WO2004038436A1 - 目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置 - Google Patents

目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置 Download PDF

Info

Publication number
WO2004038436A1
WO2004038436A1 PCT/JP2003/013630 JP0313630W WO2004038436A1 WO 2004038436 A1 WO2004038436 A1 WO 2004038436A1 JP 0313630 W JP0313630 W JP 0313630W WO 2004038436 A1 WO2004038436 A1 WO 2004038436A1
Authority
WO
WIPO (PCT)
Prior art keywords
target value
search
value
delay amount
sequential
Prior art date
Application number
PCT/JP2003/013630
Other languages
English (en)
French (fr)
Inventor
Hideyuki Oshima
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2004546476A priority Critical patent/JP4541892B2/ja
Priority to US10/532,367 priority patent/US7444576B2/en
Publication of WO2004038436A1 publication Critical patent/WO2004038436A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31932Comparators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99951File or database maintenance
    • Y10S707/99952Coherency, e.g. same view to multiple users

Definitions

  • Target value search circuit Target value search circuit, target value search method, and semiconductor test apparatus using the same
  • the present invention relates to a search circuit, a search method, and a semiconductor test apparatus that search for a target value in an ascending numerical sequence including partly decreasing values, and more particularly to a search circuit suitable for a semiconductor test apparatus including a variable timing delay circuit.
  • a semiconductor test apparatus has been known as an apparatus for testing various semiconductor devices such as a logic IC and a semiconductor memory.
  • test performed by the semiconductor test apparatus examples include a function test (function test), a DC characteristic test (DC parameter test), and an AC characteristic test (AC parameter test).
  • the functional test is a test performed to guarantee the function of the semiconductor device.
  • a test pattern signal from the test pattern generator 11 The output signal is given to a “DUT” (called “DUT”) 12, and the output signal and an expected value pattern are compared by a comparator 13 to judge the quality of various functions of the DUT 12.
  • the function test of the DUT 12 is performed by the semiconductor test circuit 10 having a configuration as shown in FIG. ''
  • the test pattern data for one DUT (semiconductor device) 12 having a plurality of pins is stored in the memory (expected value memory) 14 in advance, together with the expected value data S sent to the comparator 13. It is remembered.
  • a test pattern signal provided to the DUT 12 by the test pattern generator 11 based on the test pattern data in the memory 14 is generated in synchronization with the reference clock signal CLK of the reference clock generator 15, and the variable delay circuits DL 1 and SK 1 Having a DUT input delay circuit (timing generator) 16 Supplied to
  • the reference clock signal of the reference clock generator 15 passes through a comparison timing delay circuit 17 having variable delay circuits DL2 and SK2, and as a strobe signal STRB, a D-type flip-flop circuit of the comparator 13 (hereinafter referred to as “ DFZF ”) is also supplied to the 13_1 clock terminal.
  • DFZF D-type flip-flop circuit of the comparator 13
  • variable delay circuits DLL, SKI, DL2, and SK2 the delay amount Tpd is set by program control of the control unit 18.
  • variable delay circuits DL 1 and DL 2 are delay circuits whose time phase can be defined for the DUT 12 by a user program.
  • variable delay circuits SKI and SK2 adjust the phase with respect to the DUT 12 to a predetermined value because the delay amount Tpd of the hardware such as the DL 1 and DL 2 fluctuates due to changes in the ambient temperature and the passage of time. Make corrections, that is, calibrate the hardware. ⁇
  • the output (response output signal) of the DUT 12 is input to the DF / F 13-1 of the comparator 13, and the output thereof is input to the mismatch circuit (Exclusive-OR circuit; Ex-OR) 13-2.
  • each test pattern signal has a difference in phase delay time, that is, a difference in timing due to a difference in each path.
  • Differences in paths that cause this phase delay time are caused by differences in physical conditions and waveform shapers (parts that form the output signal from the test pattern generator 11 according to the circuit configuration of the DUT 12, not shown). Route changes within, used within each route It occurs due to thermal effects on the semiconductor device.
  • a frequency measuring device or the like is used to measure the delay amount T pd of the test pattern signal performed to synchronize the test pattern signals.
  • the measurement of the delay amount T pd of the test pattern signal is not limited to the measurement using the frequency, and for example, a reflected wave may be used.
  • the method of measuring the delay amount Tpd of the test pattern signal using the frequency measuring device and giving the delay amount setting value of the variable delay circuit DL 1 so that the delay amount Tpd approaches the target value is as follows. It is performed as follows.
  • FIG. 7 shows the transition of the delay amount setting value of the variable delay circuit DL1. First, in the frequency measuring device, the delay amount of the test pattern signal is measured based on the loop frequency.
  • the measured delay amount is 104 ns.
  • the measured delay amount (104 ns) is compared with the target value (100 ns).
  • the delay amount Tpd of the variable delay circuit DL1 is set to be the calculated delay amount set value.
  • the measured delay amount becomes 99 ns.
  • the calculated delay amount setting value is set as the delay amount Tpd of the variable delay circuit DL1.
  • the measured delay amount is 101.5 ns.
  • the delay amount Tpd of the variable delay circuit DL 1 is binary-shaped depending on whether the measured value of the delay amount in the i-first measurement is above or below the target value.
  • the measured delay value approaches the target value.
  • the frequency measuring instrument synchronizes the input timing of each test pattern signal input to a plurality of pins of the DUT 12 with every path through which each test pattern signal passes.
  • initial adjustment at the time of initialization in a function test (function test) of the DUT 12 using the semiconductor test apparatus 10 is enabled.
  • the variable delay circuit DL 1 of the DUT input delay circuit 16 has a delay T pd due to, for example, a change in the ambient temperature of the IC, a change in the power supply voltage applied to the IC, manufacturing variations of the IC, and fluctuations in self-heating. As a result, as shown in FIG. 8, a discontinuous point was generated every 1 CLK period.
  • the target value is determined only by the binary search that searches the pure ascending sequence. (That is, using only a binary search as a method of measuring the delay amount TP d of the test pattern signal) was not necessarily appropriate.
  • the binary search compares the center value (median value) of the array with the value you want to search (the target value), and if the values are not equal, deletes the first half (or the second half) of the array. Then, the median of the remaining second half (or first half) is compared with the target value, and the comparison of each value and the halving of the array are repeated until the median and the target value match. For this reason, the binary search can shorten the search time, but it must be arranged in ascending or descending order.
  • the search range is narrowed down as much as possible by a binary search. By searching for a target value by a sequential search within the narrowed search range, it is possible to shorten the search time without lowering the measurement accuracy.
  • a binary search is performed in the vicinity of or in the middle of the delay amount T pd where the same slope is continuous (when the sequential search centering on the result of the binary search is performed).
  • the lower half of the search range If there is no discontinuous point in the box, for example, point A) is searched, there is no discontinuous point in the search range. Can be searched.
  • the result of the binary search is close to the discontinuity of the delay amount T pd (for example, near the valley of the sawtooth waveform, such as point B in the figure)
  • a sequential search in the increasing direction is possible.
  • the sequential search in the decreasing direction was performed, the value again was larger than the target value when approaching the discontinuity point. For this reason, the search within the search range ends before the target value is found, and there has been a problem that the target value cannot be searched normally.
  • the effect of hysteresis here is the effect of the edge set last time on the edge set this time, and the amount of the effect changes depending on the time difference between the edge of the previous time and this time. This means that it appears as a VD delay error.
  • points corresponding to the delay amount T pdb which is the target value EX p on the graph line representing the VD delay characteristic of the binary search are points B 1 and B 2, but the points of the sequential search are Only three points B coincide with the delay amount T pdb on the graph line representing the VD delay characteristic.
  • the B3 point is not included in the search range of the sequential search centering on the B1 point.
  • the present invention has been made in order to solve the above-described problem. Even in the case of an ascending numerical sequence partially including a decrease in the value (for example, the characteristic of the delay amount T pd with respect to the set value of the timing VD), A search for the target value E xp (delay amount T pdb) can be performed normally and reliably.Binary search and sequential search can be used together to shorten the search time and prevent the measurement accuracy from lowering. It is an object of the present invention to provide a target value search circuit to be realized, a target value search method, and a semiconductor test apparatus using the same. Disclosure of the invention
  • a target value search circuit of the present invention includes a target value storage section for storing a target value, a target value from the target value storage section, and a predetermined value from the extracted target value.
  • a search control unit that sets the reduced or added value as a tentative target value, a binary search execution unit that narrows the search range to a certain area that includes the tentative target value by a binary search, and a sequential search within the narrowed search range
  • a sequential search execution unit that searches for a target value in the increasing or decreasing direction starting from the temporary target value is provided.
  • the sequence to be searched is a sequence in ascending order including a partial decrease, and the characteristic between the binary search and the sequential search is The target value can be normally and reliably searched even when a small difference occurs in the step.
  • the valley of the sawtooth waveform is included in the range showing a value smaller than the target value in the search range narrowed by the binary search, and the characteristics of the binary search and the characteristics of the sequential search.
  • the search circuit of the present invention subtracts or adds a predetermined value (for example, a value indicating a half area of the search area of the sequential search) from the target value to obtain a temporary target value.
  • a predetermined value for example, a value indicating a half area of the search area of the sequential search
  • a search is performed by a binary search, and a sequential search is performed in an increasing direction using the provisional target value obtained in the search as a search start value (starting point).
  • the target value can be searched for while avoiding a deviation from the search range.
  • the sequence to be searched is a sequence in ascending order including a partial decrease, or when there is a slight difference between the characteristics of the binary search and the characteristics of the sequential search, it is normal and The target value can be reliably searched.
  • the "search range” is a range searched by the sequential search, and refers to a search range on the adjustment side, for example, a search range in the Tim-ng-VD set value shown in FIG.
  • search area is an area searched by the sequential search, and refers to a search area on the adjusted side, for example, a search area in the delay amount T pd shown in FIG.
  • the method of searching for a target value includes the steps of: storing a target value; extracting the target value; and setting a value obtained by subtracting or adding a predetermined value from the extracted target value as a temporary target value.
  • the method of searching for the target value is such a method, a fixed area including the temporary target value is searched by the nano-research, and further, in the fixed area, the temporary target value is used as a starting point by a sequential search in an increasing direction. Since the search for the target value is performed, the search time can be reduced while improving the measurement accuracy.
  • the target value does not exist within the search range of the sequential search. Since the inconvenience does not occur, the target value can be reliably found.
  • a semiconductor test apparatus of the present invention includes a reference clock generator for generating a reference clock signal, and a test pattern signal applied to the semiconductor element in synchronization with the reference clock signal. , A timing generator with a variable delay circuit that delays the test pattern signal for a predetermined time, and a comparator that compares the response output signal output from the semiconductor device with the expected value pattern A storage unit for storing a target value, a delay amount measurement unit for obtaining a measured delay amount of a test pattern signal, a target value extracted from the storage unit, and the extracted target value.
  • a temporary target value calculation unit that calculates a value obtained by subtracting or adding a predetermined value from the above as a temporary target value, and setting the delay amount of the variable delay circuit so that the search range is narrowed down to a certain area including the temporary target value by binary search
  • a binary search execution unit that gives a value, and a sequential search within the narrowed search range, targets in the increasing or decreasing direction starting from the temporary target value
  • Sequential search execution unit that gives the delay amount setting value of the variable delay circuit to search for, VD setting unit that sets the delay amount of the variable delay circuit, and binary search execution unit that outputs the temporary target value and delay amount measurement value
  • the delay setting value from the binary search execution unit is sent to the VD setting unit to set the delay amount of the variable delay circuit. If the search range is narrowed down to a certain area including the tentative target value, The obtained delay amount setting value, target value, and delay amount measurement value are sent to the sequential search execution unit, and the delay amount setting value from the sequential search execution unit is sent to the VD setting
  • the target value is searched by combining the binary search and the sequential search, so that it is possible to improve the measurement accuracy and shorten the search time.
  • the predetermined value for example, (A value indicating half the area of the search area of the sequential search) is subtracted (or added) from the target value to be a provisional target value, and the sequential search is executed starting from the provisional target value.
  • the target value can be included in the search area, and the target value can be reliably and normally searched.
  • the provisional target value calculating unit subtracts or adds from the target value a value indicating a half of the search area of the sequential search from the target value as a predetermined value, and temporarily calculates the value obtained by subtracting or adding the value. It is configured to calculate as a target value.
  • the delay amount T pd to be searched for indicates an ascending order characteristic including a decrease in the negative part, and the binary search characteristic and the sequential search characteristic Even if there is a difference between the target values, the target value can be included in the search range of the sequential search, so that the target value can be reliably searched by the sequential search.
  • FIG. 1 is a block diagram showing a configuration of a search circuit of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a semiconductor test apparatus to which the search circuit of FIG. 1 is connected.
  • FIG. 3 is a graph showing a change in the delay amount T pd in the variable delay circuit.
  • FIG. 4 is a flowchart showing the operation of the search circuit of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a conventional semiconductor test apparatus.
  • FIG. 6 is a block diagram showing a more specific configuration of a conventional semiconductor test apparatus.
  • FIG. 7 is a graph showing the process of searching for a target value by a binary search.
  • FIG. 8 is a graph showing a change in a delay amount Tpd with respect to a set value of T iming -VD in a conventional semiconductor test apparatus.
  • FIG. 9 is a graph showing a search route of the binary search and a search range of the sequential search in the variation of the delay amount T pd shown in FIG.
  • FIG. 10 is a graph showing VD delay characteristics of a binary search and VD delay characteristics of a sequential search in a conventional semiconductor test apparatus.
  • FIG. 2 is a block diagram showing the configuration of the search circuit of the present embodiment.
  • the search circuit of the present embodiment can be used, for example, as the search circuit 20 of the semiconductor test apparatus 10 shown in FIG.
  • the search circuit 20 includes a storage unit 21, a delay circuit output unit I / F 22, a test pattern generator input unit IZF 23, a delay amount measurement unit 24, and a binary research execution unit. 25, a VD setting unit 26, a search control unit 27, a provisional target value calculation unit 28, and a sequential search execution unit 29.
  • the storage unit (target value storage unit) 21 stores the target value Exp, the provisional target value Exp B, and the search range b (or search area b) of the single search.
  • the delay circuit output unit I / F 22 is connected to the output side of the DUT input delay circuit 16 and sends the test pattern signal (delay clock signal) input from the DUT input delay circuit 16 to the delay amount measurement unit 24.
  • the test pattern generator input unit I / F23 is connected to the input side of the test pattern generator 11. As a result, the path passing through the test pattern generator 11 and the DUT input delay circuit 16 and the path passing through the delay circuit output section I / F22, the delay amount measuring section 24, and the test pattern generator input section I / F23 are different. Tied in a loop.
  • the delay amount measuring unit 24 measures the delay amount Tpd of the test pattern signal based on the test pattern signal (delayed clock signal) from the delay circuit output unit IZF 22. Then, the delay amount measurement value, which is the measurement result, is sent to search control unit 27.
  • the measurement of the delay amount Tpd of the test pattern signal is not limited to the measurement using the loop frequency.
  • a reflected wave can be used.
  • the binary search execution unit 25 receives the tentative target value ExpB and the measured delay amount from the search control unit 27. Then, a binary search is executed based on an execution instruction from the search control unit 27.
  • variable delay circuit DL1 is expressed in a binary number.
  • VD set value the immediately preceding VD set value
  • the binary search execution unit 25 sends the delay amount set value as the search result to the search control unit 27.
  • the binary search execution unit 25 outputs a search end signal indicating that the search has been completed to the search control unit 27. Send to
  • the VD setting unit 26 sets the initial value (intermediate value of (l to n) of the VD variable range) of the delay amount Tpd for the variable delay circuit DL1 of the DUT input delay circuit 16. Further, when the delay amount setting value is sent from search control unit 2, VD setting unit 26 sets variable delay circuit DL 1 to match the delay amount setting value.
  • the search control unit 27 extracts the target value Exp and the search range b (of the sequential search) from the storage unit 21 and sends the target value Exp and the search range b to the temporary target value calculation unit 28. Then, the provisional target value Ex pB from the provisional target value calculation unit 28 is sent to the storage unit 21 for storage.
  • the search control unit 27 sends the provisional target value EX p B extracted from the storage unit 21 and the delay amount measurement value received from the delay amount measurement unit 24 to the binary search execution unit 25 to execute a binary search. (Execution instruction) to calculate the delay amount set value of the variable delay circuit DL1. Then, the delay amount setting value from the non-research execution unit 25 is sent to the VD setting unit 26.
  • the search control unit 27 subsequently fetches the target value Exp and the provisional target value ExpB from the storage unit 21.
  • the target value Exp and the provisional target value ExpB, the delay amount set value finally obtained by the binary search execution unit 25, and the delay amount from the delay amount measurement unit 24 The measured value is sent to the sequential search execution unit 29 to instruct to execute the sequential search (execution instruction), and the delay amount set value of the variable delay circuit DL1 is calculated. Further, the delay amount setting value from the sequential search execution unit 29 is sent to the VD setting unit 26.
  • the provisional target value calculation unit 28 When receiving the target value EXp and the search range b (of the sequential search) from the search control unit 27, the provisional target value calculation unit 28 subtracts half the value indicating the search range b from the target value Exp. Alternatively, the added value is calculated as a provisional target value EX p B. Then, the provisional target value calculation unit 28 sends the calculated provisional target value Exp B to the search control unit 27.
  • the function of the provisional target value calculation unit 28, that is, a function of calculating a value obtained by subtracting or adding half the value indicating the search range b of the sequential search from the target value Exp as the provisional target value Exp B Can be provided in the search control unit 27 instead of the provisional target value calculation unit 28.
  • the sequential search execution unit 29 executes a sequential search based on an execution instruction from the search control unit 27.
  • the sequential search executed by the sequential search execution unit 29 is performed by sequentially measuring all delay amount setting values that can be set in the variable delay circuit DL1 and searching for a setting value close to the target value Exp. Is
  • the point B1 is centered.
  • the sequential search in the upward direction is executed correctly, the sequential search in the downward direction searches for a location larger than the target value Exp (the range shown as “C” in the figure), and the Cannot search.
  • the target value Exp if the target value Exp is above the point B1 (on the VD set value increasing side), the target value Exp can be found because the sequential search is sequentially performed in the increasing direction starting from the point B1.
  • the target value Exp if the target value Exp is lower than the point B1 (VD set value decreasing side), a sequential search is performed in a slightly decreasing direction from the point B1, and then the discontinuity point of the delay amount Tpd
  • the sequential search starts with the delay amount T pd larger than the target value EXP, and the search range of the sequential search may end before the target value EX p can be found. This is because when the VD delay characteristic of the binary search and the VD delay characteristic of the sequential search have slightly different values, the target value Exp may be out of the search range of the sequential search.
  • the target value EXp for executing the binary search is set to a value (temporary target value Exp B) that is reduced by the area to be searched in the downward direction by the sequential search. Do it again.
  • a binary search is performed with the tentative target value ExpB as a target, and after completion, the target value Exp is returned to the original value, and only the upward direction is searched starting from the tentative target value ExpB by a sequential search.
  • the provisional target value Exp B "a value obtained by reducing the target value Exp by the area to be searched downward in the next sequential search".
  • the search area of the delay amount Tpd finally narrowed down by the binary search includes the target value EXp, and this search area is a search range by the sequential search. Since a binary search originally searches for a purely ascending (or descending) sequence, the search target within the search range of the sequential search should also be a pure ascending (or descending) sequence. However, since the delay amount T pd of the variable delay circuit to be searched is a sawtooth waveform that increases as a whole, the delay amount T pd is a series of numbers in ascending order but includes a decrease in part. If the reduced waveform portion (discontinuous point) is not included in the search range of the sequential search, the search is performed.
  • the target value EX p can be reliably found.
  • the reduced waveform portion discontinuous point
  • the delay amount T pd searched twice or more within the search range of the sequential search.
  • the delay amount T pd which is searched for a pure ascending sequence but is not searched due to a discontinuous point. If the target value EX p is included in the value of the unsearched delay amount T pd, the target value Exp cannot be found even by performing the sequential search.
  • a provisional target value E x p B is set.
  • the provisional target value E xp B is “a value obtained by reducing the target value E xp by the area to be searched downward in the next sequential search”, in other words, the lower limit of the search area for the delay amount T pd It is. Since the target value EXP is always included in the search region of the delay amount T d, if the VD delay characteristic in this search region is a pure ascending sequence, the lower limit value of the provisional target value EX p B By performing a sequential search upward, the target value E xp can be found.
  • the waveform is such that the delay amount T pd increases as a whole.
  • the target value E xp B is set to a position that is lower and farther away from the discontinuous point by setting “a value smaller in the downward direction”. Therefore, when a sequential search is performed in the upward direction starting from the temporary target value ExpB, the target value Expp can be found before reaching the discontinuous point.
  • the target value Exp can be normally searched.
  • FIG. 5 is a flowchart showing the operation of the search circuit in the semiconductor test device of the present embodiment.
  • the set value of the variable delay circuit DL1 is expressed in binary notation for convenience of explanation.
  • the setting value of this variable delay circuit DL 1 is limited to binary display Instead, for example, it can be displayed in decimal or octal.
  • the search range b (or search area b) of the sequential search is stored (prepared) in the storage unit 21 (step 10).
  • the search range b of this sequential search can be obtained by "1 (binary research) -one (sequential search) IMAXj" as the maximum value of the absolute value of the possible error.
  • a target value is also stored (prepared) in the storage unit 21 (step 11). Then, in the VD setting section 26, an initial value (an intermediate value of (l to n) in the VD variable range) of the variable delay circuit D L1 is set (step 12).
  • the target value Exp and the search range b (of the sequential search) are extracted from the storage unit 21 and sent to the temporary target value calculation unit.
  • the provisional target value calculation unit 28 a value obtained by subtracting or adding half the value indicating the search range b from the target value Exp (target value Exp—search range b / 2) is calculated as the provisional target value Exp B. (Step 13). Then, the calculated tentative target value Exp B is sent from the tentative target value calculation unit 28 to the search control unit 27, and further sent to the storage unit 21 for storage.
  • the delay amount measuring section 24 measures the delay amount Tpd of the test pattern signal based on the test pattern signal from the delay circuit output section 22 (step 14).
  • the measured delay amount Tpd which is the measurement result, is sent to search control unit 27.
  • the search control unit 27 When the search control unit 27 receives the delay amount measurement value Tpd, the provisional target value Exp B is extracted from the storage unit 21 and sent to the binary search execution unit 25 along with the delay amount measurement value Tpd, so that the binary search is performed. Is executed.
  • step 15 it is determined whether or not the provisional target value ExpB and the measured delay amount Tpd match.
  • the binary search execution unit 25 “the immediately preceding VD setting value—the target bit + the bit obtained by shifting the target bit to the 1-bit LSB” and “the immediately preceding VD setting value + the target bit + the 1-bit LSB The result of searching up to the LSB by repeating “bit shifted to the side” is used as the search result.
  • the calculated VD setting values are sent from the binary search execution unit 25 to the search control unit 27.
  • the received VD setting value is sent to the VD setting unit 26.
  • the VD setting section 26 sets the variable delay circuit DL1 in the DUT input delay circuit 16 based on the received VD setting value.
  • the delay amount measuring section 24 measures the delay amount Tpd of the test pattern signal again and sends it to the search control section 27 (step 14). Then, in the search control unit 27, the provisional target value ExpB and the measured delay amount Tpd are sent to the binary search execution unit 25 for comparison and judgment (step 15), and the VD set value is calculated (steps 16 to 18)
  • the VD setting section 26 sets the variable delay circuit DL1.
  • the setting operation of the variable delay circuit DL1 based on such a binary search is repeatedly performed until the tentative target value EpB and the delay amount setting value Tpd match (steps 14 to 18).
  • the binary search execution unit 25 determines that the provisional target value ExpB and the delay amount measurement value T pd match (step 15)
  • the binary search execution unit 25 sends the search control unit 27 A search end signal is sent.
  • the search control unit 27 Upon receiving this search end signal, the search control unit 27 instructs the delay amount measurement unit 24 to measure the delay amount T pd of the test pattern signal.
  • the delay amount measuring unit 24 measures the delay amount Tpd of the test pattern signal based on the test pattern signal from the delay circuit output unit IZF 22 (step 1). 9) The measured delay amount Tpd (delay amount measurement value Tpd) is sent to the search control unit 27.
  • the delay amount measurement value T pd from the delay amount measurement unit 24, the target value Exp extracted from the storage unit 21, and the delay amount setting value finally obtained in the binary search execution unit 25. are sent to the sequential search execution unit 29 to instruct execution of the sequential search.
  • the sequential search execution unit 29 determines whether or not the target value EP matches the measured delay amount Tpd (step 20). If the target value Exp is different from the measured delay amount Tpd as a result of the determination, the VD set value in the next sequential search is calculated (step 21). This VD setting value can be calculated by “the immediately preceding VD setting value + VD minimum 1 bit”.
  • the calculated VD setting value is sent to the VD setting unit 26 via the search control unit 27, and the setting of the variable delay circuit DL1 of the DUT input delay circuit 16 is performed based on the VD setting value.
  • the delay amount measuring section 24 measures the delay amount T pd of the test pattern signal again and sends it to the search control section 27 (step 19). Then, in the search control unit 27, the target value Exp and the measured delay amount Tpd are sent to the sequential search execution unit 29 to be compared and determined (step 20), and the VD set value is calculated (step 21). The setting of the variable delay circuit DL1 is performed in the unit 26.
  • the setting operation of the variable delay circuit DL1 based on the sequential search is repeated until the target value EXP and the measured delay amount Tpd coincide with each other (steps 19 to 21).
  • the search for the target value Exp ends.
  • search circuit and search method of the present invention are not limited to use for measuring and adjusting the delay amount Tpd of the variable delay circuit DL1 in the DUT input delay circuit of the semiconductor test apparatus.
  • Search for the target value Exp in the ascending numerical sequence including the decrease in both the binary search and the sequential search Can be used in some cases.
  • the setting of the variable delay circuit DL 2 of the comparison timing delay circuit 17 in the comparator 13 (setting of the delay amount of DL 2 based on the comparison judgment between the response output signal and the expected value pattern) and the reference clock generator It can be used to adjust the output timing of the reference clock signal CLK (timing signal) in 15 (timing signal generation circuit).
  • the sequence to be searched (for example, the delay amount T pd of the test pattern signal) indicates an ascending sequence (for example, a sawtooth waveform or the like) including a decrease in the negative part. Therefore, even if a difference occurs between the characteristics of the binary search and the characteristics of the sequential search, the target value can be reliably and normally searched.
  • a target value search circuit, a target value search method, and a semiconductor test apparatus using the same according to the present invention are used in an apparatus and a method for searching for a target value by searching a sequence of ascending or descending order including a partial decrease. it can.

Abstract

 仮目標値算出部28において、目標値Expから所定値が減ぜられ(又は加えられ)仮目標値ExpBとして算出される。この仮目標値ExpBを含む一定領域まで、バイナリサーチ実行部25でバイナリサーチが実行され探索領域が絞り込まれる。次いで、シーケンシャルサーチ実行部29において、その絞り込まれた探索領域内で、仮目標値ExpBを起点として、増加方向へ目標値Expが探索される。これにより、測定精度の低下防止と探索時間の短縮とを両立させるとともに、探索対象である数列が一部に減少を含んだ昇順数列を示すものであっても、確実かつ正常に目標値を見つけ出す。

Description

明 細 書 目標値の探索回路、 目標値の探索方法及びこれを用いた半導体試験装置 技術分野
本発明は、 一部に値の減少を含む昇順の数列において目標値の探索を実行する 探索回路、 探索方法及び半導体試験装置に関し、 特に、 タイミング可変遅延回路 を備える半導体試験装置に好適な探索回路、 探索方法及びこれを用いた半導体試 験装置に関する。 背景技術
従来から、 ロジック I Cや半導体メモリ等の各種の半導体デバイスに対し試験 を行う装置として半導体試験装置が知られている。
この半導体試験装置で行われる試験としては、 たとえば、 機能試験 (ファンク シヨン試験) , 直流特性試験 (DCパラメータ試験) , 交流特性試験 (ACパラ メータ試験) 等がある。
これらのうち機能試験は、 半導体デバイスの機能を保証するために行う試験で あって、 たとえば、 第 5図に示すように、 試験パターン発生器 11からの試験パ ターン信号を被試験 I C (以下、 「DUT」 (Dev i c e Und e r Te s t) という) 12に与え、 その出力信号と期待値パターンとを比較器 13で比 較して、 DUT 12の諸機能の良否を判断するものである。
より具体的には、 第 6図に示すような構成の半導体試験回路 10によって、 D UT 12の機能試験が行われる。 ' 同図において、 複数のピンを有した 1個の DUT (半導体素子) 12に対する 試験パターンデータが、 比較器 13へ送られる期待値デ一夕 Sとともに、 予めメ モリ (期待値メモリ) 14に記憶されている。
メモリ 14の試験パターンデータにもとづいて試験パターン発生器 11により DUT12に与えられる試験パターン信号が、 基準クロック発生器 15の基準ク ロック信号 CLKに同期して発生され、 可変遅延回路 DL l, SK1を有する D UT入力遅延回路 (タイミング発生器) 16を通って、 DUT12の入力端子 i に供給される。
また、 基準クロック発生器 15の基準クロック信号は、 可変遅延回路 DL 2, SK2を有する比較タイミング遅延回路 17を通り、 ストローブ信号 STRBと して、 比較器 13の D型フリップフロップ回路 (以下、 「DFZF」 という) 1 3 _ 1のクロック端子へも供給される。
可変遅延回路 D L l, SKI, DL 2, SK2は、 制御部 18のプログラム制 御によって、 遅延量 Tpdが設定される。
それらのうち、 可変遅延回路 DL 1, DL2は、 ユーザプログラムにより DU T 12に対して時間位相を定義できる遅延回路である。
一方、 可変遅延回路 SKI, SK2は、 上記 DL 1や DL 2等のハードウェア の遅延量 Tp dが周囲温度変化や時間経過によって変動することから、 DUT 1 2に対する位相が所定値になるように補正する、 つまりハードウエアの校正を行 ラ。 ·
DUT12の出力 (応答出力信号) は、 比較器 13の DF/F 13— 1に入力 され、 その出力は、 不一致回路 (Exc l u s i ve—OR回路; Ex— OR) 13— 2に入力される。 ここで、 メモリ 14からの期待値データ S= "1" と 比較され、 この比較結果が、 DFZF 13— 3に入力される。
この比較器 13において、 DF/F 13— 1の出力 (C点) が " L" (又は "H" ) のとき、 期待値データ S= "1" とは不一致 (又は一致) であるので、 不一致回路 13— 2の出力 (E点) は "H" (又は "L" ) となり、 DFZF 13— 3の出力 (F点) は "H" (又は "L" ) となって、 この比較器 13に おける比較の結果が F a i 1 (フェイル) (又は Pa s s (パス) ) となる。 ところで、 DUT 12の機能試験を行う場合、 その DUT 12に数十から数百 ある複数のピンに入力される各試験パターン信号は、 それぞれ同期がとられてい ることが望ましい。
ところが、 各試験パターン信号には、 各経路の相違から、 位相遅延時間すなわ ち夕イミングの差異が生じている。
この位相遅延時間が生ずる原因である経路の相違は、 その物理的条件の違い、 波形整形器 (試験パターン発生器 11からの出力信号を DUT12の回路構成に あわせて形成する部分、 図示せず) 内における経路の変更、 各経路内に使用され る半導体素子が受ける熱的影響等によって起こる。
このため、 各試験パターン信号の同期のずれにより、 比較器 13における比較 結果に 差が生じてしまい、 正しい機能試験が行えなくなつていた。
そこで、 この半導体試験装置 10を用いて機能試験を行う場合は、 ィニシャラ ィズ時に、 試験パターン信号ごとに、 それら試験パターン信号の同期をとるよう 調整している。
各試験パターン信号の同期をとるために行われる試験パターン信号の遅延量 T pdの測定には、 一般に、 周波数測定器などが用いられている。
なお、 試験パターン信号の遅延量 T p dの測定は、 周波数を用いて行うことに 限るものではなく、 たとえば、 反射波などを用いることもできる。
その周波数測定器を用いて試験パターン信号の遅延量 Tp dを測定し、 かつ、 その遅延量 Tp dを目標値に近づけるように可変遅延回路 DL 1の遅延量設定値 を与えていく方法は、 次のように行われる。
なお、 可変遅延回路 DL 1の可変範囲は、 て (l〜n) = 0 n s〜20 n s とし、 DUT入力遅延回路 16における最初の遅延量設定値は、 可変遅延回路 D L 1の可変範囲て (l〜n) の中間値 τ 1 = 10 n sに設定されているものと する。 そして、 目標値は、 100ナノ秒 (n s) に設定されているものとする。 また、 可変遅延回路 DL 1の遅延量設定値の推移については、 第 7図に示す。 まず、 周波数測定器において、 ループ周波数により、 試験パターン信号の遅延 量が測定される。
1回目の測定 (て 1 = 10 n s ) では、 遅延量測定値が 104 n sであった とする。
次いで、 遅延量測定値 (104n s) と目標値 (100n s) とが比較判断さ れる。 判断の結果、 遅延量測定値が目標値を上回っているため、 DUT入力遅延 回路 16における可変遅延回路 D L 1の遅延量設定値が、 て 2 = て 1— (r 1 /2 ~ 1) = 5 n sのように算出される。
そして、 可変遅延回路 DL 1の遅延量 Tpdが、 その算出された遅延量設定値 となるように設定される。
次いで、 2回目の測定では、 遅延量測定値が 99 n sになったとする。
この場合、 遅延量測定値が目標値を下回っているため、 遅延量設定値は、 て 3 = て 2 + (て 1/2 2) =7. 5 n sのように算出される。
そして、 この算出された遅延量設定値が、 可変遅延回路 DL 1の遅延量 Tp d として設定される。
3回目の測定では、 遅延量測定値が 1 0 1. 5 n sになったとする。
この場合、 遅延量測定値が目標値を上回っているため、 遅延量設定値は、 て
4 = て 3— (て 1ノ2 ~ 3) =6. 2 5 n sのように算出され、 可変遅延回路 DL 1の遅延量 T p dとして設定される。
4回目の測定では、 遅延量測定値が 1 00. 2 5 n sになったとする。
この場合も、 遅延量測定値が目標値を上回っているため、 遅延量設定値は、 て 5 =て 4一 (て 1Z2 4) = 5. 6 2 5 n sのように算出され、 可変遅延 回路 D L 1の遅延量 T p dとして設定される。
以下同様に、 5回目の測定では、 遅延量測定値が 9 9. 62 5 n sになったと すると、 この場合、 遅延量測定値が目標値を下回っているため、 遅延量設定値は、 r 6 = r 5 - (r 1/2 ~ 5) = 5. 9 3 7 5 n sのように算出され、 可変遅 延回路 DL 1の遅延量 Tp dとして設定される。
そして、 6回目の測定では、 遅延量測定値が 9 9. 9 3 7 5 n sになったとす ると、 この場合も、 遅延量測定値が目標値を下回っているため、 遅延量設定値は、 て 7 =て 6— (τ 1/2 " 6) = 6. 0 9 3 7 5 n sのように算出され、 可変 遅延回路 D L 1の遅延量 T p dとして設定される。
このように、 i― 1回目の測定で遅延量測定値が目標値を上回るかあるいは下 回るかによつて、 i回目の測定では、 可変遅延回路 DL 1の遅延量 Tp dをバイ ナリ状にて 1/2 ~ ( i - 1) n sだけ減少させたりあるいは増加させたりし て、 遅延量測定値を目標値に近づけている。
このように遅延量測定値を目標値に向かつてバイナリ状に追い込みながら測定 することをバイナリサーチと呼んでいる。
このような方法によれば、 周波数測定器が、 DUT 1 2の複数のピンに入力さ れる各試験パターン信号の入力タイミングをすベて同期させるように、 各試験パ ターン信号の通る経路ごとに可変遅延回路 D L 1の遅延量 T p dを与えるため、 半導体試験装置 1 0を用いて行われる DUT 1 2の機能試験 (ファンクション試 験) におけるイニシャライズ時の初期調整を可能としている。 しかしながら、 D UT入力遅延回路 1 6の可変遅延回路 D L 1は、 たとえば、 I Cの周囲温度や I Cに加えられた電源電圧の変化、 I Cの製造ばらつき、 自己 発熱量の変動などにより遅延量 T p dが変動し、 この変動により、 第 8図に示す ように、 1 C L K分周期毎に不連続点が発生していた。
そして、 この不連続点を含んだ遅延量 T p dは、 言い換えれば一部に減少を含 んだ昇順の数列であることから、 純粋な昇順の数列を探索対象とするバイナリサ —チのみによって目標値を探索すること (つまり、 試験パターン信号の遅延量 T P dの測定方法としてバイナリサ一チのみを用いること) は、 必ずしも適切であ るとは言えなかった。
この場合、 バイナリサーチで探索しきれない部分については、 シーケンシャル サーチで補うようにすることが考えられる。
シーケンシャルサーチは、 目標値と一致する値を、 配列の端から順番に調べて いくものであるため、 配列の要素が多くなるにつれて探索に時間がかかるものの、 配列が昇順あるいは降順に整列されている必要がない。
これに対して、 バイナリサーチは、 配列の中央の値 (中央値) と探索したい値 (目標値) との比較を行い、 各値が等しくない場合は、 配列の前半 (あるいは後 半) を削除して残りの後半 (あるいは前半) 部分の中央値と目標値とを比較し、 それら中央値と目標値とがー致するまで、 各値の比較と配列の半減とを繰り返し 行うものである。 このため、 バイナリサーチは、 探索時間を短縮できるものの、 その配列が昇順あるいは降順に整列されていることが条件となる。
そして、 従来の半導体試験装置における試験パターン信号の遅延量 T p dは、 一部に減少を含む昇順配列の波形 (鋸歯状の波形) であるため、 バイナリサーチ によつて探索範囲をできるだけ絞り込み、 この絞り込んだ探索範囲内でシーケン シャルサーチにより目標値を探索することにより、 測定精度を低下させることな く、 探索時間の短縮を図ることは可能である。
つまり、 バイナリサーチによる探索時間の短縮と、 シーケンシャルサーチによ る測定精度の低下防止との両立が実現可能となる。
具体的には、 たとえば、 第 9図に示すように、 バイナリサーチにより、 同じ傾 きが連続する遅延量 T p dの中程付近あるいはそれより大きいところ (バイナリ サーチの結果を中心とするシーケンシャルサーチの探索範囲のうち、 下半分の範 囲内に不連続点がないとき、 例えば、 点 A等) が探索されたとすると、 その探索 範囲内には不連続点が存在しないことから、 この探索範囲内でシーケンシャルサ —チにより正常に目標値を探索できる。
ところが、 このようにバイナ'リサーチとシーケンシャルサーチとを併用しても、 正常に目標値の探索ができない場合があった。
たとえば、 バイナリサーチの結果が、 遅延量 T p dの不連続点に近いところに ある場合 (鋸歯状波形の谷間付近など、 例えば、 同図の点 B等) は、 増加方向へ のシーケンシャルサーチは可能であるものの、 減少方向へのシ一ケンシャルサー チを行うと、 不連続点にさしかかった時点で目標値より大きい値をふたたびサー チしていた。 このため、 目標値を見つけるまでに探索範囲内のサーチが終了して しまい、 正常に目標値を探索できないという問題があった。
特に、 バイナリサーチとシーケンシャルサーチとの組み合わせによつて、 従来 の半導体試験装置における試験パターン信号の目標値の探索を実行する場合は、 第 1 0図に示すように、 それらバイナリサーチの VD遅延特性とシーケンシャル サーチの V D遅延特性との間にわずかな差異が生じることがあった。
この差異は、 バイナリサーチのヒステリシスの影響により生じていた。
ここでいうヒステリシスの影響とは、 前回設定されたエツジが今回設定したェ ッジに与える影響であつて、 前回と今回とのェッ'ジの時間差の大小にもとづいて、 その影響量が変わることにより、 VD遅延誤差として現れることをいう。
なお、 第 1 0図に示す差異は説明し易いように表したものである。 実際の差異 は、 ランダムに現れる。 ランダムになるのは、 バイナリサーチの場合、 前回のサ ィクルのエッジの位置がサーチをするたびに変わるからである。
同図に示すような場合、 バイナリサーチの VD遅延特性を表すグラフ線におい て目標値 E X pである遅延量 T p d bと一致する点は、 B 1点及び B 2点となる が、 シーケンシャルサーチの VD遅延特性を表すグラフ線において遅延量 T p d bと一致する点は、 B 3点のみとなる。 そして、 B 3点は、 B 1点を中心とする シーケンシャルサーチの探索範囲には含まれていない。
このことから、 バイナリサーチを実行して B 1点が発見されると、 シ一ケンシ ャルサーチを実行しても B 3を見つけることができず、 正常に探索できないとい う問題があった。 本発明は、 上記の問題を解決すべくなされたものであり、 一部に値の減少を含 んだ昇順の数列 (たとえば、 タイミング VDの設定値に対する遅延量 T p dの特 性) においても、 正常かつ確実な目標値 E x p (遅延量 T p d b ) のサーチを可 能とするとともに、 バイナリサーチとシーケンシャルサーチとの併用を可能にし て、 探索時間の短縮と測定精度の低下防止との両立を実現する目標値の探索回路、 目標値の探索方法及びこれを用いた半導体試験装置の提供を目的とする。 発明の開示
この目的を達成するため、 本発明の目標値の探索回路は、 目標値を格納する目 標値格納部と、 この目標値格納部から目標値を取り出すとともに、 この取り出し た目標値から所定値を減じ又は加えた値を仮目標値として設定する探索制御部と、 バイナリサーチにより仮目標値を含んだ一定領域まで探索範囲を絞り込むバイナ リサーチ実行部と、 絞り込まれた探索範囲内で、 シーケンシャルサーチにより仮 目標値を起点として増加方向又は減少方向へ目標値を探索するシーケンシャルサ ーチ実行部とを有した構成としてある。
目標値の探索回路をこのような構成とすると、 探索対象となる数列が、 一部に 減少を含んだ昇順の数列である場合であつて、 バイナリサーチの特性とシーケン シャルサーチの特性との間で微小の差異が生じるときにおいても、 正常かつ確実 に目標値を探索できる。
従来の探索回路においては、 バイナリサーチによって絞り込まれた探索範囲の うち、 目標値よりも小さい値を示す範囲に、 鋸歯状波形の谷間が含まれており、 かつバイナリサーチの特性とシーケンシャルサーチの特性との間で微小な差異が 生じる場合には、 シーケンシャルサーチの探索範囲内に目標値が含まれなくなり、 正常にその目標値を採索できないことがあった。
これに対して、 本発明の探索回路は、 所定値 (たとえば、 シーケンシャルサー チの探索領域のうち半分の領域を示す値) を目標値から減じ又は加えて仮目標値 とし、 この仮目標値をバイナリサーチによって探索し、 さらに、 この探索で得ら れた仮目標値を探索開始値 (起点) として、 増加方向へシーケンシャルサーチを 実行することとしている。
これにより、 不連続点があることと、 バイナリサーチの特性とシーケンシャル サーチの特性との間に差異があることとによって、 目標値が探索範囲から外れる ことを回避して、 その目標値をサーチすることができる。
したがって、 探索対象となる数列が、 一部に減少を含んだ昇順の数列である場 合や、 バイナリサーチの特性とシーケンシャルサーチの特性との間で僅少な差異 が生じる場合等においても、 正常かつ確実に目標値を探索できる。
• さらに、 目標値の探索が、 バイナリサーチとシーケンシャルサーチとの組み合 わせによって実行されるため、 測定精度の低下防止と探索時間の短縮との両立を 実現できる。
なお、 本発明において 「探索範囲」 とは、 シーケンシャルサーチによりサーチ される範囲であって、 調整側におけるサーチ範囲、 たとえば、 第 1 0図に示す T i m i n g— VD設定値における探索範囲をいう。
さらに、 「探索領域」 とは、 シーケンシャルサーチによりサーチされる領域で あって、 被調整側におけるサーチ領域、 たとえば、 第 1 0図に示す遅延量 T p d における探索領域をいう。
また、 本発明の目標値の探索方法は、 目標値を格納する段階と、 目標値を取り 出すとともに、 この取り出した目標値から所定値を減じ又は加えた値を仮目標値 として設定する段階と、 バイナリサーチにより仮目標値を含んだ一定領域まで探 索範囲を絞り込む段階と、 絞り込まれた探索範囲内で、 シーケンシャルサーチに より仮目標値を起点として増加方向又は減少方向へ目標値を探索する段階とを有 した方法としてある。
目標値の探索方法をこのような方法とすれば、 ノ イナリサーチによつて仮目標 値を含む一定領域が探索され、 さらに、 この一定領域内でシーケンシャルサーチ により仮目標値を起点として増加方向へ目標値の探索が実行されるため、 測定精 度を向上しつつ、 探索時間の短縮を図ることができる。
そして、 探索対象の数列が鋸歯状の波形を示す場合であって、 バイナリサーチ の特性とシーケンシャルサーチの特性とが異なる場合においても、 目標値がシー ケンシャルサーチの探索範囲内に存在しなくなるなどの不都合が生じないため、 確実に目標値を探し出すことができる。
また、 本発明の半導体試験装置は、 基準クロック信号を発生する基準クロック 発生器と、 基準クロック信号に同期して半導体素子に印加する試験パターン信号 を出力する試験パターン発生器と、 試験パ夕一ン信号を所定時間遅延させる可変 遅延回路を備えたタイミング発生器と、 半導体素子から出力される応答出力信号 と期待値パターンとを比較する比較器とを備えた半導体試験装置であつて、 目標 値を格納する格納部と、 試験パターン信号の遅延量測定値を求める遅延量測定部 と、 格納部から目標値を取り出すとともに、 この取り出した目標値から所定値を 減じ又は加えた値を仮目標値として算出する仮目標値算出部と、 バイナリサーチ によって、 仮目標値を含んだ一定領域まで探索範囲を絞り込むように可変遅延回 路の遅延量設定値を与えるバイナリサーチ実行部と、 絞り'込まれた探索範囲内で、 シーケンシャルサーチにより、 仮目標値を起点として増加方向又は減少方向へ目 標値を探索するように可変遅延回路の遅延量設定値を与えるシーケンシャルサ一 チ実行部と、 可変遅延回路の遅延量を設定する VD設定部と、 仮目標値及び遅延 量測定値をバイナリサーチ実行部へ送るとともに、 バイナリサーチ実行部からの 遅延量設定値を V D設定部へ送つて可変遅延回路の遅延量を設定させ、 仮目標値 を含んだ一定領域まで探索範囲が絞り込まれると、 この絞り込みで得られた遅延 量設定値と、 目標値と、 遅延量測定値とをシーケンシャルサーチ実行部へ送り、 シーケンシャルサーチ実行部からの遅延量設定値を VD設定部へ送つて可変遅延 回路の遅延量を設定させる探索制御部とを有する探索回路を備えた構成としてあ る。
半導体試験装置をこのような構成とすると、 バイナリサーチとシーケンシャル サーチとを組み合わせて目標値を探索するため、 測定精度の向上と探索時間の短 縮とを両立させることができる。
さらに、 探索対象である遅延量 T p dが鋸歯状の波形を示すものであって、 ノ イナリサーチの特性とシーケンシャルサーチの特性との間で差異が生じる場合で あっても、 所定値 (たとえば、 シーケンシャルサーチの探索領域のうち半分の領 域を示す値) が目標値から減ぜられて (又は加えられて) 仮目標値とされ、 この 仮目標値を起点としてシーケンシャルサーチが実行されるため、 探索領域内に目 標値を含めることができ、 確実かつ正常にその目標値を探索できる。
また、 本発明の半導体試験装置は、 仮目標値算出部が、 シーケンシャルサーチ の探索領域のうちの半分の領域を示す値を所定値として目標値から減じ又は加え、 この減じ又は加えた値を仮目標値として算出する構成としてある。 半導体試験装置をこのような構成とすれば、 探索対象である遅延量 T p dがー 部に減少を含んだ昇順の特性を示すものであつて、 バイナリサーチの特性とシー ケンシャルサーチの特性との間で差異が生じる場合であっても、 シーケンシャル サーチの探索範囲内に目標値を含めることができるため、 そのシーケンシャルサ ーチによって目標値を確実に探索できる。 図面の簡単な説明
第 1図は、 本発明の探索回路の構成を示すブロック図である。
第 2図は、 第 1図の探索回路を接続した半導体試験装置の構成を示すプ ,口ック 図である。 , 第 3図は、 可変遅延回路における遅延量 T p dの変化を示すグラフである。 第 4図は、 本発明の探索回路の動作を示すフローチャートである。
第 5図は、 従来の半導体試験装置の構成を示すプロック図である。
第 6図は、 従来の半導体試験装置について、 より具体的な構成を示すブロック 図である。
第 7図は、 バイナリサーチによる目標値の探索の経緯を示すグラフである。 第 8図は、 従来の半導体試験装置における T i m i n g— VD設定値に対する 遅延量 T p dの変化を示すグラフである。
第 9図は、 第 8図に示した遅延量 T p dの変ィ匕におけるバイナリサーチの探索 ルートとシーケンシャルサーチの探索範囲とを示すグラフである。
第 1 0図は、 従来の半導体試験装置におけるバイナリサーチの VD遅延特性と シーケンシャルサーチの VD遅延特性とを示すグラフである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して説明する。
まず、 本発明の目標値の探索回路、 目標値の探索方法及びこれを用いた半導体 試験装置の実施形態について、 第 1図を参照して説明する。
同図は、 本実施形態の探索回路の構成を示すブロック図である。
本実施形態の探索回路は、 たとえば、 第 2図に示す半導体試験装置 1 0の探索 回路 2 0として使用可能である。 第 1図に示すように、 探索回路 20は、 格納部 21と、 遅延回路出力部 I/F 22と、 試験パターン発生器入力部 I ZF 23と、 遅延量測定部 24と、 バイナ リサーチ実行部 25と、 VD設定部 26と、 探索制御部 27と、 仮目標値算出部 28と、 シーケンシャルサーチ実行部 29とを有している。
格納部 (目標値格納部) 21は、 目標値 Exp, 仮目標値 Exp B、シ一ゲン シャルサーチの探索範囲 b (あるいは、 探索領域 b) を格納する。
遅延回路出力部 I/F22は、 DUT入力遅延回路 16の出力側と接続されて おり、 DUT入力遅延回路 16から入力した試験パターン信号 (遅延クロック信 号) を遅延量測定部 24へ送る。
試験パターン発生器入力部 I/F23は、 試験パターン発生器 11の入力側に 接続されている。 これにより、 試験パターン発生器 11及び DUT入力遅延回路 16を通る経路と、 遅延回路出力部 I/F22, 遅延量測定部 24及び試験パタ ーン発生器入力部 I /F 23を通る経路とがループで結ばれる。
遅延量測定部 24は、 遅延回路出力部 IZF 22からの試験パターン信号 (遅 延クロック信号) にもとづいて、 この試験パターン信号の遅延量 Tp dを測定す る。 そして、 測定結果である遅延量測定値を探索制御部 27へ送る。
なお、 試験パターン信号の遅延量 Tp dの測定は、 ループ周波数を用いたもの に限るものではなく、 たとえば, 反射波などを用いることもできる。
バイナリサーチ実行部 25は、 探索制御部 27から、 仮目標値 ExpBと、 遅 延量測定値とを受け取る。 そして、 探索制御部 27からの実行指示にもとづいて、 バイナリサーチを実行する。
このバイナリサーチ実行部 25で実行されるバイナリサーチは、 可変遅延回路 DL 1のすベての設定値を M SB (Mo s t S i gn i f i c an t B i t /By t e) 力ら LSB (: Le a s t S i gn i f i c an t B i t/By t e) まで 1ビットずつ仮目標値 Exp Bとの大小比較により変ィ匕させながら、 探索領域を半分ずつ減らしていき、 この過程を繰り返すことによって、 仮目標値 ExpBを探索するように行われる。
ただし、 ここでは、 可変遅延回路 DL 1の設定値が二進数表示であることを前 提として説明する。
そして、 ノ イナリサーチ実行部 25は、 仮目標値 ExpBが遅延量測定値 Tp dより小さいときは、 「可変遅延回路 DL 1の設定値 (遅延量設定値、 VD設定 値) =直前の VD設定値—対象ビット」 を算出して探索結果とする。 一方、 仮目 標値 E X p Bが遅延量測定値 T p dより大きいときは、 「VD設定値 =直前の V D設定値」 を算出して探索結果とする。
すなわち、 バイナリサーチ実行部 25においては、 「直前の VD'設定値一対象 ピット +対象ビットを 1ビット L S B側にシフトしたビット」 と 「直前の VD設 定値 +対象ビット +対象ビットを 1ビット L S B側にシフトしたビット」 とを繰 り返して L SBまで探索した結果を探索結果としている。
さらに、 バイナリサーチ実行部 25は、 探索結果である遅延量設定値を探索制 御部 27へ送る。
そして、 バイナリサーチ実行部 25は、 仮目標値 Exp Bを含んだ一定領域ま で探索範囲 bが絞り込まれて探索が終了すると、 この探索が終了した旨を示す探 索終了信号を探索制御部 27へ送る。
VD設定部 26は、 DUT入力遅延回路 16の可変遅延回路 DL 1に対して、 遅延量 Tpdの初期値 (VD可変範囲て (l〜n) の中間値) の設定を行う。 さらに、 V D設定部 26は、 探索制御部 2 Ί ら遅延量設定値が送られてくる と、 その遅延量設定値に合わせるように可変遅延回路 DL 1を設定する。
探索制御部 27は、 格納部 21から目標値 Expと (シーケンシャルサーチ の) 探索範囲 bとを取り出し、 これら目標値 Exp及び探索範囲 bを仮目標値算 出部 28へ送る。 そして、 この仮目標値算出部 28からの仮目標値 Ex pBを格 納部 21へ送って格納させる。
さらに、 探索制御部 27は、 格納部 21から取り出した仮目標値 E X p Bと、 遅延量測定部 24から受け取つた遅延量測定値とを、 バイナリサーチ実行部 25 へ送ってバイナリサーチを実行するように指示 (実行指示) し、 可変遅延回路 D L 1の遅延量設定値を算出させる。 そして、 ノ ナリサーチ実行部 25からの遅 延量設定値を V D設定部 26へ送る。
その後、 バイナリサーチ実行部 25から探索終了信号が送られてくると、 探索 制御部 27は、 続いて、 格納部 21から目標値 Exp及び仮目標値 ExpBを取 り出す。 そして、 これら目標値 Exp及び仮目標値 ExpBと、 バイナリサーチ 実行部 25で最終的に得られた遅延量設定値と、 遅延量測定部 24からの遅延量 測定値とを、 シーケンシャルサーチ実行部 29へ送ってシーケンシャルサーチを 実行するように指示 (実行指示) し、 可変遅延回路 DL 1の遅延量設定値を算出 させる。 さらに、 シーケンシャルサーチ実行部 29からの遅延量設定値を VD設 定部 26へ送る。
仮目標値算出部 28は、 探索制御部 27から目標値 E X pと (シーケンシャル サーチの) 探索範囲 bとを受け取ると、 その目標値 Expから、 その探索範囲 b を示す値の半分の値を減じ又は加えた値を仮目標値 E X p Bとして算出する。 そして、 仮目標値算出部 28は、 算出した仮目標値 Exp Bを探索制御部 27 へ送る。
なお、 仮目標値算出部 28の有する機能、 すなわち、 目標値 Expから、 シー ゲンシャルサーチの探索範囲 bを示す値の半分の値を減じ又は加えた値を仮目標 値 Exp Bとして算出する機能については、 仮目標値算出部 28ではなく、 探索 制御部 27に備えることができる。
シーケンシャルサーチ実行部 29は、 探索制御部 27からの実行指示にもとづ いて、 シーケンシャルサーチを実行する。
このシ一ケンシャルサーチ実行部 29で実行されるシーケンシャルサーチは、 可変遅延回路 DL 1に設定可能なすべての遅延量設定値を順番に測定し、 目標値 Expに近い設定値を探すことにより行われる。
こうしてバイナリサーチ実行部 25におけるバイナリサーチとシーケンシャル サーチ実行部 2 におけるシーケンシャルサーチとを併用することにより、 半導 体試験装置 10における目標値 Expの探索において、 測定精度の向上や探索時 間の短縮を図ることができる。
ただし、 バイナリサーチの測定精度がヒステリシスの影響により劣化するとき は、 以下のような問題が起こる場合がある。
第 3図に示すように、 試験パターン信号の遅延量 Tpdが鋸歯状の特性を有し ている場合において、 バイナリサーチの結果が、 同図の A点のような平坦な場所 であれば、 正常にシーケンシャルサーチされる (A点を中心に上方向あるいは下 方向にシーケンシャルサーチを行えば、 目標値 Expを探し出せる) 。
ところが、 バイナリサーチの結果が、 同図の B 1点のような鋸の谷間 (遅延量 Tpdの不連続点における VD設定値増加側近傍) にある場合は、 B 1点を中心 に上方向へのシーケンシャルサーチは正しく実行されるものの、 下方向へのシー ケンシャルサーチは目標値 Expより大きい場所 (同図中、 「C」 として示した 範囲) をサーチしてしまい、 正常にサーチできない。
すなわち、 B 1点より上方 (VD設定値増加側) に目標値 Expがある場合は、 B 1点を起点として順次増加方向にシーケンシャルサーチされるため、 その目標 値 Expを探し出すことができる。 これに対し、 B 1点より下方 (VD設定値減 少側) に目標値 Expがある場合は、 B 1点を起点として若干減少方向にシーケ ンシャルサーチされた後、 遅延量 Tpdの不連続点に達したところで、 目標値 E X Pより大きな遅延量 T p dでシーケンシャルサーチされ始め、 目標値 E X pを 探し出せないうちにシーケンシャルサーチの探索範囲が終了してしまうことがあ る。 これは、 バイナリサーチの VD遅延特性とシーケンシャルサーチの VD遅延 特性とが若干異なった値をとる場合に、 目標値 E X pがシーケンシャルサーチの 探索範囲外となることがあるためである。
そこで、 同図の B' 点のように、 バイナリサーチを実行するときの目標値 E X pを、 次にシーケンシャルサーチで下方向にサーチする領域分だけ小さくした 値 (仮目標値 Exp B) に設定し直す。
そして、 この仮目標値 ExpBを目標にしてバイナリサーチを行い、 終了後は、 目標値 E X pを元に戻し、 シーケンシャルサーチにより仮目標値 E X p Bを起点 として上方向だけをサーチする。
ここで、 「次のシーケンシャルサーチで下方向にサーチする領域分だけ (目標 値 Expを) 小さくした値」 を仮目標値 Exp Bとして設定するのは、 次の理由 による。
バイナリサーチにより最終的に絞り込まれた遅延量 Tpdの探索領域には目標 値 E X pが含まれており、 この探索領域がシーケンシャルサーチによる探索範囲 となる。 バイナリサーチは、 本来、 純粋な昇順 (又は降順) の数列を検索対象と するため、 シーケンシャルサーチの探索範囲内における検索対象も純粋な昇順 (又は降順) の数列となっているはずである。 ところが、 探索対象である可変遅 延回路の遅延量 T p dは全体に増加する鋸歯状の波形であるため、 全体的には昇 順の数列でありながら一部に減少を含んでいる。 ここで、 その減少した波形部分 (不連続点) がシーケンシャルサーチの探索範囲に含まれていなければ、 その探 索範囲内では純粋な昇順の数列のみが存在するため確実に目標値 E X pを探し出 せる。 ところが、 減少した波形部分 (不連続点) がシーケンシャルサーチの探索 範囲に含まれているときは、 そのシーケンシャルサ一チの探索範囲内で二度以上 探索される遅延量 T p dの値が存在する一方、 純粋な昇順数列であれば探索され るものの不連続点があるために探索されない遅延量 T p dの値も存在する。 この 探索されない遅延量 T p dの値に目標値 E X pが含まれているときは、 シーケン シャルサーチを行ってもその目標値 E x pを探し出すことができない。
そこで、 シーケンシャルサーチの探索範囲内に不連続点が含まれないようにす るために、 仮目標値 E x p Bを設定する。
仮目標値 E x p Bは、 「次のシーケンシャルサーチで下方向にサーチする領域 分だけ (目標値 E x pを) 小さくした値」 であるため、 言い換えれば、 遅延量 T p dの探索領域の下限値である。 遅延量 T dの探索領域内には必ず目標値 E X Pが含まれていることから、 この探索領域内の VD遅延特性が純粋な昇順数列で あれば、 下限値である仮目標値 E X p Bから上方向にシーケンシャルサーチを行 うことで、 目標値 E x pを探し出すことができる。
しかも、 第 3図に示すように、 バイナリサーチの結果である B 1点が不連続点 の VD設定値増加側近傍であっても、 遅延量 T p dが全体に増加する波形である ため、 仮目標値 E x p Bは、 「下方向に · · '小さくした値」 とすることで不連 続点から見て下方の離れた位置に設定される。 このため、 仮目標値 E x p Bを起 点として上方向にシーケンシャルサーチを行った場合は、 不連続点に差し掛かる までに、 目標値 E x pを探し出すことができる。
したがつて、 目標値 E X p力 SB 1点のような鋸の谷間 (遅延量 T p dの不連続 点) 付近にある場合においても、 その目標値 E x pを正常にサーチすることがで さる。
次に、 本実施形態の半導体試験装置の動作 (探索方法) について、 第 4図を参 照して説明する。
同図は、 本実施形態の半導体試験装置における探索回路の動作を示すフローチ ャ一卜である。
なお、 可変遅延回路 D L 1の設定値は、 説明の便宜上、 二進数表示であること を前提とする。 ただし、 この可変遅延回路 D L 1の設定値は、 二進数表示に限る ものではなく、 たとえば、 10進数表示や 8進数表示などとすることもできる。 同図に示すように、 シーケンシャルサーチの探索範囲 b (あるいは、 探索領域 b) が、 格納部 21に格納 (準備) されている (ステップ 10) 。 このシーケン シャルサーチの探索範囲 bは、 取り得る誤差の絶対値の最大値として、 「1 (バ イナリサーチ) 一 (シーケンシャルサーチ) I MAXj によって求めることがで さる。
さらに、 格納部 21には、 目標値も格納 (準備) されている (ステップ 11) 。 そして、 VD設定部 26において、 可変遅延回路 D L 1の初期値 (VD可変範 囲て (l〜n) の中間値) の設定が行われる (ステップ 12) 。
次いで、 探索制御部 27において、 格納部 21から目標値 Exp及び (シーケ ンシャルサーチの) 探索範囲 bが取り出されて仮目標値算出部 28へ送られる。 仮目標値算出部 28において、 目標値 Expから、 探索範囲 bを示す値の半分 の値を減じ又は加えた値 (目標値 Exp—探索範囲 b/2) が仮目標値 Exp B として算出される (ステップ 13) 。 そして、 この算出された仮目標値 Exp B が、 仮目標値算出部 28から探索制御部 27へ送られ、 さらに、 格納部 21へ送 られて格納される。
続いて、 遅延量測定部 24において、 遅延回路出力部 22からの試験パターン 信号にもとづいて、 この試験パターン信号の遅延量 Tp dが測定される (ステツ プ 14) 。
そして、 この測定結果である遅延量測定値 Tpdが、 探索制御部 27へ送られ る。
探索制御部 27において、 遅延量測定値 Tpdが受け取られると、 格納部 21 から仮目標値 Exp Bが取り出され、 遅延量測定値 Tp dとともに、 バイナリサ ーチ実行部 25へ送られて、 バイナリサーチの実行が指示される。
バイナリサーチの実行が指示されたバイナリサーチ実行部 25において、 仮目 標値 E xpBと遅延量測定値 T p dとが一致しているか否かが判断される (ステ ップ 15) 。
判断の結果、 仮目標値 Exp Bと遅延量測定値 Tpdとが異なるときは、 続い て、 それら仮目標値 E xpBと遅延量測定値 T p dとの大小が比較判断される (ステップ 16) 。 判断の結果、 仮目標値 ExpBが遅延量測定値 Tp dより小さいときは、 「V D設定値 (遅延量設定値) =直前の VD設定値一対象ビット」 が実行されて VD 設定値が算出される (ステップ 17) 。
一方、 仮目標値 Exp Bが遅延量測定値 Tpdより大きいときは、 「VD設定 値 =直前の VD設定値」 が実行されて VD設定値が算出される (ステップ 18) 。 すなわち、 バイナリサ一チ実行部 25においては、 「直前の VD設定値—対象 ビット +対象ビットを 1ビット L S B側にシフトしたビット」 と 「直前の VD設 定値 +対象ビット +対象ビットを 1ピット L S B側にシフトしたビット」 とを繰 り返して L SBまで探索した結果を探索結果としている。
そして、 これら算出された VD設定値が、 バイナリサーチ実行部 25から探索 制御部 27へ送られる。
探索制御部 27において、 受け取つた VD設定値が VD設定部 26へ送られる。
VD設定部 26において、 受け取った VD設定値にもとづいて、 DUT入力遅 延回路 16における可変遅延回路 D L 1の設定が行われる。
この可変遅延回路 DL 1の設定後、 遅延量測定部 24において、 再度試験パ夕 —ン信号の遅延量 Tp dが測定されて探索制御部 27へ送られる (ステップ 1 4) 。 そして、 探索制御部 27において、 仮目標値 ExpBと遅延量測定値 Tp dとがバイナリサーチ実行部 25へ送られて比較判断され (ステップ 15) 、 V D設定値が算出されて (ステップ 16〜ステップ 18) 、 VD設定部 26におい て可変遅延回路 D L 1の設定が行われる。
このようなバイナリサーチにもとづく可変遅延回路 DL 1の設定動作が、 仮目 標値 E pBと遅延量設定値 T p dとが一致するまで繰り返し行われる (ステツ プ 14〜ステップ 18) 。
その後、 仮目標値 E xpBと遅延量測定値 T p dとが一致しているものとバイ ナリサーチ実行部 25で判断されると (ステップ 15) 、 このバイナリサーチ実 行部 25から探索制御部 27へ、 探索終了信号が送られる。
この探索終了信号を受けた探索制御部 27において、 遅延量測定部 24に対し、 試験パターン信号の遅延量 T p dの測定が指示される。
遅延量測定部 24において、 遅延回路出力部 I ZF 22からの試験パターン信 号にもとづいて、 その試験パターン信号の遅延量 Tpdが測定され (ステップ 1 9) 、 この測定された遅延量 Tpd (遅延量測定値 Tpd) が、 探索制御部 27 へ送られる。
探索制御部 27において、 遅延量測定部 24からの遅延量測定値 T p dと、 格 納部 21から取り出した目標値 Expと、 バイナリサーチ実行部 25において最 終的に得られた遅延量設定値とがシーケンシャルサーチ実行部 29へ送られて、 シーゲンシャルサーチの実行が指示される。
この実行指示を受けたシーケンシャルサーチ実行部 29において、 目標値 E Pと遅延量測定値 Tpdとが一致しているか否かが判断される (ステップ 20) 。 判断の結果、 目標値 Expと遅延量測定値 Tpdとが異なるときは、 次のシー ケンシャルサーチにおける VD設定値が算出される (ステップ 21) 。 この VD 設定値の算出は、 「直前の VD設定値 +VD最小 1ビット」 によって求めること ができる。
そして、 この算出された VD設定値が、 探索制御部 27を介して VD設定部 2 6へ送られ、 この VD設定値にもとづいて、 DUT入力遅延回路 16の可変遅延 回路 D L 1の設定が行われる。
この可変遅延回路 DL 1の設定後、 遅延量測定部 24において、 再度試験パタ 一ン信号の遅延量 T p dが測定されて探索制御部 27へ送られる (ステップ 1 9) 。 そして、 探索制御部 27において、 目標値 Expと遅延量測定値 Tpdと がシーケンシャルサーチ実行部 29へ送られて比較判断され (ステップ 20) 、 VD設定値が算出されて (ステップ 21) 、 VD設定部 26において可変遅延回 路 DL 1の設定が行われる。
このようなシーケンシャルサーチにもとづく可変遅延回路 D L 1の設定動作が、 目標値 E X pと遅延量測定値 T p dとが一致するまで繰り返し行われる (ステツ プ 19〜ステップ 21) 。
そして、 目標値 Expと遅延量測定値 Tp dとが一致すると、 目標値 Expの 探索が終了する。
なお、 本発明の探索回路と探索方法は、 半導体試験装置の DUT入力遅延回路 における可変遅延回路 DL 1の遅延量 Tp dを測定 ·調整するために用いること に限るものではなく、 たとえば、 一部に減少を含んだ昇順の数列における目標値 Expの探索を、 バイナリサーチとシーケンシャルサーチとの両方を用いて行う 場合に用いることができる。
たとえば、 比較器 1 3における比較タイミング遅延回路 1 7の可変遅延回路 D L 2の設定 (応答出力信号と期待値パターンとの比較判断にもとづく D L 2の遅 延量の設定) や、 基準クロック発生器 1 5 (タイミング信号発生回路) における 基準クロック信号 C L K (タイミング信号) の出力タイミングの調整などに用い ることができる。
以上のように、 本発明によれば、 探索対象である数列 (例えば、 試験パターン 信号の遅延量 T p d ) がー部に減少を含んだ昇順数列 (例えば、 鋸歯状の波形 等) を示すものであって、 バイナリサーチの特性とシーケンシャルサーチの特性 との間に差異が生じる場合であっても、 確実かつ正常に目標値を探索することが できる。
さらに、 バイナリサーチとシーケンシャルサーチとを組み合わせて目標値を探 索するため、 測定精度の低下防止と、 探索時間の短縮とを両立させることができ る。 産業上の利用可能性
本発明の目標値の探索回路、 目標値の探索方法及びこれを用いた半導体試験装 置は、 一部に減少を含む昇順又は降順の数列を探索対象として目標値を探索する 装置や方法に利用できる。

Claims

' 請 求 の 範 囲
1 . 目標値を格納する目標値格納部と、
この目標値格納部から前記目標値を取り出すとともに、 この取り出した目標値 から所定値を減じ又は加えた値を仮目標値として設定する探索制御部と、 ノ ィナリサーチにより前記仮目標値を含んだ一定領域まで探索範囲を絞り込む バイナリサーチ実行部と、
前記絞り込まれた探索範囲内で、 シーケンシャルサーチにより前記仮目標値を 起点として増加方向又は減少方向へ前記目標値を探索するシーケンシャルサーチ 実行部とを有した
ことを特徴とする目標値の探索回路。
2 . 目標値を格納する段階と、
前記目標値を取り出すとともに、 この取り出した目標値から所定値を減じ又は 加えた値を仮目標値として設定する段階と、
ノ ィナリサーチにより前記仮目標値を含んだ一定領域まで探索範囲を絞り込む 段階と、
前記絞り込まれた探索範囲内で、 シーケンシャルサーチにより前記仮目標値を 起点として増加方向又は減少方向へ前記目標値を探索する段階とを有した ことを特徴とする目標値の探索方法。
3 . 基準クロック信号を発生する基準クロック発生器と、
前記基準ク口ック信号に同期して半導体素子に印加する試験パターン信号を出 力する試験パターン発生器と、
前記試験パターン信号を所定時間遅延させる可変遅延回路を備えたタイミング 発生器と、
前記半導体素子から出力される応答出力信号と期待値パターンとを比較する比 較器とを備えた半導体試験装置であって、
目標値を格納する格納部と、
前記試験パターン信号の遅延量測定値を求める遅延量測定部と、 前記格納部から前記目標値を取り出すとともに、 この取り出した目標値から所 定値を減じ又は加えた値を仮目標値として算出する仮目標値算出部と、
バイナリサーチによって、 前記仮目標値を含んだ一定領域まで探索範囲を絞り 込むように前記可変遅延回路の遅延量設定値を与えるバイナリサーチ実行部と、 前記絞り込まれた探索範囲内で、 シーケンシャルサーチにより、 前記仮目標値 を起点として増加方向又は減少方向へ前記目標値を探索するように前記可変遅延 回路の遅延量設定値を与えるシーケンシャルサーチ実行部と、
前記可変遅延回路の遅延量を設定する V D設定部と、
前記仮目標値及び前記遅延量測定値を前記バイナリサーチ実行部へ送るととも に、 前記バイナリサーチ実行部からの前記遅延量設定値を前記 VD設定部へ送つ て前記可変遅延回路の遅延量を設定させ、 前記仮目標値を含んだ一定領域まで探 索範囲が絞り込まれると、 この絞り込みで得られた前記遅延量設定値と、 前記目 標値と、 前記遅延量測定値とを前記シーケンシャルサーチ実行部へ送り、 前記シ ーケンシャルサーチ実行部からの前記遅延量設定値を前記 VD設定部へ送つて前 記可変遅延回路の遅延量を設定させる探索制御部とを有する探索回路を備えた ことを特徴とする半導体試験装置。
4. 前記仮目標値算出部が、 シーケンシャルサーチの探索領域のうちの半分の領 域を示す値を前記所定値として前記目標値から減じ又は加え、 この減じ又は加え た値を前記仮目標値として算出する
ことを特徴とする請求項 3記載の半導体試験装置。
PCT/JP2003/013630 2002-10-24 2003-10-24 目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置 WO2004038436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004546476A JP4541892B2 (ja) 2002-10-24 2003-10-24 目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置
US10/532,367 US7444576B2 (en) 2002-10-24 2003-10-24 Target value search circuit, taget value search method, and semiconductor test device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-310146 2002-10-24
JP2002310146 2002-10-24

Publications (1)

Publication Number Publication Date
WO2004038436A1 true WO2004038436A1 (ja) 2004-05-06

Family

ID=32171039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013630 WO2004038436A1 (ja) 2002-10-24 2003-10-24 目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置

Country Status (3)

Country Link
US (1) US7444576B2 (ja)
JP (1) JP4541892B2 (ja)
WO (1) WO2004038436A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017257A (ja) * 2005-07-07 2007-01-25 Advantest Corp 半導体試験装置
JP2007233554A (ja) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology 高速パターンマッチング装置の探索方法
JP2008090264A (ja) * 2006-09-07 2008-04-17 Dainippon Screen Mfg Co Ltd 空間光変調器における出力光量の補正方法、補正装置、画像記録装置および画像記録方法
WO2022091570A1 (ja) * 2020-10-28 2022-05-05 アルプスアルパイン株式会社 回路装置、センサーモジュール及び回路パラメータ調整方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013573A1 (ja) * 2003-08-04 2005-02-10 Advantest Corporation 試験方法、通信デバイス、及び試験システム
US8112400B2 (en) * 2003-12-23 2012-02-07 Texas Instruments Incorporated Method for collecting data from semiconductor equipment
JP4775586B2 (ja) * 2007-02-07 2011-09-21 オンキヨー株式会社 情報選択装置及び情報選択プログラム
JP7220374B2 (ja) * 2018-08-24 2023-02-10 パナソニックIpマネジメント株式会社 通信端末および通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143954A (ja) * 1988-11-25 1990-06-01 Nec Corp データ蓄積装置のeod位置高速サーチ方式
JP2000131390A (ja) * 1998-10-29 2000-05-12 Advantest Corp Ic試験装置
JP2002040091A (ja) * 2000-07-27 2002-02-06 Advantest Corp 半導体試験方法及びその試験方法を用いた半導体試験装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745194B2 (en) * 2000-08-07 2004-06-01 Alta Vista Company Technique for deleting duplicate records referenced in an index of a database
US6643787B1 (en) * 1999-10-19 2003-11-04 Rambus Inc. Bus system optimization
US7191373B2 (en) * 2001-03-01 2007-03-13 Syntest Technologies, Inc. Method and apparatus for diagnosing failures in an integrated circuit using design-for-debug (DFD) techniques
US6911853B2 (en) * 2002-03-22 2005-06-28 Rambus Inc. Locked loop with dual rail regulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143954A (ja) * 1988-11-25 1990-06-01 Nec Corp データ蓄積装置のeod位置高速サーチ方式
JP2000131390A (ja) * 1998-10-29 2000-05-12 Advantest Corp Ic試験装置
JP2002040091A (ja) * 2000-07-27 2002-02-06 Advantest Corp 半導体試験方法及びその試験方法を用いた半導体試験装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017257A (ja) * 2005-07-07 2007-01-25 Advantest Corp 半導体試験装置
JP4536610B2 (ja) * 2005-07-07 2010-09-01 株式会社アドバンテスト 半導体試験装置
JP2007233554A (ja) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology 高速パターンマッチング装置の探索方法
JP2008090264A (ja) * 2006-09-07 2008-04-17 Dainippon Screen Mfg Co Ltd 空間光変調器における出力光量の補正方法、補正装置、画像記録装置および画像記録方法
WO2022091570A1 (ja) * 2020-10-28 2022-05-05 アルプスアルパイン株式会社 回路装置、センサーモジュール及び回路パラメータ調整方法
JP7406651B2 (ja) 2020-10-28 2023-12-27 アルプスアルパイン株式会社 回路装置、センサーモジュール及び回路パラメータ調整方法

Also Published As

Publication number Publication date
JP4541892B2 (ja) 2010-09-08
US7444576B2 (en) 2008-10-28
JPWO2004038436A1 (ja) 2006-02-23
US20060020577A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7382146B2 (en) Semiconductor testing apparatus
US6421801B1 (en) Testing IO timing in a delay locked system using separate transmit and receive loops
US7283920B2 (en) Apparatus and method for testing semiconductor device
JP2000332583A (ja) 遅延信号生成装置および半導体試験装置
JP4495308B2 (ja) 半導体デバイス試験方法・半導体デバイス試験装置
US20040251914A1 (en) Test apparatus
JP2004127455A (ja) マルチストローブ生成装置、試験装置、及び調整方法
KR20090002643A (ko) 비트 에러율 측정을 수행 할 수 있는 클럭 발생 장치
KR100269704B1 (ko) 지연 소자 시험 장치 및 시험 기능을 갖는 집적 회로
JP4874096B2 (ja) タイミング発生器を備えた半導体試験装置
WO2007077839A1 (ja) 試験装置、試験方法、および、プログラム
US7010729B2 (en) Timing generator and test apparatus
JP4394789B2 (ja) 半導体デバイス試験方法・半導体デバイス試験装置
WO2004038436A1 (ja) 目標値の探索回路、目標値の探索方法及びこれを用いた半導体試験装置
US5964894A (en) IC test equipment, measurement method in the IC test equipment, and storage medium of the same
JP2002139556A (ja) 半導体試験装置
US7135880B2 (en) Test apparatus
US6381722B1 (en) Method and apparatus for testing high speed input paths
JP2001264397A (ja) 遅延時間測定装置、遅延時間測定方法および半導体集積回路
JPH11101851A (ja) 遅延時間測定回路及び遅延時間測定方法
JP2833695B2 (ja) Ic試験装置
JP2001183432A (ja) タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法
JPH11174125A (ja) 半導体テスト回路
JP4526211B2 (ja) 可変遅延回路の線形化方法、タイミング発生器及び半導体試験装置
JP2546066Y2 (ja) 波形発生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004546476

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006020577

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532367

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10532367

Country of ref document: US