WO2004097398A1 - Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs - Google Patents

Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs Download PDF

Info

Publication number
WO2004097398A1
WO2004097398A1 PCT/EP2004/004483 EP2004004483W WO2004097398A1 WO 2004097398 A1 WO2004097398 A1 WO 2004097398A1 EP 2004004483 W EP2004004483 W EP 2004004483W WO 2004097398 A1 WO2004097398 A1 WO 2004097398A1
Authority
WO
WIPO (PCT)
Prior art keywords
substances
detector
mass spectrometer
inlet valve
gas chromatograph
Prior art date
Application number
PCT/EP2004/004483
Other languages
English (en)
French (fr)
Inventor
Frank Diedrich
Friedhelm Müller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE502004004036T priority Critical patent/DE502004004036D1/de
Priority to US10/554,162 priority patent/US7544233B2/en
Priority to EP04729861A priority patent/EP1625391B1/de
Publication of WO2004097398A1 publication Critical patent/WO2004097398A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/78Detectors specially adapted therefor using more than one detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph

Definitions

  • a chromatographic separation device In the gas chromatographic analysis of a mixture of substances, it is passed together with a carrier gas through a chromatographic separation device, in which the substances of the mixture of substances are separated due to different retention times and therefore appear one after the other at the exit of the separation device.
  • Different detectors are available for the detection of the separated substances, e.g. B. thermal conductivity detectors or flame ionization detectors available.
  • the use of a mass spectrometer as a detector enables not only the detection of the chromatographically separated substances but also the differentiation of substances with the same retention times but different masses. Since the mass spectrometric analysis of substances takes place in a vacuum, the presence of the carrier gas coming out of the gas chromatograph together with the separated substances is undesirable.
  • the mass spectrometer is therefore connected to the outlet of the separating device via a controllable inlet valve, which is only opened as required, that is to say when the separated substances arrive, the carrier gas being discharged (DE 1598568).
  • a controllable inlet valve which is only opened as required, that is to say when the separated substances arrive, the carrier gas being discharged (DE 1598568).
  • the control of the supply of separated substances to the mass spectrometer can therefore only be carried out relatively roughly in compliance with safety times, so that a not inconsiderable amount of carrier gas gets into the mass spectrometer and a correspondingly high pump output is required to generate the necessary vacuum.
  • the invention is therefore based on the object of optimizing the mass spectrometric analysis of substances separated by gas chromatography.
  • the object is achieved by a gas chromatograph with a downstream mass spectrometer, which is connected via a controllable inlet valve to the outlet of a separating device of the gas chromatograph separating the substances of a mixture of substances passing through it, with an in-line between the outlet of the separating device and the inlet valve the separated substances are arranged in a non-destructive detector and the detector is followed by an evaluation device which evaluates detector signals generated by the detector and, depending on this, controls the inlet valve to introduce predeterminable substances into the mass spectrometer.
  • the object is further achieved by a method for gas-chromatographic-mass spectrometric analysis of a mixture of substances, which is passed through a separating device to separate the substances contained therein by means of a carrier gas, at the exit of which the separated substances arriving there for quantitative determination via a controllable inlet valve be introduced into a mass spectrometer, the separated substances being detected by an in-line detector arranged between the outlet of the separating device and the inlet valve and, depending on the detection, the inlet valve being driven to introduce predeterminable substances into the mass spectrometer.
  • the separated substances appearing at the outlet of the separating device are detected in-line and non-destructively, only those substances which have been selected for a further mass spectrometric analysis being passed on to the spectrometer.
  • the transit time of the substances from the detector to the inlet valve of the mass spectrometer is known due to the speed of the carrier gas flow, so that the substances can be transferred very selectively into the mass spectrometer and therefore the amount of carrier gas entering the mass spectrometer is minimal.
  • the pump power for generating the vacuum in the mass spectrometer can therefore be correspondingly low, so that very small pumps, e.g. B. ion getter pumps can be used. This results in advantages in terms of costs, service life, maintenance requirements and power consumption.
  • the scope of the measurement signal evaluation in the mass spectrometer is only limited to the substances selectively supplied to it, so that its electronics and software can be made cheaper and more efficient (faster).
  • Substances that are not selected for mass spectrometric analysis can still be analyzed by the in-line detector and the downstream evaluation device if necessary.
  • the measurement path of the detector through which the substance mixture flows is preferably designed in such a way that its cross-sectional dimensions correspond at least approximately to the cross-sectional dimensions of the separation device.
  • the detector consists of a thermal conductivity detector with heating resistors arranged in a bridge circuit, of which two heating resistors are arranged diagonally opposite one another in the measuring path in the two different bridge halves; the other two heating resistors are located then in a reference path through which the carrier gas flows, for example.
  • Figure 1 shows an embodiment of the gas chromatograph mass spectrometer
  • Figure 2 shows an embodiment for the detector.
  • FIG. 1 shows a gas chromatograph 1 with a downstream mass spectrometer 2 for analyzing a mixture of substances (sample) 3, which after removal from a technical process and preparation is fed to a metering device 4.
  • the dosing device 4 is used to introduce a predetermined dosing amount of the sample 3 in the form of a short and sharply delimited sample plug 5 into a carrier gas stream 6 and to feed it to a separation device 7 in the form of a separation column or column connection.
  • the separating device 7 separates the substances contained in the sample plug 5 according to their retention times, so that the substances appear one after the other at the outlet of the separating device 7.
  • a detector 8 for detecting the separated substances is arranged at the outlet of the separating device 7.
  • the detector 8 supplies a detector signal 9 which contains a peak 10 for each separated substance, the peak area of which is proportional to the quantity of substance.
  • the arrival of selected substances is determined on the basis of their peaks 10 in an evaluation device 11 arranged downstream of the detector 8, and an inlet valve 12 between the detector 8 and the mass spectrometer 2 is controlled in dependence thereon and on the carrier gas speed in such a way that this only the selected substances into the mass spectrometer 2 initiates and discharges the other substances and the carrier gas via an outlet 13.
  • the selected substances entering the vacuum 14 of the mass spectrometer 2 are ionized in an ion source 15, then separated in a mass filter 16 according to their mass / charge ratio and finally detected by means of a detector array 17 with a downstream evaluation device 18.
  • FIG. 2 shows an example of the in-line detector 8, which is designed here as a thermal conductivity detector.
  • the detector 8 has wire-shaped heating resistors 20, 21, 22, 23, which are arranged in a bridge circuit 24, the bridge circuit 24 being supplied with a current at two opposite circuit points 25 from a detector circuit 26 and between the two other opposite circuit points 27 occurring voltage is detected by the detector circuit 26 for generating the detector signal.
  • the heating resistors 20 and 21 located diagonally opposite one another in the bridge circuit 24 are arranged between the separating device 7 and the inlet valve 12 in a measuring path 28 of the detector 8, while the other two heating resistors 22 and 23 are arranged in a reference path 29 through which the carrier gas 6 flows.
  • the measurement path 28 is designed in such a way that its internal cross-sectional dimensions correspond to those of the connected separating device 7, so that the separated mixture of substances flowing through is not disturbed.
  • the heating resistors 20, 21, 22, 23 and the inner walls of the paths 28, 29 consist of materials which are inert towards the substance mixture to be analyzed or the carrier gas 6, for example from gold or silicon dioxide (quartz), so that a Changes in the mixture of substances due to chemical reactions are excluded.

Abstract

Um bei einem Gaschromatographen (1) mit einer Trenneinrichtung (7) und einem nachgeordnetem Massenspektrometer (2) die Analyse von gaschromatographisch getrennten Stoffen zu optimieren, ist zwischen dem Ausgang der Trenneinrichtung (7) und einem steuerbaren Einlassventil (12) des Massenspektrometers (2) in-line ein die getrennten Stoffe zerstörungsfrei detektierender Detektor (8) angeordnet; eine dem Detektor nachgeordnete Auswerteeinrichtung (11) wertet die Detektorsignale aus und steuert in Abhängigkeit davon das Einlassventil (12) zur Einleitung vorgebbarer Stoffe in das Massenspektrometer (2) an.

Description

Gaschromatograph mit nachgeordnetem Massenspektrometer und Verfahren zur gaschromatographisch-massenspektrometrischen Analyse eines Stoffgemischs
Bei der gaschromatographischen Analyse eines Stoffgemischs wird dieses zusammen mit einem Trägergas durch eine chromatographische Trenneinrichtung geleitet, in denen die Stoffe des Stoffgemischs aufgrund unterschiedlicher Retentionszeiten getrennt werden und daher nacheinander am Ausgang der Trenneinrichtung erscheinen. Für die Detektion der getrennten Stoffe stehen unterschiedliche Detektoren, wie z. B. Wärmeleitfähigkeitsdetektoren oder Flammenionisationsdetektoren, zur Verfügung. Die Verwendung eines Massenspektrometers als Detektor ermöglicht zusätzlich zu der Detektion der chromatographisch getrennten Stoffe auch noch die Differenzierung von Stoffen mit gleichen Retentionszeiten aber unterschiedlichen Massen. Da die massenspektrometrische Analyse von Stoffen im Vakuum erfolgt, ist die Anwesenheit des zusammen mit den getrennten Stoffen aus dem Gaschromatographen kommenden Trägergases unerwünscht. Das Massenspektrometer wird daher über ein steuerbares Einlassventil an den Ausgang der Trenneinrichtung angeschlossen, welches nur bedarfsweise, das heißt bei Ankunft der getrennten Stoffe, geöffnet wird, wobei im Übrigen das Trägergas ausgeschleust wird (DE 1598568). Es ist zwar möglich, in dem ausgeschleusten Trägergas die Ankunft des getrennten Stoffgemischs zu detektieren und in Abhängigkeit davon das Einlassventil zu öffnen, jedoch geht dabei ein Teil der getrennten Stoffe, nämlich die anfänglich mit dem Trägergas ausgeschleusten Stoffe, für die massenspektrometrische Analyse verloren. Die Steuerung der Zuführung von getrennten Stoffen zu dem Massenspektrometer kann daher nur relativ grob unter Einhaltung von Sicherheitszeiten erfolgen, so dass eine nicht unerhebliche Trägergasmenge in das Massenspektrometer gelangt und eine dementsprechend hohe Pumpleistung zur Erzeugung des notwendigen Vakuums erforderlich ist. Der Erfindung liegt daher die Aufgabe zugrunde, die massenspektrometrische Analyse von gaschromatographisch getrennten Stoffen zu optimieren.
Gemäß der Erfindung wird die Aufgabe durch einen Gaschromatographen mit einem nachgeordneten Massenspektrometer gelöst, das über ein steuerbares Einlassventil an dem Ausgang einer die Stoffe eines sie durchlaufenden Stoffgemischs trennenden Trenneinrichtung des Gaschromatographen angeschlossen ist, wobei zwischen dem Ausgang der Trenneinrichtung und dem Einlassventil in-line ein die getrennten Stoffe zerstörungsfrei detektierender Detektor angeordnet ist und dem Detektor eine Auswerteeinrichtung nachgeordnet ist, die von dem Detektor erzeugte Detektorsignale auswertet und in Abhängigkeit davon das Einlassventil zu Einleitung vorgebbarer Stoffe in das Massenspektrometer ansteuert.
Die Aufgabe wird ferner gelöst durch ein Verfahren zur gas- chromatographisch-massenspektrometrischen Analyse eines Stoffgemischs, welches zur Trennung der in ihm enthaltenen Stoffe mittels eines Trägergases durch eine Trenneinrichtung geleitet wird, an deren Ausgang die dort ankommenden getrennten Stoffe zur quantitativen Bestimmung über ein steuerbares Einlassventil in ein Massenspektrometer eingeleitet werden, wobei die getrennten Stoffe durch eine in-line zwischen dem Ausgang der Trenneinrichtung und dem Einlassventil angeordneten Detektor detektiert werden und in Abhängigkeit von der Detektion das Einlassventil zur Einleitung vorgebbarer Stoffe in das Massenspektrometer angesteuert wird.
Die am Ausgang der Trenneinrichtung erscheinenden getrennten Stoffe werden in-line und zerstörungsfrei detektiert, wobei nur diejenigen Stoffe an das Spektrometer weitergeleitet werden, die für eine weitere massenspektrometrische Analyse ausgewählt worden sind. Aufgrund der Geschwindigkeit des Trägergasstromes ist die Laufzeit der Stoffe von dem Detektor zu dem Einlassventil des Massenspektrometers bekannt, so dass die Stoffe sehr selektiv in das Massenspektrometer überführt werden können und daher die in das Massenspektrometer gelangende Trägergasmenge minimal ist. Dementsprechend gering kann daher die Pumpleistung zur Erzeugung des Vakuums in dem Massenspektrometer sein, so dass sehr kleine Pumpen, z. B. Ionengetterpumpen, zum Einsatz kommen können. Daraus resultieren Vorteile in Bezug auf Kosten, Lebensdauer, Wartungsbedarf und Stromaufnahme. Ferner beschränkt sich der Umfang der Messsignalauswertung in dem Massenspektrometer nur noch auf die ihm selektiv zugeführten Stoffe, so dass seine Elektronik und Software billiger und leistungsfähiger (schneller) ausgestaltet werden kann.
Stoffe, die nicht für die massenspektrometrische Analyse ausgewählt werden, können bei Bedarf dennoch durch den in-line Detektor und die nachgeordnete Auswerteeinrichtung analysiert werden.
Für den Detektor kommen nur Detektoren in Frage, die das Stoffgemisch nicht zerstören, also beispielsweise ein geeigneter Wärmeleitfähigkeitsdetektor, optischer Detektor oder mit akustischen Oberflächenwellen arbeitender Detektor. Um die von der Trenneinrichtung erbrachte Trennleistung nicht nachträglich zu beeinträchtigen, ist dabei der von dem Stoffgemisch durchströmte Messpfad des Detektors vorzugsweise in der Weise ausgebildet, dass seine Querschnittsabmessungen zumindest annähernd den Querschnittsabmessungen der Trenneinrichtung entsprechen.
Entsprechend einer bevorzugten Ausbildung des erfindungsgemäßen Gaschromatographen-Massenspektrometers besteht der Detektor aus einem Wärmeleitfähigkeitsdetektor mit in einer Brückenschaltung angeordneten Heizwiderständen, von denen zwei in den beiden unterschiedlichen Brückenhälften einander diagonal gegenüberliegende Heizwiderstände in dem Messpfad angeordnet sind; die beiden anderen Heizwiderstände liegen dann in einem beispielsweise von dem Trägergas durchströmten Referenzpfad.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigen
Figur 1 ein Ausführungsbeispiel des erfindungsgemäßen Gaschromatographen-Massenspektrometers und
Figur 2 ein Ausführungsbeispiel für den Detektor.
Figur 1 zeigt einen Gaschromatographen 1 mit einem nachgeord- neten Massenspektrometer 2 zur Analyse eines Stoffgemischs (Probe) 3, das nach Entnahme aus einem technischen Prozess und Aufbereitung einer Dosiereinrichtung 4 zugeführt wird. Die Dosiereinrichtung 4 dient dazu, zu einem vorgegebenen Zeitpunkt eine vorgegebene Dosiermenge der Probe 3 in Form eines kurzen und scharf begrenzten Probenpfropfes 5 in einen Trägergasstrom 6 einzuschleusen und einer Trenneinrichtung 7 in Form einer Trennsäule oder Trennsäulenschaltung zuzuführen. Die Trenneinrichtung 7 trennt die in dem Probenpfropf 5 enthaltenen Stoffe entsprechend ihren Retentionszeiten, so dass die Stoffe am Ausgang der Trenneinrichtung 7 nacheinander erscheinen.
Am Ausgang der Trenneinrichtung 7 ist ein Detektor 8 zu Detektion der getrennten Stoffe angeordnet. Der Detektor 8 liefert ein Detektorsignal 9, das für jeden getrennten Stoff einen Peak 10 enthält, dessen Peakfläche zu der Stoffmenge proportional ist. In einer dem Detektor 8 nachgeordneten Auswerteeinrichtung 11 wird die Ankunft ausgewählter Stoffe anhand ihrer Peaks 10 ermittelt und in Abhängigkeit davon und von der Trägergasgeschwindigkeit ein Einlassventil 12 zwischen dem Detektor 8 und dem Massenspektrometer 2 derart gesteuert, dass dieses nur die ausgewählten Stoffe in das Massenspektrometer 2 einleitet und die anderen Stoffe sowie das Trägergas über ein Auslass 13 ausschleust. Die in das Vakuum 14 des Massenspektrometers 2 gelangenden ausgewählten Stoffe werden in einer Ionenquelle 15 ionisiert, anschließend in einem Massenfilter 16 nach ihrem Masse/Ladungsverhältnis getrennt und schließlich mittels eines Detek- tor-Arrays 17 mit nachgeordneter Auswerteeinrichtung 18 nachgewiesen.
Figur 2 zeigt ein Beispiel für den in-line-Detektor 8, der hier als Wärmeleitfähigkeitsdetektor ausgebildet ist. Der Detektor 8 weist drahtförmige Heizwiderstände 20, 21, 22, 23 auf, die in einer Brückenschaltung 24 angeordnet sind, wobei die Brückenschaltung 24 an zwei einander gegenüberliegenden Schaltungspunkten 25 aus einer Detektorschaltung 26 mit einem Strom gespeist wird und die zwischen den beiden anderen gegenüberliegenden Schaltungspunkten 27 auftretende Spannung von der Detektorschaltung 26 zur Erzeugung des Detektorsignals erfasst wird. Die in der Brückenschaltung 24 einander diagonal gegenüberliegenden Heizwiderstände 20 und 21 sind zwischen der Trenneinrichtung 7 und dem Einlassventil 12 in einem Messpfad 28 des Detektors 8 angeordnet, während die beiden übrigen Heizwiderstände 22 und 23 in einem von dem Trägergas 6 durchströmten Referenzpfad 29 angeordnet sind. Der Messpfad 28 ist derart ausgebildet, dass seine inneren Querschnittsabmessungen denen der angeschlossenen Trenneinrichtung 7 entsprechen, so dass das durchströmende getrennte Stoffgemisch nicht gestört wird. Die Heizwiderstände 20, 21, 22, 23 und die Innenwände der Pfade 28, 29 bestehen aus Materialien, die sich gegenüber dem zu analysierenden Stoffgemisch bzw. dem Trägergas 6 inert verhalten, also beispielsweise aus Gold bzw. Siliziumdioxid (Quarz) , so dass eine Veränderung des Stoffgemischs aufgrund chemischer Reaktionen ausgeschlossen ist.

Claims

Patentansprüche
1. Gaschromatograph (1) mit einem nachgeordneten Massenspektrometer (2), das über ein steuerbares Einlassventil (12) an dem Ausgang einer die Stoffe eines sie durchlaufenden Stoff- gemischs trennenden Trenneinrichtung (7) des Gaschromatographen (1) angeschlossen ist, wobei zwischen dem Ausgang der Trenneinrichtung (7) und dem Einlassventil (12) in-line ein die getrennten Stoffe zerstörungsfrei detektierender Detektor (8) angeordnet ist und dem Detektor eine Auswerteeinrichtung (11) nachgeordnet ist, die von dem Detektor (8) erzeugte Detektorsignale auswertet und in Abhängigkeit davon das Einlassventil (12) zur Einleitung vorgebbarer Stoffe in das Massenspektrometer (2) ansteuert.
2. Gaschromatograph nach Anspruch 1, da d u r ch ge k e n n z e i c h n e t , dass der Detektor (8) einen von dem Stoffgemisch durchströmten Messpfad (28) aufweist, dessen Querschnittsabmessungen zumindest annähernd den Querschnittsabmessungen der Trenneinrichtung (7) entsprechen.
3. Gaschromatograph nach Anspruch 2, da du r c h g e k e nn z e i c hn e t , dass der Detektor (8) ein Wärmeleitfähigkeitsdetektor ist.
4. Gaschromatograph nach Anspruch 3, da du r ch g e k e n n z e i ch n e t , dass der Wärmeleitfähigkeitsdetektor (8) in einer Brückenschaltung angeordnete Heizwiderstände (20, 21, 22, 23) aufweist, von denen zwei in den beiden unterschiedlichen Brückenhälften einander diagonal gegenüberliegende Heizwiderständen (20, 21) in dem Messpfad (28) angeordnet sind.
5. Verfahren zur gaschromatographischen Analyse eines Stoff- gemischs, welches zur Trennung der in ihm enthaltenen Stoffe mittels eines Trägergases (6) durch eine Trenneinrichtung (7) geleitet wird, an deren Ausgang die dort ankommenden getrenn- ten Stoffe zur quantitativen Bestimmung über ein steuerbares Einlassventil (12) in ein Massenspektrometer (2) eingeleitet werden, wobei die getrennten Stoffe durch einen in-line zwischen dem Ausgang der Trenneinrichtung (7) und dem Einlassventil (12) angeordneten Detektor (8) detektiert werden und in Abhängigkeit von der Detektion das Einlassventil (12) zur Einleitung vorgebbarer Stoffe in das Massenspektrometer (2) angesteuert wird.
PCT/EP2004/004483 2003-04-28 2004-04-28 Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs WO2004097398A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502004004036T DE502004004036D1 (de) 2003-04-28 2004-04-28 Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs
US10/554,162 US7544233B2 (en) 2003-04-28 2004-04-28 Gas chromatograph with a mass spectrometer situated down therefrom, and method for performing the gas chromatographic/mass spectrometric analysis of a substance mixture
EP04729861A EP1625391B1 (de) 2003-04-28 2004-04-28 Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003119130 DE10319130B3 (de) 2003-04-28 2003-04-28 Gaschromatograph mit nachgeordnetem Massenspektrometer und Verfahren zur gaschromatographisch-massenspektrometrischen Analyse eines Stoffgemischs
DE10319130.5 2003-04-28

Publications (1)

Publication Number Publication Date
WO2004097398A1 true WO2004097398A1 (de) 2004-11-11

Family

ID=32842304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004483 WO2004097398A1 (de) 2003-04-28 2004-04-28 Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs

Country Status (4)

Country Link
US (1) US7544233B2 (de)
EP (1) EP1625391B1 (de)
DE (2) DE10319130B3 (de)
WO (1) WO2004097398A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918704A2 (de) 2006-11-03 2008-05-07 Rheinmetall Landsysteme GmbH Luftspürsimulator für chemische Messsysteme

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150096349A1 (en) * 2012-05-14 2015-04-09 Pen Inc. Optimize analyte dynamic range in gas chromatography
CN104465296B (zh) * 2013-09-13 2017-10-31 岛津分析技术研发(上海)有限公司 离子传输装置以及离子传输方法
DE102015208250A1 (de) * 2015-05-05 2016-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. On-line Massenspektrometer zur Echtzeiterfassung flüchtiger Komponenten aus der Gas- und Flüssigphase zur Prozessanalyse
CN107037171A (zh) * 2016-12-29 2017-08-11 浙江富春江环保科技研究有限公司 一种用于二恶英在线检测的气相色谱‑质谱间传输线系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405549A (en) * 1964-11-02 1968-10-15 Cons Electrodynamics Corp Analytical system
US4123236A (en) * 1975-02-28 1978-10-31 Block Engineering Inc. Gas chromatograph device
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
DE10105728A1 (de) * 2001-02-08 2002-09-05 Siemens Ag Verfahren zur gaschromatographischen Analyse einer Probe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097327A (en) 1965-10-01 1968-01-03 Hitachi Ltd Carrier gas separating device
US3581465A (en) * 1966-11-25 1971-06-01 Shimazu Seisakusho Ltd Method and apparatus for concentrating and trapping sample component
US5281397A (en) * 1991-03-14 1994-01-25 General Electric Company Adjustable open-split interface for a gas chromatograph and a mass spectrometer
JP3128053B2 (ja) * 1995-05-30 2001-01-29 株式会社島津製作所 ガスクロマトグラフ質量分析装置
JP2000187027A (ja) * 1998-12-22 2000-07-04 Gl Sciences Inc 微量有機化合物分析方法及び装置
US6351983B1 (en) * 1999-04-12 2002-03-05 The Regents Of The University Of California Portable gas chromatograph mass spectrometer for on-site chemical analyses
US6706534B2 (en) * 2001-12-10 2004-03-16 The Regents Of The University Of Michigan Pulsed carrier gas flow modulation for selectivity enhancements with gas chroma tography using series-coupled ensembles
US6706535B2 (en) * 2001-12-10 2004-03-16 The Regents Of The University Of Michigan Pulsed carrier gas flow modulation for selectivity enhancements with gas chromatography using series-coupled column ensembles
FR2849924B1 (fr) * 2003-01-14 2005-02-11 Commissariat Energie Atomique Dispositif de couplage automatise entre un micro-chromatographe et un spectrometre de masse comprenant un ajustement de temperature
JP4725082B2 (ja) * 2004-11-18 2011-07-13 株式会社島津製作所 クロマトグラフ質量分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405549A (en) * 1964-11-02 1968-10-15 Cons Electrodynamics Corp Analytical system
US4123236A (en) * 1975-02-28 1978-10-31 Block Engineering Inc. Gas chromatograph device
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
DE10105728A1 (de) * 2001-02-08 2002-09-05 Siemens Ag Verfahren zur gaschromatographischen Analyse einer Probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918704A2 (de) 2006-11-03 2008-05-07 Rheinmetall Landsysteme GmbH Luftspürsimulator für chemische Messsysteme
DE102006052275B3 (de) * 2006-11-03 2008-06-05 Rheinmetall Landsysteme Gmbh Messvorrichtung für einen Simulator

Also Published As

Publication number Publication date
DE10319130B3 (de) 2004-09-09
EP1625391B1 (de) 2007-06-06
DE502004004036D1 (de) 2007-07-19
US20060272506A1 (en) 2006-12-07
EP1625391A1 (de) 2006-02-15
US7544233B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
US5117109A (en) Exchange method of mobile phase in high-performance liquid chromatography mass spectrometry and its apparatus
DE112005002632T5 (de) Flüssigchromatograph
DE10105728B4 (de) Verfahren zur gaschromatographischen Analyse einer Probe
DE19960631C1 (de) Verfahren und Vorrichtung zur gaschromatographischen Analyse von Proben
DE2513617C3 (de) Anordnung zur Feststellung einer örtlichen Überhitzung eines Teiles einer gasgekühlten dynamoelektrischen Maschine
EP1625391B1 (de) Gaschromatograph mit nachgeordnetem massenspektrometer und verfahren zur gaschromatographisch-massenspektrometrischen analyse eines stoffgemischs
DE19502674C1 (de) Ionenmobilitätsspektrometer mit interner GC-Säule
EP1488226B1 (de) Gaschromatograph zur analyse von erdgas
DE102005004800A1 (de) Massenspektrometer
EP2356442B1 (de) Verfahren und anordnung zur gaschromatographischen analyse eines gasgemischs
DE10151646B4 (de) Vorrichtung und Verfahren zur Bestimmung von Isotopenverhältnissen
DE102007013579A1 (de) Analytisches System und Verfahren
DE2206004C3 (de) Vorrichtung zur wahlweisen dosierten Entnahme von Fluiden aus einer Vielzahl verschiedener Fluidproben
DE10064138B4 (de) Chromatograph
DE102011054208B4 (de) Vorrichtung zum Absaugen eines Teilstroms aus einem Aerosol-Hauptstrom
DE10214211C1 (de) Gaschromatograph und Verfahren zur gaschromatographischen Analyse eines Stoffgemischs
DE19856784B4 (de) Gasanalysator mit internem Gaskreislauf
DE4313238C2 (de) Verfahren und Apparatur zur fraktionierenden Messung von Aerosolen
DE102008006208B4 (de) Vorrichtung für die Gasanalyse
EP0417976B1 (de) Verfahren und Vorrichtung für Flüssigkeitschromatographie gekoppelt mit Massenspektrometer
DE1498503C3 (de) Verfahren und Vorrichtung zur massenspektrometrischen Analyse von Gasgemischen mit Trägergas aus einer gaschromatographischen Trennsäule
DE19806640C2 (de) Verfahren zur kapillarchromatographischen Trennung von Stoffgemischen unter Verwendung eines neuen Sensors
DE1598689A1 (de) Vorrichtung fuer die Analyse von organischen Verbindungen
DE19521294A1 (de) Verfahren zur gaschromatographischen Analyse von gasförmigen Stoffen mit Konzentrationen im Prozentbereich
DE10206999A1 (de) Verfahren zur Überwachung von technischen Trennprozessen sowie Meßeinrichtung zur Durchführung dieses Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004729861

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004729861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006272506

Country of ref document: US

Ref document number: 10554162

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554162

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004729861

Country of ref document: EP