WO2003084605A1 - Method and device for the prevention of epileptic attacks - Google Patents

Method and device for the prevention of epileptic attacks Download PDF

Info

Publication number
WO2003084605A1
WO2003084605A1 PCT/EP2003/003543 EP0303543W WO03084605A1 WO 2003084605 A1 WO2003084605 A1 WO 2003084605A1 EP 0303543 W EP0303543 W EP 0303543W WO 03084605 A1 WO03084605 A1 WO 03084605A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
seizure
seizure model
early warning
intervention
Prior art date
Application number
PCT/EP2003/003543
Other languages
German (de)
French (fr)
Inventor
Oliver Holzner
Original Assignee
Oliver Holzner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oliver Holzner filed Critical Oliver Holzner
Priority to AU2003226786A priority Critical patent/AU2003226786A1/en
Priority to EP03745788A priority patent/EP1492593A1/en
Priority to JP2003581842A priority patent/JP2005528141A/en
Publication of WO2003084605A1 publication Critical patent/WO2003084605A1/en
Priority to US10/958,842 priority patent/US20050107655A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0055Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with electric or electro-magnetic fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/10Electroencephalographic signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)

Definitions

  • the invention relates to a method and a device for the automatic non-invasive controlled or regulated electromagnetic prevention of epileptic seizures in vivo.
  • the relevant technologies include the following approaches:
  • TMS transcranial magnetic stimulation
  • TMS for intervention in epilepsy consists of finding an epileptic focus based on the medical experience of the doctor using it, imaging procedures, or trying it out, and then trying to induce epileptic seizures with single or double coil systems (e.g. [5], [6 ], [10]).
  • WO 98/18394 describes a method with which magnetic stimulation is carried out on a subject, at the same time his brain activity is measured by means of an EEG. This known method is used for diagnosis.
  • WO 01/21067 discloses a method for the early detection of an impending epileptic seizure. This procedure is designed to predict an impending epileptic seizure for hours or days. This procedure measures a patient's brain activity at different locations before, during and after epileptic seizures. With the help of various nonlinear methods, sensor pairs are determined for this patient that predict the seizure particularly well in the context of a training phase consisting of seizures. Signal pairs are adapted at regular intervals, for which further attacks are necessary. The training and adaptation contained in this procedure prevent complete prevention, since the data must be updated again and again with new seizures.
  • the object of the present invention is to create a method and a device for the prevention of epileptic seizures.
  • the invention is based on the knowledge that the processes leading to epileptic seizures can be made quantifiable by naming suitable control parameters, so that reliable prevention is possible.
  • FIG. 1 shows a transmitter in a sectional view
  • FIG. 2 shows the transmitter from FIG. 1 in a view from below
  • FIG. 3 shows a planar projection of openings for sensors and transmitters according to their arrangement on a helmet
  • FIG. 4 shows a helmet and a carrier axis together with a chin rest
  • FIG. 5 shows a further planar projection of openings for sensors and transmitters according to their arrangement on a helmet
  • FIG. 6 shows an example of a time series of measured values of an EEG sensor
  • FIG. 7 shows a section of the time series from FIG. 6 in a phase space representation 8
  • FIG. 8 shows a typical course of the SNR (signal-to-noise ratio).
  • the device comprises a measuring system with apparatuses for electromagnetic measurement data acquisition, preprocessing and forwarding, for example in an advantageous embodiment comprising an EEG cap with its sensors, connections to the amplifier, amplifier, connections to the AD converter, ADC Converter, connections to the computer unit, electricity supplier for the apparatus, and connections.
  • apparatuses for electromagnetic measurement data acquisition for example in an advantageous embodiment comprising an EEG cap with its sensors, connections to the amplifier, amplifier, connections to the AD converter, ADC Converter, connections to the computer unit, electricity supplier for the apparatus, and connections.
  • the device comprises an actuating system with apparatus for the extracranial generation of magnetic fields, referred to as “transmitter”, and a device for converting the digital control or regulation specifications originating from the computer unit into transmitter signals, for example in an advantageous embodiment comprising current-carrying coils, power suppliers , Connections, D / A converter, together with connections.
  • Suitable sensors are EEG or MEG sensors.
  • the MEG sensors are formed, for example, from a SQUID sensor element with a suitable evaluation device for detecting a magnetic field and a cooling device.
  • the EEG sensors have, for example, two electrodes for measuring an electrical potential difference.
  • a sensor can have an electrical and / or magnetic shield from its surroundings, provided that its function is not hindered (for example, no shield in the direction of the patient's crane, but very well shield in the direction of other transmitters and / or sensors and / or connecting cable).
  • the part of the input side near the head can have a multiplicity of sensors which are distributed over the surface of the head near the brain; this multiplicity of sensors is referred to as a sensor grid.
  • the sensor grid has a fixing device for fixing the same with respect to the patient's crane, so that when the sensor grid is put on and taken off several times, the sensors return to their respective relative positions, for example by fitting the sensor grid into a helmet, the inside of which has the cranial shape of the respective patient replicates.
  • the fixation can also be carried out with the aid of a camera, the position of the patient's head in the room and the sensors with respect to the head being recorded by several cameras and converted in real time into 3D data.
  • An advantageous embodiment of the input side comprises its partially outpatient form, in which the measurement data is obtained via a portable sensor grid, which is connected to devices for measurement data preprocessing to be carried by the patient in a backpack or as part of the clothing, and in which the data transfer to the computer unit is advantageously wireless he follows.
  • a transmitter 5 comprises a current-carrying coil 6 with a para-, dia-, or ferromagnetic core 7, as shown in a sectional view in FIG. 1, the arrow directions symbolizing the directions of the current flow.
  • the transmitter 5 has essentially have a cylindrical shape, the outer surface and an end face of the cylinder forming the rear side being clad with a shield 8.
  • the coil 6 and the core 7 directly adjoin the side of the transmitter which is free of the shielding, and with this side the transmitter 5 is aligned with the cranium during operation to emit exogenous magnetic fields.
  • a holding element 9 is arranged, with which the transmitter 5 can be fixed in a home.
  • the extracranial transmitter 5 can be protected against deformation, for example by pouring the live parts into suitable resin or embedding the live parts in stable insulating material.
  • the transmitter 5 can be provided with a cooling device.
  • intracranially implanted electrodes are used as sensors and / or transmitters, via which both EEG measurements can be carried out and currents can be conducted into the brain.
  • Lines leading to these electrodes and / or their interfaces to the computer unit and / or further lines and / or further measuring devices and / or the associated computer unit and / or the energy supplier of electrodes and / or computer unit can also be implanted, thereby permitting outpatient operation.
  • An advantageous embodiment of the parts of the positioning system close to the head comprises a plurality of transmitters which are distributed intracranially or extracranially; this arrangement of transmitters is referred to as a transmitter grating.
  • An advantageous embodiment of an extracranial transmitter grating includes fixing it with respect to the crane of the respective user, so that when the transmitter grille is put on and taken off several times, the transmitters assume their respective relative positions again, for example by fitting the transmitter grille into a helmet, the inside of which is the cranial shape of the respective user replicates.
  • Another advantageous embodiment of the transmitter grid comprises implanted electrodes.
  • An advantageous embodiment of the parts of an extracranial measuring and positioning system close to the head comprises a helmet 10 on its inside which reproduces the cranial shape of the respective user, with connecting cables running through a support axis 11 and a chin rest 12.Sensor and transmitter grids in the interior of the helmet are fixed in such a way that both grids overlap - ie there are sufficient transmitters in the vicinity of each sensor and vice versa.
  • FIG. 3 shows a planar projection of the superimposition of the transmitter with the sensor grid (openings 13 for sensors are shown as circles and openings 14 for transmitters 5 as squares).
  • the user sits on an armchair with a neck support below the helmet 10.
  • the sensor grid is intracranial and the helmet contains the extracranial transmitter grid.
  • the transmitter grid is intracranial and the helmet contains the extracranial sensor grid.
  • both sensor and transmitter gratings are intracranial.
  • the sensor density or sensor configuration of an extracranial sensor grid can be set. In a further advantageous embodiment, this change is automated, controlled or regulated via the intermediate unit.
  • the transmitter density or transmitter configuration of an extracranial transmitter grid can be set and / or the angle of inclination of each individual transmitter to the patient's cranium can be changed.
  • FIG. 5 shows a planar projection of a mechanical holder of this embodiment. Openings 13 for sensors are circles and openings 14 for Transmitter shown square. Here it is possible to anchor transmitter 5 in the openings 14 of the holder and / or to tilt transmitter 5 with respect to the holder.
  • all conventional coil configurations can be represented with their arrangement, orientation and field direction.
  • the device is provided with conventional protection against power failures and / or voltage fluctuations.
  • the computer unit runs real-time and automatically: i) ongoing calculation of the seizure early warning indicator from the input data, ii) if the indicator exceeds thresholds, calculation of an intervention instruction to prevent seizure, and implementation of the intervention in question using the transmitter Magnetic fields, iii) If the indicator returns to normal and / or a time limit is exceeded, shutdown of the intervention, iv) Conventional algorithms for removing artifacts by artificially generated magnetic fields (see, for example, [2]), as well as for other artifact removal (e.g., due to muscle twitching) ,
  • the measurement data acquisition by EEG, measurement data preprocessing and measurement data transfer in digital form along with possible artifact elimination are carried out continuously with conventional methods.
  • the measurement data are automatically processed according to the empirically validated early warning indicator used to a value of this early warning indicator.
  • the automatic intervention instructions for seizure prevention which are compatible with the seizure model used, are calculated, and their ongoing implementation via magnetic field generation (B-field generation) is carried out with the help of the transmitters.
  • the specifics of magnetic field generation (for example location, strength, direction, frequency pattern, and / or others) result from the intervention instruction.
  • the B-field changes cause intracranial induction voltages.
  • the digital control of the magnetic field generation takes place with conventional methods. Current health recommendations for extracranial generated electromagnetic radiation are known, and compliance with them is automated.
  • An early warning indicator is a quantity calculated from electromagnetic brain activity data that changes significantly before an epileptic attack. Early warning indicators are preferred for the present invention, which are changed at least a few minutes before the attack.
  • a suitable early warning indicator is the correlation of similarity indices of a predefined proportion of sensors, with falling similarity indices.
  • the similarity index is known from [1] and a number of previous publications, for example [21].
  • the average early warning time given here is 325 seconds.
  • the early warning indicator is the mutual information of similarity indices of a predefined portion of sensors, with decreasing similarity indices.
  • "Mutual information” is known as a binary logarithm of "probability of the occurrence of two random variables together divided by the product of their individual probabilities”.
  • the early warning indicator is the mutual information of similarity indices of a predefined portion of sensors, in the case of falling similarity indices, linked to activation indicators (for example, characteristic changes in body temperature when waking up, muscle movements, characteristic EEG patterns, and / or others). This minimizes the possibility of false alarms due to simultaneous changes in the patient's state of wakefulness for many sensors, with additional requirements for the device depending on the additional indicator (for example, ongoing EMG measurement).
  • activation indicators for example, characteristic changes in body temperature when waking up, muscle movements, characteristic EEG patterns, and / or others.
  • the examples given above for calculating early warning indicators do not require training phases that contain epileptic seizures.
  • the early warning indicators are calculated on the basis of a phase space representation of the normal state of the patient concerned.
  • FIGS. 6 and 7 An example of phase space embedding is given in FIGS. 6 and 7, FIG. 6 showing an EEG time series of 8 seconds for a single channel, with a sampling rate of 128 measuring points per second (x-axis time, y-axis voltage between Electrode and reference electrode in freely selected units), FIG. 7 shows a section of the time series from FIG. 6 comprising 32 measuring points starting with measuring point 128 in phase space representation (x-axis measured value at time t, y-axis measured value at time t-20).
  • the method of embedding in a phase space is described in detail in [13], for example. It is assumed here that the one-dimensional signal (as in FIG. 6) is a projection of a higher-dimensional signal which is to be restored. This higher-dimensional signal is shown in two dimensions in FIG.
  • a detection module can be specified with
  • Seizure models are used to make the intervention reliable.
  • the following models can be used as seizure models: oscillator seizure model, chaos seizure model, synergetic seizure model, stochastic oscillator seizure model, stochastic chaos seizure model, stochastic synergetic seizure model, stochastic synergetic seizure model
  • seizure models describe the parameters relevant for an epileptic seizure, which are calculated from the electromagnetic activities of neurons and / or neuron populations. These parameters are e.g. Chaoticity of the potential difference time series measured by means of an EEG electrode and its reference electrode, expressed by their maximum Lyapunov exponent [12]. Typical further parameters are critical slowdown, critical fluctuations, similarity to a normal state in the (meta) phase space, etc. These parameters are expressed by concrete numerical parameters. For example, instead of the Lyapunov exponent, the chaoticity can alternatively be represented by the embedding dimension [13], correlation dimension, Kullback-Leibler entropy, etc.
  • An oscillator seizure model is based on [3].
  • the neuron populations described here are so-called neural limit cycle oscillators, which means that they can oscillate or rest depending on the parameters.
  • the interaction of neural oscillators with each other is described with an interaction equation. This interaction presupposes the development of seizures. Preventing seizures is based on decoupling the neural oscillators.
  • phase oscillator is used synonymously with “limit cycle oscillator”.
  • limit cycle oscillator A distinction must be made here between the special case of phase oscillators (see for example [22]), in which the amplitude and phase are decoupled and only the phase of an oscillator is considered.
  • the limit cycle is bige closed curve, the phase oscillator as a circular path.
  • a corresponding seizure model is based on the increased occurrence of 1 clusters compared to other clusters.
  • a suitable interaction for the oscillator seizure model is the specific weak coupling between neural oscillators. Seizures are accompanied by an increase in the number of oscillating neural oscillators as well as increased mutual information between the oscillation frequencies of these weakly coupled neural oscillators.
  • a neural oscillator is a localized ensemble of neurons that is capable of oscillating and non-oscillating behavior. The dynamics of each neural oscillator interacting with other neural oscillators is through
  • gj is given by the Wilson-Cowan equations known from [3] for the i-th neural oscillator, hy is the strength of the connection from Zj to Zj.
  • the coupling strength epsilon is empirically between 0.04 and 0.08. If one assumes the coupling strength and connection strengths to be slowly changing compared to the time scale of a seizure, there remains primarily an intervention via the function g-. It is known from the theory of neural oscillators that they only interact in the case of oscillations, and only at commensurable oscillation frequencies.
  • neural oscillators that are adjacent and secondly that oscillate with the same and / or commensurable frequencies prior to the intervention are forced to incommensurable frequencies that are contained in their original frequencies or to nearby incommensurable frequencies (example: neighboring oscillators have the frequencies 3 Hertz and 15 Hertz , therefore force the second oscillator to the frequency 5 Hertz. Another example: both have the frequency 8 Hertz, therefore force one of them to 7 Hertz).
  • the vibrations are forced by means of magnetic fields of these frequencies at high amplitudes. Since oscillating neural oscillators and neighborhoods on the same and / or commensurable frequencies indicate the possible existence of physiological connections, the forced incommensurability, i.e. Modification of the gj, the possible and even more factual interaction between the respective zones is interrupted, which minimizes mutual information, and thus prevents the onset of seizures.
  • the complexity of the process allows the continuous real-time calculation of all required sizes.
  • step 1 Another advantageous embodiment of an instruction for the prevention of epileptic seizures that is compatible with the “seizure model with specific weak coupling between neural oscillators” is:
  • step 1 first stimulate the neural oscillators to chaotic behavior [14] (for example by time-delayed feedback with systematic error ), and then stabilize the neural oscillators in step 2 depending on the influence of the respective transmitter first orbits with incommensurable frequencies that reach them using conventional methods.
  • step 2 of this method has already proven sufficient in cell preparations to prevent the spread of seizures.
  • the algorithm used there (“OGY method”) is unsuitable for the in vivo real-time case because of its requirements for computer speed and storage capacity.
  • the chaos seizure model assumes that normal brain activity, as captured by each sensor, has a minimum of chaoticity. The seizures are accompanied by a simultaneous decrease in this chaos for all sensors. Seizures are prevented by maintaining a certain degree of chaos ([4] and [16]).
  • An intervention instruction describing the magnetic field to be generated is calculated on the basis of these models. This description is e.g. by location, strength, direction, frequency pattern, and / or other parameters of the magnetic field (B field). With this magnetic field, the electromagnetic activities of neurons and / or neuron populations are changed in a suitable manner and an impending epileptic attack is thus prevented.
  • the use of one or more seizure models reliably prevents epileptic seizures.
  • the invention is based on the knowledge that the processes leading to epileptic seizures are made quantifiable by naming suitable control parameters, so that reliable prevention is possible.
  • the preferred embodiment of the invention comprises an intervention module, which is suitable in a variety of models to prevent the attack, for example in the case of high transmitter density, the transmitters are to be divided into three classes, class 1 for chaotization, class 2 for incommensurable stabilization, - class 3 for Noise-Drowning, in such a way that in every neighborhood of each transmitter of one class there are transmitters of the other classes.
  • class 1 seizure models are satisfied, class 2 oscillator model seizures, class 3 models with stochastic components.
  • the satisfaction of synergetic models results automatically from devaluation of the master modes (by frequency shifts) while at the same time preventing the ascent from slave modes to master modes (by noise-drowning).
  • the brain activity can be measured either during or immediately after an intervention, which results in a closed control loop, since the early warning indicator and, if necessary, a further intervention instruction are calculated from the measured brain activity.
  • An advantageous embodiment of the retraction of the intervention is the sliding simultaneous retraction of all generated magnetic fields.
  • An advantageous embodiment of the retraction of the intervention is the sliding thinning of the transmitters producing magnetic fields (thinning as a spatially uniformly distributed retraction and / or switching off a percentage of all transmitters).
  • An advantageous embodiment of the retraction of the intervention is the spatially localized retraction and / or shutdown of several transmitters with gradual expansion of the area in which the retraction and / or shutdown takes place.
  • the procedure described above prevents epileptic seizures.
  • other behavioral goals preferably for healthy people, can be achieved on the basis of appropriate behavior models as well as general brain activity models.
  • the general procedure comprises the interactive determination of the non-observables of the models used for the person concerned, based on this, and based on the models the calculation of an a priori unknown intervention instruction, as well as the selective implementation of the instruction while at the same time preventing undesired propagation effects.
  • the aim of this modification is, at the request of a person, to reliably stabilize or change their behavior and / or to stabilize this change.
  • This method can be carried out with a device similar to the device described above.

Abstract

The invention relates to a method and a device for the automatic non-invasive controlled or regulated electromagnetic prevention of epileptic attacks in vivo, based on attack models. The method firstly comprises, in addition to continuous extracranial measurement of electromagnetic fields ( in particular those connected with brain activity), the continuous calculation of early warning indicators from the measured data and secondly, in the case of critical indicator values, in addition to the continuous calculation of attack-preventing interventions based on an attack model, the continuous application of said interventions by means of extra-cranial generation of suitable magnetic fields.

Description

VERFAHREN UND VORRICHTUNG ZUR PRÄVENTION EPILEPTISCHER ANFÄLLE METHOD AND DEVICE FOR PREVENTING EPILEPTIC SEASONS
Die Erfindung betrifft ein Verfahren und eine Vorrichtung für die automatische nichtin- vasive gesteuerte bzw. geregelte elektromagnetische Prävention epileptischer Anfälle in vivo.The invention relates to a method and a device for the automatic non-invasive controlled or regulated electromagnetic prevention of epileptic seizures in vivo.
Die relevanten Technologien umfassen folgende Ansätze:The relevant technologies include the following approaches:
1 Wesentliche Forschungsanstrengungen sind auf die neurophysiologische Entstehung epileptischer Anfälle, und dort auf die Ebene von Zellpräparaten fo- kussiert [8], [9].1 Major research efforts are focused on the neurophysiological development of epileptic seizures, and there on the level of cell preparations [8], [9].
2 Frühwarnmethoden auf der Basis extrakranialer EEG-Daten sind im Grundsatz beschrieben worden, z.B. [1], [21].2 Early warning methods based on extracranial EEG data have been described in principle, e.g. [1], [21].
3 Diagnostische Verwendung von TMS (transkranialer Magnetstimulation) ist im Grundsatz beschrieben worden, auch gekoppelt mit EEG, z.B. [2]3 Diagnostic use of TMS (transcranial magnetic stimulation) has been described in principle, also coupled with EEG, e.g. [2]
4 Die Verwendung von TMS zur Intervention bei Epilepsie besteht aus dem Auffinden eines epileptischen Focus auf der Basis medizinischer Erfahrung des verwendenden Arztes, bildgebenden Verfahren, oder Ausprobieren sowie anschließenden Versuchen, mit Ein- oder Zweispulensystemen epileptische Anfälle hervorzurufen(z.B. [5], [6], [10]).4 The use of TMS for intervention in epilepsy consists of finding an epileptic focus based on the medical experience of the doctor using it, imaging procedures, or trying it out, and then trying to induce epileptic seizures with single or double coil systems (e.g. [5], [6 ], [10]).
5 Anfallsmodelle, die Voraussetzungen und Eigenschaften kollektiver Erre- gungsprozesse beschreiben, existieren als Musterbeispiele neuerer physikalischer Theorien, wie z.B. Synergetik (Überblick siehe [7]).5 seizure models, the prerequisites and properties of collective excitement describing development processes exist as exemplary examples of recent physical theories, such as synergetics (for an overview, see [7]).
Die WO 98/18394 beschreibt ein Verfahren, mit dem eine Magnetstimulation an ei- nem Probanden durchgeführt wird, wobei gleichzeitig dessen Hirnaktivität mittels EEG gemessen wird. Dieses bekannte Verfahren wird zur Diagnose verwendet.WO 98/18394 describes a method with which magnetic stimulation is carried out on a subject, at the same time his brain activity is measured by means of an EEG. This known method is used for diagnosis.
Aus der WO 01/21067 geht ein Verfahren zum frühzeitigen Ermitteln eines drohenden epileptischen Anfalls hervor. Mit diesem Verfahren soll ein drohender epileptischer Anfall Stunden oder Tage vorhergesagt werden. Bei diesem Verfahren wird die Hirnaktivität eines Patienten an unterschiedlichen Stellen vor, während und nach epileptischen Anfällen gemessen. Für diesen Patienten werden mit Hilfe verschiedener nichtlinearer Verfahren Sensorpaare ermittelt, die im Rahmen einer aus Anfällen bestehenden Trainingsphase den Anfall besonders gut vorhersagen. In regelmäßigen Abständen werden Signalpaare adaptiert, wozu weitere Anfälle nötig sind. Das in diesem Verfahren enthaltene Training und Adaption verhindern eine vollständige Prävention, da die Daten immer wieder mittels neuer Anfälle aktualisiert werden müssen.WO 01/21067 discloses a method for the early detection of an impending epileptic seizure. This procedure is designed to predict an impending epileptic seizure for hours or days. This procedure measures a patient's brain activity at different locations before, during and after epileptic seizures. With the help of various nonlinear methods, sensor pairs are determined for this patient that predict the seizure particularly well in the context of a training phase consisting of seizures. Signal pairs are adapted at regular intervals, for which further attacks are necessary. The training and adaptation contained in this procedure prevent complete prevention, since the data must be updated again and again with new seizures.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zur Prävention epileptischer Anfälle zu schaffen.The object of the present invention is to create a method and a device for the prevention of epileptic seizures.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und durch eine Vorrichtung mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben.The object is achieved by a method with the features of claim 1 and by a device with the features of claim 8. Advantageous embodiments of the invention are specified in the respective subclaims.
Die Verwendung eines Anfallsmodells bewirkt eine zuverlässige Verhinderung epileptischer Anfälle. Der Erfindung liegt die Erkenntnis zugrunde, dass mit diesen Modellen die zu epileptischen Anfällen führenden Vorgänge unter Nennung geeigneter Kontrollparameter quantifizierbar gemacht werden, so dass eine zuverlässige Prä- vention möglich ist.Using a seizure model reliably prevents epileptic seizures. The invention is based on the knowledge that the processes leading to epileptic seizures can be made quantifiable by naming suitable control parameters, so that reliable prevention is possible.
Die Erfindung wird nachfolgend beispielhaft anhand der Zeichnungen erläutert. In den Zeichnungen zeigen: Fig. 1 einen Transmitter in einer Schnittansicht, Fig. 2 den Transmitter aus Figur 1 in einer Ansicht von unten, Fig. 3 eine planare Projektion von Öffnungen für Sensoren und Transmitter entspre- chend ihrer Anordnung an einem Helm,The invention is explained below using the drawings as an example. The drawings show: 1 shows a transmitter in a sectional view, FIG. 2 shows the transmitter from FIG. 1 in a view from below, FIG. 3 shows a planar projection of openings for sensors and transmitters according to their arrangement on a helmet,
Fig. 4 einen Helm und eine Trägerachse nebst einer Kinnstütze,4 shows a helmet and a carrier axis together with a chin rest,
Fig. 5 eine weitere planare Projektion von Öffnungen für Sensoren und Transmitter entsprechend ihrer Anordnung an einem Helm, und Fig. 6 ein Beispiel für eine Zeitreihe von Messwerten eines EEG-Sensors, Fig. 7 einen Ausschnitt aus der Zeitreihe aus Figur 6 in einer Phasenraumdarstel- lung, und Fig. 8 einen typischen Verlauf der SNR (Signal-to-Noise-Ratio).5 shows a further planar projection of openings for sensors and transmitters according to their arrangement on a helmet, and FIG. 6 shows an example of a time series of measured values of an EEG sensor, FIG. 7 shows a section of the time series from FIG. 6 in a phase space representation 8, and FIG. 8 shows a typical course of the SNR (signal-to-noise ratio).
Vorrichtungcontraption
Die erfindungsgemäße Vorrichtung umfasst eingangsseitig ein Messsystem mit Apparaten zur elektromagnetischen Messdatengewinnung, -vorverarbeitung und - weitergäbe, beispielsweise in einer vorteilhaften Ausgestaltung umfassend eine EEG- Kappe mit ihren Sensoren, Verbindungen zum Verstärker, Verstärker, Verbindungen zum A D-Umsetzer, A/D-Umsetzer, Verbindungen zur Rechnereinheit, Stromversor- ger für die Apparate, nebst Verbindungen.On the input side, the device according to the invention comprises a measuring system with apparatuses for electromagnetic measurement data acquisition, preprocessing and forwarding, for example in an advantageous embodiment comprising an EEG cap with its sensors, connections to the amplifier, amplifier, connections to the AD converter, ADC Converter, connections to the computer unit, electricity supplier for the apparatus, and connections.
Die Vorrichtung umfasst ausgangsseitig ein Stellsystem mit Apparaten zur extrakra- nialen Erzeugung von Magnetfeldern, „Transmitter" genannt, sowie eine Vorrichtung zur Umsetzung der von der Rechnereinheit ausgehenden digitalen Steuerungs- bzw. Regelungsvorgaben in Transmittersignale, beispielsweise in einer vorteilhaften Ausgestaltung umfassend stromführende Spulen, Stromversorger, Verbindungen, D/AUmsetzer, nebst Verbindungen.On the output side, the device comprises an actuating system with apparatus for the extracranial generation of magnetic fields, referred to as “transmitter”, and a device for converting the digital control or regulation specifications originating from the computer unit into transmitter signals, for example in an advantageous embodiment comprising current-carrying coils, power suppliers , Connections, D / A converter, together with connections.
Des weiteren umfasst die Vorrichtung zwischen Eingangs- und Ausgangsseite eine Rechnereinheit (PC oder Workstation) mit Software, zur Implementierung des unten näher erläuterten Verfahrens. Geeignete Sensoren sind EEG- oder MEG-Sensoren. Die MEG-Sensoren sind z.B. aus einem SQUID-Sensorelement mit geeigneter Auswerteeinrichtung zum Detektie- ren eines Magnetfeldes und Kühleinrichtung ausgebildet. Die EEG-Sensoren weisen z.B. zwei Elektroden zum Messen einer elektrischen Potenzialdifferenz auf.Furthermore, the device between the input and output side comprises a computer unit (PC or workstation) with software for implementing the method explained in more detail below. Suitable sensors are EEG or MEG sensors. The MEG sensors are formed, for example, from a SQUID sensor element with a suitable evaluation device for detecting a magnetic field and a cooling device. The EEG sensors have, for example, two electrodes for measuring an electrical potential difference.
Ein Sensor kann eine elektrische und/oder magnetische Abschirmung gegenüber seiner Umgebung aufweisen, soweit dadurch dessen Funktion nicht behindert wird (also beispielsweise keine Abschirmung in Richtung des Kraniums des jeweiligen Patienten, sehr wohl aber eine Abschirmung in Richtung anderer Transmitter und/oder Sensoren und/oder Verbindungskabel).A sensor can have an electrical and / or magnetic shield from its surroundings, provided that its function is not hindered (for example, no shield in the direction of the patient's crane, but very well shield in the direction of other transmitters and / or sensors and / or connecting cable).
Der kopfnahe Teil der Eingangsseite kann eine Vielzahl von Sensoren aufweisen, die über die hirnnahe Kopfoberfläche verteilt sind, diese Vielzahl von Sensoren wird als Sensorgitter bezeichnet.The part of the input side near the head can have a multiplicity of sensors which are distributed over the surface of the head near the brain; this multiplicity of sensors is referred to as a sensor grid.
Das Sensorgitter weist eine Fixiereinrichtung zum Fixieren desselben bezüglich des Kraniums des jeweiligen Patienten auf, sodass bei mehrfachem Auf- und Absetzen des Sensorgitters die Sensoren ihre jeweilige relative Position wieder einnehmen, beispielsweise durch Einpassen des Sensorgitters in einen Helm, dessen Innenseite die Kranialform des jeweiligen Patienten nachbildet. Die Fixierung kann auch kameraunterstützt erfolgen, wobei die Position des Kopfes des Patienten im Raum, sowie der Sensoren bezüglich des Kopfes über mehrere Kameras erfasst und real-time in 3D-Daten umgerechnet wird.The sensor grid has a fixing device for fixing the same with respect to the patient's crane, so that when the sensor grid is put on and taken off several times, the sensors return to their respective relative positions, for example by fitting the sensor grid into a helmet, the inside of which has the cranial shape of the respective patient replicates. The fixation can also be carried out with the aid of a camera, the position of the patient's head in the room and the sensors with respect to the head being recorded by several cameras and converted in real time into 3D data.
Eine vorteilhafte Ausgestaltung der Eingangsseite umfasst deren teilweise ambulante Form, bei der die Messdatengewinnung über ein tragbares Sensorgitter erfolgt, das mit in einem Rucksack oder als Teil der Kleidung vom Patienten zu tragenden Vorrichtungen zur Messdatenvorverarbeitung verbunden ist, und bei der die Datenweitergabe zur Rechnereinheit vorteilhafterweise drahtlos erfolgt.An advantageous embodiment of the input side comprises its partially outpatient form, in which the measurement data is obtained via a portable sensor grid, which is connected to devices for measurement data preprocessing to be carried by the patient in a backpack or as part of the clothing, and in which the data transfer to the computer unit is advantageously wireless he follows.
Ein Transmitter 5 umfasst eine stromführende Spule 6 mit para-, dia-, oder ferromag- netischem Kern 7, wie es in Figur 1 in Schnittansicht dargestellt ist, wobei die Pfeilrichtungen die Richtungen des Stromflusses symbolisieren. Der Transmitter 5 weist im Wesentlichen eine zylinderförmige Form auf, wobei die Mantelfläche und eine die Rückseite bildende Stirnfläche des Zylinders mit einer Abschirmung 8 eingekleidet sind. An der von der Abschirmung freien Seite des Transmitters grenzen unmittelbar die Spule 6 und der Kern 7 an, und mit dieser Seite wird der Transmitter 5 im Betrieb auf das Kranium zur Abgabe exogener Magnetfelder ausgerichtet. An der Rückseite des Transmitters 5 ist ein Halteelement 9 angeordnet, mit welchem der Transmitter 5 in einem Heim fixierbar ist.A transmitter 5 comprises a current-carrying coil 6 with a para-, dia-, or ferromagnetic core 7, as shown in a sectional view in FIG. 1, the arrow directions symbolizing the directions of the current flow. The transmitter 5 has essentially have a cylindrical shape, the outer surface and an end face of the cylinder forming the rear side being clad with a shield 8. The coil 6 and the core 7 directly adjoin the side of the transmitter which is free of the shielding, and with this side the transmitter 5 is aligned with the cranium during operation to emit exogenous magnetic fields. On the back of the transmitter 5, a holding element 9 is arranged, with which the transmitter 5 can be fixed in a home.
Der extrakraniale Transmitter 5 kann gegen Verformung geschützt sein, beispielswei- se durch Eingießen der stromführenden Teile in geeignetes Harz, oder Einbetten der stromführenden Teile in stabiles Isoliermaterial.The extracranial transmitter 5 can be protected against deformation, for example by pouring the live parts into suitable resin or embedding the live parts in stable insulating material.
Der Transmitter 5 kann mit einer Kühlvorrichtung versehen sein.The transmitter 5 can be provided with a cooling device.
In einer weiteren Ausgestaltung werden als Sensoren und / oder Transmitter intrakra- nial implantierte Elektroden verwendet, über die sowohl EEG Messungen durchgeführt werden können, als auch Ströme in das Hirn geleitet werden können. Zu diesen Elektroden führende Leitungen und/oder deren Interfaces zur Rechnereinheit und/oder weitere Leitungen und/oder weitere Messgeräte und/oder die zugehörige Rechnereinheit und/oder der Energieversorger von Elektroden und/oder Rechnereinheit sind ebenfalls implantierbar, wodurch ein ambulanter Betrieb gestattet wird.In a further embodiment, intracranially implanted electrodes are used as sensors and / or transmitters, via which both EEG measurements can be carried out and currents can be conducted into the brain. Lines leading to these electrodes and / or their interfaces to the computer unit and / or further lines and / or further measuring devices and / or the associated computer unit and / or the energy supplier of electrodes and / or computer unit can also be implanted, thereby permitting outpatient operation.
Eine vorteilhafte Ausgestaltung der kopfnahen Teile des Stellsystems umfasst eine Vielzahl von Transmittem, die intra- und oder extrakranial verteilt sind, diese Anord- nung von Transmittem wird als Transmittergitter bezeichnet.An advantageous embodiment of the parts of the positioning system close to the head comprises a plurality of transmitters which are distributed intracranially or extracranially; this arrangement of transmitters is referred to as a transmitter grating.
Eine vorteilhafte Ausgestaltung eines extrakranialen Transmittergitters umfasst dessen Fixierung bezüglich des Kraniums des jeweiligen Anwenders, sodass bei mehrfachem Auf- und Absetzen des Transmittergitters die Transmitter ihre jeweilige relative Position wieder einnehmen, beispielsweise durch Einpassen des Transmittergitters in einen Helm, dessen Innenseite die Kranialform des jeweiligen Anwenders nachbildet. Eine andere vorteilhafte Ausgestaltung des Transmittergitters umfasst implantierte Elektroden.An advantageous embodiment of an extracranial transmitter grating includes fixing it with respect to the crane of the respective user, so that when the transmitter grille is put on and taken off several times, the transmitters assume their respective relative positions again, for example by fitting the transmitter grille into a helmet, the inside of which is the cranial shape of the respective user replicates. Another advantageous embodiment of the transmitter grid comprises implanted electrodes.
Eine vorteilhafte Ausgestaltung der kopfnahen Teile eines extrakranialen Mess- und Stellsystem umfasst einen auf seiner Innenseite die Kranialform des jeweiligen Anwenders nachbildenden Helm 10 mit durch eine Trägerachse 11 verlaufenden Verbindungskabeln und einer Kinnstütze 12. Sensor- und Transmittergitter im Inneren des Helms sind solcherart fixiert, dass sich beide Gitter überlappen - i.e. sich in der Nachbarschaft jedes Sensors hinreichend viele Transmitter befinden und umgekehrt. Eine planare Projektion der Überlagerung des Transmitters mit dem Sensorgitter zeigt Figur 3 (hierbei sind Öffnungen 13 für Sensoren als Kreise und Öffnungen 14 für Transmitter 5 als Vierecke dargestellt). In der beschriebenen Ausgestaltung sitzt der Anwender auf einem Sessel mit Nackenstütze unterhalb des Helms 10.An advantageous embodiment of the parts of an extracranial measuring and positioning system close to the head comprises a helmet 10 on its inside which reproduces the cranial shape of the respective user, with connecting cables running through a support axis 11 and a chin rest 12.Sensor and transmitter grids in the interior of the helmet are fixed in such a way that both grids overlap - ie there are sufficient transmitters in the vicinity of each sensor and vice versa. FIG. 3 shows a planar projection of the superimposition of the transmitter with the sensor grid (openings 13 for sensors are shown as circles and openings 14 for transmitters 5 as squares). In the embodiment described, the user sits on an armchair with a neck support below the helmet 10.
In einer alternativen Ausgestaltung ist das Sensorgitter intrakranial, und der Helm enthält das extrakraniale Transmittergitter.In an alternative embodiment, the sensor grid is intracranial and the helmet contains the extracranial transmitter grid.
In einer alternativen Ausgestaltung ist das Transmittergitter intrakranial, und der Helm enthält das extrakraniale Sensorgitter.In an alternative embodiment, the transmitter grid is intracranial and the helmet contains the extracranial sensor grid.
In einer alternativen Ausgestaltung sind sowohl Sensor-, als auch Transmittergitter intrakranial.In an alternative embodiment, both sensor and transmitter gratings are intracranial.
In einer vorteilhaften Ausgestaltung lässt sich die Sensordichte bzw. Sensorkonfigu- ration eines extrakranialen Sensorgitters einstellen. In einer weiteren vorteilhaften Ausgestaltung geschieht diese Veränderung automatisiert, gesteuert bzw. geregelt über die Zwischeneinheit.In an advantageous embodiment, the sensor density or sensor configuration of an extracranial sensor grid can be set. In a further advantageous embodiment, this change is automated, controlled or regulated via the intermediate unit.
In einer vorteilhaften Ausgestaltung lassen sich die Transmitterdichte bzw. Transmit- terkonfiguration eines extrakranialen Transmittergitters einstellen und/oder die Neigungswinkel jedes einzelnen Transmitters zum Kranium des Patienten verändern. Eine planare Projektion einer mechanischen Halterung dieser Ausgestaltung zeigt Figur 5. Hierbei sind Öffnungen 13 für Sensoren als Kreise und Öffnungen 14 für Transmitter eckig dargestellt. Hier ist es möglich, Transmitter 5 in den Öffnungen 14 der Halterung zu verankern, und/oder Transmitter 5 gegenüber der Halterung zu kippen. Unter anderem können in dieser Ausgestaltung sämtliche konventionellen Spulenkonfigurationen mit ihrer Anordnung, Ausrichtung und Feldrichtung dargestellt werden.In an advantageous embodiment, the transmitter density or transmitter configuration of an extracranial transmitter grid can be set and / or the angle of inclination of each individual transmitter to the patient's cranium can be changed. FIG. 5 shows a planar projection of a mechanical holder of this embodiment. Openings 13 for sensors are circles and openings 14 for Transmitter shown square. Here it is possible to anchor transmitter 5 in the openings 14 of the holder and / or to tilt transmitter 5 with respect to the holder. In this embodiment, among other things, all conventional coil configurations can be represented with their arrangement, orientation and field direction.
In einer vorteilhaften Ausgestaltung ist die Vorrichtung mit konventionellem Schutz vor Stromausfällen und/oder Spannungsschwankungen versehen.In an advantageous embodiment, the device is provided with conventional protection against power failures and / or voltage fluctuations.
In einer vorteilhaften Ausgestaltung laufen auf der Rechnereinheit real-time und au- tomatisch: i) Laufende Berechnung des Anfallsfrühwamindikators aus den Eingangsdaten, ii) Bei Schwellenüberschreitung durch den Indikator Berechnung einer Interventionsanweisung zur Anfallsverhinderung, sowie Durchführung der betreffenden Intervention mit Hilfe der per Transmitter erzeugten Magnetfelder, iii) Bei Rückkehr des Indikators in den Normalbereich und/oder Überschreiten einer Zeitschranke Herunterfahren der Intervention, iv) Konventionelle Algorithmen zur Beseitigung von Artefakten durch künstlich erzeugte Magnetfelder (siehe z.B. [2]), sowie zur sonstigen Artefaktbeseitigung (z.B. durch Muskelzuckungen).In an advantageous embodiment, the computer unit runs real-time and automatically: i) ongoing calculation of the seizure early warning indicator from the input data, ii) if the indicator exceeds thresholds, calculation of an intervention instruction to prevent seizure, and implementation of the intervention in question using the transmitter Magnetic fields, iii) If the indicator returns to normal and / or a time limit is exceeded, shutdown of the intervention, iv) Conventional algorithms for removing artifacts by artificially generated magnetic fields (see, for example, [2]), as well as for other artifact removal (e.g., due to muscle twitching) ,
In einer vorteilhaften Ausgestaltung laufen über i-iv hinausgehend zusätzlich auf der Rechnereinheit real-time und automatisch Algorithmen zur Dichte- und Positionie- rungsoptimierung von Sensoren und Transmittem.In an advantageous embodiment, in addition to i-iv, algorithms for optimizing the density and positioning of sensors and transmitters also run automatically and real-time on the computer unit.
Verfahren:Method:
1. Die Messdatenerfassung per EEG, Messdatenvorverarbeitung und Messda- tenweitergabe in digitaler Form nebst möglicher Artefaktbeseitigung erfolgen laufend mit konventionellen Verfahren. Die Messdaten werden automatisch entsprechend dem verwendeten empirisch validierten Frühwarnindikator zu einem Wert dieses Frühwarnindikators verarbeitet . 2. Bei Ansprechen des Frühwarnindikators erfolgt die Berechnung einer mit dem verwendeten Anfallsmodell kompatiblen automatischen Interventionsanweisung zur Anfallsprävention, sowie deren laufende Umsetzung über Magnetfelderzeugung (B-Feld-Erzeugung) mit Hilfe der Transmitter. Die Spezifika der Magnetfelderzeugung (zum Beispiel Ort, Stärke, Richtung, Frequenzmuster, und/oder andere) ergeben sich aus der Interventionsanweisung. Die B-Feld- Änderungen bewirken intrakranial Induktionsspannungen. Die digitale Steuerung der Magnetfelderzeugung erfolgt mit konventionellen Verfahren. Geltende Gesundheitsempfehlungen für extrakraniale generierte elektromagnetische Strahlung sind bekannt, deren Einhaltung erfolgt automatisiert.1. The measurement data acquisition by EEG, measurement data preprocessing and measurement data transfer in digital form along with possible artifact elimination are carried out continuously with conventional methods. The measurement data are automatically processed according to the empirically validated early warning indicator used to a value of this early warning indicator. 2. When the early warning indicator responds, the automatic intervention instructions for seizure prevention, which are compatible with the seizure model used, are calculated, and their ongoing implementation via magnetic field generation (B-field generation) is carried out with the help of the transmitters. The specifics of magnetic field generation (for example location, strength, direction, frequency pattern, and / or others) result from the intervention instruction. The B-field changes cause intracranial induction voltages. The digital control of the magnetic field generation takes place with conventional methods. Current health recommendations for extracranial generated electromagnetic radiation are known, and compliance with them is automated.
3. Bei Rückkehr des Frühwarnindikators in seinen Normalbereich und/oder Überschreiten einer Zeitschranke für die Intervention erfolgt das Herunterfahren der Intervention.3. When the early warning indicator returns to its normal range and / or a time limit for the intervention is exceeded, the intervention is shut down.
Ein Frühwarnindikator ist eine aus elektromagnetischen Hirnaktivitätsdaten berechnete Größe, die sich vor einem epileptischen Anfall deutlich ändert. Für die vorliegende Erfindung werden Frühwarnindikatoren bevorzugt, deren Änderung mindestens einige Minuten vor dem Anfall erfolgt.An early warning indicator is a quantity calculated from electromagnetic brain activity data that changes significantly before an epileptic attack. Early warning indicators are preferred for the present invention, which are changed at least a few minutes before the attack.
Ein geeigneter Frühwamindikator ist die Korrelation von Ahnlichkeitsindices eines vordefinierten Anteils von Sensoren, bei sinkenden Ahnlichkeitsindices. Der Ähnlichkeitsindex (engl.: Similarity index)" ist aus [1] und einer Vielzahl vorangehender Veröffentlichungen, beispielsweise [21], bekannt. Die angegebene mittlere Frühwarnzeit liegt hier bei 325 Sekunden.A suitable early warning indicator is the correlation of similarity indices of a predefined proportion of sensors, with falling similarity indices. The similarity index is known from [1] and a number of previous publications, for example [21]. The average early warning time given here is 325 seconds.
In einer anderen vorteilhaften Ausgestaltung des Verfahrens ist der Frühwamindikator die Mutual Information von Ahnlichkeitsindices eines vordefinierten Anteils von Sensoren, bei sinkenden Ahnlichkeitsindices. „Mutual Information" ist bekannt als binärer Logarithmus von „Wahrscheinlichkeit des gemeinsamen Auftretens zweier Zufallsva- riabler geteilt durch das Produkt ihrer Einzelwahrscheinlichkeiten".In another advantageous refinement of the method, the early warning indicator is the mutual information of similarity indices of a predefined portion of sensors, with decreasing similarity indices. "Mutual information" is known as a binary logarithm of "probability of the occurrence of two random variables together divided by the product of their individual probabilities".
In einer anderen vorteilhaften Ausgestaltung des Verfahrens ist Frühwamindikator die Mutual Information von Ahnlichkeitsindices eines vordefinierten Anteils von Sensoren, bei sinkenden Ahnlichkeitsindices, verknüpft mit Aktivierungsindikatoren (z.B. für Aufwachen charakteristische Änderungen der Körpertemperatur, Muskelbewegungen, charakteristische EEG-Muster, und/oder andere). Hierdurch wird die Möglichkeit von Fehlalarmen durch für viele Sensoren simultane Änderungen des Wachheitszu- Stands des Patienten minimiert, wobei je nach Zusatzindikator zusätzliche Anforderungen an die Vorrichtung entstehen (beispielsweise laufende EMG Messung).In another advantageous embodiment of the method, the early warning indicator is the mutual information of similarity indices of a predefined portion of sensors, in the case of falling similarity indices, linked to activation indicators (for example, characteristic changes in body temperature when waking up, muscle movements, characteristic EEG patterns, and / or others). This minimizes the possibility of false alarms due to simultaneous changes in the patient's state of wakefulness for many sensors, with additional requirements for the device depending on the additional indicator (for example, ongoing EMG measurement).
Diese oben angegebenen Beispiele zur Berechnung von Frühwarnindikatoren erfordern keine Trainingsphasen, die epileptische Anfälle enthalten. Die Berechnung der Frühwarnindikatoren erfolgt anhand einer Phasenraumdarstellung des Normalzustandes des betreffenden Patienten.The examples given above for calculating early warning indicators do not require training phases that contain epileptic seizures. The early warning indicators are calculated on the basis of a phase space representation of the normal state of the patient concerned.
Die oben angegebenen Frühwarnindikatoren sind robust gegenüber Rauschen und Artefakten. Für andere nicht robuste Frühwarnindikatoren müssen Filterungs- bzw. Artefaktbeseitigungsverfahren dazwischen geschaltet werden.The early warning indicators given above are robust against noise and artifacts. For other non-robust early warning indicators, filtering or artifact removal methods must be interposed.
Ein Beispiel für Phasen raumeinbettung ist in den Figuren 6 mit 7 gegeben, wobei Figur 6 eine 8 Sekunden umfassende EEG-Zeitreihe eines einzigen Kanals zeigt, bei einer Abtastrate von 128 Messpunkten pro Sekunde (x-Achse Zeit, y-Achse Span- nung zwischen Elektrode und Referenzelektrode in frei gewählten Einheiten), Figur 7 einen mit Messpunkt 128 beginnenden 32 Messpunkte umfassenden Ausschnitt aus der Zeitreihe aus Figur 6 in Phasenraumdarstellung (x-Achse Messwert zum Zeitpunkt t, y-Achse Messwert zum Zeitpunkt t-20). Das Verfahren der Einbettung in einen Phasenraum ist beispielweise in [13] ausführlich beschrieben. Hierbei wird davon ausgegangen, dass das eindimensionale Signal (wie in Figur 6) Projektion eines hö- herdimensionalen Signals ist, welches wiederhergestellt werden soll. Dieses höher- dimensionale Signal wird in Figur 7 zweidimensional dargestellt.An example of phase space embedding is given in FIGS. 6 and 7, FIG. 6 showing an EEG time series of 8 seconds for a single channel, with a sampling rate of 128 measuring points per second (x-axis time, y-axis voltage between Electrode and reference electrode in freely selected units), FIG. 7 shows a section of the time series from FIG. 6 comprising 32 measuring points starting with measuring point 128 in phase space representation (x-axis measured value at time t, y-axis measured value at time t-20). The method of embedding in a phase space is described in detail in [13], for example. It is assumed here that the one-dimensional signal (as in FIG. 6) is a projection of a higher-dimensional signal which is to be restored. This higher-dimensional signal is shown in two dimensions in FIG.
Als bevorzugte Ausführungsform eines Frühwarnsystems vor einem epileptischen Anfall lässt sich ein Detektions-Modul angeben mitAs a preferred embodiment of an early warning system before an epileptic attack, a detection module can be specified with
1) einer Einrichtung, um für jeden Messkanal die Ähnlichkeit der aktuellen Messreihe mit den Normalzustand repräsentierenden Messreihen zu errechnen. Die Erhebung des Normalzustandes jedes einzelnen Patienten erfolgt vor dem ei- gentlichen Einsatz des Detektions-Moduls.1) a device for calculating the similarity of the current measurement series with the measurement series representing the normal state for each measurement channel. The normal condition of each individual patient is assessed before the public use of the detection module.
2) Einrichtung zum Abgeben eines lokalen Warnsignals für jeden Messkanal: falls die oben genante Ähnlichkeit unter einen Schwellenwert sinkt. \2) Device for emitting a local warning signal for each measuring channel: if the above-mentioned similarity falls below a threshold value. \
3) Einrichtung zum Abgeben eines globalen Warnsignals, falls zeitnah mehrere Messkanäle zu lokalen Warnsignalen führen.3) Device for emitting a global warning signal if several measurement channels promptly lead to local warning signals.
Um die Intervention zuverlässig zu gestalten, werden Anfallsmodelle verwendet. Als Anfallsmodelle können bspw. folgende Modelle verwendet werden: Oszillator-Anfallsmodell, Chaos-Anfallsmodell, Synergetikanfallsmodell, stochasti- sches Oszillator-Anfallsmodell, stochastisches Chaos-Anfallsmodell, stochastisches SynergetikanfallsmodellSeizure models are used to make the intervention reliable. The following models can be used as seizure models: oscillator seizure model, chaos seizure model, synergetic seizure model, stochastic oscillator seizure model, stochastic chaos seizure model, stochastic synergetic seizure model
Diese Anfallsmodelle beschreiben die aus elektromagnetischen Aktivitäten von Neuronen und/oder Neuronenpopulationen berechneten, für einen epileptischen Anfall relevanten Kenngrößen. Diese Kenngrößen sind z.B. Chaotizität der vermittels einer EEG-Elektrode und ihrer Referenzelektrode gemessenen Potenzialdifferenzzeitreihe, ausgedrückt durch deren maximalen Lyapunov-Exponenten [12]. Typische weitere Kenngrößen sind kritische Verlangsamung, kritische Fluktuationen, Ähnlichkeit mit einem Normalzustand im (Meta-)Phasenraum, usw. Diese Kenngrößen werden durch konkrete numerische Parameter ausgedrückt. So kann bspw. die Chaotizität anstelle durch den Lyapunov-Exponenten alternativ durch Einbettungsdimension [13], Korrelationsdimension, Kullback-Leibler-Entropie, usw. dargestellt werden.These seizure models describe the parameters relevant for an epileptic seizure, which are calculated from the electromagnetic activities of neurons and / or neuron populations. These parameters are e.g. Chaoticity of the potential difference time series measured by means of an EEG electrode and its reference electrode, expressed by their maximum Lyapunov exponent [12]. Typical further parameters are critical slowdown, critical fluctuations, similarity to a normal state in the (meta) phase space, etc. These parameters are expressed by concrete numerical parameters. For example, instead of the Lyapunov exponent, the chaoticity can alternatively be represented by the embedding dimension [13], correlation dimension, Kullback-Leibler entropy, etc.
Ein Oszillator-Anfallsmodell basiert auf [3]. Hierbei sind die beschriebenen Neuronenpopulationen sogenannte neurale Limit-Cycle-Oszillatoren, d.h., dass sie para- meterabhängig oszillieren oder ruhen können. Die Wechselwirkung neuraler Oszillatoren untereinander wird mit einer Wechselwirkungsgleichung beschrieben. Die Anfallsentstehung setzt diese Wechselwirkung voraus. Die Anfallsverhinderung basiert auf Entkopplung der neuralen Oszillatoren.An oscillator seizure model is based on [3]. The neuron populations described here are so-called neural limit cycle oscillators, which means that they can oscillate or rest depending on the parameters. The interaction of neural oscillators with each other is described with an interaction equation. This interaction presupposes the development of seizures. Preventing seizures is based on decoupling the neural oscillators.
"Neuraler Oszillator" wird im folgenden synonym zu "Limit-Cycle-Oszillator" verwendet. Hiervon ist der Spezialfall der Phasenoszillatoren (siehe beispielsweise [22]) zu unterscheiden, bei denen Amplitude und Phase entkoppeln, und lediglich die Phase eines Oszillators betrachtet wird. Im Phasenraum stellt sich der Limit Cycle als belie- bige geschlossene Kurve, der Phasenoszillator als Kreisbahn dar. Ein entsprechendes Anfallsmodell geht vom gegenüber anderen Clustern vermehrten Auftreten von 1- Clustern aus. Dieser Spezialfall und damit verbundene Interventionsverfahren (Re- setting plus Entrainment, s. beispielsweise [22]) führen im Fall allgemeiner Limit- Cycle-Oszillatoren nicht zum Erfolg, wobei nicht einmal ein harter Reset mit hoher Amplitude, der häufig wiederholt wird (ohnehin problematisch unter den rTMS - Gesundheitslimits) zur Anfallsverhinderung führt. Allgemeine Interventionen für Limit- Cycle-Oszillatoren hingegen funktionieren auch für Phasenoszillatoren.In the following, "neural oscillator" is used synonymously with "limit cycle oscillator". A distinction must be made here between the special case of phase oscillators (see for example [22]), in which the amplitude and phase are decoupled and only the phase of an oscillator is considered. In the phase space, the limit cycle is bige closed curve, the phase oscillator as a circular path. A corresponding seizure model is based on the increased occurrence of 1 clusters compared to other clusters. This special case and the associated intervention procedures (resetting plus entrainment, see for example [22]) do not lead to success in the case of general limit cycle oscillators, although not even a hard reset with high amplitude, which is often repeated (problematic anyway) leads to seizure prevention under the rTMS health limits). General interventions for limit cycle oscillators, however, also work for phase oscillators.
Eine geeignete Wechselwirkung für das Oszillator-Anfallsmodell ist die spezifische schwache Kopplung zwischen neuralen Oszillatoren. Anfälle gehen einher mit Erhöhung der Anzahl oszillierender neuraler Oszillatoren nebst erhöhter Mutual Information zwischen Oszillationsfrequenzen dieser schwach gekoppelten neuralen Oszillatoren. Ein neuraler Oszillator ist ein lokalisiertes Neuronenensemble, das zu oszillie- rendem und nichtoszillierendem Verhalten fähig ist. Die Dynamik jedes neuralen Oszillators unter Wechselwirkung mit anderen neuralen Oszillatoren ist durchA suitable interaction for the oscillator seizure model is the specific weak coupling between neural oscillators. Seizures are accompanied by an increase in the number of oscillating neural oscillators as well as increased mutual information between the oscillation frequencies of these weakly coupled neural oscillators. A neural oscillator is a localized ensemble of neurons that is capable of oscillating and non-oscillating behavior. The dynamics of each neural oscillator interacting with other neural oscillators is through
Z,- = (z,-) + £∑"=Λ *Z; ε«l Z , - = (z, -) + £ ∑ " = Λ * Z ; ε« l
gegeben. Hierbei ist für jedes i zwischen 1 und n Zj neuraler Oszillator, gj ist gegeben durch die aus [3] bekannten Wilson-Cowan Gleichungen für den i-ten neuralen Oszillator, hy sei die Stärke der Verbindung von Zj nach Zj. Die Kopplungsstärke Epsilon ergibt sich empirisch zwischen 0,04 und 0,08. Wenn man Kopplungsstärke und Verbindungsstärken als gegenüber der Zeitskala eines Anfalls langsam veränderlich an- nimmt, verbleibt neben möglichst globaler Störung durch starke extern generierte Zu- satzterme, mit möglichem Übergang einer Oszillation in Nichtoszillation primär eine Intervention über die Funktion g-,. Es ist aus der Theorie neuraler Oszillatoren bekannt, dass diese nur im Falle von Oszillationen, und zwar nur bei kommensurablen Oszillationsfrequenzen in Wechselwirkung treten.given. Here, for each i between 1 and n Zj neural oscillator, gj is given by the Wilson-Cowan equations known from [3] for the i-th neural oscillator, hy is the strength of the connection from Zj to Zj. The coupling strength epsilon is empirically between 0.04 and 0.08. If one assumes the coupling strength and connection strengths to be slowly changing compared to the time scale of a seizure, there remains primarily an intervention via the function g-. It is known from the theory of neural oscillators that they only interact in the case of oscillations, and only at commensurable oscillation frequencies.
Eine vorteilhafte Ausgestaltung einer mit dem „Anfallsmodell mit spezifischer schwacher Kopplung zwischen neuralen Oszillatoren" kompatiblen Anweisung zur Präventi- on epileptischer Anfälle ist:An advantageous embodiment of an instruction for preventive action that is compatible with the “seizure model with specific weak coupling between neural oscillators” on epileptic seizures is:
Man zwinge erstens benachbarte und zweitens auf vor der Intervention mit gleichen und/oder kommensurablen Frequenzen oszillierende neurale Oszillatoren auf inkommensurable Frequenzen, die in deren ursprünglichen Frequenzen enthalten sind oder auf nahegelegene inkommensurable Frequenzen (Beispiel: benachbarte Oszillatoren weisen die Frequenzen 3 Hertz und 15 Hertz auf, daher den zweiten Oszillator auf die Frequenz 5 Hertz zwingen. Weiteres Beispiel: beide weisen die Frequenz 8 Hertz auf, daher einen davon auf 7 Hertz zwingen). Die Schwingungen werden mittels Magnetfeldern dieser Frequenzen bei hoher Amplitude erzwungen. Da auf gleichen und/oder kommensurablen Frequenzen oszillierende neurale Oszillatoren sowie Nachbarschaft auf das mögliche Bestehen physiologischer Verbindungen hinweisen, wird durch die erzwungene Inkommensurabilität, d.h. Änderung der gj, die mögliche, und erst recht faktische Wechselwirkung zwischen den jeweiligen zι unterbrochen, die Mutual Information minimiert, mithin die Anfallsentstehung verhindert. Die Verfah- renskomplexität lässt die fortlaufende real-time Berechnung aller benötigten Größen zu.First, neural oscillators that are adjacent and secondly that oscillate with the same and / or commensurable frequencies prior to the intervention are forced to incommensurable frequencies that are contained in their original frequencies or to nearby incommensurable frequencies (example: neighboring oscillators have the frequencies 3 Hertz and 15 Hertz , therefore force the second oscillator to the frequency 5 Hertz. Another example: both have the frequency 8 Hertz, therefore force one of them to 7 Hertz). The vibrations are forced by means of magnetic fields of these frequencies at high amplitudes. Since oscillating neural oscillators and neighborhoods on the same and / or commensurable frequencies indicate the possible existence of physiological connections, the forced incommensurability, i.e. Modification of the gj, the possible and even more factual interaction between the respective zones is interrupted, which minimizes mutual information, and thus prevents the onset of seizures. The complexity of the process allows the continuous real-time calculation of all required sizes.
Ob das Inkommensurabel-Machen von benachbarten Oszillatoren gelingt, hängt allerdings von deren Verschiedenheit sowie Minimalität ihrer gegenseitigen Kopplung ab. Im Extremfall lassen sich benachbarte, nahezu identische, stark gekoppelte Oszillatoren im Einflussbereich eines Transmitters durch diesen nicht auf verschiedene inkommensurable Frequenzen zwingen. Hier genügt es aber, Gruppen von Oszillatoren im Einflussbereich verschiedener Transmitter auf inkommensurable Frequenzen zu bewegen, um den Anfall zu verhindern. Dieses hat auch die Verhinderung der Entstehung von 1-Clustern im Einflussbereich mehrerer Transmitter sowie die Verhinderung der Entstehung von „travelling waves" zur Folge.However, whether neighboring oscillators succeed in making them incommensurable depends on their diversity and the minimality of their mutual coupling. In extreme cases, neighboring, almost identical, strongly coupled oscillators in the area of influence of a transmitter cannot be forced to different incommensurable frequencies. Here, however, it is sufficient to move groups of oscillators in the area of influence of various transmitters to incommensurable frequencies in order to prevent the attack. This also has the effect of preventing the formation of 1 clusters in the area of influence of several transmitters and preventing the formation of "traveling waves".
Eine weitere vorteilhafte Ausgestaltung einer mit dem „Anfallsmodell mit spezifischer schwacher Kopplung zwischen neuralen Oszillatoren" kompatiblen Anweisung zur Prävention epileptischer Anfälle ist: Man rege in Schritt 1 zunächst die neuralen Oszillatoren zu chaotischem Verhalten [14] an (zum Beispiel durch zeitverzögerte Rückkopplung mit systematischem Fehler), und stabilisiere anschließend in Schritt 2 je nach Einflussbereich des jeweiligen Transmitters die neuralen Oszillatoren auf den ersten Orbits mit inkommensurablen Frequenzen, die diese erreichen, mit herkömmlichen Verfahren. Wie aus [4] bekannt, hat sich Schritt 2 dieses Verfahrens bereits in Zellpräparaten als ausreichend für das Unterbinden von Anfallsausbreitung erwiesen. Der dort verwendete Algorithmus („OGY-Verfahren") ist jedoch auf Grund seiner An- f orderungen an Rechnergeschwindigkeit und Speicherkapazität für den in vivo real- time Fall ungeeignet.Another advantageous embodiment of an instruction for the prevention of epileptic seizures that is compatible with the “seizure model with specific weak coupling between neural oscillators” is: In step 1, first stimulate the neural oscillators to chaotic behavior [14] (for example by time-delayed feedback with systematic error ), and then stabilize the neural oscillators in step 2 depending on the influence of the respective transmitter first orbits with incommensurable frequencies that reach them using conventional methods. As is known from [4], step 2 of this method has already proven sufficient in cell preparations to prevent the spread of seizures. However, the algorithm used there (“OGY method”) is unsuitable for the in vivo real-time case because of its requirements for computer speed and storage capacity.
In dem stochastischen Oszillator-Anfallsmodell werden gegenüber dem oben genannten Anfallsmodell bestimmte Parameter als zufallsbedingt veränderlich ange- nommen. Die vorgeschlagenen Verfahren können ebenfalls angewandt werden (z.B. [15]).In the stochastic oscillator seizure model, certain parameters are assumed to be randomly variable compared to the seizure model mentioned above. The proposed methods can also be used (e.g. [15]).
In dem Chaos-Anfallsmodell wird davon ausgegangen, dass normale Hirnaktivität, wie sie von jedem Sensor aufgefangen wird ein Mindestmaß an Chaotizität aufweist. Die Anfälle gehen mit einem für alle Sensoren simultanen Absinken dieser Chaotizität einher. Anfallsverhinderung erfolgt über Aufrechterhaltung eines bestimmten Ausmaßes von Chaos ([4] und [16]).The chaos seizure model assumes that normal brain activity, as captured by each sensor, has a minimum of chaoticity. The seizures are accompanied by a simultaneous decrease in this chaos for all sensors. Seizures are prevented by maintaining a certain degree of chaos ([4] and [16]).
In dem stochastischen Chaos-Anfallsmodell ergänzen hochdimensionale Einflüsse die niedrigdimensionale deterministische Veränderung der elektromagnetischen Größen. Die Anfalls-Verhinderungsstrategien entsprechen denen des Chaos- Anfallsmodells.In the stochastic chaos attack model, high-dimensional influences supplement the low-dimensional deterministic change in the electromagnetic variables. The seizure prevention strategies correspond to those of the chaos seizure model.
In dem Synergetikanfallsmodell wird davon ausgegangen, dass Hirnaktivität durch eine kleine Anzahl Freiheitsgrade, sogenannte Ordnungsparameter, beschrieben werden kann [17]. Es gilt zirkuläre Kausalität: Die Ordnungsparameter werden hervorgerufen und bestimmt durch die Kooperation von Neuronen, gleichzeitig aber bestimmen die Ordnungsparameter das makroskopische Systemverhalten. Ein epileptischer Anfall entspricht einem Phasenübergang. Dieser geht einher mit kritischer Verlangsamung und kritischen Fluktuationen. Anfallsverhinderung erfolgt über Verhinderung des Phasenübergangs (z.B. durch Kontrolle von Bifurkationspunkten gemäß [18]). In dem stochastischen Synergetikanfallsmodell werden mit dem sogenannten Lange- vin-Ansatz stochastische Kräfte in phänomenologischer Weise in das Synergetikmo- dell eingeführt. Zur Anfallsverhinderung gibt es ergänzend zu dem oben genannten Verfahren die Möglichkeit der stochastischen Resonanz [20], und ihr Gegenteil, Noi- se-Drowning: Es ist bekannt, dass beispielsweise abhängig von einer Rausch- Amplitude (beispielsweise für Gaussian White Noise) in Systemen mit stochastischen Komponenten Signale erzeugt ("Coherence Resonance"), bzw. die Signal-to-Noise- Ratio (SNR) verstärkt ("Stochastic Resonance") oder abgeschwächt werden (letzteres soll hier als "Noise Drowning" bezeichnet werden). Der typische Verlauf der SNR ist in Figur 8 gezeigt (x-Achse Noise-Amplitude, y Achse SNR).In the synergetic attack model, it is assumed that brain activity can be described by a small number of degrees of freedom, so-called order parameters [17]. Circular causality applies: the order parameters are caused and determined by the cooperation of neurons, but at the same time the order parameters determine the macroscopic system behavior. An epileptic seizure corresponds to a phase transition. This goes hand in hand with critical slowdown and critical fluctuations. Prevention of seizures takes place by preventing the phase transition (eg by checking bifurcation points according to [18]). In the stochastic synergetic attack model, the so-called Langevin approach is used to introduce stochastic forces into the synergetic model in a phenomenological way. To prevent seizures, in addition to the above-mentioned method, there is the possibility of stochastic resonance [20], and its opposite, noise-drowning: It is known that, for example, it depends on a noise amplitude (for example for Gaussian White Noise) in systems signals are generated with stochastic components ("coherence resonance"), or the signal-to-noise ratio (SNR) is amplified ("stochastic resonance") or weakened (the latter is to be referred to here as "noise drowning"). The typical course of the SNR is shown in FIG. 8 (x-axis noise amplitude, y-axis SNR).
Anhand dieser Modelle wird eine Interventionsanweisung berechnet, die das zu erzeugende Magnetfeld beschreibt. Diese Beschreibung erfolgt z.B. durch Ort, Stärke, Richtung, Frequenzmuster, und/oder andere Parameter des magnetischen Feldes (B- Feldes). Mit diesem Magnetfeld werden in geeigneter Weise die elektromagnetischen Aktivitäten von Neuronen und/oder Neuronenpopulationen verändert und somit ein bevorstehender epileptischer Anfall verhindert.An intervention instruction describing the magnetic field to be generated is calculated on the basis of these models. This description is e.g. by location, strength, direction, frequency pattern, and / or other parameters of the magnetic field (B field). With this magnetic field, the electromagnetic activities of neurons and / or neuron populations are changed in a suitable manner and an impending epileptic attack is thus prevented.
Die Verwendung eines oder mehrerer Anfallsmodelle bewirkt eine zuverlässige Ver- hinderung epileptischer Anfälle. Der Erfindung liegt die Erkenntnis zugrunde, dass mit diesen Modellen die zu epileptischen Anfällen führenden Vorgänge unter Nennung geeigneter Kontrollparameter quantifizierbar gemacht werden, so dass eine zuverlässige Prävention möglich ist.The use of one or more seizure models reliably prevents epileptic seizures. The invention is based on the knowledge that the processes leading to epileptic seizures are made quantifiable by naming suitable control parameters, so that reliable prevention is possible.
Die bevorzugte Ausführungsform der Erfindung umfasst ein Interventionsmodul, das in einer Vielzahl von Modellen geeignet ist, den Anfall zu verhindern, beispielsweise sind bei hoher Transmitterdichte die Transmitter in drei Klassen einzuteilen, Klasse 1 zum Chaotisieren, Klasse 2 zum inkommensurablen Stabilisieren, - Klasse 3 zum Noise-Drowning, solcherart, dass in jeder Nachbarschaft jedes Transmitters einer Klasse Transmitter der anderen Klassen zu finden sind. Unter anderem werden durch Klasse 1 Chaos-Anfallsmodelle befriedigt, durch Klasse 2 Oszillator-Anfallsmodelle, durch Klasse 3 Modelle mit stochastischen Komponenten. Die Befriedigung synergetischer Modelle ergibt sich hier automatisch durch Entwerten der Master-Moden (durch Frequenzverschiebungen) bei gleichzeitigem Ver- hindern des Aufsteigens von Slave-Moden zu Master-Moden (durch Noise-Drowning). Die Befriedigung von Phasenoszillator-Anfallmodellen ergibt sich ebenfalls automatisch, da 1 -Cluster-Zustände verhindert werden (Inkommensurabilität verhindert Pha- se-Locking, Noise-Drowning verhindert höhere Moden). Die Befriedigung von Chaos- Anfallmodellen ergibt sich ebenfalls automatisch wegen Klasse 1 und Klasse 3 (Rau- sehen = hochdimensionales Chaos).The preferred embodiment of the invention comprises an intervention module, which is suitable in a variety of models to prevent the attack, for example in the case of high transmitter density, the transmitters are to be divided into three classes, class 1 for chaotization, class 2 for incommensurable stabilization, - class 3 for Noise-Drowning, in such a way that in every neighborhood of each transmitter of one class there are transmitters of the other classes. Among other things, class 1 seizure models are satisfied, class 2 oscillator model seizures, class 3 models with stochastic components. The satisfaction of synergetic models results automatically from devaluation of the master modes (by frequency shifts) while at the same time preventing the ascent from slave modes to master modes (by noise-drowning). Satisfaction of phase oscillator seizure models also results automatically, since 1 cluster states are prevented (incommensurability prevents phase locking, noise drowning prevents higher modes). Satisfaction of chaos seizure models also arises automatically due to class 1 and class 3 (roughness = high-dimensional chaos).
Bei den oben beschriebenen Verfahren kann entweder während oder unmittelbar nach einer Intervention die Hirnaktivität gemessen werden, wodurch eine geschlossene Regelschleife erhalten wird, da aus der gemessenen Hirnaktivität wiederum der Frühwamindikator und ggfs. eine weitere Interventionsanweisung berechnet wird.In the methods described above, the brain activity can be measured either during or immediately after an intervention, which results in a closed control loop, since the early warning indicator and, if necessary, a further intervention instruction are calculated from the measured brain activity.
Eine vorteilhafte Ausgestaltung des Zurückfahrens der Intervention ist das gleitende simultane Zurückfahren aller erzeugten Magnetfelder.An advantageous embodiment of the retraction of the intervention is the sliding simultaneous retraction of all generated magnetic fields.
Eine vorteilhafte Ausgestaltung des Zurückfahrens der Intervention ist die gleitende Ausdünnung der Magnetfelder erzeugenden Transmitter (Ausdünnung als räumlich gleichmäßig verteiltes Zurückfahren und/oder Abschalten eines Prozentsatzes aller Transmitter).An advantageous embodiment of the retraction of the intervention is the sliding thinning of the transmitters producing magnetic fields (thinning as a spatially uniformly distributed retraction and / or switching off a percentage of all transmitters).
Eine vorteilhafte Ausgestaltung des Zurückfahrens der Intervention ist das räumlich lokalisierte Zurückfahren und/oder Abschalten mehrerer Transmitter bei allmählicher Ausdehnung des Bereiches, in dem zurückgefahren und/oder abgeschaltet wird.An advantageous embodiment of the retraction of the intervention is the spatially localized retraction and / or shutdown of several transmitters with gradual expansion of the area in which the retraction and / or shutdown takes place.
Es ist nicht notwendig, die Interventionen mit den in TMS üblichen hohen Feldstärken von 1-2 Tesla pro Spule zu betreiben. „Laufend" ist als „fortlaufend" oder als „in geeigneten Zeitabständen" definiert. Die Überwachung der Einhaltung elektromagnetischer Belastungsgrenzwerte erfolgt laufend automatisch. Die Verwendung der Erfindung zielt nicht auf eine Heilung von Epilepsie ab, sondern ermöglicht während der Verwendungsdauer Anfallsfreiheit, ohne dass medizinisches Personal oder der Einsatz von Pharmaka notwendig sind. Dieses hat nicht nur die Minimierung von Krankheitsfolgen und Behandlungsnebenwirkungen, sondern auch eine deutliche Reduktion der laufenden Kosten zur Folge. Des weiteren ist ein ambulanter Einsatz der Erfindung möglich, womit sich neben einer weiteren Kostensenkung die Bewegungsfreiheit der Patienten in erheblichem Umfang verbessert.It is not necessary to operate the interventions with the high field strengths of 1-2 Tesla per coil that are common in TMS. "Running" is defined as "continuous" or as "at suitable time intervals". Monitoring of compliance with electromagnetic exposure limit values is carried out automatically on an ongoing basis. The use of the invention is not aimed at curing epilepsy, but rather enables seizure freedom during the period of use without the need for medical personnel or the use of pharmaceuticals. This not only results in the minimization of the consequences of the disease and the side effects of the treatment, but also a significant reduction in the running costs. Furthermore, an outpatient use of the invention is possible, which, in addition to a further reduction in costs, improves the freedom of movement of the patients to a considerable extent.
Mit dem oben beschriebenen Verfahren werden epileptische Anfälle verhindert. Darüber hinaus können mit einem ähnlichen, aber allgemeineren, proaktiven Verfahren anstelle der reaktiven Verhinderung epileptischer Anfälle auf der Basis von Anfallsmodellen andere Verhaltensziele, vorzugsweise für gesunde Personen, auf der Basis entsprechender Verhaltensmodelle sowie allgemeiner Hirnaktivitätsmodelle erreicht werden. Das allgemeine Verfahren umfasst die interaktive Ermittlung der Nichtobser- vablen der verwendeten Modelle für die betreffende Person, darauf, und auf den Modellen basierend die Errechnung einer a priori unbekannten Interventionsanweisung, sowie die selektive Umsetzung der Anweisung bei gleichzeitiger Verhinderung unerwünschter Ausbreitungseffekte. Ziel dieser Abwandlung ist es, auf Wunsch einer Per- son deren Verhalten zuverlässig zu stabilisieren oder zu verändern und/oder diese Veränderung zu stabilisieren. Dieses Verfahren kann mit einer der oben beschriebenen Vorrichtung ähnlichen Vorrichtung ausgeführt werden. The procedure described above prevents epileptic seizures. In addition, with a similar, but more general, proactive procedure, instead of reactive prevention of epileptic seizures on the basis of seizure models, other behavioral goals, preferably for healthy people, can be achieved on the basis of appropriate behavior models as well as general brain activity models. The general procedure comprises the interactive determination of the non-observables of the models used for the person concerned, based on this, and based on the models the calculation of an a priori unknown intervention instruction, as well as the selective implementation of the instruction while at the same time preventing undesired propagation effects. The aim of this modification is, at the request of a person, to reliably stabilize or change their behavior and / or to stabilize this change. This method can be carried out with a device similar to the device described above.
Literatur:Literature:
[1] "Anticipation of epileptic seizures from Standard EEG recordings", Le[1] "Anticipation of epileptic seizures from standard EEG recordings", Le
Van Quyen M & Martinerie J & Navarro V & Boon P & D'Have M & A- dam C & Renault B & Varela F & Baulac M, The Lancet 2001 Jan 20; 357: 183-8Van Quyen M & Martinerie J & Navarro V & Boon P & D'Have M & A- dam C & Renault B & Varela F & Baulac M, The Lancet 2001 Jan 20; 357: 183-8
[2] WO 98/18384 A1[2] WO 98/18384 A1
[3] "Excitatory and inhibitory interactions in localized populations of model neurons", Wilson HR & Cowan JD, Biophysical Journal 1972; 12: 1-22[3] "Excitatory and inhibitory interactions in localized populations of model neurons", Wilson HR & Cowan JD, Biophysical Journal 1972; 12: 1-22
[4] "Controlling chaos in the brain", Schiff SJ & Jerger K & Duong DH &[4] "Controlling chaos in the brain", ship SJ & Jerger K & Duong DH &
Chang T & Spano ML & Ditto WL, Nature 1994 Aug 25; 370: 615-620Chang T & Spano ML & Ditto WL, Nature 1994 Aug 25; 370: 615-620
[5] „Transcranial magnetic Stimulation in patients with epilepsy", Dhuna A &[5] "Transcranial magnetic stimulation in patients with epilepsy", Dhuna A &
Gates J & Pascual-Leone A, Neurology 1991 July; 41 : 1067-1071Gates J & Pascual-Leone A, Neurology 1991 July; 41: 1067-1071
[6] "Epileptic seizures triggered directly by focal transcranial magnetic[6] "Epileptic seizures triggered directly by focal transcranial magnetic
Stimulation", Classen J & Witte OW & Schlaug G & Seitz RJ & Holthau- sen A & Benecke R, Electroencephalography and clinical Neurophysiol- ogy 1995; 94: 19-25Stimulation ", Classen J & Witte OW & Schlaug G & Seitz RJ & Holthausen A & Benecke R, Electroencephalography and clinical Neurophysiology 1995; 94: 19-25
[7] "Epilepsy: multistability in a dynamic disease", Milton JG, in "Self- organized biological dynamics and nonlinear control", ed. Walleczek J, Cambridge University Press 2000[7] "Epilepsy: multistability in a dynamic disease", Milton JG, in "Self-organized biological dynamics and nonlinear control", ed. Walleczek J, Cambridge University Press 2000
[8] "Electric field suppression of epileptiform activity in hippocampal slices",[8] "Electric field suppression of epileptiform activity in hippocampal slices",
Gluckman BJ & Neel EJ & Netoff Tl & Ditto WL & Spano ML & Schiff SJ, Journal of Neurophysiology 1996 Dec; 76(6): 4202-4205Gluckman BJ & Neel EJ & Netoff Tl & Ditto WL & Spano ML & Schiff SJ, Journal of Neurophysiology 1996 Dec; 76 (6): 4202-4205
[9] "Coupled intra- and extracellular Ca2+ dynamics in recurrent seizure-like events", Szilägy N & Koväcs R & Kardos J, European Journal of Neuro- science 2000; 12: 3893-3899 [10] "Deliberate Seizure Induction With Repetitive Transcranial Magnetic[9] "Coupled intra- and extracellular Ca 2+ dynamics in recurrent seizure-like events", Szilägy N & Koväcs R & Kardos J, European Journal of Neuroscience 2000; 12: 3893-3899 [10] "Deliberate Seizure Induction With Repetitive Transcranial Magnetic
Stimulation in Nonhuman Primates", Lisanby SH & Luber B & Sackeim HA & Finck AD & Schroeder C, Arch Gen Psychiatry 2001; 58: 199-200Stimulation in Nonhuman Primates ", Lisanby SH & Luber B & Sackeim HA & Finck AD & Schroeder C, Arch Gen Psychiatry 2001; 58: 199-200
[11] WO 01/21067[11] WO 01/21067
[12] „How to Extract Lyapunov Exponents from Short and Noisy Time Se- ries", Banbrook M & Ushaw G & McLaughlin S, IEEE Transactions on Signal Processing 1997; 45: 1378-1382[12] "How to Extract Lyapunov Exponents from Short and Noisy Time Series", Banbrook M & Ushaw G & McLaughlin S, IEEE Transactions on Signal Processing 1997; 45: 1378-1382
[13] „Determining embedding dimension for phase-space reconstruction us- ing a geometrical construction", Kennel MB & Brown R & Abarbanel[13] "Determining embedding dimension for phase-space reconstruction using a geometrical construction", Kennel MB & Brown R & Abarbanel
HDI, Physical Review A 1992, 45(6): 3403-3411HDI, Physical Review A 1992, 45 (6): 3403-3411
[14] „Chaotification via arbitrary small feedback controls: theory, method, and applications", Wang XF & Chen G; International Journal of Bifurca- tion and Chaos 2000; 10(3): 549-570[14] "Chaotification via arbitrary small feedback controls: theory, method, and applications", Wang XF & Chen G; International Journal of Bifurcation and Chaos 2000; 10 (3): 549-570
[15] „Controlling Nonchaotic Neuronal Noise Using Chaos Control Tech- niques", Christini DJ & CoHins JJ, Physical Review Letters 1995 Oct 2; 75(14): 2782-2785[15] "Controlling Nonchaotic Neuronal Noise Using Chaos Control Technologies", Christini DJ & CoHins JJ, Physical Review Letters 1995 Oct 2; 75 (14): 2782-2785
[16] „Anticontrol of chaos in continuous-time Systems via time-delay feed- back", Wang XF & Chen G & Yu X; Chaos 2000 Dec; 10(4): 771 -779[16] "Anticontrol of chaos in continuous-time systems via time-delay feedback", Wang XF & Chen G & Yu X; Chaos 2000 Dec; 10 (4): 771-779
[17] "A derivation of macroscopic f ield theory of the brain from quasi- microscopic neural dynamics", Jirsa VK & Haken H, Physica D 1999, 99: 503-526[17] "A derivation of macroscopic field theory of the brain from quasi-microscopic neural dynamics", Jirsa VK & Haken H, Physica D 1999, 99: 503-526
[18] „Controlling Bifurcation Dynamics via Chaotification", Wang XF & Chen[18] "Controlling Bifurcation Dynamics via Chaotification", Wang XF & Chen
G ; proposed paper for CDC 2001 [19] „Impact of noise on a field theoretical model of the human brain", FrankG; proposed paper for CDC 2001 [19] "Impact of noise on a field theoretical model of the human brain", Frank
TD, Daffertshofer A, Beek PJ & Haken H, Physica D 1999, 127: 233- 249TD, Daffertshofer A, Beek PJ & Haken H, Physica D 1999, 127: 233-249
[20] „Functional Stochastic Resonance in the Human Brain: Noise Induced[20] "Functional Stochastic Resonance in the Human Brain: Noise Induced
Sensitization of the Human Baroreflex System", Hidaka I & Nozaki D & Yamamoto Y, Physical Review Letters 2000 Oct 23; 85(17): 3740-3743Sensitization of the Human Baroreflex System ", Hidaka I & Nozaki D & Yamamoto Y, Physical Review Letters 2000 Oct 23; 85 (17): 3740-3743
[21] "Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings", Le Van Quyen M & Martinerie J &[21] "Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings", Le Van Quyen M & Martinerie J &
Baulac M & Varela F, Neuroreport 10 (1999): 2149-2155Baulac M & Varela F, Neuroreport 10 (1999): 2149-2155
[22] "Effective desynchronisation with a Stimulation technique based on soft phase resetting", Tass P, Europhysics Letters 57(2), 2002: 164-170 [22] "Effective desynchronization with a stimulation technique based on soft phase resetting", Tass P, Europhysics Letters 57 (2), 2002: 164-170

Claims

Patentansprüche claims
1. Verfahren zur nichtinvasiven gesteuerten bzw. geregelten elektromagnetischen Prävention epileptischer Anfälle in vivo, umfassend folgende Schritte:1. Method for the non-invasive controlled or regulated electromagnetic prevention of epileptic seizures in vivo, comprising the following steps:
- automatisches extrakraniales elektromagnetisches Messen von Hirnaktivität,- automatic extracranial electromagnetic measurement of brain activity,
- automatisches Berechnen eines Frühwarnindikators für epileptische Anfälle, - automatisches Berechnen einer Interventionsanweisung zur Anfallsprävention bei Ansprechen des Frühwarnindikators anhand eines Anfallsmodells und der gemessenen Hirnaktivität, und- automatic calculation of an early warning indicator for epileptic seizures, - automatic calculation of an intervention instruction for seizure prevention when the early warning indicator responds based on a seizure model and the measured brain activity, and
- automatisches Umsetzen der Interventionsanweisung über gesteuerte bzw. geregelte extrakraniale Magnetfelderzeugung.- Automatic implementation of the intervention instruction via controlled or regulated extracranial magnetic field generation.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Anfallsmodell die aus elektromagnetischen Aktivitäten von Neuronen und/oder Neuronenpopulationen für epileptische Anfälle relevanten Kenngrößen ver- wendet werden.2. The method according to claim 1, characterized in that the parameters relevant to the epileptic seizures from electromagnetic activities of neurons and / or neuron populations are used as the seizure model.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein Anfallsmodell aus der Gruppe Oszillator-Anfallsmodell, stochastisches Os- zillator-Anfallsmodell, Chaos-Anfallsmodell, stochastisches Chaos-Anfallsmodell, Synergetikanfallsmodell, stochastisches Synergetikanfallsmodell verwendet wird.3. The method according to claim 2, characterized in that a seizure model from the group oscillator seizure model, stochastic oscillator seizure model, chaos seizure model, stochastic chaos seizure model, synergetic seizure model, stochastic synergetic seizure model is used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Messen von Hirnaktivität und Berechnen des Frühwarnindikators laufend erfolgt.4. The method according to any one of claims 1 to 3, characterized in that the measurement of brain activity and calculation of the early warning indicator is carried out continuously.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Interventionsanweisung durch extrakraniale Erzeugung magnetischer Felder umgesetzt wird.5. The method according to any one of claims 1 to 4, characterized in that an intervention instruction is implemented by extracranial generation of magnetic fields.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass entweder während oder unmittelbar nach einer Intervention die Hirnaktivität gemessen wird.6. The method according to any one of claims 1 to 5, characterized in that brain activity is measured either during or immediately after an intervention.
7. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch gesteuertes bzw. geregeltes automatisches Herunterfahren der Intervention bei Rückkehr des Frühwarnindikators in seinen Normalbereich und/oder Überschreiten einer Zeitschranke.7. The method according to any one of claims 1 to 6, characterized by controlled or regulated automatic shutdown of the intervention when the early warning indicator returns to its normal range and / or a time limit is exceeded.
8. Vorrichtung zur automatischen nichtinvasiven gesteuerten bzw. geregelten elektromagnetischen Prävention epileptischer Anfälle in vivo, insbesondere zum Ausführen eines Verfahrens nach einem der Ansprüche 1 bis 7, umfassend: - eine Messeinrichtung mit zumindest einem Sensor zum Messen von elektromagnetischer Hirnaktivität,8. Device for automatic non-invasive controlled or regulated electromagnetic prevention of epileptic seizures in vivo, in particular for carrying out a method according to one of claims 1 to 7, comprising: a measuring device with at least one sensor for measuring electromagnetic brain activity,
- eine Einrichtung zum Ermitteln eines Frühwarnindikators zum frühzeitigen Erkennen epileptischer Anfälle,- a device for determining an early warning indicator for the early detection of epileptic seizures,
- eine Einrichtung zum Berechnen einer Interventionsanweisung anhand eines Anfallsmodells und der gemessenen Hirnaktivität, unda device for calculating an intervention instruction based on a seizure model and the measured brain activity, and
- eine Einrichtung zum Umsetzen der Inten/entionsanweisung mit zumindest einem Transmitter zum Erzeugen eines magnetischen Feldes. - A device for implementing the Inten / entionsanleitung with at least one transmitter for generating a magnetic field.
. Vorrichtung gemäß Anspruch 8, dadurch gekennzeichnet, dass die Messeinrichtung mehrere extrakraniale Sensoren aufweist, die ein Sensorgitter bilden., Apparatus according to claim 8, characterized in that the measuring device has a plurality of extracranial sensors which form a sensor grid.
10. Vorrichtung gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Sensoren in einer EEG-Kappe angeordnet sind.10. The device according to claim 8 or 9, characterized in that the sensors are arranged in an EEG cap.
11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Einrichtung zum Umsetzen der Interventionsanweisung mehrere Transmitter aufweist, die ein Transmittergitter bilden.11. The device according to one of claims 8 to 10, characterized in that the device for implementing the intervention instruction has a plurality of transmitters which form a transmitter grid.
12. Vorrichtung nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass eine Rechnereinheit vorgesehen ist, in der ein Softwaremodul zur Implementierung des Verfahrens nach einem der Ansprüche 1 bis 7 gespeichert ist.12. Device according to one of claims 8 to 11, characterized in that a computer unit is provided in which a software module for implementing the method according to one of claims 1 to 7 is stored.
13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass für einen jeden Sensor und einen jeden Transmitter eine elektrische und/oder magnetische Abschirmung vorgesehen ist.13. Device according to one of claims 8 to 12, characterized in that an electrical and / or magnetic shield is provided for each sensor and each transmitter.
14. Vorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass eine Fixiereinrichtung der Messeinrichtung bezüglich des Kraniums des jeweiligen Patienten vorgesehen ist, sodass bei mehrfachem Auf- und Absetzen des Sensorgitters die Sensoren ihre jeweilige relative Position wieder ein- nehmen.14. Device according to one of claims 8 to 13, characterized in that a fixing device of the measuring device is provided with respect to the crane of the respective patient, so that the sensors assume their respective relative positions again when the sensor grid is put on and taken off several times.
15. Vorrichtung nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass die Messeinrichtung mechanisch von der übrigen Vorrichtung entkoppelbar ausgebildet ist, sodass die Messeinrichtung von einem Patienten mitgeführt werden kann.15. The device according to one of claims 8 to 14, characterized in that that the measuring device can be mechanically decoupled from the rest of the device, so that the measuring device can be carried by a patient.
16. Vorrichtung nach einem der Ansprüche 8 bis 15, . dadurch gekennzeichnet, dass eine Fixiereinrichtung für die Einrichtung zum Umsetzen der Interventionsanweisung bezüglich des Kraniums des Patienten vorgesehen ist.16. The device according to one of claims 8 to 15,. characterized in that a fixing device is provided for the device for implementing the intervention instruction with regard to the patient's crane.
17. Vorrichtung nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass die Sensoren und Transmitter auf einer Innenseite die Kranialform des jeweiligen Patienten nachbildenden Helmes angeordnet sind.17. The device according to one of claims 8 to 16, characterized in that the sensors and transmitters are arranged on an inside of the cranial shape of the respective patient's helmet.
18. Vorrichtung nach einem der Ansprüche 9 und 11 bis 17, dadurch gekennzeichnet, dass das Transmittergitter und das Sensorgitter derart verschränkt sind, dass jedem Transmitter Sensoren und jedem Sensor Transmitter benachbart sind.18. Device according to one of claims 9 and 11 to 17, characterized in that the transmitter grating and the sensor grating are interleaved in such a way that each transmitter and sensor transmitter are adjacent.
19. Vorrichtung nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass im Transmittergitter Halterungen zum Aufnehmen zusätzlicher Transmitter vorgesehen sind, sodass die Transmitterdichte eines Transmittergitters lokal veränderbar ist und/oder sodass die Neigungswinkel einzelner Transmitter zum Kranium des Patienten veränderbar sind. 19. Device according to one of claims 11 to 18, characterized in that holders are provided in the transmitter grid for receiving additional transmitters, so that the transmitter density of a transmitter grid can be changed locally and / or so that the angle of inclination of individual transmitters to the patient's cranium can be changed.
PCT/EP2003/003543 2002-04-05 2003-04-04 Method and device for the prevention of epileptic attacks WO2003084605A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003226786A AU2003226786A1 (en) 2002-04-05 2003-04-04 Method and device for the prevention of epileptic attacks
EP03745788A EP1492593A1 (en) 2002-04-05 2003-04-04 Method and device for the prevention of epileptic attacks
JP2003581842A JP2005528141A (en) 2002-04-05 2003-04-04 Method and apparatus for prevention of epileptic seizures
US10/958,842 US20050107655A1 (en) 2002-04-05 2004-10-05 Method and apparatus for the prevention of epileptic seizures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10215115A DE10215115A1 (en) 2002-04-05 2002-04-05 Method and device for the prevention of epileptic seizures
DE10215115.6 2002-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/958,842 Continuation US20050107655A1 (en) 2002-04-05 2004-10-05 Method and apparatus for the prevention of epileptic seizures

Publications (1)

Publication Number Publication Date
WO2003084605A1 true WO2003084605A1 (en) 2003-10-16

Family

ID=28051132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003543 WO2003084605A1 (en) 2002-04-05 2003-04-04 Method and device for the prevention of epileptic attacks

Country Status (5)

Country Link
EP (1) EP1492593A1 (en)
JP (1) JP2005528141A (en)
AU (1) AU2003226786A1 (en)
DE (1) DE10215115A1 (en)
WO (1) WO2003084605A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926660B2 (en) 2003-03-07 2005-08-09 Neuronetics, Inc. Facilitating treatment via magnetic stimulation
JP2008505662A (en) * 2004-04-15 2008-02-28 ニューロネティクス、インク. Method and apparatus for determining the proximity of a TMS coil to a subject's head
WO2008089741A1 (en) * 2007-01-24 2008-07-31 Forschungszentrum Jülich GmbH Device for reducing the synchronization of neuronal brain activity and suitable coil for said device
US7601115B2 (en) 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US7824324B2 (en) 2005-07-27 2010-11-02 Neuronetics, Inc. Magnetic core for medical procedures
US7853329B2 (en) 1998-08-05 2010-12-14 Neurovista Corporation Monitoring efficacy of neural modulation therapy
US7857746B2 (en) 2004-10-29 2010-12-28 Nueronetics, Inc. System and method to reduce discomfort using nerve stimulation
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8118722B2 (en) 2003-03-07 2012-02-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8506468B2 (en) 2005-05-17 2013-08-13 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
RU2522990C2 (en) * 2012-08-24 2014-07-20 Юрий Терентьевич Калашников Method of treating epilepsy
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9421373B2 (en) 1998-08-05 2016-08-23 Cyberonics, Inc. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9622675B2 (en) 2007-01-25 2017-04-18 Cyberonics, Inc. Communication error alerting in an epilepsy monitoring system
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046694A1 (en) 2007-09-28 2009-04-09 Raumedic Ag Sensor system for measuring, transmitting, processing and displaying a brain parameter
JP2015515326A (en) * 2012-04-06 2015-05-28 ニューポート ブレイン リサーチ ラボラトリー インコーポレイテッド rTMS equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691324A (en) * 1994-01-14 1997-11-25 Sandyk; Reuven Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions
US5730146A (en) * 1991-08-01 1998-03-24 Itil; Turan M. Transmitting, analyzing and reporting EEG data
WO1998018394A1 (en) 1996-10-30 1998-05-07 Plc Medical Systems, Inc. Variable angle surgical laser handpiece
WO2000010455A1 (en) * 1998-08-24 2000-03-02 Emory University Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US6117066A (en) * 1992-12-04 2000-09-12 Somatics, Inc. Prevention of seizure arising from medical magnetoictal non-convulsive stimulation therapy
US6161045A (en) * 1999-06-01 2000-12-12 Neuropace, Inc. Method for determining stimulation parameters for the treatment of epileptic seizures
WO2001021067A1 (en) 1999-09-22 2001-03-29 University Of Florida Seizure warning and prediction
US6266556B1 (en) * 1998-04-27 2001-07-24 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for recording an electroencephalogram during transcranial magnetic stimulation
WO2001087153A1 (en) * 2000-05-16 2001-11-22 European Community System for detecting brain activity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736751A (en) * 1986-12-16 1988-04-12 Eeg Systems Laboratory Brain wave source network location scanning method and system
FI964387A0 (en) * 1996-10-30 1996-10-30 Risto Ilmoniemi Foerfarande och anordning Foer kartlaeggning av kontakter inom hjaernbarken
DE10028787A1 (en) * 1999-06-16 2001-01-11 Univ Ilmenau Tech Device for treating neurological, neuropsychological illnesses has components for specific indication of multiple, patient-individual neuro-feedback profile, monitored initial training

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730146A (en) * 1991-08-01 1998-03-24 Itil; Turan M. Transmitting, analyzing and reporting EEG data
US6117066A (en) * 1992-12-04 2000-09-12 Somatics, Inc. Prevention of seizure arising from medical magnetoictal non-convulsive stimulation therapy
US5691324A (en) * 1994-01-14 1997-11-25 Sandyk; Reuven Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions
WO1998018394A1 (en) 1996-10-30 1998-05-07 Plc Medical Systems, Inc. Variable angle surgical laser handpiece
US6266556B1 (en) * 1998-04-27 2001-07-24 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for recording an electroencephalogram during transcranial magnetic stimulation
WO2000010455A1 (en) * 1998-08-24 2000-03-02 Emory University Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US6161045A (en) * 1999-06-01 2000-12-12 Neuropace, Inc. Method for determining stimulation parameters for the treatment of epileptic seizures
WO2001021067A1 (en) 1999-09-22 2001-03-29 University Of Florida Seizure warning and prediction
WO2001087153A1 (en) * 2000-05-16 2001-11-22 European Community System for detecting brain activity

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7930035B2 (en) 1998-08-05 2011-04-19 Neurovista Corporation Providing output indicative of subject's disease state
US9320900B2 (en) 1998-08-05 2016-04-26 Cyberonics, Inc. Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US9421373B2 (en) 1998-08-05 2016-08-23 Cyberonics, Inc. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US8781597B2 (en) 1998-08-05 2014-07-15 Cyberonics, Inc. Systems for monitoring a patient's neurological disease state
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7853329B2 (en) 1998-08-05 2010-12-14 Neurovista Corporation Monitoring efficacy of neural modulation therapy
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US8517908B2 (en) 2003-03-07 2013-08-27 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8118722B2 (en) 2003-03-07 2012-02-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US10413745B2 (en) 2003-03-07 2019-09-17 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US7153256B2 (en) 2003-03-07 2006-12-26 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US7320664B2 (en) 2003-03-07 2008-01-22 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8864641B2 (en) 2003-03-07 2014-10-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US6926660B2 (en) 2003-03-07 2005-08-09 Neuronetics, Inc. Facilitating treatment via magnetic stimulation
US9681841B2 (en) 2004-04-15 2017-06-20 Neuronetics, Inc. Method and apparatus for determining the proximity of a TMS coil to a subject's head
JP4755640B2 (en) * 2004-04-15 2011-08-24 ニューロネティクス インコーポレイテッド Method and apparatus for determining the proximity of a TMS coil to a subject's head
US10596385B2 (en) 2004-04-15 2020-03-24 Neuronetics, Inc. Method and apparatus for determining the proximity of a TMS coil to a subject's head
US9421392B2 (en) 2004-04-15 2016-08-23 Neuronetics, Inc. Method and apparatus for determining the proximity of a TMS coil to a subject's head
JP2008505662A (en) * 2004-04-15 2008-02-28 ニューロネティクス、インク. Method and apparatus for determining the proximity of a TMS coil to a subject's head
US7601115B2 (en) 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
US7857746B2 (en) 2004-10-29 2010-12-28 Nueronetics, Inc. System and method to reduce discomfort using nerve stimulation
US10315041B2 (en) 2005-05-17 2019-06-11 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US11185710B2 (en) 2005-05-17 2021-11-30 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US8506468B2 (en) 2005-05-17 2013-08-13 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US7824324B2 (en) 2005-07-27 2010-11-02 Neuronetics, Inc. Magnetic core for medical procedures
US8657731B2 (en) 2005-07-27 2014-02-25 Neuronetics, Inc. Magnetic core for medical procedures
US9931518B2 (en) 2005-07-27 2018-04-03 Neuronetics, Inc. Magnetic core for medical procedures
US10617884B2 (en) 2005-07-27 2020-04-14 Neurontics, Inc. Magnetic core for medical procedures
US7963903B2 (en) 2005-07-27 2011-06-21 Neuronetics, Inc. Magnetic core for medical procedures
US9308386B2 (en) 2005-07-27 2016-04-12 Neuronetics, Inc. Magnetic core for medical procedures
US9592004B2 (en) 2005-12-28 2017-03-14 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9044188B2 (en) 2005-12-28 2015-06-02 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US9480845B2 (en) 2006-06-23 2016-11-01 Cyberonics, Inc. Nerve stimulation device with a wearable loop antenna
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US8855775B2 (en) 2006-11-14 2014-10-07 Cyberonics, Inc. Systems and methods of reducing artifact in neurological stimulation systems
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
WO2008089741A1 (en) * 2007-01-24 2008-07-31 Forschungszentrum Jülich GmbH Device for reducing the synchronization of neuronal brain activity and suitable coil for said device
US9622675B2 (en) 2007-01-25 2017-04-18 Cyberonics, Inc. Communication error alerting in an epilepsy monitoring system
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US8543199B2 (en) 2007-03-21 2013-09-24 Cyberonics, Inc. Implantable systems and methods for identifying a contra-ictal condition in a subject
US9445730B2 (en) 2007-03-21 2016-09-20 Cyberonics, Inc. Implantable systems and methods for identifying a contra-ictal condition in a subject
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US9289595B2 (en) 2009-01-09 2016-03-22 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
RU2522990C2 (en) * 2012-08-24 2014-07-20 Юрий Терентьевич Калашников Method of treating epilepsy

Also Published As

Publication number Publication date
EP1492593A1 (en) 2005-01-05
AU2003226786A1 (en) 2003-10-20
JP2005528141A (en) 2005-09-22
DE10215115A1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
WO2003084605A1 (en) Method and device for the prevention of epileptic attacks
DE69736592T2 (en) SYSTEMS FOR PREDICTING, FAST RECORDING, WARNING, AVOIDING OR CHECKING STATE CHANGE IN YOUR BRAIN
DE60204451T2 (en) DETERMINATION OF NEUROLOGICAL CONDITIONS BY MEANS OF IRRITANT POTENTIALS
EP1827586B1 (en) Device for desynchronizing neuronal brain activity
US20050107655A1 (en) Method and apparatus for the prevention of epileptic seizures
DE69933761T2 (en) Spinal cord stimulation system with patient activity and therapy settings
EP1988828B1 (en) Probe for data transmission between a brain and a data processing device
DE69736811T2 (en) METHOD AND DEVICE FOR LOCATING CORTICAL LINKS
WO2003085546A1 (en) Method and device for the electromagnetic modification of cerebral activity
WO2005113063A1 (en) Device for treating patients by brain stimulation, electronic component and use of the device and electronic component in medicine
WO2005053787A1 (en) Method and device for desynchronising neuronal cerebral activity
DE102012002437A1 (en) Apparatus and method for calibrating an invasive, electrical and desynchronizing neurostimulation
EP3041574B1 (en) System for non-invasive neuronal stimulation
EP3215007B1 (en) Device for calibrating a non-invasive mechanically tactile and/or thermal neurostimulation
DE102015108861A1 (en) Method and apparatus for neurostimulation
DE102019209096A1 (en) NEURONAL SIGNAL SYSTEM FOR BEHAVIOR MODIFICATION
DE10211766B4 (en) Device for treating patients by means of brain stimulation and the use of the device in medicine
DE102019214752A1 (en) NEURAL SIGNAL SYSTEM, PROCEDURE AND COMPUTER PROGRAM FOR SIGNALING A DEVICE STATE
EP3183032B1 (en) Device for effective invasive neurostimulation by means of varying stimulus sequences
DE10042813A1 (en) Arrangement for automatic generation of day and sleep profiles for diagnosis of sleep disturbance; obtains characteristics for profile from one-channel electroencephalogram and heartbeat variations
Wang Closed-loop brain-computer interfaces for memory restoration using deep brain stimulation
DE202022101545U1 (en) A medical device used to treat neurological disorders
DE10234676A1 (en) Procedure for electromagnetic modification of brain activity to cause predetermined mode of behavior using behavior model
DE10338953B4 (en) Device for stimulating the brain in humans or mammals with a tendency to epileptic seizures
DE102020131503A1 (en) System for acquiring EEG signals from a living being and system for electrically stimulating tissue of a living being

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003581842

Country of ref document: JP

Ref document number: 10958842

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003745788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003745788

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2003745788

Country of ref document: EP