する担体粒子としては、 アルミナ、 シリカゲル、 ゼオラ ィ ト、 マグネシア、 活性炭等の一般的な担体粒子を使用することができる力 可 能な限り、 ポア (孔) 力小さく、 かつポア形状がシャープなものがよい。 また、 本発明に適用される担体粒子の形状としては粉体状のものが用いられる。 本反応 に使用するために担体供給源 1 2から供給される担体粒子は、 予め触媒を担持さ せ、 所定の前処理を施される。 例えば触媒のエタノール溶液を用意し、 この溶液 中に担体粒子を浸漬した後、 回転させながら表面に所定量の触媒を吸着させる。 そして、 この担体粒子を 1 4 0 °C程度に加熱してエタノールを蒸発させることに より得ることができる。 この触媒を担持した担体粒子は、 反応炉 1 0に投入され る前に 7 0 0 °C程度に加熱して賦活させる処理を行うこと力好ましい。  Further, as the carrier particles for supporting the catalyst, there can be used general carrier particles such as alumina, silica gel, zeolite, magnesia, activated carbon, etc. As far as possible, the pore force is small, and Pore shape is good. The shape of the carrier particles applied to the present invention is a powder. The carrier particles supplied from the carrier supply source 12 for use in the present reaction are preliminarily loaded with a catalyst and subjected to a predetermined pretreatment. For example, an ethanol solution of the catalyst is prepared, and the carrier particles are immersed in this solution, and then a predetermined amount of the catalyst is adsorbed on the surface while rotating. The carrier particles can be obtained by heating to about 140 ° C. to evaporate ethanol. It is preferable that the carrier particles carrying the catalyst be heated to about 700 ° C. to be activated before being charged into the reaction furnace 10.
また、 上記担体粒子の平均粒径は、 5 0 0 μ m以下とすること力好ましく、 1 0 0 i m以下とすることがより好ましい。 このような平均粒径に制御された担体 粒子を用いることで、 形成される微細炭素材料の繊維径ゃアスペクト比 (繊維径 と繊維長さの比) を制御しやすくなり、 均一な品質の微細炭素材料の製造力容易 になる。  The average particle diameter of the carrier particles is preferably 500 μm or less, more preferably 100 im or less. By using such carrier particles whose average particle size is controlled, it becomes easier to control the fiber diameter / aspect ratio (ratio of fiber diameter to fiber length) of the formed fine carbon material, and to obtain uniform quality fine particles. The production capacity of carbon materials becomes easier.
(担体の供給) (Supply of carrier)
次に、 反応炉 1 0への担体粒子の供給を行う。 反応炉 1 0へ担体粒子を供給す るには、 まず、 担体供給装置 1 4の担体供給源 1 2から貯溜タンク 1 3へ担体粒 子を投入し、 予め所定量を貯留しておく。 この際、 担体粒子を加熱して賦活して おいても良い。 また、 反応炉 1 0と接続された部分の雰囲気を不活性ガスで^ し、 不活性雰囲気としておく。 次いで、 反応系の準備が完了していることを確認 して、 フィーダ 1 5で一定の供給速度で貯溜タンク 1 3から反応炉 1 0へ担体粒 子を導入する。 本発明の製造装置では、 担体粒子の供給速度はフィーダ 1 5の搬 送速度により容易かつ正確に制御することができる。 Next, the carrier particles are supplied to the reaction furnace 10. In order to supply the carrier particles to the reaction furnace 10, first, the carrier particles are put into the storage tank 13 from the carrier supply source 12 of the carrier supply device 14, and a predetermined amount is stored in advance. At this time, the carrier particles may be activated by heating. In addition, the atmosphere in the portion connected to the reactor 10 is inert gas ^ And keep it in an inert atmosphere. Next, after confirming that the preparation of the reaction system has been completed, the carrier particles are introduced from the storage tank 13 to the reaction furnace 10 at a constant supply speed by the feeder 15. In the manufacturing apparatus of the present invention, the supply speed of the carrier particles can be easily and accurately controlled by the transport speed of the feeder 15.
(化学熱分解反応) (Chemical pyrolysis reaction)
前記担体粒子の反応炉 1 0内への供給の開始と同時、 又はそれ以前に、 反応ガ ス供給装置 1 7から反応ガスの供給を開始する。 すなわち、 原料ガス供給源 1 6 から M F C 1 6 aにより流量制御しながら原料ガスを供給し、 キヤリァガス供給 源 1 8力ら M F C 1 8 aにより流量制御しながらキャリアガスを供給してガス配 管 1 9内で混合させて反応ガスを生成し、 このガス配管 1 9を介して反応炉 1 0 の下端部側面の反応ガス導入口 1 O cから反応ガスを導入する。 前記原料ガスと しては、 一般的なハイドロカ一ボンや一酸化炭素を使用することができ、 常温で 液体のものであっても気化手段により気化させて用いることができる。 具体的に は、 特に限定されるものではない力 ベンゼン、 トルエン、 メタン、 ェタン、 プ 口パン、 ブタン、 ペンタン、 へキサン、 エチレン、 シクロへキサン、 アセチレン などを挙げることができる。 また、 ガス配管 1 9に加熱手段を設け、 反応炉 1 0 へ導入される反応ガスを予熱しておくこともできる。 この場合、 2 0 0 °C以上に 加熱して反応炉 1 0内へ導入するのがよい。  At the same time as or before the supply of the carrier particles into the reaction furnace 10 is started, the supply of the reaction gas from the reaction gas supply device 17 is started. That is, the source gas is supplied from the source gas supply source 16 while controlling the flow rate by the MFC 16a, and the carrier gas is supplied from the carrier gas supply source 18 while controlling the flow rate by the MFC 18a to supply the gas. The reaction gas is mixed in the reactor 9 to generate a reaction gas, and the reaction gas is introduced from the reaction gas inlet 1 Oc on the side of the lower end of the reactor 10 through the gas pipe 19. As the raw material gas, general hydrocarbon or carbon monoxide can be used, and even if it is liquid at normal temperature, it can be used after being vaporized by vaporizing means. Specific examples include, but are not limited to, benzene, toluene, methane, ethane, alcohol, butane, pentane, hexane, ethylene, cyclohexane, and acetylene. Further, a heating means can be provided in the gas pipe 19 to preheat the reaction gas introduced into the reaction furnace 10. In this case, it is preferable to heat the solution to 200 ° C. or more and introduce it into the reaction furnace 10.
そして、 上記反応ガスが反応炉 1 0の下部から上部に向かって所定の流量で流 れる状態の反応炉 1 0内で、 反応炉 1 0上部から導入された前記担体粒子を、 反 応炉 1 0の下部へ向かって落下させながら、 化学熱分解反応により担体粒子の表 面に微細炭素材料を成長させる。  Then, the carrier particles introduced from the upper part of the reaction furnace 10 are introduced into the reaction furnace 10 in a state where the reaction gas flows at a predetermined flow rate from the lower part to the upper part of the reaction furnace 10. While falling toward the bottom of 0, a fine carbon material is grown on the surface of the carrier particles by a chemical pyrolysis reaction.
(触媒担体の取り出し) (Removal of catalyst carrier)
上記反応炉 1 0内を落下される間に C V D反応により表面に微細炭素材料力形 成された担体粒子は、 反応炉 1 0の底部に到達する。 (その際、 一部は担体から 分離されたものもある。 ) そしてこの反応炉 1 0底部に設けられた担体導出口 1 0 d力 ら担体回収装置 2 1の担体回収タンク 2 0へ回収される。 担体回収タンク 2 0へ取り出された担体粒子及びこの担体粒子から分離した微細炭素材料は、 こ の担体回収タンク 2 0に一時貯留され、 冷却された後、 不活性ガスにより表面に 付着した未反応のハイドロカーボンや反応副生成物を置換されたあと、 担体回収 タンク 2 0から取り出される。 担体回収タンク 2 0から取り出された担体粒子は 、 その表面の微細炭素材料を分離して回収するための炭素材料分離系 2 8へ送ら れ、 表面の微細炭素材料が分離され、 回収される。 この炭素材料分離系 2 8にお いて炭素材料を担体粒子と分離するには、 例えば担体粒子がゼォライトの場合に は、 アル力リによりゼォライトを溶解させることで容易に微細炭素材料のみを取 り出すことができる。 The carrier particles formed on the surface of the fine carbon material by the CVD reaction while falling in the reactor 10 reach the bottom of the reactor 10. (At that time, some of them were separated from the carrier.) Then, the carrier was recovered from the carrier outlet 10 d at the bottom of the reactor 10 into the carrier recovery tank 20 of the carrier recovery unit 21. You. Carrier recovery tank The carrier particles taken out into the carrier particles and the fine carbon material separated from the carrier particles are temporarily stored in the carrier recovery tank 20 and, after being cooled, unreacted hydrocarbons adhered to the surface by an inert gas. After the reaction and reaction by-products are replaced, they are taken out of the carrier recovery tank 20. The carrier particles taken out of the carrier recovery tank 20 are sent to a carbon material separation system 28 for separating and collecting the fine carbon material on the surface, where the fine carbon material on the surface is separated and collected. In order to separate the carbon material from the carrier particles in the carbon material separation system 28, for example, when the carrier particles are zeolite, only the fine carbon material can be easily removed by dissolving the zeolite by means of an aluminum alloy. Can be put out.
以上の操作により、 本発明に係る製造装置を用いて連続的に安定して微細炭素 材料の製造を行うことができる。  By the above operation, the production apparatus according to the present invention can continuously and stably produce a fine carbon material.
[実施例 3 [Example 3
以下、 実施例により本発明の効果をより明らかにする力 以下の実施例は本発 明を限定するものではない。  Hereinafter, the ability to clarify the effects of the present invention with reference to the examples. The following examples do not limit the present invention.
本例では、 図 1に示すカーボンナノチューブ製造装置を用いて、 粉体状の担体 粒子表面にカーボンナノチューブを形成した。 ' 反応炉 1 0としては、 内径 2 2 O mm 0、 長さ 2 1 0 O mm Lの S i C製の円 筒管を用い、 加熱装置 1 1は、 長さ 1 2 0 O mm Lの管状で、 加熱部分の内径 2 6 O mm0のものを反応炉 1 0の外周を取り囲むように配した。  In this example, the carbon nanotubes were formed on the surface of the powdery carrier particles using the carbon nanotube manufacturing apparatus shown in FIG. '' As the reactor 10, a cylindrical tube made of SiC having an inner diameter of 22 O mm 0 and a length of 210 O mm L was used.The heating device 11 had a length of 120 O O mm L. A tube having a heating portion with an inner diameter of 26 O mm0 was arranged so as to surround the outer periphery of the reactor 10.
担体粒子には、 粉体状の平均粒径 2 mの Y型ゼオライトを用い、 担体粒子の 表面に吸着させる触媒の遷移金属は、 コバルトとバナジウムを用いた。 触媒を担 体粒子に担持させるにあたり、 酢酸コバルトと酢酸バナジウムの 2. 5 %ェタノ ール溶液を用意し、 その溶液に上記担体を浸潰させた後、 担体を回転させながら 所定量を吸着させた。 そして、 この担体を 1 4 0 °Cに加熱して乾燥させ、 7 0 0 °Cに加熱して触媒を賦活させた。  Y-type zeolite with an average particle size of 2 m was used as the carrier particles, and cobalt and vanadium were used as the transition metals of the catalyst to be adsorbed on the surface of the carrier particles. To support the catalyst on the carrier particles, a 2.5% ethanol solution of cobalt acetate and vanadium acetate is prepared, the carrier is immersed in the solution, and a predetermined amount is adsorbed while rotating the carrier. Was. Then, the support was heated to 140 ° C. to dry, and heated to 700 ° C. to activate the catalyst.
そして、 加熱装置 1 1により反応炉 1 0を 7 1 0 °Cまで加熱し、 この温度を保 持した。 また、 反応炉 1 0に導入する原料ガスにはアセチレンを用い、 その流量 は 3 LZm i nとした。 キャリアガスにはアルゴンを用い、 その流量は 2 2 LZ m i nとした。 Then, the reaction furnace 10 was heated to 7110 ° C. by the heating device 11, and this temperature was maintained. Acetylene was used as the source gas to be introduced into the reactor 10, and its flow rate was Was set to 3 LZmin. Argon was used as the carrier gas, and the flow rate was 22 LZ min.
以上の製造条件により反応系を維持された製造装置に、 連続的に触媒を担持し た粉体状の担体粒子を投入してこの担体粒子上にカーボンナノチューブを成長さ せた。 本例において製造されたカーボンナノチューブの繊維径は 2〜5 n mと極 めて細く、 またその繊維径のばらつきも少ないものであった。 この製造における 力一ボンナノチューブと担体粒子とを併せた生成量は 1時間当たり 1 3 8 gであ つた。 また、 回収された担体粒子からアルカリによりゼォライトを溶解させて力 一ボンナノチューブのみを分離したところ、 カーボンナノチューブの 1時間あた りの生成量は 7 0 g /hであった。 この生成量の投入した原料ガスのカーボン量 に対する収得率は 3 6 %であり、 従来のバッチ法によるカーボンナノチューブの 収得率よりも高い収得率であった。  The powdery carrier particles supporting the catalyst were continuously charged into a production apparatus in which the reaction system was maintained under the above production conditions, and carbon nanotubes were grown on the carrier particles. The fiber diameter of the carbon nanotubes produced in this example was extremely thin, 2 to 5 nm, and the fiber diameter had little variation. The total production amount of carbon nanotubes and carrier particles in this production was 1 38 g per hour. When zeolite was dissolved from the collected carrier particles with alkali to separate carbon nanotubes alone, the amount of carbon nanotubes produced per hour was 70 g / h. The yield of this generated amount with respect to the carbon amount of the input raw material gas was 36%, which was higher than the yield of carbon nanotubes by the conventional batch method.
また、 上記本発明の製造装置及び製造方法を用い、 反応系の条件 (原料の種類 、 炭化水素の濃度、 触媒の種類、 担体の種類等) の組み合わせを調整することで 、 繊維径 2 0 n m以上のマルチカーボンナノチューブや、 カーボンナノファイバ も製造できること力確認された。 Further, by using the above-described production apparatus and production method of the present invention and adjusting the combination of the conditions of the reaction system (type of raw material, concentration of hydrocarbon, type of catalyst, type of carrier, etc.), the fiber diameter is 20 nm. It was confirmed that the above-mentioned multi-carbon nanotubes and carbon nanofibers can be manufactured.
産業上の利用可能性 Industrial applicability
本発明によって、 微細なカーボンナノチューブ等の微細炭素材料を連続的に生 産できる技術が開発された。 本方法は連続化力 s可能であるだけでなく稼働安定性 に優れ、 微細炭素材料の大量生産に適した方法である。 しかも、 炉内の触媒の滞 留時間を制御でき、 且つ、 短時間の反応が可能な技術で、 太さの揃った直線性の 優れたカーボンナノチューブの製造に好適である。 特に繊維径 5 0 n m以下、 中 でも 2 0 n m以下の微細な繊維状の炭素材料を作るのに適した方法であり、 実施 例においても繊維径が 2〜5 n mと極めて細く、 副生成物の少ない、 良好なカー ボンナノチューブカ s得られること力 s確認された。  According to the present invention, a technology capable of continuously producing fine carbon materials such as fine carbon nanotubes has been developed. This method is not only capable of continuous power, but also has excellent operational stability, and is suitable for mass production of fine carbon materials. In addition, it is a technology that can control the residence time of the catalyst in the furnace and enables a short reaction time, and is suitable for producing carbon nanotubes with uniform thickness and excellent linearity. In particular, it is a method suitable for producing fine fibrous carbon materials with a fiber diameter of 50 nm or less, especially 20 nm or less.In the examples, the fiber diameter is extremely thin, 2 to 5 nm, and by-products It has been confirmed that good carbon nanotubes can be obtained with less power.
また、 本発明に係る製造方法においては、 触媒を担持するための担体粒子とし て微粉の担体粒子を使用するので、 既存の担体をそのまま使用できるだけでなく 、 反応炉内で流動させた状態で反応できるので、 担体の表面を確実に利用でき、 高効率で反応が進行するというメリットがあり、 触媒の利用効率が高く、 反応率 も炭素収率も良好である。 このように、 本発明に係る微細炭素材料の製造方法は 、 連続化が可能であり、 かつ収率が高いので、 高品質で、 かつそのばらつきが少 ないカーボンナノチューブを安価に得られる、 工業化に適した製造方法である。 また、 本発明の製造方法を、 成型体や、 ペレツトを用いる方法と比較するなら ば、 触媒の利用効率力極めて高くできるの力 s '特徴である。 次に、 本発明に係る微細炭素材料の製造装置は、 上記本発明に係る製造方法を 適用して有用な製造装置であり、 高品質で、 かつそのばらつきが少ないカーボン ナノチューブを安価に得られる、 工業化に適した製造装置である。 なお、 本発明は、 その主要な特徴から逸脱することなく、 他のいろいろな形で 実施することができる。 前述の実施形態は単なる例示にすぎず、 限定的に解釈し てはならない。 また、 本発明の範囲は、 特許請求の範囲によって示すものであつ て、 明細書本文には、 なんら拘束されない。 また、 特許請求の範囲の均等範囲に 属する変形や変更は、 すべて本発明の範囲内のものである。  Further, in the production method according to the present invention, fine carrier particles are used as carrier particles for supporting the catalyst, so that not only the existing carrier can be used as it is, but also the Since it can be used, the surface of the support can be used reliably, and the reaction proceeds with high efficiency. The catalyst utilization efficiency is high, and the reaction rate and carbon yield are good. As described above, the method for producing a fine carbon material according to the present invention is capable of being continuous, and has a high yield, so that carbon nanotubes of high quality and with little variation can be obtained at low cost, It is a suitable manufacturing method. In addition, when the production method of the present invention is compared with a method using a molded article or a pellet, the present invention is characterized by a force s' that makes it possible to extremely increase the use efficiency of the catalyst. Next, the manufacturing apparatus for a fine carbon material according to the present invention is a useful manufacturing apparatus to which the manufacturing method according to the present invention is applied, and is capable of inexpensively obtaining carbon nanotubes of high quality and less variation thereof. This is a manufacturing device suitable for industrialization. It should be noted that the present invention can be implemented in various other forms without departing from its main features. The above embodiments are merely examples and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the specification text. Also, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . ハイドロカーボンを含む反応ガス中に、 少なくとも 1種以上の遷移金属を 含む触蝶を担持した担体粒子を導入し、 前記反応ガス中で前記担体粒子を全体と して一定の方向に流動させながら前記担体粒子表面に微細炭素材料を生成するこ とを特徴とする微細炭素材料の製造方法。 1. Into a reaction gas containing a hydrocarbon, carrier particles carrying a winged butterfly containing at least one or more transition metals are introduced, and the carrier particles are caused to flow in a certain direction as a whole in the reaction gas. And producing a fine carbon material on the surface of the carrier particles.
2. ハイドロカーボンを含む反応ガス中に、 少なくとも 1種以上の遷移金属を 含む触蝶を担持した担体粒子を導入し、 前記反応ガス中で前記担体粒子を一方向 に流動させながら、 前記担体粒子表面に直径 5 0 n m 0以下で、 アスペクト比が 1 0以上の微細炭素繊維を含む微細炭素材料を生成することを特徴とする請求項 1に記載の微細炭素材料の製造方法。 2. Introducing carrier particles carrying at least one or more transition metals into a reaction gas containing a hydrocarbon, and allowing the carrier particles to flow in one direction in the reaction gas, 2. The method for producing a fine carbon material according to claim 1, wherein a fine carbon material having a diameter of 50 nm0 or less and a fine carbon fiber having an aspect ratio of 10 or more is produced on the surface.
3. ハイドロカーボンを含む反応ガス中に、 少なく とも 1種以上の遷移金属を 含む触蝶を担持した担体粒子を導入し、 前記反応ガス中で前記担体粒子を全体と して一方向に流動させながら、 前記担体粒子表面に炭素原子からなる炭素平面が 円筒状を成す単層カーボンナノチューブ及び/又は前記単層カーボンナノチュー ブが積層された多層カーボンナノチューブを含む微細炭素材料を生成することを 特徴とする請求項 2に記載の微細炭素材料の製造方法。 3. Introduce carrier particles carrying a winged butterfly containing at least one transition metal into a reaction gas containing a hydrocarbon, and allow the carrier particles to flow in one direction as a whole in the reaction gas. While producing a fine carbon material including single-walled carbon nanotubes having a cylindrical carbon plane formed of carbon atoms on the surface of the carrier particles and / or multi-walled carbon nanotubes on which the single-walled carbon nanotubes are stacked. 3. The method for producing a fine carbon material according to claim 2, wherein
4. 内部で熱化学分解法により微細炭素材料を生成させるための反応炉に、 ハ ィドロカーボンを含む反応ガスと、 1種類以上の遷移金属を含む触媒を担持した 担体粒子とを導入し、 4. Introducing a reaction gas containing hydrocarbon and carrier particles carrying a catalyst containing one or more transition metals into a reactor for generating a fine carbon material by thermochemical decomposition inside,
前記反応ガスと、 前記担体粒子とを互いに向き合う方向に  The reaction gas and the carrier particles in a direction facing each other.
流し、 触媒を流動化させ、 前記担体粒子表面に微細炭素材料を生成することを特 徵とする請求項 1ないし 3のいずれか 1項に記載の微細炭素材料の製造方法。 The method for producing a fine carbon material according to any one of claims 1 to 3, wherein the method further comprises flowing the catalyst to fluidize the catalyst to generate a fine carbon material on the surface of the carrier particles.
5. 前記反応炉を縦位置に配置し、 前記担体粒子を前記反応炉の上端部から反 応炉内へ導入し、 前記反応ガスを前記反応炉の下端部から反応炉内へ導入して前 記両者を交流で接触反応させ、 5. Placing the reactor in a vertical position, introducing the carrier particles into the reactor from the upper end of the reactor, and introducing the reaction gas from the lower end of the reactor into the reactor. The contact reaction between the two is carried out by alternating current,
前記反応炉内で前記担体粒子の表面に微細炭素材料を生成することを特徴とす る請求項 4に記載の微細炭素材料の製造方法。  5. The method for producing a fine carbon material according to claim 4, wherein a fine carbon material is generated on the surface of the carrier particles in the reaction furnace.
6. 前記反応炉へ連続的に前記担体粒子を導入し、 前記反応ガスが連続的に導 入された反応炉内で前記担体粒子表面に微細炭素材料を生成し、 前記反応炉から 前記微細炭素材料が生成した担体粒子を連続的に取り出すことを特徴とする請求 項 4又は 5に記載の微細炭素材料の製造方法。 6. continuously introducing the carrier particles into the reaction furnace, generating a fine carbon material on the surface of the carrier particles in the reaction furnace in which the reaction gas is continuously introduced; 6. The method for producing a fine carbon material according to claim 4, wherein the carrier particles produced by the material are continuously taken out.
7. 前記反応炉内で反応に供された後の反応後ガスの少なくとも一部を、 前記 反応炉外に設けられたリサイクル手段により再度前記反応炉へ投入して再利用す ることを特徴とする請求項 4ないし 6のいずれか 1項に記載の微細炭素材料の製 造方法。 7. At least a part of the post-reaction gas after being subjected to the reaction in the reaction furnace is supplied to the reaction furnace again by a recycle means provided outside the reaction furnace and reused. The method for producing a fine carbon material according to any one of claims 4 to 6, wherein:
8. 前記ハイド口カーボンを含む反応ガスの温度を、 5 0 0 °C以上、 1 3 0 0 °C以下とすることを特徴とする請求項 1ないし 7のいずれか 1項に記載の微細炭 素材料の製造方法。 8. The fine coal according to any one of claims 1 to 7, wherein the temperature of the reaction gas containing the hide port carbon is 500 ° C. or more and 130 ° C. or less. Manufacturing method of raw materials.
9. 前記触媒を担持する担体粒子として、 平均粒径 5 0 0 μ πι以下のものを用 いることを特徴とする請求項 1ないし 8のいずれか 1項に記載の微細炭素材料の 製造方法。 9. The method for producing a fine carbon material according to claim 1, wherein the carrier particles supporting the catalyst have an average particle diameter of 500 μπι or less.
1 0. 前記触媒を担持する担体粒子として、 平均粒径 1 0 0 m以下のものを 用いることを特徴とする請求項 9に記載の微細炭素材料の製造方法。 10. The method for producing a fine carbon material according to claim 9, wherein the carrier particles supporting the catalyst have an average particle diameter of 100 m or less.
1 1 . 前記ハイド口カーボンを含む反応ガスの線速度を、 0. O l m/ s e c 以上 l mZ s e cの範囲とすることを特徴とする請求項 1ないし 1 0のいずれか 1項に記載の微細炭素材料の製造方法。 11. The fine particle according to any one of claims 1 to 10, wherein the linear velocity of the reaction gas containing the carbon at the hide port is in the range of 0.1 Olm / sec or more to 1 mZsec. Manufacturing method of carbon material.
1 2. 内部で熱化学分解法により微細炭素材料を生成するために縦位置に配置 される反応炉と、 1 2. A reactor placed vertically to generate fine carbon material by thermochemical decomposition inside,
前記反応炉の上端部に接続され、 前記反応炉内に触媒を担持した担体粒子を導 入するための担体粒子供給部と、  A carrier particle supply unit connected to an upper end of the reaction furnace, for introducing carrier particles supporting a catalyst into the reaction furnace;
前記反応炉の下端部に接続され、 前記反応炉内にハイドロカーボンを含む反応 ガスを供給するための反応ガス供給部と、 '  A reaction gas supply unit connected to a lower end of the reaction furnace, for supplying a reaction gas containing hydrocarbon into the reaction furnace;
前記反応炉の下端部に接続され、 反応後の前記担体粒子を前記反応炉外へ導出 するための担体粒子回収部と、  A carrier particle recovery unit connected to a lower end of the reaction furnace, for leading the carrier particles after the reaction out of the reaction furnace;
前記反応炉の上端部に接続され、 前記反応炉内で反応に供された後の反応後ガ スを前記反応炉外へ導出するための反応後ガス回収部と、  A post-reaction gas recovery unit that is connected to an upper end of the reaction furnace and guides post-reaction gas after the reaction in the reaction furnace to outside the reaction furnace;
を備えたことを特徵とする微細炭素材料の製造装置。  An apparatus for producing a fine carbon material, comprising:
1 3. 前記反応ガス回収部に回収された反応後ガスを、 前記反応炉へ再度導入 するためのリサイクル手段を備えたことを特徴とする請求項 1 2に記載の微細炭 素材料の製造装置。 13. The apparatus for producing a fine carbon material according to claim 12, further comprising a recycle unit for re-introducing the post-reaction gas collected in the reaction gas recovery unit into the reaction furnace. .
PCT/JP2002/001016 2002-02-07 2002-02-07 Method and apparatus for producing fine carbon material WO2003066521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/001016 WO2003066521A1 (en) 2002-02-07 2002-02-07 Method and apparatus for producing fine carbon material
AU2002233631A AU2002233631A1 (en) 2002-02-07 2002-02-07 Method and apparatus for producing fine carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001016 WO2003066521A1 (en) 2002-02-07 2002-02-07 Method and apparatus for producing fine carbon material

Publications (1)

Publication Number Publication Date
WO2003066521A1 true WO2003066521A1 (en) 2003-08-14

Family

ID=27677643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001016 WO2003066521A1 (en) 2002-02-07 2002-02-07 Method and apparatus for producing fine carbon material

Country Status (2)

Country Link
AU (1) AU2002233631A1 (en)
WO (1) WO2003066521A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052229A2 (en) * 2003-11-21 2005-06-09 Statoil Asa Method and apparatus for the production of particulate carbon products
US20130315813A1 (en) * 2011-04-04 2013-11-28 Kwang-Hyun Chang Apparatus and method for continuously producing carbon nanotubes
CN111483998A (en) * 2019-01-28 2020-08-04 天津师范大学 Carbon nano tube/oxide composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007559A1 (en) * 1986-06-06 1987-12-17 Hyperion Catalysis International, Inc. Novel carbon fibrils, method for producing same, and compositions containing same
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JP2000086218A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Method for synthesizing carbon nanotube and catalyst used for same
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007559A1 (en) * 1986-06-06 1987-12-17 Hyperion Catalysis International, Inc. Novel carbon fibrils, method for producing same, and compositions containing same
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JP2000086218A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Method for synthesizing carbon nanotube and catalyst used for same
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FONESECA A. ET AL.: "Synthesis of single- and multi-wall carbon nanotubes over supported catalysts", APPL. PHYS. A, vol. 67, no. 1, 1998, pages 11 - 22, XP000869541 *
JING KONG ET AL.: "Chemical vapor deposition of methane for single-walled carbon nanotubes", CHEMICAL PHYSICS LETTERS, vol. 292, 1998, pages 567 - 574, XP002951042 *
SHOZO WATAE: "Kogyo hanno sochi", THE NIKKAN KOGYO SHINBUN LTD., 30 October 1960 (1960-10-30), pages 212, 235 TO 237, XP002951041 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052229A2 (en) * 2003-11-21 2005-06-09 Statoil Asa Method and apparatus for the production of particulate carbon products
WO2005052229A3 (en) * 2003-11-21 2005-07-28 Statoil Asa Method and apparatus for the production of particulate carbon products
JP2007519592A (en) * 2003-11-21 2007-07-19 スタットオイル エイエスエイ Method
US7585483B2 (en) 2003-11-21 2009-09-08 Statoil Asa Method for the production of particulate carbon products
EA012693B1 (en) * 2003-11-21 2009-12-30 Статойл Аса Method and apparatus for the production of particulate carbon products
KR100938969B1 (en) * 2003-11-21 2010-01-26 스타토일하이드로 에이에스에이 Method for producing a particulate carbon product and a reactor
AU2004293656B2 (en) * 2003-11-21 2010-03-04 Statoil Asa Method and apparatus for the production of particulate carbon products
KR100966216B1 (en) * 2003-11-21 2010-06-25 스타토일 에이에스에이 Method for producing a particulate carbon product and a reactor
US20130315813A1 (en) * 2011-04-04 2013-11-28 Kwang-Hyun Chang Apparatus and method for continuously producing carbon nanotubes
US9630160B2 (en) 2011-04-04 2017-04-25 Lg Chem, Ltd. Apparatus and method for continuously producing carbon nanotubes
US9687802B2 (en) * 2011-04-04 2017-06-27 Lg Chem, Ltd. Apparatus and method for continuously producing carbon nanotubes
US9782738B2 (en) 2011-04-04 2017-10-10 Lg Chem, Ltd. Apparatus and method for continuously producing carbon nanotubes
CN111483998A (en) * 2019-01-28 2020-08-04 天津师范大学 Carbon nano tube/oxide composite material and preparation method thereof
CN111483998B (en) * 2019-01-28 2021-09-07 天津师范大学 Carbon nano tube/oxide composite material and preparation method thereof

Also Published As

Publication number Publication date
AU2002233631A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
KR101460373B1 (en) Method for the production of carbon nanotubes in a fluidized bed
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
Mubarak et al. An overview on methods for the production of carbon nanotubes
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Terranova et al. The world of carbon nanotubes: an overview of CVD growth methodologies
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
Pham-Huu et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst
WO2008048313A9 (en) Production of carbon nanotubes
Abbaslou et al. The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
JP6508602B2 (en) METHOD FOR PRODUCING CARBON NANOSTRUCTURE, CARBON NANOSTRUCTURE PRODUCED BY THE SAME, AND COMPOSITE MATERIAL COMPRISING THE SAME
JP4388890B2 (en) Method for producing fine carbon fiber
Dong et al. Catalytic methane technology for carbon nanotubes and graphene
JP4380248B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP4967536B2 (en) Nanocarbon material composite and method for producing the same
WO2003066521A1 (en) Method and apparatus for producing fine carbon material
Gong et al. Preparation of carbon nanotubes (CNTs)-cordierite monoliths by catalytic chemical vapor deposition as catalyst supports for ammonia synthesis
Yardimci et al. Synthesis methods of carbon nanotubes
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
JP2004076198A (en) Method and apparatus for producing carbon nanofiber
Setyopratomo et al. Carbon nanotubes synthesis using Fe-Co-Mo/MgO tri-metallic catalyst: study the effect of reaction temperature, reaction time and catalyst weight
Kvande et al. Towards large scale production of CNF for catalytic applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/010954

Country of ref document: MX

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP