WO2004096109A2 - Ventilator and methods for treating head trauma and low blood circulation - Google Patents

Ventilator and methods for treating head trauma and low blood circulation Download PDF

Info

Publication number
WO2004096109A2
WO2004096109A2 PCT/US2004/012294 US2004012294W WO2004096109A2 WO 2004096109 A2 WO2004096109 A2 WO 2004096109A2 US 2004012294 W US2004012294 W US 2004012294W WO 2004096109 A2 WO2004096109 A2 WO 2004096109A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
person
valve
pressures
vacuum
Prior art date
Application number
PCT/US2004/012294
Other languages
French (fr)
Other versions
WO2004096109A3 (en
Inventor
Keith G. Lurie
Scott Mcknite
Original Assignee
Advanced Circulatory Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/426,161 external-priority patent/US7195012B2/en
Priority claimed from US10/660,462 external-priority patent/US7082945B2/en
Priority claimed from US10/765,318 external-priority patent/US7195013B2/en
Priority claimed from US10/796,875 external-priority patent/US7836881B2/en
Application filed by Advanced Circulatory Systems, Inc. filed Critical Advanced Circulatory Systems, Inc.
Priority to CA2523847A priority Critical patent/CA2523847C/en
Priority to JP2006513187A priority patent/JP2006524543A/en
Priority to EP04760311A priority patent/EP1617798A4/en
Priority to CN2004800173429A priority patent/CN1829548B/en
Publication of WO2004096109A2 publication Critical patent/WO2004096109A2/en
Publication of WO2004096109A3 publication Critical patent/WO2004096109A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • A61M16/0012Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration by Venturi means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0825Joints or connectors with ball-sockets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • A61M2230/06Heartbeat rate only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/50Temperature

Definitions

  • This invention relates generally to the field of intracranial and intraocular pressures. More specifically, the invention relates to devices and methods for decreasing intracranial, intraocular and systemic arterial pressures and increasing systemic vital organ perfusion, such as those resulting from a traumatic head injury and other injuries.
  • Head trauma and shock are generally regarded as the leading cause of morbidity and mortality in the United States for children and young adults. Head trauma often results in swelling of the brain. Because the skull cannot expand, the increased pressures within the brain can lead to death or serious brain injury. While a number of therapies have been evaluated in order to reduce brain selling, including use of hyperventilation and steroids, an effective way to treat intracranial pressures remains an important medical challenge. Similarly, multi-organ injury associated with head trauma and other vital organ damage is associated with increased pressures within the brain and decreased vital organ perfusion. These patients have an extremely high mortality rate and similarly remain a major medical challenge.
  • the invention provides a device for decreasing intracranial or intraocular pressures and increasing systemic blood pressures and organ perfusion.
  • the device comprises a housing having an inlet opening and an outlet opening that is adapted to be interfaced with a person's airway.
  • the device further includes a valve system that is operable to regulate respiratory gas flows through the housing and into the person's lungs during spontaneous or artificial inspiration.
  • the valve system can be attached to a vacuum source.
  • the valve system assists in lowering intrathoracic pressures during spontaneous inspiration and in non-breathing patients when not actively delivering a breath to continuously or intermittently lower pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial or intraocular pressures and increase systemic blood pressures
  • the invention lowers the pressures within the left and right heart, when positive pressure ventilations are not being provided, thereby helping to increase the efficiency of heart function.
  • the invention can therefore be used to treat patients suffering from a number of disease states including but not limited to those suffering from elevated intracranial pressures, intra-ocular pressures, circulatory collapse, and cardiac arrest, and heart failure. [0006]
  • Such a device may also be used to facilitate movement of cerebral spinal fluid.
  • the valve system is configured to open to permit respiratory gasses to freely flow to the person's lungs when the negative intrathoracic pressure reaches a pressure in the range from about -2 cmH2O to about -20 cmH2O in order to reduce intracranial or intraocular pressures. In this way, the negative intrathoracic pressure is lowered until a threshold pressure is reached, at which time the valve opens. The cycle may be repeated continuously or periodically to repetitively lower intrathoracic pressures.
  • the device may include means for compressing the chest to improve blood circulation in patents in or with low blood circulation or cardiac arrest.
  • the compression could be accomplished with an automated chest compression, a circumferential vest, and the like. This would improve blood flow to the heart and brain in patients with low blood circulation.
  • the device may also include means for causing the person to artificially inspire through the valve system.
  • the device may utilize an electrode, an iron lung cuirass device, a chest lifting device, a ventilator or the like.
  • the device may comprise a means to reduce intrathoracic pressure by applying a vacuum within the airway.
  • the vacuum may be adjusted in terms of frequency, amplitude, and duration. This results in a decrease in intracranial pressure in proportion to the degree of vacuum applied.
  • intracranial pressures may be reduced simply by manipulating airway pressures to reduce intrathoracic pressures.
  • the vacuum created within the thorax enhances venous blood flow back to the heart, thereby simultaneously increasing cardiac output and systemic vital organ perfusion.
  • the device may further include a mechanism for varying the level of impedance of the valve system.
  • This may be used in combination with at least one physiological sensor that is configured to monitor at least one physiological parameter of the person.
  • the mechanism for varying the level of impedance may be configured to receive signals from the sensor and to vary the level of impedance of the valve system based on the signals.
  • sensors include those that measure respiratory rate, intrathoracic pressure, intratracheal pressure, blood pressure, heart rate, end tidal CO2, oxygen level, intracranial perfusion, and intracranial pressure.
  • a coupling mechanism may be used to couple the valve system to the person's airway.
  • Examples of coupling mechanisms include a mouthpiece, an endotracheal tube, and a face mask.
  • valve systems may be used to repetitively decrease the person's intrathoracic pressure.
  • valve systems that may be used include those having spring-biased devices, those having automated, electronic or mechanical systems to occlude and open a valve lumen, duck bill valves, ball valves, other pressure sensitive valve systems capable of opening a closing when subjected to low pressure differentials triggered either by spontaneous breathing and/or external systems to manipulate intrathoracic pressures (such as ventilators, phrenic nerve stimulators, iron lungs, and the like).
  • the invention provides a method for decreasing intracranial or intraocular pressures.
  • a valve system is coupled to a person's airway and is configured to at least periodically reduce or prevent respiratory gases from flowing to the person's lungs.
  • the person's negative intrathoracic pressure is repetitively decreased to in turn repetitively lower pressures in the venous blood vessels that transport blood out of the head.
  • intracranial and intraocular pressures are reduced.
  • Such a method also facilitates movement of cerebral spinal fluid.
  • intracranial pressures are further reduced.
  • this method may also be used to treat a person suffering from head trauma that is associated with elevated intracranial pressures as well as those suffering from heart conditions that increase intracranial pressures, such as atrial fibrillation and heart failure.
  • the person's negative intrathoracic pressure may be repetitively decreased as the person repeatedly inspires through the valve system. This may be done by the person's own efforts (referred to as spontaneous breathing), or by artificially causing the person to repeatedly inspire through the valve system.
  • the person may be caused to artificially inspire by repeatedly stimulating the phrenic nerve, by manipulating the chest with an iron lung cuirass device, by generating negative pressures within the thorax using a ventilator, by applying a vacuum within the thorax that can be regulated by the valve system, by applying a high frequency ventilator that supplies oscillations at a rate of about 200 to about 2000 per minute, or the like.
  • the level of impedance of the valve system may be fixed or variable. If variable, at least one physiological parameters of the person may be measured, and the impedance level may be varied based on the measured parameters.
  • valve system To couple the valve system to the airway, a variety of techniques may be used, such as by using a mouthpiece, an endotracheal tube, a face mask or the like. Further, the respiratory gases may be prevented from entering the lungs through the valve system until a negative intrathoracic pressure in the range from about 0 cmH2O to about -25 cmH2O is achieved, at which time the valve system permits respiratory gases to flow to the lungs.
  • the invention provides a method for treating a person suffering from head trauma associated with elevated intracranial pressures.
  • a positive pressure breath is delivered to the person.
  • respiratory gases are extracted from the person's airway to create an intrathoracic vacuum.
  • this lowers pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial pressures.
  • the steps of delivering positive pressure breaths and extracting respiratory gases are repeated to continue the treatment.
  • the delivery of the positive pressure breaths and the extraction of gases are performed using a mechanical ventilator.
  • the respiratory gases may be extracted with a constant extraction or a pulsed extraction.
  • the breath may be delivered for a time in the range for about 250 milliseconds to about 2 seconds. Also, the breath may be delivered at a rate in the range from about 0.1 liters per second to about 5 liters per second.
  • the vacuum may be maintained at a pressure in the level from about 0 mmHg to about -50 mmHg. The vacuum may be maintained with a negative flow or without any flow.
  • the time that the positive pressure breath is supplied relative to the time in which respiratory gases are extracted may be in the range from about 0.5 to about 0.1.
  • a variety of equipment may be used to extract the respiratory gases including mechanical ventilators, phrenic nerve stimulators, ventilator bags, a vacuum attached to the airway device, iron lung cuirass devices and the like.
  • a threshold valve may also be coupled to the person's airway.
  • the threshold valve may be configured to open when an adult's negative intrathoracic pressure exceeds about -3 cmH2O.
  • the valve may open when the pressure exceeds about -2 cmH2O to about -5 cmH2O. In this way, when the person inhales, the negative intrathoracic pressure may be lowered.
  • respiratory gases may be extracted to achieve a pressure of about -5 mmHg to about -10 mmHg and then kept generally constant until the next positive pressure breath.
  • the positive breath may be slowly delivered and the intrathoracic pressure may be rapidly lowered to a pressure of about -10 mmHg to about -20 mmHg and then gradually reduced towards about 0 mmHg.
  • the intrathoracic pressure may be slowly lowered to a pressure of about -20 mm Hg.
  • the invention provides a device for lowering intrathoracic pressures.
  • the device comprises a housing having an interface that is adapted to couple the housing to the person's airway.
  • a vacuum source is in fluid communication with the housing for repeatedly extracting respiratory gases from the person's lungs and airway to create and periodically maintain a negative intrathoracic pressure.
  • a vacuum regulator is used to regulate the extraction of respiratory gases from the patient's lungs and airway.
  • a positive pressure source is in fluid communication with the housing for intermittently supplying positive pressure breaths to the person.
  • Such a device may be used to treat a variety of ailments, such as head trauma associated with elevated intracranial pressures, low blood pressure, low blood circulation, low blood volume, cardiac arrest and heart failure.
  • a switching mechanism may be used to stop the extraction of respiratory gases during delivery of a positive pressure breath.
  • switching mechanisms may be used, such as mechanical devices, magnetic devices, and electronic devices.
  • vacuum sources may be used to extract the respiratory gases, including a mechanical ventilator, a vacuum with vacuum regulator, a phrenic nerve stimulator, an extrathoracic vest, a ventilator bag, and an iron lung cuirass device, a suction line, a venturi device attached to an oxygen tank and the like.
  • a threshold valve may be placed in fluid communication with the person's airway.
  • the threshold valve may be configured to open when the person's negative intrathoracic pressure reaches about -3 cm H2O to about -20cm H2O to permit respiratory gases to flow into the person's airway.
  • a variety of pressure sources may be used to deliver a positive pressure breath, such as a mechanical ventilator, a hand held bag valve resuscitator, mouth-to-mouth, or a means to provide intermittent positive pressure ventilation.
  • Fig. 1 is a flow chart illustrating one method for reducing intracranial and intraocular pressures according to the invention.
  • FIG. 2 is a perspective view of one embodiment of a facial mask and a valve system that may be used to reduce intracranial and intraocular pressures according to the invention.
  • Fig. 3 is a perspective view of the valve system of Fig. 2.
  • Fig. 4 is a cross sectional side view of the valve system of Fig. 3.
  • Fig. 5 is an exploded view of the valve system of Fig. 3.
  • FIG. 6 is a schematic diagram of a system for reducing intracranial and intraocular pressures according to the invention.
  • Fig. 7 is a series of graphs illustrating the lowering of intracranial pressures in an animal study.
  • Fig. 8 is a series of graphs illustrating the lowering of intracranial pressures in another animal study.
  • Fig. 9A is a schematic diagram of a person's brain under normal conditions.
  • Fig. 9B illustrates the brain of Fig. 9 A after increased swelling.
  • Fig. 10 shows three graphs illustrating the effect of lowering intrathoracic pressure on intracranial pressure and right atrial pressure.
  • FIG. 11 is a flow chart illustrating another method for reducing intracranial and intraocular pressures according to the invention.
  • Figs. 12A-12C show three graphs illustrating patterns for delivering a positive pressure breath and extracting respiratory gases according to the invention.
  • FIG. 13 A and 13B schematically illustrate one device that may be used to lower intrathoracic pressures with a non-breathing patient according to the invention.
  • Figs. 14A and 14B illustrate another device that may be used to lower intrathoracic pressures with a non-breathing patient according to the invention.
  • Figs. 15A and 15B illustrate one embodiment of a threshold valve system that may be used with the device of Figs. 14A and 14B.
  • the invention provides devices and techniques for lowering intracranial and intraocular pressures. Such devices and techniques may be particularly helpful with patients who have suffered a traumatic brain injury and those with low blood flow states and low blood pressure.
  • One way to lower the pressure within the head but maintain or increase systemic pressures is by using a valve system that is coupled to a person's airway and that is used to lower intrathoracic pressures. In so doing, the valve systems may be used to accelerate the removal of venous blood from the brain, thereby decreasing intracranial and intraocular pressures. At the same time, the systemic pressures increase due to enhancement of venous return to the heart.
  • valve systems may also be used to treat the brain function in a person suffering from a heart condition (atrial fibrillation, heart failure, cardiac tamponade, and the like) that results in elevated intracranial pressures.
  • a heart condition atrial fibrillation, heart failure, cardiac tamponade, and the like
  • Such heart conditions may include, for example, atrial fibrillation or heart failure.
  • Intracranial pressures are regulated by the amount the cerebral perfusion pressure, which is determined by the arterial blood pressure to the head, the pressures within the skull, and the pressures within the venous system that drains blood flow from the brain.
  • the devices and methods of the invention may be used to enhance the egress of venous blood out of the brain, thereby lowering intracranial pressures.
  • the devices and methods can be used in patients that are breathing spontaneously and those that require assisted ventilation.
  • the devices and methods may be used to augment the intrathoracic vacuum effect each time a patient inhales (or in the case of a non-breathing patient, each time the pressure within the chest is manipulated to fall below atmospheric pressure), thereby lowering the pressures in the thorax and in the venous blood vessels that transport blood out of the brain.
  • the vacuum effect is transduced back into the brain, and as a result, intracranial pressures are lowered with each inspiratory effort. This in turn causes more venous blood to flow out of the head than would otherwise be possible, resulting in lower intracranial pressures and lower intraocular pressures.
  • this invention may be used to help patients suffering from low cardiac output states and low blood pressure.
  • valve systems may be configured to completely prevent or provide resistance to the inflow of respiratory gases into the patient while the patient inspires.
  • valves may be configured as pressure responsive valves that open after a threshold negative intrathoracic pressure has been reached.
  • the resistance to the inflow of respiratory gases may be set between about 0 cm H2O and about -25 cm H2O and may be variable or fixed. More preferably, the valve system may be configured to open when the negative intrathoracic pressure is in the range from about -2 cmH2O to about -20 cmH2O. In addition, the valve system may used continuously or on a variable basis. For example, the valve system may be used for every other spontaneous breath.
  • impedance valves that may be used to reduce intracranial and intraocular pressures include those having spring-biased devices, automated/electronic and mechanical means to occlude and open a valve lumen, duck bill valves, ball valves, and other pressure sensitive valve systems capable of opening and closing when subjected to low pressure differentials triggered either by spontaneous breathing and/or external means to manipulate intrathoracic pressure (such as ventilators, phrenic nerve stimulators, an iron lung, and the like).
  • intrathoracic pressure such as ventilators, phrenic nerve stimulators, an iron lung, and the like.
  • the negative intrathoracic pressure may be enhanced by inspiring through the valve system. If the person is spontaneously breathing, the person may simply breath through the valve system. If the person is not breathing, artificial inspiration may be induced using a variety of techniques, including electrical stimulation of the diaphragm, a negative pressure ventilator such as a body cuirass or iron lung, or a positive pressure ventilator capable of also generating a vacuum between positive pressure ventilations.
  • a negative pressure ventilator such as a body cuirass or iron lung
  • a positive pressure ventilator capable of also generating a vacuum between positive pressure ventilations.
  • the respiratory muscles may be stimulated to contract in a repeating manner in order to cause the person to inspire through the valve system, thereby increasing the magnitude and prolonging the duration of negative intrathoracic pressure, i.e., respiratory muscle stimulation increases the duration and degree that the intrathoracic pressure is below or negative with respect to the pressure in the peripheral venous vasculature.
  • respiratory muscle stimulation increases the duration and degree that the intrathoracic pressure is below or negative with respect to the pressure in the peripheral venous vasculature.
  • the patient Upon contraction of the respiratory muscles, the patient will typically "gasp".
  • the respiratory muscles that may be stimulated to contract are the diaphragm, the chest wall muscles, including the intercostal muscles and the abdominal muscles.
  • Specific chest wall muscles that may be stimulated to contract include those that elevate the upper ribs, including the scaleni and sternocleidomastoid muscles, those that act to fix the shoulder girdle, including the trapezii, rhomboidei, and levatores angulorum scapulorum muscles, and those that act to elevate the ribs, including the serrati antici majores, and the pectorales majores and minores as described generally in Leslie A. Geddes,
  • the respiratory muscles may be stimulated to contract in a variety of ways.
  • the diaphragm may be stimulated to contract by supplying electrical current or a magnetic field to various nerves or muscle bundles which when stimulated cause the diaphragm to contract. Similar techniques may be used to stimulate the chest wall muscles to contract.
  • a variety of pulse trains, pulse widths, pulse frequencies and pulse waveforms may be used for stimulation.
  • the electrode location and timing of pulse delivery may be varied.
  • an electrical current gradient or a magnetic field is provided to directly or indirectly stimulate the phrenic nerve.
  • electrodes are preferably placed on the lateral surface of the neck over the point where the phrenic nerve, on the chest surface just lateral to the lower sternum to deliver current to the phrenic nerves just as they enter the diaphragm, on the upper chest just anterior to the axillae to stimulate the thoracic nerves, in the oral pharyngeal region of the throat, or on the larynx itself.
  • the respiratory muscles are stimulated by a transcutaneous electrical impulse delivered along the lower antero-lat margin of the rib cage.
  • inspiration is induced by stimulating inspiratory muscles using one or more electrodes attached to an endotracheal tube or pharyngeal tube.
  • the phrenic nerve may be stimulated in the neck region near C3-C7, such as between C3, C4 or C5, or where the phrenic nerves enter the diaphragm.
  • Alternative techniques for stimulating diaphragmatic contraction include magnetic field stimulation of the diaphragm or the phrenic nerve. Magnetic field stimulation may also be employed to stimulate the chest wall muscles.
  • Electrical field stimulation of the diaphragm or the chest wall muscles may be accomplished by placing one or more electrodes on the skin, preferably in the vicinity of the neck or the lower rib cage (although other locations may be employed) and then providing an electrical voltage gradient between electrodes that induces transcutaneous current flow to stimulate the respiratory muscles to contract. Still further, subcutaneous electrodes may also be used to stimulate respiratory muscle contraction. Other techniques are described in U.S. Patent No. 6,463,327, the complete disclosure of which is herein incorporated by reference.
  • the valve systems may have a fixed actuating pressure or may be variable so that once a desired negative intrathoracic pressure is reached, the resistance to flow may be lessened.
  • the valves of the invention may be configured to be variable, either manually or automatically.
  • the extent to which the resistance to flow is varied may be based on physiological parameters measured by one or more sensors that are associated with the person being treated. As such, the resistance to flow may be varied so that the person's physiological parameters are brought within an acceptable range. If an automated system is used, such sensors may be coupled to a controller which is employed to control one or more mechanisms that vary the resistance or actuating pressure of the inflow valve as generally described in the references that have been incorporated by reference.
  • the valve systems of the invention may also incorporate or be associated with sensors that are used to detect changes in intrathoracic pressures or other physiological parameters.
  • the sensors may be configured to wirelessly transmit their measured signals to a remote receiver that is in communication with a controller.
  • the controller may use the measured signals to vary operation of the valve systems described or incorporated by reference herein.
  • sensors may be used to sense blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, blood pH, end tidal CO2, tissue CO2, blood oxygen, cardiac output or the like. Signals from these sensors may be wirelessly transmitted to a receiver.
  • the techniques for reducing intracranial pressures may be used in a variety of settings.
  • the techniques may be used in person's who are spontaneously breathing, those who are not breathing but whose hearts are beating, and those in cardiac arrest.
  • the techniques may use some means to create a vacuum intermittently within the thorax during the performance of CPR. This could be by using a valve system or some other type of pressure manipulation system. Further, such systems may be used in other settings as well, including when the person is breathing.
  • Fig. 1 is flow diagram illustrating one method for reducing intracranial or intraocular pressures.
  • the process proceeds by coupling a valve system to the person's airway.
  • Any kind of coupling mechanism may be used, such as by a mouthpiece, an endotracheal tube, a face mask, or the like. Further, any of the valve systems described or incorporated herein by reference may be used.
  • the person's negative intrathoracic pressure is repetitively decreased (either artificially or by spontaneous breathing).
  • Examples of techniques to artificially reduce the negative intrathoracic pressure include use of an iron lung cuirass device, a ventilator that is capable of generating negative pressures, a ventilator that is capable of providing high frequency oscillations at a rate of about 200 to about 2000 per minute, a phrenic nerve stimulator, or the like.
  • a ventilator that is capable of generating negative pressures
  • a ventilator that is capable of providing high frequency oscillations at a rate of about 200 to about 2000 per minute
  • a phrenic nerve stimulator or the like.
  • various physiological parameters of the person may optionally be measured. Examples of such parameters include respiratory rate, intrathoracic pressure, intertracheal pressure, intracranial pressure, intracranial blood flow, intraocular pressure, blood pressure, heart rate, end tidal CO 2 , oxygen saturation, and the like.
  • the valve system's actuating threshold level may optionally be varied based on the measured physiological parameters. This may be done to maximize the amount of blood drawn out of the brain or simply to monitor the patient's condition to insure that the patient remains stable.
  • FIG. 2 illustrates one embodiment of a facial mask 100 to which is coupled a valve system 200.
  • Mask 100 is configured to be secured to a patient's face so as to cover the mouth and nose.
  • Mask 100 and valve system 200 are examples of one type of equipment that may be used to lower intrathoracic pressures and thereby lower intracranial and intraocular pressures.
  • other valve systems and other coupling arrangements may be used including, for example, those previously referenced. As such the invention is not intended to be limited to the specific valve system and mask described below.
  • Valve system 200 includes a valve housing 202 with a socket 204 into which a ball 206 of a ventilation tube 208 is received. In this way, ventilation tube 208 may rotate about a horizontal axis and pivot relative to a vertical axis.
  • a respiratory source such as a ventilation bag, may be coupled to tube 208 to assist in ventilation.
  • Disposed in ventilation tube 208 is a filter 210 that is spaced above a duck bill valve 212.
  • a diaphragm holder 214 that holds a diaphragm 216 is held within housing 202.
  • Valve system 200 further includes a patient port 218 that is held in place by a second housing 220.
  • Housing 220 conveniently includes tabs 222 to facilitate coupling of valve system 200 with facial mask 100. Also held within housing 220 is a check valve 224 that comprises a spring 224a, a ring member 224b, and an o-ring 224c. Spring 224a biases ring member 224b against patient port 218. Patient port 218 includes bypass openings 226 that are covered by o-ring 224c of check valve 224 until the pressure in patient port 218 reaches a threshold negative pressure to cause spring 224a to compress.
  • valve system 200 prevents respiratory gases from flowing into the lungs until a threshold negative intrathoracic pressure level is exceeded.
  • a threshold negative intrathoracic pressure level When this pressure level is exceeded, check valve 224 is pulled downward as springs 224a are compressed to permit respiratory gases to flow through openings 226 and to the patient's lungs by initially passing through tube 208 and duck bill valve 212.
  • Valve 224 may be set to open when the negative intrathoracic pressure is in the range from about 0 cm H2O to about -25 cm H2O, and more preferably from about -2 cm H2O to about -20 cm H2O. Hence, the magnitude and duration of negative intrathoracic pressure may be enhanced during patient inhalation by use of valve system 200.
  • recoil spring 224a again close check valve 224. In this way, pressure within the venous blood vessels that transport blood out of the brain are also lowered. In so doing, more blood is drawn out of the brain to reduce intracranial and intraocular pressures.
  • System 300 may conveniently include facial mask 100 and valve system 200, although any of the valve systems or interfacing mechanisms described herein or the like may be used.
  • Valve system 200 may conveniently be coupled to a controller 310.
  • controller 310 may be used to control the impedance level of valve system 200 in a manner similar to any of the embodiments described or incorporated herein.
  • the level of impedance may be varied based on measurements of physiological parameters, or using a programmed schedule of changes.
  • System 300 may include a wide variety of sensors and or measuring devices to measure any of the physiological parameters described herein. These sensors or measuring devices may be integrated within or coupled to valve system 200 or facial mask, or may be separate.
  • valve system 200 may include a pressure transducer for taking pressure measurements (such as intrathoracic pressures, intracranial pressures, intraocular pressures), a flow rate measuring device for measuring the flow rate of air into or out of the lungs, or a CO2 sensor for measuring expired CO2.
  • pressure measurements such as intrathoracic pressures, intracranial pressures, intraocular pressures
  • flow rate measuring device for measuring the flow rate of air into or out of the lungs
  • CO2 sensor for measuring expired CO2.
  • Examples of other sensors or measuring devices include a heart rate sensor 330, a blood pressure sensor 340, and a temperature sensor 350. These sensors may also be coupled to controller 310 so that measurements may be recorded. Further, it will be appreciated that other types of measuring devices may be used to measure various physiological parameters, such as oxygen saturation and/or blood levels of O2, blood lactate, blood pH, tissue lactate, tissue pH, blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, end tidal CO2, tissue CO2, cardiac output or the like.
  • O2 oxygen saturation and/or blood levels of O2
  • blood lactate blood pH, tissue lactate, tissue pH, blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, end tidal CO2, tissue CO2, cardiac output or the like.
  • controller 310 may be used to control valve system 200, to control any sensors or measuring devices, to record measurements, and to perform any comparisons.
  • a set of computers and/or controllers may be used in combination to perform such tasks.
  • This equipment may have appropriate processors, display screens, input and output devices, entry devices, memory or databases, software, and the like needed to operate system 300.
  • a variety of devices may also be coupled to controller 310 to cause the person to artificially inspire.
  • such devices may comprise a ventilator 360, an iron lung cuirass device 370 or a phrenic nerve stimulator 380.
  • Ventilator 360 may be configured to create a negative intrathoracic pressure within the person, or may be a high frequency ventilator capable of generating oscillations at about 200 to about 2000 per minute.
  • Intrathoracic pressures were recorded using a Millar catheter placed in the trachea at the level of the carina. After stabilizing the pigs blood pressure, heart rate, and ventilation rate, intracranial pressures (ICP) and intrathoracic pressures were recorded, with 0 cmH2O inspiratory impedance and then with inspiratory impedances of 5,10,15, and 20 cm H2O.
  • ICP intracranial pressures
  • intrathoracic pressures were recorded, with 0 cmH2O inspiratory impedance and then with inspiratory impedances of 5,10,15, and 20 cm H2O.
  • ITV impedance threshold valve
  • the intracranial pressure was approximately 8/4 mmHg. With increasing amounts of inspiratory impedance, the intracranial pressure was lowered proportionally as shown in Figure 7. The intracranial pressure was 6/-2 mmHg when the pig breathed through an impedance of 20 cm H2O. These findings were observed in multiple pig studies and were reproducible.
  • the Millar catheter was inserted 3 cm into the pig's brain. The intracranial pressure increased secondary to the trauma associated with the insertion of the probe. The intracranial pressure increased to 25/22 mmHg at the new baseline.
  • the impedance threshold valve was evaluated at different levels of resistance (Fig. 8). Again, there was a decrease in intracranial pressure proportional to the degree of inspiratory impedance.
  • intracranial pressures were increased in the setting of recovery from cardiac arrest.
  • the example used a pig model with ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation for 6 minutes, followed by defibrillation.
  • Spontaneous breathing resulted in an up to 50% decrease in intracranial pressures when the animals breathed through an inspiratory impedance of 10 cm H2O using a valve system similar to Example 1.
  • the intrathoracic pressure decreased relative to the rest of the body, creating a suction effect that reduced the pressure in the venous blood vessels draining the brain, thereby reducing intracranial pressures.
  • the invention further provides techniques and devices for reducing intracranial pressure (ICP) by facilitating movement of cerebral spinal fluid (CFS).
  • ICP intracranial pressure
  • CFS cerebral spinal fluid
  • the solid matter of the brain contents makes up about 80-85% of the material enclosed by the skull. Cerebral blood volume accounts for 3-6% and CSF for 5-15%. See, Anesthesia, Third Edition Editor, Ron Miller. Chapter authors: Shapiro and Drummond. Chapter 54 (1990), the complete disclosure of which is herein incorporated by reference.
  • CSF moves within the brain from its site of production to its site of reabsorption in the brain in an unimpeded manner under normal physiological states. Since the contents in the brain are practically incompressible, a change in volume of any one of the three major components (brain matter, blood volume, CSF volume) results in a reciprocal change in one or both of the other brain components.
  • the volume of the brain expands, secondary to an increase in the non-CSF component(s), some of the CSF is forced to other locations, including through the foramen magnum (hole in skull connecting skull to space where the spinal cord is located) and into the CSF fluid space surrounding the spinal cord.
  • the non-CSF components expand in volume or size, the intracranial pressure rises.
  • ICP levels are 10-15 mmHg when supine. At levels greater than 15-20 mmHg, damage to the brain can occur secondary to compression and resultant tissue ischemia (lack of adequate blood flow).
  • a reduction in ICP levels can be achieved by a number of clinical interventions including water restriction, diuretics, steroids, hyperventilation, a reduction of cerebral venous pressure, hypothermia, CSF drainage, and surgical decompression.
  • Increased ICP results in reduced CSF fluid movement and translocation.
  • CSF fluid production generally remains constant (about 150 ml/day) despite elevated ICP.
  • CSF fluid reabsorption is can be slowed by elevated ICP.
  • central venous pressures may be reduced. In turn, this results in a decrease in ICP and results in an increase in CSF fluid movement or translocation and reabsorption. This results in a further reduction in ICP.
  • the valve systems of the invention may be used in spontaneously breathing individuals, in patients ventilated with negative pressure ventilation or in patients ventilated with a ventilator that causes a decrease in central venous pressures for at least a portion of the respiratory cycle.
  • a ventilator that causes a decrease in central venous pressures for at least a portion of the respiratory cycle.
  • Each time the intrathoracic pressure is reduced with the valve systems of the invention there is a concomitant reduction in ICP and an increase in the movement of CSF.
  • ICP concomitant reduction in ICP and an increase in the movement of CSF.
  • the sinusoidal movement occurs in spontaneously breathing people because of the change in pressure in the thorax that is transmitted to the brain via the venous blood vessels.
  • the normally fluctuating CSF pressures are altered by the valve systems. More specifically, the valve systems create a lower trough value thereby creating an overall created change in the ICP with each inspiration.
  • a similar effect can be produced with the valve systems when used with a variety of ventilator devices, including an iron lung, a phrenic nerve stimulator (such as those described in U.S. Patent Nos. 6234985; 6224562; and 6312399, incorporated herein by reference), a suction cup on the chest that is used to periodically expand the chest and the like.
  • FIG. 9A the brain 400 is shown under normal conditions.
  • the brain 400 is surrounded by CSF 402 which is produced at a site 404.
  • the CFS in turn is surrounded by the skull 406.
  • Blood enters brain 400 through an artery 408 and exits through a vein 410.
  • Vein 410 also includes a site 412 of CFS drainage.
  • Shown in Fig. 9 A is an arrow showing the direction of CFS flow when draining.
  • Extending from brain 400 is the spinal cord 414 that is surrounded by the foramen magnum 416.
  • Fig. 9B the brain 400 is significantly swollen which reduces the space 402 where the CFS is located.
  • the swelling of the brain 400 can cause blockage of CSF to the spinal cord 414 as shown by arrow 418.
  • movement of CSF to site 412 is reduced to hinder movement of CSF out of the skull 406.
  • brain swelling can be reduced. In so doing, CFS movement and fluid translocation is increased under those same conditions. This results in a further decrease in intracranial pressure as the CSF is able to relocate.
  • Fig. 10 the effects of contracting the atria of the heart on ICP will be described.
  • contraction of the atria results in a phasic movement in ICP. This can be most clearly demonstrated during cardiac ventricular fibrillation.
  • the atria often beat spontaneously and the pressure of each contraction and relaxation waveform is transmitted immediately to the brain and is reflected in nearly identical fluctuations in ICP.
  • the inventor has discovered that the fluid systems (venous blood vessels and CSF) are so closely linked, that subtle changes in the heart rhythm result in immediate changes in CSF pressure.
  • the rise in right heart pressures as a result of these conditions results in an increase in ICP.
  • ICP intrathoracic pressure
  • RA right atrial
  • ICP intracranial pressure
  • the valve systems can used in patients with heart rhythms, such as atrial fibrillation, or patients with heart failure who have increased ICP in order to reduce their ICP, increase CSF fluid movement and translocation, and ultimately help them to improve their brain function.
  • the amount of inspiratory resistance, or the amount of negative intrathoracic pressure generation can be controlled or regulated by feedback from measurement of ICP, blood pressure, respiratory rate, or other physiological parameters.
  • Such a system could include a closed loop feedback system.
  • Fig. 11 is a flow chart illustrating another method for treating a person suffering from head trauma associated with elevated intracranial pressures.
  • head trauma associated with elevated intracranial pressures.
  • such techniques may also be used to treat those suffering from low blood pressure or those in cardiac arrest, among others.
  • the techniques are particularly useful in cases where the person is not breathing, although in some cases they could be used for breathing patients as well.
  • a person's intrathoracic pressure is lowered to decrease intracranial pressures. In turn, this assists in reducing secondary brain injury.
  • equipment may be coupled to the person to assist in lowering the person's intrathoracic pressure.
  • a wide variety of equipment and techniques may be used to decrease the intrathoracic pressure, including using a mechanical ventilator capable of extracting respiratory gases, such as the one described in U.S. Patent No. 6,584,973, a phrenic nerve or other muscle stimulator (with or without the use of an impedance mechanism, such as those described in U.S. Patent Nos.
  • a positive pressure breath is delivered to the person as illustrated in step 502. This may be done with a mechanical ventilator, a ventilatory bag, mouth to mouth, and the like. This is followed by an immediate decrease in intrathoracic pressure. This may be done by extracting or expelling respiratory gases from the patient's lungs as shown in step 504. Any of the techniques described above may be used to lower the intrathoracic pressure. Such a reduction in intrathoracic pressure also lowers central venous pressure and intracranial pressure.
  • the vacuum effect during the expiratory phase may be constant, varied over time or pulsed. Examples of different ways to apply the vacuum are described later with respect to Figs. 12A-12C.
  • the initial positive pressure breath may be supplied for a time of about 250 milliseconds to about 2 seconds, and more preferably from about 0.75 seconds to about 1.5 seconds.
  • the respiratory gases may be extracted for a time that is about 0.5 to about 0.1 to that of the positive pressure breath.
  • the positive pressure breath may be delivered at a flow rate in the range from about 0.1 liters per second to about 5 liters per second, and more preferably from about 0.2 liters per second to about 2 liters per second.
  • the expiratory flow (such as when using a mechanical ventilator) may be in the range from about 0.1 liters per second to about 5 liters per second, and more preferably from about 0.2 liters per second to about 2 liters per second.
  • the vacuum may be maintained with a negative flow or without any flow.
  • the vacuum may be in the range from about 0 mmHg to about -50 mmHg, and more preferably from about 0 mmHg to about -20 mmHg.
  • step 506 the process of delivering a positive pressure breath and then immediately lowering intrathoracic pressures may be repeated as long as necessary to control intracranial pressures. Once finished, the process ends at step 508.
  • the manner in which positive pressure breaths and the vacuum are created may vary depending upon a particular application. These may be applied in a variety of waveforms having different durations and slopes. Examples include using a square wave, biphasic (where a vacuum is created followed by positive pressure, decay (where a vacuum is created and then permitted to decay), and the like. Three specific examples of how this may occur are illustrated in Figs. 12A-12C, although others are possible. For convenience of discussion, the time during which the positive pressure breath occurs may be defined in terms of the inspiratory phase, and the time during which the intrathoracic pressure is lowered may be defined in terms of the expiratory phase.
  • the positive pressure breaths may occur at about 10 to about 16 breaths per minute, with the inspiratory phase lasing about 1.0 to about 1.5 seconds, and the expiration phase lasing about 3 to about 5 seconds.
  • respiratory gases are quickly supplied up to a pressure of about 22 mmHg. This is immediately reversed to a negative pressure of about -10 mmHg. This pressure is kept relatively constant until the end of the expiratory phase where the cycle is repeated.
  • Fig. 12B the positive pressure is more slowly applied.
  • the pressure is rapidly reversed to a negative pressure of about -20 mmHg.
  • the negative pressure gradually declines to about 0 mmHg at the end of the expiratory phase.
  • the cycle is then repeated.
  • the positive pressure is reduced compared to the cycle in Fig. 12A, and the negative pressure is initially lower, but allowed to gradually increase.
  • the technique is designed to help reduce a possible airway collapse.
  • Fig. 12C the positive pressure is brought up to about 20 mmHg and then immediately brought down to about 0 mmHg.
  • the negative pressure is then gradually increased to about -20 mmHg toward the end of the expiratory phase. This cycle is designed to help reduce a possible airway collapse.
  • FIGs. 13 A and 13B schematically illustrate one embodiment of a device 500 that may be used to lower intrathoracic pressures in a non-breathing patient.
  • Device 500 comprises a housing 502 having an interface opening 504 that may be directly or indirectly coupled to the patient's airway using any type of patient interface.
  • Housing 502 also includes a vacuum source interface 506 that may be in fluid communication with any type of device or system capable of producing a vacuum.
  • a means to regulate the vacuum such as a pressure responsive valve system 508.
  • Device 500 further includes a ventilation interface 510 that may be used to provide a breath to the patient, if needed, when the vacuum is not applied.
  • the vacuum may be provided by essentially any type of a vacuum source, and the regulator may comprise an impedance valve, such as those described in U.S. Patent Nos. 5,551,420; 5,692,498; 6,062,219; 5,730,122; 6,155,257; 6,234,916; 6,224,562; 6,234,985; 6,224,562; 6,312,399; and 6,463,327 as well as others described herein.
  • a variety of ventilation sources may be used, such as, for example, a bag valve resuscitator, that is coupled to interface 510.
  • Device 500 may further include a mechanism 512 to inhibit the vacuum when delivering a breath to the patient from the bag valve resuscitator. Once the breath is delivered, mechanism 512 operates to permit the vacuum within the thorax to be reapplied.
  • the mechanism 512 used to turn off and on the vacuum source can include a slider switch that moves to close off the branch in housing 500 having the vacuum source as illustrated in Fig. 13B. However, other types of switches or mechanisms may be used.
  • the vacuum source may have a controller that is configured to shut off the vacuum when the breath is administered so that mechanism 512 is not needed. Also, a controller and appropriate sensors could be used to sense when the breath is delivered and stopped so that mechanism 512 may be appropriately operated by the controller.
  • mechanism 512 moves back to the position illustrated in Fig. 13 A so that the vacuum may be supplied to the patient. When the vacuum reaches a threshold amount, regulator 508 operates to maintain the level of vacuum at about the threshold amount.
  • FIGs. 14A and 14B illustrate another embodiment of a device 530 that may be used to treat a patient.
  • Device 530 operates using similar principles as device 500 illustrated in Figs. 13A and 13B.
  • Device 530 comprises a housing 532 having a patient interface 534 that may be coupled to the patient's airway and a vacuum interface 536 that may be coupled to a vacuum source.
  • Housing 532 also includes a ventilation interface 538 through which a positive pressure breath may be supplied.
  • a vacuum regulator 540 that regulates the amount of vacuum supplied to the patient.
  • a flow regulator that may be used is described below with references to Figs. 15A and 15B. However, it will be appreciated that any of the flow regulators described herein may be used.
  • Flow control device 542 Disposed within housing 532 is a flow control device 542 that is used orchestrate gas flows through housing 532.
  • Flow control device 542 comprises a cylindrical member 544 that may slide within housing 532 and includes a flow path 546 that permits gas flow between interfaces 534 and 536 when flow control device 542 is in the position illustrated in Fig. 14A.
  • a spring 548 or other biasing mechanism is used to hold flow control device 542 in the home position illustrated in Fig. 14A.
  • Flow control device 542 also includes a flow path 550 illustrated by the arrow in Fig. 14A to permit gas flows between regulator 540 and interface 536.
  • a vacuum may be supplied through interface 536 which lowers the person's intrathoracic pressure. If the vacuum becomes to great, gas flows are permitted through regulator 540 to lower the amount of vacuum.
  • flow control device 542 also includes a flow path 552 that passes from interface 538 to interface 534. This permits a positive pressure breath to be supplied to the patient through interface 538. More specifically, as gasses are injected through interface 538, they flow into flow control device 542 causing it to move within housing 532 and compress spring 548. In so doing, flow path 546 closes as it becomes blocked by housing 532. Flow path 550 also closes, leaving only flow path 552 opened to permit the respiratory gases to flow to the patient. When the positive pressure breath stops, spring 548 forces flow control device back to the home position where the vacuum is once again supplied to the patient.
  • Flow control device 542 may include a cup-shaped opening 556 which helps to move the device 542 along with minimal force applied.
  • Device 530 may also include an optional pressure pop-off regulator 560.
  • the pop-off regulator 560 opens allowing for pressure relief above the desired vacuum pressure.
  • the pop-off regulator 560 may be configured to open for pressures greater than about 20 to about 100 mmHg.
  • Figs. 13 and 14 are shown with mechanical switching mechanisms, others may also be used, such as magnetic, electronic, or electrical.
  • Other kinds of possible switches include a ball valve, flapper valve, fish mouth valve, or other mechanical means as well as electric or electronic valving systems, including a solenoid, to allow for temporary inhibition of the vacuum once the positive pressure breath is delivered from the ventilation source.
  • Additional regulators can also be used on the vacuum source to limit the flow or force of the vacuum.
  • the vacuum source could be configured to provide a constant vacuum once a threshold level has been achieved.
  • the vacuum regulator and impedance valves 508 and 530 may be variable or set at a fixed level of impedance.
  • the vacuum source may also be a suction line or come from a venture device attached to an oxygen tank that could both provide oxygen to the patient and a vacuum source. Further, the invention is not limited to using an impedance valve, as shown, to regulate the vacuum. Multiple switching and regulating means may be used instead.
  • the ventilation source is similarly not limiting and may include sources such as mouth-to-mouth, a bag-valve resuscitator, an automatic ventilator, and the like.
  • Figs. 15A and 15B illustrate flow regulator 540 in greater detail.
  • Regulator 540 comprises a housing 570 having a patient port 572 and a ventilation port 574.
  • a supplemental oxygen port 576 may also be provided.
  • Gas may flow through housing 570 (between ports 572 and 574) through one of two flow paths.
  • the first flow path is blocked by a one way check valve 578 that comprises a check valve gasket 580 and a spring 582.
  • the second flow path is blocked by a diaphragm 584.
  • a vacuum is experienced at patient port 572 as the vacuum source draws a vacuum at port 536 (See Fig. 14A).
  • spring 582 compresses to move gasket 580 downward, thereby creating a flow path as illustrated in Fig. 15B.
  • diaphragm 584 closes to prevent air from flowing through the other flow path.
  • Gasket 580 remains spaced apart from the opening as long as the vacuum is at the threshold level. In this way, regulator 540 is able to maintain the vacuum at a constant level.
  • Example 3 is another non-limiting example illustrating how intracranial pressures and intrathoracic pressures may be lowered and systolic arterial pressure may be increased according to one aspect of the invention.
  • 30 kg pigs were anesthetized with propofol.
  • Using a micromanometer-tipped electronic Millar catheter inserted 2 cm below the dura intracranial pressures were measured in non-breathing pigs.
  • Intrathoracic pressures (ITP) were recorded using a Millar catheter placed in the trachea at the level of the carina.
  • SBP Systolic aortic blood pressures
  • a system similar to that illustrated in Figs. 14A, 14B, 15A and 15B was used, with inspiratory impedance (-8 cm H2O with a flow rate of 30L/min). Positive pressure ventilation was provided at a rate of 10 breaths/min with a tidal volume of approximately 400 ml delivered over 1.0 seconds with an automatic transport ventilator.
  • inspiratory impedance 8 cm H2O with a flow rate of 30L/min
  • Positive pressure ventilation was provided at a rate of 10 breaths/min with a tidal volume of approximately 400 ml delivered over 1.0 seconds with an automatic transport ventilator.
  • An objective of this example was to evaluate the acute use of a novel inspiratory impedance threshold device (ITD) attached to a controlled but continuous vacuum (CV) source to decrease intrathoracic pressure (ITP) and intracranial pressure (ICP) but simultaneously increase mean arterial pressure (MAP), coronary perfusion pressure (CPP) and cerebral perfusion pressure (CerPP) in an apneic pig model of sequential insults of cardiac arrest and fixed-bleed hemorrhage hypotensive shock. This animal model is associated with both elevated ICP after cardiac arrest and significant hypotension after hemorrhage.
  • ITD inspiratory impedance threshold device
  • CV controlled but continuous vacuum
  • MAP mean arterial pressure
  • CPP cerebral perfusion pressure
  • This animal model is associated with both elevated ICP after cardiac arrest and significant hypotension after hemorrhage.
  • This example used 6 female farm pigs (28-32kg) that were anesthetized with propofol, intubated and ventilated to maintain normocarbia and O2 saturation >90%. Ventricular fibrillation was induced and followed by 6 min of no treatment, 6 min of standard CPR, and then defibrillation. After return of spontaneous circulation and while ventilated mechanically at 10 breaths/min, 35%> of blood volume was removed with a rate of 60 cc/min. Five min later ITD-CV was applied for 5 min along with positive pressure ventilation with 100%) oxygen at a rate of 10 bpm. The ITD-CV was then removed and positive pressure ventilation at a rate of 10 breaths/min was reapplied. Hemodynamic parameters and arterial blood gases were assessed before, during, and after ITD-CV application. Statistical analysis was performed with a paired t-test and ANOVA to compare +/- ITD-CV use.
  • the results are summarized in the Table below.
  • use of the ITD-CV causes an instantaneous decrease in ITP and ICP as well as a rapid rise in MAP and a marked increase in CerPP.
  • the ITD-CV may be used to treat hypotension, shock, and cerebral hypertension.

Abstract

In one embodiment, the invention provides a device for decreasing intracranial or intraocular pressures. The device comprises a housing (100) having an inlet opening and an outlet opening that is adapted to be interfaced with a person's airway. The device further includes a valve system (200) that is to regulate respiratory gas flow through the housing and into the person's lungs during spontaneous or artificial inspiration. The valve system assists in lowering intrathoracic pressures during each inspiration to repetitively lower pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial or intraocular pressures.

Description

VENTILATOR AND METHODS FOR TREATING HEAD TRAUMA AND LOW BLOOD CIRCULATION
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation in part application of U.S. Patent Application No. 10/660,462, filed September 11, 2003, which is a continuation in part application of U.S. Patent Application No. 10/460,558, filed June 11, 2003, which is a continuation-in-part of U.S. Patent Application No. 10/426,161, filed April 28, 2003, the complete disclosures of which are herein incorporated by reference. [0002] This application is also related to U.S. Patent Application No. 10/765,318, filed January 26, 2004, the complete disclosure of which is herein incorporated by reference.
BACKGROUND OF THE INVENTION [0003] This invention relates generally to the field of intracranial and intraocular pressures. More specifically, the invention relates to devices and methods for decreasing intracranial, intraocular and systemic arterial pressures and increasing systemic vital organ perfusion, such as those resulting from a traumatic head injury and other injuries.
[0004] Head trauma and shock are generally regarded as the leading cause of morbidity and mortality in the United States for children and young adults. Head trauma often results in swelling of the brain. Because the skull cannot expand, the increased pressures within the brain can lead to death or serious brain injury. While a number of therapies have been evaluated in order to reduce brain selling, including use of hyperventilation and steroids, an effective way to treat intracranial pressures remains an important medical challenge. Similarly, multi-organ injury associated with head trauma and other vital organ damage is associated with increased pressures within the brain and decreased vital organ perfusion. These patients have an extremely high mortality rate and similarly remain a major medical challenge.
BRIEF SUMMARY OF THE INVENTION [0005] In one embodiment, the invention provides a device for decreasing intracranial or intraocular pressures and increasing systemic blood pressures and organ perfusion. The device comprises a housing having an inlet opening and an outlet opening that is adapted to be interfaced with a person's airway. The device further includes a valve system that is operable to regulate respiratory gas flows through the housing and into the person's lungs during spontaneous or artificial inspiration. For a person who requires artificial inspiration, the valve system can be attached to a vacuum source. The valve system assists in lowering intrathoracic pressures during spontaneous inspiration and in non-breathing patients when not actively delivering a breath to continuously or intermittently lower pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial or intraocular pressures and increase systemic blood pressures In addition, the invention lowers the pressures within the left and right heart, when positive pressure ventilations are not being provided, thereby helping to increase the efficiency of heart function. The invention can therefore be used to treat patients suffering from a number of disease states including but not limited to those suffering from elevated intracranial pressures, intra-ocular pressures, circulatory collapse, and cardiac arrest, and heart failure. [0006] Such a device may also be used to facilitate movement of cerebral spinal fluid. In so doing, intracranial pressures may be further reduced. Such a device may therefore be used to treat those suffering from head trauma associated with elevated intracranial pressures as well as those suffering from heart conditions that increase intracranial pressures. [0007] In one aspect, the valve system is configured to open to permit respiratory gasses to freely flow to the person's lungs when the negative intrathoracic pressure reaches a pressure in the range from about -2 cmH2O to about -20 cmH2O in order to reduce intracranial or intraocular pressures. In this way, the negative intrathoracic pressure is lowered until a threshold pressure is reached, at which time the valve opens. The cycle may be repeated continuously or periodically to repetitively lower intrathoracic pressures. The device may include means for compressing the chest to improve blood circulation in patents in or with low blood circulation or cardiac arrest. The compression could be accomplished with an automated chest compression, a circumferential vest, and the like. This would improve blood flow to the heart and brain in patients with low blood circulation.
[0008] The device may also include means for causing the person to artificially inspire through the valve system. For example, the device may utilize an electrode, an iron lung cuirass device, a chest lifting device, a ventilator or the like.
[0009] In another embodiment, the device may comprise a means to reduce intrathoracic pressure by applying a vacuum within the airway. The vacuum may be adjusted in terms of frequency, amplitude, and duration. This results in a decrease in intracranial pressure in proportion to the degree of vacuum applied. Hence, intracranial pressures may be reduced simply by manipulating airway pressures to reduce intrathoracic pressures. In addition, the vacuum created within the thorax enhances venous blood flow back to the heart, thereby simultaneously increasing cardiac output and systemic vital organ perfusion.
[0010] The device may further include a mechanism for varying the level of impedance of the valve system. This may be used in combination with at least one physiological sensor that is configured to monitor at least one physiological parameter of the person. In this way, the mechanism for varying the level of impedance may be configured to receive signals from the sensor and to vary the level of impedance of the valve system based on the signals. Examples of sensors that may be used include those that measure respiratory rate, intrathoracic pressure, intratracheal pressure, blood pressure, heart rate, end tidal CO2, oxygen level, intracranial perfusion, and intracranial pressure.
[0011] In one aspect, a coupling mechanism may be used to couple the valve system to the person's airway. Examples of coupling mechanisms include a mouthpiece, an endotracheal tube, and a face mask.
[0012] A wide variety of valve systems may be used to repetitively decrease the person's intrathoracic pressure. For example, valve systems that may be used include those having spring-biased devices, those having automated, electronic or mechanical systems to occlude and open a valve lumen, duck bill valves, ball valves, other pressure sensitive valve systems capable of opening a closing when subjected to low pressure differentials triggered either by spontaneous breathing and/or external systems to manipulate intrathoracic pressures (such as ventilators, phrenic nerve stimulators, iron lungs, and the like).
[0013] In another embodiment, the invention provides a method for decreasing intracranial or intraocular pressures. According to the method, a valve system is coupled to a person's airway and is configured to at least periodically reduce or prevent respiratory gases from flowing to the person's lungs. With the valve system coupled to the airway, the person's negative intrathoracic pressure is repetitively decreased to in turn repetitively lower pressures in the venous blood vessels that transport blood out of the head. In so doing, intracranial and intraocular pressures are reduced. Such a method also facilitates movement of cerebral spinal fluid. In so doing, intracranial pressures are further reduced. As such, this method may also be used to treat a person suffering from head trauma that is associated with elevated intracranial pressures as well as those suffering from heart conditions that increase intracranial pressures, such as atrial fibrillation and heart failure.
[0014] The person's negative intrathoracic pressure may be repetitively decreased as the person repeatedly inspires through the valve system. This may be done by the person's own efforts (referred to as spontaneous breathing), or by artificially causing the person to repeatedly inspire through the valve system. For example, the person may be caused to artificially inspire by repeatedly stimulating the phrenic nerve, by manipulating the chest with an iron lung cuirass device, by generating negative pressures within the thorax using a ventilator, by applying a vacuum within the thorax that can be regulated by the valve system, by applying a high frequency ventilator that supplies oscillations at a rate of about 200 to about 2000 per minute, or the like.
[0015] In another aspect, the level of impedance of the valve system may be fixed or variable. If variable, at least one physiological parameters of the person may be measured, and the impedance level may be varied based on the measured parameters.
[0016] To couple the valve system to the airway, a variety of techniques may be used, such as by using a mouthpiece, an endotracheal tube, a face mask or the like. Further, the respiratory gases may be prevented from entering the lungs through the valve system until a negative intrathoracic pressure in the range from about 0 cmH2O to about -25 cmH2O is achieved, at which time the valve system permits respiratory gases to flow to the lungs.
[0017] In another embodiment, the invention provides a method for treating a person suffering from head trauma associated with elevated intracranial pressures. According to the method, a positive pressure breath is delivered to the person. Following the positive pressure breath, respiratory gases are extracted from the person's airway to create an intrathoracic vacuum. In turn, this lowers pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial pressures. The steps of delivering positive pressure breaths and extracting respiratory gases are repeated to continue the treatment.
[0018] In one aspect, the delivery of the positive pressure breaths and the extraction of gases are performed using a mechanical ventilator. The respiratory gases may be extracted with a constant extraction or a pulsed extraction.
[0019] In a further aspect, the breath may be delivered for a time in the range for about 250 milliseconds to about 2 seconds. Also, the breath may be delivered at a rate in the range from about 0.1 liters per second to about 5 liters per second. In another aspect, the vacuum may be maintained at a pressure in the level from about 0 mmHg to about -50 mmHg. The vacuum may be maintained with a negative flow or without any flow. The time that the positive pressure breath is supplied relative to the time in which respiratory gases are extracted may be in the range from about 0.5 to about 0.1.
[0020] A variety of equipment may be used to extract the respiratory gases including mechanical ventilators, phrenic nerve stimulators, ventilator bags, a vacuum attached to the airway device, iron lung cuirass devices and the like. In some cases, a threshold valve may also be coupled to the person's airway. The threshold valve may be configured to open when an adult's negative intrathoracic pressure exceeds about -3 cmH2O. For pediatric cases, the valve may open when the pressure exceeds about -2 cmH2O to about -5 cmH2O. In this way, when the person inhales, the negative intrathoracic pressure may be lowered.
[0021] A variety of schemes may be used to deliver and extract respiratory gases. For example, respiratory gases may be extracted to achieve a pressure of about -5 mmHg to about -10 mmHg and then kept generally constant until the next positive pressure breath. As another example, the positive breath may be slowly delivered and the intrathoracic pressure may be rapidly lowered to a pressure of about -10 mmHg to about -20 mmHg and then gradually reduced towards about 0 mmHg. As a further example, the intrathoracic pressure may be slowly lowered to a pressure of about -20 mm Hg.
[0022] In a further embodiment, the invention provides a device for lowering intrathoracic pressures. The device comprises a housing having an interface that is adapted to couple the housing to the person's airway. A vacuum source is in fluid communication with the housing for repeatedly extracting respiratory gases from the person's lungs and airway to create and periodically maintain a negative intrathoracic pressure. A vacuum regulator is used to regulate the extraction of respiratory gases from the patient's lungs and airway. Also, a positive pressure source is in fluid communication with the housing for intermittently supplying positive pressure breaths to the person. Such a device may be used to treat a variety of ailments, such as head trauma associated with elevated intracranial pressures, low blood pressure, low blood circulation, low blood volume, cardiac arrest and heart failure.
[0023] In some cases, a switching mechanism may be used to stop the extraction of respiratory gases during delivery of a positive pressure breath. A variety of switching mechanisms may be used, such as mechanical devices, magnetic devices, and electronic devices. Also, a variety of vacuum sources may be used to extract the respiratory gases, including a mechanical ventilator, a vacuum with vacuum regulator, a phrenic nerve stimulator, an extrathoracic vest, a ventilator bag, and an iron lung cuirass device, a suction line, a venturi device attached to an oxygen tank and the like.
[0024] To regulate the vacuum, a threshold valve may be placed in fluid communication with the person's airway. The threshold valve may be configured to open when the person's negative intrathoracic pressure reaches about -3 cm H2O to about -20cm H2O to permit respiratory gases to flow into the person's airway. Also, a variety of pressure sources may be used to deliver a positive pressure breath, such as a mechanical ventilator, a hand held bag valve resuscitator, mouth-to-mouth, or a means to provide intermittent positive pressure ventilation.
BRIEF DESCRIPTION OF THE DRAWINGS [0025] Fig. 1 is a flow chart illustrating one method for reducing intracranial and intraocular pressures according to the invention.
[0026] Fig. 2 is a perspective view of one embodiment of a facial mask and a valve system that may be used to reduce intracranial and intraocular pressures according to the invention.
[0027] Fig. 3 is a perspective view of the valve system of Fig. 2.
[0028] Fig. 4 is a cross sectional side view of the valve system of Fig. 3.
[0029] Fig. 5 is an exploded view of the valve system of Fig. 3.
[0030] Fig. 6 is a schematic diagram of a system for reducing intracranial and intraocular pressures according to the invention.
[0031] Fig. 7 is a series of graphs illustrating the lowering of intracranial pressures in an animal study.
[0032] Fig. 8 is a series of graphs illustrating the lowering of intracranial pressures in another animal study.
[0033] Fig. 9A is a schematic diagram of a person's brain under normal conditions.
[0034] Fig. 9B illustrates the brain of Fig. 9 A after increased swelling. [0035] Fig. 10 shows three graphs illustrating the effect of lowering intrathoracic pressure on intracranial pressure and right atrial pressure.
[0036] Fig. 11 is a flow chart illustrating another method for reducing intracranial and intraocular pressures according to the invention.
[0037] Figs. 12A-12C show three graphs illustrating patterns for delivering a positive pressure breath and extracting respiratory gases according to the invention.
[0038] Figs. 13 A and 13B schematically illustrate one device that may be used to lower intrathoracic pressures with a non-breathing patient according to the invention. [0039] Figs. 14A and 14B illustrate another device that may be used to lower intrathoracic pressures with a non-breathing patient according to the invention.
[0040] Figs. 15A and 15B illustrate one embodiment of a threshold valve system that may be used with the device of Figs. 14A and 14B.
DETAILED DESCRIPTION OF THE INVENTION [0041] In a broad sense, the invention provides devices and techniques for lowering intracranial and intraocular pressures. Such devices and techniques may be particularly helpful with patients who have suffered a traumatic brain injury and those with low blood flow states and low blood pressure. One way to lower the pressure within the head but maintain or increase systemic pressures is by using a valve system that is coupled to a person's airway and that is used to lower intrathoracic pressures. In so doing, the valve systems may be used to accelerate the removal of venous blood from the brain, thereby decreasing intracranial and intraocular pressures. At the same time, the systemic pressures increase due to enhancement of venous return to the heart. Other techniques may be used as well, such as by creating a vacuum intermittently within the thorax. By reducing intracranial pressures, movement of cerebral spinal fluid is also enhanced. In so doing, intracranial pressures are further reduced thereby providing further treatment for those suffering from head trauma. In some cases, the valve systems may also be used to treat the brain function in a person suffering from a heart condition (atrial fibrillation, heart failure, cardiac tamponade, and the like) that results in elevated intracranial pressures. Such heart conditions may include, for example, atrial fibrillation or heart failure. By reducing intracranial pressures, cerebral spinal fluid movement and translocation is increased to help improve brain function. [0042] Intracranial pressures are regulated by the amount the cerebral perfusion pressure, which is determined by the arterial blood pressure to the head, the pressures within the skull, and the pressures within the venous system that drains blood flow from the brain. The devices and methods of the invention may be used to enhance the egress of venous blood out of the brain, thereby lowering intracranial pressures. The devices and methods can be used in patients that are breathing spontaneously and those that require assisted ventilation. To do so, the devices and methods may be used to augment the intrathoracic vacuum effect each time a patient inhales (or in the case of a non-breathing patient, each time the pressure within the chest is manipulated to fall below atmospheric pressure), thereby lowering the pressures in the thorax and in the venous blood vessels that transport blood out of the brain. The vacuum effect is transduced back into the brain, and as a result, intracranial pressures are lowered with each inspiratory effort. This in turn causes more venous blood to flow out of the head than would otherwise be possible, resulting in lower intracranial pressures and lower intraocular pressures. In addition, circulation to the vital organs is increased as the increase in venous return to the heart each time a negative intrathoracic pressure is generated results in an increase in cardiac output and improved vital organ perfusion. As such, this invention may be used to help patients suffering from low cardiac output states and low blood pressure.
[0043] To prevent or impede respiratory gases from flowing to the lungs, a variety of impeding or preventing mechanisms may be used, including those described in U.S. Patent Nos. 5,551,420; 5,692,498; 6,062,219; 5,730,122; 6,155,257; 6,234,916 and 6,224,562, and in U.S. Patent Application Nos. 10/224,263, filed on August 19, 2002 ("Systems and Methods for Enhancing Blood Circulation", Attorney Docket No. 16354-000115), 10/401,493, filed March 28, 2003 ("Diabetes Treatment Systems and Methods", Attorney Docket No. 16354-000116), 09/966,945, filed September 28, 2001 and 09/967,029, filed September 28, 2001, the complete disclosures of which are herein incorporated by reference. The valve systems may be configured to completely prevent or provide resistance to the inflow of respiratory gases into the patient while the patient inspires. For valve systems that completely prevent the flow of respiratory gases, such valves may be configured as pressure responsive valves that open after a threshold negative intrathoracic pressure has been reached.
[0044] For example, the resistance to the inflow of respiratory gases may be set between about 0 cm H2O and about -25 cm H2O and may be variable or fixed. More preferably, the valve system may be configured to open when the negative intrathoracic pressure is in the range from about -2 cmH2O to about -20 cmH2O. In addition, the valve system may used continuously or on a variable basis. For example, the valve system may be used for every other spontaneous breath.
[0045] Although not intended to be limiting, specific kinds of impedance valves that may be used to reduce intracranial and intraocular pressures include those having spring-biased devices, automated/electronic and mechanical means to occlude and open a valve lumen, duck bill valves, ball valves, and other pressure sensitive valve systems capable of opening and closing when subjected to low pressure differentials triggered either by spontaneous breathing and/or external means to manipulate intrathoracic pressure (such as ventilators, phrenic nerve stimulators, an iron lung, and the like).
[0046] In the past, such threshold valve systems have been used to increase the venous preload on the heart and to increase cardiac output, stroke volume and blood pressure because of the augmented effects of the intrathoracic vacuum on the subsequent cardiac contraction. In contrast, the techniques of the invention function by facilitating the removal of blood from the venous side of the brain. Although there may be an increase in blood flow out of the heart to the vital organs (including to the brain) when using such valve systems, the effect of the valve systems on lowering of intracranial pressures was quite unexpected because of the known increase in blood flow to the brain. Remarkably, however, the reduction of venous blood pressures from the brain remains substantial when using the valve systems. Thus, despite the increase in blood flow to the brain, the net effect of the valve system is a decrease in intracranial pressures.
[0047] With the valve system coupled to the person's airway, the negative intrathoracic pressure may be enhanced by inspiring through the valve system. If the person is spontaneously breathing, the person may simply breath through the valve system. If the person is not breathing, artificial inspiration may be induced using a variety of techniques, including electrical stimulation of the diaphragm, a negative pressure ventilator such as a body cuirass or iron lung, or a positive pressure ventilator capable of also generating a vacuum between positive pressure ventilations. As one example, at least some of the respiratory muscles, and particularly the inspiratory muscles, may be stimulated to contract in a repeating manner in order to cause the person to inspire through the valve system, thereby increasing the magnitude and prolonging the duration of negative intrathoracic pressure, i.e., respiratory muscle stimulation increases the duration and degree that the intrathoracic pressure is below or negative with respect to the pressure in the peripheral venous vasculature. Upon contraction of the respiratory muscles, the patient will typically "gasp". These techniques may be performed alone, or in combination with a valve system.
[0048] Among the respiratory muscles that may be stimulated to contract are the diaphragm, the chest wall muscles, including the intercostal muscles and the abdominal muscles. Specific chest wall muscles that may be stimulated to contract include those that elevate the upper ribs, including the scaleni and sternocleidomastoid muscles, those that act to fix the shoulder girdle, including the trapezii, rhomboidei, and levatores angulorum scapulorum muscles, and those that act to elevate the ribs, including the serrati antici majores, and the pectorales majores and minores as described generally in Leslie A. Geddes,
"Electroventilation - A Missed Opportunity?", Biomedical Instrumentation & Technology, July/ August 1998, pp. 401-414, the complete disclosure of which is herein incorporated by reference. Of the respiratory muscles, the two hemidiaphragms and intercostal muscles appear to be the greatest contributors to inspiration and expiration. The respiratory muscles may be stimulated to contract in a variety of ways. For example, the diaphragm may be stimulated to contract by supplying electrical current or a magnetic field to various nerves or muscle bundles which when stimulated cause the diaphragm to contract. Similar techniques may be used to stimulate the chest wall muscles to contract. A variety of pulse trains, pulse widths, pulse frequencies and pulse waveforms may be used for stimulation. Further, the electrode location and timing of pulse delivery may be varied. In one particular aspect, an electrical current gradient or a magnetic field is provided to directly or indirectly stimulate the phrenic nerve.
[0049] To electrically stimulate the inspiratory motor nerves, electrodes are preferably placed on the lateral surface of the neck over the point where the phrenic nerve, on the chest surface just lateral to the lower sternum to deliver current to the phrenic nerves just as they enter the diaphragm, on the upper chest just anterior to the axillae to stimulate the thoracic nerves, in the oral pharyngeal region of the throat, or on the larynx itself. However, it will be appreciated that other electrode sites may be employed. For example, in one embodiment the respiratory muscles are stimulated by a transcutaneous electrical impulse delivered along the lower antero-lat margin of the rib cage. In one embodiment, inspiration is induced by stimulating inspiratory muscles using one or more electrodes attached to an endotracheal tube or pharyngeal tube. To stimulate the diaphragm, the phrenic nerve may be stimulated in the neck region near C3-C7, such as between C3, C4 or C5, or where the phrenic nerves enter the diaphragm. Alternative techniques for stimulating diaphragmatic contraction include magnetic field stimulation of the diaphragm or the phrenic nerve. Magnetic field stimulation may also be employed to stimulate the chest wall muscles. Electrical field stimulation of the diaphragm or the chest wall muscles may be accomplished by placing one or more electrodes on the skin, preferably in the vicinity of the neck or the lower rib cage (although other locations may be employed) and then providing an electrical voltage gradient between electrodes that induces transcutaneous current flow to stimulate the respiratory muscles to contract. Still further, subcutaneous electrodes may also be used to stimulate respiratory muscle contraction. Other techniques are described in U.S. Patent No. 6,463,327, the complete disclosure of which is herein incorporated by reference.
[0050] The valve systems may have a fixed actuating pressure or may be variable so that once a desired negative intrathoracic pressure is reached, the resistance to flow may be lessened. Further, the valves of the invention may be configured to be variable, either manually or automatically. The extent to which the resistance to flow is varied may be based on physiological parameters measured by one or more sensors that are associated with the person being treated. As such, the resistance to flow may be varied so that the person's physiological parameters are brought within an acceptable range. If an automated system is used, such sensors may be coupled to a controller which is employed to control one or more mechanisms that vary the resistance or actuating pressure of the inflow valve as generally described in the references that have been incorporated by reference.
[0051] Hence, the valve systems of the invention may also incorporate or be associated with sensors that are used to detect changes in intrathoracic pressures or other physiological parameters. In one aspect, the sensors may be configured to wirelessly transmit their measured signals to a remote receiver that is in communication with a controller. In turn the controller may use the measured signals to vary operation of the valve systems described or incorporated by reference herein. For example, sensors may be used to sense blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, blood pH, end tidal CO2, tissue CO2, blood oxygen, cardiac output or the like. Signals from these sensors may be wirelessly transmitted to a receiver. This information may then be used by a controller to control the actuating pressure or the resistance of an inflow valve as described in the references incorporated herein by reference. [0052] The techniques for reducing intracranial pressures may be used in a variety of settings. For example, the techniques may be used in person's who are spontaneously breathing, those who are not breathing but whose hearts are beating, and those in cardiac arrest. In the latter case, the techniques may use some means to create a vacuum intermittently within the thorax during the performance of CPR. This could be by using a valve system or some other type of pressure manipulation system. Further, such systems may be used in other settings as well, including when the person is breathing.
[0053] Fig. 1 is flow diagram illustrating one method for reducing intracranial or intraocular pressures. As shown in step 10, the process proceeds by coupling a valve system to the person's airway. Any kind of coupling mechanism may be used, such as by a mouthpiece, an endotracheal tube, a face mask, or the like. Further, any of the valve systems described or incorporated herein by reference may be used. In step 20, the person's negative intrathoracic pressure is repetitively decreased (either artificially or by spontaneous breathing). Examples of techniques to artificially reduce the negative intrathoracic pressure include use of an iron lung cuirass device, a ventilator that is capable of generating negative pressures, a ventilator that is capable of providing high frequency oscillations at a rate of about 200 to about 2000 per minute, a phrenic nerve stimulator, or the like. As the person's negative intrathoracic pressure is repeatedly decreased while the valve system is coupled to the airway, the pressures in the venous vessels that transport blood out of the head are also lowered. In so doing, intracranial and intraocular pressures are reduced.
[0054] As shown in step 30, various physiological parameters of the person may optionally be measured. Examples of such parameters include respiratory rate, intrathoracic pressure, intertracheal pressure, intracranial pressure, intracranial blood flow, intraocular pressure, blood pressure, heart rate, end tidal CO2, oxygen saturation, and the like. Further, as shown in step 40, the valve system's actuating threshold level may optionally be varied based on the measured physiological parameters. This may be done to maximize the amount of blood drawn out of the brain or simply to monitor the patient's condition to insure that the patient remains stable.
[0055] Fig. 2 illustrates one embodiment of a facial mask 100 to which is coupled a valve system 200. Mask 100 is configured to be secured to a patient's face so as to cover the mouth and nose. Mask 100 and valve system 200 are examples of one type of equipment that may be used to lower intrathoracic pressures and thereby lower intracranial and intraocular pressures. However, it will be appreciated that other valve systems and other coupling arrangements may be used including, for example, those previously referenced. As such the invention is not intended to be limited to the specific valve system and mask described below.
[0056] Referring also to Figs. 3-5, valve system 200 will be described in greater detail. Valve system 200 includes a valve housing 202 with a socket 204 into which a ball 206 of a ventilation tube 208 is received. In this way, ventilation tube 208 may rotate about a horizontal axis and pivot relative to a vertical axis. A respiratory source, such as a ventilation bag, may be coupled to tube 208 to assist in ventilation. Disposed in ventilation tube 208 is a filter 210 that is spaced above a duck bill valve 212. A diaphragm holder 214 that holds a diaphragm 216 is held within housing 202. Valve system 200 further includes a patient port 218 that is held in place by a second housing 220. Housing 220 conveniently includes tabs 222 to facilitate coupling of valve system 200 with facial mask 100. Also held within housing 220 is a check valve 224 that comprises a spring 224a, a ring member 224b, and an o-ring 224c. Spring 224a biases ring member 224b against patient port 218. Patient port 218 includes bypass openings 226 that are covered by o-ring 224c of check valve 224 until the pressure in patient port 218 reaches a threshold negative pressure to cause spring 224a to compress.
[0057] When the patient is actively ventilated, respiratory gases are forced through ventilation tube 208. The gases flow through filter 210, through duck bill valve 212, and forces up diaphragm 214 to permit the gases to exit through port 218. Hence, at any time the patient may be ventilated simply by forcing the respiratory gases through tube 208.
[0058] During the exhalation phase of a breathing cycle, expired gases flow through port 218 and lift up diaphragm 214. The gases then flow through a passage 227 in ventilation tube 208 where they exit the system through openings 229 (see Fig. 3).
[0059] During the inhalation phase of a breathing cycle, valve system 200 prevents respiratory gases from flowing into the lungs until a threshold negative intrathoracic pressure level is exceeded. When this pressure level is exceeded, check valve 224 is pulled downward as springs 224a are compressed to permit respiratory gases to flow through openings 226 and to the patient's lungs by initially passing through tube 208 and duck bill valve 212. Valve 224 may be set to open when the negative intrathoracic pressure is in the range from about 0 cm H2O to about -25 cm H2O, and more preferably from about -2 cm H2O to about -20 cm H2O. Hence, the magnitude and duration of negative intrathoracic pressure may be enhanced during patient inhalation by use of valve system 200. Once the intrathoracic pressure falls below the threshold, recoil spring 224a again close check valve 224. In this way, pressure within the venous blood vessels that transport blood out of the brain are also lowered. In so doing, more blood is drawn out of the brain to reduce intracranial and intraocular pressures.
[0060] Any of the valve systems described herein may be incorporated into a treatment system 300 as illustrated in Fig. 6. System 300 may conveniently include facial mask 100 and valve system 200, although any of the valve systems or interfacing mechanisms described herein or the like may be used. Valve system 200 may conveniently be coupled to a controller 310. In turn, controller 310 may be used to control the impedance level of valve system 200 in a manner similar to any of the embodiments described or incorporated herein. The level of impedance may be varied based on measurements of physiological parameters, or using a programmed schedule of changes. System 300 may include a wide variety of sensors and or measuring devices to measure any of the physiological parameters described herein. These sensors or measuring devices may be integrated within or coupled to valve system 200 or facial mask, or may be separate.
[0061] For example, valve system 200 may include a pressure transducer for taking pressure measurements (such as intrathoracic pressures, intracranial pressures, intraocular pressures), a flow rate measuring device for measuring the flow rate of air into or out of the lungs, or a CO2 sensor for measuring expired CO2.
[0062] Examples of other sensors or measuring devices include a heart rate sensor 330, a blood pressure sensor 340, and a temperature sensor 350. These sensors may also be coupled to controller 310 so that measurements may be recorded. Further, it will be appreciated that other types of measuring devices may be used to measure various physiological parameters, such as oxygen saturation and/or blood levels of O2, blood lactate, blood pH, tissue lactate, tissue pH, blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, end tidal CO2, tissue CO2, cardiac output or the like.
[0063] In some cases, controller 310 may be used to control valve system 200, to control any sensors or measuring devices, to record measurements, and to perform any comparisons. Alternatively, a set of computers and/or controllers may be used in combination to perform such tasks. This equipment may have appropriate processors, display screens, input and output devices, entry devices, memory or databases, software, and the like needed to operate system 300.
[0064] A variety of devices may also be coupled to controller 310 to cause the person to artificially inspire. For example, such devices may comprise a ventilator 360, an iron lung cuirass device 370 or a phrenic nerve stimulator 380. Ventilator 360 may be configured to create a negative intrathoracic pressure within the person, or may be a high frequency ventilator capable of generating oscillations at about 200 to about 2000 per minute.
[0065] Example 1
[0066] The following is a non-limiting example illustrating how intracranial pressures may be lowered according to the invention. In this example, 30 kg pigs were anesthetized with propofol. Using a micromanometer-tipped electronic Millar catheter inserted below the dura, intracranial pressures were measured continuously in the spontaneously breathing pigs.
Intrathoracic pressures (ITP) were recorded using a Millar catheter placed in the trachea at the level of the carina. After stabilizing the pigs blood pressure, heart rate, and ventilation rate, intracranial pressures (ICP) and intrathoracic pressures were recorded, with 0 cmH2O inspiratory impedance and then with inspiratory impedances of 5,10,15, and 20 cm H2O.
Inspiratory impedance was achieved using an impedance threshold valve (ITV) as described in Figs. 2-5.
[0067] At base, the intracranial pressure was approximately 8/4 mmHg. With increasing amounts of inspiratory impedance, the intracranial pressure was lowered proportionally as shown in Figure 7. The intracranial pressure was 6/-2 mmHg when the pig breathed through an impedance of 20 cm H2O. These findings were observed in multiple pig studies and were reproducible. Next, the Millar catheter was inserted 3 cm into the pig's brain. The intracranial pressure increased secondary to the trauma associated with the insertion of the probe. The intracranial pressure increased to 25/22 mmHg at the new baseline. Next, the impedance threshold valve was evaluated at different levels of resistance (Fig. 8). Again, there was a decrease in intracranial pressure proportional to the degree of inspiratory impedance.
[0068] Example 2
[0069] In this example, intracranial pressures were increased in the setting of recovery from cardiac arrest. The example used a pig model with ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation for 6 minutes, followed by defibrillation. Spontaneous breathing resulted in an up to 50% decrease in intracranial pressures when the animals breathed through an inspiratory impedance of 10 cm H2O using a valve system similar to Example 1.
[0070] In all examples above, the intrathoracic pressure decreased relative to the rest of the body, creating a suction effect that reduced the pressure in the venous blood vessels draining the brain, thereby reducing intracranial pressures.
[0071] The invention further provides techniques and devices for reducing intracranial pressure (ICP) by facilitating movement of cerebral spinal fluid (CFS). There are a number of causes of increased ICP including: head injury, ischemia, osmolar imbalance, cerebral edema, tumors, complications of dialysis, infections, stroke, hypertensive crises. Each can result in a slow, and in some cases, an acute rise in the ICP. The solid matter of the brain contents makes up about 80-85% of the material enclosed by the skull. Cerebral blood volume accounts for 3-6% and CSF for 5-15%. See, Anesthesia, Third Edition Editor, Ron Miller. Chapter authors: Shapiro and Drummond. Chapter 54 (1990), the complete disclosure of which is herein incorporated by reference. CSF moves within the brain from its site of production to its site of reabsorption in the brain in an unimpeded manner under normal physiological states. Since the contents in the brain are practically incompressible, a change in volume of any one of the three major components (brain matter, blood volume, CSF volume) results in a reciprocal change in one or both of the other brain components. When the volume of the brain expands, secondary to an increase in the non-CSF component(s), some of the CSF is forced to other locations, including through the foramen magnum (hole in skull connecting skull to space where the spinal cord is located) and into the CSF fluid space surrounding the spinal cord. When the non-CSF components expand in volume or size, the intracranial pressure rises. Normal ICP levels are 10-15 mmHg when supine. At levels greater than 15-20 mmHg, damage to the brain can occur secondary to compression and resultant tissue ischemia (lack of adequate blood flow). A reduction in ICP levels can be achieved by a number of clinical interventions including water restriction, diuretics, steroids, hyperventilation, a reduction of cerebral venous pressure, hypothermia, CSF drainage, and surgical decompression.
[0072] Increased ICP results in reduced CSF fluid movement and translocation. CSF fluid production generally remains constant (about 150 ml/day) despite elevated ICP. CSF fluid reabsorption is can be slowed by elevated ICP. By using the valve systems described herein, central venous pressures may be reduced. In turn, this results in a decrease in ICP and results in an increase in CSF fluid movement or translocation and reabsorption. This results in a further reduction in ICP.
[0073] The valve systems of the invention may be used in spontaneously breathing individuals, in patients ventilated with negative pressure ventilation or in patients ventilated with a ventilator that causes a decrease in central venous pressures for at least a portion of the respiratory cycle. Each time the intrathoracic pressure is reduced with the valve systems of the invention, there is a concomitant reduction in ICP and an increase in the movement of CSF. In other words, there is an increase in the difference between the peak and trough of the ICP wave form when using the valve systems. The sinusoidal movement occurs in spontaneously breathing people because of the change in pressure in the thorax that is transmitted to the brain via the venous blood vessels. The normally fluctuating CSF pressures (the pressure increases and decreases with each inspiration) are altered by the valve systems. More specifically, the valve systems create a lower trough value thereby creating an overall created change in the ICP with each inspiration. In the non-breathing patient, a similar effect can be produced with the valve systems when used with a variety of ventilator devices, including an iron lung, a phrenic nerve stimulator (such as those described in U.S. Patent Nos. 6234985; 6224562; and 6312399, incorporated herein by reference), a suction cup on the chest that is used to periodically expand the chest and the like.
[0074] Increased CSF fluid movement results in an overall improved metabolic state for the brain. This is shown schematically in Figs. 9A and 9B. In Fig. 9A, the brain 400 is shown under normal conditions. The brain 400 is surrounded by CSF 402 which is produced at a site 404. The CFS in turn is surrounded by the skull 406. Blood enters brain 400 through an artery 408 and exits through a vein 410. Vein 410 also includes a site 412 of CFS drainage. Shown in Fig. 9 A is an arrow showing the direction of CFS flow when draining. Extending from brain 400 is the spinal cord 414 that is surrounded by the foramen magnum 416.
[0075] In Fig. 9B, the brain 400 is significantly swollen which reduces the space 402 where the CFS is located. The swelling of the brain 400 can cause blockage of CSF to the spinal cord 414 as shown by arrow 418. Also, movement of CSF to site 412 is reduced to hinder movement of CSF out of the skull 406. [0076] By treating the elevated ICP associated with all of the conditions noted above using the valve systems described herein, brain swelling can be reduced. In so doing, CFS movement and fluid translocation is increased under those same conditions. This results in a further decrease in intracranial pressure as the CSF is able to relocate. [0077] Referring now to Fig. 10, the effects of contracting the atria of the heart on ICP will be described. As shown, contraction of the atria results in a phasic movement in ICP. This can be most clearly demonstrated during cardiac ventricular fibrillation. In that setting, the atria often beat spontaneously and the pressure of each contraction and relaxation waveform is transmitted immediately to the brain and is reflected in nearly identical fluctuations in ICP. The inventor has discovered that the fluid systems (venous blood vessels and CSF) are so closely linked, that subtle changes in the heart rhythm result in immediate changes in CSF pressure. Thus, in some patients with significant heart rhythms, or significant heart failure, the rise in right heart pressures as a result of these conditions results in an increase in ICP. Such rises in ICP can lead to a decrease in cerebral perfusion, since cerebral perfusion is determined by the pressure of the blood entering the brain (mean arterial pressure) minus the pressure of the blood leaving the brain (ICP and central venous pressure). Use of the valve and intrathoracic vacuum systems described herein will result in a decrease in intrathoracic pressure. As shown in Fig. 10, the downwardly pointing arrows represent the timing of each inhalation through the valve system. In the baseline state, before the onset of atrial fibrillation, each inspiration (small arrows) results in a reduction in ITP, a reduction of right atria pressure, a reduction in central venous pressures, and then an immediate reduction in ICP. With the onset of atrial fibrillation, the intracranial pressure rises and the sinusoidal pattern of ICP amplitude changes becomes dampened. As soon as the animal begins to inspire through an inspiration impedance of -10 cm H20 there is an immediate decrease in intrathoracic pressure (ITP), an immediate decrease in right atrial (RA) pressures , and an immediate decrease in intracranial pressure (ICP) along with the restoration of a sinusoidal fluctuation in ICP with each inspiration. With elevated ICP, inspiration through the impeding means results in a decrease in ICP, increased cerebral spinal fluid flow, and a decrease in cerebral ischemia secondary to increased cerebral perfusion. As such, the valve systems can used in patients with heart rhythms, such as atrial fibrillation, or patients with heart failure who have increased ICP in order to reduce their ICP, increase CSF fluid movement and translocation, and ultimately help them to improve their brain function. [0078] Hence, the amount of inspiratory resistance, or the amount of negative intrathoracic pressure generation (which may be generated using a variety of techniques) can be controlled or regulated by feedback from measurement of ICP, blood pressure, respiratory rate, or other physiological parameters. Such a system could include a closed loop feedback system.
[0079] Fig. 11 is a flow chart illustrating another method for treating a person suffering from head trauma associated with elevated intracranial pressures. In so doing, it will be appreciated that such techniques may also be used to treat those suffering from low blood pressure or those in cardiac arrest, among others. The techniques are particularly useful in cases where the person is not breathing, although in some cases they could be used for breathing patients as well.
[0080] In a broad sense, when treating a person suffering from head trauma, a person's intrathoracic pressure is lowered to decrease intracranial pressures. In turn, this assists in reducing secondary brain injury. As shown in step 500, equipment may be coupled to the person to assist in lowering the person's intrathoracic pressure. A wide variety of equipment and techniques may be used to decrease the intrathoracic pressure, including using a mechanical ventilator capable of extracting respiratory gases, such as the one described in U.S. Patent No. 6,584,973, a phrenic nerve or other muscle stimulator (with or without the use of an impedance mechanism, such as those described in U.S. Patent Nos. 5,551,420; 5,692,498; 6,062,219; 5,730,122; 6,155,257; 6,234,916 and 6,224,562) such as those described in U.S. Patent Nos. 6234985; 6224562; 6312399; and 6463327, an iron lung device, a thoracic vest capable of pulling outward on the chest wall to create an intrathoracic vacuum similar to the effect of an iron lung, a ventilatory bag, such as the one described in copending U.S. Application No. 10/660,366, filed 09/11/2003 (attorney docket no. 16354- 005400), filed on the same date as the present application, and the like. The complete disclosures of all these references are herein incorporated by reference. For breathing patients, a threshold valve as described above and that is set to open when about 5 cmH20 is generated during an inhalation may be used to enhance the person's negative intrathoracic pressure.
[0081] When the person is not breathing, a positive pressure breath is delivered to the person as illustrated in step 502. This may be done with a mechanical ventilator, a ventilatory bag, mouth to mouth, and the like. This is followed by an immediate decrease in intrathoracic pressure. This may be done by extracting or expelling respiratory gases from the patient's lungs as shown in step 504. Any of the techniques described above may be used to lower the intrathoracic pressure. Such a reduction in intrathoracic pressure also lowers central venous pressure and intracranial pressure.
[0082] The vacuum effect during the expiratory phase may be constant, varied over time or pulsed. Examples of different ways to apply the vacuum are described later with respect to Figs. 12A-12C. The initial positive pressure breath may be supplied for a time of about 250 milliseconds to about 2 seconds, and more preferably from about 0.75 seconds to about 1.5 seconds. The respiratory gases may be extracted for a time that is about 0.5 to about 0.1 to that of the positive pressure breath. The positive pressure breath may be delivered at a flow rate in the range from about 0.1 liters per second to about 5 liters per second, and more preferably from about 0.2 liters per second to about 2 liters per second. The expiratory flow (such as when using a mechanical ventilator) may be in the range from about 0.1 liters per second to about 5 liters per second, and more preferably from about 0.2 liters per second to about 2 liters per second. The vacuum may be maintained with a negative flow or without any flow. The vacuum may be in the range from about 0 mmHg to about -50 mmHg, and more preferably from about 0 mmHg to about -20 mmHg.
[0083] As shown in step 506, the process of delivering a positive pressure breath and then immediately lowering intrathoracic pressures may be repeated as long as necessary to control intracranial pressures. Once finished, the process ends at step 508.
[0084] The manner in which positive pressure breaths and the vacuum are created may vary depending upon a particular application. These may be applied in a variety of waveforms having different durations and slopes. Examples include using a square wave, biphasic (where a vacuum is created followed by positive pressure, decay (where a vacuum is created and then permitted to decay), and the like. Three specific examples of how this may occur are illustrated in Figs. 12A-12C, although others are possible. For convenience of discussion, the time during which the positive pressure breath occurs may be defined in terms of the inspiratory phase, and the time during which the intrathoracic pressure is lowered may be defined in terms of the expiratory phase. The positive pressure breaths may occur at about 10 to about 16 breaths per minute, with the inspiratory phase lasing about 1.0 to about 1.5 seconds, and the expiration phase lasing about 3 to about 5 seconds. As shown in Fig. 12 A, respiratory gases are quickly supplied up to a pressure of about 22 mmHg. This is immediately reversed to a negative pressure of about -10 mmHg. This pressure is kept relatively constant until the end of the expiratory phase where the cycle is repeated.
[0085] In Fig. 12B, the positive pressure is more slowly applied. When reaching a pressure of about 10 to about 15 mmHg, the pressure is rapidly reversed to a negative pressure of about -20 mmHg. The negative pressure gradually declines to about 0 mmHg at the end of the expiratory phase. The cycle is then repeated. Hence, in the cycle of Fig. 12B, the positive pressure is reduced compared to the cycle in Fig. 12A, and the negative pressure is initially lower, but allowed to gradually increase. The technique is designed to help reduce a possible airway collapse.
[0086] In Fig. 12C, the positive pressure is brought up to about 20 mmHg and then immediately brought down to about 0 mmHg. The negative pressure is then gradually increased to about -20 mmHg toward the end of the expiratory phase. This cycle is designed to help reduce a possible airway collapse.
[0087] Figs. 13 A and 13B schematically illustrate one embodiment of a device 500 that may be used to lower intrathoracic pressures in a non-breathing patient. Device 500 comprises a housing 502 having an interface opening 504 that may be directly or indirectly coupled to the patient's airway using any type of patient interface. Housing 502 also includes a vacuum source interface 506 that may be in fluid communication with any type of device or system capable of producing a vacuum. Also coupled to housing 502 is a means to regulate the vacuum, such as a pressure responsive valve system 508. Device 500 further includes a ventilation interface 510 that may be used to provide a breath to the patient, if needed, when the vacuum is not applied.
[0088] In this embodiment, the vacuum may be provided by essentially any type of a vacuum source, and the regulator may comprise an impedance valve, such as those described in U.S. Patent Nos. 5,551,420; 5,692,498; 6,062,219; 5,730,122; 6,155,257; 6,234,916; 6,224,562; 6,234,985; 6,224,562; 6,312,399; and 6,463,327 as well as others described herein. To supply a breath, a variety of ventilation sources may be used, such as, for example, a bag valve resuscitator, that is coupled to interface 510. Device 500 may further include a mechanism 512 to inhibit the vacuum when delivering a breath to the patient from the bag valve resuscitator. Once the breath is delivered, mechanism 512 operates to permit the vacuum within the thorax to be reapplied. The mechanism 512 used to turn off and on the vacuum source can include a slider switch that moves to close off the branch in housing 500 having the vacuum source as illustrated in Fig. 13B. However, other types of switches or mechanisms may be used. In some cases, the vacuum source may have a controller that is configured to shut off the vacuum when the breath is administered so that mechanism 512 is not needed. Also, a controller and appropriate sensors could be used to sense when the breath is delivered and stopped so that mechanism 512 may be appropriately operated by the controller. After the breath is delivered, mechanism 512 moves back to the position illustrated in Fig. 13 A so that the vacuum may be supplied to the patient. When the vacuum reaches a threshold amount, regulator 508 operates to maintain the level of vacuum at about the threshold amount.
[0089] Figs. 14A and 14B illustrate another embodiment of a device 530 that may be used to treat a patient. Device 530 operates using similar principles as device 500 illustrated in Figs. 13A and 13B. Device 530 comprises a housing 532 having a patient interface 534 that may be coupled to the patient's airway and a vacuum interface 536 that may be coupled to a vacuum source. Housing 532 also includes a ventilation interface 538 through which a positive pressure breath may be supplied. Also coupled to housing 532 is a vacuum regulator 540 that regulates the amount of vacuum supplied to the patient. One example of a flow regulator that may be used is described below with references to Figs. 15A and 15B. However, it will be appreciated that any of the flow regulators described herein may be used. Disposed within housing 532 is a flow control device 542 that is used orchestrate gas flows through housing 532. Flow control device 542 comprises a cylindrical member 544 that may slide within housing 532 and includes a flow path 546 that permits gas flow between interfaces 534 and 536 when flow control device 542 is in the position illustrated in Fig. 14A. Conveniently, a spring 548 or other biasing mechanism is used to hold flow control device 542 in the home position illustrated in Fig. 14A. Flow control device 542 also includes a flow path 550 illustrated by the arrow in Fig. 14A to permit gas flows between regulator 540 and interface 536. Hence, when in the home position, a vacuum may be supplied through interface 536 which lowers the person's intrathoracic pressure. If the vacuum becomes to great, gas flows are permitted through regulator 540 to lower the amount of vacuum.
[0090] As illustrated in Fig. 14B, flow control device 542 also includes a flow path 552 that passes from interface 538 to interface 534. This permits a positive pressure breath to be supplied to the patient through interface 538. More specifically, as gasses are injected through interface 538, they flow into flow control device 542 causing it to move within housing 532 and compress spring 548. In so doing, flow path 546 closes as it becomes blocked by housing 532. Flow path 550 also closes, leaving only flow path 552 opened to permit the respiratory gases to flow to the patient. When the positive pressure breath stops, spring 548 forces flow control device back to the home position where the vacuum is once again supplied to the patient.
[0091] Hence, when a vacuum is applied from interface 536, air is pulled out of the patient through interface 534 until the cracking pressure of the impedance valve 540 is reached. At that point air passes through impedance valve 540 from the ventilation source at interface 538, thereby setting the limit of the vacuum achieved in the patient. When positive pressure ventilation is delivered from the ventilation source at interface 538, the internal slider switch cylinder 542 moves downward to close off the vacuum source, allowing for delivery of a positive pressure volume to provide a breath to the patient. Flow control device 542 may include a cup-shaped opening 556 which helps to move the device 542 along with minimal force applied. Once the breath has been delivered, and there is no positive force delivered from the ventilation source to the device 542, spring 548 pushes upwards, re-exposing the patient to the vacuum source.
[0092] Device 530 may also include an optional pressure pop-off regulator 560. In the event that the vacuum source is too great, the pop-off regulator 560 opens allowing for pressure relief above the desired vacuum pressure. The pop-off regulator 560 may be configured to open for pressures greater than about 20 to about 100 mmHg.
[0093] Although the devices illustrated in Figs. 13 and 14 are shown with mechanical switching mechanisms, others may also be used, such as magnetic, electronic, or electrical. Other kinds of possible switches include a ball valve, flapper valve, fish mouth valve, or other mechanical means as well as electric or electronic valving systems, including a solenoid, to allow for temporary inhibition of the vacuum once the positive pressure breath is delivered from the ventilation source. Additional regulators can also be used on the vacuum source to limit the flow or force of the vacuum. For example, the vacuum source could be configured to provide a constant vacuum once a threshold level has been achieved. In addition, the vacuum regulator and impedance valves 508 and 530 may be variable or set at a fixed level of impedance. The vacuum source may also be a suction line or come from a venture device attached to an oxygen tank that could both provide oxygen to the patient and a vacuum source. Further, the invention is not limited to using an impedance valve, as shown, to regulate the vacuum. Multiple switching and regulating means may be used instead. The ventilation source is similarly not limiting and may include sources such as mouth-to-mouth, a bag-valve resuscitator, an automatic ventilator, and the like.
[0094] Figs. 15A and 15B illustrate flow regulator 540 in greater detail. Regulator 540 comprises a housing 570 having a patient port 572 and a ventilation port 574. Optionally, a supplemental oxygen port 576 may also be provided. Gas may flow through housing 570 (between ports 572 and 574) through one of two flow paths. The first flow path is blocked by a one way check valve 578 that comprises a check valve gasket 580 and a spring 582. The second flow path is blocked by a diaphragm 584.
[0095] In operation, a vacuum is experienced at patient port 572 as the vacuum source draws a vacuum at port 536 (See Fig. 14A). When the vacuum reaches a threshold level, spring 582 compresses to move gasket 580 downward, thereby creating a flow path as illustrated in Fig. 15B. As the vacuum is pulled, diaphragm 584 closes to prevent air from flowing through the other flow path. Gasket 580 remains spaced apart from the opening as long as the vacuum is at the threshold level. In this way, regulator 540 is able to maintain the vacuum at a constant level.
[0096] When ready to ventilate the patient, the vacuum is stopped and respiratory gases are injected into port 574 and/or port 576. These gasses lift diaphragm 584 to permit the gases to flow to the patient.
Example 3
[0097] Example 3 is another non-limiting example illustrating how intracranial pressures and intrathoracic pressures may be lowered and systolic arterial pressure may be increased according to one aspect of the invention. In this example, 30 kg pigs were anesthetized with propofol. Using a micromanometer-tipped electronic Millar catheter inserted 2 cm below the dura, intracranial pressures were measured in non-breathing pigs. Intrathoracic pressures (ITP) were recorded using a Millar catheter placed in the trachea at the level of the carina. Systolic aortic blood pressures (SBP) were measured in the aorta with a Millar catheter. To regulate intrathoracic pressures, a system similar to that illustrated in Figs. 14A, 14B, 15A and 15B was used, with inspiratory impedance (-8 cm H2O with a flow rate of 30L/min). Positive pressure ventilation was provided at a rate of 10 breaths/min with a tidal volume of approximately 400 ml delivered over 1.0 seconds with an automatic transport ventilator. The objectives, methods, results, and conclusions describing these novel cardiopulmonary-cranial interactions are summarized below.
[0098] An objective of this example was to evaluate the acute use of a novel inspiratory impedance threshold device (ITD) attached to a controlled but continuous vacuum (CV) source to decrease intrathoracic pressure (ITP) and intracranial pressure (ICP) but simultaneously increase mean arterial pressure (MAP), coronary perfusion pressure (CPP) and cerebral perfusion pressure (CerPP) in an apneic pig model of sequential insults of cardiac arrest and fixed-bleed hemorrhage hypotensive shock. This animal model is associated with both elevated ICP after cardiac arrest and significant hypotension after hemorrhage.
[0099] This example used 6 female farm pigs (28-32kg) that were anesthetized with propofol, intubated and ventilated to maintain normocarbia and O2 saturation >90%. Ventricular fibrillation was induced and followed by 6 min of no treatment, 6 min of standard CPR, and then defibrillation. After return of spontaneous circulation and while ventilated mechanically at 10 breaths/min, 35%> of blood volume was removed with a rate of 60 cc/min. Five min later ITD-CV was applied for 5 min along with positive pressure ventilation with 100%) oxygen at a rate of 10 bpm. The ITD-CV was then removed and positive pressure ventilation at a rate of 10 breaths/min was reapplied. Hemodynamic parameters and arterial blood gases were assessed before, during, and after ITD-CV application. Statistical analysis was performed with a paired t-test and ANOVA to compare +/- ITD-CV use.
[0100] The results are summarized in the Table below. As shown, by regulating thoracic pressures, use of the ITD-CV causes an instantaneous decrease in ITP and ICP as well as a rapid rise in MAP and a marked increase in CerPP. Hence, the ITD-CV may be used to treat hypotension, shock, and cerebral hypertension.
Table
Figure imgf000026_0001
Figure imgf000027_0001
[0101] The invention has now been described in detail for purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
L A medical method for treating a person, the method comprising: delivering a positive pressure breath to the person; extracting respiratory gases from the person's airway using a vacuum following the positive pressure breath to create an intrathoracic vacuum to lower pressures in the heart and to enhance blood flows back to the heart; and repeating the steps of delivering positive pressure breaths and extracting respiratory gases.
2. A method as in claim 1, wherein the person is suffering from ailments selected from a group consisting of head trauma associated with elevated intracranial pressures, low blood pressure, low blood circulation, low blood volume, cardiac arrest and heart failure.
3. A method as in claim 1, further comprising regulating the amount of intrathoracic vacuum using a threshold valve that is in fluid communication with the person's airway.
4. A method as in claim 3, wherein the threshold valve is configured to open when the person's negative intrathoracic pressure reaches about -3 cm H2O to about - 20cm H2O to permit respiratory gases to flow into the person's airway.
5. A method as in claim 3, further comprising stopping application of the vacuum when applying the positive pressure breath using a switching arrangement.
6. A method as in claim 1, wherein the positive pressure breath is delivered using source selected from a group consisting of a mechanical ventilator, a hand held bag valve resuscitator, mouth-to-mouth, or a means to provide intermittent positive pressure ventilation.
7. A method as in claim 1, wherein the respiratory gases are extracted with a constant extraction, varied over time, or a pulsed extraction.
8. A method as in claim 1 , wherein the breath is delivered for a time in the range for about 250 milliseconds to about 2 seconds.
9. A method as in claim 1, wherein the breath is delivered at a rate in the range from about 0.1 liters per seconds to about 5 liters per second.
10. A method as in claim 1, wherein the vacuum is maintained at a pressure in the level from about 0 mmHg to about -50 mmHg.
11. A method as in claim 10, wherein the vacuum is maintained with negative flow or without flow.
12. A method as in claim 1 , wherein the time the positive pressure breath is supplied relative to the time in which respiratory gases are extracted is in the range from about 0.5 to about 0.1.
13. A method as in claim 1, wherein the respiratory gases are extracted using equipment selected from a group consisting of a mechanical ventilator, a vacuum with vacuum regulator, a phrenic nerve stimulator, an extrathoracic vest, a ventilator bag, and an iron lung cuirass device.
14. A method as in claim 1, wherein the respiratory gases are lowered to an intrathoracic pressure of about -5 mmHg to about -10 mmHg and then kept generally constant until the next positive pressure breath.
15. A method as in claim 1 , wherein the positive breath is slowly delivered and the respiratory gases are rapidly lowered to an intrathoracic pressure of about -5 mmHg to about -20 mmHg and then gradually reduced towards about 0 mmHg.
16. A method as in claim 1, wherein the respiratory gases are slowly lowered to a pressure of about - 5 mmHg to about -20 mm Hg.
17. A device for lowering intrathoracic pressures, the device comprising: a means to interface with the patient's airway; a means to repeatedly extract respiratory gases from the patient's lungs and airway to create and periodically maintain a negative intrathoracic pressure; a means to repeatedly regulate the extraction of respiratory gases within the patient's lungs and airway; and a means to deliver a positive pressure breath, to periodically provide inspiration of respiratory gases.
18. A device as in claim 17, wherein the means to extract respiratory gases comprises vacuum source selected from a group consisting of a suction line or venturi device attached to an oxygen tank
19. A device as in claim 17, further comprising a switching mechanism to stop the extraction of respiratory gases during delivery of a positive pressure breath, wherein the switching mechanism is selected from a group consisting of mechanical devices, magnetic devices, and electronic devices.
20. A device as in claim 17, wherein the means for extracting respiratory gases is selected from a group consisting of a mechanical ventilator, a vacuum with vacuum regulator, a phrenic nerve stimulator, an extrathoracic vest, a ventilator bag, and an iron lung cuirass device
21. A device as in claim 17, wherein the means for regulating comprises a threshold valve that is in fluid communication with the person's airway.
22. A device as in claim 21, wherein the threshold valve is configured to open when the person's negative intrathoracic pressure reaches about -3 cm H2O to about - 20cm H2O to permit respiratory gases to flow into the person's airway.
23. A device as in claim 17, wherein the means for delivering a positive pressure breath is selected from a group consisting of a mechanical ventilator, a hand held bag valve resuscitator, mouth-to-mouth, or a means to provide intermittent positive pressure ventilation.
24. A device for lowering intrathoracic pressures, the device comprising: a housing having an interface that is adapted to couple the housing to the person's airway; a vacuum source in fluid communication with the housing for repeatedly extracting respiratory gases from the person's lungs and airway to create and periodically maintain a negative intrathoracic pressure; a vacuum regulator to regulate the extraction of respiratory gases from the patient's lungs and airway; and a positive pressure source in fluid communication with the housing for intermittently supplying positive pressure breaths to the person.
25. A device for decreasing intracranial or intraocular pressures, the device comprising: a housing having an inlet opening and an outlet opening that is adapted to be interfaced with a person's airway; a valve system that is operable to regulate respiratory gas flows through the housing and into the person's lungs during spontaneous or artificial inspiration, the valve system assisting in lowering intrathoracic pressures during each inspiration to repetitively lower pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial or intraocular pressures.
26. A device as in claim 25, wherein the valve system is normally closed and is configured to open to permit respiratory gasses to freely flow to the person's lungs when the negative intrathoracic pressure reaches a pressure in the range from about 0 cmH2O to about -25 cmH2O in order to reduce intracranial or intraocular pressures.
27. A device as in claim 25, further comprising means for causing the person to artificially inspire through the valve system.
28. A device as in claim 27, wherein the means for causing the person to artificially inspire is selected from a group consisting of an electrode, an iron lung cuirass device, a chest lifting device and a ventilator.
29. A device as in claim 25, further comprising a mechanism for varying the level of impedance of the valve system.
30. A device as in claim 29, further comprising at least one physiological sensor that is configured to monitor at least one physiological parameter of the person, and wherein the mechanism for varying the level of impedance is configured to receive signals from the sensor and to vary the level of impedance of the valve system based on the signals.
31. A device as in claim 30, wherein the sensor is selected from a group of sensors that are configured to measure parameters selected from a group consisting of respiratory rate, intrathoracic pressure, intratracheal pressure, blood pressure, heart rate, end tidal CO2, oxygen level, and intracranial pressure.
32. A device as in claim 25, further comprising a coupling mechanism that is configured to couple the valve system to the person's airway.
33. A device as in claim 32, wherein the coupling mechanism is selected from a group consisting of a mouthpiece, an endotracheal tube, and a face mask.
34. A device as in claim 25, wherein the valve system comprises an inflow valve that is selected from a group of valves consisting of a fish mouth valve, a spring-poppet valve, a ball valve, a flexible plug valve, a slotted airway resistance valve, a spring biased valve, a movable disk valve, a compressible airway valve, an iris valve, an automated valve, and a sequential series of adjusting valves.
35. A method for decreasing intracranial pressures, the method comprising: actively decreasing the person's negative intrathoracic pressure to lower pressures in the venous blood vessels that transport blood out of the head to thereby reduce intracranial pressures.
PCT/US2004/012294 2003-04-28 2004-04-20 Ventilator and methods for treating head trauma and low blood circulation WO2004096109A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2523847A CA2523847C (en) 2003-04-28 2004-04-20 Ventilator and methods for treating head trauma and low blood circulation
JP2006513187A JP2006524543A (en) 2003-04-28 2004-04-20 Ventilator and method for treating head injury and low blood circulation
EP04760311A EP1617798A4 (en) 2003-04-28 2004-04-20 Ventilator and methods for treating head trauma and low blood circulation
CN2004800173429A CN1829548B (en) 2003-04-28 2004-04-20 Ventilator and methods for treating head trauma and low blood circulation

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US10/426,161 US7195012B2 (en) 2003-04-28 2003-04-28 Systems and methods for reducing intracranial pressure
US10/426,161 2003-04-28
US10/460,558 US7185649B2 (en) 2003-04-28 2003-06-11 Systems and methods for increasing cerebral spinal fluid flow
US10/460,558 2003-06-11
US10/660,462 2003-09-11
US10/660,462 US7082945B2 (en) 2003-04-28 2003-09-11 Ventilator and methods for treating head trauma
US10/765,318 US7195013B2 (en) 1993-11-09 2004-01-26 Systems and methods for modulating autonomic function
US10/765,318 2004-01-26
US10/796,875 2004-03-08
US10/796,875 US7836881B2 (en) 2003-04-28 2004-03-08 Ventilator and methods for treating head trauma and low blood circulation

Publications (2)

Publication Number Publication Date
WO2004096109A2 true WO2004096109A2 (en) 2004-11-11
WO2004096109A3 WO2004096109A3 (en) 2005-12-29

Family

ID=33425730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/012294 WO2004096109A2 (en) 2003-04-28 2004-04-20 Ventilator and methods for treating head trauma and low blood circulation

Country Status (4)

Country Link
EP (1) EP1617798A4 (en)
JP (1) JP2006524543A (en)
CA (1) CA2523847C (en)
WO (1) WO2004096109A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076713A1 (en) 2008-12-30 2010-07-08 Koninklijke Philips Electronics, N.V. System and respiration appliance for supporting the airway of a subject
EP2442859A4 (en) * 2009-06-19 2015-10-07 Advanced Circulatory Sys Inc Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
US9675770B2 (en) 2007-04-19 2017-06-13 Advanced Circulatory Systems, Inc. CPR volume exchanger valve system with safety feature and methods
US9724266B2 (en) 2010-02-12 2017-08-08 Zoll Medical Corporation Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods
US9811634B2 (en) 2013-04-25 2017-11-07 Zoll Medical Corporation Systems and methods to predict the chances of neurologically intact survival while performing CPR
US9949686B2 (en) 2013-05-30 2018-04-24 Zoll Medical Corporation End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US10034991B2 (en) 2011-12-19 2018-07-31 Zoll Medical Corporation Systems and methods for therapeutic intrathoracic pressure regulation
US10265495B2 (en) 2013-11-22 2019-04-23 Zoll Medical Corporation Pressure actuated valve systems and methods
US10478374B2 (en) 2007-04-19 2019-11-19 Zoll Medical Corporation Systems and methods to increase survival with favorable neurological function after cardiac arrest

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551420A (en) 1993-11-09 1996-09-03 Cprx, Inc. CPR device and method with structure for increasing the duration and magnitude of negative intrathoracic pressures
US5692498A (en) 1993-11-09 1997-12-02 Cprx, Inc. CPR device having valve for increasing the duration and magnitude of negative intrathoracic pressures
US5730122A (en) 1996-11-12 1998-03-24 Cprx, Inc. Heart failure mask and methods for increasing negative intrathoracic pressures
US6062219A (en) 1993-11-09 2000-05-16 Cprx Llc Apparatus and methods for assisting cardiopulmonary resuscitation
US6155257A (en) 1998-10-07 2000-12-05 Cprx Llc Cardiopulmonary resuscitation ventilator and methods
US6224562B1 (en) 1998-06-11 2001-05-01 Cprx Llc Methods and devices for performing cardiopulmonary resuscitation
US6234916B1 (en) 1999-10-18 2001-05-22 Bruce E. Carusillo Multi-task golf tool
US6312399B1 (en) 1998-06-11 2001-11-06 Cprx, Llc Stimulatory device and methods to enhance venous blood return during cardiopulmonary resuscitation
US20020069878A1 (en) 1993-11-09 2002-06-13 Cprx Llc Apparatus and methods for enhancing cardiopulmonary blood flow and ventilation
US6463327B1 (en) 1998-06-11 2002-10-08 Cprx Llc Stimulatory device and methods to electrically stimulate the phrenic nerve
US20030051729A1 (en) 2001-09-16 2003-03-20 Eliezer Be'eri Inexsufflator
US20030062041A1 (en) 2001-09-28 2003-04-03 Cprx Llc Systems and methods to facilitate the delivery of drugs
US20030062040A1 (en) 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US6584973B1 (en) 1995-12-08 2003-07-01 Cardiopulmonary Corporation Ventilator control system and method
US20050056277A1 (en) 2003-09-11 2005-03-17 Advanced Circulatory Systems, Inc. Bag-valve resuscitation for treatment of hypotention, head trauma, and cardiac arrest

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1344862A (en) * 1971-01-29 1974-01-23 Medizin Labortechnik Veb K Control for use in respiration apparatus
US4349015A (en) * 1980-11-14 1982-09-14 Physio-Control Corporation Manually-actuable CPR apparatus
DE3242814A1 (en) * 1982-11-19 1984-05-24 Siemens AG, 1000 Berlin und 8000 München METHOD AND RESPIRATOR FOR BREATHING A PATIENT IN THE HEART RHYMUS AND FOR SUPPORTING THE BLOOD CIRCULATION
US5377671A (en) * 1991-04-26 1995-01-03 Cardiopulmonary Corporation Cardiac synchronous ventilation
CA2403816A1 (en) * 2000-03-22 2001-09-27 Todd M. Zielinski Cpr mask with compression timing metronome and methods

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692498A (en) 1993-11-09 1997-12-02 Cprx, Inc. CPR device having valve for increasing the duration and magnitude of negative intrathoracic pressures
US6062219A (en) 1993-11-09 2000-05-16 Cprx Llc Apparatus and methods for assisting cardiopulmonary resuscitation
US5551420A (en) 1993-11-09 1996-09-03 Cprx, Inc. CPR device and method with structure for increasing the duration and magnitude of negative intrathoracic pressures
US20040016428A9 (en) 1993-11-09 2004-01-29 Cprx Llc Systems and methods for enhancing blood circulation
US20020069878A1 (en) 1993-11-09 2002-06-13 Cprx Llc Apparatus and methods for enhancing cardiopulmonary blood flow and ventilation
US6584973B1 (en) 1995-12-08 2003-07-01 Cardiopulmonary Corporation Ventilator control system and method
US5730122A (en) 1996-11-12 1998-03-24 Cprx, Inc. Heart failure mask and methods for increasing negative intrathoracic pressures
US6224562B1 (en) 1998-06-11 2001-05-01 Cprx Llc Methods and devices for performing cardiopulmonary resuscitation
US6234985B1 (en) 1998-06-11 2001-05-22 Cprx Llc Device and method for performing cardiopulmonary resuscitation
US6312399B1 (en) 1998-06-11 2001-11-06 Cprx, Llc Stimulatory device and methods to enhance venous blood return during cardiopulmonary resuscitation
US6463327B1 (en) 1998-06-11 2002-10-08 Cprx Llc Stimulatory device and methods to electrically stimulate the phrenic nerve
US6155257A (en) 1998-10-07 2000-12-05 Cprx Llc Cardiopulmonary resuscitation ventilator and methods
US6234916B1 (en) 1999-10-18 2001-05-22 Bruce E. Carusillo Multi-task golf tool
WO2002092169A1 (en) 2001-05-11 2002-11-21 Advanced Circulatory Systems, Inc. Shock treatment systems and methods
US20030051729A1 (en) 2001-09-16 2003-03-20 Eliezer Be'eri Inexsufflator
US20030062041A1 (en) 2001-09-28 2003-04-03 Cprx Llc Systems and methods to facilitate the delivery of drugs
US20030062040A1 (en) 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US20050056277A1 (en) 2003-09-11 2005-03-17 Advanced Circulatory Systems, Inc. Bag-valve resuscitation for treatment of hypotention, head trauma, and cardiac arrest

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1617798A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512749B2 (en) 2003-04-28 2019-12-24 Zoll Medical Corporation Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
US10478374B2 (en) 2007-04-19 2019-11-19 Zoll Medical Corporation Systems and methods to increase survival with favorable neurological function after cardiac arrest
US11679061B2 (en) 2007-04-19 2023-06-20 Zoll Medical Corporation Systems and methods to increase survival with favorable neurological function after cardiac arrest
US11020313B2 (en) 2007-04-19 2021-06-01 Zoll Medical Corporation Systems and methods to increase survival with favorable neurological function after cardiac arrest
US9675770B2 (en) 2007-04-19 2017-06-13 Advanced Circulatory Systems, Inc. CPR volume exchanger valve system with safety feature and methods
US10456541B2 (en) 2008-12-30 2019-10-29 Koninklijke Philips N.V. System and respiration appliance for supporting the airway of a subject
WO2010076713A1 (en) 2008-12-30 2010-07-08 Koninklijke Philips Electronics, N.V. System and respiration appliance for supporting the airway of a subject
US9216266B2 (en) 2008-12-30 2015-12-22 Koninklijke Philips N.V. System and respiration appliance for supporting the airway of a subject
EP3081250A1 (en) * 2009-06-19 2016-10-19 Advanced Circulatory Systems, Inc. Vacuum and positive pressure ventilation system
US11583645B2 (en) 2009-06-19 2023-02-21 Zoll Medical Corporation Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
EP2442859A4 (en) * 2009-06-19 2015-10-07 Advanced Circulatory Sys Inc Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
US9724266B2 (en) 2010-02-12 2017-08-08 Zoll Medical Corporation Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods
US11123261B2 (en) 2010-02-12 2021-09-21 Zoll Medical Corporation Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods
US10034991B2 (en) 2011-12-19 2018-07-31 Zoll Medical Corporation Systems and methods for therapeutic intrathoracic pressure regulation
US10874809B2 (en) 2011-12-19 2020-12-29 Zoll Medical Corporation Systems and methods for therapeutic intrathoracic pressure regulation
US11654253B2 (en) 2011-12-19 2023-05-23 Zoll Medical Corporation Systems and methods for therapeutic intrathoracic pressure regulation
US9811634B2 (en) 2013-04-25 2017-11-07 Zoll Medical Corporation Systems and methods to predict the chances of neurologically intact survival while performing CPR
US11488703B2 (en) 2013-04-25 2022-11-01 Zoll Medical Corporation Systems and methods to predict the chances of neurologically intact survival while performing CPR
US10835175B2 (en) 2013-05-30 2020-11-17 Zoll Medical Corporation End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US9949686B2 (en) 2013-05-30 2018-04-24 Zoll Medical Corporation End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US10265495B2 (en) 2013-11-22 2019-04-23 Zoll Medical Corporation Pressure actuated valve systems and methods

Also Published As

Publication number Publication date
WO2004096109A3 (en) 2005-12-29
EP1617798A4 (en) 2011-04-20
JP2006524543A (en) 2006-11-02
EP1617798A2 (en) 2006-01-25
CA2523847C (en) 2013-07-09
CA2523847A1 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US7836881B2 (en) Ventilator and methods for treating head trauma and low blood circulation
US8408204B2 (en) Positive pressure systems and methods for increasing blood pressure and circulation
US7082945B2 (en) Ventilator and methods for treating head trauma
EP3064242A1 (en) Ventilator and methods for treating head trauma and low blood circulation
US7185649B2 (en) Systems and methods for increasing cerebral spinal fluid flow
US7195013B2 (en) Systems and methods for modulating autonomic function
US7204251B2 (en) Diabetes treatment systems and methods
US7275542B2 (en) Bag-valve resuscitation for treatment of hypotension, head trauma, and cardiac arrest
US8210176B2 (en) Method and system to decrease intracranial pressure, enhance circulation, and encourage spontaneous respiration
US20080047555A1 (en) Bag-valve resuscitation for treating of hypotension, head trauma, and cardiac arrest
US20120029321A1 (en) Airway adjunct resuscitation systems and methods
CA2523847C (en) Ventilator and methods for treating head trauma and low blood circulation
JP2006524543A5 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2523847

Country of ref document: CA

Ref document number: 2006513187

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004760311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004760311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048173429

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004760311

Country of ref document: EP