WO2004063411A1 - Iron-nickel alloy with low coefficient of thermal expansion for making shade masks - Google Patents

Iron-nickel alloy with low coefficient of thermal expansion for making shade masks Download PDF

Info

Publication number
WO2004063411A1
WO2004063411A1 PCT/FR2003/003785 FR0303785W WO2004063411A1 WO 2004063411 A1 WO2004063411 A1 WO 2004063411A1 FR 0303785 W FR0303785 W FR 0303785W WO 2004063411 A1 WO2004063411 A1 WO 2004063411A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloy according
temperature
less
precipitates
Prior art date
Application number
PCT/FR2003/003785
Other languages
French (fr)
Inventor
Fabien Gaben
Sylvain Witzke
Olena Danylova
Original Assignee
Imphy Alloys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy Alloys filed Critical Imphy Alloys
Priority to US10/539,448 priority Critical patent/US20060171840A1/en
Priority to EP03799619A priority patent/EP1581664A1/en
Priority to AU2003299338A priority patent/AU2003299338A1/en
Publication of WO2004063411A1 publication Critical patent/WO2004063411A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/46Control electrodes, e.g. grid; Auxiliary electrodes
    • H01J1/48Control electrodes, e.g. grid; Auxiliary electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the present invention relates to an alloy based on iron and nickel with a very low coefficient of expansion, which can in particular be used for the manufacture of shadow masks for cathode-ray tubes for color display.
  • an alloy having a coefficient of thermal expansion as low as possible.
  • an FeNi alloy containing approximately 36% nickel and approximately 0.3% manganese well known under the name Invar, is used.
  • Such an alloy has a coefficient of thermal expansion between 20 ° C and 100 ° C of the order of 1x10 "6 / K.
  • an FeNi alloy with a low residual and cobalt content, containing in particular less than 0.1% of manganese.
  • This alloy has the advantage on the one hand of containing little or no cobalt, and on the other hand of having a coefficient of thermal expansion of the order of 0.8x10 "6 / K, lower than that of l 'classic FeNi (Invar) alloy, however, the coefficient of expansion is still too high, especially for large or shallow flat screens.
  • the alloys of the prior art do not have sufficient mechanical characteristics to allow the thickness of the masks to be reduced while retaining a resistance of the masks to deformations which may appear during the various stages of transport and handling.
  • the object of the present invention is to remedy the drawbacks of alloys of the prior art by proposing an alloy which can be used in particular for the manufacture of shadow masks, containing little or no cobalt, the coefficient of thermal expansion of which is lower than that of the known FeNi alloys having an elastic limit on the annealed state maintained or even improved.
  • the first object of the invention is an alloy whose chemical composition comprises, by weight:
  • the alloy also has a niobium content of less than 0.1%, or even less than 0.07%.
  • the alloy has a carbon content greater than 0.0035%. In another preferred embodiment, the alloy has a grain size less than 10, or even less than 9 (according to G ASTM E 112).
  • the alloy has a coefficient of thermal expansion between 20 ° C and 100 ° C less than 0.70x10 "6 / K, and preferably less than 0.65x10 " 6 / K. In all cases, the coefficient of expansion obtained is less than 0.75x10 "6 / K.
  • the alloy has a conventional yield strength of 0.2% in the annealed state greater than 250 MPa, preferably greater than 280 MPa, and more particularly preferably, greater than 300 MPa, even at 310 MPa.
  • the niobium and carbon contents of the alloy composition are such that:
  • the titanium, niobium and nitrogen contents of the alloy composition are such that:
  • the alloy contains precipitates based on titanium, and / or niobium, and / or vanadium, and / or tantalum, and / or zirconium and / or hafnium, the average size is less than or equal to 100 nm, preferably less than or equal to 70 nm and more particularly less than 50 nm.
  • the second object of the invention is a method of manufacturing an alloy strip according to the invention comprising the steps according to which:
  • a semi-finished product of this alloy is hot rolled after reheating to a temperature higher than 850 ° C and lower than 1350 ° C, so that the rolling temperature is higher than the re-solution temperature of the precipitates based titanium and / or niobium, and / or vanadium and or zirconium, and or tantalum and or hafnium and the end of rolling temperature is lower than the temperature at which precipitation of said precipitates begins, in order to get a hot strip,
  • the hot strip is cold rolled in one or more passes, to obtain a cold strip with possibly one or more intermediate anneals between two passes.
  • the temperature of the intermediate annealing (s) carried out during the cold rolling is lower than the temperature of redissolving said precipitates.
  • the temperature of the intermediate annealing (s) carried out during the cold rolling is higher than the temperature of redissolving said precipitates.
  • These two different embodiments allow to play on the formation of the precipitates and on the grain size.
  • a grain size greater than 7 is generally obtained for the first embodiment, while grain sizes less than 7.5 are generally obtained for the second embodiment.
  • the end temperature of hot rolling is less than or equal to 850 ° C., which makes it possible to obtain finer grains.
  • a third object of the invention is the use of the alloy described above for the manufacture of shadow masks for cathode ray tubes for color display, for the manufacture of shadow masks stretched in the vertical or horizontal direction for flat screen televisions, for the manufacture of shadow mask support frames, for the manufacture of cryogenic storage containers, but also for the manufacture of grids electron guns, thanks to its very good mechanical cutting ability.
  • the invention is based on the fact that the inventors have found in a new and surprising manner that the precipitation of compounds formed from titanium, and / or niobium, and / or vanadium, and / or zirconium, and / or tantalum, and / or hafnium, on the one hand, and carbon, oxygen and / or nitrogen on the other hand, leads to a significant reduction in the coefficient of expansion when the alloy has a low content of Si and Mn.
  • the precise analysis of the compounds formed is delicate, but there are in particular carbides, nitrides, carbonitrides, oxides and / or oxynitrides of the metals mentioned above.
  • FIG. 1 represents the variations of this coefficient between 20 and 100 ° C., depending on the sum of the oxygen and nitrogen contents, for an alloy whose composition comprises titanium at contents of between 0.01 and 0.05%, less than 5 ppm of boron, less than 5 ppm of sulfur and no aluminum.
  • the same effect is obtained with an alloy containing niobium as a total or partial replacement for titanium, within the limits imposed by claim 1.
  • the alloy according to the invention contains, in% by weight:
  • Zr + Hf is between 0.015% and 0.2%, in order to be able to form precipitates based on these elements, these precipitates preferably having an average size less than 100 nm, and so preferred less than 70 nm, and more particularly preferably less than 50 nm. It is further preferred that the niobium content is less than 0.1%, or even 0.07%, in order to further reduce the coefficient of expansion as well as the size of the precipitates.
  • oxygen and / or nitrogen in quantities such that the sum of their contents is between 0.0025% and 0.015%, because the inventors have found in a new way that the presence of oxygen and / or nitrogen in these contents in the alloy makes it possible to lower the coefficient of expansion when it is associated with the presence of titanium, and / or niobium and / or vanadium, and / or tantalum, and / or zirconium and or hafnium.
  • the sum of these contents is limited to 0.015% to avoid the formation of large oxides or nitrides.
  • the rest of the composition consists of iron and impurities resulting from the production.
  • the alloy can be produced for example in an arc furnace with a phase of refining with AOD or VOD converters; it can also be prepared in a vacuum induction oven. This preparation must be carried out so as to obtain the desired residual contents.
  • the alloy is then cast in the form of a semi-finished product such as an ingot, a billet or a reflow electrode. It can also be poured directly in the form of a thin slab or a thin strip with a thickness of less than 15 mm, and preferably with a thickness of between 8 and 12 mm.
  • the alloy When the alloy is cast in the form of a reflow electrode, it is remelted under an electrically conductive slag in order to obtain better homogeneity of the chemical composition and of the solidification structure.
  • the semi-finished product, or the thin strip obtained by direct casting is then hot rolled at a temperature above 850 ° C, and preferably above 1150 ° C, but below 1350 ° C to obtain a hot strip d thickness generally between 2 mm and 6 mm, and preferably between 3 and 5 mm, which is cold rolled in one or more passes with optionally annealing above 800 ° C.
  • the strip heating temperature applied between the hot rolling steps or cold rolling may be chosen so that the precipitates of oxides, carbides or nitrides can be optionally redissolved. Rapid cooling may also be applied to maintain in solid solution in the alloy these elements liable to form precipitates. Equilibrium precipitation treatments can then be carried out by maintaining at temperatures between 750 ° C and 1200 ° C (but preferably below 1050 ° C).
  • the alloys identified 1 to 16 according to the invention and 17 to 23 have been prepared by way of comparison, the composition of which is described in Table 1 below.
  • the chemical compositions and the coefficients of expansion ⁇ between 20 and 100 ° C, were measured on test specimens taken from the hot-rolled strips. Each of these test pieces was annealed for 30 minutes at 950 ° C., and cooled in ambient air before carrying out the measurements of coefficient of thermal expansion.
  • the results of the tests are collated in Table 2, in which the coefficient of expansion ⁇ is expressed in 10 "6 / K.
  • the etching tests were carried out on cold-rolled products from experimental castings, partially coated with photosensitive resin.
  • the engravings were carried out at 60 ° C. with a solution of FeCl 3 having a density of 45.5 ° Be.
  • the quality of the engravings was assessed by measures of regularity of the cut out contours, as well as by the presence of defects linked to the presence of particles.
  • Counter examples 17 and 18 show the harmful effect of boron on the coefficient of expansion.
  • Counterexamples 19 and 21 show the harmful influence of sulfur on the coefficient of expansion. These counterexamples also show the importance of the oxygen and nitrogen contents on the coefficient of expansion.
  • Counterexample 21 shows the harmful effect of sulfur on the coefficient of expansion.
  • the alloy according to the invention can also be used for the manufacture of support frames for shadow masks.
  • This alloy exhibits good behavior in chemical etching linked to the low controlled presence of residuals of type C, S, N in solid solution, and by its small amounts of inclusions of micrometric sizes.

Abstract

The invention concerns an alloy whereof the chemical composition comprises, by weight: 35 % =Ni = 37 %, 0.001 % = C = 0.05, % Mn = 0.10 %, Si = 0.15 %, Co = 0.5 %, S < 0.002 %, P < 0.006 %, B = 0.0005 %, Al+Mo+Cu+Cr = 0.15 % 0.015 % = 2(V+Ti)+Nb + Zr + Ta + Hf = 0.2 %, 0.0025 % = N+O = 0.015 % optionally calcium and/or magnesium with total content ranging between 0.0001 and 0.005 %, the rest consisting of iron and unavoidable impurities resulting from preparation, and a method for making a strip of said alloy.

Description

ALLIAGE FER-NICKEL A TRES FAIBLE COEFFICIENT DE DILATATION THERMIQUE POUR LA FABRICATION DE MASQUES D ' OMBREIRON-NICKEL ALLOY WITH VERY LOW THERMAL EXPANSION COEFFICIENT FOR THE MANUFACTURE OF SHADOW MASKS
La présente invention est relative à un alliage à base de fer et de nickel à très faible coefficient de dilatation, pouvant notamment être utilisé pour la fabrication de masques d'ombres pour tubes cathodiques de visualisation en couleur. Afin d'éviter la déformation locale par dilatation thermique des masques d'ombre pour tubes cathodiques de visualisation en couleur, il est souhaitable d'utiliser pour leur fabrication un alliage ayant un coefficient de dilatation thermique le plus faible possible. C'est ainsi qu'on utilise, par exemple, un alliage FeNi contenant environ 36% de nickel et environ 0,3% de manganèse, bien connu sous le nom d'Invar. Un tel alliage a un coefficient de dilatation thermique entre 20°C et 100°C de l'ordre de 1x10"6/K.The present invention relates to an alloy based on iron and nickel with a very low coefficient of expansion, which can in particular be used for the manufacture of shadow masks for cathode-ray tubes for color display. In order to avoid local deformation by thermal expansion of the shadow masks for cathode-ray tubes for color display, it is desirable to use for their manufacture an alloy having a coefficient of thermal expansion as low as possible. Thus, for example, an FeNi alloy containing approximately 36% nickel and approximately 0.3% manganese, well known under the name Invar, is used. Such an alloy has a coefficient of thermal expansion between 20 ° C and 100 ° C of the order of 1x10 "6 / K.
Mais, ce coefficient de dilatation est encore trop élevé pour certaines applications, telles que l'application aux écrans plats, et on a proposé d'utiliser un alliage FeNi dont quelques % de nickel sont remplacés par du cobalt. Cet alliage a l'avantage d'avoir un coefficient de dilatation thermique de l'ordre de 0,4x10"6/K, ce qui conduit à un gain de 60%, mais il présente l'inconvénient de contenir du cobalt. En effet, les masques d'ombre sont des feuilles métalliques percées de trous très fins obtenus par gravure chimique, et le cobalt engendre une pollution gênante des bains de gravure chimique. En outre, le cobalt est un élément très cher et il est souhaitable de réduire le plus possible sa teneur.However, this coefficient of expansion is still too high for certain applications, such as application to flat screens, and it has been proposed to use an FeNi alloy of which a few% of nickel is replaced by cobalt. This alloy has the advantage of having a coefficient of thermal expansion of the order of 0.4 × 10 −6 " / K, which leads to a gain of 60%, but it has the disadvantage of containing cobalt. Indeed , shadow masks are metallic sheets pierced with very fine holes obtained by chemical etching, and cobalt causes annoying pollution in chemical etching baths. In addition, cobalt is a very expensive element and it is desirable to reduce the its content as much as possible.
Aussi, on a proposé d'utiliser un alliage FeNi, à faible teneur en résiduels et en cobalt, contenant notamment moins de 0,1% de manganèse. Cet alliage a l'avantage d'une part de contenir peu ou pas de cobalt, et d'autre part d'avoir un coefficient de dilatation thermique de l'ordre de 0,8x10"6/K, plus faible que celui de l'alliage FeNi (Invar) classique. Cependant, le coefficient de dilatation est encore trop élevé, notamment pour les écrans plats de grande dimension ou à faible profondeur. En outre, il est souhaitable d'utiliser des masques plus fins afin de diminuer leur coût de fabrication et pour améliorer la qualité et la précision des images. Or, les alliages de l'art antérieur ne présentent pas de caractéristiques mécaniques suffisantes pour permettre de diminuer l'épaisseur des masques tout en conservant une résistance des masques aux déformations pouvant apparaître pendant les différentes étapes de transport et de manutention.Also, it has been proposed to use an FeNi alloy, with a low residual and cobalt content, containing in particular less than 0.1% of manganese. This alloy has the advantage on the one hand of containing little or no cobalt, and on the other hand of having a coefficient of thermal expansion of the order of 0.8x10 "6 / K, lower than that of l 'classic FeNi (Invar) alloy, however, the coefficient of expansion is still too high, especially for large or shallow flat screens. In addition, it is desirable to use thinner masks in order to reduce their manufacturing cost and to improve the quality and accuracy of the images. However, the alloys of the prior art do not have sufficient mechanical characteristics to allow the thickness of the masks to be reduced while retaining a resistance of the masks to deformations which may appear during the various stages of transport and handling.
Le but de la présente invention est de remédier aux inconvénients des alliages de l'art antérieur en proposant un alliage utilisable notamment pour la fabrication de masques d'ombre, contenant peu ou pas de cobalt, dont le coefficient de dilatation thermique est plus faible que celui des alliages FeNi connus et ayant une limite élastique sur état recuit maintenue voire même améliorée.The object of the present invention is to remedy the drawbacks of alloys of the prior art by proposing an alloy which can be used in particular for the manufacture of shadow masks, containing little or no cobalt, the coefficient of thermal expansion of which is lower than that of the known FeNi alloys having an elastic limit on the annealed state maintained or even improved.
A cet effet, l'invention a pour premier objet un alliage dont la composition chimique comprend, en poids :To this end, the first object of the invention is an alloy whose chemical composition comprises, by weight:
35% < Ni < 37%35% <Ni <37%
0,001 % < C < 0,05%0.001% <C <0.05%
Mn < 0,10%Mn <0.10%
Si < 0,15% Co < 0,5%If <0.15% Co <0.5%
S < 0,002%S <0.002%
P < 0,006%P <0.006%
B < 0,0005%B <0.0005%
Al+Mo+Cu+Cr < 0.15% 0,015% < 2(V+Ti)+Nb + Zr + Ta + Hf < 0,2%Al + Mo + Cu + Cr <0 . 15% 0.015% <2 (V + Ti) + Nb + Zr + Ta + Hf <0.2%
0,0025% < N+O < 0,015% éventuellement du calcium et/ou du magnésium en une teneur totale comprise entre 0,0001 et 0,005%, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. Dans un mode de réalisation préféré, l'alliage présente en outre une teneur en niobium inférieure à 0,1 %, voire inférieure à 0,07%.0.0025% <N + O <0.015% optionally calcium and / or magnesium in a total content between 0.0001 and 0.005%, the rest being made up of iron and inevitable impurities resulting from the production. In a preferred embodiment, the alloy also has a niobium content of less than 0.1%, or even less than 0.07%.
Dans un autre mode de réalisation préféré, l'alliage présente une teneur en carbone supérieure à 0,0035%. Dans un autre mode de réalisation préféré, l'alliage présente une taille de grains inférieure à 10, voire inférieure à 9 (selon G ASTM E 112).In another preferred embodiment, the alloy has a carbon content greater than 0.0035%. In another preferred embodiment, the alloy has a grain size less than 10, or even less than 9 (according to G ASTM E 112).
Dans un autre mode de réalisation préféré, l'alliage a un coefficient de dilatation thermique entre 20°C et 100°C inférieur à 0,70x10"6/K, et de préférence, inférieur à 0,65x10"6/K. Dans tous les cas, le coefficient de dilatation obtenu est inférieur à 0,75x10"6/K.In another preferred embodiment, the alloy has a coefficient of thermal expansion between 20 ° C and 100 ° C less than 0.70x10 "6 / K, and preferably less than 0.65x10 " 6 / K. In all cases, the coefficient of expansion obtained is less than 0.75x10 "6 / K.
Dans un autre mode de réalisation préféré, l'alliage présente une limite conventionnelle d'élasticité à 0,2% sur état recuit supérieure à 250 MPa, de préférence supérieure à 280 MPa, et de façon plus particulièrement préférée, supérieure à 300 MPa, voire à 310 MPa. Dans un autre mode de réalisation préféré, les teneurs en niobium et en carbone de la composition d'alliage sont telles que :In another preferred embodiment, the alloy has a conventional yield strength of 0.2% in the annealed state greater than 250 MPa, preferably greater than 280 MPa, and more particularly preferably, greater than 300 MPa, even at 310 MPa. In another preferred embodiment, the niobium and carbon contents of the alloy composition are such that:
Nb x C ≤ O.01. Ce mode de réalisation permet d'améliorer la limite élastique de la nuance à l'état recuit par la formation de carbures de taille inférieure au micron. Dans un autre mode de réalisation préféré, les teneurs en titane, niobium et en azote de la composition d'alliage sont telles que :Nb x C ≤ O.01. This embodiment makes it possible to improve the elastic limit of the grade in the annealed state by the formation of carbides of size less than one micron. In another preferred embodiment, the titanium, niobium and nitrogen contents of the alloy composition are such that:
Ti x N < 0,00006 Nb x N < 0,001 Ce mode de réalisation permet d'éviter la présence d'une quantité trop importante de nitrures de titane et/ou de niobium, qui ont une taille de l'ordre de quelques centaines de nanometre voire de quelques microns, et qui posent problème lors de la fabrication par gravure des masques d'ombre.Ti x N <0.00006 Nb x N <0.001 This embodiment makes it possible to avoid the presence of too large a quantity of titanium and / or niobium nitrides, which have a size of the order of a few hundred nanometer or even a few microns, and which pose a problem during the fabrication by etching of shadow masks.
Dans un autre mode de réalisation, l'alliage contient des précipités à base de titane, et/ou de niobium, et/ou de vanadium, et/ou de tantale, et/ou de zirconium et/ou d'hafnium, dont la taille moyenne est inférieure ou égale à 100 nm, de préférence inférieure ou égale à 70 nm et de façon plus particulièrement préférée inférieure à 50 nm. L'invention a pour second objet un procédé de fabrication d'une bande en alliage selon l'invention comprenant les étapes selon lesquelles :In another embodiment, the alloy contains precipitates based on titanium, and / or niobium, and / or vanadium, and / or tantalum, and / or zirconium and / or hafnium, the average size is less than or equal to 100 nm, preferably less than or equal to 70 nm and more particularly less than 50 nm. The second object of the invention is a method of manufacturing an alloy strip according to the invention comprising the steps according to which:
- on lamine à chaud un demi-produit de cet alliage après réchauffage à une température supérieure à 850°C et inférieure à 1350°C, de telle sorte que la température de laminage soit supérieure à la température de remise en solution des précipités à base de titane et/ou de niobium, et/ou de vanadium et ou de zirconium, et ou de tantale et ou d'hafnium et que la température de fin de laminage soit inférieure à la température de début de précipitation desdits précipités, afin d'obtenir une bande à chaud,- A semi-finished product of this alloy is hot rolled after reheating to a temperature higher than 850 ° C and lower than 1350 ° C, so that the rolling temperature is higher than the re-solution temperature of the precipitates based titanium and / or niobium, and / or vanadium and or zirconium, and or tantalum and or hafnium and the end of rolling temperature is lower than the temperature at which precipitation of said precipitates begins, in order to get a hot strip,
- on lamine à froid la bande à chaud en une ou plusieurs passes, pour obtenir une bande à froid avec éventuellement un ou plusieurs recuits intermédiaires entre deux passes.- The hot strip is cold rolled in one or more passes, to obtain a cold strip with possibly one or more intermediate anneals between two passes.
Dans un premier mode de réalisation préféré, la température du ou des recuits intermédiaires effectués lors du laminage à froid est inférieure à la température de remise en solution desdits précipités.In a first preferred embodiment, the temperature of the intermediate annealing (s) carried out during the cold rolling is lower than the temperature of redissolving said precipitates.
Dans un second mode de réalisation préféré, la température du ou des recuits intermédiaires effectués lors du laminage à froid est supérieure à la température de remise en solution desdits précipités. Ces deux modes de réalisation différents permettent de jouer sur la formation des précipités et sur la taille de grains. A titre indicatif et non limitatif, on obtient généralement une taille de grains supérieure à 7 pour le premier mode de réalisation, tandis qu'on obtient généralement des tailles de grains inférieures à 7,5 pour le second mode de réalisation. Dans un autre mode de réalisation préféré, la température de fin de laminage à chaud est inférieure ou égale à 850°C, ce qui permet d'obtenir des grains plus fins.In a second preferred embodiment, the temperature of the intermediate annealing (s) carried out during the cold rolling is higher than the temperature of redissolving said precipitates. These two different embodiments allow to play on the formation of the precipitates and on the grain size. By way of non-limiting indication, a grain size greater than 7 is generally obtained for the first embodiment, while grain sizes less than 7.5 are generally obtained for the second embodiment. In another preferred embodiment, the end temperature of hot rolling is less than or equal to 850 ° C., which makes it possible to obtain finer grains.
L'invention a pour troisième objet l'utilisation de l'alliage décrit ci-dessus pour la fabrication de masques d'ombres pour tubes cathodiques de visualisation en couleur, pour la fabrication de masques d'ombres tendus dans la direction verticale ou horizontale pour des téléviseurs à écrans plats, pour la fabrication de cadres support de masques d'ombre, pour la fabrication de conteneurs de stockage cryogéniques, mais aussi pour la fabrication de grilles de canons à électrons, grâce à sa très bonne aptitude à la découpe mécanique.A third object of the invention is the use of the alloy described above for the manufacture of shadow masks for cathode ray tubes for color display, for the manufacture of shadow masks stretched in the vertical or horizontal direction for flat screen televisions, for the manufacture of shadow mask support frames, for the manufacture of cryogenic storage containers, but also for the manufacture of grids electron guns, thanks to its very good mechanical cutting ability.
L'invention est basée sur le fait que les inventeurs ont constaté de façon nouvelle et surprenante que la précipitation de composés formés à partir de titane, et/ou de niobium, et/ou de vanadium, et/ou de zirconium, et/ou de tantale, et/ou d'hafnium, d'une part, et de carbone, oxygène et/ou azote d'autre part, entraîne un abaissement sensible du coefficient de dilatation lorsque l'alliage possède une faible teneur en Si et Mn. L'analyse précise des composés formés est délicate, mais on trouve notamment des carbures, des nitrures, des carbonitrures, des oxydes et/ou des oxynitrures des métaux mentionnés ci-dessus.The invention is based on the fact that the inventors have found in a new and surprising manner that the precipitation of compounds formed from titanium, and / or niobium, and / or vanadium, and / or zirconium, and / or tantalum, and / or hafnium, on the one hand, and carbon, oxygen and / or nitrogen on the other hand, leads to a significant reduction in the coefficient of expansion when the alloy has a low content of Si and Mn. The precise analysis of the compounds formed is delicate, but there are in particular carbides, nitrides, carbonitrides, oxides and / or oxynitrides of the metals mentioned above.
Sans vouloir être liés par une théorie, les inventeurs pensent que cet effet pourrait être dû au fait que ces différents composés ont pour la plupart une structure cristalline de type cubique, et forment des précipités dont la taille est généralement de l'ordre de plusieurs dizaines de nanomètres lorsqu'ils sont formés en phase solide. Ces précipités de petite taille précipitent dans la matrice et non aux joints de grains, comme c'est classiquement le cas.Without wishing to be bound by a theory, the inventors believe that this effect could be due to the fact that these various compounds have for the most part a crystal structure of cubic type, and form precipitates whose size is generally of the order of several tens. nanometers when formed in solid phase. These small precipitates precipitate in the matrix and not at the grain boundaries, as is conventionally the case.
Cet effet sur le coefficient de dilatation de l'alliage est en particulier visible en figure 1 , qui représente les variations de ce coefficient entre 20 et 100°C, en fonction de la somme des teneurs en oxygène et azote, pour un alliage dont la composition comprend du titane à des teneurs comprises entre 0,01 et 0,05 %, moins de 5 ppm de bore, moins de 5 ppm de soufre et pas d'aluminium. Le même effet est obtenu avec un alliage contenant du niobium en remplacement total ou partiel du titane, dans les limites imposées par la revendication 1.This effect on the coefficient of expansion of the alloy is in particular visible in FIG. 1, which represents the variations of this coefficient between 20 and 100 ° C., depending on the sum of the oxygen and nitrogen contents, for an alloy whose composition comprises titanium at contents of between 0.01 and 0.05%, less than 5 ppm of boron, less than 5 ppm of sulfur and no aluminum. The same effect is obtained with an alloy containing niobium as a total or partial replacement for titanium, within the limits imposed by claim 1.
L'alliage selon l'invention contient, en % en poids :The alloy according to the invention contains, in% by weight:
- de 35% à 37% de nickel, et de préférence entre 35,5% et 36,5%, afin d'obtenir un faible coefficient de dilatation thermique entre 20°C et 100°C,- from 35% to 37% of nickel, and preferably between 35.5% and 36.5%, in order to obtain a low coefficient of thermal expansion between 20 ° C and 100 ° C,
- de 0,001 % à 0,05% de carbone pour former de fins précipités de carbures. La formation de précipités de carbures de tailles nanométrique a pour effet de diminuer le coefficient de dilatation et d'améliorer les propriétés mécaniques du produit. On limite sa teneur à 0,05% pour éviter la formation de grosses inclusions de carbures insolubles. On préfère que la teneur en carbone soit supérieure à 0,0035% afin d'avoir une fraction volumique de carbone suffisante pour obtenir des caractéristiques mécaniques améliorées. On préfère également maintenir la teneur en carbone à une valeur inférieure à- from 0.001% to 0.05% carbon to form fine precipitates of carbides. The formation of nanometric-sized carbide precipitates has the effect of reducing the coefficient of expansion and improving the mechanical properties of the product. We limit its content to 0.05% to avoid the formation of large inclusions of insoluble carbides. It is preferred that the carbon content is greater than 0.0035% in order to have a volume fraction of carbon sufficient to obtain improved mechanical characteristics. It is also preferred to keep the carbon content below
0,010%, voire inférieure à 0,007% pour limiter encore la taille des carbures formés.0.010%, or even less than 0.007% to further limit the size of the carbides formed.
- moins de 0,1% de manganèse, car cet élément augmente le coefficient de dilatation de l'alliage et doit être limité, - moins de 0,15% de silicium, car cet élément augmente le coefficient de dilatation de l'alliage et doit être limité,- less than 0.1% of manganese, because this element increases the coefficient of expansion of the alloy and must be limited, - less than 0.15% of silicon, because this element increases the coefficient of expansion of the alloy and must be limited,
- moins de 0,5% de cobalt, afin de ne pas polluer les bains de gravure chimique des masques d'ombre,- less than 0.5% cobalt, in order not to pollute the chemical etching baths of shadow masks,
- éventuellement de 0,0001 à 0,005% d'au moins un élément pris parmi le calcium et le magnésium afin de piéger le soufre qui existe toujours à titre d'impureté et ainsi assurer une bonne aptitude à la déformation à chaud,- possibly from 0.0001 to 0.005% of at least one element taken from calcium and magnesium in order to trap the sulfur which still exists as an impurity and thus ensure good aptitude for hot deformation,
- éventuellement du soufre en une teneur inférieure à 0,002% afin de ne pas détériorer l'aptitude à la transformation à chaud de l'alliage, - éventuellement du phosphore en une teneur inférieure à 0,006% pour ne pas détériorer l'aptitude à la transformation à chaud de l'alliage,- optionally sulfur in a content of less than 0.002% so as not to deteriorate the ability to heat transform the alloy, - possibly phosphorus in a content of less than 0.006% so as not to deteriorate the ability to process hot alloy,
- éventuellement du bore en une teneur inférieure à 0,0005%, et de préférence égale à 0% : en effet, les inventeurs ont constaté qu'en présence de bore les coefficients de dilatation thermiques augmentaient notablement,- optionally boron in a content of less than 0.0005%, and preferably equal to 0%: in fact, the inventors have found that in the presence of boron the thermal expansion coefficients increased significantly,
- éventuellement de l'aluminium, du molybdène, du cuivre ou du chrome en une teneur totale inférieure à 0,15%, car ces éléments augmentent le coefficient de dilatation thermique de l'alliage.- optionally aluminum, molybdenum, copper or chromium in a total content of less than 0.15%, since these elements increase the coefficient of thermal expansion of the alloy.
- du titane, du vanadium du niobium, du tantale, du zirconium et/ou de l'hafnium dans des quantités telles que la somme 2(V+Ti) + Nb + Ta +- titanium, vanadium, niobium, tantalum, zirconium and / or hafnium in amounts such as the sum 2 (V + Ti) + Nb + Ta +
Zr + Hf soit comprise entre 0,015% et 0,2%, afin de pouvoir former des précipités à base de ces éléments, ces précipités présentant de préférence une taille moyenne inférieure à 100 nm, et de façon préférée inférieure à 70 nm, et de façon plus particulièrement préférée inférieure à 50 nm. On préfère en outre que la teneur en niobium soit inférieure à 0,1 %, voire à 0,07%, afin de diminuer encore le coefficient de dilatation ainsi que la taille des précipités. - de l'oxygène et/ou de l'azote dans des quantités telles que la somme de leurs teneurs soit comprise entre 0,0025% et 0,015%, car les inventeurs ont constaté de façon nouvelle que la présence d'oxygène et/ou d'azote dans ces teneurs dans l'alliage permet de baisser le coefficient de dilatation lorsqu'il est associé à la présence de titane, et/ou de niobium et/ou de vanadium, et/ou de tantale, et/ou de zirconium et ou d'hafnium.Zr + Hf is between 0.015% and 0.2%, in order to be able to form precipitates based on these elements, these precipitates preferably having an average size less than 100 nm, and so preferred less than 70 nm, and more particularly preferably less than 50 nm. It is further preferred that the niobium content is less than 0.1%, or even 0.07%, in order to further reduce the coefficient of expansion as well as the size of the precipitates. - oxygen and / or nitrogen in quantities such that the sum of their contents is between 0.0025% and 0.015%, because the inventors have found in a new way that the presence of oxygen and / or nitrogen in these contents in the alloy makes it possible to lower the coefficient of expansion when it is associated with the presence of titanium, and / or niobium and / or vanadium, and / or tantalum, and / or zirconium and or hafnium.
On limite la somme de ces teneurs à 0,015% pour éviter la formation de gros oxydes ou nitrures. - le reste de la composition est constitué de fer et d'impuretés résultant de l'élaboration.The sum of these contents is limited to 0.015% to avoid the formation of large oxides or nitrides. - The rest of the composition consists of iron and impurities resulting from the production.
L'alliage peut être élaboré par exemple au four à arc avec une phase d'affinage aux convertisseurs AOD ou VOD ; il peut également être élaboré au four à induction sous vide. Cette élaboration doit être conduite de façon à obtenir les teneurs en résiduels souhaitées. L'alliage est ensuite coulé sous forme d'un demi-produit tel qu'un lingot, une billette ou une électrode de refusion. Il peut également être coulé directement sous forme de brame mince ou de bande mince d'épaisseur inférieure à 15 mm, et de préférence d'épaisseur comprise entre 8 et 12 mm.The alloy can be produced for example in an arc furnace with a phase of refining with AOD or VOD converters; it can also be prepared in a vacuum induction oven. This preparation must be carried out so as to obtain the desired residual contents. The alloy is then cast in the form of a semi-finished product such as an ingot, a billet or a reflow electrode. It can also be poured directly in the form of a thin slab or a thin strip with a thickness of less than 15 mm, and preferably with a thickness of between 8 and 12 mm.
Lorsque l'alliage est coulé sous forme d'électrode de refusion, celle-ci est refondue sous laitier électro-conducteur afin d'obtenir une meilleure homogénéité de la composition chimique et de la structure de solidification.When the alloy is cast in the form of a reflow electrode, it is remelted under an electrically conductive slag in order to obtain better homogeneity of the chemical composition and of the solidification structure.
Le demi-produit, ou la bande mince obtenue par coulée directe, est ensuite laminé à chaud à une température supérieure à 850°C, et de préférence supérieure à 1150°C, mais inférieure à 1350°C pour obtenir une bande à chaud d'épaisseur comprise, en général, entre 2 mm et 6 mm, et de préférence entre 3 et 5 mm, qui est laminée à froid en une ou plusieurs passes avec éventuellement des recuits au dessus de 800°C. La température de chauffage de la bande appliquée entre les étapes de laminage à chaud ou de laminage à froid, pourra être choisie de manière à ce que les précipités d'oxydes, de carbures ou de nitrures puissent être éventuellement remis en solution. Des refroidissement rapides pourront également être appliqués pour maintenir en solution solide dans l'alliage ces éléments susceptibles de former des précipités. Des traitements de précipitation à l'équilibre pourront alors être réalisés par des maintiens à des températures comprises entre 750°C et 1200°C (mais de préférence inférieures à 1050°C).The semi-finished product, or the thin strip obtained by direct casting, is then hot rolled at a temperature above 850 ° C, and preferably above 1150 ° C, but below 1350 ° C to obtain a hot strip d thickness generally between 2 mm and 6 mm, and preferably between 3 and 5 mm, which is cold rolled in one or more passes with optionally annealing above 800 ° C. The strip heating temperature applied between the hot rolling steps or cold rolling, may be chosen so that the precipitates of oxides, carbides or nitrides can be optionally redissolved. Rapid cooling may also be applied to maintain in solid solution in the alloy these elements liable to form precipitates. Equilibrium precipitation treatments can then be carried out by maintaining at temperatures between 750 ° C and 1200 ° C (but preferably below 1050 ° C).
L'invention va maintenant être décrite de façon plus précise mais non limitative et illustrée par des exemples. The invention will now be described in a more precise but nonlimiting manner and illustrated by examples.
Essaistesting
A titre d'exemple, on a élaboré les alliages repérés 1 à 16 selon l'invention et 17 à 23 à titre de comparaison dont la composition est décrite dans le tableau 1 suivant. Les compositions chimiques et les coefficients de dilatation α entre 20 et 100°C, ont été mesurés sur des éprouvettes prélevées sur les bandes laminées à chaud. Chacune de ces éprouvettes a été recuite pendant 30 minutes à 950°C, et refroidie à l'air ambiant avant de réaliser les mesures de coefficient de dilatation thermique. Les résultats des essais sont rassemblés dans le tableau 2, dans lequel le coefficient de dilatation α est exprimé en 10"6/K.By way of example, the alloys identified 1 to 16 according to the invention and 17 to 23 have been prepared by way of comparison, the composition of which is described in Table 1 below. The chemical compositions and the coefficients of expansion α between 20 and 100 ° C, were measured on test specimens taken from the hot-rolled strips. Each of these test pieces was annealed for 30 minutes at 950 ° C., and cooled in ambient air before carrying out the measurements of coefficient of thermal expansion. The results of the tests are collated in Table 2, in which the coefficient of expansion α is expressed in 10 "6 / K.
Les tests de gravure ont été réalisés sur des produits laminés à froid des coulées expérimentales, partiellement revêtus de résine photosensible. Les gravures ont été réalisées à 60°C avec une solution de FeCI3 ayant une densité de 45,5°Bé. La qualité des gravures a été évaluée par des mesures de régularité des contours découpés, ainsi que par la présence de défauts liés à la présence de particules. The etching tests were carried out on cold-rolled products from experimental castings, partially coated with photosensitive resin. The engravings were carried out at 60 ° C. with a solution of FeCl 3 having a density of 45.5 ° Be. The quality of the engravings was assessed by measures of regularity of the cut out contours, as well as by the presence of defects linked to the presence of particles.
-3 CD ω-3 CD ω
_Q co_Q co
I-I-
Figure imgf000011_0001
Tableau 2
Figure imgf000011_0001
Table 2
Figure imgf000012_0001
Figure imgf000012_0001
*1 Valeurs mesurées après un traitement thermique de 15 minutes à 850°C.* 1 Values measured after a heat treatment of 15 minutes at 850 ° C.
*2 B : gravures jugées bonnes - P : présence de défauts liés à la présence de particules.* 2 B: engravings deemed good - P: presence of defects linked to the presence of particles.
*3 Taille de grains mesurée selon G ASTM E 112, à plus ou moins 0,5 unités.* 3 Grain size measured according to G ASTM E 112, plus or minus 0.5 units.
Au vu de ce tableau, on constate que toutes les bandes selon l'invention ont un coefficient de dilatation inférieur à 0,70x10"6/K et même, inférieur à 0,65x10"6/K dans la plupart des cas. En revanche, les bandes données à titre de comparaison, ont des coefficients de dilatation sensiblement supérieurs à 0,70x10"6/K.In view of this table, it can be seen that all the strips according to the invention have a coefficient of expansion less than 0.70 × 10 −6 " / K and even less than 0.65 × 10 −6 " / K in most cases. On the other hand, the bands given by way of comparison have expansion coefficients substantially greater than 0.70 × 10 −6 "6 / K.
Les contre exemples 17 et 18 montrent l'effet néfaste du bore sur le coefficient de dilatation. Les contre exemples 19 et 21 montrent l'influence néfaste du soufre sur le coefficient de dilatation. Ces contre exemples montrent également l'importance des teneurs en oxygène et azote sur le coefficient de dilatation.Counter examples 17 and 18 show the harmful effect of boron on the coefficient of expansion. Counterexamples 19 and 21 show the harmful influence of sulfur on the coefficient of expansion. These counterexamples also show the importance of the oxygen and nitrogen contents on the coefficient of expansion.
Le contre exemple 20 qui correspond à l'alliage FeNi à bas manganèse classique donne la référence montrant les avantages de l'invention. En effet, en l'absence de composés permettant la formation de précipités en phase solide, les coefficients de dilatation mesurés sont plus importants.Counterexample 20, which corresponds to the conventional low manganese FeNi alloy, gives the reference showing the advantages of the invention. In fact, in the absence of compounds allowing the formation of precipitates in the solid phase, the expansion coefficients measured are greater.
Le contre exemple 21 montre l'effet néfaste du soufre sur le coefficient de dilatation.Counterexample 21 shows the harmful effect of sulfur on the coefficient of expansion.
Les contre exemples 22 et 23 montrent l'importance des teneurs en azote et oxygène sur le coefficient de dilatation.Counterexamples 22 and 23 show the importance of the nitrogen and oxygen contents on the expansion coefficient.
L'alliage selon l'invention peut également être utilisé pour la fabrication de cadres support de masques d'ombre. Cet alliage présente un bon comportement en gravure chimique lié à la faible présence contrôlée en résiduels de type C, S, N en solution solide, et de par ses faibles quantités d'inclusions de tailles micrométriques. The alloy according to the invention can also be used for the manufacture of support frames for shadow masks. This alloy exhibits good behavior in chemical etching linked to the low controlled presence of residuals of type C, S, N in solid solution, and by its small amounts of inclusions of micrometric sizes.

Claims

REVENDICATIONS
1. Alliage dont la composition chimique comprend, en poids :1. Alloy whose chemical composition includes, by weight:
35% < Ni ≤ 37% 0,001 % < C < 0,05%35% <Ni ≤ 37% 0.001% <C <0.05%
Mn < 0.10%Mn <0 . 10%
Si < 0,15%If <0.15%
Co < 0,5%Co <0.5%
S < 0,002% P < 0,006%S <0.002% P <0.006%
B < 0,0005%B <0.0005%
Al+Mo+Cu+Cr < 0,15%Al + Mo + Cu + Cr <0.15%
0,015% < 2(V+Ti)+Nb + Zr + Ta + Hf < 0,2%0.015% <2 (V + Ti) + Nb + Zr + Ta + Hf <0.2%
0,0025% < N+O < 0,015% éventuellement du calcium et/ou du magnésium en une teneur totale comprise entre 0,0001 et 0,005%, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.0.0025% <N + O <0.015% optionally calcium and / or magnesium in a total content between 0.0001 and 0.005%, the rest being made up of iron and inevitable impurities resulting from the production.
2. Alliage selon la revendication 1 , caractérisé en outre en ce que sa teneur en niobium est inférieure à 0,1 %.2. Alloy according to claim 1, further characterized in that its niobium content is less than 0.1%.
3. Alliage selon la revendication 1 ou 2, caractérisé en outre en ce que sa teneur en carbone est supérieure à 0,0035%.3. An alloy according to claim 1 or 2, further characterized in that its carbon content is greater than 0.0035%.
4. Alliage selon l'une quelconque des revendications 1 à 3, caractérisé en ce que sa taille de grains est inférieure à 10 (selon G ASTM E112). 4. Alloy according to any one of claims 1 to 3, characterized in that its grain size is less than 10 (according to G ASTM E112).
5. Alliage selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il présente un coefficient de dilatation thermique entre 20°C et 100°C inférieur à 0,7x10"6/K.5. Alloy according to any one of claims 1 to 4, characterized in that it has a coefficient of thermal expansion between 20 ° C and 100 ° C less than 0.7x10 "6 / K.
6. Alliage selon l'une quelconque des revendications 1 à 5, caractérisé en ce que sa limite conventionnelle d'élasticité à 0,2% sur état recuit est supérieure à 280 MPa.6. Alloy according to any one of claims 1 to 5, characterized in that its conventional yield strength at 0.2% in the annealed condition is greater than 280 MPa.
7. Alliage selon la revendication 6, caractérisé en outre en ce que sa limite conventionnelle d'élasticité à 0,2% sur état recuit est supérieure à 300 MPa. 7. An alloy according to claim 6, further characterized in that its conventional yield strength at 0.2% in the annealed condition is greater than 300 MPa.
8. Alliage selon l'une quelconque des revendications 1 à 7, caractérisé en outre en ce que les teneurs en niobium et en carbone sont telles que :8. Alloy according to any one of claims 1 to 7, further characterized in that the niobium and carbon contents are such that:
Nb x C < 0,01Nb x C <0.01
9. Alliage selon l'une quelconque des revendications 1 à 8, caractérisé en outre en ce que les teneurs en titane, niobium et en azote de la composition d'alliage sont telles que :9. Alloy according to any one of claims 1 to 8, further characterized in that the titanium, niobium and nitrogen contents of the alloy composition are such that:
Ti x N < 0,00006 Nb x N ≤ 0.001Ti x N <0.00006 Nb x N ≤ 0 . 001
10. Alliage selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il contient des précipités à base de titane, et/ou de niobium, et/ou de vanadium, et/ou de tantale, et ou de zirconium et ou d'hafnium, dont la taille moyenne est inférieure ou égale à 100 nm.10. Alloy according to any one of claims 1 to 9, characterized in that it contains precipitates based on titanium, and / or niobium, and / or vanadium, and / or tantalum, and or zirconium and or hafnium, the average size of which is less than or equal to 100 nm.
11. Procédé pour fabriquer une bande en alliage selon l'une quelconque des revendications 1 à 10, comprenant les étapes selon lesquelles :11. Method for manufacturing an alloy strip according to any one of claims 1 to 10, comprising the steps according to which:
- on lamine à chaud un demi-produit dudit alliage après réchauffage à une température supérieure à 850°C et inférieure à 1350°C, de telle sorte que la température de laminage soit supérieure à la température de remise en solution des précipités à base de titane et/ou de niobium, et/ou de vanadium et/ou de zirconium, et/ou de tantale et/ou d'hafnium et que la température de fin de laminage soit inférieure à la température de début de précipitation desdits précipités, afin d'obtenir une bande à chaud,- A semi-finished product of said alloy is hot rolled after reheating to a temperature higher than 850 ° C and lower than 1350 ° C, so that the rolling temperature is higher than the re-solution temperature of the precipitates based on titanium and / or niobium, and / or vanadium and / or zirconium, and / or tantalum and / or hafnium and the end of rolling temperature is lower than the temperature at which precipitation of said precipitates begins, so to get a hot strip,
- on lamine à froid la bande à chaud en une ou plusieurs passes, pour obtenir une bande à froid avec éventuellement un ou plusieurs recuits intermédiaires entre deux passes.- The hot strip is cold rolled in one or more passes, to obtain a cold strip with possibly one or more intermediate anneals between two passes.
12. Procédé selon la revendication 11 , caractérisé en ce que la température du ou des recuits intermédiaires effectués lors du laminage à froid est inférieure à la température de remise en solution desdits précipités. 12. Method according to claim 11, characterized in that the temperature of the intermediate annealing (s) carried out during the cold rolling is lower than the temperature of redissolving said precipitates.
13. Procédé selon la revendication 11 , caractérisé en ce que la température du ou des recuits intermédiaires effectués lors du laminage à froid est supérieure à la température de remise en solution desdits précipités. 13. Method according to claim 11, characterized in that the temperature of the intermediate annealing (s) carried out during the cold rolling is higher than the temperature of redissolving said precipitates.
14. Procédé selon la revendication 11 ou 12, caractérisé en ce que la température de fin de laminage à chaud est inférieure ou égale à 850°C.14. The method of claim 11 or 12, characterized in that the end temperature of hot rolling is less than or equal to 850 ° C.
15. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 10, pour la fabrication de masques d'ombres pour tubes cathodiques de visualisation en couleur.15. Use of an alloy according to any one of claims 1 to 10, for the manufacture of shadow masks for cathode ray tubes for color display.
16. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 10 pour la fabrication de conteneurs de stockage cryogénique.16. Use of an alloy according to any one of claims 1 to 10 for the manufacture of cryogenic storage containers.
17. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 10, pour la fabrication de grilles de canons à électrons. 17. Use of an alloy according to any one of claims 1 to 10, for the manufacture of grids of electron guns.
18. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 10, pour la fabrication de masques d'ombres tendus dans la direction verticale ou horizontale pour des téléviseurs à écrans plats. 18. Use of an alloy according to any one of claims 1 to 10, for the manufacture of shadow masks stretched in the vertical or horizontal direction for flat screen televisions.
19. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 10, pour la fabrication de cadres support de masques d'ombre. 19. Use of an alloy according to any one of claims 1 to 10, for the manufacture of support frames for shadow masks.
PCT/FR2003/003785 2002-12-20 2003-12-18 Iron-nickel alloy with low coefficient of thermal expansion for making shade masks WO2004063411A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/539,448 US20060171840A1 (en) 2002-12-20 2003-12-18 Iron- nickel alloy with low coefficient of thermal expansion for making shade masks
EP03799619A EP1581664A1 (en) 2002-12-20 2003-12-18 Iron-nickel alloy with low coefficient of thermal expansion for making shade masks
AU2003299338A AU2003299338A1 (en) 2002-12-20 2003-12-18 Iron-nickel alloy with low coefficient of thermal expansion for making shade masks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216266A FR2849061B1 (en) 2002-12-20 2002-12-20 FER-NICKEL ALLOY WITH VERY LOW THERMAL EXPANSION COEFFICIENT FOR THE MANUFACTURE OF SHADOW MASKS
FR02/16266 2002-12-20

Publications (1)

Publication Number Publication Date
WO2004063411A1 true WO2004063411A1 (en) 2004-07-29

Family

ID=32406240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003785 WO2004063411A1 (en) 2002-12-20 2003-12-18 Iron-nickel alloy with low coefficient of thermal expansion for making shade masks

Country Status (6)

Country Link
US (1) US20060171840A1 (en)
EP (1) EP1581664A1 (en)
CN (1) CN100354446C (en)
AU (1) AU2003299338A1 (en)
FR (1) FR2849061B1 (en)
WO (1) WO2004063411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031082A1 (en) * 2007-08-31 2009-03-04 ArcelorMittal - Stainless & Nickel Alloys Metal substrate with crystallographic texture, crystallographic texture device, photovoltaic cell and module comprising such a device and method of depositing fine layers
WO2015136333A1 (en) * 2014-03-14 2015-09-17 Aperam Iron-nickel alloy having improved weldability

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570136B2 (en) * 2008-04-28 2014-08-13 キヤノン株式会社 Alloy and alloy manufacturing method
EP2365730A1 (en) * 2010-03-02 2011-09-14 Saint-Gobain Glass France Pane with electric connection element
EP2408260A1 (en) * 2010-07-13 2012-01-18 Saint-Gobain Glass France Glass pane with electric connection element
CN104451415A (en) * 2014-12-02 2015-03-25 常熟市良益金属材料有限公司 Magnetic alloy
CN104775077B (en) * 2015-03-23 2016-08-24 河北钢铁股份有限公司 Ultra-fine Grained invar alloy strip and preparation method thereof
CN109852896B (en) * 2019-04-16 2021-04-06 常熟理工学院 Method for manufacturing Fe-36Ni invar alloy plate with low thermal expansion
JP6831489B1 (en) * 2020-08-06 2021-02-17 住友電気工業株式会社 Iron alloys, iron alloy wires, and iron alloy stranded wires
CN112962033B (en) * 2021-02-01 2021-11-19 山西太钢不锈钢股份有限公司 High-strength invar alloy and processing method thereof
CN113718182B (en) * 2021-08-30 2022-06-17 无锡华能电缆有限公司 Zinc-aluminum coating invar steel single wire and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186853A (en) * 1992-01-09 1993-07-27 Nippon Yakin Kogyo Co Ltd Invar alloy for shadow mask
EP0713923A1 (en) * 1994-11-23 1996-05-29 Imphy S.A. Iron-nickel alloy with low thermal expansion coefficient
US5643697A (en) * 1994-12-27 1997-07-01 Imphy S.A. Process for manufacturing a shadow mask made of an iron/nickel alloy
JPH11342403A (en) * 1998-05-27 1999-12-14 Pacific Metals Co Ltd Method of manufacturing hot-rolled sheet of high nickel alloy
US20020043314A1 (en) * 2000-08-30 2002-04-18 Nippon Mining & Metals Co. , Ltd. Method of manufacturing fe-ni alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186853A (en) * 1992-01-09 1993-07-27 Nippon Yakin Kogyo Co Ltd Invar alloy for shadow mask
EP0713923A1 (en) * 1994-11-23 1996-05-29 Imphy S.A. Iron-nickel alloy with low thermal expansion coefficient
US5643697A (en) * 1994-12-27 1997-07-01 Imphy S.A. Process for manufacturing a shadow mask made of an iron/nickel alloy
JPH11342403A (en) * 1998-05-27 1999-12-14 Pacific Metals Co Ltd Method of manufacturing hot-rolled sheet of high nickel alloy
US20020043314A1 (en) * 2000-08-30 2002-04-18 Nippon Mining & Metals Co. , Ltd. Method of manufacturing fe-ni alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 617 (C - 1129) 15 November 1993 (1993-11-15) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 03 30 March 2000 (2000-03-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031082A1 (en) * 2007-08-31 2009-03-04 ArcelorMittal - Stainless & Nickel Alloys Metal substrate with crystallographic texture, crystallographic texture device, photovoltaic cell and module comprising such a device and method of depositing fine layers
WO2009030865A2 (en) * 2007-08-31 2009-03-12 Arcelormittal - Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
WO2009030865A3 (en) * 2007-08-31 2009-04-30 Arcelormittal Stainless And Ni Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
EA016990B1 (en) * 2007-08-31 2012-08-30 Арселормитталь - Стейнлесс Энд Никель Эллойз Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
CN101842508B (en) * 2007-08-31 2013-05-01 安赛乐米塔尔不锈钢及镍合金公司 Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
US9309592B2 (en) 2007-08-31 2016-04-12 Arcelormittal-Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
WO2015136333A1 (en) * 2014-03-14 2015-09-17 Aperam Iron-nickel alloy having improved weldability
US10633728B2 (en) 2014-03-14 2020-04-28 Aperam Iron-nickel alloy having improved weldability

Also Published As

Publication number Publication date
EP1581664A1 (en) 2005-10-05
AU2003299338A1 (en) 2004-08-10
FR2849061A1 (en) 2004-06-25
FR2849061B1 (en) 2005-06-03
CN100354446C (en) 2007-12-12
CN1742107A (en) 2006-03-01
US20060171840A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5479627B2 (en) Flat or cylindrical sputtering target and method for producing the same
EP1581664A1 (en) Iron-nickel alloy with low coefficient of thermal expansion for making shade masks
BE658149A (en)
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
FR2477179A1 (en) AUSTENITIC STAINLESS STEEL CONTAINING COPPER AND NITROGEN AND ITS APPLICATIONS FOR THE PRODUCTION OF BANDS, TUBES, BARS OR RODS
FR2819825A1 (en) METHOD FOR MANUFACTURING A FE-NI ALLOY STRIP
FR2668498A1 (en) FE-NI ALLOY SHEET FOR PERFORATED MASK, EXCELLENT ENGRAVING DRILLING CAPABILITY, PREVENTING BONDING DURING THE NOISE, AND INHIBITING GAS PRODUCTION.
FR2779155A1 (en) Beta titanium alloy produced by aging in two phase region to give submicron acicular silicide precipitates
JP2009185352A (en) Ni-BASED ALLOY MATERIAL HAVING COLD STRENGTH AND WORKABILITY AND CREEP PROPERTY AND METHOD FOR PRODUCING THE SAME
EP1153396B1 (en) Method for making thin zirconium alloy elements and wafers obtained
EP0756015B1 (en) Nickel-iron alloy for planar masks
FR2664908A1 (en) FER-NICKEL ALLOY SHEET FOR TELEVISION TUBE MASK.
EP0713923B1 (en) Iron-nickel alloy with low thermal expansion coefficient
EP3116677B1 (en) Iron-nickel alloy having improved weldability
EP0059864A1 (en) Process for manufacturing amorphous metal alloys based on iron, phosphorus, carbon and chromium
EP0430754B1 (en) Stainless shape memory alloy and process for producing the same
TW200302288A (en) High-purity nickel or nickel alloy sputtering target, and its manufacturing method
US20090008000A1 (en) Method for the Production and Use of Semi-Finished Products on the Basis of Nickel, Having a Recrystallization Cube Texture
EP1287171B1 (en) Hardened fe-ni alloy for making integrated circuit grids and method for making same
WO2018062189A1 (en) Ni-Ta SYSTEM ALLOY, TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
EP0424277B1 (en) Process for improving the corrosion resistance of a nickel based alloy and alloy thus produced
FR2800753A1 (en) LOW THERMAL EXPANSION FE-NI ALLOY FOR SEMI-TENSION MASK, SEMI-TENSION MASK IN THIS ALLOY AND COLOR IMAGE TUBE USING THE MASK
WO2006051188A2 (en) Iron-nickel alloy strip for the manufacture of support grids for integrated circuits
JP5565262B2 (en) Clad material with excellent workability and manufacturing method thereof
TWI648411B (en) Austenitic alloy and method of fabricating the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BR BY BZ CA CN CO CR CU DM DZ EC GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL RU SC SD SG SL SY TJ TM TN TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003799619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A90556

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003799619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006171840

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10539448

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10539448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003799619

Country of ref document: EP